Sample records for integrating electrophysiology contraction

  1. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip

    DOE PAGES

    Qian, Fang; Huang, Chao; Lin, Yi-Dong; ...

    2017-04-18

    Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less

  2. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Huang, Chao; Lin, Yi-Dong

    Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less

  3. Integrative Systems Models of Cardiac Excitation Contraction Coupling

    PubMed Central

    Greenstein, Joseph L.; Winslow, Raimond L.

    2010-01-01

    Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca2+ transport. The complexity and integrative nature of heart cell electrophysiology and Ca2+-cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multi-scale modeling techniques have revealed many mechanistic links between micro-scale events, such as Ca2+ binding to a channel protein, and macro-scale phenomena, such as excitation-contraction coupling gain. Here we review experimentally based multi-scale computational models of excitation-contraction coupling and the insights that have been gained through their application. PMID:21212390

  4. Integration of Organic Electrochemical and Field-Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays.

    PubMed

    Lee, Wonryung; Kim, Dongmin; Rivnay, Jonathan; Matsuhisa, Naoji; Lonjaret, Thomas; Yokota, Tomoyuki; Yawo, Hiromu; Sekino, Masaki; Malliaras, George G; Someya, Takao

    2016-11-01

    Integration of organic electrochemical transistors and organic field-effect transistors is successfully realized on a 600 nm thick parylene film toward an electrophysiology array. A single cell of an integrated device and a 2 × 2 electrophysiology array succeed in detecting electromyogram with local stimulation of the motor nerve bundle of a transgenic rat by a laser pulse. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Integrated platform and API for electrophysiological data

    PubMed Central

    Sobolev, Andrey; Stoewer, Adrian; Leonhardt, Aljoscha; Rautenberg, Philipp L.; Kellner, Christian J.; Garbers, Christian; Wachtler, Thomas

    2014-01-01

    Recent advancements in technology and methodology have led to growing amounts of increasingly complex neuroscience data recorded from various species, modalities, and levels of study. The rapid data growth has made efficient data access and flexible, machine-readable data annotation a crucial requisite for neuroscientists. Clear and consistent annotation and organization of data is not only an important ingredient for reproducibility of results and re-use of data, but also essential for collaborative research and data sharing. In particular, efficient data management and interoperability requires a unified approach that integrates data and metadata and provides a common way of accessing this information. In this paper we describe GNData, a data management platform for neurophysiological data. GNData provides a storage system based on a data representation that is suitable to organize data and metadata from any electrophysiological experiment, with a functionality exposed via a common application programming interface (API). Data representation and API structure are compatible with existing approaches for data and metadata representation in neurophysiology. The API implementation is based on the Representational State Transfer (REST) pattern, which enables data access integration in software applications and facilitates the development of tools that communicate with the service. Client libraries that interact with the API provide direct data access from computing environments like Matlab or Python, enabling integration of data management into the scientist's experimental or analysis routines. PMID:24795616

  6. Integrated platform and API for electrophysiological data.

    PubMed

    Sobolev, Andrey; Stoewer, Adrian; Leonhardt, Aljoscha; Rautenberg, Philipp L; Kellner, Christian J; Garbers, Christian; Wachtler, Thomas

    2014-01-01

    Recent advancements in technology and methodology have led to growing amounts of increasingly complex neuroscience data recorded from various species, modalities, and levels of study. The rapid data growth has made efficient data access and flexible, machine-readable data annotation a crucial requisite for neuroscientists. Clear and consistent annotation and organization of data is not only an important ingredient for reproducibility of results and re-use of data, but also essential for collaborative research and data sharing. In particular, efficient data management and interoperability requires a unified approach that integrates data and metadata and provides a common way of accessing this information. In this paper we describe GNData, a data management platform for neurophysiological data. GNData provides a storage system based on a data representation that is suitable to organize data and metadata from any electrophysiological experiment, with a functionality exposed via a common application programming interface (API). Data representation and API structure are compatible with existing approaches for data and metadata representation in neurophysiology. The API implementation is based on the Representational State Transfer (REST) pattern, which enables data access integration in software applications and facilitates the development of tools that communicate with the service. Client libraries that interact with the API provide direct data access from computing environments like Matlab or Python, enabling integration of data management into the scientist's experimental or analysis routines.

  7. 48 CFR 3016.170 - Contracts with Lead System Integrators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Contracts with Lead System... Selecting Contract Types 3016.170 Contracts with Lead System Integrators. The contracting officer should... consulted to determine the appropriate contract type and fee structure for use in varied contracts with lead...

  8. 48 CFR 3016.170 - Contracts with Lead System Integrators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Contracts with Lead System... Selecting Contract Types 3016.170 Contracts with Lead System Integrators. The contracting officer should... consulted to determine the appropriate contract type and fee structure for use in varied contracts with lead...

  9. 48 CFR 3016.170 - Contracts with Lead System Integrators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Contracts with Lead System... Selecting Contract Types 3016.170 Contracts with Lead System Integrators. The contracting officer should... consulted to determine the appropriate contract type and fee structure for use in varied contracts with lead...

  10. 48 CFR 3016.170 - Contracts with Lead System Integrators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Contracts with Lead System... Selecting Contract Types 3016.170 Contracts with Lead System Integrators. The contracting officer should... consulted to determine the appropriate contract type and fee structure for use in varied contracts with lead...

  11. 48 CFR 3016.170 - Contracts with Lead System Integrators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Contracts with Lead System... Selecting Contract Types 3016.170 Contracts with Lead System Integrators. The contracting officer should... consulted to determine the appropriate contract type and fee structure for use in varied contracts with lead...

  12. Integrated, automated revenue management for managed care contracts.

    PubMed

    Burckhart, Kent

    2002-04-01

    Faced with increasing managed care penetration and declining net revenue in recent years, healthcare providers increasingly are emphasizing revenue management. To streamline processes and reduce costs in this area, many healthcare providers have implemented or are considering automated contract management systems. When selecting such a system, healthcare financial managers should make certain that the system can interface with both patient-accounting and decision-support systems of the organization. This integration enhances a healthcare provider's financial viability by providing integrated revenue-management capabilities to analyze projected performance of proposed managed care contracts and actual performance of existing contracts.

  13. Electrophysiological Endophenotypes for Schizophrenia

    PubMed Central

    Owens, Emily; Bachman, Peter; Glahn, David C; Bearden, Carrie E

    2016-01-01

    Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABA-ergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating datasets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype. PMID:26954597

  14. Total Quality Management Office for Contracting Integrity Implementation Plan

    DTIC Science & Technology

    1989-07-01

    REPORT______ANDDATESCOVERED 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Total Quality Management Office for Contracting Integrity Implementatiun Plan 6. AUTHOR(S) 7...01-280-5500 Standard Form 298 (Rev. 2-89) P’,croed 1:, ANSI Std 3J9-16 29d. 102 4 TOTAL QUALITY MANAGEMENT OFFICE FOR CONTRACTING INTEGRITY...IMPLEMENTATION PLAN According to the Total Quality Management (TQM) Master Plan, each PSE head, supported by Working Groups, will implement the HQ DLA Master

  15. Cardiac Electrophysiology: Normal and Ischemic Ionic Currents and the ECG

    ERIC Educational Resources Information Center

    Klabunde, Richard E.

    2017-01-01

    Basic cardiac electrophysiology is foundational to understanding normal cardiac function in terms of rate and rhythm and initiation of cardiac muscle contraction. The primary clinical tool for assessing cardiac electrical events is the electrocardiogram (ECG), which provides global and regional information on rate, rhythm, and electrical…

  16. Probing the Electrophysiology of the Developing Heart

    PubMed Central

    Watanabe, Michiko; Rollins, Andrew M.; Polo-Parada, Luis; Ma, Pei; Gu, Shi; Jenkins, Michael W.

    2016-01-01

    Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes. PMID:29367561

  17. An integrated domain specific language for post-processing and visualizing electrophysiological signals in Java.

    PubMed

    Strasser, T; Peters, T; Jagle, H; Zrenner, E; Wilke, R

    2010-01-01

    Electrophysiology of vision - especially the electroretinogram (ERG) - is used as a non-invasive way for functional testing of the visual system. The ERG is a combined electrical response generated by neural and non-neuronal cells in the retina in response to light stimulation. This response can be recorded and used for diagnosis of numerous disorders. For both clinical practice and clinical trials it is important to process those signals in an accurate and fast way and to provide the results as structured, consistent reports. Therefore, we developed a freely available and open-source framework in Java (http://www.eye.uni-tuebingen.de/project/idsI4sigproc). The framework is focused on an easy integration with existing applications. By leveraging well-established software patterns like pipes-and-filters and fluent interfaces as well as by designing the application programming interfaces (API) as an integrated domain specific language (DSL) the overall framework provides a smooth learning curve. Additionally, it already contains several processing methods and visualization features and can be extended easily by implementing the provided interfaces. In this way, not only can new processing methods be added but the framework can also be adopted for other areas of signal processing. This article describes in detail the structure and implementation of the framework and demonstrate its application through the software package used in clinical practice and clinical trials at the University Eye Hospital Tuebingen one of the largest departments in the field of visual electrophysiology in Europe.

  18. Electrophysiological evidence for a self-processing advantage during audiovisual speech integration.

    PubMed

    Treille, Avril; Vilain, Coriandre; Kandel, Sonia; Sato, Marc

    2017-09-01

    Previous electrophysiological studies have provided strong evidence for early multisensory integrative mechanisms during audiovisual speech perception. From these studies, one unanswered issue is whether hearing our own voice and seeing our own articulatory gestures facilitate speech perception, possibly through a better processing and integration of sensory inputs with our own sensory-motor knowledge. The present EEG study examined the impact of self-knowledge during the perception of auditory (A), visual (V) and audiovisual (AV) speech stimuli that were previously recorded from the participant or from a speaker he/she had never met. Audiovisual interactions were estimated by comparing N1 and P2 auditory evoked potentials during the bimodal condition (AV) with the sum of those observed in the unimodal conditions (A + V). In line with previous EEG studies, our results revealed an amplitude decrease of P2 auditory evoked potentials in AV compared to A + V conditions. Crucially, a temporal facilitation of N1 responses was observed during the visual perception of self speech movements compared to those of another speaker. This facilitation was negatively correlated with the saliency of visual stimuli. These results provide evidence for a temporal facilitation of the integration of auditory and visual speech signals when the visual situation involves our own speech gestures.

  19. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    NASA Astrophysics Data System (ADS)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  20. Medicaid Integrity Program; eligible entity and contracting requirements for the Medicaid Integrity audit program. Final rule.

    PubMed

    2008-09-26

    Section 1936 of the Social Security Act (the Act) (as added by section 6034 of the Deficit Reduction Act of 2005 (DRA) established the Medicaid Integrity Program to promote the integrity of the Medicaid program by requiring CMS to enter into contracts with eligible entities to: (1) Review the actions of individuals or entities furnishing items or services (whether on a fee-for-service, risk, or other basis) for which payment may be made under an approved State plan and/or any waiver of such plan approved under section 1115 of the Act; (2) audit claims for payment of items or services furnished, or administrative services rendered, under a State plan; (3) identify overpayments to individuals or entities receiving Federal funds; and (4) educate providers of services, managed care entities, beneficiaries, and other individuals with respect to payment integrity and quality of care. This final rule will provide requirements for an eligible entity to enter into a contract under the Medicaid integrity audit program. The final rule will also establish the contracting requirements for eligible entities. The requirements will include procedures for identifying, evaluating, and resolving organizational conflicts of interest that are generally applicable to Federal acquisition and procurement; competitive procedures to be used; and procedures under which a contract may be renewed.

  1. Social contract and social integration in adolescent development.

    PubMed

    Hilles, W S; Kahle, L R

    1985-10-01

    Eighty-nine subjects from two high schools were tested during the spring of their sophomore and senior years, when their mean ages were 16 years, 1 month, and 18 years, 1 month, respectively. Composites measured social contract with: (a) independence, (b) implicit social contract, societal norms and expectations, and (c) explicit social contracts, rules. Composites and single items measured social integration with: (d) role commitment, (e) social-American Dream, accepting the belief in the American Dream that hard work would lead to social success, (f) self-American Dream, belief that hard work will produce personal satisfaction and success, (g) raw deal, perceptions of being treated unfairly, (h) self-blame, and (i) feelings of hopelessness. The results of the cross-lagged panel correlations generally support the hypothesis that students respond to implicit social contracts through role commitment, which is further expressed by a belief in the American Dream for social fulfillment, while responding to the perception of explicit social contracts by not believing in the benefits of the American Dream for personal fulfillment. These results were interpreted as supporting Dienstbier's theory of moral development.

  2. A novel single compartment in vitro model for electrophysiological research using the perfluorocarbon FC-770.

    PubMed

    Choudhary, M; Clavica, F; van Mastrigt, R; van Asselt, E

    2016-06-20

    Electrophysiological studies of whole organ systems in vitro often require measurement of nerve activity and/or stimulation of the organ via the associated nerves. Currently two-compartment setups are used for such studies. These setups are complicated and require two fluids in two separate compartments and stretching the nerve across one chamber to the other, which may damage the nerves. We aimed at developing a simple single compartment setup by testing the electrophysiological properties of FC-770 (a perfluorocarbon) for in vitro recording of bladder afferent nerve activity and electrical stimulation of the bladder. Perflurocarbons are especially suitable for such a setup because of their high oxygen carrying capacity and insulating properties. In male Wistar rats, afferent nerve activity was recorded from postganglionic branches of the pelvic nerve in vitro, in situ and in vivo. The bladder was stimulated electrically via the efferent nerves. Organ viability was monitored by recording spontaneous contractions of the bladder. Additionally, histological examinations were done to test the effect of FC-770 on the bladder tissue. Afferent nerve activity was successfully recorded in a total of 11 rats. The bladders were stimulated electrically and high amplitude contractions were evoked. Histological examinations and monitoring of spontaneous contractions showed that FC-770 maintained organ viability and did not cause damage to the tissue. We have shown that FC-770 enables a simple, one compartment in vitro alternative for the generally used two compartment setups for whole organ electrophysiological studies.

  3. Transcriptomic correlates of neuron electrophysiological diversity

    PubMed Central

    Li, Brenna; Crichlow, Cindy-Lee; Mancarci, B. Ogan; Pavlidis, Paul

    2017-01-01

    How neuronal diversity emerges from complex patterns of gene expression remains poorly understood. Here we present an approach to understand electrophysiological diversity through gene expression by integrating pooled- and single-cell transcriptomics with intracellular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset of 34 neuron types with paired gene expression and intrinsic electrophysiological features from publically accessible sources, the largest such collection to date. We identified 420 genes whose expression levels significantly correlated with variability in one or more of 11 physiological parameters. We next trained statistical models to infer cellular features from multivariate gene expression patterns. Such models were predictive of gene-electrophysiological relationships in an independent collection of 12 visual cortex cell types from the Allen Institute, suggesting that these correlations might reflect general principles relating expression patterns to phenotypic diversity across very different cell types. Many associations reported here have the potential to provide new insights into how neurons generate functional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with resting potential and spiking frequency are consistent with known causal mechanisms. Our work highlights the promise and inherent challenges in using cell type-specific transcriptomics to understand the mechanistic origins of neuronal diversity. PMID:29069078

  4. Resuscitation great. Luigi Galvani and the foundations of electrophysiology.

    PubMed

    Cajavilca, Christian; Varon, Joseph; Sternbach, George L

    2009-02-01

    Luigi Galvani became one of the greatest scientists of the 18th century with his research and the development of his theory on animal electricity. His work was appreciated by many scientists. Nevertheless, it gave rise to one of the most passionate scientific debates in history when Alessandro Volta postulated that Galvani had confused intrinsic animal electricity with small currents produced by metals. This debate would result in the creation of electrophysiology, electromagnetism, electrochemistry and the electrical battery. Galvani responded to each of the postulated theories of Volta giving irrefutable proof of the involvement of electricity in the contraction of muscles. However, his work was subsequently abandoned and silenced for many years but his ideas and theories were finally confirmed by the creation of new instruments and the interest of new scientists who helped position Galvani as the father of electrophysiology.

  5. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    PubMed

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  6. Cell electrophysiology with carbon nanopipettes.

    PubMed

    Schrlau, Michael G; Dun, Nae J; Bau, Haim H

    2009-03-24

    The ability to monitor living cell behavior in real time and with high spatial resolution is vital for advancing our knowledge of cellular machinery and evaluating cellular response to various drugs. Here, we report the development and utilization of carbon-based nanoelectrodes for cell electrophysiology. We employ carbon nanopipettes (CNPs), novel carbon-based nanoprobes which integrate carbon nanopipes into the tips of pulled glass capillaries, to measure electrical signals in the mouse hippocampal cell line HT-22. Using a standard electrophysiology amplifier in current-clamp mode, we measured the resting membrane potential of cells and their transient membrane response to extracellular pharmacological agents. In addition to their superior injection capabilities reported previously, CNPs are capable of multifunctionality, enabling, for example, concurrent intracellular injection and electrical measurements without damaging cells.

  7. Data integration: Combined Imaging and Electrophysiology data in the cloud

    PubMed Central

    Kini, Lohith G.; Davis, Kathryn A.; Wagenaar, Joost B.

    2015-01-01

    There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file-formats. IEEG.org provides high and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. PMID:26044858

  8. Data integration: Combined imaging and electrophysiology data in the cloud.

    PubMed

    Kini, Lohith G; Davis, Kathryn A; Wagenaar, Joost B

    2016-01-01

    There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file formats. IEEG.org provides high- and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Privacy Impact Assessment for the Integrated Contracts Management System

    EPA Pesticide Factsheets

    The Integrated Contracts Management System collects contact information and other Personally Identifiable Information (PII). Learn how this data will be collected in the system, how it will be used, access to the data, and the purpose of data collection.

  10. Comparison of two integration methods for dynamic causal modeling of electrophysiological data.

    PubMed

    Lemaréchal, Jean-Didier; George, Nathalie; David, Olivier

    2018-06-01

    Dynamic causal modeling (DCM) is a methodological approach to study effective connectivity among brain regions. Based on a set of observations and a biophysical model of brain interactions, DCM uses a Bayesian framework to estimate the posterior distribution of the free parameters of the model (e.g. modulation of connectivity) and infer architectural properties of the most plausible model (i.e. model selection). When modeling electrophysiological event-related responses, the estimation of the model relies on the integration of the system of delay differential equations (DDEs) that describe the dynamics of the system. In this technical note, we compared two numerical schemes for the integration of DDEs. The first, and standard, scheme approximates the DDEs (more precisely, the state of the system, with respect to conduction delays among brain regions) using ordinary differential equations (ODEs) and solves it with a fixed step size. The second scheme uses a dedicated DDEs solver with adaptive step sizes to control error, making it theoretically more accurate. To highlight the effects of the approximation used by the first integration scheme in regard to parameter estimation and Bayesian model selection, we performed simulations of local field potentials using first, a simple model comprising 2 regions and second, a more complex model comprising 6 regions. In these simulations, the second integration scheme served as the standard to which the first one was compared. Then, the performances of the two integration schemes were directly compared by fitting a public mismatch negativity EEG dataset with different models. The simulations revealed that the use of the standard DCM integration scheme was acceptable for Bayesian model selection but underestimated the connectivity parameters and did not allow an accurate estimation of conduction delays. Fitting to empirical data showed that the models systematically obtained an increased accuracy when using the second

  11. Electrophysiologic studies of neronal activities under ischemia condition.

    PubMed

    Huang, Shun-Ho; Wang, Ping-Hsien; Chen, Jia-Jin Jason

    2008-01-01

    Substrate with integrated microelectrode arrays (MEAs) provides an alternative electrophysiological method. With MEAS, one can measure the impedance and elicit electrical stimulation from multiple sites of MEAs to determine the electrophysiological conditions of cells. The aims of this research were to construct an impedance and action potential measurement system for neurons cultured on MEAs for observing the electrophysiological signal transmission in neuronal network during glucose and oxygen deprivation (OGD). An extracellular stimulator producing the biphasic micro-current pulse for neuron stimulation was built in this study. From the time-course recording of impedance, OGD condition effectively induced damage in neurons in vitro. It is known that the results of cell stimulation are affected by electrode impedance, so does the result of neuron cells covered on the electrode can measure the sealing resistance. For extracellular stimulation study, cortical neuronal activity was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedance resulting from neuron cells covering the electrode. Further development of surface modification for cultured neuron network should provide a better way for in vitro impedance and electrophysiological measurements.

  12. Neuromuscular fatigue following isometric contractions with similar torque time integral.

    PubMed

    Rozand, V; Cattagni, T; Theurel, J; Martin, A; Lepers, R

    2015-01-01

    Torque time integral (TTI) is the combination of intensity and duration of a contraction. The aim of this study was to compare neuromuscular alterations following different isometric sub-maximal contractions of the knee extensor muscles but with similar TTI. Sixteen participants performed 3 sustained contractions at different intensities (25%, 50%, and 75% of Maximal Voluntary Contraction (MVC) torque) with different durations (68.5±33.4 s, 35.1±16.8 s and 24.8±12.9 s, respectively) but similar TTI value. MVC torque, maximal voluntary activation level (VAL), M-wave characteristics and potentiated doublet amplitude were assessed before and immediately after the sustained contractions. EMG activity of the vastus lateralis (VL) and -rectus femoris (RF) muscles was recorded during the sustained contractions. MVC torque reduction was similar in the 3 conditions after the exercise (-23.4±2.7%). VAL decreased significantly in a similar extent (-3.1±1.3%) after the 3 sustained contractions. Potentiated doublet amplitude was similarly reduced in the 3 conditions (-19.7±1.5%), but VL and RF M-wave amplitudes remained unchanged. EMG activity of VL and RF muscles increased in the same extent during the 3 contractions (VL: 54.5±40.4%; RF: 53.1±48.7%). These results suggest that central and peripheral alterations accounting for muscle fatigue are similar following isometric contractions with similar TTI. TTI should be considered in the exploration of muscle fatigue during sustained isometric contractions. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs.

    PubMed

    Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won

    2018-06-14

    We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.

  14. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    PubMed

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  15. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    PubMed Central

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  16. Promised and Delivered Inducements and Contributions: An Integrated View of Psychological Contract Appraisal

    ERIC Educational Resources Information Center

    Lambert, Lisa Schurer

    2011-01-01

    The reciprocal exchange of employees' work for pay that is central to employment relationships is viewed here through the lens of the psychological contract. A psychological contract involves promised inducements, promised contributions, delivered inducements, and delivered contributions: How an employee cognitively integrates these 4 elements is…

  17. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    PubMed

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  18. Common fixed point theorems for maps under a contractive condition of integral type

    NASA Astrophysics Data System (ADS)

    Djoudi, A.; Merghadi, F.

    2008-05-01

    Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].

  19. Promised and delivered inducements and contributions: an integrated view of psychological contract appraisal.

    PubMed

    Lambert, Lisa Schurer

    2011-07-01

    The reciprocal exchange of employees' work for pay that is central to employment relationships is viewed here through the lens of the psychological contract. A psychological contract involves promised inducements, promised contributions, delivered inducements, and delivered contributions: How an employee cognitively integrates these 4 elements is a central question in psychological contract theory. Three alternative approaches for integrating the 4 elements were drawn from discrepancy theory, from equity theory, and from need theories of satisfaction, respectively. Experimental findings disconfirmed the discrepancy and equity approaches. Findings were consistent with the premise of the needs model, which is that appraisal is driven by how psychological contract elements facilitate or hinder an employee's effort to fulfill personal needs. Results showed that promised and delivered pay and work contribute uniquely to appraisal but that they vary in their influence on appraisal. These findings were consistent with the needs model principle that elements proximal to need satisfaction matter more than distal elements. That is, what is delivered (for pay and for work) matters more than what is promised, and pay matters more than work.

  20. Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons*

    PubMed Central

    Jimenez, Nicolas D.; Mihalas, Stefan; Brown, Richard; Niebur, Ernst; Rubin, Jonathan

    2013-01-01

    Integrate-and-fire models of biological neurons combine differential equations with discrete spike events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike event. The response of such a model to constant input injection is limited to tonic spiking. We here study a generalized model in which two simple spike-induced currents are added. We show that this neuron exhibits not only tonic spiking at various frequencies but also the commonly observed neuronal bursting. Using analytical and numerical approaches, we show that this model can be reduced to a one-dimensional map of the adaptation variable and that this map is locally contractive over a broad set of parameter values. We derive a sufficient analytical condition on the parameters for the map to be globally contractive, in which case all orbits tend to a tonic spiking state determined by the fixed point of the return map. We then show that bursting is caused by a discontinuity in the return map, in which case the map is piecewise contractive. We perform a detailed analysis of a class of piecewise contractive maps that we call bursting maps and show that they robustly generate stable bursting behavior. To the best of our knowledge, this work is the first to point out the intimate connection between bursting dynamics and piecewise contractive maps. Finally, we discuss bifurcations in this return map, which cause transitions between spiking patterns. PMID:24489486

  1. 77 FR 42339 - Improving Contracting Officers' Access to Relevant Integrity Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... OFFICE OF MANAGEMENT AND BUDGET Office of Federal Procurement Policy Improving Contracting Officers' Access to Relevant Integrity Information AGENCY: Office of Federal Procurement Policy, Office of Management and Budget. ACTION: Notice of Request for Comment. SUMMARY: The Office of Federal Procurement...

  2. Command-line cellular electrophysiology for conventional and real-time closed-loop experiments.

    PubMed

    Linaro, Daniele; Couto, João; Giugliano, Michele

    2014-06-15

    Current software tools for electrophysiological experiments are limited in flexibility and rarely offer adequate support for advanced techniques such as dynamic clamp and hybrid experiments, which are therefore limited to laboratories with a significant expertise in neuroinformatics. We have developed lcg, a software suite based on a command-line interface (CLI) that allows performing both standard and advanced electrophysiological experiments. Stimulation protocols for classical voltage and current clamp experiments are defined by a concise and flexible meta description that allows representing complex waveforms as a piece-wise parametric decomposition of elementary sub-waveforms, abstracting the stimulation hardware. To perform complex experiments lcg provides a set of elementary building blocks that can be interconnected to yield a large variety of experimental paradigms. We present various cellular electrophysiological experiments in which lcg has been employed, ranging from the automated application of current clamp protocols for characterizing basic electrophysiological properties of neurons, to dynamic clamp, response clamp, and hybrid experiments. We finally show how the scripting capabilities behind a CLI are suited for integrating experimental trials into complex workflows, where actual experiment, online data analysis and computational modeling seamlessly integrate. We compare lcg with two open source toolboxes, RTXI and RELACS. We believe that lcg will greatly contribute to the standardization and reproducibility of both simple and complex experiments. Additionally, on the long run the increased efficiency due to a CLI will prove a great benefit for the experimental community. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Understanding face perception by means of human electrophysiology.

    PubMed

    Rossion, Bruno

    2014-06-01

    Electrophysiological recordings on the human scalp provide a wealth of information about the temporal dynamics and nature of face perception at a global level of brain organization. The time window between 100 and 200 ms witnesses the transition between low-level and high-level vision, an N170 component correlating with conscious interpretation of a visual stimulus as a face. This face representation is rapidly refined as information accumulates during this time window, allowing the individualization of faces. To improve the sensitivity and objectivity of face perception measures, it is increasingly important to go beyond transient visual stimulation by recording electrophysiological responses at periodic frequency rates. This approach has recently provided face perception thresholds and the first objective signature of integration of facial parts in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. ElVisML: an open data format for the exchange and storage of electrophysiological data in ophthalmology.

    PubMed

    Strasser, Torsten; Peters, Tobias; Jägle, Herbert; Zrenner, Eberhart

    2018-02-01

    The ISCEV standards and recommendations for electrophysiological recordings in ophthalmology define a set of protocols with stimulus parameters, acquisition settings, and recording conditions, to unify the data and enable comparability of results across centers. Up to now, however, there are no standards to define the storage and exchange of such electrophysiological recordings. The aim of this study was to develop an open standard data format for the exchange and storage of visual electrophysiological data (ElVisML). We first surveyed existing data formats for biomedical signals and examined their suitability for electrophysiological data in ophthalmology. We then compared the suitability of text-based and binary formats, as well as encoding in Extensible Markup Language (XML) and character/comma-separated values. The results of the methodological consideration led to the development of ElVisML with an XML-encoded text-based format. This allows referential integrity, extensibility, the storing of accompanying units, as well as ensuring confidentiality and integrity of the data. A visualization of ElVisML documents (ElVisWeb) has additionally been developed, which facilitates the exchange of recordings on mailing lists and allows open access to data along with published articles. The open data format ElVisML ensures the quality, validity, and integrity of electrophysiological data transmission and storage as well as providing manufacturer-independent access and long-term archiving in a future-proof format. Standardization of the format of such neurophysiology data would promote the development of new techniques and open software for the use of neurophysiological data in both clinic and research.

  5. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  6. Integrate and fire neural networks, piecewise contractive maps and limit cycles.

    PubMed

    Catsigeras, Eleonora; Guiraud, Pierre

    2013-09-01

    We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincaré map associated to the system. We show that for efficient interactions the Poincaré map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincaré map under study, but also to a wide class of general n-dimensional piecewise contractive maps.

  7. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays

    NASA Astrophysics Data System (ADS)

    Gonzales, Daniel L.; Badhiwala, Krishna N.; Vercosa, Daniel G.; Avants, Benjamin W.; Liu, Zheng; Zhong, Weiwei; Robinson, Jacob T.

    2017-07-01

    Electrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires invasive dissections and is low-throughput. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device. Using this technology, we have made the first extracellular recordings of body-wall muscle electrophysiology inside an intact roundworm, Caenorhabditis elegans. We can also use nano-SPEARs to record from multiple animals in parallel and even from other species, such as Hydra littoralis. Furthermore, we use nano-SPEARs to establish the first electrophysiological phenotypes for C. elegans models for amyotrophic lateral sclerosis and Parkinson's disease, and show a partial rescue of the Parkinson's phenotype through drug treatment. These results demonstrate that nano-SPEARs provide the core technology for microchips that enable scalable, in vivo studies of neurobiology and neurological diseases.

  8. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    PubMed

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  9. Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity.

    PubMed

    Cardin, Jessica A

    2012-01-01

    Local cortical circuit activity in vivo comprises a complex and flexible series of interactions between excitatory and inhibitory neurons. Our understanding of the functional interactions between these different neural populations has been limited by the difficulty of identifying and selectively manipulating the diverse and sparsely represented inhibitory interneuron classes in the intact brain. The integration of recently developed optical tools with traditional electrophysiological techniques provides a powerful window into the role of inhibition in regulating the activity of excitatory neurons. In particular, optogenetic targeting of specific cell classes reveals the distinct impacts of local inhibitory populations on other neurons in the surrounding local network. In addition to providing the ability to activate or suppress spiking in target cells, optogenetic activation identifies extracellularly recorded neurons by class, even when naturally occurring spike rates are extremely low. However, there are several important limitations on the use of these tools and the interpretation of resulting data. The purpose of this article is to outline the uses and limitations of optogenetic tools, along with current methods for achieving cell type-specific expression, and to highlight the advantages of an experimental approach combining optogenetics and electrophysiology to explore the role of inhibition in active networks. To illustrate the efficacy of these combined approaches, I present data comparing targeted manipulations of cortical fast-spiking, parvalbumin-expressing and low threshold-spiking, somatostatin-expressing interneurons in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

    NASA Astrophysics Data System (ADS)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun

    2017-05-01

    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  11. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  12. Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised Reporting for Model Reproducibility, Interoperability, and Data Sharing

    PubMed Central

    Quinn, TA; Granite, S; Allessie, MA; Antzelevitch, C; Bollensdorff, C; Bub, G; Burton, RAB; Cerbai, E; Chen, PS; Delmar, M; DiFrancesco, D; Earm, YE; Efimov, IR; Egger, M; Entcheva, E; Fink, M; Fischmeister, R; Franz, MR; Garny, A; Giles, WR; Hannes, T; Harding, SE; Hunter, PJ; Iribe, G; Jalife, J; Johnson, CR; Kass, RS; Kodama, I; Koren, G; Lord, P; Markhasin, VS; Matsuoka, S; McCulloch, AD; Mirams, GR; Morley, GE; Nattel, S; Noble, D; Olesen, SP; Panfilov, AV; Trayanova, NA; Ravens, U; Richard, S; Rosenbaum, DS; Rudy, Y; Sachs, F; Sachse, FB; Saint, DA; Schotten, U; Solovyova, O; Taggart, P; Tung, L; Varró, A; Volders, PG; Wang, K; Weiss, JN; Wettwer, E; White, E; Wilders, R; Winslow, RL; Kohl, P

    2011-01-01

    Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step toward establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment (MICEE). The ultimate goal is to develop a useful tool for cardiac electrophysiologists which facilitates and improves dissemination of the minimum information necessary for reproduction of cardiac electrophysiology research, allowing for easier comparison and utilisation of findings by others. It is hoped that this will enhance the integration of individual results into experimental, computational, and conceptual models. In its present form, this draft is intended for assessment and development by the research community. We invite the reader to join this effort, and, if deemed productive, implement the Minimum Information about a Cardiac Electrophysiology Experiment standard in their own work. PMID:21745496

  13. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    PubMed Central

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  14. Advances in Electrophysiological Research

    PubMed Central

    Kamarajan, Chella; Porjesz, Bernice

    2015-01-01

    Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders. These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment. PMID:26259089

  15. Normal Values for Heart Electrophysiology Parameters of Healthy Swine Determined on Electrophysiology Study.

    PubMed

    Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef

    2016-01-01

    Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.

  16. Three-dimensional mapping in the electrophysiological laboratory.

    PubMed

    Maury, Philippe; Monteil, Benjamin; Marty, Lilian; Duparc, Alexandre; Mondoly, Pierre; Rollin, Anne

    2018-06-07

    Investigation and catheter ablation of cardiac arrhythmias are currently still based on optimal knowledge of arrhythmia mechanisms in relation to the cardiac anatomy involved, in order to target their crucial components. Currently, most complex arrhythmias are investigated using three-dimensional electroanatomical navigation systems, because these are felt to optimally integrate both the anatomical and electrophysiological features of a given arrhythmia in a given patient. In this article, we review the technical background of available three-dimensional electroanatomical navigation systems, and their potential use in complex ablations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Opportunities and challenges of current electrophysiology research: a plea to establish 'translational electrophysiology' curricula.

    PubMed

    Lau, Dennis H; Volders, Paul G A; Kohl, Peter; Prinzen, Frits W; Zaza, Antonio; Kääb, Stefan; Oto, Ali; Schotten, Ulrich

    2015-05-01

    Cardiac electrophysiology has evolved into an important subspecialty in cardiovascular medicine. This is in part due to the significant advances made in our understanding and treatment of heart rhythm disorders following more than a century of scientific discoveries and research. More recently, the rapid development of technology in cellular electrophysiology, molecular biology, genetics, computer modelling, and imaging have led to the exponential growth of knowledge in basic cardiac electrophysiology. The paradigm of evidence-based medicine has led to a more comprehensive decision-making process and most likely to improved outcomes in many patients. However, implementing relevant basic research knowledge in a system of evidence-based medicine appears to be challenging. Furthermore, the current economic climate and the restricted nature of research funding call for improved efficiency of translation from basic discoveries to healthcare delivery. Here, we aim to (i) appraise the broad challenges of translational research in cardiac electrophysiology, (ii) highlight the need for improved strategies in the training of translational electrophysiologists, and (iii) discuss steps towards building a favourable translational research environment and culture. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  18. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  19. Stretchable Dry Electrodes with Concentric Ring Geometry for Enhancing Spatial Resolution in Electrophysiology.

    PubMed

    Wang, Kaiping; Parekh, Udit; Pailla, Tejaswy; Garudadri, Harinath; Gilja, Vikash; Ng, Tse Nga

    2017-10-01

    The multichannel concentric-ring electrodes are stencil printed on stretchable elastomers modified to improve adhesion to skin and minimize motion artifacts for electrophysiological recordings of electroencephalography, electromyography, and electrocardiography. These dry electrodes with a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate interface layer are optimized to show lower noise level than that of commercial gel disc electrodes. The concentric ring geometry enables Laplacian filtering to pinpoint the bioelectric potential source with spatial resolution determined by the ring distance. This work shows a new fabrication approach to integrate and create designs that enhance spatial resolution for high-quality electrophysiology monitoring devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 78 FR 72572 - Operational Contract Support

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... 0790-AI48 Operational Contract Support AGENCY: Department of Defense (DoD). ACTION: Final rule. SUMMARY: This rule establishes policy, assigns responsibilities, and provides procedures for operational contract support (OCS), including OCS program management, contract support integration, and integration of...

  1. [Vertical integration and contracting-out in generic hospital services in Spain].

    PubMed

    Puig-Junoy, J; Pérez-Sust, P

    2002-01-01

    This study examines the factors that influence make or buy decisions corresponding to four generic services (housekeeping, laundry, food services, and maintenance and security) in Spanish hospitals (3,160 transactions in 790 hospitals). The empirical estimation of a logistic model based on hospital utility maximization is presented. Factors included in the model are not only those related to transaction costs, but also those related to public intervention and the political dimension. A total of 55.7% of hospitals contracted-out at least one of the generic services. The services most frequently contracted-out were housekeeping and maintenance and security(45.1 and 32.5%, respectively). In contrast, the services (94.3% and 80.1%, respectively). Hospital size (economies of scale), measured by the number of beds, was one of the most important factors influencing make or buy decisions. We find evidence that economies of scale are related to a higher level of vertical integration, while specialization and for-profit objectives favor the decision to contract-out. The choice of organizational model for laundry services presents a different pattern from that of the other three services. Empirical results show that some asset specificity could be present in laundry services.

  2. Relationships between cortical myeloarchitecture and electrophysiological networks

    PubMed Central

    Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Mougin, Olivier E.; Geades, Nicolas; Singh, Krish D.; Morris, Peter G.; Gowland, Penny A.; Brookes, Matthew J.

    2016-01-01

    The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology. PMID:27830650

  3. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    PubMed

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  4. NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data

    PubMed Central

    Rothman, Jason S.; Silver, R. Angus

    2018-01-01

    Acquisition, analysis and simulation of electrophysiological properties of the nervous system require multiple software packages. This makes it difficult to conserve experimental metadata and track the analysis performed. It also complicates certain experimental approaches such as online analysis. To address this, we developed NeuroMatic, an open-source software toolkit that performs data acquisition (episodic, continuous and triggered recordings), data analysis (spike rasters, spontaneous event detection, curve fitting, stationarity) and simulations (stochastic synaptic transmission, synaptic short-term plasticity, integrate-and-fire and Hodgkin-Huxley-like single-compartment models). The merging of a wide range of tools into a single package facilitates a more integrated style of research, from the development of online analysis functions during data acquisition, to the simulation of synaptic conductance trains during dynamic-clamp experiments. Moreover, NeuroMatic has the advantage of working within Igor Pro, a platform-independent environment that includes an extensive library of built-in functions, a history window for reviewing the user's workflow and the ability to produce publication-quality graphics. Since its original release, NeuroMatic has been used in a wide range of scientific studies and its user base has grown considerably. NeuroMatic version 3.0 can be found at http://www.neuromatic.thinkrandom.com and https://github.com/SilverLabUCL/NeuroMatic. PMID:29670519

  5. Electrophysiological signal analysis and visualization using Cloudwave for epilepsy clinical research.

    PubMed

    Jayapandian, Catherine P; Chen, Chien-Hung; Bozorgi, Alireza; Lhatoo, Samden D; Zhang, Guo-Qiang; Sahoo, Satya S

    2013-01-01

    Epilepsy is the most common serious neurological disorder affecting 50-60 million persons worldwide. Electrophysiological data recordings, such as electroencephalogram (EEG), are the gold standard for diagnosis and pre-surgical evaluation in epilepsy patients. The increasing trend towards multi-center clinical studies require signal visualization and analysis tools to support real time interaction with signal data in a collaborative environment, which cannot be supported by traditional desktop-based standalone applications. As part of the Prevention and Risk Identification of SUDEP Mortality (PRISM) project, we have developed a Web-based electrophysiology data visualization and analysis platform called Cloudwave using highly scalable open source cloud computing infrastructure. Cloudwave is integrated with the PRISM patient cohort identification tool called MEDCIS (Multi-modality Epilepsy Data Capture and Integration System). The Epilepsy and Seizure Ontology (EpSO) underpins both Cloudwave and MEDCIS to support query composition and result retrieval. Cloudwave is being used by clinicians and research staff at the University Hospital - Case Medical Center (UH-CMC) Epilepsy Monitoring Unit (EMU) and will be progressively deployed at four EMUs in the United States and the United Kingdomas part of the PRISM project.

  6. Electrophysiologic Study

    PubMed Central

    Gold, Daniel R.; Catanzaro, John N.; Makaryus, John N.; Waldman, Cory; Sauer, William H.; Sison, Cristina; Makaryus, Amgad N.; Altman, Erik; Jadonath, Ram; Beldner, Stuart

    2010-01-01

    Studies have shown the predictive value of inducible ventricular tachycardia and clinical arrhythmia in patients who have structural heart disease. We examined the possible predictive value of electrophysiologic study before the placement of an implantable cardioverter-defibrillator. Our retrospective study group comprised 315 patients who had ventricular tachycardia that was inducible during electrophysiologic study and who had undergone at least 1 month of follow-up (247 men; mean age, 66.9 ± 13.5 yr; mean follow-up, 24.9 ± 14.8 mo). Recorded characteristics included induced ventricular tachycardia cycle length, atrio-His and His-ventricular electrograms, PR and QT intervals, QRS duration, and drug therapy. Of the 315 patients, 97 experienced ventricular arrhythmia during the follow-up period, as registered by 184 of more than 400 interrogations. There were 187 episodes of ventricular arrhythmia (tachycardia, 178; fibrillation, 9) during 652.5 person-years of follow-up. Subjects with a cycle length ≥240 msec were more likely to have an earlier 1st arrhythmia than those with a cycle length <240 msec (P=0.032). A quarter of the subjects with a cycle length ≥240 msec had their 1st arrhythmia by 19.14 months, compared with 23.8 months for a quarter of the subjects with a cycle length <240 msec (P <0.032). Among the electrophysiologic characteristics examined, inducible ventricular tachycardia with a cycle length ≥240 msec is predictive of appropriate implantable cardioverter-defibrillator therapy at an earlier time. This may have prognostic implications that warrant implantable cardioverter-defibrillator programming to enable appropriate antitachycardia pacing in this group of patients. PMID:20548804

  7. Contract Design: Risk Management and Evaluation.

    PubMed

    Mühlbacher, Axel C; Amelung, Volker E; Juhnke, Christin

    2018-01-12

    Effective risk adjustment is an aspect that is more and more given weight on the background of competitive health insurance systems and vital healthcare systems. The risk structure of the providers plays a vital role in Pay for Performance. A prerequisite for optimal incentive-based service models is a (partial) dependence of the agent's returns on the provider's gain level. Integrated care systems as well as accountable care organisations (ACOs) in the US and similar concepts in other countries are advocated as an effective method of improving the performance of healthcare systems. These systems outline a payment and care delivery model that intends to tie provider reimbursements to predefined quality metrics. By this the total costs of care shall be reduced. Little is known about the contractual design and the main challenges of delegating "accountability" to these new kinds of organisations and/or contracts. The costs of market utilisation are highly relevant for the conception of healthcare contracts; furthermore information asymmetries and contract-specific investments are an obstacle to the efficient operation of ACOs. A comprehensive literature review on methods of designing contracts in Integrated Care was conducted. The research question in this article focuses on how reimbursement strategies, evaluation of measures and methods of risk adjustment can best be integrated in healthcare contracting. Each integrated care contract includes challenges for both payers and providers without having sufficient empirical data on both sides. These challenges are clinical, administrative or financial nature. Risk adjusted contracts ensure that the reimbursement roughly matches the true costs resulting from the morbidity of a population. If reimbursement of care provider corresponds to the actual expenses for an individual/population the problem of risk selection is greatly reduced. The currently used methods of risk adjustment have widely differing model and forecast

  8. Transparent, Flexible, Low Noise Graphene Electrodes for Simultaneous Electrophysiology and Neuroimaging

    PubMed Central

    Kuzum, Duygu; Takano, Hajime; Shim, Euijae; Reed, Jason C; Juul, Halvor; Richardson, Andrew G.; de Vries, Julius; Bink, Hank; Dichter, Marc A.; Lucas, Timothy H.; Coulter, Douglas A.; Cubukcu, Ertugrul; Litt, Brian

    2014-01-01

    Calcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, due to the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide new insights into functions of neural circuits. Here, we report a transparent, flexible neural electrode technology based on graphene, which enables simultaneous optical imaging and electrophysiological recording. We demonstrate that hippocampal slices can be imaged through transparent graphene electrodes by both confocal and two-photon microscopy without causing any light-induced artifacts in the electrical recordings. Graphene electrodes record high frequency bursting activity and slow synaptic potentials that are hard to resolve by multi-cellular calcium imaging. This transparent electrode technology may pave the way for high spatio-temporal resolution electrooptic mapping of the dynamic neuronal activity. PMID:25327632

  9. Contract Design: Risk Management and Evaluation

    PubMed Central

    Amelung, Volker E.; Juhnke, Christin

    2018-01-01

    Introduction: Effective risk adjustment is an aspect that is more and more given weight on the background of competitive health insurance systems and vital healthcare systems. The risk structure of the providers plays a vital role in Pay for Performance. A prerequisite for optimal incentive-based service models is a (partial) dependence of the agent’s returns on the provider’s gain level. Integrated care systems as well as accountable care organisations (ACOs) in the US and similar concepts in other countries are advocated as an effective method of improving the performance of healthcare systems. These systems outline a payment and care delivery model that intends to tie provider reimbursements to predefined quality metrics. By this the total costs of care shall be reduced. Methods: Little is known about the contractual design and the main challenges of delegating “accountability” to these new kinds of organisations and/or contracts. The costs of market utilisation are highly relevant for the conception of healthcare contracts; furthermore information asymmetries and contract-specific investments are an obstacle to the efficient operation of ACOs. A comprehensive literature review on methods of designing contracts in Integrated Care was conducted. The research question in this article focuses on how reimbursement strategies, evaluation of measures and methods of risk adjustment can best be integrated in healthcare contracting. Results: Each integrated care contract includes challenges for both payers and providers without having sufficient empirical data on both sides. These challenges are clinical, administrative or financial nature. Risk adjusted contracts ensure that the reimbursement roughly matches the true costs resulting from the morbidity of a population. If reimbursement of care provider corresponds to the actual expenses for an individual/population the problem of risk selection is greatly reduced. The currently used methods of risk adjustment

  10. The Electrophysiological Phenomenon of Alzheimer's Disease: A Psychopathology Theory.

    PubMed

    Holston, Ezra C

    2015-08-01

    The current understanding of Alzheimer's disease (AD) is based on the Aβ and tau pathology and the resulting neuropathological changes, which are associated with manifested clinical symptoms. However, electrophysiological brain changes may provide a more expansive understanding of AD. Hence, the objective of this systematic review is to propose a theory about the electrophysiological phenomenon of Alzheimer's disease (EPAD). The review of literature resulted from an extensive search of PubMed and MEDLINE databases. One-hundred articles were purposively selected. They provided an understanding of the concepts establishing the theory of EPAD (neuropathological changes, neurochemical changes, metabolic changes, and electrophysiological brain changes). Changes in the electrophysiology of the brain are foundational to the association or interaction of the concepts. Building on Berger's Psychophysical Model, it is evident that electrophysiological brain changes occur and affect cortical areas to generate or manifest symptoms from onset and across the stages of AD, which may be prior to pathological changes. Therefore, the interaction of the concepts demonstrates how the psychopathology results from affected electrophysiology of the brain. The theory of the EPAD provides a theoretical foundation for appropriate measurements of AD without dependence on neuropathological changes. Future research is warranted to further test this theory. Ultimately, this theory contributes to existing knowledge because it shows how electrophysiological changes are useful in understanding the risk and progression of AD across the stages.

  11. A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures.

    PubMed

    Stoppini, L; Duport, S; Corrèges, P

    1997-03-01

    The present paper describes a new multirecording device which performs continuous electrophysiological studies on organotypic cultures. This device is formed by a card (Physiocard) carrying the culture which is inserted into an electronic module. Electrical activities are recorded by an array of 30 biocompatible microelectrodes which are adjusted into close contact with the upper surface of the slice culture. The microelectrode array is integrated into the card enabling electrical stimulation and recording of neurons over periods ranging from several hours to a few days outside a Faraday cage. Neuronal responses are recorded and analyzed by a dedicated electronic and acquisition chain. A perfusion chamber is contained in the card, allowing continuous perfusion in sterile conditions. Electrophysiological extracellular recordings and some drugs' effects obtained with this system in hippocampal slice cultures were identical to conventional electrophysiological set-up results with tetrodotoxin, bicuculline, kainate, dexamethasone and NBQX. The Physiocard system allows new insights for studies on nervous tissue and allows sophisticated approaches to be used quicker and more easily. It could be used for various neurophysiological studies or screening tests such as neural network mapping, nervous recovery, epilepsy, neurotoxicity or neuropharmacology.

  12. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data.

    PubMed

    Brinkmann, Benjamin H; Bower, Mark R; Stengel, Keith A; Worrell, Gregory A; Stead, Matt

    2009-05-30

    The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings (>100 channels) capable of probing the range of neural activity from local field potential oscillations to single-neuron action potentials presents new challenges for data acquisition, storage, and analysis. Our group is currently performing continuous, long-term electrophysiological recordings in human subjects undergoing evaluation for epilepsy surgery using hybrid intracranial electrodes composed of up to 320 micro- and clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32kHz per channel with 18-bits of A/D resolution are capable of resolving extracellular voltages spanning single-neuron action potentials, high frequency oscillations, and high amplitude ultra-slow activity, but this approach generates 3 terabytes of data per day (at 4 bytes per sample) using current data formats. Data compression can provide several practical benefits, but only if data can be compressed and appended to files in real-time in a format that allows random access to data segments of varying size. Here we describe a state-of-the-art, scalable, electrophysiology platform designed for acquisition, compression, encryption, and storage of large-scale data. Data are stored in a file format that incorporates lossless data compression using range-encoded differences, a 32-bit cyclically redundant checksum to ensure data integrity, and 128-bit encryption for protection of patient information.

  13. Large-scale Electrophysiology: Acquisition, Compression, Encryption, and Storage of Big Data

    PubMed Central

    Brinkmann, Benjamin H.; Bower, Mark R.; Stengel, Keith A.; Worrell, Gregory A.; Stead, Matt

    2009-01-01

    The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings (>100 channels) capable of probing the range of neural activity from local field potential oscillations to single neuron action potentials presents new challenges for data acquisition, storage, and analysis. Our group is currently performing continuous, long-term electrophysiological recordings in human subjects undergoing evaluation for epilepsy surgery using hybrid intracranial electrodes composed of up to 320 micro- and clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32 kHz per channel with 18-bits of A/D resolution are capable of resolving extracellular voltages spanning single neuron action potentials, high frequency oscillations, and high amplitude ultraslow activity, but this approach generates 3 terabytes of data per day (at 4 bytes per sample) using current data formats. Data compression can provide several practical benefits, but only if data can be compressed and appended to files in real-time in a format that allows random access to data segments of varying size. Here we describe a state-of-the-art, scalable, electrophysiology platform designed for acquisition, compression, encryption, and storage of large-scale data. Data are stored in a file format that incorporates lossless data compression using range encoded differences, a 32-bit cyclically redundant checksum to ensure data integrity, and 128-bit encryption for protection of patient information. PMID:19427545

  14. Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology.

    PubMed

    Hayakawa, Tomohiro; Kunihiro, Takeshi; Ando, Tomoko; Kobayashi, Seiji; Matsui, Eriko; Yada, Hiroaki; Kanda, Yasunari; Kurokawa, Junko; Furukawa, Tetsushi

    2014-12-01

    In this study, we used high-speed video microscopy with motion vector analysis to investigate the contractile characteristics of hiPS-CM monolayer, in addition to further characterizing the motion with extracellular field potential (FP), traction force and the Ca(2+) transient. Results of our traction force microscopy demonstrated that the force development of hiPS-CMs correlated well with the cellular deformation detected by the video microscopy with motion vector analysis. In the presence of verapamil and isoproterenol, contractile motion of hiPS-CMs showed alteration in accordance with the changes in fluorescence peak of the Ca(2+) transient, i.e., upstroke, decay, amplitude and full-width at half-maximum. Simultaneously recorded hiPS-CM motion and FP showed that there was a linear correlation between changes in the motion and field potential duration in response to verapamil (30-150nM), isoproterenol (0.1-10μM) and E-4031 (10-50nM). In addition, tetrodotoxin (3-30μM)-induced delay of sodium current was corresponded with the delay of the contraction onset of hiPS-CMs. These results indicate that the electrophysiological and functional behaviors of hiPS-CMs are quantitatively reflected in the contractile motion detected by this image-based technique. In the presence of 100nM E-4031, the occurrence of early after-depolarization-like negative deflection in FP was also detected in the hiPS-CM motion as a characteristic two-step relaxation pattern. These findings offer insights into the interpretation of the motion kinetics of the hiPS-CMs, and are relevant for understanding electrical and mechanical relationship in hiPS-CMs. Copyright © 2014. Published by Elsevier Ltd.

  15. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, <30% of drugs withdrawals from the market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  16. 42 CFR 455.236 - Renewal of a contract.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS PROGRAM INTEGRITY: MEDICAID Medicaid Integrity Program § 455.236 Renewal of a contract. (a) CMS specifies the initial contract term in the Medicaid integrity audit program...

  17. The tarsal taste of honey bees: behavioral and electrophysiological analyses

    PubMed Central

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee. PMID:24550801

  18. The tarsal taste of honey bees: behavioral and electrophysiological analyses.

    PubMed

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee.

  19. Contract Design: The problem of information asymmetry

    PubMed Central

    Amelung, Volker E.; Juhnke, Christin

    2018-01-01

    Introduction: Integrated care systems are advocated as an effective method of improving the performance of healthcare systems. These systems outline a payment and care delivery model that intends to tie provider reimbursements to predefined quality metrics. Little is known about the contractual design and the main challenges of delegating “accountability” to these new kinds of organisations and/or contracts. The research question in this article focuses on how healthcare contracts can look like and which possible problems arise in designing such contracts. In this a special interest is placed on information asymmetries. Methods: A comprehensive literature review on methods of designing contracts in Integrated Care was conducted. This article is the first in a row of three that all contribute to a specific issue in designing healthcare contracts. Starting with the organisation of contracts and information asymmetries, part 2 focusses on financial options and risks and part 3 finally concludes with the question of risk management and evaluation. Results: Healthcare contracting between providers and payers will have a major impact on the overall design of future healthcare systems. If Integrated care systems or any other similar concept of care delivery are to be contracted directly by payers to manage the continuum of care the costs of market utilisation play an essential role. Transaction costs also arise in the course of the negotiation and implementation of contracts. These costs are the reason why it is generally not possible to conclude perfect (complete) contracts. Problems with asymmetric distribution of information can relate to the situation before a contract is concluded (adverse selection) and after conclusion of a contract (moral hazard). Discussion and Conclusions: Information asymmetries are seen as a major obstacle to the efficient operation of integrated care programmes. Coordination and motivation problems cannot be solved at no-costs. The

  20. Contract Design: The problem of information asymmetry.

    PubMed

    Mühlbacher, Axel C; Amelung, Volker E; Juhnke, Christin

    2018-01-12

    Integrated care systems are advocated as an effective method of improving the performance of healthcare systems. These systems outline a payment and care delivery model that intends to tie provider reimbursements to predefined quality metrics. Little is known about the contractual design and the main challenges of delegating "accountability" to these new kinds of organisations and/or contracts. The research question in this article focuses on how healthcare contracts can look like and which possible problems arise in designing such contracts. In this a special interest is placed on information asymmetries. A comprehensive literature review on methods of designing contracts in Integrated Care was conducted. This article is the first in a row of three that all contribute to a specific issue in designing healthcare contracts. Starting with the organisation of contracts and information asymmetries, part 2 focusses on financial options and risks and part 3 finally concludes with the question of risk management and evaluation. Healthcare contracting between providers and payers will have a major impact on the overall design of future healthcare systems. If Integrated care systems or any other similar concept of care delivery are to be contracted directly by payers to manage the continuum of care the costs of market utilisation play an essential role. Transaction costs also arise in the course of the negotiation and implementation of contracts. These costs are the reason why it is generally not possible to conclude perfect (complete) contracts. Problems with asymmetric distribution of information can relate to the situation before a contract is concluded (adverse selection) and after conclusion of a contract (moral hazard). Information asymmetries are seen as a major obstacle to the efficient operation of integrated care programmes. Coordination and motivation problems cannot be solved at no-costs. The presented problems in the design of selective individual contracts

  1. Contracts in radiology practices: contract types and key provisions.

    PubMed

    Muroff, Julie A; Muroff, Lawrence R

    2004-07-01

    A contract between a radiology group and its physician member(s) provides the foundation for the professional relationships in a group practice. The parties are not in positions of parity; contract provisions are structured to maintain the primacy of the group over the individual members. An integration clause should be included to preclude reliance on communications that are not memorialized by the language of the contract. Precise, unambiguous terms must be used to convey the intentions of the parties. The contract should have a clear date of initiation and, if applicable, an effective date of termination. Mechanisms for termination and modification should be expressed clearly to minimize the risk of judicial interference. The method of determining and adjusting the salary and other benefits of the radiologist should be stated, as consideration is necessary to support the existence of a legal contract. The obligations of the radiologist to the practice are often stated in general terms to maximize the group's flexibility. Finally, other key clauses that are discussed in the paper should be incorporated into the contract.

  2. Eccentric Contraction-Induced Muscle Injury: Reproducible, Quantitative, Physiological Models to Impair Skeletal Muscle’s Capacity to Generate Force

    PubMed Central

    Call, Jarrod A.; Lowe, Dawn A.

    2018-01-01

    In order to investigate the molecular and cellular mechanisms of muscle regeneration an experimental injury model is required. Advantages of eccentric contraction-induced injury are that it is a controllable, reproducible, and physiologically relevant model to cause muscle injury, with injury being defined as a loss of force generating capacity. While eccentric contractions can be incorporated into conscious animal study designs such as downhill treadmill running, electrophysiological approaches to elicit eccentric contractions and examine muscle contractility, for example before and after the injurious eccentric contractions, allows researchers to circumvent common issues in determining muscle function in a conscious animal (e.g., unwillingness to participate). Herein, we describe in vitro and in vivo methods that are reliable, repeatable, and truly maximal because the muscle contractions are evoked in a controlled, quantifiable manner independent of subject motivation. Both methods can be used to initiate eccentric contraction-induced injury and are suitable for monitoring functional muscle regeneration hours to days to weeks post-injury. PMID:27492161

  3. Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals

    PubMed Central

    Grand, Laszlo; Ftomov, Sergiu; Timofeev, Igor

    2012-01-01

    Parallel electrophysiological recording and behavioral monitoring of freely moving animals is essential for a better understanding of the neural mechanisms underlying behavior. In this paper we describe a novel wireless recording technique, which is capable of synchronously recording in vivo multichannel electrophysiological (LFP, MUA, EOG, EMG) and activity data (accelerometer, video) from freely moving cats. The method is based on the integration of commercially available components into a simple monitoring system and is complete with accelerometers and the needed signal processing tools. LFP activities of freely moving group-housed cats were recorded from multiple intracortical areas and from the hippocampus. EMG, EOG, accelerometer and video were simultaneously acquired with LFP activities 24-h a day for 3 months. These recordings confirm the possibility of using our wireless method for 24-h long-term monitoring of neurophysiological and behavioral data of freely moving experimental animals such as cats, ferrets, rabbits and other large animals. PMID:23099345

  4. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers.

    PubMed

    Tay, Su Ann; Sanjay, Srinivasan

    2012-07-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia.

  5. Electrophysiological abnormalities associated with extensive myelinated retinal nerve fibers

    PubMed Central

    Tay, Su Ann; Sanjay, Srinivasan

    2012-01-01

    An observational case report of electrophysiological abnormalities in a patient with anisomyopic amblyopia as a result of unilateral extensive myelinated retinal nerve fibers (MNFs) is illustrated. The electrophysiological readings revealed an abnormal pattern electroretinogram (PERG) but normal full-field electroretinogram readings in the affected eye. The visual-evoked potential was also undetectable in that eye. Our findings suggest that extensive MNFs can be associated with electrophysiological abnormalities, in particular the PERG, which can aid in diagnosing the cause of impaired vision when associated with amblyopia. PMID:22824610

  6. Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices.

    PubMed

    Uguz, Ilke; Ganji, Mehran; Hama, Adel; Tanaka, Atsunori; Inal, Sahika; Youssef, Ahmed; Owens, Roisin M; Quilichini, Pascale P; Ghestem, Antoine; Bernard, Christophe; Dayeh, Shadi A; Malliaras, George G

    2016-12-01

    Autoclaving, the most widely available sterilization method, is applied to poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) electrophysiology devices. The process does not harm morphology or electrical properties, while it effectively kills E. coli intentionally cultured on the devices. This finding paves the way to widespread introduction of PEDOT:PSS electrophysiology devices to the clinic. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    PubMed Central

    Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.

    2011-01-01

    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568

  8. Use of planar array electrophysiology for the development of robust ion channel cell lines.

    PubMed

    Clare, Jeffrey J; Chen, Mao Xiang; Downie, David L; Trezise, Derek J; Powell, Andrew J

    2009-01-01

    The tractability of ion channels as drug targets has been significantly improved by the advent of planar array electrophysiology platforms which have dramatically increased the capacity for electrophysiological profiling of lead series compounds. However, the data quality and through-put obtained with these platforms is critically dependent on the robustness of the expression reagent being used. The generation of high quality, recombinant cell lines is therefore a key step in the early phase of ion channel drug discovery and this can present significant challenges due to the diversity and organisational complexity of many channel types. This article focuses on several complex and difficult to express ion channels and illustrates how improved stable cell lines can be obtained by integration of planar array electrophysiology systems into the cell line generation process per se. By embedding this approach at multiple stages (e.g., during development of the expression strategy, during screening and validation of clonal lines, and during characterisation of the final cell line), the cycle time and success rate in obtaining robust expression of complex multi-subunit channels can be significantly improved. We also review how recent advances in this technology (e.g., population patch clamp) have further widened the versatility and applicability of this approach.

  9. [Formula: see text]-Contraction in terms of measure of noncompactness with application for nonlinear integral equations.

    PubMed

    Nikbakhtsarvestani, Farzaneh; Vaezpour, S Mansour; Asadi, Mehdi

    2017-01-01

    In this paper, some new generalization of Darbo's fixed point theorem is proved by using a [Formula: see text]-contraction in terms of a measure of noncompactness. Our result extends to obtaining a common fixed point for a pair of compatible mappings. The paper contains an application for nonlinear integral equations as well.

  10. Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Long-Term Cardiac Electrophysiology

    PubMed Central

    Fang, Hui; Yu, Ki Jun; Gloschat, Christopher; Yang, Zijian; Chiang, Chia-Han; Zhao, Jianing; Won, Sang Min; Xu, Siyi; Trumpis, Michael; Zhong, Yiding; Song, Enming; Han, Seung Won; Xue, Yeguang; Xu, Dong; Cauwenberghs, Gert; Kay, Matthew; Huang, Yonggang; Viventi, Jonathan; Efimov, Igor R.; Rogers, John A.

    2017-01-01

    Advanced capabilities in electrical recording are essential for the treatment of heart-rhythm diseases. The most advanced technologies use flexible integrated electronics; however, the penetration of biological fluids into the underlying electronics and any ensuing electrochemical reactions pose significant safety risks. Here, we show that an ultrathin, leakage-free, biocompatible dielectric layer can completely seal an underlying layer of flexible electronics while allowing for electrophysiological measurements through capacitive coupling between tissue and the electronics, and thus without the need for direct metal contact. The resulting current-leakage levels and operational lifetimes are, respectively, four orders of magnitude smaller and between two and three orders of magnitude longer than those of any other flexible-electronics technology. Systematic electrophysiological studies with normal, paced and arrhythmic conditions in Langendorff hearts highlight the capabilities of the capacitive-coupling approach. Our technology provides a realistic pathway towards the broad applicability of biocompatible, flexible electronic implants. PMID:28804678

  11. Early electrophysiological findings in Fisher-Bickerstaff syndrome.

    PubMed

    Alberti, M A; Povedano, M; Montero, J; Casasnovas, C

    2017-09-06

    The term Fisher-Bickerstaff syndrome (FBS) has been proposed to describe the clinical spectrum encompassing Miller-Fisher syndrome (MFS) and Bickerstaff brainstem encephalitis. The pathophysiology of FBS and the nature of the underlying neuropathy (demyelinating or axonal) are still subject to debate. This study describes the main findings of an early neurophysiological study on 12 patients diagnosed with FBS. Retrospective evaluation of clinical characteristics and electrophysiological findings of 12 patients with FBS seen in our neurology department within 10 days of disease onset. Follow-up electrophysiological studies were also evaluated, where available. The most frequent electrophysiological finding, present in 5 (42%) patients, was reduced sensory nerve action potential (SNAP) amplitude in one or more nerves. Abnormalities were rarely found in motor neurography, with no signs of demyelination. The cranial nerve exam revealed abnormalities in 3 patients (facial neurography and/or blink reflex test). Three patients showed resolution of SNAP amplitude reduction in serial neurophysiological studies, suggesting the presence of reversible sensory nerve conduction block. Results from cranial MRI scans were normal in all patients. An electrophysiological pattern of sensory axonal neuropathy, with no associated signs of demyelination, is an early finding of FBS. Early neurophysiological evaluation and follow-up are essential for diagnosing patients with FBS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Selective fatigue of fast motor units after electrically elicited muscle contractions.

    PubMed

    Hamada, Taku; Kimura, Tetsuya; Moritani, Toshio

    2004-10-01

    The aim of the present study was to elucidate the electrophysiological manifestations of selective fast motor unit (MU) activation by electrical stimulation (ES) of knee extensor muscles. In six male subjects, test contraction measurement at 40% maximal voluntary contraction (MVC) was performed before and at every 5 min (5, 10, 15 and 20 min) during 20-min low intensity intermittent exercise of either ES or voluntary contractions (VC) at 10% MVC (5-s isometric contraction and 5-s rest cycles). Both isolated intramuscular MU spikes obtained from three sets of bipolar fine-wire electrodes and surface electromyogram (EMG) were simultaneously recorded and were analyzed by means of a computer-aided intramuscular spike amplitude-frequency analysis and frequency power spectral analysis, respectively. Results indicated that mean MU spike amplitude, particularly those MUs with relatively large amplitude, was significantly reduced while those MUs with small spike amplitude increased their firing rate during the 40% MVC test contraction after the ES. This was accompanied by the increased amplitude of surface EMG (rmsEMG). However, no such significant changes in the intramuscular and surface EMGs were observed after VC. These findings indicated differential MU activation patterns in terms of MU recruitment and rate coding characteristics during ES and VC, respectively. Our data strongly suggest the possibility of "an inverse size principle" of MU recruitment during ES.

  13. Software and hardware infrastructure for research in electrophysiology

    PubMed Central

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Řondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Štěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software. PMID:24639646

  14. Software and hardware infrastructure for research in electrophysiology.

    PubMed

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Rondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Stěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  15. 48 CFR 32.007 - Contract financing payments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... extent of contract financing arrangements are integrated with agency contract pricing policies. (4... otherwise prescribed in agency policies and procedures or otherwise specified in paragraph (b) of this... due date. (3) Agency heads may prescribe shorter periods for payment based on contract pricing or...

  16. Benchmarking electrophysiological models of human atrial myocytes

    PubMed Central

    Wilhelms, Mathias; Hettmann, Hanne; Maleckar, Mary M.; Koivumäki, Jussi T.; Dössel, Olaf; Seemann, Gunnar

    2013-01-01

    Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits. PMID:23316167

  17. Neural ensemble communities: Open-source approaches to hardware for large-scale electrophysiology

    PubMed Central

    Siegle, Joshua H.; Hale, Gregory J.; Newman, Jonathan P.; Voigts, Jakob

    2014-01-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is “open” or “closed”: that is, whether or not the system’s schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. PMID:25528614

  18. Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology.

    PubMed

    Siegle, Joshua H; Hale, Gregory J; Newman, Jonathan P; Voigts, Jakob

    2015-06-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is 'open' or 'closed': that is, whether or not the system's schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Adjustments in motor unit properties during fatiguing contractions after training.

    PubMed

    Vila-Chã, Carolina; Falla, Deborah; Correia, Miguel Velhote; Farina, Dario

    2012-04-01

    The objective of the study was to investigate the effect of strength and endurance training on muscle fiber membrane properties and discharge rates of low-threshold motor units of the vasti muscles during fatiguing contractions. Twenty-five sedentary healthy men (age (mean ± SD) = 26.3 ± 3.9 yr) were randomly assigned to one of three groups: strength training, endurance training, or a control group. Conventional endurance and strength training was performed 3 d·wk⁻¹, during a period of 6 wk. Motor unit conduction velocity and EMG amplitude of the vastus medialis obliquus and lateralis muscles and biceps femoris were measured during sustained isometric knee extensions at 10% and 30% of the maximum voluntary contraction before and immediately after training. After 6 wk of training, the reduction in motor unit conduction velocity during the sustained contractions at 30% of the maximum voluntary force occurred at slower rates compared with baseline (P < 0.05). However, the rate of decrease was lower after endurance training compared with strength training (P < 0.01). For all groups, motor unit discharge rates declined during the sustained contraction (P < 0.001), and their trend was not altered by training. In addition, the biceps femoris-vasti coactivation ratio declined after the endurance training. Short-term strength and endurance training induces alterations of the electrophysiological membrane properties of the muscle fiber. In particular, endurance training lowers the rate of decline of motor unit conduction velocity during sustained contractions more than strength training.

  20. Challenges of commissioning and contracting for integrated care in the National Health Service (NHS) in England.

    PubMed

    Addicott, Rachael

    2016-01-01

    For many years there has been a separation between purchasing and provision of services in the English National Health Service (NHS). Many studies report that this commissioning function has been weak: purchasers have had little impact or power in negotiations with large acute providers, and have had limited strategic control over the delivery of care. Nevertheless, commissioning has become increasingly embedded in the NHS structure since the arrival of Clinical Commissioning Groups (CCGs) in 2012. Recently, some of these CCGs have focused on how they can contract and commission in different ways to stimulate greater collaboration across providers. This paper examines experiences of commissioning and contracting for integrated care in the English NHS, based on a series of national-level interviews and case studies of five health economies that are implementing novel contracting models. The cases illustrated here demonstrate early experiments to drive innovation through contracting in the NHS that have largely relied on the vision of individual teams or leaders, in combination with external legal, procurement and actuarial support. It is unlikely that this approach will be sustainable or replicable across the country or internationally, despite the best intentions of commissioners. Designing and operating novel contractual approaches will require considerable determination, alongside advanced skills in procurement, contract management and commissioning. The cost of developing new contractual approaches is high, and as the process is difficult and resource-intensive, it is likely that dedicated teams or programs will be required to drive significant improvement.

  1. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    PubMed Central

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  2. Electrophysiological evidence for speech-specific audiovisual integration.

    PubMed

    Baart, Martijn; Stekelenburg, Jeroen J; Vroomen, Jean

    2014-01-01

    Lip-read speech is integrated with heard speech at various neural levels. Here, we investigated the extent to which lip-read induced modulations of the auditory N1 and P2 (measured with EEG) are indicative of speech-specific audiovisual integration, and we explored to what extent the ERPs were modulated by phonetic audiovisual congruency. In order to disentangle speech-specific (phonetic) integration from non-speech integration, we used Sine-Wave Speech (SWS) that was perceived as speech by half of the participants (they were in speech-mode), while the other half was in non-speech mode. Results showed that the N1 obtained with audiovisual stimuli peaked earlier than the N1 evoked by auditory-only stimuli. This lip-read induced speeding up of the N1 occurred for listeners in speech and non-speech mode. In contrast, if listeners were in speech-mode, lip-read speech also modulated the auditory P2, but not if listeners were in non-speech mode, thus revealing speech-specific audiovisual binding. Comparing ERPs for phonetically congruent audiovisual stimuli with ERPs for incongruent stimuli revealed an effect of phonetic stimulus congruency that started at ~200 ms after (in)congruence became apparent. Critically, akin to the P2 suppression, congruency effects were only observed if listeners were in speech mode, and not if they were in non-speech mode. Using identical stimuli, we thus confirm that audiovisual binding involves (partially) different neural mechanisms for sound processing in speech and non-speech mode. © 2013 Published by Elsevier Ltd.

  3. An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence

    PubMed Central

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2016-01-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension. PMID:28129060

  4. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    PubMed

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  5. Redox artifacts in electrophysiological recordings

    PubMed Central

    Berman, Jonathan M.

    2013-01-01

    Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H2O2 used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp. PMID:23344161

  6. Essentials of photometry for clinical electrophysiology of vision.

    PubMed

    McCulloch, Daphne L; Hamilton, Ruth

    2010-08-01

    Electrophysiological testing of the visual system requires familiarity with photometry. This technical note outlines the concepts of photometry with a focus on information relevant to clinical ERG and VEP testing. Topics include photometric quantities, consideration of pupil size, specification of brief extended flash stimuli, and the influence of the spectral composition of visual stimuli. Standard units and terms are explained in the context of the ISCEV standards and guidelines for clinical electrophysiology of vision.

  7. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani.

    PubMed

    Piccolino, M

    1998-07-15

    Preceded by a companion paper on Galvani's life, this article is written on the occasion of the bicentenary of the death of Luigi Galvani. From his studies on the effects of electricity on frogs, the scientist of Bologna derived the hypothesis that animal tissues are endowed with an intrinsic electricity that is involved in fundamental physiological processes such as nerve conduction and muscle contraction. Galvani's work swept away from life sciences mysterious fluids and elusive entities like "animal spirits" and led to the foundation of a new science, electrophysiology. Two centuries of research work have demonstrated how insightful was Galvani's conception of animal electricity. Nevertheless, the scholar of Bologna is still largely misrepresented in the history of science, because the importance of his researches seems to be limited to the fact that they opened the paths to the studies of the physicist Alessandro Volta, which culminated in 1800 with the invention of the electric battery. Volta strongly opposed Galvani's theories on animal electricity. The matter of the scientific controversy between Galvani and Volta is examined here in the light of two centuries of electrophysiological studies leading to the modern understanding of electrical excitability in nerve and muscle. By surveying the work of scientists such as Nobili, Matteucci, du Bois-Reymond, von Helmholtz, Bernstein, Hermann, Lucas, Adrian, Hodgkin, Huxley, and Katz, the real matter of the debate raised by Galvani's discoveries is here reconsidered. In addition, a revolutionary phase of the 18th century science that opened the way for the development of modern neurosciences is reevaluated.

  8. Python for large-scale electrophysiology.

    PubMed

    Spacek, Martin; Blanche, Tim; Swindale, Nicholas

    2008-01-01

    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation ("dimstim"); one for electrophysiological waveform visualization and spike sorting ("spyke"); and one for spike train and stimulus analysis ("neuropy"). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.

  9. Perceived Control and Psychological Contract Breach as Explanations of the Relationships Between Job Insecurity, Job Strain and Coping Reactions: Towards a Theoretical Integration.

    PubMed

    Vander Elst, Tinne; De Cuyper, Nele; Baillien, Elfi; Niesen, Wendy; De Witte, Hans

    2016-04-01

    This study aims to further knowledge on the mechanisms through which job insecurity is related to negative outcomes. Based on appraisal theory, two explanations-perceived control and psychological contract breach-were theoretically integrated in a comprehensive model and simultaneously examined as mediators of the job insecurity-outcome relationship. Different categories of outcomes were considered, namely work-related (i.e. vigour and need for recovery) and general strain (i.e. mental and physical health complaints), as well as psychological (i.e. job satisfaction and organizational commitment) and behavioural coping reactions (i.e. self-rated performance and innovative work behaviour). The hypotheses were tested using data of a heterogeneous sample of 2413 Flemish employees by means of both single and multiple mediator structural equation modelling analyses (bootstrapping method). Particularly, psychological contract breach accounted for the relationship between job insecurity and strain. Both perceived control and psychological contract breach mediated the relationships between job insecurity and psychological coping reactions, although the indirect effects were larger for psychological contract breach. Finally, perceived control was more important than psychological contract breach in mediating the relationships between job insecurity and behavioural coping reactions. This study meets previous calls for a theoretical integration regarding mediators of the job insecurity-outcome relationship. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Electrophysiological effects of semantic context in picture and word naming.

    PubMed

    Janssen, Niels; Carreiras, Manuel; Barber, Horacio A

    2011-08-01

    Recent language production studies have started to use electrophysiological measures to investigate the time course of word selection processes. An important contribution with respect to this issue comes from studies that have relied on an effect of semantic context in the semantic blocking task. Here we used this task to further establish the empirical pattern associated with the effect of semantic context, and whether the effect arises during output processing. Electrophysiological and reaction time measures were co-registered while participants overtly named picture and word stimuli in the semantic blocking task. The results revealed inhibitory reaction time effects of semantic context for both words and pictures, and a corresponding electrophysiological effect that could not be interpreted in terms of output processes. These data suggest that the electrophysiological effect of semantic context in the semantic blocking task does not reflect output processes, and therefore undermine an interpretation of this effect in terms of word selection. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Python for Large-Scale Electrophysiology

    PubMed Central

    Spacek, Martin; Blanche, Tim; Swindale, Nicholas

    2008-01-01

    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis (“neuropy”). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience. PMID:19198646

  12. Clinical and electrophysiological evaluation of pediatric Wolff-Parkinson-White patients

    PubMed Central

    Yıldırım, Işıl; Özer, Sema; Karagöz, Tevfik; Şahin, Murat; Özkutlu, Süheyla; Alehan, Dursun; Çeliker, Alpay

    2015-01-01

    Objective: Wolff-Parkinson-White (WPW) syndrome presents with paroxysmal supraventricular tachycardia and is characterized by electrocardiographic (ECG) findings of a short PR interval and a delta wave. The objective of this study was to evaluate the electrophysiological properties of children with WPW syndrome and to develop an algorithm for the management of these patients with limited access to electrophysiological study. Methods: A retrospective review of all pediatric patients who underwent electrophysiological evaluation for WPW syndrome was performed. Results: One hundred nine patients underwent electrophysiological evaluation at a single tertiary center between 1997 and 2011. The median age of the patients was 11 years (0.1-18). Of the 109 patients, 82 presented with tachycardia (median age 11 (0.1-18) years), and 14 presented with syncope (median age 12 (6-16) years); 13 were asymptomatic (median age 10 (2-13) years). Induced AF degenerated to ventricular fibrillation (VF) in 2 patients. Of the 2 patients with VF, 1 was asymptomatic and the other had syncope; the accessory pathway effective refractory period was ≤180 ms in both. An intracardiac electrophysiological study was performed in 92 patients, and ablation was not attempted for risk of atrioventricular block in 8 (8.6%). The success and recurrence rate of ablation were 90.5% and 23.8% respectively. Conclusion: The induction of VF in 2 of 109 patients in our study suggests that the prognosis of WPW in children is not as benign as once thought. All patients with a WPW pattern on the ECG should be assessed electrophysiologically and risk-stratified. Ablation of patients with risk factors can prevent sudden death in this population. PMID:26006136

  13. Electrophysiological measurements of diabetic peripheral neuropathy: A systematic review.

    PubMed

    Shabeeb, Dheyauldeen; Najafi, Masoud; Hasanzadeh, Gholamreza; Hadian, Mohammed Reza; Musa, Ahmed Eleojio; Shirazi, Alireza

    2018-03-28

    Peripheral neuropathy is one of the main complications of diabetes mellitus. One of the features of diabetic nerve damage is abnormality of sensory and motor nerve conduction study. An electrophysiological examination can be reproduced and is also a non-invasive approach in the assessment of peripheral nerve function. Population-based and clinical studies have been conducted to validate the sensitivity of these methods. When the diagnosis was based on clinical electrophysiological examination, abnormalities were observed in all patients. In this research, using a review design, we reviewed the issue of clinical electrophysiological examination of diabetic peripheral neuropathy in articles from 2008 to 2017. For this purpose, PubMed, Scopus and Embase databases of journals were used for searching articles. The researchers indicated that diabetes (both types) is a very disturbing health issue in the modern world and should be given serious attention. Based on conducted studies, it was demonstrated that there are different procedures for prevention and treatment of diabetes-related health problems such as diabetic polyneuropathy (DPN). The first objective quantitative indication of the peripheral neuropathy is abnormality of sensory and motor nerve conduction tests. Electrophysiology is accurate, reliable and sensitive. It can be reproduced and also is a noninvasive approach in the assessment of peripheral nerve function. The methodological review has found that the best method for quantitative indication of the peripheral neuropathy compared with all other methods is clinical electrophysiological examination. For best results, standard protocols such as temperature control and equipment calibration are recommended. Copyright © 2018. Published by Elsevier Ltd.

  14. Clinical, electrophysiological and magnetic resonance imaging findings in carpal tunnel syndrome.

    PubMed

    Musluoğlu, L; Celik, M; Tabak, H; Forta, H

    2004-01-01

    To assess magnetic resonance imaging (MRI) findings in carpal tunnel syndrome (CTS) and to compare them with electrophysiological findings. Routine motor and sensory nerve conduction examinations and needle EMG were performed in 42 hands of 22 patients, who were clinically diagnosed as having CTS in at least one wrist. Of 29 wrists with clinically and electrophysiologically confirmed CTS, MRI could detect abnormality in 18 wrists (62%). Median nerve was found to be abnormal in MRI in 1 of 2 wrists with suspected clinical symptoms and proven CTS by electrophysiological examination. MRI was abnormal in 1 of 4 wrists with normal clinical and electrophysiological examination. MRI was abnormal in 46, 7% of wrists with mild CTS, in 61.6% of moderate CTS and in 100% of severe CTS. Volar bulging of the flexor retinaculum was detected in a single wrist with severe CTS. Enlargement of median nerve was observed in 3 of 5 severe CTS. MRI could be useful in the diagnosis of unproven cases in CTS. It also provides anatomical information that correlate well with electrophysiological findings in regard of the severity of median nerve compression.

  15. Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models.

    PubMed

    Romero, Lucía; Carbonell, Beatriz; Trenor, Beatriz; Rodríguez, Blanca; Saiz, Javier; Ferrero, José M

    2011-10-01

    Several mathematical models of rabbit ventricular action potential (AP) have been proposed to investigate mechanisms of arrhythmias and excitation-contraction coupling. Our study aims at systematically characterizing how ionic current properties modulate the main cellular biomarkers of arrhythmic risk using two widely-used rabbit ventricular models, and comparing simulation results using the two models with experimental data available for rabbit. A sensitivity analysis of AP properties, Ca²⁺ and Na⁺ dynamics, and their rate dependence to variations (±15% and ±30%) in the main transmembrane current conductances and kinetics was performed using the Shannon et al. (2004) and the Mahajan et al. (2008a,b) AP rabbit models. The effects of severe transmembrane current blocks (up to 100%) on steady-state AP and calcium transients, and AP duration (APD) restitution curves were also simulated using both models. Our simulations show that, in both virtual rabbit cardiomyocytes, APD is significantly modified by most repolarization currents, AP triangulation is regulated mostly by the inward rectifier K⁺ current (I(K1)) whereas APD rate adaptation as well as [Na⁺](i) rate dependence is influenced by the Na⁺/K⁺ pump current (I(NaK)). In addition, steady-state [Ca²⁺](i) levels, APD restitution properties and [Ca²⁺](i) rate dependence are strongly dependent on I(NaK), the L-Type Ca²⁺ current (I(CaL)) and the Na⁺/Ca²⁺ exchanger current (I(NaCa)), although the relative role of these currents is markedly model dependent. Furthermore, our results show that simulations using both models agree with many experimentally-reported electrophysiological characteristics. However, our study shows that the Shannon et al. model mimics rabbit electrophysiology more accurately at normal pacing rates, whereas Mahajan et al. model behaves more appropriately at faster rates. Our results reinforce the usefulness of sensitivity analysis for further understanding of cellular

  16. NeoAnalysis: a Python-based toolbox for quick electrophysiological data processing and analysis.

    PubMed

    Zhang, Bo; Dai, Ji; Zhang, Tao

    2017-11-13

    In a typical electrophysiological experiment, especially one that includes studying animal behavior, the data collected normally contain spikes, local field potentials, behavioral responses and other associated data. In order to obtain informative results, the data must be analyzed simultaneously with the experimental settings. However, most open-source toolboxes currently available for data analysis were developed to handle only a portion of the data and did not take into account the sorting of experimental conditions. Additionally, these toolboxes require that the input data be in a specific format, which can be inconvenient to users. Therefore, the development of a highly integrated toolbox that can process multiple types of data regardless of input data format and perform basic analysis for general electrophysiological experiments is incredibly useful. Here, we report the development of a Python based open-source toolbox, referred to as NeoAnalysis, to be used for quick electrophysiological data processing and analysis. The toolbox can import data from different data acquisition systems regardless of their formats and automatically combine different types of data into a single file with a standardized format. In cases where additional spike sorting is needed, NeoAnalysis provides a module to perform efficient offline sorting with a user-friendly interface. Then, NeoAnalysis can perform regular analog signal processing, spike train, and local field potentials analysis, behavioral response (e.g. saccade) detection and extraction, with several options available for data plotting and statistics. Particularly, it can automatically generate sorted results without requiring users to manually sort data beforehand. In addition, NeoAnalysis can organize all of the relevant data into an informative table on a trial-by-trial basis for data visualization. Finally, NeoAnalysis supports analysis at the population level. With the multitude of general-purpose functions provided

  17. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors

    NASA Astrophysics Data System (ADS)

    Li, Quan; Fuks, Gad; Moulin, Emilie; Maaloum, Mounir; Rawiso, Michel; Kulic, Igor; Foy, Justin T.; Giuseppone, Nicolas

    2015-02-01

    Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.

  18. Phase Zero Operations for Contingency and Expeditionary Contracting-Keys to Fully Integrating Contracting into Operational Planning and Execution

    DTIC Science & Technology

    2010-08-02

    Cost and Price Analysis & Negotiations (5-2)—DAU CON 217 & CON 218 Certified; MN3318 Contingency Contracting (3-0)—DAU CON 234 Certified; and...MN3315 Advanced Contract Management (4-0)—DAU CON 214 & CON 215 Certified. CDR (Ret) Yoder has recently been published or cited in the following works...certified as the primary guide for all DAU CON 234 course deliveries. Contracting Out Government Procurement Functions: An Analysis (NPS-CM-07-105), E

  19. SSM-based electrophysiology.

    PubMed

    Schulz, Patrick; Garcia-Celma, Juan J; Fendler, Klaus

    2008-10-01

    An assay technique for the electrical characterization of electrogenic transport proteins on solid supported membranes is presented. Membrane vesicles, proteoliposomes or membrane fragments containing the transporter are adsorbed to the solid supported membrane and are activated by providing a substrate or a ligand via a rapid solution exchange. This technique opens up new possibilities where conventional electrophysiology fails like transporters or ion channels from bacteria and from intracellular compartments. Its rugged design and potential for automation make it suitable for drug screening.

  20. Contract Research Organizations (CROs) in China: integrating Chinese research and development capabilities for global drug innovation.

    PubMed

    Shi, Yun-Zhen; Hu, Hao; Wang, Chunming

    2014-11-19

    The significance of R&D capabilities of China has become increasingly important as an emerging force in the context of globalization of pharmaceutical research and development (R&D). While China has prospered in its R&D capability in the past decade, how to integrate the rising pharmaceutical R&D capability of China into the global development chain for innovative drugs remains challenging. For many multinational corporations and research organizations overseas, their attempt to integrate China's pharmaceutical R&D capabilities into their own is always hindered by policy constraints and reluctance of local universities and pharmaceutical firms. In light of the situation, contract research organizations (CROs) in China have made great innovation in value proposition, value chain and value networking to be at a unique position to facilitate global and local R&D integration. Chinese CROs are now being considered as the essentially important and highly versatile integrator of local R&D capability for global drug discovery and innovation.

  1. Clinical and electrophysiological features of post-traumatic Guillain-Barré syndrome.

    PubMed

    Li, Xiaowen; Xiao, Jinting; Ding, Yanan; Xu, Jing; Li, Chuanxia; He, Yating; Zhai, Hui; Xie, Bingdi; Hao, Junwei

    2017-07-27

    Post-traumatic Guillain-Barré syndrome (GBS) is a rarely described potentially life-threatening cause of weakness. We sought to elucidate the clinical features and electrophysiological patterns of post-traumatic GBS as an aid to diagnosis. We retrospectively studied six patients diagnosed with post-traumatic GBS between 2014 and 2016 at Tianjin Medical University General Hospital, China. Clinical features, serum analysis, lumbar puncture results, electrophysiological examinations, and prognosis were assessed. All six patients had different degrees of muscular atrophy at nadir and in two, respiratory muscles were involved. Five also had damaged cranial nerves and four of these had serum antibodies against gangliosides. The most common electrophysiological findings were relatively normal distal latency, prominent reduction of compound muscle action potential amplitude, and absence of F-waves, which are consistent with an axonal form of GBS. It is often overlooked that GBS can be triggered by non-infectious factors such as trauma and its short-term prognosis is poor. Therefore, it is important to analyze the clinical and electrophysiological features of GBS after trauma. Here we have shown that electrophysiological evaluations are helpful for diagnosing post-traumatic GBS. Early diagnosis may support appropriate treatment to help prevent morbidity and improve prognosis.

  2. [Negative symptoms of schizophrenia: from electrophysiology to electrotherapy].

    PubMed

    Micoulaud Franchi, J-A; Quiles, C; Belzeaux, R; Adida, M; Azorin, J-M

    2015-12-01

    The aim of this review of the literature is to summarize the state of the knowledge concerning the relationship between negative symptoms in schizophrenia, electrophysiology and electrotherapy. The scientific literature search of international articles was performed during August and September 2015 using the PubMed electronic database. We used the following MeSH terms: "Negative symptoms", "Schizophrenia", "Electrophysiology", "Neurophysiology", "EEG power", "Alpha rhythm", "Transcranial magnetic stimulation", "Transcranial direct current stimulation", "Electroconvulsive therapy", "Neurofeedback", "Vagus Nerve Stimulation", "Deep Brain Stimulation", and "State dependent". Negative symptoms in schizophrenia are associated with altered activity in prefrontal cortex in functional neuroimaging studies. This is in line with electrophysiological measurements that found a change in EEG spectral power in the alpha frequency band over prefrontal brain regions. The notion of functional hypofrontality has led to hypotheses that electrotherapy applied to the prefrontal cortex may be an effective treatment of negative symptoms in schizophrenia. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) were used to increase cortical activity in schizophrenia and achieve a clinical effect on negative symptoms. Three meta-analyses confirmed, with a moderate effect size, that rTMS is an effective treatment option for negative symptoms in schizophrenia. The two subsequently published prospective multicenter studies, however, found opposite results from each other. Two randomized controlled studies suggested that tDCS is an effective treatment option for negative symptoms. There is no study on the efficacy of neurofeedback, vagal nerve stimulation or deep brain stimulation on negative symptoms in schizophrenia. Additional studies are needed to confirm the efficacy of rTMS and tDCS on negative symptoms in schizophrenia. Influencing factors

  3. Children's Electrophysiological Responses to Music.

    ERIC Educational Resources Information Center

    Flohr, John W.; And Others

    This study examined the electrophysiological differences between baseline EEG frequencies and EEG frequencies obtained while listening to music stimuli. The experimental group comprised 22 children, ages 4 to 6 years old, who received special music instruction twice a week for 25 minutes for 7 weeks. The control group received no music…

  4. [Automated processing of electrophysiologic signals].

    PubMed

    Korenevskiĭ, N A; Gubanov, V V

    1995-01-01

    The paper outlines a diagram of a multichannel analyzer of electrophysiological signals while are significantly non-stationary (such as those of electroencephalograms, myograms, etc.), by using a method based on the ranging procedure by the change-over points which may be the points of infection, impaired locality, minima, maxima, discontinuity, etc.

  5. Electrophysiology and metabolism of caveolin-3 overexpressing mice

    PubMed Central

    Schilling, Jan M.; Horikawa, Yousuke T.; Zemljic-Harpf, Alice E.; Vincent, Kevin P.; Tyan, Leonid; Yu, Judith K.; McCulloch, Andrew D.; Balijepalli, Ravi C.; Patel, Hemal H.; Roth, David M.

    2017-01-01

    Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: 1) ECG telemetry recordings at baseline and during pharmacological interventions, 2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and 3) baseline metabolism in Cav-3 OE and transgene negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. Expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, and heat generation, feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection. PMID:27023865

  6. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  7. Contract Design: Financial Options and Risk

    PubMed Central

    Amelung, Volker E.; Juhnke, Christin

    2018-01-01

    Introduction: Integrated care systems as well as accountable care organisations (ACOs) in the US and similar concepts in other countries are advocated as an effective method of improving the performance of healthcare systems. These systems outline a payment and care delivery model that intends to tie provider reimbursements to predefined quality metrics. By this the total costs of care shall be reduced. When designing healthcare options contractors are faced with a variety of financial options. The costs of market utilisation are highly relevant for the conception of healthcare contracts; furthermore contract-specific investments are an obstacle to the efficient operation of ACOs. Methods: A comprehensive literature review on methods of designing contracts in Integrated Care was conducted. This article is the second in a row of three that are all published in this issue and contribute to a specific issue in designing healthcare contracts. The first dealt with the organisation of contracts and information asymmetries, while part 3 concludes with the question of risk management and evaluation. The specific research question of this second article focusses on the financial options and reimbursement schemes that are available to define healthcare contracts. Results: A healthcare contract is a relational contract, which determines the level of reimbursement, the scope of services and the quality between service providers and payers, taking account of the risks relating to population and performance. A relational contract is an agreement based upon assumption of a longer timeframe. A major obstacle to the practical implementation of healthcare contracts is the prognosis of the inflows and outflows due to the actuarial risks of the insured population. Financing conditions and reimbursement arrangements that are based on a prospectively determined fixed price, have a significant drawback: it is very difficult to take the differences in health status and the utilisation of

  8. Contract Design: Financial Options and Risk.

    PubMed

    Mühlbacher, Axel C; Amelung, Volker E; Juhnke, Christin

    2018-01-12

    Integrated care systems as well as accountable care organisations (ACOs) in the US and similar concepts in other countries are advocated as an effective method of improving the performance of healthcare systems. These systems outline a payment and care delivery model that intends to tie provider reimbursements to predefined quality metrics. By this the total costs of care shall be reduced. When designing healthcare options contractors are faced with a variety of financial options. The costs of market utilisation are highly relevant for the conception of healthcare contracts; furthermore contract-specific investments are an obstacle to the efficient operation of ACOs. A comprehensive literature review on methods of designing contracts in Integrated Care was conducted. This article is the second in a row of three that are all published in this issue and contribute to a specific issue in designing healthcare contracts. The first dealt with the organisation of contracts and information asymmetries, while part 3 concludes with the question of risk management and evaluation. The specific research question of this second article focusses on the financial options and reimbursement schemes that are available to define healthcare contracts. A healthcare contract is a relational contract, which determines the level of reimbursement, the scope of services and the quality between service providers and payers, taking account of the risks relating to population and performance. A relational contract is an agreement based upon assumption of a longer timeframe. A major obstacle to the practical implementation of healthcare contracts is the prognosis of the inflows and outflows due to the actuarial risks of the insured population. Financing conditions and reimbursement arrangements that are based on a prospectively determined fixed price, have a significant drawback: it is very difficult to take the differences in health status and the utilisation of distinct insured clientele

  9. NeuroElectro: a window to the world's neuron electrophysiology data

    PubMed Central

    Tripathy, Shreejoy J.; Savitskaya, Judith; Burton, Shawn D.; Urban, Nathaniel N.; Gerkin, Richard C.

    2014-01-01

    The behavior of neural circuits is determined largely by the electrophysiological properties of the neurons they contain. Understanding the relationships of these properties requires the ability to first identify and catalog each property. However, information about such properties is largely locked away in decades of closed-access journal articles with heterogeneous conventions for reporting results, making it difficult to utilize the underlying data. We solve this problem through the NeuroElectro project: a Python library, RESTful API, and web application (at http://neuroelectro.org) for the extraction, visualization, and summarization of published data on neurons' electrophysiological properties. Information is organized both by neuron type (using neuron definitions provided by NeuroLex) and by electrophysiological property (using a newly developed ontology). We describe the techniques and challenges associated with the automated extraction of tabular electrophysiological data and methodological metadata from journal articles. We further discuss strategies for how to best combine, normalize and organize data across these heterogeneous sources. NeuroElectro is a valuable resource for experimental physiologists attempting to supplement their own data, for computational modelers looking to constrain their model parameters, and for theoreticians searching for undiscovered relationships among neurons and their properties. PMID:24808858

  10. Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production.

    PubMed

    Wirth, Miranka; Rahman, Rasha Abdel; Kuenecke, Janina; Koenig, Thomas; Horn, Helge; Sommer, Werner; Dierks, Thomas

    2011-12-01

    Excitatory anodal transcranial direct current stimulation (A-tDCS) over the left dorsal prefrontal cortex (DPFC) has been shown to improve language production. The present study examined neurophysiological underpinnings of this effect. In a single-blinded within-subject design, we traced effects of A-tDCS compared to sham stimulation over the left DPFC using electrophysiological and behavioural correlates during overt picture naming. Online effects were examined during A-tDCS by employing the semantic interference (SI-)Effect - a marker that denotes the functional integrity of the language system. The behavioural SI-Effect was found to be reduced, whereas the electrophysiological SI-Effect was enhanced over left compared to right temporal scalp-electrode sites. This modulation is suggested to reflect a superior tuning of neural responses within language-related generators. After -(offline) effects of A-tDCS were detected in the delta frequency band, a marker of neural inhibition. After A-tDCS there was a reduction in delta activity during picture naming and the resting state, interpreted to indicate neural disinhibition. Together, these findings demonstrate electrophysiological modulations induced by A-tDCS of the left DPFC. They suggest that A-tDCS is capable of enhancing neural processes during and after application. The present functional and oscillatory neural markers could detect positive effects of prefrontal A-tDCS, which could be of use in the neuro-rehabilitation of frontal language functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Anatomical and Electrophysiological Clustering of Superficial Medial Entorhinal Cortex Interneurons

    PubMed Central

    2017-01-01

    Abstract Local GABAergic interneurons regulate the activity of spatially-modulated principal cells in the medial entorhinal cortex (MEC), mediating stellate-to-stellate connectivity and possibly enabling grid formation via recurrent inhibitory circuitry. Despite the important role interneurons seem to play in the MEC cortical circuit, the combination of low cell counts and functional diversity has made systematic electrophysiological studies of these neurons difficult. For these reasons, there remains a paucity of knowledge on the electrophysiological profiles of superficial MEC interneuron populations. Taking advantage of glutamic acid decarboxylase 2 (GAD2)-IRES-tdTomato and PV-tdTomato transgenic mice, we targeted GABAergic interneurons for whole-cell patch-clamp recordings and characterized their passive membrane features, basic input/output properties and action potential (AP) shape. These electrophysiologically characterized cells were then anatomically reconstructed, with emphasis on axonal projections and pial depth. K-means clustering of interneuron anatomical and electrophysiological data optimally classified a population of 106 interneurons into four distinct clusters. The first cluster is comprised of layer 2- and 3-projecting, slow-firing interneurons. The second cluster is comprised largely of PV+ fast-firing interneurons that project mainly to layers 2 and 3. The third cluster contains layer 1- and 2-projecting interneurons, and the fourth cluster is made up of layer 1-projecting horizontal interneurons. These results, among others, will provide greater understanding of the electrophysiological characteristics of MEC interneurons, help guide future in vivo studies, and may aid in uncovering the mechanism of grid field formation. PMID:29085901

  12. Electrophysiological evidence for Audio-visuo-lingual speech integration.

    PubMed

    Treille, Avril; Vilain, Coriandre; Schwartz, Jean-Luc; Hueber, Thomas; Sato, Marc

    2018-01-31

    Recent neurophysiological studies demonstrate that audio-visual speech integration partly operates through temporal expectations and speech-specific predictions. From these results, one common view is that the binding of auditory and visual, lipread, speech cues relies on their joint probability and prior associative audio-visual experience. The present EEG study examined whether visual tongue movements integrate with relevant speech sounds, despite little associative audio-visual experience between the two modalities. A second objective was to determine possible similarities and differences of audio-visual speech integration between unusual audio-visuo-lingual and classical audio-visuo-labial modalities. To this aim, participants were presented with auditory, visual, and audio-visual isolated syllables, with the visual presentation related to either a sagittal view of the tongue movements or a facial view of the lip movements of a speaker, with lingual and facial movements previously recorded by an ultrasound imaging system and a video camera. In line with previous EEG studies, our results revealed an amplitude decrease and a latency facilitation of P2 auditory evoked potentials in both audio-visual-lingual and audio-visuo-labial conditions compared to the sum of unimodal conditions. These results argue against the view that auditory and visual speech cues solely integrate based on prior associative audio-visual perceptual experience. Rather, they suggest that dynamic and phonetic informational cues are sharable across sensory modalities, possibly through a cross-modal transfer of implicit articulatory motor knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electrophysiological studies of the nervous system

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1972-01-01

    The electrophysiology of the nervous system is studied using cats and human subjects. Data cover effects of chlorolose on evoked potential, the evoked resistance shift that accompanies evoked potentials, and the relationship of eye movements to potentials aroused by visual stimulation.

  14. Electrophysiological, vasoactive, and gastromodulatory effects of stevia in healthy Wistar rats.

    PubMed

    Yesmine, Saquiba; Connolly, Kylie; Hill, Nicholas; Coulson, Fiona R; Fenning, Andrew S

    2013-07-01

    Antihypertensive and antidiabetic effects of stevia, Stevia rebaudiana (Asteraceae), have been demonstrated in several human and animal models. The current study aims to define stevia's role in modifying the electrophysiological and mechanical properties of cardiomyocytes, blood vessels, and gastrointestinal smooth muscle. Tissues from thoracic aorta, mesenteric arteries, ileum, and left ventricular papillary muscles were excised from 8-week-old healthy Wistar rats. The effects of stevia (1 × 10-9 M to 1 × 10-4 M) were measured on these tissues. Stevia's effects in the presence of verapamil, 4-AP, and L-NAME were also assessed. In cardiomyocytes, stevia attenuated the force of contraction, decreased the average peak amplitude, and shortened the repolarisation phase of action potential - repolarisation phase of action potential20 by 25 %, repolarisation phase of action potential50 by 34 %, and repolarisation phase of action potential90 by 36 %. Stevia caused relaxation of aortic tissues which was significantly potentiated in the presence of verapamil. In mesenteric arteries, incubation with L-NAME failed to block stevia-induced relaxation indicating the mechanism of action may not be fully via nitric oxide-dependent pathways. Stevia concentration-dependently reduced electrical field stimulated and carbachol-induced contractions in the isolated ileum. This study is the first to show the effectiveness of stevia in reducing cardiac action potential duration at 20 %, 50 %, and 90 % of repolarisation. Stevia also showed beneficial modulatory effects on cardiovascular and gastrointestinal tissues via calcium channel antagonism, activation of the M2 muscarinic receptor function, and enhanced nitric oxide release. Georg Thieme Verlag KG Stuttgart · New York.

  15. Reentrant Information Flow in Electrophysiological Rat Default Mode Network.

    PubMed

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.

  16. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    NASA Astrophysics Data System (ADS)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  17. A Motivation Contract Model of Employee Appraisal.

    ERIC Educational Resources Information Center

    Glenn, Robert B.

    The purpose of this paper is to develop a process model for identification and assessment of employee job performance, through motivation contracting. The model integrated various components of expectancy theories of motivation and performance contracting and is based on humanistic assumptions about the nature of people. More specifically, the…

  18. [Multifocal visual electrophysiology in visual function evaluation].

    PubMed

    Peng, Shu-Ya; Chen, Jie-Min; Liu, Rui-Jue; Zhou, Shu; Liu, Dong-Mei; Xia, Wen-Tao

    2013-08-01

    Multifocal visual electrophysiology, consisting of multifocal electroretinography (mfERG) and multifocal visual evoked potential (mfVEP), can objectively evaluate retina function and retina-cortical conduction pathway status by stimulating many local retinal regions and obtaining each local response simultaneously. Having many advantages such as short testing time and high sensitivity, it has been widely used in clinical ophthalmology, especially in the diagnosis of retinal disease and glaucoma. It is a new objective technique in clinical forensic medicine involving visual function evaluation of ocular trauma in particular. This article summarizes the way of stimulation, the position of electrodes, the way of analysis, the visual function evaluation of mfERG and mfVEP, and discussed the value of multifocal visual electrophysiology in forensic medicine.

  19. On the electrophysiology of aesthetic processing.

    PubMed

    Jacobsen, Thomas

    2013-01-01

    One important method that can be applied for gaining an understanding of the underpinning of aesthetics in the brain is that of electrophysiology. Cognitive electrophysiology, in particular, allows the identification of components in a mental processing architecture. The present chapter reviews findings in the neurocognitive psychology of aesthetics, or neuroaesthetics, that have been obtained with the method of event-related brain potentials, as derived from the human electroencephalogram. The cognitive-perceptual bases as well as affective substages of aesthetic processing have been investigated and those are described here. The event-related potential method allows for the identification of mental processing modes in cognitive and aesthetic processing. It also provides an assessment of the mental chronometry of cognitive and affective stages in aesthetic appreciation. As the work described here shows, distinct processes in the brain are engaged in aesthetic judgments. © 2013 Elsevier B.V. All rights reserved.

  20. Re-visiting the electrophysiology of language.

    PubMed

    Obleser, Jonas

    2015-09-01

    This editorial accompanies a special issue of Brain and Language re-visiting old themes and new leads in the electrophysiology of language. The event-related potential (ERP) as a series of characteristic deflections ("components") over time and their distribution on the scalp has been exploited by speech and language researchers over decades to find support for diverse psycholinguistic models. Fortunately, methodological and statistical advances have allowed human neuroscience to move beyond some of the limitations imposed when looking at the ERP only. Most importantly, we currently witness a refined and refreshed look at "event-related" (in the literal sense) brain activity that relates itself more closely to the actual neurobiology of speech and language processes. It is this imminent change in handling and interpreting electrophysiological data of speech and language experiments that this special issue intends to capture. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model

    PubMed Central

    Negroni, Jorge A.; Morotti, Stefano; Lascano, Elena C.; Gomes, Aldrin V.; Grandi, Eleonora; Puglisi, José L; Bers, Donald M.

    2015-01-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca2+ transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca2+ handling, Ca2+, K+ and Cl− currents, and Na+/K+-ATPase properties were included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca2+ sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca2+ transient amplitude and kinetics. It also replicated the behavior of force-Ca2+, release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca2+ channels or phospholamban limited Ca2+ transients and contractile responses in parallel, while blocking phospholemman and K+ channel (IKs) effects enhanced Ca2+ and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca2+ (due to greater Ca2+ buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca2+ transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa vs. XBcy have greater impact on isometric

  2. Electrophysiological examination and high frequency ultrasonography for diagnosis of radial nerve torsion and compression

    PubMed Central

    Shi, Miao; Qi, Hengtao; Ding, Hongyu; Chen, Feng; Xin, Zhaoqin; Zhao, Qinghua; Guan, Shibing; Shi, Hao

    2018-01-01

    Abstract This study aims to evaluate the value of electrophysiological examination and high frequency ultrasonography in the differential diagnosis of radial nerve torsion and radial nerve compression. Patients with radial nerve torsion (n = 14) and radial nerve compression (n = 14) were enrolled. The results of neurophysiological and high frequency ultrasonography were compared. Electrophysiological examination and high-frequency ultrasonography had a high diagnostic rate for both diseases with consistent results. Of the 28 patients, 23 were positive for electrophysiological examination, showing decreased amplitude and decreased conduction velocity of radial nerve; however, electrophysiological examination cannot distinguish torsion from compression. A total of 27 cases showed positive in ultrasound examinations among all 28 cases. On ultrasound images, the nerve was thinned at torsion site whereas thickened at the distal ends of torsion. The diameter and cross-sectional area of torsion or compression determined the nerve damage, and ultrasound could locate the nerve injury site and measure the length of the nerve. Electrophysiological examination and high-frequency ultrasonography can diagnose radial neuropathy, with electrophysiological examination reflecting the neurological function, and high-frequency ultrasound differentiating nerve torsion from compression. PMID:29480857

  3. Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields

    PubMed Central

    Pastoll, Hugh; Ramsden, Helen L.; Nolan, Matthew F.

    2012-01-01

    The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to representation of space is not yet clear. Here, we review the ionic conductances, synaptic, and excitable properties of stellate cells, and examine their implications for models of grid firing fields. We discuss why existing data are inconsistent with models of grid fields that require stellate cells to generate periodic oscillations. An alternative possibility is that the intrinsic electrophysiological properties of stellate cells are tuned specifically to control integration of synaptic input. We highlight recent evidence that the dorsal-ventral organization of synaptic integration by stellate cells, through differences in currents mediated by HCN and leak potassium channels, influences the corresponding organization of grid fields. Because accurate cellular data will be important for distinguishing mechanisms for generation of grid fields, we introduce new data comparing properties measured with whole-cell and perforated patch-clamp recordings. We find that clustered patterns of action potential firing and the action potential after-hyperpolarization (AHP) are particularly sensitive to recording condition. Nevertheless, with both methods, these properties, resting membrane properties and resonance follow a dorsal-ventral organization. Further investigation of the molecular basis for synaptic integration by stellate cells will be important for understanding mechanisms for generation of grid fields. PMID:22536175

  4. Correlation of nerve ultrasound, electrophysiological and clinical findings in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Kerasnoudis, A; Pitarokoili, K; Behrendt, V; Gold, R; Yoon, M-S

    2015-01-01

    We present the nerve ultrasound findings in chronic inflammatory demyelinating polyneuropathy (CIDP) and examine their correlation with electrophysiology and functional disability. A total of 75 healthy controls and 48 CIDP patients underwent clinical, sonographic and electrophysiological evaluation a mean of 3.9 years(SD+/-2.7) after disease onset. Nerve ultrasound revealed statistically significant higher cross-sectional area (CSA) values of the median (P<.0001), ulnar (P<.0001), radial (P<.0001), tibial (P<.0001), fibular nerve(P<.0001) in most of the anatomic sites and brachial plexus (supraclavicular, P<.0001;interscalene space, P = .0118),when compared to controls. The electroneurography documented signs of permanent axonal loss in the majority of peripheral nerves. A correlation between sonographic and electrophysiological findings was found only between the motor conduction velocity and CSA of the tibial nerve at the ankle (r = -.451, P = .007). Neither nerve sonography nor electrophysiology correlated with functional disability. The CSA of the median nerve in carpal tunnel and the ulnar nerve in Guyon's canal correlated with disease duration (P = .036, P = .027 respectively). CIDP seems to show inhomogenous CSA enlargement in brachial plexus and peripheral nerves, with weak correlation to electrophysiological findings. Neither nerve sonography nor electrophysiology correlated with functional disability in CIDP patients. Multicenter, prospective studies are required to proof the applicability and diagnostic values of these findings. Copyright © 2014 by the American Society of Neuroimaging.

  5. A highly versatile and easily configurable system for plant electrophysiology.

    PubMed

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.

  6. Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.

    2015-01-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948

  7. Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.

    PubMed

    Stephens, D N; Cannata, J; Liu, Ruibin; Zhao, Jian Zhong; Shung, K K; Nguyen, Hien; Chia, R; Dentinger, A; Wildes, D; Thomenius, K E; Mahajan, A; Shivkumar, K; Kim, Kang; O'Donnell, M; Nikoozadeh, A; Oralkan, O; Khuri-Yakub, P T; Sahn, D J

    2008-07-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters' ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.

  8. Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording.

    PubMed

    Jang, Kyung-In; Jung, Han Na; Lee, Jung Woo; Xu, Sheng; Liu, Yu Hao; Ma, Yinji; Jeong, Jae-Woong; Song, Young Min; Kim, Jeonghyun; Kim, Bong Hun; Banks, Anthony; Kwak, Jean Won; Yang, Yiyuan; Shi, Dawei; Wei, Zijun; Feng, Xue; Paik, Ungyu; Huang, Yonggang; Ghaffari, Roozbeh; Rogers, John A

    2016-10-25

    This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.

  9. Retinal dysfunction and refractive errors: an electrophysiological study of children

    PubMed Central

    Flitcroft, D I; Adams, G G W; Robson, A G; Holder, G E

    2005-01-01

    Aims: To evaluate the relation between refractive error and electrophysiological retinal abnormalities in children referred for investigation of reduced vision. Methods: The study group comprised 123 consecutive patients referred over a 14 month period from the paediatric service of Moorfields Eye Hospital for electrophysiological investigation of reduced vision. Subjects were divided into five refractive categories according to their spectacle correction: high myopia (⩽−6D), low myopia (>−6D and ⩽−0.75D), emmetropia (>−0.75 and <1.5D), low hyperopia (⩾1.5 and <6D), and high hyperopia (⩾6D). Patients with a specific diagnosis at the time of electrophysiological testing were excluded. Only the first member of any one family was included if more than one sibling had been tested. All tests were performed to incorporate ISCEV standards, using gold foil corneal electrodes where possible. In younger patients skin electrodes and an abbreviated protocol were employed. Results: The mean age of patients was 7.1 years with an overall incidence of abnormal electrophysiological findings of 29.3%. The incidence of abnormality was higher in high ametropes (13/25, 52%) compared to the other groups (23/98, 23.5%). This difference was statistically significant (χ2 test, p = 0.005). There was also a significant association between high astigmatism (>1.5D) and ERG abnormalities (18/35 with high astigmatism v 20/88 without, χ2 test, p = 0.002). There was no significant variation in frequency of abnormalities between low myopes, emmetropes, and low hyperopes. The rate of abnormalities was very similar in both high myopes (8/15) and high hyperopes (5/10). Conclusions: High ametropia and astigmatism in children being investigated for poor vision are associated with a higher rate of retinal electrophysiological abnormalities. An increased rate of refractive errors in the presence of retinal pathology is consistent with the hypothesis that the retina is involved in

  10. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability

    PubMed Central

    Gagnon-Turcotte, Gabriel; Avakh Kisomi, Alireza; Ameli, Reza; Dufresne Camaro, Charles-Olivier; LeChasseur, Yoan; Néron, Jean-Luc; Brule Bareil, Paul; Fortier, Paul; Bories, Cyril; de Koninck, Yves; Gosselin, Benoit

    2015-01-01

    We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm2 at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals. PMID:26371006

  11. Presymptomatic electrophysiological tests predict clinical onset and survival in SOD1(G93A) ALS mice.

    PubMed

    Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2014-12-01

    We assessed the predictive value of electrophysiological tests as a marker of clinical disease onset and survival in superoxide-dismutase 1 (SOD1)(G93A) mice. We evaluated the accuracy of electrophysiological tests in differentiating transgenic versus wild-type mice. We made a correlation analysis of electrophysiological parameters and the onset of symptoms, survival, and number of spinal motoneurons. Presymptomatic electrophysiological tests show great accuracy in differentiating transgenic versus wild-type mice, with the most sensitive parameter being the tibialis anterior compound muscle action potential (CMAP) amplitude. The CMAP amplitude at age 10 weeks correlated significantly with clinical disease onset and survival. Electrophysiological tests increased their survival prediction accuracy when evaluated at later stages of the disease and also predicted the amount of lumbar spinal motoneuron preservation. Electrophysiological tests predict clinical disease onset, survival, and spinal motoneuron preservation in SOD1(G93A) mice. This is a methodological improvement for preclinical studies. © 2014 Wiley Periodicals, Inc.

  12. Characterization of electrophysiological propagation by multichannel sensors

    PubMed Central

    Bradshaw, L. Alan; Kim, Juliana H.; Somarajan, Suseela; Richards, William O.; Cheng, Leo K.

    2016-01-01

    Objective The propagation of electrophysiological activity measured by multichannel devices could have significant clinical implications. Gastric slow waves normally propagate along longitudinal paths that are evident in recordings of serosal potentials and transcutaneous magnetic fields. We employed a realistic model of gastric slow wave activity to simulate the transabdominal magnetogastrogram (MGG) recorded in a multichannel biomagnetometer and to determine characteristics of electrophysiological propagation from MGG measurements. Methods Using MGG simulations of slow wave sources in a realistic abdomen (both superficial and deep sources) and in a horizontally-layered volume conductor, we compared two analytic methods (Second Order Blind Identification, SOBI and Surface Current Density, SCD) that allow quantitative characterization of slow wave propagation. We also evaluated the performance of the methods with simulated experimental noise. The methods were also validated in an experimental animal model. Results Mean square errors in position estimates were within 2 cm of the correct position, and average propagation velocities within 2 mm/s of the actual velocities. SOBI propagation analysis outperformed the SCD method for dipoles in the superficial and horizontal layer models with and without additive noise. The SCD method gave better estimates for deep sources, but did not handle additive noise as well as SOBI. Conclusion SOBI-MGG and SCD-MGG were used to quantify slow wave propagation in a realistic abdomen model of gastric electrical activity. Significance These methods could be generalized to any propagating electrophysiological activity detected by multichannel sensor arrays. PMID:26595907

  13. Contracting With the Enemy: The Contracting Officer’s Dilemma

    DTIC Science & Technology

    2015-06-01

    forgery, bribery , etc. Intentionally misusing "Made in America" designation Other offenses indicating a lack of business integrity or honesty that...major risk associated with using local national contractors in contingency environments is the presence of business entities that may directly or...indirectly support adversarial forces. Entering into contracts with enemy-affiliated business entities creates significant contractual and security

  14. Strategies and Lessons-Learned for the Successful Alignment of Contract Cost with the Contract Budget Base (CBB) within the First Year of Contract Award - 13154

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullis, Jay; Rueter, Ken

    2013-07-01

    In order to provide a sound basis and foundation for integrated Project and Contract change management, it is imperative to ensure the alignment of the Negotiated Contract Costs (NCC) with the Contract Budget Base (CBB), where CBB is defined as the Performance Measurement Baseline (PMB) plus Management Reserve (MR). The achievement of this alignment assures customer and contractor agreement on scope, requirements, quantities, schedule and cost, which facilitates the identification of change conditions and ultimate agreement on the value of changes to the NCC and the CBB. Delays in contract/CBB true up/reconciliation can negatively effect measurement of project progress, limitingmore » owner understanding of liability, and may result in increased contract disagreements and potential claims. The Department of Energy Oak Ridge Office of Environmental Management (OR-EM) and URS - CH2M Oak Ridge LLC (UCOR) achieved alignment of the NCC with the CBB within 10 months of UCOR taking over work on the East Tennessee Technology Park (ETTP) cleanup contract by: 1. Managing as a discrete project; 2. Establishing expectations and setting tone of interactions; 3. Using personnel experienced with Federal Acquisition Regulation (FAR); 4. Partnering; 5. Establishing ombudsmen. (authors)« less

  15. Electrogenesis in the lower Metazoa and implications for neuronal integration

    PubMed Central

    Meech, Robert W.

    2015-01-01

    Electrogenic communication appears to have evolved independently in a variety of animal and plant lineages. Considered here are metazoan cells as disparate as the loose three-dimensional parenchyma of glass sponges, the two-dimensional epithelial sheets of hydrozoan jellyfish and the egg cell membranes of the ctenophore Beroe ovata, all of which are capable of generating electrical impulses. Neuronal electrogenesis may have evolved independently in ctenophores and cnidarians but the dearth of electrophysiological data relating to ctenophore nerves means that our attention is focused on the Cnidaria, whose nervous systems have been the subject of extensive study. The aim here is to show how their active and passive neuronal properties interact to give integrated behaviour. Neuronal electrogenesis, goes beyond simply relaying ‘states of excitement’ and utilizes the equivalent of a set of basic electrical ‘apps’ to integrate incoming sensory information with internally generated pacemaker activity. A small number of membrane-based processes make up these analogue applications. Passive components include the decremental spread of current determined by cellular anatomy; active components include ion channels specified by their selectivity and voltage dependence. A recurring theme is the role of inactivating potassium channels in regulating performance. Although different aspects of cnidarian behaviour are controlled by separate neuronal systems, integrated responses and coordinated movements depend on interactions between them. Integrative interactions discussed here include those between feeding and swimming, between tentacle contraction and swimming and between slow and fast swimming in the hydrozoan jellyfish Aglantha digitale. PMID:25696817

  16. Electrophysiological correlates of observational learning in children.

    PubMed

    Rodriguez Buritica, Julia M; Eppinger, Ben; Schuck, Nicolas W; Heekeren, Hauke R; Li, Shu-Chen

    2016-09-01

    Observational learning is an important mechanism for cognitive and social development. However, the neurophysiological mechanisms underlying observational learning in children are not well understood. In this study, we used a probabilistic reward-based observational learning paradigm to compare behavioral and electrophysiological markers of individual and observational reinforcement learning in 8- to 10-year-old children. Specifically, we manipulated the amount of observable information as well as children's similarity in age to the observed person (same-aged child vs. adult) to examine the effects of similarity in age on the integration of observed information in children. We show that the feedback-related negativity (FRN) during individual reinforcement learning reflects the valence of outcomes of own actions. Furthermore, we found that the feedback-related negativity during observational reinforcement learning (oFRN) showed a similar distinction between outcome valences of observed actions. This suggests that the oFRN can serve as a measure of observational learning in middle childhood. Moreover, during observational learning children profited from the additional social information and imitated the choices of their own peers more than those of adults, indicating that children have a tendency to conform more with similar others (e.g. their own peers) compared to dissimilar others (adults). Taken together, our results show that children can benefit from integrating observable information and that oFRN may serve as a measure of observational learning in children. © 2015 John Wiley & Sons Ltd.

  17. Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays.

    PubMed

    Harris, Kate; Aylott, Mike; Cui, Yi; Louttit, James B; McMahon, Nicholas C; Sridhar, Arun

    2013-08-01

    Human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are a potential source to develop assays for predictive electrophysiological safety screening. Published studies show that the relevant physiology and pharmacology exist but does not show the translation between stem cell cardiomyocyte assays and other preclinical safety screening assays, which is crucial for drug discovery and safety scientists and the regulators. Our studies are the first to show the pharmacology of ion channel blockade and compare them with existing functional cardiac electrophysiology studies. Ten compounds (a mixture of pure hERG [E-4031 and Cisapride], hERG and sodium [Flecainide, Mexiletine, Quinidine, and Terfenadine], calcium channel blockers [Nifedipine and Verapamil], and two proprietary compounds [GSK A and B]) were tested, and results from hiPSC-CMs studied on multielectrode arrays (MEA) were compared with other preclincial models and clinical drug concentrations and effects using integrated risk assessment plots. All ion channel blockers produced (1) functional effects on repolarization and depolarization around the IC25 and IC50 values and (2) excessive blockade of hERG and/or blockade of sodium current precipitated arrhythmias. Our MEA data show that hiPSC-CMs demonstrate relevant pharmacology and show excellent correlations to current functional cardiac electrophysiological studies. Based on these results, MEA assays using iPSC-CMs offer a reliable, cost effective, and surrogate to preclinical in vitro testing, in addition to the 3Rs (refine, reduce, and replace animals in research) benefit.

  18. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  19. Electrophysiological Correlates of Observational Learning in Children

    ERIC Educational Resources Information Center

    Rodriguez Buritica, Julia M.; Eppinger, Ben; Schuck, Nicolas W.; Heekeren, Hauke R.; Li, Shu-Chen

    2016-01-01

    Observational learning is an important mechanism for cognitive and social development. However, the neurophysiological mechanisms underlying observational learning in children are not well understood. In this study, we used a probabilistic reward-based observational learning paradigm to compare behavioral and electrophysiological markers of…

  20. Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology

    PubMed Central

    Lee, Claire Shuk-Kwan; Tong, Benjamin Chun-Kit; Cheng, Cecily Wing-Hei; Hung, Harry Chun-Hin; Cheung, King-Ho

    2016-01-01

    Lysosomal calcium (Ca2+) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca2+ signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2’s true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca2+ transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K+ as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation. PMID:26838264

  1. Electrophysiological gap detection thresholds: effects of age and comparison with a behavioral measure.

    PubMed

    Palmer, Shannon B; Musiek, Frank E

    2014-01-01

    Temporal processing ability has been linked to speech understanding ability and older adults often complain of difficulty understanding speech in difficult listening situations. Temporal processing can be evaluated using gap detection procedures. There is some research showing that gap detection can be evaluated using an electrophysiological procedure. However, there is currently no research establishing gap detection threshold using the N1-P2 response. The purposes of the current study were to 1) determine gap detection thresholds in younger and older normal-hearing adults using an electrophysiological measure, 2) compare the electrophysiological gap detection threshold and behavioral gap detection threshold within each group, and 3) investigate the effect of age on each gap detection measure. This study utilized an older adult group and younger adult group to compare performance on an electrophysiological and behavioral gap detection procedure. The subjects in this study were 11 younger, normal-hearing adults (mean = 22 yrs) and 11 older, normal-hearing adults (mean = 64.36 yrs). All subjects completed an adaptive behavioral gap detection procedure in order to determine their behavioral gap detection threshold (BGDT). Subjects also completed an electrophysiologic gap detection procedure to determine their electrophysiologic gap detection threshold (EGDT). Older adults demonstrated significantly larger gap detection thresholds than the younger adults. However, EGDT and BGDT were not significantly different in either group. The mean difference between EGDT and BGDT for all subjects was 0.43 msec. Older adults show poorer gap detection ability when compared to younger adults. However, this study shows that gap detection thresholds can be measured using evoked potential recordings and yield results similar to a behavioral measure. American Academy of Audiology.

  2. Electrophysiological indices of surround suppression in humans

    PubMed Central

    Vanegas, M. Isabel; Blangero, Annabelle

    2014-01-01

    Surround suppression is a well-known example of contextual interaction in visual cortical neurophysiology, whereby the neural response to a stimulus presented within a neuron's classical receptive field is suppressed by surrounding stimuli. Human psychophysical reports present an obvious analog to the effects seen at the single-neuron level: stimuli are perceived as lower-contrast when embedded in a surround. Here we report on a visual paradigm that provides relatively direct, straightforward indices of surround suppression in human electrophysiology, enabling us to reproduce several well-known neurophysiological and psychophysical effects, and to conduct new analyses of temporal trends and retinal location effects. Steady-state visual evoked potentials (SSVEP) elicited by flickering “foreground” stimuli were measured in the context of various static surround patterns. Early visual cortex geometry and retinotopic organization were exploited to enhance SSVEP amplitude. The foreground response was strongly suppressed as a monotonic function of surround contrast. Furthermore, suppression was stronger for surrounds of matching orientation than orthogonally-oriented ones, and stronger at peripheral than foveal locations. These patterns were reproduced in psychophysical reports of perceived contrast, and peripheral electrophysiological suppression effects correlated with psychophysical effects across subjects. Temporal analysis of SSVEP amplitude revealed short-term contrast adaptation effects that caused the foreground signal to either fall or grow over time, depending on the relative contrast of the surround, consistent with stronger adaptation of the suppressive drive. This electrophysiology paradigm has clinical potential in indexing not just visual deficits but possibly gain control deficits expressed more widely in the disordered brain. PMID:25411464

  3. [National registry on cardiac electrophysiology (2010 and 2011)].

    PubMed

    Madeira, Francisco; Oliveira, Mário; Ventura, Miguel; Primo, João; Bonhorst, Daniel; Morais, Carlos

    2013-02-01

    Based on a survey sent to Portuguese centers that perform diagnostic and interventional electrophysiology and/or implant cardioverter-defibrillators (ICDs), the authors analyze the number and type of procedures performed during 2010 and 2011 and compare these data with previous years. In 2011, a total of 2533 diagnostic electrophysiologic procedures were performed, which were followed by ablation in 2013 cases, a steady increase over previous years. The largest share of this increase compared to 2010 was in atrial fibrillation, which is now the second most frequent indication for ablation, after atrioventricular nodal reentrant tachycardia. The total number of ICDs implanted in 2011 was 1084, of which 339 were biventricular (BiV) cardiac resynchronization devices (BiV ICDs). This represents an increase in the total number relative to previous years, 2011 being the first year in which the rate of new ICD implantations in Portugal exceeded 100 per million population. However, compared to 2010, the number of BiV ICDs implanted decreased, despite the recent publication of updated European guidelines on device therapy in heart failure, which clarified and expanded the indications for implantation of these devices. Some comments are made on the current status of cardiac electrophysiology in Portugal and on factors that may influence its development in the coming years. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  4. Intracardiac Echocardiography for Structural Heart and Electrophysiological Interventions.

    PubMed

    Basman, Craig; Parmar, Yuvrajsinh J; Kronzon, Itzhak

    2017-09-06

    With an increasing number of interventional procedures performed for structural heart disease and cardiac arrhythmias each year, echocardiographic guidance is necessary for safe and efficient results. The purpose of this review article is to overview the principles of intracardiac echocardiography (ICE) and describes the peri-interventional role of ICE in a variety of structural heart disease and electrophysiological interventions. Both transthoracic (TTE) and transesophageal echocardiography have limitations. ICE provides the advantage of imaging from within the heart, providing shorter image distances and higher resolution. ICE may be performed without sedation and avoids esophageal intubation as with transesophageal echocardiography (TEE). Limitations of ICE include the need for additional venous access with possibility of vascular complications, potentially higher costs, and a learning curve for new operators. Data supports the use of ICE in guiding device closure of interatrial shunts, transseptal puncture, and electrophysiologic procedures. This paper reviews the more recent reports that ICE may be used for primary guidance or as a supplement to TEE in patients undergoing left atrial appendage (LAA) closure, interatrial shunt closure, transaortic valve implantation (TAVI), percutaneous mitral valve repair (PMVR), paravalvular leak (PVL) closure, aortic interventions, transcatheter pulmonary valve replacement (tPVR), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) closure. ICE imaging technology will continue to expand and help improve structural heart and electrophysiology interventions.

  5. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes.

    PubMed

    Björk, Susann; Ojala, Elina A; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero

    2017-01-01

    Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating

  6. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Björk, Susann; Ojala, Elina A.; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero

    2017-01-01

    Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating

  7. A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes.

    PubMed

    Pandit, Sandeep V; Giles, Wayne R; Demir, Semahat S

    2003-02-01

    Our mathematical model of the rat ventricular myocyte (Pandit et al., 2001) was utilized to explore the ionic mechanism(s) that underlie the altered electrophysiological characteristics associated with the short-term model of streptozotocin-induced, type-I diabetes. The simulations show that the observed reductions in the Ca(2+)-independent transient outward K(+) current (I(t)) and the steady-state outward K(+) current (I(ss)), along with slowed inactivation of the L-type Ca(2+) current (I(CaL)), can result in the prolongation of the action potential duration, a well-known experimental finding. In addition, the model demonstrates that the slowed reactivation kinetics of I(t) in diabetic myocytes can account for the more pronounced rate-dependent action potential duration prolongation in diabetes, and that a decrease in the electrogenic Na(+)-K(+) pump current (I(NaK)) results in a small depolarization in the resting membrane potential (V(rest)). This depolarization reduces the availability of the Na(+) channels (I(Na)), thereby resulting in a slower upstroke (dV/dt(max)) of the diabetic action potential. Additional simulations suggest that a reduction in the magnitude of I(CaL), in combination with impaired sarcoplasmic reticulum uptake can lead to a decreased sarcoplasmic reticulum Ca(2+) load. These factors contribute to characteristic abnormal [Ca(2+)](i) homeostasis (reduced peak systolic value and rate of decay) in myocytes from diabetic animals. In combination, these simulation results provide novel information and integrative insights concerning plausible ionic mechanisms for the observed changes in cardiac repolarization and excitation-contraction coupling in rat ventricular myocytes in the setting of streptozotocin-induced, type-I diabetes.

  8. Laser blood irradiation effect on electrophysiological characteristics of acute coronary syndrome patients

    NASA Astrophysics Data System (ADS)

    Khotiaintsev, Sergei N.; Doger-Guerrero, E.; Glebova, L.; Svirid, V.; Sirenko, Yuri

    1996-11-01

    This paper treats electro-physiological effects of the low- level laser irradiation of blood (LBI). The data presented here are based on the observation of almost 200 patients suffering from the acute disruption of coronary blood circulation, unstable angina pectoris and myocardial infarction. Statistically significant changes of the electro-physiological characteristics were observed in the group of 65 patients, treated by the LBI. In particular, the significant 6 percent extension of the effective refractory period was observed. The electrical situation threshold has increased by 20.6 percent. The significant changes of some other important electro-physiological characteristics were within the range of 5-15 percent. In this paper, the data obtained on the LBI effectiveness are compared also with the results obtained on 94 patients who in addition to the standard anti-angina therapy were treated by the autohaemo- transfusion performed simultaneously with the UV-light irradiation of the transfused blood. The results obtained demonstrate the significant positive effect of the low energy LBI. The electrophysiological data obtained have good correlation with observed anti-arrhythmic effect of the LBI. This is proved by the data obtained on the electro- physiological characteristics of the cardiovascular system and by other clinical data on the experimental and control group of patients. In the course of this research the exact effect of the low level LBI was established. LBI led to the pronounced positive changes in electro-physiological characteristics of the cardiovascular system of the patients, it also led to the pronounced anti-arrhythmic effect.

  9. An electrophysiological approach to the diagnosis of neurogenic dysphagia: implications for botulinum toxin treatment.

    PubMed

    Alfonsi, E; Merlo, I M; Ponzio, M; Montomoli, C; Tassorelli, C; Biancardi, C; Lozza, A; Martignoni, E

    2010-01-01

    Botulinum toxin (BTX) injection into the cricopharyngeal (CP) muscle has been proposed for the treatment of neurogenic dysphagia due to CP hyperactivity. The aim was to determine whether an electrophysiological method exploring oropharyngeal swallowing could guide treatment and discriminate responders from non-responders, based on the association of CP dysfunction with other electrophysiological abnormalities of swallowing. Patients with different neurological disorders were examined: Parkinson disease, progressive supranuclear palsy, multiple system atrophy-Parkinson variant, multiple system atrophy cerebellar variant, stroke, multiple sclerosis and ataxia telangiectasia. All patients presented with clinical dysphagia, and with complete absence of CP muscle inhibition during the hypopharyngeal phase of swallowing. Each patient underwent clinical and electrophysiological investigations before and after treatment with BTX into the CP muscle of one side (15 units of Botox). Clinical and electrophysiological procedures were performed in a blind manner by two different investigators. The following electrophysiological measures were analysed: (1) duration of EMG activity of suprahyoid/submental muscles (SHEMG-D); (2) duration of laryngopharyngeal mechanogram (LPM-D); (3) duration of the inhibition of the CP muscle EMG activity (CPEMG-ID); and (4) interval between onset of EMG activity of suprahyoid/submental muscles and onset of laryngopharyngeal mechanogram (I-SHEMG-LPM). Two months after treatment, 50% of patients showed a significant improvement. Patients with prolonged or reduced SHEMG-D values and prolonged I-SHEMG-LPM values did not respond to BTX. Therefore, values for which BTX had no effect (warning values) were identified. This electrophysiological method can recognise swallowing abnormalities which may affect the outcome of the therapeutic approach to dysphagia with BTX treatment.

  10. Electrophysiological Evaluation of Oropharyngeal Dysphagia in Parkinson’s Disease

    PubMed Central

    Ertekin, Cumhur

    2014-01-01

    Parkinson’s disease (PD) is a chronic, neurodegenerative movement disorder that typically affects elderly patients. Swallowing disorders are highly prevalent in PD and can have grave consequences, including pneumonia, malnutrition, dehydration and mortality. Neurogenic dysphagia in PD can manifest with both overt clinical symptoms or silent dysphagia. Regardless, early diagnosis and objective follow-up of dysphagia in PD is crucial for timely and appropriate care for these patients. In this review, we provide a comprehensive summary of the electrophysiological methods that can be used to objectively evaluate dysphagia in PD. We discuss the electrophysiological abnormalities that can be observed in PD, their clinical correlates and the pathophysiology underlying these findings. PMID:25360228

  11. Fixed-Price Development Contracts: A Historical Perspective

    DTIC Science & Technology

    2012-09-01

    its rival, Boeing, in 1997 ( Boyne , 2002). 36   F-117 Nighthawk In the 1970s, the Air Force expressed a desire to integrate stealth...original cost-reimbursement contract was later changed to a fixed-price incentive contract by Secretary of the Navy John Lehman in response to...inquiry [Memorandum for the Secretary of the Navy]. Washington, DC: Department of the Navy. Boyne , W. (2002). Air warfare: An international

  12. Personal Services Contracts. Is It Time to Lift the Ban

    DTIC Science & Technology

    2016-03-01

    Defense AT&L: March-April 2016 42 Personal Services Contracts Is It Time to Lift the Ban? Steven A. Fasko Fasko is a professor of Contract...Carbondale and has extensive professional experience in both U.S. Army global logistics services and Veterans Administration personal services...integrated offices. One issue has remained unchanged: the risk of creating a de facto personal services contract due to this relationship. Personal

  13. Electrophysiology of Basal Ganglia and Cortex in Models of Parkinson Disease

    PubMed Central

    Ellens, Damien J.; Leventhal, Daniel K.

    2014-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD. PMID:23948994

  14. Capitation: strategies for success with managed care contracts.

    PubMed

    Kuklierus, A

    1997-01-01

    With enrollments in HMOs increasing at double digit rates, independent practice associations, integrated medical groups, hospitals and specialty networks are experiencing a substantial increase in the share of their business paid for through capitation. Experience has shown that once one contract is signed, many are sure to follow. Providers must make sure each contract signed is financially sound for the organization. Then they must be able to manage and monitor contracts long after the ink is dry. This column provides a brief overview ad list of pointers for organizations moving into the managed care arena.

  15. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia.

    PubMed

    Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman

    2017-01-01

    The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001-1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT.

  16. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia

    PubMed Central

    Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman

    2017-01-01

    The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001–1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT. PMID:29184844

  17. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    PubMed

    Bedore, Jake; Martyn, Amanda C; Li, Anson K C; Dolinar, Eric A; McDonald, Ian S; Coupland, Stuart G; Prado, Vania F; Prado, Marco A; Hill, Kathleen A

    2015-01-01

    Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  18. Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas

    2016-04-01

    There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven’t been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries.

  19. Collaboration in Action: Measuring and Improving Contracting Performance in the University of California Contracting Network

    ERIC Educational Resources Information Center

    Tran, Tam; Bowman-Carpio, LeeAnna; Buscher, Nate; Davidson, Pamela; Ford, Jennifer J.; Jenkins, Erick; Kalay, Hillary Noll; Nakazono, Terry; Orescan, Helene; Sak, Rachael; Shin, Irene

    2017-01-01

    In 2013, the University of California, Biomedical Research, Acceleration, Integration, and Development (UC BRAID) convened a regional network of contracting directors from the five University of California (UC) health campuses to: (i) increase collaboration, (ii) operationalize and measure common metrics as a basis for performance improvement…

  20. Contract Audit Followup: Its Impact on Defense Contracting.

    DTIC Science & Technology

    1983-12-01

    NOTES Contract Auditor Disposition of Contract Audit Reports Contracting Officer Independent Role of Contracting Officer Contract Audit Report Overaged...fundamental shift in the relationship between the contracting officer and contract auditor , strengthening the auditor’s role while eroding the...the indepen- .1 ident role of the contracting officer; (2) attracts unneces- sary attention to the contracting officer/ auditor relationship; (3) imposes

  1. Electrophysiological experiments in microgravity: lessons learned and future challenges.

    PubMed

    Wuest, Simon L; Gantenbein, Benjamin; Ille, Fabian; Egli, Marcel

    2018-01-01

    Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.

  2. Behavioral, Modeling, and Electrophysiological Evidence for Supramodality in Human Metacognition.

    PubMed

    Faivre, Nathan; Filevich, Elisa; Solovey, Guillermo; Kühn, Simone; Blanke, Olaf

    2018-01-10

    Human metacognition, or the capacity to introspect on one's own mental states, has been mostly characterized through confidence reports in visual tasks. A pressing question is to what extent results from visual studies generalize to other domains. Answering this question allows determining whether metacognition operates through shared, supramodal mechanisms or through idiosyncratic, modality-specific mechanisms. Here, we report three new lines of evidence for decisional and postdecisional mechanisms arguing for the supramodality of metacognition. First, metacognitive efficiency correlated among auditory, tactile, visual, and audiovisual tasks. Second, confidence in an audiovisual task was best modeled using supramodal formats based on integrated representations of auditory and visual signals. Third, confidence in correct responses involved similar electrophysiological markers for visual and audiovisual tasks that are associated with motor preparation preceding the perceptual judgment. We conclude that the supramodality of metacognition relies on supramodal confidence estimates and decisional signals that are shared across sensory modalities. SIGNIFICANCE STATEMENT Metacognitive monitoring is the capacity to access, report, and regulate one's own mental states. In perception, this allows rating our confidence in what we have seen, heard, or touched. Although metacognitive monitoring can operate on different cognitive domains, we ignore whether it involves a single supramodal mechanism common to multiple cognitive domains or modality-specific mechanisms idiosyncratic to each domain. Here, we bring evidence in favor of the supramodality hypothesis by showing that participants with high metacognitive performance in one modality are likely to perform well in other modalities. Based on computational modeling and electrophysiology, we propose that supramodality can be explained by the existence of supramodal confidence estimates and by the influence of decisional cues on

  3. [Symptomatic sinus dysfunction. A new use of electrophysiology].

    PubMed

    Graux, P; Jacquemart, T; Carlioz, R; Lemaire, N; Dutoit, A; Croccel, L

    1993-06-01

    The authors undertook a prospective electrophysiological study of 950 patients: 53 subjects considered to be "controls" since they were free of any history of syncope or faintness were identified, as well as 39 symptomatic subjects with a strong suspicion of sinus dysfunction, since no other detectable cause of fainting episodes was found by extracardiac investigation, 24 hour ECG nor electrophysiology. Following the creation of a computerised tool enabling not only the entry of indirect tests, processing, averaging of results, printing and memorization, but also assistance in interpretation, several electrophysiological parameters were used: heart rate and existence of sinus arrhythmia, Strauss tests with adjusted data or not, effective nodal refractory period, Guize, Narula and Mandel tests, and an atropine (0.03 mg/kg) test which was performed only in the symptomatic group. These tests were studied by single-variate and correlative analysis to define their normal ranges, their critical values and their dependence or independence. The performance of each test (i.e. its efficiency, and the specificity and sensitivity of each critical value) was measured. Tests found to be most useful (specificity and efficiency > 90%) were as follows: Mandel test = CSRT > or = 534 ms, Narula test = TECASA > or = 339 ms, heart rate < or = 55/min, type II, IIa and chaotic Strauss curve associated with a pathological Guize test. The combination of these tests in this algorithm resulted in an increase in sensitivity to 84%, at the price of a very moderate fall in specificity to 87%.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. It Is Chloride Depletion Alkalosis, Not Contraction Alkalosis

    PubMed Central

    Galla, John H.

    2012-01-01

    Maintenance of metabolic alkalosis generated by chloride depletion is often attributed to volume contraction. In balance and clearance studies in rats and humans, we showed that chloride repletion in the face of persisting alkali loading, volume contraction, and potassium and sodium depletion completely corrects alkalosis by a renal mechanism. Nephron segment studies strongly suggest the corrective response is orchestrated in the collecting duct, which has several transporters integral to acid-base regulation, the most important of which is pendrin, a luminal Cl/HCO3− exchanger. Chloride depletion alkalosis should replace the notion of contraction alkalosis. PMID:22223876

  5. Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system

    PubMed Central

    Zhu, Huanqi; Scharnhorst, Kelsey S.; Stieg, Adam Z.; Gimzewski, James K.; Minami, Itsunari; Nakatsuji, Norio; Nakano, Haruko; Nakano, Atsushi

    2017-01-01

    Stem cell-derived cardiomyocytes provide a promising tool for human developmental biology, regenerative therapies, disease modeling, and drug discovery. As human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type, close monitoring of electrophysiological maturation is critical for their further application to biology and translation. However, to date, electrophysiological analyses of stem cell-derived cardiomyocytes has largely been limited by biologically undefined factors including 3D nature of embryoid body, sera from animals, and the feeder cells isolated from mouse. Large variability in the aforementioned systems leads to uncontrollable and irreproducible results, making conclusive studies difficult. In this report, a chemically-defined differentiation regimen and a monolayer cell culture technique was combined with multielectrode arrays for accurate, real-time, and flexible measurement of electrophysiological parameters in translation-ready human cardiomyocytes. Consistent with their natural counterpart, amplitude and dV/dtmax of field potential progressively increased during the course of maturation. Monolayer culture allowed for the identification of pacemaking cells using the multielectrode array platform and thereby the estimation of conduction velocity, which gradually increased during the differentiation of cardiomyocytes. Thus, the electrophysiological maturation of the human pluripotent stem cell-derived cardiomyocytes in our system recapitulates in vivo development. This system provides a versatile biological tool to analyze human heart development, disease mechanisms, and the efficacy/toxicity of chemicals. PMID:28266620

  6. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time.

    PubMed

    Lüddemann, Helge; Kollmeier, Birger; Riedel, Helmut

    2016-02-01

    Brief deviations of interaural correlation (IAC) can provide valuable cues for detection, segregation and localization of acoustic signals. This study investigated the processing of such "binaural gaps" in continuously running noise (100-2000 Hz), in comparison to silent "monaural gaps", by measuring late auditory evoked potentials (LAEPs) and perceptual thresholds with novel, iteratively optimized stimuli. Mean perceptual binaural gap duration thresholds exhibited a major asymmetry: they were substantially shorter for uncorrelated gaps in correlated and anticorrelated reference noise (1.75 ms and 4.1 ms) than for correlated and anticorrelated gaps in uncorrelated reference noise (26.5 ms and 39.0 ms). The thresholds also showed a minor asymmetry: they were shorter in the positive than in the negative IAC range. The mean behavioral threshold for monaural gaps was 5.5 ms. For all five gap types, the amplitude of LAEP components N1 and P2 increased linearly with the logarithm of gap duration. While perceptual and electrophysiological thresholds matched for monaural gaps, LAEP thresholds were about twice as long as perceptual thresholds for uncorrelated gaps, but half as long for correlated and anticorrelated gaps. Nevertheless, LAEP thresholds showed the same asymmetries as perceptual thresholds. For gap durations below 30 ms, LAEPs were dominated by the processing of the leading edge of a gap. For longer gap durations, in contrast, both the leading and the lagging edge of a gap contributed to the evoked response. Formulae for the equivalent rectangular duration (ERD) of the binaural system's temporal window were derived for three common window shapes. The psychophysical ERD was 68 ms for diotic and about 40 ms for anti- and uncorrelated noise. After a nonlinear Z-transform of the stimulus IAC prior to temporal integration, ERDs were about 10 ms for reference correlations of ±1 and 80 ms for uncorrelated reference. Hence, a physiologically motivated

  7. Quantitative electrophysiological monitoring of anti-histamine drug effects on live cells via reusable sensor platforms.

    PubMed

    Pham Ba, Viet Anh; Cho, Dong-Guk; Kim, Daesan; Yoo, Haneul; Ta, Van-Thao; Hong, Seunghun

    2017-08-15

    We demonstrated the quantitative electrophysiological monitoring of histamine and anti-histamine drug effects on live cells via reusable sensor platforms based on carbon nanotube transistors. This method enabled us to monitor the real-time electrophysiological responses of a single HeLa cell to histamine with different concentrations. The measured electrophysiological responses were attributed to the activity of histamine type 1 receptors on a HeLa cell membrane by histamine. Furthermore, the effects of anti-histamine drugs such as cetirizine or chlorphenamine on the electrophysiological activities of HeLa cells were also evaluated quantitatively. Significantly, we utilized only a single device to monitor the responses of multiple HeLa cells to each drug, which allowed us to quantitatively analyze the antihistamine drug effects on live cells without errors from the device-to-device variation in device characteristics. Such quantitative evaluation capability of our method would promise versatile applications such as drug screening and nanoscale bio sensor researches. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Electrophysiologic monitoring characteristics of the recurrent laryngeal nerve preoperatively paralyzed or invaded with malignancy.

    PubMed

    Kamani, Dipti; Darr, E Ashlie; Randolph, Gregory W

    2013-11-01

    To elucidate electrophysiologic responses of the recurrent laryngeal nerves that were preoperatively paralyzed or invaded by malignancy and to use this information as an added functional parameter for intraoperative management of recurrent laryngeal nerves with malignant invasion. Case series with chart review. Academic, tertiary care center. All consecutive neck surgeries with nerve monitoring performed by senior author (GWR) between December 1995 and January 2007 were reviewed after obtaining Institutional Review Board approval from Massachusetts Eye and Ear Infirmary Human Subjects Committee and the Partners Human Research Committee. Electrophysiologic parameters in all cases with preoperative vocal cord paralysis/paresis, and the recurrent laryngeal nerve invasion by cancer, were studied. Of the 1138 surgeries performed, 25 patients (2.1%) had preoperative vocal cord dysfunction. In patients with preoperative vocal cord dysfunction, recognizable recurrent laryngeal nerve electrophysiologic activity was preserved in over 50% of cases. Malignant invasion of the recurrent laryngeal nerve was found in 22 patients (1.9%). Neural invasion of the recurrent laryngeal nerve was associated with preoperative vocal cord paralysis in only 50% of these patients. In nerves invaded by malignancy, 60% maintained recognizable electrophysiologic activity, which was more commonly present and robust when vocal cord function was preserved. Knowledge of electrophysiologic intraoperative neural monitoring provides additional functional information and, along with preoperative vocal cord function information, aids in constructing decision algorithms regarding intraoperative management of the recurrent laryngeal nerve, in prognosticating postoperative outcomes, and in patient counseling regarding postoperative expectations.

  9. Chronic inflammatory pure sensory polyradiculoneuropathy: a rare CIDP variant with unusual electrophysiology.

    PubMed

    Rajabally, Yusuf A; Wong, Siew L

    2012-03-01

    We describe a patient presenting with progressive upper limb numbness and sensory ataxia of the 4 limbs. Motor nerve conduction studies were completely normal. Sensory electrophysiology showed reduced/absent upper limb sensory action potentials (SAPs). In the lower limbs, SAPs were mostly normal. Sensory conduction velocities were normal. Forearm sensory conduction blocks were present for both median nerves on antidromic testing. The maximal recordable sural SAP was preserved in comparison to maximal recordable radial SAP, consistent with an "abnormal radial normal sural" pattern. Somatosensory evoked potentials were unrecordable for tibial and median nerves. Cerebrospinal fluid protein was raised (0.99 g/L). The patient worsened on oral corticosteroids but subsequently made substantial functional recovery on intravenous immunoglobulins. This case is different to those previously reported of sensory chronic inflammatory demyelinating polyradiculoneuropathy, given its exclusive sensory electrophysiologic presentation, presence of predominant upper limb reduced sensory amplitudes, and detection of sensory conduction blocks. These electrophysiologic features were of paramount importance in establishing diagnosis and effective therapy.

  10. Diffusion Tensor Imaging in Chronic Inflammatory Demyelinating Polyneuropathy: Diagnostic Accuracy and Correlation With Electrophysiology.

    PubMed

    Kronlage, Moritz; Pitarokoili, Kalliopi; Schwarz, Daniel; Godel, Tim; Heiland, Sabine; Yoon, Min-Suk; Bendszus, Martin; Bäumer, Philipp

    2017-11-01

    The aims of this study were to assess diagnostic accuracy of diffusion tensor imaging (DTI) in chronic inflammatory demyelinating polyneuropathy (CIDP), to correlate DTI with electrophysiological parameters, and to evaluate whether radial diffusivity (RD) and axial diffusivity (AD) might serve as specific biomarkers of demyelinating and axonal pathology. This prospective study was approved by the institutional ethics committee, and written informed consent was obtained from all participants. Magnetic resonance neurography of upper and lower extremity nerves (median, ulnar, radial, sciatic, tibial) was performed by single-shot DTI sequences at 3.0 T in 18 patients with a diagnosis of CIDP and 18 healthy controls, matched to age and sex. The scalar readout parameters nerve fractional anisotropy (FA), mean diffusivity (MD), RD, and AD were obtained after manual segmentation and postprocessing and compared between patients and controls. Diagnostic accuracy was assessed by receiver operating characteristic analysis, and cutoff values were calculated by maximizing the Youden index. All patients underwent a complementary electroneurography and correlation of electrophysiological markers and DTI parameters was analyzed and described by Pearson and Spearman coefficients. Nerve FA was decreased to a mean of 0.42 ± 0.08 in patients compared with 0.52 ± 0.04 in healthy controls (P < 0.001). This decrease in FA was a result of an increase of RD (P = 0.02), whereas AD did not differ between the two groups. Of all DTI parameters, FA showed best diagnostic accuracy with a receiver operating characteristic area under the curve of 0.90. Optimal cutoff for an average FA of all analyzed nerves was 0.47, yielding a sensitivity of 0.83 and a specificity of 0.94. Fractional anisotropy and RD correlated strongly with electrophysiological markers of demyelination, whereas AD did not correlate with markers of axonal neuropathy. Diffusion tensor imaging yields valid quantitative biomarkers

  11. Breadboard Amplifier: Building and Using Simple Electrophysiology Equipment.

    PubMed

    Crisp, Kevin M; Lin, Hunter; Prosper, Issa

    2016-01-01

    Electrophysiology is a valuable skill for the neuroscientist, but the learning curve for students can be steep. Here we describe a very simple electromyography (EMG) amplifier that can be built from scratch by students with no electronics experience in about 30 minutes, making it ideal for incorporating into a laboratory activity. With few parts and no adjustments except the gain, students can begin physiology experiments quickly while having the satisfaction of having built the equipment themselves. Because the output of the circuit goes to a computer sound card, students can listen to electrophysiological activity as they see it on the computer screen, a feature many of our students greatly appreciated. Various applications are discussed, including dual channel recording, using streaming media platforms with remote lab partners and acquiring data in the field on a smart phone. Our students reported that they enjoyed being able to build a working device and using it to record from their own muscles.

  12. Breadboard Amplifier: Building and Using Simple Electrophysiology Equipment

    PubMed Central

    Crisp, Kevin M.; Lin, Hunter; Prosper, Issa

    2016-01-01

    Electrophysiology is a valuable skill for the neuroscientist, but the learning curve for students can be steep. Here we describe a very simple electromyography (EMG) amplifier that can be built from scratch by students with no electronics experience in about 30 minutes, making it ideal for incorporating into a laboratory activity. With few parts and no adjustments except the gain, students can begin physiology experiments quickly while having the satisfaction of having built the equipment themselves. Because the output of the circuit goes to a computer sound card, students can listen to electrophysiological activity as they see it on the computer screen, a feature many of our students greatly appreciated. Various applications are discussed, including dual channel recording, using streaming media platforms with remote lab partners and acquiring data in the field on a smart phone. Our students reported that they enjoyed being able to build a working device and using it to record from their own muscles. PMID:27385921

  13. Peripheral Neuropathy – Clinical and Electrophysiological Considerations

    PubMed Central

    Chung, Tae; Prasad, Kalpana; Lloyd, Thomas E.

    2013-01-01

    This article is a primer on the pathophysiology and clinical evaluation of peripheral neuropathy for the radiologist. Magnetic resonance neurography (MRN) has utility in the diagnosis of many focal peripheral nerve lesions. When combined with history, examination, electrophysiology, and laboratory data, future advancements in high-field MRN may play an increasingly important role in the evaluation of patients with peripheral neuropathy. PMID:24210312

  14. Esophageal Epithelial Resistance and Lower Esophageal Sphincter Muscle Contraction Increase in a Chronic Diabetic Rabbit Model.

    PubMed

    Capanoglu, Doga; Coskunsever, Deniz; Olukman, Murat; Ülker, Sibel; Bor, Serhat

    2016-07-01

    Esophageal motility disorders and possibly gastroesophageal reflux disease are common in patients with diabetes mellitus. We aimed to investigate both the electrophysiological characteristics of the esophageal epithelium and the contractility of the lower esophageal sphincter (LES) muscle in alloxane-induced diabetic rabbits. Electrophysiological properties were measured using an Ussing chamber method. An acid-pepsin model was employed with pH 1.7 or weakly acidic (pH 4) Ringer and/or pepsin. Smooth muscle strips of the LES were mounted in an isolated organ bath. Contractile responses to an electrical field stimulation and cumulative concentrations of acetylcholine were recorded. Contractility of the muscle strips were tested in the presence of Rho-kinase inhibitor (Y-27632) and nonspecific nitric oxide inhibitor (L-NAME). The resistance of diabetic tissue perfused in the pH 1.7 Ringer decreased 17 %; pepsin addition decreased it by 49 %. The same concentrations caused a more distinct loss of resistance in the control tissues (22 and 76 %, p < 0.05). The perfusion of tissues in increased concentrations of luminal and serosal glucose did not change the tissue resistance and voltage. Diabetes significantly increased both the electrical field stimulation and acetylcholine-induced contractions in the LES muscle strips (p < 0.01). Incubation with Y-27632 significantly decreased the acetylcholine-induced contractions in a concentration-dependent manner (p < 0.01). The acid-pepsin model in the diabetic rabbit esophageal tissue had less injury compared with the control. The diabetic rabbit LES muscle had higher contractility, possibly because of the activation of the Rho-Rhokinase pathway. Our results show that in a chronic diabetic rabbit model the esophagus resists reflux by activating mechanisms of mucosal defense and increasing the contractility of the LES.

  15. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    PubMed

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  16. Modulation of Electrophysiology by Transcranial Direct Current Stimulation in Psychiatric Disorders: A Systematic Review.

    PubMed

    Kim, Minah; Kwak, Yoo Bin; Lee, Tae Young; Kwon, Jun Soo

    2018-04-27

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique increasingly used to relieve symptoms of psychiatric disorders. Electrophysiologic markers, such as electroencephalography (EEG) and event-related potentials (ERP), have high temporal resolution sensitive to detect plastic changes of the brain associated with symptomatic improvement following tDCS application. We performed systematic review to identify electrophysiological markers that reflect tDCS effects on plastic brain changes in psychiatric disorders. A total of 638 studies were identified by searching PubMed, Embase, psychINFPO. Of these, 21 full-text articles were assessed eligible and included in the review. Although the reviewed studies were heterogeneous in their choices of tDCS protocols, targeted electrophysiological markers, and disease entities, their results strongly support EEG/ERPs to sensitively reflect plastic brain changes and the associated symptomatic improvement following tDCS. EEG/ERPs may serve a potent tool in revealing the mechanisms underlying psychiatric symptoms, as well as in localizing the brain area targeted for stimulation. Future studies in each disease entities employing consistent tDCS protocols and electrophysiological markers would be necessary in order to substantiate and further elaborate the findings of studies included in the present systematic review.

  17. Integration of three echelon supply chain (supplier-manufacturer-distributor-drop shipper) with permissible delay in payment and penalty contract

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. F.; Suparno

    2018-04-01

    Supply Chain Management (SCM) has to be considered in the company in order to improve the sustainability and competitiveness. SCM executed to integrating any companies on the supply chain in a way of coordinating the flow of goods, information, and financial. Permissible delay in payment is one of the coordination ways with allowing the costumers delay the payments to a vendor in some certain periods without any interest charges. In the supply chain system, drop-shipping player already familiar in this era. In drop-shipping internet retailing, the supplier will hold supplies and also carry out physical distribution service on behalf of drop-shipper. Drop-shipper will just focus on selling, on the other hand, their supplier will be responsible for the physical process. Generally, drop-shipper have information of the customer demands better than the distributor. But, it is also unrare when the drop-shipper send the estimation of demands which bigger than their own estimation in order to maximize their own interest, so they hope supplies of the distributor will always enough to accommodate their demands. Contributions in this research will be focused on integration of three echelons supply chain, which are the supplier, manufacturer, distributor, and drop-shipper. With considering delay in payment on first and second echelons, and also the contract penalty on third echelon. The problem on this research will be modeled in some kind of cases which can represent the problem of real supply chain system. Sensitivity analysis will be done on certain significant variables toward the changes of total supply chain cost. Coordination with delay in payment success to integrate supply chain. Contract penalty plan success to maintain the profit of distributor and drop-shipper.

  18. Health Care: Franchise Business Activity Contracts for Medical Services

    DTIC Science & Technology

    2003-06-30

    Health Care Department of Defense Office of the Inspector General June 30, 2003 AccountabilityIntegrityQuality Franchise Business Activity Contracts...control number. 1. REPORT DATE 30 JUN 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Health Care: Franchise Business...services should be interested in the issue of acquiring medical services through the Department of the Treasury, Franchise Business Activity contracts. 15

  19. Electrophysiological evidence for the morpheme-based combinatoric processing of English compounds

    PubMed Central

    Fiorentino, Robert; Naito-Billen, Yuka; Bost, Jamie; Fund-Reznicek, Ella

    2014-01-01

    The extent to which the processing of compounds (e.g., “catfish”) makes recourse to morphological-level representations remains a matter of debate. Moreover, positing a morpheme-level route to complex word recognition entails not only access to morphological constituents, but also combinatoric processes operating on the constituent representations; however, the neurophysiological mechanisms subserving decomposition, and in particular morpheme combination, have yet to be fully elucidated. The current study presents electrophysiological evidence for the morpheme-based processing of both lexicalized (e.g., “teacup”) and novel (e.g., “tombnote”) visually-presented English compounds; these brain responses appear prior to and are dissociable from the eventual overt lexical decision response. The electrophysiological results reveal increased negativities for conditions with compound structure, including effects shared by lexicalized and novel compounds, as well as effects unique to each compound type, which may be related to aspects of morpheme combination. These findings support models positing across-the-board morphological decomposition, counter to models proposing that putatively complex words are primarily or solely processed as undecomposed representations, and motivate further electrophysiological research toward a more precise characterization of the nature and neurophysiological instantiation of complex word recognition. PMID:24279696

  20. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    PubMed

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  1. US health care policy and reform: implications for cardiac electrophysiology.

    PubMed

    Turakhia, Mintu P; Ullal, Aditya J

    2013-03-01

    In response to unsustainably rising costs, variable quality and access to health care, and the projected insolvency of vital safety net insurance programs, the federal government has proposed important health policy and regulatory changes in the USA. The US Supreme Court's decision to uphold most of the major provisions of the Affordable Care Act will lead to some of the most sweeping government reforms on entitlements since the creation of Medicare. Furthermore, implementation of new organizational, reimbursement, and health care delivery models will strongly affect the practice of cardiac electrophysiology. In this brief review, we will provide background and context to the problem of rising health care costs and describe salient reforms and their projected impacts on the field and practice of cardiac electrophysiology.

  2. SSM-Based Electrophysiology for Transporter Research.

    PubMed

    Bazzone, Andre; Barthmes, Maria; Fendler, Klaus

    2017-01-01

    Functional characterization of transport proteins using conventional electrophysiology can be challenging, especially for low turnover transporters or transporters from bacteria and intracellular compartments. Solid-supported membrane (SSM)-based electrophysiology is a sensitive and cell-free assay technique for the characterization of electrogenic membrane proteins. Purified proteins reconstituted into proteoliposomes or membrane vesicles from cell culture or native tissues are adsorbed to the sensor holding an SSM. A substrate or a ligand is applied via rapid solution exchange. The electrogenic transporter activity charges the sensor, which is recorded as a transient current. The high stability of the SSM allows cumulative measurements on the same sensor using different experimental conditions. This allows the determination of kinetic properties including EC 50 , IC 50 , K m , K D , and rate constants of electrogenic reactions. About 100 different transporters have been measured so far using this technique, among them symporters, exchangers, uniporters, ATP-, redox-, and light-driven ion pumps, as well as receptors and ion channels. Different instruments apply this technique: the laboratory setups use a closed flow-through arrangement, while the commercially available SURFE 2 R N1 resembles a pipetting robot. For drug screening purposes high-throughput systems, such as the SURFE 2 R 96SE enable the simultaneous measurement of up to 96 sensors. © 2017 Elsevier Inc. All rights reserved.

  3. Personal miniature electrophysiological tape recorder

    NASA Astrophysics Data System (ADS)

    Green, H.

    1981-11-01

    The use of a personal miniature electrophysiological tape recorder to measure the physiological reactions of space flight personnel to space flight stress and weightlessness is described. The Oxford Instruments Medilog recorder, a battery-powered, four-channel cassette tape recorder with 24 hour endurance is carried on the person and will record EKG, EOG, EEG, and timing and event markers. The data will give information about heart rate and morphology changes, and document adaptation to zero gravity on the part of subjects who, unlike highly trained astronauts, are more representative of the normal population than were the subjects of previous space flight studies.

  4. Electrophysiological evidence for phenomenal consciousness.

    PubMed

    Revonsuo, Antti; Koivisto, Mika

    2010-09-01

    Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.

  5. Myocardial Infarct Segmentation from Magnetic Resonance Images for Personalized Modeling of Cardiac Electrophysiology

    PubMed Central

    Ukwatta, Eranga; Arevalo, Hermenegild; Li, Kristina; Yuan, Jing; Qiu, Wu; Malamas, Peter; Wu, Katherine C.

    2016-01-01

    Accurate representation of myocardial infarct geometry is crucial to patient-specific computational modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut optimization problem, which was solved using its dual formulation, the continuous max-flow (CMF). The optimization objective comprised of a smoothness term, and a data term that quantified the similarity between image intensity histograms of segmented regions and those of a set of training images. A manual segmentation of the LV myocardium was used to initialize and constrain the developed method. The three-dimensional geometry of infarct was reconstructed from its segmentation using an implicit, shape-based interpolation method. The proposed methodology was extensively evaluated using metrics based on geometry, and outcomes of individualized electrophysiological simulations of cardiac dys(function). Several existing LV infarct segmentation approaches were implemented, and compared with the proposed method. Our results demonstrated that the CMF method was more accurate than the existing approaches in reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The infarct segmentation method we have developed and comprehensively evaluated in this study constitutes an important step in advancing clinical applications of personalized simulations of cardiac electrophysiology. PMID:26731693

  6. Nerve Ultrasound and Electrophysiology for Therapy Monitoring in Chronic Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Kerasnoudis, Antonios; Pitarokoili, Kalliopi; Gold, Ralf; Yoon, Min-Suk

    2015-01-01

    We evaluated prospectively nerve ultrasound and electrophysiology as monitoring methods of intravenous immunoglobulin (IVIG) therapy in chronic inflammatory demyelinating polyneuropathy (CIDP). Overall 15 healthy subjects and 11 CIDP patients undergoing IVIG therapy were recruited in the study. All patients underwent clinical, ultrasound, and electrophysiological evaluation at the time point of first onset of symptoms (<6 weeks of symptoms) and 4, 8, and 12 months after onset. The intranerve cross-sectional area (CSA) variability of each nerve, but not the CSA alone, correlated with the MRC Scale score during 12-month follow-up. On the other hand, none of the electrophysiological parameters correlated with the MRC Scale Score in each of the peripheral nerves. Interestingly, in ¾ of the CIDP patients, the resolution of the conduction block correlated with the improvement in the MRC Sum score. Nerve ultrasound and in particular the intranerve CSA variability seems to be a useful method in monitoring CIDP patients. Although the sample size is small, the intranerve CSA variability seems to be more promising than neurophysiology. Copyright © 2015 by the American Society of Neuroimaging.

  7. Clinical and electrophysiologic attributes as predictors of results of autonomic function tests

    NASA Technical Reports Server (NTRS)

    Wu, C. L.; Denq, J. C.; Harper, C. M.; O'Brien, P. C.; Low, P. A.

    1998-01-01

    Autonomic dysfunction is a feature of some neuropathies and not others. It has been suggested that some clinical and electrophysiologic attributes are predictable of autonomic impairment detected using laboratory testing; however, dear guidelines are unavailable. We evaluated 138 relatively unselected patients with peripheral neuropathy who underwent neurologic evaluation, electromyography (EMG), nerve conduction studies, and autonomic function tests to determine which variables were predictive of laboratory findings of autonomic failure. The variables evaluated were 1) clinical somatic neuropathic findings, 2) clinical autonomic symptoms, and 3) electrophysiologic findings. Autonomic symptoms were strongly predictive (Rs = 0.40, p < 0.001) of autonomic failure. Among the non-autonomic indices, absent ankle reflexes were mildly predictive (Rs = 0.19, p = 0.022) of autonomic impairment, but all others were not (duration, clinical pattern, severity, weakness, sensory loss). Electrophysiologic changes of an axonal neuropathy predicted autonomic impairment while demyelinating neuropathy did not. We conclude that autonomic studies will most likely be abnormal in patients who have symptoms of autonomic involvement and those who have an axonal neuropathy.

  8. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan; Zhu, Yong

    2016-04-01

    Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode-skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode-skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.

  9. [Collective versus selective contracts from a legal point of view].

    PubMed

    Schirmer, Horst Dieter

    2006-01-01

    The historically proven organisational model of service relations between sickness funds and healthcare providers are collective contracts. A collective contract as a standards treaty ("Normenvertrag") is particularly pronounced concerning the panel doctor law ("Vertragsarztrecht") defining medical care on the basis of the principle of benefits in kind governing benefit claims of the insured in case of illness. The collective contract is a suitable instrument for ensuring both consistent and exhaustive provision of care and for organising the conditions of care, especially the quality and reimbursement of professional medical services. For several years the legislator has been "experimenting" with parallel contract design patterns such as the contract of integrated care in the form of selective contracts between health insurances or their associations and healthcare providers or groups of healthcare providers. More recently, allowances for conclusion of such contracts have been supposed to lead to competition between the contractual systems. It is doubtful whether this "push-start" will contribute to overcoming the systematic legal disadvantages of selective contracting as an organisational model for the provision of healthcare services to the insured.

  10. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    PubMed

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Serial electrophysiological findings in Guillain-Barré syndrome not fulfilling AIDP or AMAN criteria.

    PubMed

    Hosokawa, Takafumi; Nakajima, Hideto; Unoda, Kiichi; Yamane, Kazushi; Doi, Yoshimitsu; Ishida, Shimon; Kimura, Fumiharu; Hanafusa, Toshiaki

    2016-09-01

    Guillain-Barré syndrome (GBS) is categorized into two major subtypes: acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). However, a proportion of patients are electrophysiologically unclassified because of electrophysiological findings that do not fulfil AIDP or AMAN criteria, and underlying pathophysiological mechanisms and lesion distributions of unclassified patients are not well defined. The aims of this study are to elucidate disease pathophysiology and lesion distribution in unclassified patients. We retrospectively studied 48 consecutive GBS patients. Patients were classified on the basis of initial electrophysiological findings according to Ho's criteria. Clinical and serial electrophysiological examinations of unclassified patients were conducted. Twelve (25 %) GBS patients were unclassified. All unclassified patients were able to walk independently at 21 days after onset. No unclassified patients, except one patient with diabetes mellitus, had sensory nerve involvement. Eight patients underwent a follow-up study within 15 days of the initial study. Distal motor latencies (DMLs) of the left median motor nerve were found to be significantly and uniformly decreased compared with initial studies (p = 0.008). DMLs (p < 0.0001) and distal compound action potential (CMAP) durations (p = 0.002) of all nerves were significantly decreased, and distal CMAP amplitudes (p = 0.026) significantly increased compared with initial studies. In unclassified GBS patients, DML values during initial electrophysiological studies would be prolonged compared with expected values in the same patient unaffected by GBS and later improve rapidly with increased distal CMAP amplitudes without the development of excessive temporal dispersions. Lesions are also present in distal nerve segments caused by reversible conduction failure.

  12. A Review of Behavioural and Electrophysiological Studies on Auditory Processing and Speech Perception in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Haesen, Birgitt; Boets, Bart; Wagemans, Johan

    2011-01-01

    This literature review aims to interpret behavioural and electrophysiological studies addressing auditory processing in children and adults with autism spectrum disorder (ASD). Data have been organised according to the applied methodology (behavioural versus electrophysiological studies) and according to stimulus complexity (pure versus complex…

  13. The Sound of Feelings: Electrophysiological Responses to Emotional Speech in Alexithymia

    PubMed Central

    Goerlich, Katharina Sophia; Aleman, André; Martens, Sander

    2012-01-01

    Background Alexithymia is a personality trait characterized by difficulties in the cognitive processing of emotions (cognitive dimension) and in the experience of emotions (affective dimension). Previous research focused mainly on visual emotional processing in the cognitive alexithymia dimension. We investigated the impact of both alexithymia dimensions on electrophysiological responses to emotional speech in 60 female subjects. Methodology During unattended processing, subjects watched a movie while an emotional prosody oddball paradigm was presented in the background. During attended processing, subjects detected deviants in emotional prosody. The cognitive alexithymia dimension was associated with a left-hemisphere bias during early stages of unattended emotional speech processing, and with generally reduced amplitudes of the late P3 component during attended processing. In contrast, the affective dimension did not modulate unattended emotional prosody perception, but was associated with reduced P3 amplitudes during attended processing particularly to emotional prosody spoken in high intensity. Conclusions Our results provide evidence for a dissociable impact of the two alexithymia dimensions on electrophysiological responses during the attended and unattended processing of emotional prosody. The observed electrophysiological modulations are indicative of a reduced sensitivity to the emotional qualities of speech, which may be a contributing factor to problems in interpersonal communication associated with alexithymia. PMID:22615853

  14. Phase Zero Contracting Operations-Strategic and Integrative Planning for Contingency and Expeditionary Operations

    DTIC Science & Technology

    2013-10-01

    349–372 Phase Zero Contracting Operations (PZCO) FIGURE 4. CONTRACTING PHASE ZERO: PLAN, EXERCISE, REHEARSE, AND SYNCHRONIZE Note. BPA = Blanket...More Robust Construction Supplies; Oce Equipment; Quality of Life; and Morale, Welfare, and Recreation PO/TO/DO/ BPA Small Purchase Standard Vehicles PO...TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Standard Vehicles PO/TO/DO/ BPA Small Purchase Food, Water, Billeting, Hygiene

  15. The integrated supplier: key to cost management and multi-franchise capitation contracting.

    PubMed

    Schuweiler, R C

    1996-05-01

    Capitation...most healthcare providers do not work under it, comprehend it, or even want it, yet supply capitation contracting seminars are popping up everywhere creating the feeling that the bandwagon is leaving, and it might be time to get on board. Not true. Supply capitation is not for all organizations. Capitation contracting is not easy and there are not many successful models to help the uninitiated. If a panacea is sought for reducing supply costs, capitation is only one component of a systematic strategy to reduce materiel costs. This article suggests a direction using the Group Health Materiel Management (Group Health Cooperative of Puget Sound, WA) experience as a point of reference. It advocates a systematic approach that focuses on expense reduction in: cost of goods, holding cost of inventory, labor cost associated with all materiel processes, distribution cost (transportation and par stock pick, pack, and replenishment), product utilization, variation in product standards, and waste stream byproducts. At Group Health (GH) these issues are primarily addressed through the use of: information systems, supplier certification/selection processes, group purchasing compliance, supply channel management, supply capitation contracting programs, standardization, and utilization management. Because of managed care organizational structure, Group Health Cooperative supply capitation contracting, as performed at GH, is discussed not as a quick fix solution but in the spirit of sharing our experience with others who may be considering it as a cost savings tactic in the context of a broad-based materiel management strategy. This article highlights the experiences of GH beginning with materiel management's business process assumptions toward multiple-franchise supply capitation.

  16. Electrophysiological Recordings from the Giant Fiber System

    PubMed Central

    Allen, Marcus J

    2010-01-01

    The giant fiber system (GFS) of Drosophila is a well-characterized neuronal circuit that mediates the escape response in the fly. It is one of the few adult neural circuits from which electrophysiological recordings can be made routinely. This article describes a simple procedure for stimulating the giant fiber neurons directly in the brain of the adult fly and obtaining recordings from the output muscles of the giant fiber system. PMID:20647357

  17. Acute electrophysiologic consequences of pyridostigmine inhibition of cholinesterase in humans.

    PubMed

    Zimerman, L I; Liberman, A; Castro, R R T; Ribeiro, J P; Nóbrega, A C L

    2010-02-01

    The cardiovascular electrophysiologic basis for the action of pyridostigmine, an acetylcholinesterase inhibitor, has not been investigated. The objective of the present study was to determine the cardiac electrophysiologic effects of a single dose of pyridostigmine bromide in an open-label, quasi-experimental protocol. Fifteen patients who had been indicated for diagnostic cardiac electrophysiologic study underwent two studies just before and 90-120 min after the oral administration of pyridostigmine (45 mg). Pyridostigmine was well tolerated by all patients. Wenckebach nodal anterograde atrioventricular point and basic cycle were not altered by pyridostigmine. Sinus recovery time (ms) was shorter during a 500-ms cycle stimulation (pre: 326 +/- 45 vs post: 235 +/- 47; P = 0.003) but not during 400-ms (pre: 275 +/- 28 vs post: 248 +/- 32; P = 0.490) or 600-ms (pre: 252 +/- 42 vs post: 179 +/- 26; P = 0.080) cycle stimulation. Pyridostigmine increased the ventricular refractory period (ms) during the 400-ms cycle stimulation (pre: 238 +/- 7 vs post: 245 +/- 9; P = 0.028) but not during the 500-ms (pre: 248 +/- 7 vs post: 253 +/- 9; P = 0.150) or 600-ms (pre: 254 +/- 8 vs post: 259 +/- 8; P = 0.255) cycle stimulation. We conclude that pyridostigmine did not produce conduction disturbances and, indeed, increased the ventricular refractory period at higher heart rates. While the effect explains previous results showing the anti-arrhythmic action of pyridostigmine, the clinical impact on long-term outcomes requires further investigation.

  18. Reproducible model development in the cardiac electrophysiology Web Lab.

    PubMed

    Daly, Aidan C; Clerx, Michael; Beattie, Kylie A; Cooper, Jonathan; Gavaghan, David J; Mirams, Gary R

    2018-05-26

    The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Cloudwave: distributed processing of "big data" from electrophysiological recordings for epilepsy clinical research using Hadoop.

    PubMed

    Jayapandian, Catherine P; Chen, Chien-Hung; Bozorgi, Alireza; Lhatoo, Samden D; Zhang, Guo-Qiang; Sahoo, Satya S

    2013-01-01

    Epilepsy is the most common serious neurological disorder affecting 50-60 million persons worldwide. Multi-modal electrophysiological data, such as electroencephalography (EEG) and electrocardiography (EKG), are central to effective patient care and clinical research in epilepsy. Electrophysiological data is an example of clinical "big data" consisting of more than 100 multi-channel signals with recordings from each patient generating 5-10GB of data. Current approaches to store and analyze signal data using standalone tools, such as Nihon Kohden neurology software, are inadequate to meet the growing volume of data and the need for supporting multi-center collaborative studies with real time and interactive access. We introduce the Cloudwave platform in this paper that features a Web-based intuitive signal analysis interface integrated with a Hadoop-based data processing module implemented on clinical data stored in a "private cloud". Cloudwave has been developed as part of the National Institute of Neurological Disorders and Strokes (NINDS) funded multi-center Prevention and Risk Identification of SUDEP Mortality (PRISM) project. The Cloudwave visualization interface provides real-time rendering of multi-modal signals with "montages" for EEG feature characterization over 2TB of patient data generated at the Case University Hospital Epilepsy Monitoring Unit. Results from performance evaluation of the Cloudwave Hadoop data processing module demonstrate one order of magnitude improvement in performance over 77GB of patient data. (Cloudwave project: http://prism.case.edu/prism/index.php/Cloudwave).

  20. Do we access meaning when we name Arabic digits? Electrophysiological evidence.

    PubMed

    Macizo, Pedro; Álvarez, Alejandro

    2018-06-12

    In this study, we evaluated whether the naming of Arabic digits required access to semantic information. Participants named pictures and Arabic digits blocked by category or intermixed with exemplars of other categories while behavioural and electrophysiological measures were gathered. Pictures were named slower and Arabic digits faster in the blocked context relative to the mixed context. Around 350-450 ms after the presentation of pictures and Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when the blocked context was compared with the mixed context. The pattern of electrophysiological results suggests that pictures and Arabic digits are both processed semantically and they are subject to repetition effects during the naming task. © 2018 The British Psychological Society.

  1. Population patch clamp electrophysiology: a breakthrough technology for ion channel screening.

    PubMed

    Dale, Tim J; Townsend, Claire; Hollands, Emma C; Trezise, Derek J

    2007-10-01

    Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.

  2. 48 CFR 1335.006 - Contracting methods and contract type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 1335.006 Contracting methods and... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Contracting methods and... research services under the contract might involve the use of human subjects. The provision is mandatory...

  3. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    PubMed Central

    Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.

    2016-01-01

    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811

  4. 48 CFR 970.5232-8 - Integrated accounting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Integrated accounting. 970... for Management and Operating Contracts 970.5232-8 Integrated accounting. As prescribed in 970.3270(b... are required for use under this contract. The Contractor's financial management system shall include...

  5. 48 CFR 970.5232-8 - Integrated accounting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Integrated accounting. 970... for Management and Operating Contracts 970.5232-8 Integrated accounting. As prescribed in 970.3270(b... are required for use under this contract. The Contractor's financial management system shall include...

  6. 48 CFR 970.5232-8 - Integrated accounting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Integrated accounting. 970... for Management and Operating Contracts 970.5232-8 Integrated accounting. As prescribed in 970.3270(b... are required for use under this contract. The Contractor's financial management system shall include...

  7. 48 CFR 970.5232-8 - Integrated accounting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Integrated accounting. 970... for Management and Operating Contracts 970.5232-8 Integrated accounting. As prescribed in 970.3270(b... are required for use under this contract. The Contractor's financial management system shall include...

  8. Shared Savings Contracting for Reducing Energy Costs of Defense Facilities.

    DTIC Science & Technology

    1983-01-01

    also needs additional -4 operation and maintenance help, especially if new equipment is involved. New equipment with sophisticated control technology...process may take time to develop and may be " difficult to integrate with existing financial control practices. For example, the regulations and...will seek a change order on the contract. The potential for such changes, if not controlled , seriously undermines the value of these contracts. DoD

  9. Contract-Based Integration of Cyber-Physical Analyses

    DTIC Science & Technology

    2014-10-14

    for cyber-physical systems , 2013 [3] Torngren et al. Integrating viewpoints in the development of mechatronic products, 2013 [4] Rajhans et al...Conference on Embedded Software Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...failures 5 Analytic aspect of integration Sensor Sampling PID Controller Actuator Controller Communication bus Sensor board CPU Actuator board System Bin

  10. 42 CFR 434.6 - General requirements for all contracts and subcontracts. P>(a) Contracts. All contracts under...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false General requirements for all contracts and subcontracts. P>(a) Contracts. All contracts under this part must include all of the following: 434.6 Section... contracts and subcontracts.P>(a) Contracts. All contracts under this part must include all of the following...

  11. Early electrophysiological markers of atypical language processing in prematurely born infants.

    PubMed

    Paquette, Natacha; Vannasing, Phetsamone; Tremblay, Julie; Lefebvre, Francine; Roy, Marie-Sylvie; McKerral, Michelle; Lepore, Franco; Lassonde, Maryse; Gallagher, Anne

    2015-12-01

    Because nervous system development may be affected by prematurity, many prematurely born children present language or cognitive disorders at school age. The goal of this study is to investigate whether these impairments can be identified early in life using electrophysiological auditory event-related potentials (AERPs) and mismatch negativity (MMN). Brain responses to speech and non-speech stimuli were assessed in prematurely born children to identify early electrophysiological markers of language and cognitive impairments. Participants were 74 children (41 full-term, 33 preterm) aged 3, 12, and 36 months. Pre-attentional auditory responses (MMN and AERPs) were assessed using an oddball paradigm, with speech and non-speech stimuli presented in counterbalanced order between participants. Language and cognitive development were assessed using the Bayley Scale of Infant Development, Third Edition (BSID-III). Results show that preterms as young as 3 months old had delayed MMN response to speech stimuli compared to full-terms. A significant negative correlation was also found between MMN latency to speech sounds and the BSID-III expressive language subscale. However, no significant differences between full-terms and preterms were found for the MMN to non-speech stimuli, suggesting preserved pre-attentional auditory discrimination abilities in these children. Identification of early electrophysiological markers for delayed language development could facilitate timely interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Teaching Contracts with Contracts

    ERIC Educational Resources Information Center

    Misner, Robert L.

    1977-01-01

    The teaching of contracts law is an area that lends itself easily to introducing students to realistic factual situations. An exercise is described in which students were assigned to separate "firms" with volunteers from the later law school classes as clients. Each firm was responsible for submitting a signed contract and an accompanying paper.…

  13. 23 CFR 635.121 - Contract time and contract time extensions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TRAFFIC OPERATIONS CONSTRUCTION AND MAINTENANCE Contract Procedures § 635.121 Contract time and contract time extensions. (a) The STD should have adequate written procedures for the determination of contract... 23 Highways 1 2010-04-01 2010-04-01 false Contract time and contract time extensions. 635.121...

  14. An animal model (guinea pig) of ocular siderosis: histopathology, pharmacology, and electrophysiology.

    PubMed

    Mumcuoglu, Tarkan; Ozge, Gokhan; Soykut, Bugra; Erdem, Onur; Gunal, Armagan; Acikel, Cengizhan

    2015-03-01

    Ocular siderosis is a rare sight-threatening complication that occurs after a penetrating ocular injury by an iron-containing foreign body. The purposes of this study were to (i) investigate the histopathology, electrophysiology and iron levels/accumulation in ocular siderosis using an animal (Guinea pig) model and (ii) determine the appropriate timing for follow-up foreign body-removal surgery. Thirty guinea pigs were divided into five groups (n = 6 animals/group). On day-1, an iron body was inserted into the vitreous of the right eye of all animals; the left eyes were left undisturbed and were used as controls. At the end of each week during the 5-week study period, electroretinography (ERG) was performed on all animals in one of the five groups. Each animal in that group was sacrificed, after which both eyes were enucleated for histopathological and pharmacological evaluation of intraocular iron. Accumulated iron levels of study eyes were significantly higher than those of control eyes (135.13 and 13.55 μg/g, respectively, p < 0.01). In addition, there was a significant decrease in electrophysiological responses of study eyes. During the first week, iron levels were higher in study eyes than control eyes, but neither histological iron accumulation nor decreased electrophysiological responses could be detected. By the end of the second week, increased iron accumulation was observed histologically in intraocular tissues, along with signs of retinal toxicity, as verified by decreased electrophysiological responses. The present study indicates that the 14th day after a penetrating eye injury by an iron-containing intraocular foreign body represents a clinically critical threshold, after which structural damage to and functional alterations in ocular tissues occur.

  15. Contracts.

    ERIC Educational Resources Information Center

    Gellert, Shepard D.; Wilson, Grace

    1977-01-01

    This paper reviews experimental psychology goal research and its implications for the therapist doing contract therapy. Clinical examples of various levels of contracts give illustrations, and a technique, the therapeutic double bind, as a form of contract, is detailed. A case study is presented to illustrate the use of the theory. Three…

  16. The electrophysiologic properties of esmolol, a short acting beta-blocker.

    PubMed

    Greenspan, A M; Spielman, S R; Horowitz, L N; Laddu, A; Senior, S

    1988-04-01

    Although beta-blockers have established efficacy in treating ventricular ectopy and PSVT, their applicability for acute antiarrhythmic interventions in patients with organic heart disease or COPD, is frequently limited by negative inotropic or bronchospastic side effects. The development of an ultrashort acting beta-blocker with rapid reversibility of its side effects would widen their applicability. Therefore, we tested the electrophysiologic properties of such a new short acting beta-blocker, esmolol, in 14 patients (10 with organic heart disease) with a mean EF of 47.6 +/- 17%, undergoing standard clinical electrophysiologic studies for various indications. Like most other beta-blockers, esmolol's major direct effects were on sinus node function and AV nodal conduction characteristics; significantly prolonging sinus cycle length, cycle length to Wenckebach and AH interval in sinus rhythm and at a paced cycle length of 600 ms. In contrast to most other beta-blockers, following termination of its infusion, esmolol shortened parameters of sinus node function and AV nodal refractoriness, with respect to the control values, suggesting a possible rebound phenomena. These effects occurred within 5 min of terminating the intravenous drug infusion. Esmolol had no significant effect on systolic blood pressure, electrocardiographic intervals and had rare adverse reactions. We conclude that esmolol is an ultra-short acting beta-blocker, with typical direct electrophysiologic effects on sinus node and AV nodal function, and a possible rebound phenomena following its discontinuation that may make it particularly suited to acute antiarrhythmic interventions in patients susceptible to adverse beta-blocker side effects.

  17. The sensitivity and specificity of the neurological examination in polyneuropathy patients with clinical and electrophysiological correlations.

    PubMed

    Abraham, Alon; Alabdali, Majed; Alsulaiman, Abdulla; Albulaihe, Hana; Breiner, Ari; Katzberg, Hans D; Aljaafari, Danah; Lovblom, Leif E; Bril, Vera

    2017-01-01

    Polyneuropathy is one of the most prevalent neurologic disorders. Although several studies explored the role of the neurological examination in polyneuropathy, they were mostly restricted to specific subgroups of patients and have not correlated examination findings with symptoms and electrophysiological results. To explore the sensitivity and specificity of different neurological examination components in patients with diverse etiologies for polyneuropathy, find the most sensitive combination of examination components for polyneuropathy detection, and correlate examination findings with symptoms and electrophysiological results. Patients with polyneuropathy attending the neuromuscular clinic from 01/2013 to 09/2015 were evaluated. Inclusion criteria included symptomatic polyneuropathy, which was confirmed by electrophysiological studies. 47 subjects with no symptoms or electrophysiological findings suggestive for polyneuropathy, served as controls. The total cohort included 312 polyneuropathy patients, with a mean age of 60±14 years. Abnormal examination was found in 95%, most commonly sensory findings (86%). The most common abnormal examination components were impaired ankle reflexes (74%), vibration (73%), and pinprick (72%) sensation. Combining ankle reflex examination with vibration or pinprick perception had the highest sensitivity, of 88%. The specificities of individual examination component were generally high, excluding ankle reflexes (62%), and vibration perception (77%). Abnormal examination findings were correlated with symptomatic weakness and worse electrophysiological parameters. The neurological examination is a valid, sensitive and specific tool for diagnosing polyneuropathy, and findings correlate with polyneuropathy severity. Ankle reflex examination combined with either vibration or pinprick sensory testing is the most sensitive combination for diagnosing polyneuropathy, and should be considered minimal essential components of the physical

  18. Relational Contract: Applicable to Department of Defense Contracts

    DTIC Science & Technology

    1989-12-01

    examine the evolution of contract law and, in particular, the role of contractual incompleteness in exchange relationships. 2.1.1. The Classical Approach...Classical contract law facilitates exchange by separately detailing all aspects of the contracting process 9 at the outset by prespecification of all...modifications after contractual performance has begun. According to Williamson (1979), classical contract law implements prespecification through legal

  19. 48 CFR 37.104 - Personal services contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Agencies shall not award personal services contracts unless specifically authorized by statute (e.g., 5 U.S... equipment furnished by the Government. (3) Services are applied directly to the integral effort of agencies... which apply in acquiring the personal services of experts or consultants in this manner (e.g., benefits...

  20. 48 CFR 37.104 - Personal services contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Agencies shall not award personal services contracts unless specifically authorized by statute (e.g., 5 U.S... equipment furnished by the Government. (3) Services are applied directly to the integral effort of agencies... which apply in acquiring the personal services of experts or consultants in this manner (e.g., benefits...

  1. Time course of electrophysiologic effects induced by di-n-butyl-2,2-dichlorovinyl phosphate (DBCV) in the adult hen.

    PubMed

    Robertson, D G; Mattson, A M; Bestervelt, L L; Richardson, R J; Anderson, R J

    1988-01-01

    Previous work in our laboratory indicated that di-n-butyl-2,2-dichlorovinyl phosphate (DBCV) produced electrophysiologic changes in hen peripheral nerve that coincided with the development of histopathologic changes and neurologic signs of peripheral neuropathy. The purpose of the present study was to follow the time course for the development of the electrophysiologic changes and to determine whether pretreatment with the phosphinate analog of DBCV (DBCV-P), a nonageable organophosphorus compound, prevented these effects. Although significant electrophysiologic deficits occurred in the tibial and sciatic nerve 24 h after DBCV treatment, the most marked changes coincided with the onset of clinical signs of organophosphorus-induced delayed neuropathy (14-21 d). The sciatic and tibial nerves were equally susceptible to DBCV in producing deficits characterized by changes in the relative refractory period and an increased strength-duration threshold. Pretreatment with DBCV-P prevented the clinical signs and also attenuated the electrophysiologic deficits induced by DBCV treatment. These data suggest that electrophysiologic deficits occur before clinical signs of organophosphorus-induced delayed neuropathy (OPIDN) and may be indicative of a link between neurotoxic esterase (NTE) inhibition and onset of overt clinical toxicity.

  2. Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings

    PubMed Central

    Rossant, Cyrille; Goodman, Dan F. M.; Platkiewicz, Jonathan; Brette, Romain

    2010-01-01

    Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains) that can run in parallel on graphics processing units (GPUs). The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models. PMID:20224819

  3. At the Atrioventricular Crossroads: Dual Pathway Electrophysiology in the Atrioventricular Node and its Underlying Heterogeneities

    PubMed Central

    George, Sharon A; Faye, N Rokhaya; Murillo-Berlioz, Alejandro; Lee, K Benjamin; Trachiotis, Gregory D; Efimov, Igor R

    2017-01-01

    The atrioventricular node (AVN) is a complex structure that performs a variety of functions in the heart. The AVN is primarily an electrical gatekeeper between the atria and ventricles and introduces a delay between atrial and ventricular excitation, allowing for efficient ventricular filling. The AVN is composed of several compartments that safely transmit electrical excitation from the atria to the ventricles via the fast or slow pathways. There are many electrophysiological differences between these pathways, including conduction time and electrical refractoriness, that increase the predisposition of the atrioventricular junction to arrhythmias such as atrioventricular nodal re-entrant tachycardia. These varied electrophysiological characteristics of the fast and slow pathways stem from their unique structural and molecular composition (tissue and cellular geometry, ion channels and gap junctions). This review summarises the structural and molecular heterogeneities of the human AVN and how they result in electrophysiological variations and arrhythmias. PMID:29326832

  4. Cloudwave: Distributed Processing of “Big Data” from Electrophysiological Recordings for Epilepsy Clinical Research Using Hadoop

    PubMed Central

    Jayapandian, Catherine P.; Chen, Chien-Hung; Bozorgi, Alireza; Lhatoo, Samden D.; Zhang, Guo-Qiang; Sahoo, Satya S.

    2013-01-01

    Epilepsy is the most common serious neurological disorder affecting 50–60 million persons worldwide. Multi-modal electrophysiological data, such as electroencephalography (EEG) and electrocardiography (EKG), are central to effective patient care and clinical research in epilepsy. Electrophysiological data is an example of clinical “big data” consisting of more than 100 multi-channel signals with recordings from each patient generating 5–10GB of data. Current approaches to store and analyze signal data using standalone tools, such as Nihon Kohden neurology software, are inadequate to meet the growing volume of data and the need for supporting multi-center collaborative studies with real time and interactive access. We introduce the Cloudwave platform in this paper that features a Web-based intuitive signal analysis interface integrated with a Hadoop-based data processing module implemented on clinical data stored in a “private cloud”. Cloudwave has been developed as part of the National Institute of Neurological Disorders and Strokes (NINDS) funded multi-center Prevention and Risk Identification of SUDEP Mortality (PRISM) project. The Cloudwave visualization interface provides real-time rendering of multi-modal signals with “montages” for EEG feature characterization over 2TB of patient data generated at the Case University Hospital Epilepsy Monitoring Unit. Results from performance evaluation of the Cloudwave Hadoop data processing module demonstrate one order of magnitude improvement in performance over 77GB of patient data. (Cloudwave project: http://prism.case.edu/prism/index.php/Cloudwave) PMID:24551370

  5. Electrophysiological Signals of Familiarity and Recency in the Infant Brain

    ERIC Educational Resources Information Center

    Snyder, Kelly A.; Garza, John; Zolot, Liza; Kresse, Anna

    2010-01-01

    Electrophysiological work in nonhuman primates has established the existence of multiple types of signals in the temporal lobe that contribute to recognition memory, including information regarding a stimulus's relative novelty, familiarity, and recency of occurrence. We used high-density event-related potentials (ERPs) to examine whether young…

  6. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures.

    PubMed

    Germano, Joseph J; Day, Gina; Gregorious, David; Natarajan, Venkataraman; Cohen, Todd

    2005-09-01

    The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures. In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses. The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction. Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction). The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.

  7. Concurrent electrophysiology and TPM/OCT imaging of long-term implanted electrodes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Gao, Yu-Rong; Ye, Meijun; Welle, Cristin G.

    2017-02-01

    Microelectrodes implanted in the brain cause mechanical damage to the tissue that mediate neuroinflammation and eventual encapsulation by microglia and astrocytes. Electrophysiological signals recorded from implants used in brain-computer interfaces (BCI) degrade over time, limiting their usefulness, but the precise causes and progression are not fully understood. We are investigating the dynamics of brain morphological changes and neuroinflammation with a multimodal approach to better understand the potential causes of implant failure. We performed weekly optical coherence tomography (OCT)-guided two-photon microscopy (TPM) in the region around microelectrodes inserted under a cranial window concurrent with electrophysiological recordings. Transgenic mouse cohorts studied include Thy1-YFP, Cx3cr1, and GFAP-GFP to image neurons, microglia, and astrocytes, respectively. Single-shank, 16-channel, Michigan-style microelectrodes were inserted under the window at a 15-20° angle with an insertion depth up to cortical layer 5. Single-unit and local field potential (LFP) recordings were collected for 15 minutes while the animals moved freely in their home cages. Cellular and vascular morphology were monitored using TPM and OCT at timepoints matched to the recordings. In preliminary data, we observed a decay of neural firing rates in most of the channels after implantation. The relationship between electrophysiological measures (e.g., neural firing rate, LFP power) and neural/vascular morphological measurements (e.g., cell density, glial migration, blood flow changes) will be quantified. The multimodal approach combining electrophysiology and optical imaging provides a broader picture of the multifactorial nature of the response to implanted electrodes. Understanding and accounting for the response may lead to better BCI designs and approaches.

  8. Cartographic services contract...for everything geographic

    USGS Publications Warehouse

    ,

    2003-01-01

    The U.S. Geological Survey's (USGS) Cartographic Services Contract (CSC) is used to award work for photogrammetric and mapping services under the umbrella of Architect-Engineer (A&E) contracting. The A&E contract is broad in scope and can accommodate any activity related to standard, nonstandard, graphic, and digital cartographic products. Services provided may include, but are not limited to, photogrammetric mapping and aerotriangulation; orthophotography; thematic mapping (for example, land characterization); analog and digital imagery applications; geographic information systems development; surveying and control acquisition, including ground-based and airborne Global Positioning System; analog and digital image manipulation, analysis, and interpretation; raster and vector map digitizing; data manipulations (for example, transformations, conversions, generalization, integration, and conflation); primary and ancillary data acquisition (for example, aerial photography, satellite imagery, multispectral, multitemporal, and hyperspectral data); image scanning and processing; metadata production, revision, and creation; and production or revision of standard USGS products defined by formal and informal specification and standards, such as those for digital line graphs, digital elevation models, digital orthophoto quadrangles, and digital raster graphics.

  9. Electrophysiological Mapping of Novel Prefrontal – Cerebellar Pathways

    PubMed Central

    Watson, Thomas C.; Jones, Matthew W.; Apps, Richard

    2009-01-01

    Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions. PMID:19738932

  10. Contribution of a new electrophysiologic test to Morton's neuroma diagnosis.

    PubMed

    Pardal-Fernández, José Manuel; Palazón-García, Elena; Hernández-Fernández, Francisco; de Cabo, Carlos

    2014-06-01

    Morton's neuroma causes metatarsalgia due to the interdigital neuropathy. The small nerve diameter compromises their evaluation in image studies. To overcome this problem we propose a new electrophysiological test. We conducted a prospective case-control study performing a orthodromic electroneurography using subdermal electrodes in controls and patients to assess the validity. Additionally all patients were tested with magnetic resonance. Some patients required surgery and subsequent histological evaluation. The new ENG procedure showed higher sensitivity and specificity. Methodological standardization was easy and the test was well tolerated by the subjects. Our test demonstrated remarkable diagnostic efficiency, and also was able to identify symptomatic patients undetected by magnetic resonance, which underlines the lack of correlation between the size and intensity of the lesion. This new electrophysiological method appears to be a highly sensitivity, well-tolerated, simple and low-cost for Morton's neuroma diagnosis. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  11. A Comparison of Solver Performance for Complex Gastric Electrophysiology Models

    PubMed Central

    Sathar, Shameer; Cheng, Leo K.; Trew, Mark L.

    2016-01-01

    Computational techniques for solving systems of equations arising in gastric electrophysiology have not been studied for efficient solution process. We present a computationally challenging problem of simulating gastric electrophysiology in anatomically realistic stomach geometries with multiple intracellular and extracellular domains. The multiscale nature of the problem and mesh resolution required to capture geometric and functional features necessitates efficient solution methods if the problem is to be tractable. In this study, we investigated and compared several parallel preconditioners for the linear systems arising from tetrahedral discretisation of electrically isotropic and anisotropic problems, with and without stimuli. The results showed that the isotropic problem was computationally less challenging than the anisotropic problem and that the application of extracellular stimuli increased workload considerably. Preconditioning based on block Jacobi and algebraic multigrid solvers were found to have the best overall solution times and least iteration counts, respectively. The algebraic multigrid preconditioner would be expected to perform better on large problems. PMID:26736543

  12. Contract management using cause-effect clues in service worksheets.

    PubMed

    Chen, J H

    1996-01-01

    Sophisticated equipment often needs intensive technical resources to maintain its system availability. Service contracts can be an easy channel to outside technical resources. Usually, a service contract purchaser only sees its cost instead of its maintenance quality. A system's needs, however, depend on the trade-off between the cost paid and the quality received. If a clinical engineer can actively interpret and integrate the cause-effect consequences on the compiled service worksheets, those clues can serve as a criterion to justify the quality and the cost-effectiveness of a service contract. Through the analysis of the service labor consumed, the justification of the parts replaced, and the assessment of the "fit" to system availability, this paper provides a cost-effective tool for equipment management.

  13. Electrophysiological safety of DW-286a, a novel fluoroquinolone antibiotic agent.

    PubMed

    Kim, Eun-Joo; Kim, Ki-Suk; Shin, Won-Ho

    2005-01-01

    Inhibition of the potassium current I(Kr) and QT prolongation has been known to be associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. We investigated the cardiac electrophysiological effects of DW-286a, a new class of fluoroquinolone antibiotics reported to prolong the QT interval. To investigate the electrophysiological safety of DW-286a, we used conventional microelectrode recording techniques in isolated guinea pig papillary muscles, whole-cell patch clamp techniques in human ether-à-go-go related gene (hERG)-transient transfected Chinese hamster ovary cells, and in vivo electrocardiogram (ECG) measurements in Sprague-Dawley (SD) rats by the use of a telemetry system. DW-286a at 300 microM significantly (P<0.01) prolonged action potentials at 50% repolarization (APD50) and 90% repolarization (APD90). For IHERG, the IC50 value was 89.00+/-37.85 microM with a Hill coefficient (nH) of -0.97+/-0.49. However, when DW-286a was orally administered to conscious SD rats at a high dose (1000 mg/kg), no significant effect on ECG in vivo was detected. From a previous study, we know that concentration at 19.8 microM is the antimicrobial end-point of DW-286a. Therefore, our data suggest that in the electrophysiological aspect, it can be thought that the effective concentrations of DW-286a are between 19.8 and 100 microM (concentration in serum).

  14. Interpretation of 2-probe turbulence measurements in an axisymmetric contraction

    NASA Technical Reports Server (NTRS)

    Marion-Moulin, C.; Tan-Atichat, J.; Nagib, H. M.

    1983-01-01

    Simultaneous measurements of the streamwise and radial velocity components at two points, one on and one off the centerline with variable radial separation, were digitally recorded and processed at several stations along a four to one contraction with controlled upstream turbulence conditions. Various statistical quantities are presented including spectra and coherence functions. The integral L sub ux, L sub um, L sub vx, L sub vm were also estimated and their variation along the contraction is examined.

  15. Gesundes Kinzigtal Integrated Care: improving population health by a shared health gain approach and a shared savings contract

    PubMed Central

    H., Hildebrandt; C., Hermann; R., Knittel; M., Richter-Reichhelm; A., Siegel; W., Witzenrath

    2010-01-01

    Introduction Integrated care solutions need supportive financial incentives. In this paper, we describe the financial architecture and operative details of the integrated pilot Gesundes Kinzigtal. Description of integrated care case Located in Southwest Germany, Gesundes Kinzigtal is one of the few population-based integrated care approaches in Germany, organising care across all health service sectors and indications. The system serving around half of the population of the region is run by a regional health management company (Gesundes Kinzigtal GmbH) in cooperation with the physicians' network in the region (MQNK), a German health care management company with a background in medical sociology and health economics (OptiMedis AG) and with two statutory health insurers (among them is the biggest health insurer in Southwest Germany: AOK Baden-Württemberg). Discussion and (preliminary) conclusion The shared savings contract between Gesundes Kinzigtal GmbH and the two health insurers, providing financial incentives for managers and health care providers to realize a substantial efficiency gain, could be an appropriate contractual base of Gesundes Kinzigtal's population health gain approach. This approach is based on the assumption that a more effective trans-sector organization of Germany's health care system and increased investments in well-designed preventive programmes will lead to a reduction in morbidity, and in particular to a reduced incidence and prevalence of chronic diseases. This, in turn, is to lead to a comparative reduction in health care cost. Although the comparative cost in the Kinzigtal region has been reduced from the onset of Gesundes Kinzigtal Integrated Care, only future research will have to demonstrate whether—and to what extent—cost reduction may be attributed to a real population health gain. PMID:20689772

  16. Professionalism and medicine's social contract with society.

    PubMed

    Cruess, Sylvia R

    2006-08-01

    Medicine's relationship with society has been described as a social contract: an "as if" contract with obligations and expectations on the part of both society and medicine, "each of the other". The term is often used without elaboration by those writing on professionalism in medicine. Based on the literature, society's expectations of medicine are: the services of the healer, assured competence, altruistic service, morality and integrity, accountability, transparency, objective advice, and promotion of the public good. Medicine's expectations of society are: trust, autonomy, self-regulation, a health care system that is value-driven and adequately funded, participation in public policy, shared responsibility for health, a monopoly, and both non-financial and financial rewards. The recognition of these expectations is important as they serve as the basis of a series of obligations which are necessary for the maintenance of medicine as a profession. Mutual trust and reasonable demands are required of both parties to the contract.

  17. Electrophysiologic and morphologic effects of ophthalmic preparations on rabbit cornea epithelium.

    PubMed

    Burstein, N L; Klyce, S D

    1977-10-01

    The effects of several components of ophthalmic preparations on isolated rabbit cornea were studied by continuous electrophysiologic monitoring followed by fixation for scanning electron microscopy (SEM). Benzalkonium chloride (0.001 percent), thimerosal (0.0004 percent), and amphotericin B (0.0025 percent) all briefly increased ion transport, then greatly decreased epithelial resistance. Severe disruption of surface cell layers occurred simultaneously with resistance decrease. Silver nitrate (0.00017 percent) stimulated transport with less accompanying morphologic damage. Tetracaine (0.05 percent) disrupted epithelial function and caused exfoliation of several cell layers. Chlorobutanol (0.1 percent) produced a nearly complete loss of the squamous cell layer. Chloramphenicol, epinephrine, and pilocarpine produced minor changes in structure and electrophysiology at full clinical concentration. It was concluded that low concentrations of preservatives in ophthalmic preparations disrupt the barrier and transport properties of the corneal epithelium.

  18. Behavioral and electrophysiological signatures of word translation processes.

    PubMed

    Jost, Lea B; Radman, Narges; Buetler, Karin A; Annoni, Jean-Marie

    2018-01-31

    Translation is a demanding process during which a message is analyzed, translated and communicated from one language to another. Despite numerous studies on translation mechanisms, the electrophysiological processes underlying translation with overt production remain largely unexplored. Here, we investigated how behavioral response patterns and spatial-temporal brain dynamics differ in a translation compared to a control within-language word-generation task. We also investigated how forward and backward translation differs on the behavioral and electrophysiological level. To address these questions, healthy late bilingual subjects performed a translation and a within-language control task while a 128-channel EEG was recorded. Behavioral data showed faster responses for translation compared to within-language word generation and faster responses for backward than forward translation. The ERP-analysis revealed stronger early ( < 200ms) preparatory and attentional processes for between than within word generation. Later (424-630ms) differences were characterized by distinct engagement of domain-general control networks, namely self-monitoring and lexical access interference. Language asymmetry effects occurred at a later stage (600ms), reflecting differences in conceptual processing characterized by a larger involvement of areas implicated in attention, arousal and awareness for forward versus backward translation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. LBM-EP: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images.

    PubMed

    Rapaka, S; Mansi, T; Georgescu, B; Pop, M; Wright, G A; Kamen, A; Comaniciu, Dorin

    2012-01-01

    Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient's heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC'10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 - 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning.

  20. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998

  1. The sensitivity and specificity of the neurological examination in polyneuropathy patients with clinical and electrophysiological correlations

    PubMed Central

    Alabdali, Majed; Alsulaiman, Abdulla; Albulaihe, Hana; Breiner, Ari; Katzberg, Hans D.; Aljaafari, Danah; Lovblom, Leif E.; Bril, Vera

    2017-01-01

    Introduction Polyneuropathy is one of the most prevalent neurologic disorders. Although several studies explored the role of the neurological examination in polyneuropathy, they were mostly restricted to specific subgroups of patients and have not correlated examination findings with symptoms and electrophysiological results. Objectives To explore the sensitivity and specificity of different neurological examination components in patients with diverse etiologies for polyneuropathy, find the most sensitive combination of examination components for polyneuropathy detection, and correlate examination findings with symptoms and electrophysiological results. Methods Patients with polyneuropathy attending the neuromuscular clinic from 01/2013 to 09/2015 were evaluated. Inclusion criteria included symptomatic polyneuropathy, which was confirmed by electrophysiological studies. 47 subjects with no symptoms or electrophysiological findings suggestive for polyneuropathy, served as controls. Results The total cohort included 312 polyneuropathy patients, with a mean age of 60±14 years. Abnormal examination was found in 95%, most commonly sensory findings (86%). The most common abnormal examination components were impaired ankle reflexes (74%), vibration (73%), and pinprick (72%) sensation. Combining ankle reflex examination with vibration or pinprick perception had the highest sensitivity, of 88%. The specificities of individual examination component were generally high, excluding ankle reflexes (62%), and vibration perception (77%). Abnormal examination findings were correlated with symptomatic weakness and worse electrophysiological parameters. Conclusion The neurological examination is a valid, sensitive and specific tool for diagnosing polyneuropathy, and findings correlate with polyneuropathy severity. Ankle reflex examination combined with either vibration or pinprick sensory testing is the most sensitive combination for diagnosing polyneuropathy, and should be

  2. The Use of Electrophysiology in the Study of Early Development

    ERIC Educational Resources Information Center

    Szucs, Denes

    2005-01-01

    Electrophysiology is a timely and important tool in the study of early cognitive development. This commentary polishes the definition of event-related potential (ERP) components; often interpreted as expressions of mental processes. Further, attention is drawn to time-frequency analysis of the electroencephalogram (EEG) which conveys much more…

  3. To4, the first Tityus obscurus β-toxin fully electrophysiologically characterized on human sodium channel isoforms.

    PubMed

    Duque, Harry Morales; Mourão, Caroline Barbosa Farias; Tibery, Diogo Vieira; Barbosa, Eder Alves; Campos, Leandro Ambrósio; Schwartz, Elisabeth Ferroni

    2017-09-01

    Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNa v 1.1-hNa v 1.7) at low concentrations, and has more pronounced activity on hNa v 1.1, hNa v 1.2 and hNa v 1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Electrophysiological characterization of human rectal afferents

    PubMed Central

    Ng, Kheng-Seong; Brookes, Simon J.; Montes-Adrian, Noemi A.; Mahns, David A.

    2016-01-01

    It is presumed that extrinsic afferent nerves link the rectum to the central nervous system. However, the anatomical/functional existence of such nerves has never previously been demonstrated in humans. Therefore, we aimed to identify and make electrophysiological recordings in vitro from extrinsic afferents, comparing human rectum to colon. Sections of normal rectum and colon were procured from anterior resection and right hemicolectomy specimens, respectively. Sections were pinned and extrinsic nerves dissected. Extracellular visceral afferent nerve activity was recorded. Neuronal responses to chemical [capsaicin and “inflammatory soup” (IS)] and mechanical (Von Frey probing) stimuli were recorded and quantified as peak firing rate (range) in 1-s intervals. Twenty-eight separate nerve trunks from eight rectums were studied. Of these, spontaneous multiunit afferent activity was recorded in 24 nerves. Peak firing rates increased significantly following capsaicin [median 6 (range 3–25) spikes/s vs. 2 (1–4), P < 0.001] and IS [median 5 (range 2–18) spikes/s vs. 2 (1–4), P < 0.001]. Mechanosensitive “hot spots” were identified in 16 nerves [median threshold 2.0 g (range 1.4–6.0 g)]. In eight of these, the threshold decreased after IS [1.0 g (0.4–1.4 g)]. By comparison, spontaneous activity was recorded in only 3/30 nerves studied from 10 colons, and only one hot spot (threshold 60 g) was identified. This study confirms the anatomical/functional existence of extrinsic rectal afferent nerves and characterizes their chemo- and mechanosensitivity for the first time in humans. They have different electrophysiological properties to colonic afferents and warrant further investigation in disease states. PMID:27789454

  5. Effects of axisymmetric contractions on turbulence of various scales

    NASA Technical Reports Server (NTRS)

    Tan-Atichat, J.; Nagib, H. M.; Drubka, R. E.

    1980-01-01

    Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cubic contour contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, where viscous decay over the contraction length was negligible, or when a first order correction for viscous decay was applied to the results.

  6. Assessment of the cellular and electrophysiological response of cardiomyocytes to radiation

    NASA Astrophysics Data System (ADS)

    Helm, Alexander; Ritter, Sylvia; Durante, Marco; Friess, Johannes; Thielemann, Christiane; Mr; Frank, Simon

    Cardiac disease is considered as a late effect resulting from an exposure during long-term space missions. Yet, the underlying mechanisms and the impact of radiation quality and dose are not well understood. To address this topic, we used cardiomyocytes derived from mouse embryonic stem cells (mESC) as a model system. This model has already been successfully used for cardiotoxicity screening of new drugs. Both, the cellular and electrophysiological response to X-ray irradiation were examined. Cellular endpoints such as the induction of micronuclei, apoptosis, number of binucleated cells and expression of connexin43 (Cx 43) were analyzed by standard techniques. For electrophysiological studies a microelectrode array (MEA) was used allowing non-invasive recordings of electrical signals such as signal amplitude and shape, beat rate and conduction velocity. Data analysis was performed using the MATLAB based software DrCell. As a first approach, cardiomyocytes were generated by differentiation of mESC via the formation of embryoid bodies. However, the system proved to be unsuitable due to large intra- and inter-sample variations. In consecutive experiments we used commercially available Cor.At cells, i.e. a pure culture of mESC derived cardiomyocytes. For the analysis of cellular and electrophysiological endpoints Cor.At cells were seeded onto chamber slides or MEA chips, respectively. Irradiation with 0.5 and 2 Gy X-rays (250 kV, 16 mA) was performed two days after seeding. At that time cardiomyocytes are electrically coupled through gap junctions and form a spontaneously beating network. Samples were examined up to four days after exposure. Analysis of the electrophysiological data revealed only minor differences between controls and X-irradiated samples indicating the functionality of cardiomyocytes is not within the dose range examined. Currently, further experiments are performed to statistically verify this finding. Additionally, the expression of Cx 43, a major

  7. Prognostic significance of electrical alternans versus signal averaged electrocardiography in predicting the outcome of electrophysiological testing and arrhythmia-free survival

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Rosenbaum, D. S.; Ruskin, J. N.; Garan, H.; Cohen, R. J.

    1998-01-01

    OBJECTIVE: To investigate the accuracy of signal averaged electrocardiography (SAECG) and measurement of microvolt level T wave alternans as predictors of susceptibility to ventricular arrhythmias. DESIGN: Analysis of new data from a previously published prospective investigation. SETTING: Electrophysiology laboratory of a major referral hospital. PATIENTS AND INTERVENTIONS: 43 patients, not on class I or class III antiarrhythmic drug treatment, undergoing invasive electrophysiological testing had SAECG and T wave alternans measurements. The SAECG was considered positive in the presence of one (SAECG-I) or two (SAECG-II) of three standard criteria. T wave alternans was considered positive if the alternans ratio exceeded 3.0. MAIN OUTCOME MEASURES: Inducibility of sustained ventricular tachycardia or fibrillation during electrophysiological testing, and 20 month arrhythmia-free survival. RESULTS: The accuracy of T wave alternans in predicting the outcome of electrophysiological testing was 84% (p < 0.0001). Neither SAECG-I (accuracy 60%; p < 0.29) nor SAECG-II (accuracy 71%; p < 0.10) was a statistically significant predictor of electrophysiological testing. SAECG, T wave alternans, electrophysiological testing, and follow up data were available in 36 patients while not on class I or III antiarrhythmic agents. The accuracy of T wave alternans in predicting the outcome of arrhythmia-free survival was 86% (p < 0.030). Neither SAECG-I (accuracy 65%; p < 0.21) nor SAECG-II (accuracy 71%; p < 0.48) was a statistically significant predictor of arrhythmia-free survival. CONCLUSIONS: T wave alternans was a highly significant predictor of the outcome of electrophysiological testing and arrhythmia-free survival, while SAECG was not a statistically significant predictor. Although these results need to be confirmed in prospective clinical studies, they suggest that T wave alternans may serve as a non-invasive probe for screening high risk populations for malignant ventricular

  8. Radiation exposure to operator and patients during cardiac electrophysiology study, radiofrequency catheter ablation and cardiac device implantation procedures

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Cho, J. H.; Park, S. J.; Kim, J. S.; On, Y. K.; Huh, J.

    2015-10-01

    The purpose of this study was to measure the radiation exposure to operator and patient during cardiac electrophysiology study, radiofrequency catheter ablation and cardiac device implantation procedures and to calculate the allowable number of cases per year. We carried out 9 electrophysiology studies, 40 radiofrequency catheter ablation and 11 cardiac device implantation procedures. To measure occupational radiation dose and dose-area product (DAP), 13 photoluminescence glass dosimeters were placed at eyes (inside and outside lead glass), thyroids (inside and outside thyroid collar), chest (inside and outside lead apron), wrists, genital of the operator (inside lead apron), and 6 of photoluminescence glass dosimeters were placed at eyes, thyroids, chest and genital of the patient. Exposure time and DAP values were 11.7 ± 11.8 min and 23.2 ± 26.2 Gy cm2 for electrophysiology study; 36.5 ± 42.1 min and 822.4 ± 125.5 Gy cm2 for radiofrequency catheter ablation; 16.2 ± 9.3 min and 27.8 ± 16.5 Gy cm2 for cardiac device implantation procedure, prospectively. 4591 electrophysiology studies can be conducted within the occupational exposure limit for the eyes (150 mSv), and 658-electrophysiology studies with radiofrequency catheter ablation can be carried out within the occupational exposure limit for the hands (500 mSv). 1654 cardiac device implantation procedure can be conducted within the occupational exposure limit for the eyes (150 mSv). The amounts of the operator and patient's radiation exposure were comparatively small. So, electrophysiology study, radio frequency catheter ablation and cardiac device implantation procedures are safe when performed with modern equipment and optimized protective radiation protect equipment.

  9. Motor learning processes: an electrophysiologic perspective.

    PubMed

    Velasques, Bruna; Ferreira, Camila; Teixeira, Silmar Silva; Furtado, Vernon; Mendes, Elizabeth; Basile, Luis; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2007-12-01

    The goal of the present study was to investigate electrophysiologic, qEEG, changes when individuals were exposed to a motor task. Subjects brain electrical activity was analyzed before and after the typewriting training task. For the neurophysiological variable asymmetry, a paired t-test was performed to compare each moment, pre and post-task, in the beta bands. The findings showed a change for the qEEG variable in each scalp site, F3/F4; C3/C4 and P3/P4. These results suggest an adaptation of pre-frontal, sensory-motor and parietal cortex, as a consequence of the typewriting training.

  10. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.

    PubMed

    Li, Fang-Ye; Chen, Xiao-Lei; Xu, Bai-Nan

    2016-09-01

    To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates. All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients. Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.

  11. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    PubMed

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Lu, Nanshu; Ghaffari, Roozbeh; Kim, Yun-Soung; Lee, Stephen P.; Xu, Lizhi; Wu, Jian; Kim, Rak-Hwan; Song, Jizhou; Liu, Zhuangjian; Viventi, Jonathan; de Graff, Bassel; Elolampi, Brian; Mansour, Moussa; Slepian, Marvin J.; Hwang, Sukwon; Moss, Joshua D.; Won, Sang-Min; Huang, Younggang; Litt, Brian; Rogers, John A.

    2011-04-01

    Developing advanced surgical tools for minimally invasive procedures represents an activity of central importance to improving human health. A key challenge is in establishing biocompatible interfaces between the classes of semiconductor device and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use. As examples, we present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radiofrequency electrodes for controlled, local ablation of tissue. Use of such ‘instrumented’ balloon catheters in live animal models illustrates their operation, as well as their specific utility in cardiac ablation therapy. The same concepts can be applied to other substrates of interest, such as surgical gloves.

  13. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology

    PubMed Central

    Port, Russell G.; Gandal, Michael J.; Roberts, Timothy P. L.; Siegel, Steven J.; Carlson, Gregory C.

    2014-01-01

    Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD. PMID:25538564

  14. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology.

    PubMed

    Port, Russell G; Gandal, Michael J; Roberts, Timothy P L; Siegel, Steven J; Carlson, Gregory C

    2014-01-01

    Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD.

  15. Parallel NGO Networks for HIV Control: Risks and Opportunities for NGO Contracting

    PubMed Central

    Zaidi, Shehla; Gul, Xaher; Nishtar, Noureen

    2013-01-01

    Policy measures for preventive and promotive services are increasingly reliant on contracting of NGOs. Contracting is a neo-liberal response relying on open market competition for service delivery tenders. In contracting of health services a common assumption is a monolithic NGO market. A case study of HIV control in Pakistan shows that in reality the NGO market comprises of parallel NGO networks having widely different service packages, approaches and agendas. These parallel networks had evolved over time due to vertical policy agendas. Contracting of NGOs for provision of HIV services was faced with uneven capacities and turf rivalries across both NGO networks. At the same time contracting helped NGO providers belonging to different clusters to move towards standardized service delivery for HIV prevention. Market based measures such as contracting need to be accompanied with wider policy and system measures that overcome silos in NGO working by facilitating a common construct on the health issue, cohesive priorities and integrated working. PMID:23445705

  16. Valuation of Endowment-Insurance Equity-Linked Contracts for Stocks with Exotic Dynamics

    PubMed Central

    2014-01-01

    We consider the fair martingale prize of insurance contracts with benefit received either at the insurer's demise or at maturity. We show how to modify the dynamics of the underlying so as to incorporate the possibility that the traded stock has a strong support at some level. The resulting dynamics is integrated and the fair prize of several natural endowment-insurance contracts is obtained. PMID:24672305

  17. Obesity, Cardiovascular Fitness, and Inhibition Function: An Electrophysiological Study

    PubMed Central

    Song, Tai-Fen; Chi, Lin; Chu, Chien-Heng; Chen, Feng-Tzu; Zhou, Chenglin; Chang, Yu-Kai

    2016-01-01

    The purpose of the present study was to examine how obesity and cardiovascular fitness are associated with the inhibition aspect of executive function from behavioral and electrophysiological perspectives. One hundred college students, aged 18–25 years, were categorized into four groups of equal size on the basis of body mass index and cardiovascular fitness: a normal-weight and high-fitness (NH) group, an obese-weight and high-fitness (OH) group, a normal-weight and low-fitness (NL) group, and an obese-weight and low-fitness (OL) group. Behavioral measures of response time and number of errors, as well as event-related potential measures of P3 and N1, were assessed during the Stroop Task. The results revealed that, in general, the NH group exhibited shorter response times and larger P3 amplitudes relative to the NL and OL groups, wherein the OL group exhibited the longest response time in the incongruent condition. No group differences in N1 indices were also revealed. These findings suggest that the status of being both normal weight and having high cardiovascular fitness is associated with better behavioral and later stages of electrophysiological indices of cognitive function. PMID:27512383

  18. Cluster of wound botulism in California: clinical, electrophysiologic, and pathologic study.

    PubMed

    Maselli, R A; Ellis, W; Mandler, R N; Sheikh, F; Senton, G; Knox, S; Salari-Namin, H; Agius, M; Wollmann, R L; Richman, D P

    1997-10-01

    Over a period of 15 months we have seen 6 patients with long-standing history of subcutaneous heroin injections who experienced acute blurred vision, dysphagia, dysarthria, and generalized weakness. Decreased or absent deep tendon reflexes, pupillary abnormalities, incremental responses to fast repetitive nerve stimulation, and positive serology for Clostridia botulinum toxin A were found, but not in all cases. Muscle biopsies showed variable signs of neurogenic atrophy. In vitro electrophysiology studies revealed decreased end-plate potentials quantal content, confirming the presynaptic nature of the disorder. Mechanical ventilation was required in 5 patients. Half of the patients were treated with polyvalent antitoxiin. Prognosis was favorable, though recovery was slow. In conclusion, acute bulbar weakness with visual symptoms in patients with subcutaneous heroin abuse strongly suggets the possibility of wound botulism. High diagnostic suspicion combined with histology and in vitro electrophysiology confirmation of presynaptic failure, especially in seronegative cases, may significantly improve morbidity.

  19. Electrophysiology of Axonal Constrictions

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  20. The Electrophysiological Correlates of Scientific Innovation Induced by Heuristic Information

    ERIC Educational Resources Information Center

    Luo, Junlong; Du, Xiumin; Tang, Xiaochen; Zhang, Entao; Li, Haijiang; Zhang, Qinglin

    2013-01-01

    In this study, novel and old scientific innovations (NSI and OSI) were selected as materials to explore the electrophysiological correlates of scientific innovation induced by heuristic information. Using event-related brain potentials (ERPs) to do so, college students solved NSI problems (for which they did not know the answers) and OSI problems…

  1. Electrophysiological Evaluation of Dysphagia in the Mild or Moderate Patients with Multiple Sclerosis: A Concept of Subclinical Dysphagia.

    PubMed

    Beckmann, Yesim; Gürgör, Nevin; Çakır, Ahmet; Arıcı, Şehnaz; İncesu, Tülay Kurt; Seçil, Yaprak; Ertekin, Cumhur

    2015-06-01

    Swallowing mechanism and neurogenic dysphagia in MS have been rarely studied by electromyographical (EMG) methods. This study aims to evaluate the presence of subclinical dysphagia in patients with mild multiple sclerosis (MS) using electrophysiological methods. A prospective study of 51 patients with relapsing remitting multiple sclerosis and 18 age-matched healthy adults was investigated. We used electromyography to measure the activity of the submental muscles during swallowing. Electrophysiological recordings of patients were obtained during relapse, after relapse, and at any time in remission period. Clinical dysphagia was found in 12% of MS patients, while electrophysiological swallowing abnormalities were encountered in 33% of patients. Subclinical dysphagia was determined in 35% of patients during an MS relapse, in 20% of patients after a relapse, and in 25% of all 51 patients in the remission period based on EMG findings. Duration of swallowing signal of submental muscles in all MS patients was found to be longer than in normal subjects (p = 0.001). During swallowing of 50 ml of sequential water, the compensatory respiratory cycles occurred more often in MS patients than normal subjects, especially during a relapse (p = 0.005). This is the first study investigating swallowing abnormalities and subclinical dysphagia from the electrophysiological aspect in MS patients with mild disability. The electrophysiological tests described in this study are useful to uncover subclinical dysphagia since they have the advantage of being rapid, easy to apply, non-invasive, and without risk for the patients.

  2. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    PubMed Central

    Möller, Clemens; Witchel, Harry

    2011-01-01

    The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening. PMID:22131974

  3. Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome

    PubMed Central

    Yadegari, Samira; Nafissi, Shahriar; Kazemi, Neda

    2014-01-01

    Background: Incidence and predominant subtype of Guillain-Barre syndrome (GBS) differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS. Methods: We retrospectively evaluated the medical records and electrodiagnostic study (EDS) of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor sensory axonal neuropathy (AMSAN). The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF) profile were assessed. Results: Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB) was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase. Conclusion: AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding. PMID:25422732

  4. Candidate Electrophysiological Endophenotypes of Hyper-Reactivity to Change in Autism

    ERIC Educational Resources Information Center

    Gomot, Marie; Blanc, Romuald; Clery, Helen; Roux, Sylvie; Barthelemy, Catherine; Bruneau, Nicole

    2011-01-01

    Although resistance to change is a main feature of autism, the brain processes underlying this aspect of the disorder remain poorly understood. The aims of this study were to examine neural basis of auditory change-detection in children with autism spectrum disorders (ASD; N = 27) through electrophysiological patterns (MMN, P3a) and to test…

  5. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology

    PubMed Central

    Tse, Gary; Lai, Eric Tsz Him; Yeo, Jie Ming; Tse, Vivian; Wong, Sunny Hei

    2016-01-01

    The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field. PMID:27303305

  6. Polymorphic Contracts

    NASA Astrophysics Data System (ADS)

    Belo, João Filipe; Greenberg, Michael; Igarashi, Atsushi; Pierce, Benjamin C.

    Manifest contracts track precise properties by refining types with predicates - e.g., {x : Int |x > 0 } denotes the positive integers. Contracts and polymorphism make a natural combination: programmers can give strong contracts to abstract types, precisely stating pre- and post-conditions while hiding implementation details - for example, an abstract type of stacks might specify that the pop operation has input type {x :α Stack |not ( empty x )} . We formalize this combination by defining FH, a polymorphic calculus with manifest contracts, and establishing fundamental properties including type soundness and relational parametricity. Our development relies on a significant technical improvement over earlier presentations of contracts: instead of introducing a denotational model to break a problematic circularity between typing, subtyping, and evaluation, we develop the metatheory of contracts in a completely syntactic fashion, omitting subtyping from the core system and recovering it post facto as a derived property.

  7. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes

    PubMed Central

    Urbano, Francisco J.; Simpson, John I.; Llinás, Rodolfo R.

    2006-01-01

    The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons. The recordings of activity in DCK neurons obtained by using voltage-sensitive dye imaging showed that activity is not limited to a single neuron, but rather that clusters of DCK neurons can be active in unison. These electrophysiological results show that the DCK/VLO neurons have unique properties that set them apart from the neurons in the PO nucleus. This finding indicates that motor control, from the perspective of the olivocerebellar system, is fundamentally different for the oculomotor and the somatomotor systems. PMID:17050678

  8. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins

    PubMed Central

    Hochbaum, Daniel R.; Zhao, Yongxin; Farhi, Samouil L.; Klapoetke, Nathan; Werley, Christopher A.; Kapoor, Vikrant; Zou, Peng; Kralj, Joel M.; Maclaurin, Dougal; Smedemark-Margulies, Niklas; Saulnier, Jessica L.; Boulting, Gabriella L.; Straub, Christoph; Cho, Yong Ku; Melkonian, Michael; Wong, Gane Ka-Shu; Harrison, D. Jed; Murthy, Venkatesh N.; Sabatini, Bernardo; Boyden, Edward S.; Campbell, Robert E.; Cohen, Adam E.

    2014-01-01

    All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and 2, which show improved brightness and voltage sensitivity, microsecond response times, and produce no photocurrent. We engineered a novel channelrhodopsin actuator, CheRiff, which shows improved light sensitivity and kinetics, and spectral orthogonality to the QuasArs. A co-expression vector, Optopatch, enabled crosstalk-free genetically targeted all-optical electrophysiology. In cultured neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials in dendritic spines, synaptic transmission, sub-cellular microsecond-timescale details of action potential propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell-derived neurons. In brain slice, Optopatch induced and reported action potentials and subthreshold events, with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without use of conventional electrodes. PMID:24952910

  9. Electrophysiological characterization of recombinant and native P2X receptors.

    PubMed

    Niforatos, Wende; Jarvis, Michael F

    2004-10-01

    ATP acts as a fast neurotransmitter by activating a family of ligand-gated ion channels, the P2X receptors. Functional homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localized on primary sensory afferent neurons that transmit nociceptive sensory information. Activation of these P2X(3)-containing channels may provide a specific mechanism whereby ATP, released via synaptic transmission or by cellular injury, elicits pain. The experimental procedures described in this unit are useful for the electorphysiological characterization of P2X receptors. In addition, these protocols provide methods for the evaluation of ligands that interact with P2X receptors that are either natively expressed on excitable cells or cloned and expressed in heterologous cell systems. These methods are derived from standard electrophysiological principles and procedures that are applicable to a wide variety of ligand-gated ion channels. Specific attention is given here to the reliable electrophysiological measurement of both quickly (P2X(3)) and more slowly (P2X(2) and P2X(2/3)) desensitizing receptors.

  10. COMMUNICATION: Electrophysiological response dynamics during focal cortical infarction

    NASA Astrophysics Data System (ADS)

    Chiganos, Terry C., Jr.; Jensen, Winnie; Rousche, Patrick J.

    2006-12-01

    While the intracellular processes of hypoxia-induced necrosis and the intercellular mechanisms of post-ischemic neurotoxicity associated with stroke are well documented, the dynamic electrophysiological (EP) response of neurons within the core or periinfarct zone remains unclear. The present study validates a method for continuous measurement of the local EP responses during focal cortical infarction induced via photothrombosis. Single microwire electrodes were acutely implanted into the primary auditory cortex of eight rats. Multi-unit neural activity, evoked via a continuous 2 Hz click stimulus, was recorded before, during and after infarction to assess neuronal function in response to local, permanent ischemia. During sham infarction, the average stimulus-evoked peak firing rate over 20 min remained stable at 495.5 ± 14.5 spikes s-1, indicating temporal stability of neural function under normal conditions. Stimulus-evoked peak firing was reliably reduced to background levels (firing frequency in the absence of stimulus) following initiation of photothrombosis over a period of 439 ± 92 s. The post-infarction firing patterns exhibited unique temporal degradation of the peak firing rate, suggesting a variable response to ischemic challenge. Despite the inherent complexity of cerebral ischemia secondary to microvascular occlusion, complete loss of EP function consistently occurred 300-600 s after photothrombosis. The results suggest that microwire recording during photothrombosis provides a simple and highly efficacious strategy for assessing the electrophysiological dynamics of cortical infarction.

  11. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  12. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice.

    PubMed

    Milan, David J; Lubitz, Steven A; Kääb, Stefan; Ellinor, Patrick T

    2010-08-01

    Genome-wide association studies have been increasingly used to study the genetics of complex human diseases. Within the field of cardiac electrophysiology, this technique has been applied to conditions such as atrial fibrillation, and several electrocardiographic parameters including the QT interval. While these studies have identified multiple genomic regions associated with each trait, questions remain, including the best way to explore the pathophysiology of each association and the potential for clinical utility. This review will summarize recent genome-wide association study results within cardiac electrophysiology and discuss their broader implications in basic science and clinical medicine. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  13. 29 CFR 4.122 - Contracts for operation of postal contract stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Application of the McNamara-O'Hara Service Contract Act Specific Exclusions § 4.122 Contracts for operation of postal contract stations. The Act, in paragraph (7) of section 7, exempts from its provisions “any... 29 Labor 1 2010-07-01 2010-07-01 true Contracts for operation of postal contract stations. 4.122...

  14. Lyme carditis. Electrophysiologic and histopathologic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reznick, J.W.; Braunstein, D.B.; Walsh, R.L.

    1986-11-01

    To further define the nature of Lyme carditis, electrophysiologic study and endomyocardial biopsy were performed in a patient with Lyme disease, whose principal cardiac manifestation was high-degree atrioventricular block. Intracardiac recording demonstrated supra-Hisian block and complete absence of an escape mechanism. Gallium 67 scanning demonstrated myocardial uptake, and right ventricular endomyocardial biopsy revealed active lymphocytic myocarditis. A structure compatible with a spirochetal organism was demonstrated in one biopsy specimen. It is concluded that Lyme disease can produce active myocarditis, as suggested by gallium 67 imaging and confirmed by endomyocardial biopsy. Furthermore, the presence of high-grade atrioventricular block in this diseasemore » requires aggressive management with temporary pacemaker and corticosteroid therapy.« less

  15. Resolving Contract Disputes

    DTIC Science & Technology

    1988-11-01

    as part of the required training for Army contracting personnel. Specifically, these were courses in contract administration and contract law offered...courts and boards. The process itself was discussed in very general terms.[7] The AFIT Government Contract Law Course concerns itself with legal concepts...Washington, D.C., 1984 4. . Air Force Institute of Technology, Government Contract Law , Course Manual, Wright-Patterson Air Force Base, Ohio, April

  16. An infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes.

    PubMed

    McPheeters, Matthew T; Wang, Yves T; Werdich, Andreas A; Jenkins, Michael W; Laurita, Kenneth R

    2017-01-01

    Human cardiac myocytes derived from pluripotent stem cells (hCM) have invigorated interest in genetic disease mechanisms and cardiac safety testing; however, the technology to fully assess electrophysiological function in an assay that is amenable to high throughput screening has lagged. We describe a fully contactless system using optical pacing with an infrared (IR) laser and multi-site high fidelity fluorescence imaging to assess multiple electrophysiological parameters from hCM monolayers in a standard 96-well plate. Simultaneous multi-site action potentials (FluoVolt) or Ca2+ transients (Fluo4-AM) were measured, from which high resolution maps of conduction velocity and action potential duration (APD) were obtained in a single well. Energy thresholds for optical pacing were determined for cell plating density, laser spot size, pulse width, and wavelength and found to be within ranges reported previously for reliable pacing. Action potentials measured using FluoVolt and a microelectrode exhibited the same morphology and rate of depolarization. Importantly, we show that this can be achieved accurately with minimal damage to hCM due to optical pacing or fluorescence excitation. Finally, using this assay we demonstrate that hCM exhibit reproducible changes in repolarization and impulse conduction velocity for Flecainide and Quinidine, two well described reference compounds. In conclusion, we demonstrate a high fidelity electrophysiological screening assay that incorporates optical pacing with IR light to control beating rate of hCM monolayers.

  17. 48 CFR 35.006 - Contracting methods and contract type.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... indicated a high degree of probability that development is feasible and (2) the Government has determined... SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 35.006 Contracting methods and..., performance objectives, and specifications for the work can be defined will largely determine the type of...

  18. A low-energy x-ray irradiator for electrophysiological studies.

    PubMed

    Schauer, D A; Zeman, G H; Pellmar, T C

    1989-01-01

    A 50 kVp molybdenum target/filter x-ray tube has been installed inside a lead-shielded Faraday cage. High-dose rates of up to 1.54 Gy min-1 (17.4 keV weighted average photons) have been used to conduct local in vitro irradiations of the hippocampal region of guinea pig brains. Electrophysiological recordings of subtle changes in neuronal activity indicate this system is suitable for this application.

  19. Effects of electrical stimulus composition on cardiac electrophysiology in a rodent model of electroconvulsive therapy.

    PubMed

    Singh, Nagendra Madan; Sathyaprabha, T N; Thirthalli, Jagadisha; Andrade, Chittaranjan

    2018-01-01

    No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Adult female Wistar rats ( n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study.

  20. Effects of electrical stimulus composition on cardiac electrophysiology in a rodent model of electroconvulsive therapy

    PubMed Central

    Singh, Nagendra Madan; Sathyaprabha, T. N.; Thirthalli, Jagadisha; Andrade, Chittaranjan

    2018-01-01

    Background: No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Materials and Methods: Adult female Wistar rats (n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Results: Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Conclusions: Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study. PMID:29736058

  1. Anatomical and Electrophysiological Changes in Striatal TH Interneurons after Loss of the Nigrostriatal Dopaminergic Pathway

    PubMed Central

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M.

    2013-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3000 striatal EGFP-TH interneurons per hemisphere in mice. Here we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory postsynaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson’s disease by increasing feedforward GABAergic inhibition exerted by these interneurons. PMID:24173616

  2. Anatomical and electrophysiological changes in striatal TH interneurons after loss of the nigrostriatal dopaminergic pathway.

    PubMed

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M

    2015-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3,000 striatal EGFP-TH interneurons per hemisphere in mice. Here, we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory post-synaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson's disease by increasing feedforward GABAergic inhibition exerted by these interneurons.

  3. Electrophysiological and behavioral responses of Dendroctonus valens to non-host volatiles

    Treesearch

    Long-wa Zhang; Nancy E. Gillette; Jiang-hua Sun

    2007-01-01

    Non-host volatiles (NHVs) that are often reported as being disruptive to coniferophagous bark beetles were tested for both electrophysiological and behavioral effects on the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), which was accidentally introduced into China in the mid-1980's. All NHVs tested...

  4. Rationale and design of the Duke Electrophysiology Genetic and Genomic Studies (EPGEN) biorepository.

    PubMed

    Koontz, Jason I; Haithcock, Daniel; Cumbea, Valerie; Waldron, Anthony; Stricker, Kristie; Hughes, Amy; Nilsson, Kent; Sun, Albert; Piccini, Jonathan P; Kraus, William E; Pitt, Geoffrey S; Shah, Svati H; Hranitzky, Patrick

    2009-11-01

    Disturbances in cardiac rhythm can lead to significant morbidity and mortality. Many arrhythmias are known to have a heritable component, but the degree to which genetic variation contributes to disease risk and morbidity is poorly understood. The EPGEN is a prospective single-center repository that archives DNA, RNA, and protein samples obtained at the time of an electrophysiologic evaluation or intervention. To identify genes and molecular variants that are associated with risk for arrhythmic phenotypes, EPGEN uses unbiased genomic screening; candidate gene analysis; and both unbiased and targeted transcript, protein, and metabolite profiling. To date, EPGEN has successfully enrolled >1,500 subjects. The median age of the study population is 62.9 years; 35% of the subjects are female and 21% are black. To this point, the study population has been composed of patients who had undergone defibrillator (implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator) implantation (45%), electrophysiology studies or ablation procedures (35%), and pacemaker implantation or other procedures (20%). The cohort has a high prevalence of comorbidities, including diabetes (33%), hypertension (73%), chronic kidney disease (26%), and peripheral vascular disease (13%). We have established a biorepository and clinical database composed of patients with electrophysiologic diseases. EPGEN will seek to (1) improve risk stratification, (2) elucidate mechanisms of arrhythmogenesis, and (3) identify novel pharmacologic targets for the treatment of heart rhythm disorders.

  5. [Children with specific language impairment: electrophysiological and pedaudiological findings].

    PubMed

    Rinker, T; Hartmann, K; Smith, E; Reiter, R; Alku, P; Kiefer, M; Brosch, S

    2014-08-01

    Auditory deficits may be at the core of the language delay in children with Specific Language Impairment (SLI). It was therefore hypothesized that children with SLI perform poorly on 4 tests typically used to diagnose central auditory processing disorder (CAPD) as well in the processing of phonetic and tone stimuli in an electrophysiological experiment. 14 children with SLI (mean age 61,7 months) and 16 children without SLI (mean age 64,9 months) were tested with 4 tasks: non-word repetition, language discrimination in noise, directional hearing, and dichotic listening. The electrophysiological recording Mismatch Negativity (MMN) employed sine tones (600 vs. 650 Hz) and phonetic stimuli (/ε/ versus /e/). Control children and children with SLI differed significantly in the non-word repetition as well as in the dichotic listening task but not in the two other tasks. Only the control children recognized the frequency difference in the MMN-experiment. The phonetic difference was discriminated by both groups, however, effects were longer lasting for the control children. Group differences were not significant. Children with SLI show limitations in auditory processing that involve either a complex task repeating unfamiliar or difficult material and show subtle deficits in auditory processing at the neural level. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Exploring deficient emotion regulation in adult ADHD: electrophysiological evidence.

    PubMed

    Shushakova, Anna; Ohrmann, Patricia; Pedersen, Anya

    2018-06-01

    Emotional dysregulation (ED) is being increasingly recognized as a core feature of attention-deficit/hyperactivity disorder (ADHD), but the pathophysiological underpinnings remain unclear. In this study, we provide meaningful electrophysiological evidence of ED in adult patients with ADHD (n = 39) compared to healthy controls (n = 40) by exploring the electrophysiological correlates of the emotion regulation strategies reappraisal, distraction, and expressive suppression. Event-related potentials (ERPs) were recorded during passive viewing of neutral and negative images, as well as during emotion regulation. The patients with ADHD exhibited increased frontal late positive potential (LPP) amplitudes during passive viewing of the aversive images and during emotion regulation. Compared with the healthy controls, a subgroup of medication-naïve patients with ADHD (n = 25) also exhibited larger centroparietal LPP amplitudes and provided more negative ratings of the aversive and neutral images. Both the frontal and centroparietal LPP amplitudes were associated with ADHD symptom severity. However, no significant deficit in LPP modulation during emotion regulation was found. These findings strongly support the clinical observation of increased emotional responsivity toward negative stimuli and difficulty during the implementation of emotion regulation strategies and thus encourage the implementation of emotion regulation modules in the treatment of adult patients with ADHD.

  7. Modification of Personal Hygiene and Grooming Behaviors with Contingency Contracting: A Brief Review and Case Study.

    ERIC Educational Resources Information Center

    Allen, Sarah J.; Kramer, Jack J.

    1990-01-01

    Presents discussion of basic components and characteristics of contingency contracts. Includes case study in which contingency contracting procedures were integrated within a behavioral consultation model used by a school psychologist consulting with a classroom teacher to modify personal hygiene of 12-year-old male. (Author/ABL)

  8. Mechanisms of Percept-Percept and Image-Percept Integration in Vision: Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Dalvit, Silvia; Eimer, Martin

    2011-01-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…

  9. NeuroPigPen: A Scalable Toolkit for Processing Electrophysiological Signal Data in Neuroscience Applications Using Apache Pig.

    PubMed

    Sahoo, Satya S; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A; Lhatoo, Samden D

    2016-01-01

    The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This "neuroscience Big data" represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability-the ability to efficiently process increasing volumes of data; (b) Adaptability-the toolkit can be deployed across different computing configurations; and (c) Ease of programming-the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that the toolkit

  10. 48 CFR 34.203 - Solicitation provisions and contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REGULATION SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.203... substantially the same as the provision at FAR 52.234-2, Notice of Earned Value Management System - Pre-Award... System (EVMS) and for which the Government requires an Integrated Baseline Review (IBR) prior to award...

  11. 48 CFR 34.203 - Solicitation provisions and contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATION SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.203... substantially the same as the provision at FAR 52.234-2, Notice of Earned Value Management System - Pre-Award... System (EVMS) and for which the Government requires an Integrated Baseline Review (IBR) prior to award...

  12. 48 CFR 34.203 - Solicitation provisions and contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REGULATION SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.203... substantially the same as the provision at FAR 52.234-2, Notice of Earned Value Management System - Pre-Award... System (EVMS) and for which the Government requires an Integrated Baseline Review (IBR) prior to award...

  13. 48 CFR 34.203 - Solicitation provisions and contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REGULATION SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.203... substantially the same as the provision at FAR 52.234-2, Notice of Earned Value Management System - Pre-Award... System (EVMS) and for which the Government requires an Integrated Baseline Review (IBR) prior to award...

  14. 48 CFR 34.203 - Solicitation provisions and contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATION SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.203... substantially the same as the provision at FAR 52.234-2, Notice of Earned Value Management System - Pre-Award... System (EVMS) and for which the Government requires an Integrated Baseline Review (IBR) prior to award...

  15. Electrophysiological Determinants of Cognitive Style: Implications for Educational and Psychological Research.

    ERIC Educational Resources Information Center

    Dunn, Bruce R.; Reddix, Michael D.

    Implications of two studies conducted by the Institute for Human and Machine Cognition (IHMC) at the University of West Florida (Pensacola) regarding electrophysiological determinants of cognitive style (CS) are discussed. Most of the IHMC's research focuses on bimodal processing theory, according to which the human brain has at least two…

  16. Think Globally: Cross-Linguistic Variation in Electrophysiological Activity during Sentence Comprehension

    ERIC Educational Resources Information Center

    Bornkessel-Schlesewsky, Ina; Kretzschmar, Franziska; Tune, Sarah; Wang, Luming; Genc, Safiye; Philipp, Markus; Roehm, Dietmar; Schlesewsky, Matthias

    2011-01-01

    This paper demonstrates systematic cross-linguistic differences in the electrophysiological correlates of conflicts between form and meaning ("semantic reversal anomalies"). These engender P600 effects in English and Dutch (e.g. [Kolk et al., 2003] and [Kuperberg et al., 2003]), but a biphasic N400--late positivity pattern in German (Schlesewsky…

  17. Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex.

    PubMed

    Le Bé, Jean-Vincent; Silberberg, Gilad; Wang, Yun; Markram, Henry

    2007-09-01

    Neocortical pyramidal cells (PCs) project to various cortical and subcortical targets. In layer V, the population of thick tufted PCs (TTCs) projects to subcortical targets such as the tectum, brainstem, and spinal cord. Another population of layer V PCs projects via the corpus callosum to the contralateral neocortical hemisphere mediating information transfer between the hemispheres. This subpopulation (corticocallosally projecting cells [CCPs]) has been previously described in terms of their morphological properties, but less is known about their electrophysiological properties, and their synaptic connectivity is unknown. We studied the morphological, electrophysiological, and synaptic properties of CCPs by retrograde labeling with fluorescent microbeads in P13-P16 Wistar rats. CCPs were characterized by shorter, untufted apical dendrites, which reached only up to layers II/III, confirming previous reports. Synaptic connections between CCPs were different from those observed between TTCs, both in probability of occurrence and dynamic properties. We found that the CCP network is about 4 times less interconnected than the TTC network and the probability of release is 24% smaller, resulting in a more linear synaptic transmission. The study shows that layer V pyramidal neurons projecting to different targets form subnetworks with specialized connectivity profiles, in addition to the specialized morphological and electrophysiological intrinsic properties.

  18. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    PubMed

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  19. Evaluation of contract time estimation and contracting procedures : technical summary.

    DOT National Transportation Integrated Search

    1996-08-01

    The objective of this research was 1) to provide the DOTD with a systematic approach to the determination of contract duration, and 2) to explore innovative contracting procedures that may prove beneficial in DOTD projects. The innovative contracting...

  20. A clinical study of electrophysiological correlates of behavioural comfort levels in cochlear implantees.

    PubMed

    Raghunandhan, S; Ravikumar, A; Kameswaran, Mohan; Mandke, Kalyani; Ranjith, R

    2014-05-01

    Indications for cochlear implantation have expanded today to include very young children and those with syndromes/multiple handicaps. Programming the implant based on behavioural responses may be tedious for audiologists in such cases, wherein matching an effective Measurable Auditory Percept (MAP) and appropriate MAP becomes the key issue in the habilitation program. In 'Difficult to MAP' scenarios, objective measures become paramount to predict optimal current levels to be set in the MAP. We aimed to (a) study the trends in multi-modal electrophysiological tests and behavioural responses sequentially over the first year of implant use; (b) generate normative data from the above; (c) correlate the multi-modal electrophysiological thresholds levels with behavioural comfort levels; and (d) create predictive formulae for deriving optimal comfort levels (if unknown), using linear and multiple regression analysis. This prospective study included 10 profoundly hearing impaired children aged between 2 and 7 years with normal inner ear anatomy and no additional handicaps. They received the Advanced Bionics HiRes 90 K Implant with Harmony Speech processor and used HiRes-P with Fidelity 120 strategy. They underwent, impedance telemetry, neural response imaging, electrically evoked stapedial response telemetry (ESRT), and electrically evoked auditory brainstem response (EABR) tests at 1, 4, 8, and 12 months of implant use, in conjunction with behavioural mapping. Trends in electrophysiological and behavioural responses were analyzed using paired t-test. By Karl Pearson's correlation method, electrode-wise correlations were derived for neural response imaging (NRI) thresholds versus most comfortable level (M-levels) and offset based (apical, mid-array, and basal array) correlations for EABR and ESRT thresholds versus M-levels were calculated over time. These were used to derive predictive formulae by linear and multiple regression analysis. Such statistically predicted M

  1. Short-Term Grafting of Human Neural Stem Cells: Electrophysiological Properties and Motor Behavioral Amelioration in Experimental Parkinsons Disease.

    PubMed

    Martnez-Serrano, Alberto; Pereira, Marta P; Avaliani, Natalia; Nelke, Anna; Kokaia, Merab; Ramos-Moreno, Tania

    2016-12-13

    Cell replacement therapy in Parkinsons disease (PD) still lacks a study addressing the acquisition of electrophysiological properties of human grafted neural stem cells and their relation with the emergence of behavioral recovery after transplantation in the short term. Here we study the electrophysiological and biochemical profiles of two ventral mesencephalic human neural stem cell (NSC) clonal lines (C30-Bcl-XL and C32-Bcl-XL) that express high levels of Bcl-XL to enhance their neurogenic capacity, after grafting in an in vitro parkinsonian model. Electrophysiological recordings show that the majority of the cells derived from the transplants are not mature at 6 weeks after grafting, but 6.7% of the studied cells showed mature electrophysiological profiles. Nevertheless, parallel in vivo behavioral studies showed a significant motor improvement at 7 weeks postgrafting in the animals receiving C30-Bcl-XL, the cell line producing the highest amount of TH+ cells. Present results show that, at this postgrafting time point, behavioral amelioration highly correlates with the spatial dispersion of the TH+ grafted cells in the caudate putamen. The spatial dispersion, along with a high number of dopaminergic-derived cells, is crucial for behavioral improvements. Our findings have implications for long-term standardization of stem cell-based approaches in Parkinsons disease.

  2. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster.

    PubMed

    Willett, Jaime A; Johnson, Ashlyn G; Vogel, Andrea R; Patisaul, Heather B; McGraw, Lisa A; Meitzen, John

    2018-04-01

    Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and

  3. Non-invasive continuous blood pressure monitoring of tachycardic episodes during interventional electrophysiology

    PubMed Central

    Maggi, Roberto; Viscardi, Valentina; Furukawa, Toshiyuki; Brignole, Michele

    2010-01-01

    Aims We thought to evaluate feasibility of continuous non-invasive blood pressure monitoring during procedures of interventional electrophysiology. Methods and results We evaluated continuous non-invasive finger blood pressure (BP) monitoring by means of the Nexfin device in 22 patients (mean age 70 ± 24 years), undergoing procedures of interventional electrophysiology, in critical situations of hypotension caused by tachyarrhythmias or by intermittent incremental ventricular temporary pacing till to the maximum tolerated systolic BP fall (mean 61 ± 14 mmHg per patient at a rate of 195 ± 37 bpm). In all patients, Nexfin was able to detect immediately, at the onset of tachyarrythmia, the changes in BP and recorded reliable waveforms. The quality of the signal was arbitrarily classified as excellent in 11 cases, good in 10 cases, and sufficient in 1 case. In basal conditions, calibrations of the signal occurred every 49.2 ± 24.3 s and accounted for 4% of total monitoring time; during tachyarrhythmias their frequency increased to one every 12.7 s and accounted for 19% of total recording duration. A linear correlation for a range of BP values from 41 to 190 mmHg was found between non-invasive and intra-arterial BP among a total of 1055 beats from three patients who underwent simultaneous recordings with both methods (coefficient of correlation of 0.81, P < 0.0001). Conclusion In conclusion, continuous non-invasive BP monitoring is feasible in the clinical practise of an interventional electrophysiology laboratory without the need of utilization of an intra-arterial BP line. PMID:20837572

  4. Non-invasive continuous blood pressure monitoring of tachycardic episodes during interventional electrophysiology.

    PubMed

    Maggi, Roberto; Viscardi, Valentina; Furukawa, Toshiyuki; Brignole, Michele

    2010-11-01

    We thought to evaluate feasibility of continuous non-invasive blood pressure monitoring during procedures of interventional electrophysiology. We evaluated continuous non-invasive finger blood pressure (BP) monitoring by means of the Nexfin device in 22 patients (mean age 70 ± 24 years), undergoing procedures of interventional electrophysiology, in critical situations of hypotension caused by tachyarrhythmias or by intermittent incremental ventricular temporary pacing till to the maximum tolerated systolic BP fall (mean 61 ± 14 mmHg per patient at a rate of 195 ± 37 bpm). In all patients, Nexfin was able to detect immediately, at the onset of tachyarrythmia, the changes in BP and recorded reliable waveforms. The quality of the signal was arbitrarily classified as excellent in 11 cases, good in 10 cases, and sufficient in 1 case. In basal conditions, calibrations of the signal occurred every 49.2 ± 24.3 s and accounted for 4% of total monitoring time; during tachyarrhythmias their frequency increased to one every 12.7 s and accounted for 19% of total recording duration. A linear correlation for a range of BP values from 41 to 190 mmHg was found between non-invasive and intra-arterial BP among a total of 1055 beats from three patients who underwent simultaneous recordings with both methods (coefficient of correlation of 0.81, P < 0.0001). In conclusion, continuous non-invasive BP monitoring is feasible in the clinical practise of an interventional electrophysiology laboratory without the need of utilization of an intra-arterial BP line.

  5. Subjective Stress, Salivary Cortisol, and Electrophysiological Responses to Psychological Stress

    PubMed Central

    Qi, Mingming; Gao, Heming; Guan, Lili; Liu, Guangyuan; Yang, Juan

    2016-01-01

    The present study aimed to investigate the subjective stress, salivary cortisol, and electrophysiological responses to psychological stress induced by a modified version of a mental arithmetic task. Fifteen participants were asked to estimate whether the multiplication product of two-decimal numbers was above 10 or not either with a time limit (the stress condition) or without a time limit (the control condition). The results showed that participants reported higher levels of stress, anxiety, and negative affect in the stress condition than they did in the control condition. Moreover, the salivary cortisol level continued to increase after the stress condition but exhibited a sharp decrease after the control condition. In addition, the electrophysiological data showed that the amplitude of the frontal-central N1 component was larger for the stress condition than it was for the control condition, while the amplitude of the frontal-central P2 component was larger for the control condition than it was for the stress condition. Our study suggests that the psychological stress characteristics of time pressure and social-evaluative threat caused dissociable effects on perception and on the subsequent attentional resource allocation of visual information. PMID:26925026

  6. 24 CFR 983.206 - HAP contract amendments (to add or substitute contract units).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HAP contract amendments (to add or... Contract § 983.206 HAP contract amendments (to add or substitute contract units). (a) Amendment to substitute contract units. At the discretion of the PHA and subject to all PBV requirements, the HAP contract...

  7. Transcranial magnetic stimulation: physics, electrophysiology, and applications.

    PubMed

    Fatemi-Ardekani, Ali

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate the brain. This review will examine the fundamental principles of physics upon which magnetic stimulation is based, the design considerations of the TMS device, and hypotheses about its electrophysiological effects resulting in neuromodulation. TMS is valuable in neurophysiology research and has significant therapeutic potential in clinical neurology and psychiatry. While TMS can modify neuronal currents in the brain, its underlying mechanism remains unknown. Salient applications are included and some suggestions are outlined for future development of magnetic stimulators that could lead to more effective neuronal stimulation and therefore better therapeutic and diagnostic applications.

  8. 48 CFR 970.5232-8 - Integrated accounting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Integrated accounting. 970... for Management and Operating Contracts 970.5232-8 Integrated accounting. As prescribed in 970.3270(b)(2), insert the following clause: Integrated Accounting (DEC 2000) Integrated accounting procedures...

  9. The resurgence of selective contracting restrictions.

    PubMed

    Marsteller, J A; Bovbjerg, R R; Nichols, L M; Verrilli, D K

    1997-10-01

    As managed care has spread, so has legislation to force plans to contract with any willing provider (AWP) and give patients freedom of choice (FOC). Managed care organizations' selective networks and provider integration reduce patient access to providers, along with provider access to paying patients, so many providers have lobbied for AWP-FOC laws. In opposition are managed care organizations (MCOs), which want full freedom to contract selectively to control prices and utilization. This article comprehensively describes laws in all fifty-one jurisdictions, classifies their relative strength, and assesses the implications of the laws. Most are relatively weak forms and all are limited in application by ERISA and the federal HMO Act. The article also uses an associative multivariate analysis to relate the selective contracting environments to HMO penetration rates, rural population, physician density, and other variables. States with weak laws also have higher HMO penetration and higher physician density, but smaller rural populations. We conclude that the strongest laws overly restrict the management of care, to the likely detriment of cost control. But where market power is rapidly concentrating, not restricting selective contracting could diminish long-term competition and patient access to care. In the face of uncertainty about the impact of these laws, an intermediate approach may be better than all or nothing. States should consider mandating that plans offer point-of-service options, for a separate premium. This option expands patient choice of plans at the time of enrollment and of providers at the time of care, yet maintains plans' ability to control core providers.

  10. How Can We Best Achieve Contracting Unity of Effort in the CENTCOM Area of Responsibility?

    DTIC Science & Technology

    2013-12-01

    3  2.  Literature Review ................................................................................3  3.  Interview Design and...2010, JCC-I/A was re- designated as the Central Command Joint Theater Support Contracting Command (C-JTSCC). Although the military has used...provision of integrated contracted support and management of contractor personnel providing that support to the joint force in a designated operational

  11. Contracting and Higher Education.

    ERIC Educational Resources Information Center

    Ferris, James M.

    1991-01-01

    The potential gains in efficiency of three types of contracts in college administration are contrasted. Contract types include explicit contracts in the budgeting process between the state and higher education institutions; institutional contracting for inputs; and interinstitutional contracting. The tradeoff between production cost savings and…

  12. Neo: an object model for handling electrophysiology data in multiple formats

    PubMed Central

    Garcia, Samuel; Guarino, Domenico; Jaillet, Florent; Jennings, Todd; Pröpper, Robert; Rautenberg, Philipp L.; Rodgers, Chris C.; Sobolev, Andrey; Wachtler, Thomas; Yger, Pierre; Davison, Andrew P.

    2014-01-01

    Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named “Neo,” suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology

  13. Neo: an object model for handling electrophysiology data in multiple formats.

    PubMed

    Garcia, Samuel; Guarino, Domenico; Jaillet, Florent; Jennings, Todd; Pröpper, Robert; Rautenberg, Philipp L; Rodgers, Chris C; Sobolev, Andrey; Wachtler, Thomas; Yger, Pierre; Davison, Andrew P

    2014-01-01

    Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.

  14. Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ

    PubMed Central

    Winslow, R. L.; Scollan, D. F.; Holmes, A.; Yung, C. K.; Zhang, J.; Jafri, M. S.

    2005-01-01

    Three topics of importance to modeling the integrative function of the heart are reviewed. The first is modeling of the ventricular myocyte. Emphasis is placed on excitation-contraction coupling and intracellular Ca2+ handling, and the interpretation of experimental data regarding interval-force relationships. Second, data on use of diffusion tensor magnetic resonance (DTMR) imaging for measuring the anatomical structure of the cardiac ventricles are presented. A method for the semi-automated reconstruction of the ventricles using a combination of gradient recalled acquisition in the steady state (GRASS) and DTMR images is described. Third, we describe how these anatomically and biophysically based models of the cardiac ventricles can be implemented on parallel computers. PMID:11701509

  15. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    PubMed

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a

  16. Comparison of the cardiac electrophysiology and general toxicology of two formulations of intravenous amiodarone in dogs.

    PubMed

    Cushing, Daniel J; Cooper, Warren D; Gralinski, Michael R; Lipicky, Raymond J; Kudenchuk, Peter J; Kowey, Peter R

    2009-09-01

    Intravenous amiodarone (AIV) must be administered slowly after dilution to avoid hypotension, which is due to the cosolvents polysorbate 80 and benzyl alcohol used in its formulation. PM101 is a formulation of amiodarone devoid of these cosolvents, which enables bolus administration. We evaluated any potential toxicity or exaggerated adverse cardiac electrophysiologic effects of PM101 compared with AIV and control. Beagle dogs were treated with the human-equivalent amiodarone loading dose (2.14 mg/kg) with PM101 (bolus push) or AIV (10 min infusion in the toxicology study and bolus push in the electrophysiology study) followed by maintenance infusion (0.014 mg kg(-1) min(-1) through 6 h followed by 0.007 mg kg(-1) min(-1) through 14 days) or a control. General toxicology was assessed in conscious dogs over 14 days. Cardiac electrophysiology was assessed in a separate cohort of anesthetized dogs during the first 20 min of dosing. In the toxicology study, dosing in all animals in the AIV group was terminated within 17 min of initiation due to a severe hypersensitivity reaction. There were no acute adverse clinical signs in the PM101 or control groups. There were no significant effects on body weight or ECG parameters, and no adverse histomorphologic changes were seen in dogs that received PM101 or AIV. No significant exaggerated cardiac electrophysiologic effects of the approved doses PM101 or AIV were observed. PM101 may represent a formulation of intravenous amiodarone that could be administered rapidly without dilution in the setting of life-threatening cardiac arrhythmias.

  17. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  18. Prognostic significance of electrophysiological tests for facial nerve outcome in vestibular schwannoma surgery.

    PubMed

    van Dinther, J J S; Van Rompaey, V; Somers, T; Zarowski, A; Offeciers, F E

    2011-01-01

    To assess the prognostic significance of pre-operative electrophysiological tests for facial nerve outcome in vestibular schwannoma surgery. Retrospective study design in a tertiary referral neurology unit. We studied a total of 123 patients with unilateral vestibular schwannoma who underwent microsurgical removal of the lesion. Nine patients were excluded because they had clinically abnormal pre-operative facial function. Pre-operative electrophysiological facial nerve function testing (EPhT) was performed. Short-term (1 month) and long-term (1 year) post-operative clinical facial nerve function were assessed. When pre-operative facial nerve function, evaluated by EPhT, was normal, the outcome from clinical follow-up at 1-month post-operatively was excellent in 78% (i.e. HB I-II) of patients, moderate in 11% (i.e. HB III-IV), and bad in 11% (i.e. HB V-VI). After 1 year, 86% had excellent outcomes, 13% had moderate outcomes, and 1% had bad outcomes. Of all patients with normal clinical facial nerve function, 22% had an abnormal EPhT result and 78% had a normal result. No statistically significant differences could be observed in short-term and long-term post-operative facial function between the groups. In this study, electrophysiological tests were not able to predict facial nerve outcome after vestibular schwannoma surgery. Tumour size remains the best pre-operative prognostic indicator of facial nerve function outcome, i.e. a better outcome in smaller lesions.

  19. A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology

    PubMed Central

    Heo, Chaejeong; Park, Hyejin; Kim, Yong-Tae; Baeg, Eunha; Kim, Yong Ho; Kim, Seong-Gi; Suh, Minah

    2016-01-01

    Chronic in vivo imaging and electrophysiology are important for better understanding of neural functions and circuits. We introduce the new cranial window using soft, penetrable, elastic, and transparent, silicone-based polydimethylsiloxane (PDMS) as a substitute for the skull and dura in both rats and mice. The PDMS can be readily tailored to any size and shape to cover large brain area. Clear and healthy cortical vasculatures were observed up to 15 weeks post-implantation. Real-time hemodynamic responses were successfully monitored during sensory stimulation. Furthermore, the PDMS window allowed for easy insertion of microelectrodes and micropipettes into the cortical tissue for electrophysiological recording and chemical injection at any location without causing any fluid leakage. Longitudinal two-photon microscopic imaging of Cx3Cr1+/− GFP transgenic mice was comparable with imaging via a conventional glass-type cranial window, even immediately following direct intracortical injection. This cranial window will facilitate direct probing and mapping for long-term brain studies. PMID:27283875

  20. A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

    NASA Astrophysics Data System (ADS)

    Cusimano, N.; Gerardo-Giorda, L.

    2018-06-01

    Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.

  1. Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures.

    PubMed

    Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L

    2013-04-21

    New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate.

  2. Remote Magnetic Navigation for Accurate, Real-time Catheter Positioning and Ablation in Cardiac Electrophysiology Procedures

    PubMed Central

    Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L.

    2013-01-01

    New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate. PMID:23628883

  3. Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging

    PubMed Central

    Saalfrank, Dirk; Konduri, Anil Krishna; Latifi, Shahrzad; Habibey, Rouhollah; Golabchi, Asiyeh; Martiniuc, Aurel Vasile; Knoll, Alois; Ingebrandt, Sven; Blau, Axel

    2015-01-01

    Most in vitro electrophysiology studies extract information and draw conclusions from representative, temporally limited snapshot experiments. This approach bears the risk of missing decisive moments that may make a difference in our understanding of physiological events. This feasibility study presents a simple benchtop cell-culture perfusion system adapted to commercial microelectrode arrays (MEAs), multichannel electrophysiology equipment and common inverted microscopy stages for simultaneous and uninterrupted extracellular electrophysiology and time-lapse imaging at ambient CO2 levels. The concept relies on a transparent, replica-casted polydimethylsiloxane perfusion cap, gravity- or syringe-pump-driven perfusion and preconditioning of pH-buffered serum-free cell-culture medium to ambient CO2 levels at physiological temperatures. The low-cost microfluidic in vitro enabling platform, which allows us to image cultures immediately after cell plating, is easy to reproduce and is adaptable to the geometries of different cell-culture containers. It permits the continuous and simultaneous multimodal long-term acquisition or manipulation of optical and electrophysiological parameter sets, thereby considerably widening the range of experimental possibilities. Two exemplary proof-of-concept long-term MEA studies on hippocampal networks illustrate system performance. Continuous extracellular recordings over a period of up to 70 days revealed details on both sudden and gradual neural activity changes in maturing cell ensembles with large intra-day fluctuations. Correlated time-lapse imaging unveiled rather static macroscopic network architectures with previously unreported local morphological oscillations on the timescale of minutes. PMID:26543581

  4. 48 CFR 227.7009-3 - Additional clauses-contracts except running royalty contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-contracts except running royalty contracts. 227.7009-3 Section 227.7009-3 Federal Acquisition Regulations...—contracts except running royalty contracts. The following clauses are examples for use in patent release and settlement agreements, and license agreements not providing for payment by the Government of a running...

  5. 48 CFR 227.7009-3 - Additional clauses-contracts except running royalty contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-contracts except running royalty contracts. 227.7009-3 Section 227.7009-3 Federal Acquisition Regulations...—contracts except running royalty contracts. The following clauses are examples for use in patent release and settlement agreements, and license agreements not providing for payment by the Government of a running...

  6. Positive Behavioral and Electrophysiological Changes following Neurofeedback Training in Children with Autism

    ERIC Educational Resources Information Center

    Pineda, J. A.; Brang, D.; Hecht, E.; Edwards, L.; Carey, S.; Bacon, M.; Futagaki, C.; Suk, D.; Tom, J.; Birnbaum, C.; Rork, A.

    2008-01-01

    Two electrophysiological studies tested the hypothesis that operant conditioning of mu rhythms via neurofeedback training can renormalize mu suppression, an index of mirror neuron activity, and improve behavior in children diagnosed with autism spectrum disorders (ASD). In Study 1, eight high-functioning ASD participants were assigned to placebo…

  7. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies.

    PubMed

    Nguyen, Hung X; Kirkton, Robert D; Bursac, Nenad

    2018-05-01

    We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.

  8. Contract Actions for Leased Equipment

    DTIC Science & Technology

    1999-06-30

    Fundamentals, Fundamentals of Contract Pricing, and Government Contract Law courses. The additional instruction should emphasize the contracting officers...Contracting Fundamentals, Fundamentals of Contract Pricing, and Government Contract Law courses. This additional instruction should emphasize the important...FAR 107.401 and 207.470 in the Basics of Contracting and Government Contract Law courses, and that price analysis in assessing lease versus purchase

  9. 40 CFR 35.4235 - Are there specific provisions my group's contract(s) must contain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Suspension and Debarment; (g) The following clauses from 40 CFR 30.48: (1) Remedies for breaches of contract...'s contract(s) must contain? 35.4235 Section 35.4235 Protection of Environment ENVIRONMENTAL... provisions my group's contract(s) must contain? Your group must include the following provisions in each of...

  10. Contract Learning.

    ERIC Educational Resources Information Center

    Gilbert, Jay

    Academic work carried out through learning contracts at Empire State College is described. Learning contracts are defined and examples are given. Faculty roles, educational advantages, and implementation methods are discussed. (MLH)

  11. 48 CFR 35.006 - Contracting methods and contract type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... short-duration fixed-price contract may be useful for developing system design concepts, resolving... contracts as designs become more firmly established, risks are reduced, and production tooling, equipment...

  12. Report: Improved Contract Administration Needed for the Customer Technology Solutions Contract

    EPA Pesticide Factsheets

    Report #13-P-0398, September 16, 2013. Based on our review of the WCF contract EPW08034, which ended September 2012, the EPA needs to improve its contract administration to assist in managing other similar type contracts.

  13. 48 CFR 1334.202 - Integrated baseline reviews.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1334.202 Integrated baseline reviews. An Integrated Baseline Review shall be conducted when an Earned Value Management System... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Integrated baseline...

  14. 48 CFR 1334.202 - Integrated baseline reviews.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1334.202 Integrated baseline reviews. An Integrated Baseline Review shall be conducted when an Earned Value Management System... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Integrated baseline...

  15. 48 CFR 1334.202 - Integrated baseline reviews.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1334.202 Integrated baseline reviews. An Integrated Baseline Review shall be conducted when an Earned Value Management System... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Integrated baseline...

  16. 48 CFR 1334.202 - Integrated baseline reviews.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1334.202 Integrated baseline reviews. An Integrated Baseline Review shall be conducted when an Earned Value Management System... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Integrated baseline...

  17. 48 CFR 1334.202 - Integrated baseline reviews.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1334.202 Integrated baseline reviews. An Integrated Baseline Review shall be conducted when an Earned Value Management System... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Integrated baseline...

  18. Muscle contraction increases carnitine uptake via translocation of OCTN2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio

    Highlights: Black-Right-Pointing-Pointer Muscle contraction augmented carnitine uptake into rat hindlimb muscles. Black-Right-Pointing-Pointer An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. Black-Right-Pointing-Pointer Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. Black-Right-Pointing-Pointer OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity.more » The tissue uptake clearance (CL{sub uptake}) of L-[{sup 3}H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL{sub uptake} of [{sup 14}C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL{sub uptake} of L-[{sup 3}H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p < 0.05). The CL{sub uptake} of [{sup 14}C]IAP was much higher than that of L-[{sup 3}H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles

  19. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.

    PubMed

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2013-10-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.

  20. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study.

    PubMed

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-03-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.

  1. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    PubMed Central

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  2. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities.

    PubMed

    Picconi, Barbara; De Leonibus, Elvira; Calabresi, Paolo

    2018-02-28

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of  the alteration of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest that LIDs are associated with a loss of homeostatic synaptic mechanisms.

  3. [Changes of heart electrophysiological parameters after destruction of epicardial subplexuses that innervate sinoatrial node].

    PubMed

    Kulboka, Arūnas; Veikutis, Vincentas; Pauza, Dainius Haroldas; Lekas, Raimundas

    2003-01-01

    The aims of present study were to verify the topography of the intracardiac nerve subplexuses (INS) by using electrophysiological methods, its relations with sinoatrial (SA) node function and to investigate possibility of selective surgical SA node denervation. Fifteen mongrel dogs of either sex weighing 8 to 15 kg were used for electrophysiological studies. Both cervical vagosympathetic trunks were isolated and crushed by tight ligatures. Nervus subplexuses destructions were performed by cryocoagulation in three zones located around the right superior vena cava: ventral, lateral and dorsal. The sinus rhythm, SA node function recovery time, AV node conductivity, AV node and atrial effective refractory period were measured. Five experiments in each of three zones were performed. Experimental data show that destruction of the epicardial nerves has different effect on electrophysiological parameters. After destruction of the anterior zone of the right atrium the sinus rhythm decreased on an average by 11.6%; SA node function recovery time prolonged by 7.2%; AV node conductivity decreased by 13.1%; AV node effective refractory period prolonged by 12.9% and atrial effective refractory period, by 10.9 %. Measurements of electrophysiological parameters after intravenous injection of atropine sulphate show that sinus rhythm decreased on an average by 23.4%; SA node function recovery time increased by 9.1%; the conductivity of AV node decreased by 10.2%; AV node effective refractory period prolonged by 15.4% and atrial effective refractory period, by 13.2%. After destruction of the intracardiac nerves of the lateral zone, the sinus rhythm decreased by 15.7%; SA node function recovery time increased by 16.3%; AV node conductivity decreased by 8.3%; AV node effective refractory period and atrial effective refractory period prolonged by 11.9% and 10.0%, respectively. After the atropine sulphate intravenous injection, the sinus rhythm decreased on an average by 7.1%, SA node

  4. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI.

    PubMed

    Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.

  5. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI

    PubMed Central

    Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep

    2017-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757

  6. Service Contract Compliance Management in Business Process Management

    NASA Astrophysics Data System (ADS)

    El Kharbili, Marwane; Pulvermueller, Elke

    Compliance management is a critical concern for corporations, required to respect contracts. This concern is particularly relevant in the context of business process management (BPM) as this paradigm is getting adopted more widely for-designing and building IT systems. Enforcing contractual compliance needs to be modeled at different levels of a BPM framework, which also includes the service layer. In this paper, we discuss requirements and methods for modeling contractual compliance for an SOA-supported BPM. We also show how business rule management integrated into an industry BPM tool allows modeling and processing functional and non-functional-property constraints which may be extracted from business process contracts. This work proposes a framework that responds to the requirements identified and proposes an architecture implementing it. Our approach is also illustrated by an example.

  7. Small Ion Channel Linking Molecular Simulations and Electrophysiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2017-01-01

    Ion channels are pore-forming protein assemblies that mediate the transport of small ions across cell membranes. Otherwise, membrane bilayers would be almost impermeable to ions incapable to traverse the low dielectric constant, hydrophobic membrane core. Ion channels are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses, cardiac functions, muscle contraction and apoptosis. On the other extreme of biological complexity, viral ion channels (viroporins) influence many stages of the virus infection cycle either through regulating virus replication, such as entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. Ion channels were crucial components of protocells. Their emergence facilitated adaptation of nascent life to different environmental conditions. The earliest ion channels must have been much simpler than most of their modern ancestors. Viral channels are among only a few naturally occurring models to study the structure, function and evolution of primordial channels. Experimental studies of these properties are difficult and often unreliable. In principle, computational methods, and molecular dynamics (MD) simulations in particular, can aid in providing information about both the structure and the function of ion channels. However, MD suffers from its own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. It is, therefore, essential to determine the reliability of MD simulations. We propose to do so on the basis of two criteria. One is channel stability on time scales that extend for several microseconds or longer. The other is the ability to reproduce the measured ionic conductance as a function of applied voltage. If both the stability and the calculated ionic conductance are satisfactory it will greatly increase our confidence that the structure and the function of a

  8. Teaching about Contracts.

    ERIC Educational Resources Information Center

    Froman, Michael; Kosnoff, Kathy

    1978-01-01

    Presents teaching strategies for introducing high school students to contract law. Offers as a case study a contract agreement between pro football players and team owners. Stresses basic elements of contracts (offer, acceptance, consideration, and understanding the bargaining process). Journal available from the American Bar Association, 1155…

  9. 48 CFR 1517.204 - Contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contracts. 1517.204 Section 1517.204 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 1517.204 Contracts. The SCM may approve a contract with...

  10. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.

    PubMed

    Brette, Romain; Gerstner, Wulfram

    2005-11-01

    We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. We describe a systematic method to estimate its parameters with simple electrophysiological protocols (current-clamp injection of pulses and ramps) and apply it to a detailed conductance-based model of a regular spiking neuron. Our simple model predicts correctly the timing of 96% of the spikes (+/-2 ms) of the detailed model in response to injection of noisy synaptic conductances. The model is especially reliable in high-conductance states, typical of cortical activity in vivo, in which intrinsic conductances were found to have a reduced role in shaping spike trains. These results are promising because this simple model has enough expressive power to reproduce qualitatively several electrophysiological classes described in vitro.

  11. Electrophysiology-based detection of emergency braking intention in real-world driving.

    PubMed

    Haufe, Stefan; Kim, Jeong-Woo; Kim, Il-Hwa; Sonnleitner, Andreas; Schrauf, Michael; Curio, Gabriel; Blankertz, Benjamin

    2014-10-01

    The fact that all human action is preceded by brain processes partially observable through neuroimaging devices such as electroencephalography (EEG) is currently being explored in a number of applications. A recent study by Haufe et al (2011 J. Neural Eng. 8 056001) demonstrates the possibility of performing fast detection of forced emergency brakings during driving based on EEG and electromyography, and discusses the use of such neurotechnology for braking assistance systems. Since the study was conducted in a driving simulator, its significance regarding real-world applicability needs to be assessed. Here, we replicate that experimental paradigm in a real car on a non-public test track. Our results resemble those of the simulator study, both qualitatively (in terms of the neurophysiological phenomena observed and utilized) and quantitatively (in terms of the predictive improvement achievable using electrophysiology in addition to behavioral measures). Moreover, our findings are robust with respect to a temporary secondary auditory task mimicking verbal input from a fellow passenger. Our study serves as a real-world verification of the feasibility of electrophysiology-based detection of emergency braking intention as proposed in Haufe et al (2011 J. Neural Eng. 8 056001).

  12. Electrophysiology-based detection of emergency braking intention in real-world driving

    NASA Astrophysics Data System (ADS)

    Haufe, Stefan; Kim, Jeong-Woo; Kim, Il-Hwa; Sonnleitner, Andreas; Schrauf, Michael; Curio, Gabriel; Blankertz, Benjamin

    2014-10-01

    Objective. The fact that all human action is preceded by brain processes partially observable through neuroimaging devices such as electroencephalography (EEG) is currently being explored in a number of applications. A recent study by Haufe et al (2011 J. Neural Eng. 8 056001) demonstrates the possibility of performing fast detection of forced emergency brakings during driving based on EEG and electromyography, and discusses the use of such neurotechnology for braking assistance systems. Since the study was conducted in a driving simulator, its significance regarding real-world applicability needs to be assessed. Approach. Here, we replicate that experimental paradigm in a real car on a non-public test track. Main results. Our results resemble those of the simulator study, both qualitatively (in terms of the neurophysiological phenomena observed and utilized) and quantitatively (in terms of the predictive improvement achievable using electrophysiology in addition to behavioral measures). Moreover, our findings are robust with respect to a temporary secondary auditory task mimicking verbal input from a fellow passenger. Significance. Our study serves as a real-world verification of the feasibility of electrophysiology-based detection of emergency braking intention as proposed in Haufe et al (2011 J. Neural Eng. 8 056001).

  13. Contracts and management services site support program plan WBS 6.10.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, J.M. Jr.

    1994-09-01

    Contracts and Management Services is recognized as the central focal point for programs having company or sitewide application in pursuit of the Hanford Missions`s financial and operational objectives. Contracts and Management Services actively pursues cost savings and operational efficiencies through: Management Standards by ensuring all employees have an accessible, integrated system of clear, complete, accurate, timely, and useful management control policies and procedures; Contract Reform by restructuring the contract, organization, and cost accounting systems to refocus Hanford contract activities on output products; Systems and Operations Evaluation by directing the Cost Reduction program, Great Ideas, and Span of Management activities; Programmore » Administration by enforcing conditions of Accountability (whether DEAR-based or FAR-based) for WHC, BCSR, ICF KH, and BHI; Contract Performance activities; chairing the WHC Cost Reduction Review Board; and analyzing companywide Performance Measures; Data Standards and Administration by establishing and directing the company data management program; giving direction to the major RL programs and mission areas for implementation of cost-effective and efficient data management practices; directing all operations, application, and interfaces contained within the Hanford PeopleCore System; directing accomplishment and delivery of TPA data management milestones; and directing the sitewide data management processes for Data Standards and the Data Directory.« less

  14. NeuroPigPen: A Scalable Toolkit for Processing Electrophysiological Signal Data in Neuroscience Applications Using Apache Pig

    PubMed Central

    Sahoo, Satya S.; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A.; Lhatoo, Samden D.

    2016-01-01

    The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This “neuroscience Big data” represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability—the ability to efficiently process increasing volumes of data; (b) Adaptability—the toolkit can be deployed across different computing configurations; and (c) Ease of programming—the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that

  15. Wolff-Parkinson-White syndrome type B and left bundle-branch block: electrophysiologic and radionuclide study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakovec, P.; Kranjec, I.; Fettich, J.J.

    1985-01-01

    Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combinedmore » electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.« less

  16. Transcriptional and electrophysiological maturation of neocortical fastspiking GABAergic interneurons

    PubMed Central

    Okaty, Benjamin W; Miller, Mark N; Sugino, Ken; Hempel, Chris M; Nelson, Sacha B

    2009-01-01

    Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are due to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. While embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first four postnatal weeks, and that these changes are correlated with largely monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of 2-pore K+ leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells, and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells. PMID:19474331

  17. Electrophysiological Correlates of Reading the Single- and Interactive-Mind

    PubMed Central

    Wang, Yi-Wen; Zheng, Yu-Wei; Lin, Chong-De; Wu, Jie; Shen, De-Li

    2011-01-01

    Understanding minds is the cognitive basis of successful social interaction. In everyday life, human mental activity often happens at the moment of social interaction among two or multiple persons instead of only one-person. Understanding the interactive mind of two- or multi-person is more complex and higher than understanding the single-person mind in the hierarchical structure of theory of mind. Understanding the interactive mind maybe differentiate from understanding the single mind. In order to examine the dissociative electrophysiological correlates of reading the single mind and reading the interactive mind, the 64 channels event-related potentials were recorded while 16 normal adults were observing three kinds of Chinese idioms depicted physical scenes, one-person with mental activity, and two- or multi-person with mental interaction. After the equivalent N400, in the 500- to 700-ms epoch, the mean amplitudes of late positive component (LPC) over frontal for reading the single mind and reading the interactive mind were significantly more positive than for physical representation, while there was no difference between the former two. In the 700- to 800-ms epoch, the mean amplitudes of LPC over frontal–central for reading the interactive mind were more positive than for reading the single mind and physical representation, while there was no difference between the latter two. The present study provides electrophysiological signature of the dissociations between reading the single mind and reading the interactive mind. PMID:21845178

  18. Conduction disturbances after TAVR: Electrophysiological studies and pacemaker dependency.

    PubMed

    Makki, Nader; Dollery, Jenn; Jones, Danielle; Crestanello, Juan; Lilly, Scott

    Permanent pacemaker (PPM) placement occurs in 5-20% of patients after transcatheter aortic valve replacement (TAVR). Although predictors of pacemaker implantation have been established, features that predispose patients to pacemaker utilization on follow up have not been widely reported. We performed a retrospective review of patients undergoing commercial TAVR between 2011 and 2016. We collated patients that underwent in-hospital PPM implantation and had a follow up of at least 3months. Data abstraction was performed for electrophysiological studies (EPS), pacemaker indication, timing, and device interrogation for pacemaker dependency on follow up. A total of 24 patients received in-hospital PPM post-TAVR (14% of total cohort), and mean follow up was 22months. Indications for PPM included resting complete heart block (CHB; 15/24, 63%), left bundle branch block and abnormal electrophysiological study (EPS; 7/24, 29%), alternating bundle branch block (1/24, 4%) and tachy-brady syndrome (1/24, 4%). Pacemaker dependency (underlying ventricular asystole, complete heart block, or >50% pacing) occurred in 8/24 patients (33%) during follow-up, 7 of whom had resting CHB, and one with CHB invoked during EPS. Pacemaker dependency after TAVR is common among those that exhibited CHB, but not among those with a prolonged HV delay during EPS. Although preliminary, these observations are relevant to management of rhythm disturbances after TAVR, and may inform the practice of EPS-based PPM implantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Arthroscopic repair of massive contracted rotator cuff tears: aggressive release with anterior and posterior interval slides do not improve cuff healing and integrity.

    PubMed

    Kim, Sung-Jae; Kim, Sung-Hwan; Lee, Su-Keon; Seo, Jae-Wan; Chun, Yong-Min

    2013-08-21

    Few studies of large-to-massive contracted rotator cuff tears have examined the arthroscopic complete repair obtained by a posterior interval slide and whether the clinical outcomes or structural integrity achieved are better than those after partial repair without the posterior interval slide. The study included forty-one patients with large-to-massive contracted rotator cuff tears, not amenable to complete repair with margin convergence alone. The patients underwent either arthroscopic complete repair with a posterior interval slide and side-to-side repair of the interval slide edge (twenty-two patients; Group P) or partial repair with margin convergence (nineteen patients; Group M). The patient assignment was not randomized. The Simple Shoulder Test (SST), American Shoulder and Elbow Surgeons (ASES) score, University of California at Los Angeles (UCLA) shoulder score, and range of motion were used to compare the functional outcomes. Preoperative and six-month postoperative magnetic resonance arthrography (MRA) images were compared within or between groups. At the two-year follow-up evaluation, the SST, ASES score, UCLA score, and range of motion had significantly improved (p < 0.001 for all) in both groups. However, no significant differences were detected between groups. Even though the difference in preoperative tear size on MRA images was not significant, follow-up MRA images identified a retear in twenty patients (91%) in Group P and a significant difference in tear size between groups (p = 0.007). The complete repair group with an aggressive release had no better clinical or structural outcomes compared with the partial repair group with margin convergence alone for large-to-massive contracted rotator cuff tears. In addition, the complete repair group had a 91% retear rate and a greater defect on follow-up MRA images. Even though this study had a relatively short-term follow-up, a complete repair of large-to-massive contracted rotator cuff tears, with an

  20. Electrophysiological evidence of early attentional bias to drug-related pictures in chronic cannabis users.

    PubMed

    Asmaro, Deyar; Carolan, Patrick L; Liotti, Mario

    2014-01-01

    Behavioral and electrophysiological correlates of attentional bias to cannabis-related cues were investigated in a marijuana dependent group and a non-user group employing a drug Stroop task in which cannabis-related, negative and neutral images were presented. Behaviorally, cannabis users were less accurate during drug-containing blocks than non-users. Electrophysiologically, in chronic marijuana-users, an early positive ERP enhancement over left frontal scalp (EAP, 200-350ms) was present in response to drug-containing blocks relative to negative blocks. This effect was absent in the non-user group. Furthermore, drug-containing blocks gave rise to enhanced voltage of a posterior P300 (300-400ms), and a posterior sustained slow wave (LPP, 400-700ms) relative to negative blocks. However, such effects were similar between cannabis users and non-users. Brain source imaging in cannabis users revealed a generator for the EAP effect to drug stimuli in left ventromedial prefrontal cortex/medial orbitofrontal cortex, a region active in fMRI studies of drug cue-reactivity and a target of the core dopaminergic mesolimbic pathway involved in the processing of substances of abuse. This study identifies the timing and brain localization of an ERP correlate of early attentional capture to drug-related pictures in chronic marijuana users. The EAP to drug cues may identify a new electrophysiological marker with clinical implications for predicting abstinence versus relapse or to evaluate treatment interventions. © 2013.

  1. Perception of host plant volatiles in Hyalesthes obsoletus: behavior, morphology, and electrophysiology.

    PubMed

    Riolo, Paola; Minuz, Roxana L; Anfora, Gianfranco; Stacconi, Marco V Rossi; Carlin, Silvia; Isidoro, Nunzio; Romani, Roberto

    2012-08-01

    The Palearctic planthopper Hyalesthes obsoletus is the natural vector of the grapevine yellow disease Bois noir. Grapevine is an occasional host plant of this polyphagous planthopper. To deepen our knowledge of the role of plant volatile organic compounds for H. obsoletus host plant searching, we carried out behavioral, morphological, and electrophysiological studies. We tested the attraction of H. obsoletus to nettle, field bindweed, hedge bindweed, chaste tree, and grapevine by using a Y-shaped olfactometer. The results showed a significant attraction of male H. obsoletus to chaste tree, and of the females to nettle. Male H. obsoletus were repelled by odor from hedge bindweed. Ultrastructural studies of the antennae showed at least two types of olfactory sensilla at the antennal pedicel: plaque organs and trichoid sensilla. Volatile organic compounds from nettle and chaste tree were collected, and the extracts were analyzed by coupling gas-chromatography to both mass-spectrometry and electroantennography. The volatile organic compounds that elicited electrophysiological responses in male and female antennae were identified. These findings are discussed with respect to behavior of H. obsoletus males and females in the field.

  2. A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology

    PubMed Central

    Biró, István; Giugliano, Michele

    2015-01-01

    Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385

  3. Object-oriented approach to fast display of electrophysiological data under MS-windows.

    PubMed

    Marion-Poll, F

    1995-12-01

    Microcomputers provide neuroscientists an alternative to a host of laboratory equipment to record and analyze electrophysiological data. Object-oriented programming tools bring an essential link between custom needs for data acquisition and analysis with general software packages. In this paper, we outline the layout of basic objects that display and manipulate electrophysiological data files. Visual inspection of the recordings is a basic requirement of any data analysis software. We present an approach that allows flexible and fast display of large data sets. This approach involves constructing an intermediate representation of the data in order to lower the number of actual points displayed while preserving the aspect of the data. The second group of objects is related to the management of lists of data files. Typical experiments designed to test the biological activity of pharmacological products include scores of files. Data manipulation and analysis are facilitated by creating multi-document objects that include the names of all experiment files. Implementation steps of both objects are described for an MS-Windows hosted application.

  4. Reusable Floating-Electrode Sensor for Real-Time Electrophysiological Monitoring of Nonadherent Cells

    NASA Astrophysics Data System (ADS)

    Pham Ba, Viet Anh; Ta, Van-Thao; Park, Juhun; Park, Eun Jin; Hong, Seunghun

    2015-03-01

    We herein report the development of a reusable floating-electrode sensor (FES) based on aligned single-walled carbon nanotubes, which allowed quantitatively monitoring the electrophysiological responses from nonadherent cells. The FES was used to measure the real-time responses of normal lung cells and small-cell lung cancer (SCLC) cells to the addition of nicotine. The SCLC cells exhibited rather large electrophysiological responses to nicotine compared to normal cells, which was attributed to the overexpressed nicotinic acetylcholine receptors (nAChRs) in the SCLC cells. Importantly, using only a single device could measure repeatedly the responses of multiple individual cells to various drugs, enabling statistically meaningful measurements without errors from the device-to-device variations of the sensor characteristics. As results, that the treatment with drugs such as genistin or daidzein reduced Ca2+ influx in SCLC cells was found. Moreover, tamoxifen, has been known as an anti-estrogen compound, was found to only partly block the binding of daidzein to nAChRs. Our FES can be a promising tool for various biomedical applications such as drug screening and therapy monitoring.

  5. Action potentials drive body wall muscle contractions in Caenorhabditis elegans

    PubMed Central

    Gao, Shangbang; Zhen, Mei

    2011-01-01

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227

  6. Psychological contracts: a new strategy for retaining reduced-hour physicians.

    PubMed

    Hartwell, Jennifer K

    2010-01-01

    As a retention strategy, healthcare organizations offer reduced-hour schedules to physicians seeking better work-family balance. However, this quantitative study of 94 full-time and reduced-hour female physicians in the Boston area found that working fewer hours helps physicians achieve better balance but does not improve their burnout or career satisfaction, or impact their intention to quit or leave the field of medicine. Instead, the findings demonstrate that psychological contract fulfillment, which reflects the subjective nature of the employment relationship, is more important than work hours, an objective job condition, in predicting intention to quit and these other outcomes. A fine-grained analysis is initiated uncovering the multidimensionality of the psychological contract construct. To integrate successful reduced-hour arrangements for physicians, medical managers are directed to the importance of understanding the composition of reduced-hour physicians' psychological contracts, specifically, their need to do challenging work, receive high levels of supervisor support, and promotion opportunities.

  7. Comparative study on the electrophysiological responses at thalamic level to different analgesic peptides.

    PubMed

    Braga, P C; Biella, G; Tiengo, M; Guidobono, F; Pecile, A; Fraschini, F

    1985-01-01

    Using electrophysiological methods to detect the extracellular activity of single neurons in the thalamus of anaesthetized rats, their response to mechanical and thermal noxious stimuli were assessed before and after administration of 4 analgesic peptides of various types. Dermophin, a peptide extracted from frog's skin, was found to have an opioid-like antinociceptive activity antagonized by naloxone. Caerulein, which has a similar origin, failed to suppress the nociceptive responses of thalamic neurons evoked by peripheral stimuli. Calcitonin, a peptide found at brain level, induced an alteration of the increased firing characteristic of noxious stimuli, and its action was not reversed by naloxone. FK 33-824, a synthetic peptide, induced a morphine-like action when injected i.c.v. at a dosage 1000 times lower than that of morphine on a molar basis. It is concluded that electrophysiological investigations on peptides endowed with analgesic activity contribute greatly to a more precise profile of the peptides as candidate drugs in pain control.

  8. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations

    PubMed Central

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2014-01-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios. PMID:24729986

  9. Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project

    NASA Technical Reports Server (NTRS)

    Sannita, W. G.; Acquaviva, M.; Ball, S. L.; Belli, F.; Bisti, S.; Bidoli, V.; Carozzo, S.; Casolino, M.; Cucinotta, F.; De Pascale, M. P.; hide

    2004-01-01

    ALTEA-MICE will supplement the ALTEA project on astronauts and provide information on the functional visual impairment possibly induced by heavy ions during prolonged operations in microgravity. Goals of ALTEA-MICE are: (1) to investigate the effects of heavy ions on the visual system of normal and mutant mice with retinal defects; (2) to define reliable experimental conditions for space research; and (3) to develop animal models to study the physiological consequences of space travels on humans. Remotely controlled mouse setup, applied electrophysiological recording methods, remote particle monitoring, and experimental procedures were developed and tested. The project has proved feasible under laboratory-controlled conditions comparable in important aspects to those of astronauts' exposure to particle in space. Experiments are performed at the Brookhaven National Laboratories [BNL] (Upton, NY, USA) and the Gesellschaft fur Schwerionenforschung mbH [GSI]/Biophysik (Darmstadt, FRG) to identify possible electrophysiological changes and/or activation of protective mechanisms in response to pulsed radiation. Offline data analyses are in progress and observations are still anecdotal. Electrophysiological changes after pulsed radiation are within the limits of spontaneous variability under anesthesia, with only indirect evidence of possible retinal/cortical responses. Immunostaining showed changes (e.g. increased expression of FGF2 protein in the outer nuclear layer) suggesting a retinal stress reaction to high-energy particles of potential relevance in space. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. 48 CFR 1517.204 - Contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Contracts. 1517.204 Section 1517.204 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 1517.204 Contracts. The SCM may approve a...

  11. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.

  12. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    PubMed Central

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-01-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals. PMID:21806203

  13. 48 CFR 1817.204 - Contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contracts. 1817.204 Section 1817.204 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 1817.204 Contracts. (e)(i) The 5...

  14. Contracts. Warranties.

    ERIC Educational Resources Information Center

    Mertz, Gayle

    1988-01-01

    Presents two lesson plans for grades 5-9 which are meant to increase student's legal literacy. The first lesson covers contracts and includes a comic strip which illustrates contract law. The second deals with warranties and why they are important. Included are examples of product warranties. (GEA)

  15. Bochum ultrasound score versus clinical and electrophysiological parameters in distinguishing acute-onset chronic from acute inflammatory demyelinating polyneuropathy.

    PubMed

    Kerasnoudis, Antonios; Pitarokoili, Kallia; Behrendt, Volker; Gold, Ralf; Yoon, Min-Suk

    2015-06-01

    The aim of this study was to evaluate whether a nerve ultrasound score (Bochum ultrasound score, BUS), clinical, and electrophysiological parameters could distinguish subacute chronic (CIDP) from acute inflammatory demyelinating polyneuropathy (AIDP). Phase 1: The charts of 35 patients with polyradiculoneuropathy were evaluated retrospectively regarding BUS, clinical, and electrophysiological parameters (A-waves, sural nerve sparing pattern, sensory ratio>1). Phase 2: All parameters were evaluated prospectively in 10 patients with subacute polyradiculoneuropathy. Phase 1: A sum score of ≥2 points in BUS and the presence of sensory symptoms were significantly more frequent in the subacute CIDP group than in the AIDP group (P<0.001).The electrophysiological parameters showed no significant changes between the 2 groups. Phase 2: BUS (83.3%; 100%;), sensory symptoms (100%; 75%), absence of autonomic nervous system dysfunction (83.3%; 75%), or bulbar palsy (83.3%; 50%) showed the best sensitivity and specificity in distinguishing subacute CIDP from AIDP. BUS is a useful diagnostic tool for distinguishing subacute CIDP from AIDP. © 2014 Wiley Periodicals, Inc.

  16. Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study

    PubMed Central

    Gomez, Juan F.; Cardona, Karen; Martinez, Laura; Saiz, Javier; Trenor, Beatriz

    2014-01-01

    Background Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure. Objective In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations. Methods The electrical activity of human transmural ventricular tissue (5 cm×5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation. Results No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components. Conclusion Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity. PMID:25054335

  17. A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation.

    PubMed

    Corrado, Cesare; Zemzemi, Nejib

    2018-01-01

    Computational models of heart electrophysiology achieved a considerable interest in the medical community as they represent a novel framework for the study of the mechanisms underpinning heart pathologies. The high demand of computational resources and the long computational time required to evaluate the model solution hamper the use of detailed computational models in clinical applications. In this paper, we present a multi-front eikonal algorithm that adapts the conduction velocity (CV) to the activation frequency of the tissue substrate. We then couple the eikonal new algorithm with the Mitchell-Schaeffer (MS) ionic model to determine the tissue electrical state. Compared to the standard eikonal model, this model introduces three novelties: first, it evaluates the local value of the transmembrane potential and of the ionic variable solving an ionic model; second, it computes the action potential duration (APD) and the diastolic interval (DI) from the solution of the MS model and uses them to determine if the tissue is locally re-excitable; third, it adapts the CV to the underpinning electrophysiological state through an analytical expression of the CV restitution and the computed local DI. We conduct series of simulations on a 3D tissue slab and on a realistic heart geometry and compare the solutions with those obtained solving the monodomain equation. Our results show that the new model is significantly more accurate than the standard eikonal model. The proposed model enables the numerical simulation of the heart electrophysiology on a clinical time scale and thus constitutes a viable model candidate for computer-guided radio-frequency ablation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing.

    PubMed

    Horovitz, Silvina G; Rossion, Bruno; Skudlarski, Pawel; Gore, John C

    2004-08-01

    Face perception is typically associated with activation in the inferior occipital, superior temporal (STG), and fusiform gyri (FG) and with an occipitotemporal electrophysiological component peaking around 170 ms on the scalp, the N170. However, the relationship between the N170 and the multiple face-sensitive activations observed in neuroimaging is unclear. It has been recently shown that the amplitude of the N170 component monotonically decreases as gaussian noise is added to a picture of a face [Jemel et al., 2003]. To help clarify the sources of the N170 without a priori assumptions regarding their number and locations, ERPs and fMRI were recorded in five subjects in the same experiment, in separate sessions. We used a parametric paradigm in which the amplitude of the N170 was modulated by varying the level of noise in a picture, and identified regions where the percent signal change in fMRI correlated with the ERP data. N170 signals were observed for pictures of both cars and faces but were stronger for faces. A monotonic decrease with added noise was observed for the N170 at right hemisphere sites but was less clear on the left and occipital central sites. Correlations between fMRI signal and N170 amplitudes for faces were highly significant (P < 0.001) in bilateral fusiform gyrus and superior temporal gyrus. For cars, the strongest correlations were observed in the parahippocampal region and in the STG (P < 0.005). Besides contributing to clarify the spatiotemporal course of face processing, this study illustrates how ERP information may be used synergistically in fMRI analyses. Parametric designs may be developed further to provide some timing information on fMRI activity and help identify the generators of ERP signals.

  20. Uninvolved versus target muscle contraction during contract: relax proprioceptive neuromuscular facilitation stretching.

    PubMed

    Azevedo, Daniel Camara; Melo, Raphael Marques; Alves Corrêa, Ricardo Vidal; Chalmers, Gordon

    2011-08-01

    The purpose of this study was to compare the acute effect of the contract-relax (CR) stretching technique on knee active range of motion (ROM) using target muscle contraction or an uninvolved muscle contraction. pre-test post-test control experimental design. Clinical research laboratory. Sixty healthy men were randomly assigned to one of three groups. The Contract-Relax group (CR) performed a traditional hamstring CR stretch, the Modified Contract-Relax group (MCR) performed hamstring CR stretching using contraction of an uninvolved muscle distant from the target muscle, and the Control group (CG) did not stretch. Active knee extension test was performed before and after the stretching procedure. Two-way between-within analysis of variance (ANOVA) results showed a significant interaction between group and pre-test to post-test (p < 0.001). Post-hoc examination of individual groups showed no significant change in ROM for the CG (0.8°, p = 0.084), and a significant moderate increase in ROM for both the CR (7.0°, p < 0.001) and MCR (7.0°, p < 0.001) groups. ROM gain following a CR PNF procedure is the same whether the target stretching muscle is contracted, or an uninvolved muscle is contracted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Certification of international allied professionals in cardiac pacing and electrophysiology: Opportunities?

    PubMed Central

    Chiu, Christine

    2010-01-01

    Allied professionals with diverse backgrounds and training are essential to the delivery of quality care to patients with heart rhythm disorders. There is a growing worldwide demand for defined educational requirements and certification pathways to ensure uniformity of knowledge and competence of those practicing in electrophysiology. The present viewpoint article reviews the current deficiencies of education and training, and advocates for the establishment of certification pathways by professional societies. PMID:20101363

  2. 23 CFR 635.121 - Contract time and contract time extensions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... time extensions. (a) The STD should have adequate written procedures for the determination of contract... of the effective date of this Final Rule. (b) Contract time extensions granted by a STD shall be...

  3. 23 CFR 635.121 - Contract time and contract time extensions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... time extensions. (a) The STD should have adequate written procedures for the determination of contract... of the effective date of this Final Rule. (b) Contract time extensions granted by a STD shall be...

  4. 23 CFR 635.121 - Contract time and contract time extensions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... time extensions. (a) The STD should have adequate written procedures for the determination of contract... of the effective date of this Final Rule. (b) Contract time extensions granted by a STD shall be...

  5. 23 CFR 635.121 - Contract time and contract time extensions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... time extensions. (a) The STD should have adequate written procedures for the determination of contract... of the effective date of this Final Rule. (b) Contract time extensions granted by a STD shall be...

  6. Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones

    Treesearch

    William P. Shepherd; Brian T. Sullivan; Richard A. Goyer; Kier D. Klepzig

    2005-01-01

    We measured electrophysiological responses in the antennae of two predaceous hister beetles, Platysoma parallelum and Plegaderus transversus, exposes to racemic mixtures of primary aggregation pheromones of scolytid bark beetle prey, ipsenol, ipsdienol, and frontalin. No significant differences were found for either histerid...

  7. Electrophysiological responses of the rice leaffolder, cnaphalocrocis medinalis (lepidoptera: pyralidae), to rice plant volatiles

    USDA-ARS?s Scientific Manuscript database

    The electrophysiological activities of 38 synthetic volatiles that were known to be released from the rice plants (Poaceae: Oryza spp.) were studied using electroantennogram (EAG) recording technique on male and female antennae of the rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: ...

  8. Electrophysiological Evidence of Heterogeneity in Visual Statistical Learning in Young Children with ASD

    ERIC Educational Resources Information Center

    Jeste, Shafali S.; Kirkham, Natasha; Senturk, Damla; Hasenstab, Kyle; Sugar, Catherine; Kupelian, Chloe; Baker, Elizabeth; Sanders, Andrew J.; Shimizu, Christina; Norona, Amanda; Paparella, Tanya; Freeman, Stephanny F. N.; Johnson, Scott P.

    2015-01-01

    Statistical learning is characterized by detection of regularities in one's environment without an awareness or intention to learn, and it may play a critical role in language and social behavior. Accordingly, in this study we investigated the electrophysiological correlates of visual statistical learning in young children with autism…

  9. Service quality in contracted facilities.

    PubMed

    Rabbani, Fauziah; Pradhan, Nousheen Akber; Zaidi, Shehla; Azam, Syed Iqbal; Yousuf, Farheen

    2015-01-01

    The purpose of this paper is to explore the readiness of contracted and non-contracted first-level healthcare facilities in Pakistan to deliver quality maternal and neonatal health (MNH) care. A balanced scorecard (BSC) was used as the assessment framework. Using a cross-sectional study design, two rural health centers (RHCs) contracted out to Aga Khan Health Service, Pakistan were compared with four government managed RHCs. A BSC was designed to assess RHC readiness to deliver good quality MNH care. In total 20 indicators were developed, representing five BSC domains: health facility functionality, service provision, staff capacity, staff and patient satisfaction. Validated data collection tools were used to collect information. Pearson χ2, Fisher's Exact and the Mann-Whitney tests were applied as appropriate to detect significant service quality differences among the two facilities. Contracted facilities were generally found to be better than non-contracted facilities in all five BSC domains. Patients' inclination for facility-based delivery at contracted facilities was, however, significantly higher than non-contracted facilities (80 percent contracted vs 43 percent non-contracted, p=0.006). The study shows that contracting out initiatives have the potential to improve MNH care. This is the first study to compare MNH service delivery quality across contracted and non-contracted facilities using BSC as the assessment framework.

  10. 48 CFR 1034.202 - Integrated Baseline Reviews.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... which the management process provides effective and integrated technical/schedule/cost planning and... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Integrated Baseline... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1034.202...

  11. Electrophysiological responses of feedback processing are modulated by MAOA genotype in healthy male adolescents.

    PubMed

    Ma, Ren; Jia, Huiqiao; Yi, Fei; Ming, Qingsen; Wang, Xiang; Gao, Yidian; Yi, Jinyao; Yao, Shuqiao

    2016-01-01

    A functional polymorphism in the promoter region of the monoamine oxidase A (MAOA) gene is closely related to aggression. Although previous studies suggested that impaired ability of feedback processing might be associated with aggressive behaviour, studies concerning the MAOA gene-related aggression rarely focused on the link between MAOA gene and feedback processing. We therefore sought to investigate the effect of MAOA genotype on electrophysiological responses of feedback processing in 72 healthy male adolescents during a simple monetary gambling task. Feedback processing was investigated by measuring the feedback-related negativity (FRN) and the P300 as electrophysiological markers. We observed a decreased electrophysiological response of the loss-gain difference waves from 250 to 350 ms (dFRN) in individuals with the lower activity alleles (MAOA-L) during the task, an effect that was driven primarily by the considerably altered response to monetary gains. The reduced dFRN in MAOA-L group might indicate poor ability to learn from feedback, which is followed by adjusting future behaviour. And MAOA-L carriers exhibited lower P300 compared with subjects with higher activity alleles (MAOA-H), which suggested fewer attentional resources were allocated to feedback processing. In addition, MAOA-L carriers demonstrated higher aggression and the aggression were inversely correlated with dFRN across two groups; further analyses suggested that dFRN mediated the MAOA genotype-aggression relationship. Consequently, we concluded that it might be the altered feedback processing that makes MAOA-L carriers more vulnerable to aggressive behaviour. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. The development of future-oriented control: an electrophysiological investigation.

    PubMed

    Waxer, Matthew; Morton, J Bruce

    2011-06-01

    Cognitive control, or the ability to focus attention and select task-appropriate responses, is not static but can be dynamically adjusted in the face of changing environmental circumstances. Several models suggest a role for conflict-monitoring in triggering these adjustments, whereby instances of response uncertainty are detected by the anterior cingulate cortex and strengthen attention-guiding rules actively maintained by lateral prefrontal cortex. Given the continued development of active maintenance mechanisms into adolescence, these models predict that the capacity to dynamically modulate control should be protracted in its development. The present study tested this prediction by examining age-related differences in behavioral and electrophysiological adaptations to prior conflict. Children, adolescents, and adults were administered the Dimensional Change Card Sort (DCCS; Zelazo, 2006) - a developmentally-appropriate task modified so that response conflict varied from trial to trial - as cortical activity was measured by means of event-related potentials (ERPs). Although all groups showed a robust conflict effect, there were pronounced age-related differences in behavioral and electrophysiological adaptations to prior conflict. First, responses to incongruent trials were faster following incongruent trials than following congruent trials, but only for adults and adolescents. Second, ERP components that indexed response conflict, and the cortical source of these components, were modulated by preceding conflict for adults and adolescents, but not children. Taken together, the findings suggest that adults and adolescents take advantage of prior conflict to prepare for the future, whereas children respond to cognitive challenges as they occur. Theoretical implications are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Electrophysiological mechanisms of sophocarpine as a potential antiarrhythmic agent.

    PubMed

    Yang, Zhi-fang; Li, Ci-zhen; Wang, Wei; Chen, Ying-min; Zhang, Ying; Liu, Yuan-mou; Wang, Hong-wei

    2011-03-01

    To examine the electrophysiological effects of sophocarpine on action potentials (AP) and ionic currents of cardiac myocytes and to compare some of these effects with those of amiodarone. Langendorff perfusion set-up was used in isolated guinea pig heart, and responses to sophocarpine were monitored using electrocardiograph. Conventional microelectrode, voltage clamp technique and perforated patch were employed to record fast response AP (fAP), slow response AP (sAP) and ionic currents in guinea pig papillary muscle or rabbit sinus node cells. Tachyarrhythmia produced by isoprenaline (15 μmol/L) could be reversed by sophocarpine (300 μmol/L). Sophocarpine (10 μmol/L) decreased the amplitude by 4.0%, maximal depolarization velocity (V(max)) of the fAP by 24.4%, and Na(+) current (I(Na)) by 18.0%, while it prolonged the effective refractory period (ERP) by 21.1%. The same concentration of sophocarpine could also decrease the amplitude and V(max) of the sAP, by 26.8% and 25.7%, respectively, and attenuated the Ca(2+) current (I(CaL)) and the K(+) tail current substantially. Comparison of sophocarpine with amiodarone demonstrated that both prolonged the duration and the ERP of fAP and sAP, both decreased the amplitude and V(max) of the fAP and sAP, and both slowed the automatic heart rate. Sophocarpine could reverse isoprenaline-induced arrhythmia and inhibit I(Na), I(CaL), and I(Kr) currents. The electrophysiological effects of sophocarpine are similar to those of amiodarone, which might be regarded as a prospective antiarrhythmic agent.

  14. Clinical, Electrophysiological, and Serological Evaluation of Patients with Cramp-Fasciculation Syndrome

    PubMed Central

    POYRAZ, Mürüvvet; MATUR, Zeliha; AYSAL, Fikret; TÜZÜN, Erdem; HANOĞLU, Lütfü; ÖGE, A. Emre

    2017-01-01

    Introduction Cramp-fasciculation syndrome (CFS) is a rare peripheral nerve hyperexcitability syndrome. There are only a few reports on clinical and serological profile of a CFS cohort that was followed up by a single outpatient clinic. Methods Clinical, electrophysiological, and serological features of 6 CFS patients (5 men, 1 woman; 27–65 years old) were investigated. Results All patients presented with cramps, fasciculations, muscle pain, and autonomic symptoms, and 2 also reported numbness and burning sensation in limbs, suggestive of neuropathic pain. Antibodies to uncharacterized voltage-gated potassium channel (VGKC)-complex proteins were found in 2 patients and to contactin-associated protein-like 2 (CASPR2) in 1 patient. None of the patients had a tumor. Most of the patients revealed prolonged after-discharges following tibial nerve stimulation. Nerve conduction studies and R-R interval variability tests were normal, whereas sympathetic skin responses were increased in amplitude in 3 seronegative patients. Five patients showed favorable response to carbamazepine or pregabalin treatment, whereas 1 VGKC-antibody-positive patient was resistant to carbamazepine and immunosuppressant treatment. Conclusion Neuropathic pain and VGKC-complex antibodies may be encountered in CFS patients. Although autonomic symptoms are commonly found in CFS, routine autonomic system tests which are done in electrophysiology laboratories might yield normal results. PMID:28680318

  15. Effects of dopaminergic modulation on electrophysiological brain response to affective stimuli.

    PubMed

    Franken, Ingmar H A; Nijs, Ilse; Pepplinkhuizen, Lolke

    2008-01-01

    Several theoretical accounts of the role of dopamine suggest that dopamine has an influence on the processing of affective stimuli. There is some indirect evidence for this from studies showing an association between the treatment with dopaminergic agents and self-reported affect. We addressed this issue directly by examining the electrophysiological correlates of affective picture processing during a single-dose treatment with a dopamine D2 agonist (bromocriptine), a dopamine D2 antagonist (haloperidol), and a placebo. We compared early and late event-related brain potentials (ERPs) that have been associated with affective processing in the three medication treatment conditions in a randomized double-blind crossover design amongst healthy males. In each treatment condition, subjects attentively watched neutral, pleasant, and unpleasant pictures while ERPs were recorded. Results indicate that neither bromocriptine nor haloperidol has a selective effect on electrophysiological indices of affective processing. In concordance with this, no effects of dopaminergic modulation on self-reported positive or negative affect was observed. In contrast, bromocriptine decreased overall processing of all stimulus categories regardless of their affective content. The results indicate that dopaminergic D2 receptors do not seem to play a crucial role in the selective processing of affective visual stimuli.

  16. Clinical, Electrophysiological, and Serological Evaluation of Patients with Cramp-Fasciculation Syndrome.

    PubMed

    Poyraz, Mürüvvet; Matur, Zeliha; Aysal, Fikret; Tüzün, Erdem; Hanoğlu, Lütfü; Öge, A Emre

    2017-06-01

    Cramp-fasciculation syndrome (CFS) is a rare peripheral nerve hyperexcitability syndrome. There are only a few reports on clinical and serological profile of a CFS cohort that was followed up by a single outpatient clinic. Clinical, electrophysiological, and serological features of 6 CFS patients (5 men, 1 woman; 27-65 years old) were investigated. All patients presented with cramps, fasciculations, muscle pain, and autonomic symptoms, and 2 also reported numbness and burning sensation in limbs, suggestive of neuropathic pain. Antibodies to uncharacterized voltage-gated potassium channel (VGKC)-complex proteins were found in 2 patients and to contactin-associated protein-like 2 (CASPR2) in 1 patient. None of the patients had a tumor. Most of the patients revealed prolonged after-discharges following tibial nerve stimulation. Nerve conduction studies and R-R interval variability tests were normal, whereas sympathetic skin responses were increased in amplitude in 3 seronegative patients. Five patients showed favorable response to carbamazepine or pregabalin treatment, whereas 1 VGKC-antibody-positive patient was resistant to carbamazepine and immunosuppressant treatment. Neuropathic pain and VGKC-complex antibodies may be encountered in CFS patients. Although autonomic symptoms are commonly found in CFS, routine autonomic system tests which are done in electrophysiology laboratories might yield normal results.

  17. Electrophysiological auditory responses and language development in infants with periventricular leukomalacia.

    PubMed

    Avecilla-Ramírez, G N; Ruiz-Correa, S; Marroquin, J L; Harmony, T; Alba, A; Mendoza-Montoya, O

    2011-12-01

    This study presents evidence suggesting that electrophysiological responses to language-related auditory stimuli recorded at 46weeks postconceptional age (PCA) are associated with language development, particularly in infants with periventricular leukomalacia (PVL). In order to investigate this hypothesis, electrophysiological responses to a set of auditory stimuli consisting of series of syllables and tones were recorded from a population of infants with PVL at 46weeks PCA. A communicative development inventory (i.e., parent report) was applied to this population during a follow-up study performed at 14months of age. The results of this later test were analyzed with a statistical clustering procedure, which resulted in two well-defined groups identified as the high-score (HS) and low-score (LS) groups. The event-induced power of the EEG data recorded at 46weeks PCA was analyzed using a dimensionality reduction approach, resulting in a new set of descriptive variables. The LS and HS groups formed well-separated clusters in the space spanned by these descriptive variables, which can therefore be used to predict whether a new subject will belong to either of these groups. A predictive classification rate of 80% was obtained by using a linear classifier that was trained with a leave-one-out cross-validation technique. 2011 Elsevier Inc. All rights reserved.

  18. Sleep-Related Electrophysiology and Behavior of Tinamous (Eudromia elegans): Tinamous Do Not Sleep Like Ostriches.

    PubMed

    Tisdale, Ryan K; Vyssotski, Alexei L; Lesku, John A; Rattenborg, Niels C

    2017-01-01

    The functions of slow wave sleep (SWS) and rapid eye movement (REM) sleep, distinct sleep substates present in both mammals and birds, remain unresolved. One approach to gaining insight into their function is to trace the evolution of these states through examining sleep in as many taxonomic groups as possible. The mammalian and avian clades are each composed of two extant groups, i.e., the monotremes (echidna and platypus) and therian (marsupial and eutherian [or placental]) mammals, and Palaeognaths (cassowaries, emus, kiwi, ostriches, rheas, and tinamous) and Neognaths (all other birds) among birds. Previous electrophysiological studies of monotremes and ostriches have identified a unique "mixed" sleep state combining features of SWS and REM sleep unlike the well-delineated sleep states observed in all therian mammals and Neognath birds. In the platypus this state is characterized by periods of REM sleep-related myoclonic twitching, relaxed skeletal musculature, and rapid eye movements, occurring in conjunction with SWS-related slow waves in the forebrain electroencephalogram (EEG). A similar mixed state was also observed in ostriches; although in addition to occurring during periods with EEG slow waves, reduced muscle tone and rapid eye movements also occurred in conjunction with EEG activation, a pattern typical of REM sleep in Neognath birds. Collectively, these studies suggested that REM sleep occurring exclusively as an integrated state with forebrain activation might have evolved independently in the therian and Neognath lineages. To test this hypothesis, we examined sleep in the elegant crested tinamou (Eudromia elegans), a small Palaeognath bird that more closely resembles Neognath birds in size and their ability to fly. A 24-h period was scored for sleep state based on electrophysiology and behavior. Unlike ostriches, but like all of the Neognath birds examined, all indicators of REM sleep usually occurred in conjunction with forebrain activation in

  19. Behavioral and Electrophysiological Alterations for Reinforcement Learning in Manic and Euthymic Patients with Bipolar Disorder.

    PubMed

    Ryu, Vin; Ha, Ra Yeon; Lee, Su Jin; Ha, Kyooseob; Cho, Hyun-Sang

    2017-03-01

    Bipolar disorder is characterized by behavioral changes such as risk-taking and increasing goal-directed activities, which may result from altered reward processing. Patients with bipolar disorder show impaired reward learning in situations that require the integration of reinforced feedback over time. In this study, we examined the behavioral and electrophysiological characteristics of reward learning in manic and euthymic patients with bipolar disorder using a probabilistic reward task. Twenty-four manic and 20 euthymic patients with bipolar I disorder and 24 healthy control subjects performed the probabilistic reward task. We assessed response bias (RB) as a preference for the stimulus paired with the more frequent reward and feedback-related negativity (FRN) to correct identification of the rich stimulus. Both manic and euthymic patients showed significantly lower RB scores in the early learning stage (block 1) in comparison with the late learning stage (block 2 or block 3) of the task, as well as significantly lower RB scores in the early stage compared to healthy subjects. Relatively more negative FRN amplitude is elicited by no presentation of an expected reward, compared to that elicited by presentation of expected feedback. The FRN became significantly more negative from the early (block 1) to the later stages (blocks 2 and 3) in both manic and euthymic patients, but not in healthy subjects. Changes in RB scores and FRN amplitudes between blocks 2 and 3 and block 1 correlated positively in healthy controls, but correlated negatively in manic and euthymic patients. The severity of manic symptoms correlated positively with reward learning scores and negatively with the FRN. These findings suggest that patients with bipolar disorder during euthymic or manic states have behavioral and electrophysiological alterations in reward learning compared to healthy subjects. This dysfunctional reward processing may be related to the abnormal decision-making or altered

  20. Managing Contraction.

    ERIC Educational Resources Information Center

    Taylor, William

    The major thesis of this paper on declining resources and enrollment is that the management of decline, or, as the author calls it, "contraction," is not simply an economic and technical problem; it is basically a conceptual and political one. The author first considers the effects of contraction on schools, buildings, and courses,…

  1. Employee contract issues for dermatologists.

    PubMed

    Brown, Christopher E; Indest, George F

    2013-12-01

    Employees and employers routinely face negotiating and preparing physician employment contracts. It is important for both sides to know and understand the basic information on what a comprehensive employment contract for a dermatologist should contain. There are various employment contract provisions from both the employee's perspective and the employer's perspective that must be considered when preparing physician employment contracts. This article provides basic advice and recommendations on requirements that should be included in such contracts. It suggests legal pitfalls that can be avoided through various contract clauses.

  2. The Electrophysiological Biosensor for Batch-Measurement of Cell Signals

    NASA Astrophysics Data System (ADS)

    Suzuki, Kengo; Tanabe, Masato; Ezaki, Takahiro; Konishi, Satoshi; Oka, Hiroaki; Ozaki, Nobuhiko

    This paper presents the development of electrophysiological biosensor. The developed sensor allows a batch-measurement by detecting all signals from a large number of cells together. The developed sensor employs the same measurement principle as the patch-clamp technique. A single cell is sucked and clamped in a micro hole with detecting electrode. Detecting electrodes in arrayed micro holes are connected together for the batch-measurement of signals a large number of cell signals. Furthermore, an array of sensors for batch-measurement is designed to improve measurement-throughput to satisfy requirements for the drug screening application.

  3. Architecture of a mixed-mode electrophysiological signal acquisition interface.

    PubMed

    Shen, Ding-Lan; Chen, Jyun-Min

    2012-01-01

    This paper proposes mixed-mode architecture for the acquisition interface of electrophysiological signals. The architecture advances the analog-to-digital converter (ADC) from the second chopper signal in the conventional approach and performs the second chopper operation in the digital domain. The demanded low-pass filter (LPF) is realized with a digital type. The analog LPF in feedback path is substituted with a digital one accompanying with a digital-to-analog converter (DAC). The analog variation is decreased due to the digitization of these operations. The entire architecture is simulated with the ECG input in a behavior model of Simulink.

  4. Electrophysiology of blunted emotional bias in psychopathic personality.

    PubMed

    Carolan, Patrick L; Jaspers-Fayer, Fern; Asmaro, Deyar T; Douglas, Kevin S; Liotti, Mario

    2014-01-01

    Diminished emotional capacity is a core characteristic of psychopathic personality. We examined behavioral and electrophysiological differences in attentional bias to emotional material in 34 healthy individuals rated high or low in psychopathic traits using the short form of the Psychopathic Personality Inventory-Revised (18 high-trait, 16 low-trait). While performing an emotional Stroop task, high-trait participants displayed reduced emotional modulation of the late positive potential (LPP, 400-600 ms), and early anterior positivity (EAP, 200-300 ms) amplitudes. Results suggest blunted bias to affective content in psychopathic personality, characterized by diminished early capture to emotional salience (EAP) and dampened cognitive emotional processing (LPP). Copyright © 2013 Society for Psychophysiological Research.

  5. 48 CFR 235.006 - Contracting methods and contract type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Defense (Acquisition, Technology, and Logistics) (USD(AT&L)) of an intent not to exercise a fixed-price... award a fixed-price type contract for a development program effort unless— (1) The level of program risk permits realistic pricing; (2) The use of a fixed-price type contract permits an equitable and sensible...

  6. Methodology for Image-Based Reconstruction of Ventricular Geometry for Patient-Specific Modeling of Cardiac Electrophysiology

    PubMed Central

    Prakosa, A.; Malamas, P.; Zhang, S.; Pashakhanloo, F.; Arevalo, H.; Herzka, D. A.; Lardo, A.; Halperin, H.; McVeigh, E.; Trayanova, N.; Vadakkumpadan, F.

    2014-01-01

    Patient-specific modeling of ventricular electrophysiology requires an interpolated reconstruction of the 3-dimensional (3D) geometry of the patient ventricles from the low-resolution (Lo-res) clinical images. The goal of this study was to implement a processing pipeline for obtaining the interpolated reconstruction, and thoroughly evaluate the efficacy of this pipeline in comparison with alternative methods. The pipeline implemented here involves contouring the epi- and endocardial boundaries in Lo-res images, interpolating the contours using the variational implicit functions method, and merging the interpolation results to obtain the ventricular reconstruction. Five alternative interpolation methods, namely linear, cubic spline, spherical harmonics, cylindrical harmonics, and shape-based interpolation were implemented for comparison. In the thorough evaluation of the processing pipeline, Hi-res magnetic resonance (MR), computed tomography (CT), and diffusion tensor (DT) MR images from numerous hearts were used. Reconstructions obtained from the Hi-res images were compared with the reconstructions computed by each of the interpolation methods from a sparse sample of the Hi-res contours, which mimicked Lo-res clinical images. Qualitative and quantitative comparison of these ventricular geometry reconstructions showed that the variational implicit functions approach performed better than others. Additionally, the outcomes of electrophysiological simulations (sinus rhythm activation maps and pseudo-ECGs) conducted using models based on the various reconstructions were compared. These electrophysiological simulations demonstrated that our implementation of the variational implicit functions-based method had the best accuracy. PMID:25148771

  7. A Group Counseling Contract.

    ERIC Educational Resources Information Center

    Johnson, Norbert; Johnson, Sarah Campbell

    1980-01-01

    A group counseling contract was developed following American Psychological Association ethical guidelines. The contract was effective in enabling participants to quickly become involved in group process. The contract could be modified for use by group facilitators in a variety of settings. (Author)

  8. Stimfit: quantifying electrophysiological data with Python

    PubMed Central

    Guzman, Segundo J.; Schlögl, Alois; Schmidt-Hieber, Christoph

    2013-01-01

    Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals. PMID:24600389

  9. 48 CFR 1846.470 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance 1846.470 Contract clause. The contracting officer may insert a clause substantially as stated at 1852.246-71, Government Contract Quality Assurance Functions, in solicitations and contracts to specify the location(s) of quality assurance...

  10. 48 CFR 3416.307 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Contract clauses. 3416.307 Section 3416.307 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost-Reimbursement Contracts 3416.307 Contract...

  11. Integrative Cardiac Health Project (ICHP)

    DTIC Science & Technology

    2017-04-01

    AWARD NUMBER: W81XWH-16-2-0007 TITLE: Integrative Cardiac Health Project (ICHP) PRINCIPAL INVESTIGATOR: COL (Ret) Marina N. Vernalis, MC, USA...2017 4. TITLE AND SUBTITLE Integrative Cardiac Health Project (ICHP) 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-2-0007 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Integrative Cardiac Health Project (ICHP) aims to lead the way in Cardiovascular Disease (CVD

  12. 48 CFR 716.406 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Contract clauses. 716.406 Section 716.406 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost Reimbursement Contracts 716.406 Contract clauses. The...

  13. 48 CFR 716.406 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Contract clauses. 716.406 Section 716.406 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost Reimbursement Contracts 716.406 Contract clauses. The...

  14. 48 CFR 3416.701 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Contract clause. 3416.701 Section 3416.701 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Agreements 3416.701 Contract clause. The contracting...

  15. Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces

    PubMed Central

    Hussain, N.; Salimi, P.

    2014-01-01

    The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157

  16. Agreement Mechanisms in Native and Nonnative Language Processing: Electrophysiological Correlates of Complexity and Interference

    ERIC Educational Resources Information Center

    Tanner, Darren

    2011-01-01

    This dissertation investigates the neural and behavioral correlates of grammatical agreement computation during language comprehension in native English speakers and highly advanced L1 Spanish-L2 English bilinguals. In a series of electrophysiological (event-related brain potential (ERP)) and behavioral (acceptability judgment and self-paced…

  17. 48 CFR 17.204 - Contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information technology contracts. However, statutes applicable to various classes of contracts, for example... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contracts. 17.204 Section 17.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND...

  18. Electrophysiological response of chicken's jejunal epithelium to increasing levels of T-2 toxin.

    PubMed

    Yunus, Agha Waqar; Kröger, Susan; Tichy, Alexander; Zentek, Jürgen; Böhm, Josef

    2013-02-01

    The present investigations were conducted to test the effects of T-2 toxin on electrophysiological variables of jejunal epithelium of chicken. Jejunal segments of broilers were monitored in Ussing chambers in the presence of T-2 toxin at the levels of 0 (negative control), 0 (methanol/vehicle control), 0.1, 1, 5, and 10 μg/ml of buffer. T-2 toxin did not affect basal values of short circuit current (I(sc)), transmural potential difference, or tissue conductivity in the jejunal epithelium. T-2 toxin also did not statistically affect glucose-induced electrophysiological variables during the first 3 min of glucose induction. Compared to the vehicle control, the ouabain-sensitive I(sc) was negatively affected (P = 0.008) only under 5 μg of T-2 toxin/ml. Increasing levels of T-2 toxin negatively affected the ouabain-sensitive I(sc) in a cubic (P = 0.007) fashion. These data indicate that acute exposure to moderate levels of T-2 toxin may progressively impair the cation gradient across the jejunal epithelium.

  19. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2016-01-01

    Background Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. Methods A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). Results At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Conclusion Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants. PMID:27468379

  20. Identifying Treatment Response of Sertraline in a Teenager with Selective Mutism using Electrophysiological Neuroimaging.

    PubMed

    Eugene, Andy R; Masiak, Jolanta

    2016-06-01

    Selective Mutism is described as the inability to verbally express oneself in anxiety provoking social situations and may result in awkward social interactions in school-aged children. In this case-report we present the baseline electrophysiological neuroimaging results and after treatment with Sertraline for 6-weeks. A 20-channel EEG event-related potential recording was acquired during an internal voice task at baseline prior to the initiation of 50mg of Sertraline and then repeated 6-weeks after treatment with Sertraline. EEG signals were processed for movement, eye-blink, and muscle artifacts and ERP signal averaging was completed. ERPs were analyzed using Standard Low Resolution Brain Electromagnetic Tomography (sLORETA). At baseline, Sertraline increased the neuronal activation in the middle temporal gyrus and the anterior cingulate gyrus from baseline in the patient following 6-weeks of treatment. Our findings suggest that electrophysiological neuroimaging may provide a creative approach for personalizing medicine by providing insight to the pharmacodynamics of antidepressants.

  1. Financial incentives for disease management programmes and integrated care in German social health insurance.

    PubMed

    Greb, Stefan; Focke, Axel; Hessel, Franz; Wasem, Jürgen

    2006-10-01

    As a result of recent health care reforms sickness funds and health care providers in German social health insurance face increased financial incentives for implementing disease management and integrated care. Sickness funds receive higher payments form the risk adjustment system if they set up certified disease management programmes and induce patients to enrol. If health care providers establish integrated care projects they are able to receive extra-budgetary funding. As a consequence, the number of certified disease management programmes and the number of integrated care contracts is increasing rapidly. However, contracts about disease management programmes between sickness funds and health care providers are highly standardized. The overall share of health care expenses spent on integrated care still is very low. Existing integrated care is mostly initiated by hospitals, is based on only one indication and is not fully integrated. However, opportunity to invest in integrated care may open up innovative processes, which generate considerable productivity gains. What is more, integrated care may serve as gateway for the introduction of more widespread selective contracting.

  2. Herbivore-Triggered Electrophysiological Reactions: Candidates for Systemic Signals in Higher Plants and the Challenge of Their Identification1

    PubMed Central

    Zimmermann, Matthias R.; Will, Torsten; Felle, Hubert H.; Furch, Alexandra C.U.

    2016-01-01

    In stressed plants, electrophysiological reactions (elRs) are presumed to contribute to long-distance intercellular communication between distant plant parts. Because of the focus on abiotic stress-induced elRs in recent decades, biotic stress-triggered elRs have been widely ignored. It is likely that the challenge to identify the particular elR types (action potential [AP], variation potential, and system potential [SP]) was responsible for this course of action. Thus, this survey focused on insect larva feeding (Spodoptera littoralis and Manduca sexta) that triggers distant APs, variation potentials, and SPs in monocotyledonous and dicotyledonous plant species (Hordeum vulgare, Vicia faba, and Nicotiana tabacum). APs were detected only after feeding on the stem/culm, whereas SPs were observed systemically following damage to both stem/culm and leaves. This was attributed to the unequal vascular innervation of the plant and a selective electrophysiological connectivity of the plant tissue. However, striking variations in voltage patterns were detected for each elR type. Further analyses (also in Brassica napus and Cucurbita maxima) employing complementary electrophysiological approaches in response to different stimuli revealed various reasons for these voltage pattern variations: an intrinsic plasticity of elRs, a plant-specific signature of elRs, a specific influence of the applied (a)biotic trigger, the impact of the technical approach, and/or the experimental setup. As a consequence, voltage pattern variations, which are not irregular but rather common, need to be included in electrophysiological signaling analysis. Due to their widespread occurrence, systemic propagation, and respective triggers, elRs should be considered as candidates for long-distance communication in higher plants. PMID:26872949

  3. The Goldilocks contract: The synergistic benefits of combining structure and autonomy for persistence, creativity, and cooperation.

    PubMed

    Chou, Eileen Y; Halevy, Nir; Galinsky, Adam D; Murnighan, J Keith

    2017-09-01

    Contracts are commonly used to regulate a wide range of interactions and relationships. Yet relying on contracts as a mechanism of control often comes at a cost to motivation. Integrating theoretical perspectives from psychology, economics, and organizational theory, we explore this control-motivation dilemma inherent in contracts and present the Contract-Autonomy-Motivation-Performance-Structure (CAMPS) model, which highlights the synergistic benefits of combining structure and autonomy. The model proposes that subtle reductions in the specificity of a contract's language can boost autonomy, which increases intrinsic motivation and improves a range of desirable behaviors. Nine field and laboratory experiments found that less specific contracts increased task persistence, creativity, and cooperation, both immediately and longitudinally, because they boosted autonomy and intrinsic motivation. These positive effects, however, only occurred when contracts provided sufficient structure. Furthermore, the effects were limited to control-oriented clauses (i.e., legal clauses), and did not extend to coordination-oriented clauses (i.e., technical clauses). That is, there were synergistic benefits when a contract served as a scaffold that combined structure with general clauses. Overall, the current model and experiments identify a low-cost solution to the common problem of regulating social relationships: finding the right amount of contract specificity promotes desirable outcomes, including behaviors that are notoriously difficult to contract. The CAMPS model and the current set of empirical findings explain why, when, and how contracts can be used as an effective motivational tool. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Toward an Integrative Computational Model of the Guinea Pig Cardiac Myocyte

    PubMed Central

    Gauthier, Laura Doyle; Greenstein, Joseph L.; Winslow, Raimond L.

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca2+) release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue level electromechanical function. PMID:22783206

  5. Toward an integrative computational model of the Guinea pig cardiac myocyte.

    PubMed

    Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

  6. 78 FR 11685 - Public Availability of FY 2011 Service Contract Inventory Analysis, FY 2012 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Analysis, FY 2012 Service Contract Inventory, and FY 2012 Service Contract Inventory Planned Analysis for... of the availability of the FY 2011 Service Contract Inventory Analysis, the FY 2012 Service Contract Inventory, and the FY 2012 Service Contract Inventory Planned Analysis. The FY 2011 inventory analysis...

  7. 24 CFR 232.605 - Contract requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Fire Safety Equipment Form of Contract § 232.605 Contract requirements. (a) The contract between the... contract. Either form of contract shall include the cost of fire safety equipment, its installation, and...

  8. 24 CFR 232.605 - Contract requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Fire Safety Equipment Form of Contract § 232.605 Contract requirements. (a) The contract between the... contract. Either form of contract shall include the cost of fire safety equipment, its installation, and...

  9. 24 CFR 232.605 - Contract requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Fire Safety Equipment Form of Contract § 232.605 Contract requirements. (a) The contract between the... contract. Either form of contract shall include the cost of fire safety equipment, its installation, and...

  10. Frequency-specific electrophysiologic correlates of resting state fMRI networks

    PubMed Central

    Hacker, Carl D.; Snyder, Abraham Z.; Pahwa, Mrinal; Corbetta, Maurizio; Leuthardt, Eric C.

    2017-01-01

    Resting state functional MRI (R-fMRI) studies have shown that slow (< 0.1 Hz), intrinsic fluctuations of the blood oxygen level dependent (BOLD) signal are temporally correlated within hierarchically organized functional systems known as resting state networks (RSNs) (Doucet et al., 2011). Most broadly, this hierarchy exhibits a dichotomy between two opposed systems (Fox et al., 2005). One system engages with the environment and includes the visual, auditory, and sensorimotor (SMN) networks as well as the dorsal attention network (DAN), which controls spatial attention. The other system includes the default mode network (DMN) and the fronto-parietal control system (FPC), RSNs that instantiate episodic memory and executive control, respectively. Here, we test the hypothesis, based on the spectral specificity of electrophysiologic responses to perceptual vs. memory tasks (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999), that these two large-scale neural systems also manifest frequency specificity in the resting state. We measured the spatial correspondence between electrocorticographic (ECoG) band-limited power (BLP) and R-fMRI correlation patterns in awake, resting, human subjects. Our results show that, while gamma BLP correspondence was common throughout the brain, theta (4–8 Hz) BLP correspondence was stronger in the DMN and FPC, whereas alpha (8–12 Hz) correspondence was stronger in the SMN and DAN. Thus, the human brain, at rest, exhibits frequency specific electrophysiology, respecting both the spectral structure of task responses and the hierarchical organization of RSNs. PMID:28159686

  11. Using Electrophysiological Measures to Assess the Consumer Acceptability of Smokeless Tobacco Products.

    PubMed

    Buzzell, George A; Das, Babita; Cruz-Cano, Raul; Nkongho, Lizette E; Kidanu, Azieb W; Kim, Hyoshin; Clark, Pamela I; McDonald, Craig G

    2016-09-01

    Adequate evaluation of novel tobacco products must include investigation of consumers' psychological response to such products. Traditionally, subjective scales of product liking have been used to assess consumer acceptability of tobacco products. However, subjective scales may miss cognitive changes that can only be captured by direct neurophysiological assessment. The present investigation explored the viability of using electroencephalography (EEG), in combination with traditional subjective measures, to assess consumer acceptability of five smokeless tobacco products. Given previous work linking product liking to arousal/attentional (executive function) enhancement, we focused on EEG measures of attention/arousal to objectively characterize cognitive changes associated with tobacco product use. During five separate laboratory visits, smokeless tobacco users used Verve discs, Ariva dissolvables, Skoal snuff, Camel snus, or Nicorette lozenges. The N2 and P3b event-related potential components elicited by an oddball task were used to index attentional changes before/after product usage. Additionally, resting state alpha band EEG activity was analyzed before/after product usage to index cortical arousal. Although analyses of the subjective results provided limited inference, analyses of the electrophysiological measures, particularly the alpha suppression measure, revealed robust differences between products. Skoal elicited significantly enhanced alpha suppression compared to all four other products tested. Additionally, alpha suppression was found to correlate positively with subjective measures of satisfaction and psychological reward, but was unrelated to perceived aversion. The present results provide evidence that electrophysiological measures can yield important insights into consumer acceptability of novel tobacco products and are a valuable complement to subjective measures. This study is the first to employ a combination of electrophysiological measures

  12. 48 CFR 217.204 - Contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...)(i) Notwithstanding FAR 17.204(e), the ordering period of a task order or delivery order contract...) of this section does not apply to the following: (A) Contracts, including task or delivery order contracts, awarded under other statutory authority. (B) Advisory and assistance service task order contracts...

  13. Automatic Conflict Detection on Contracts

    NASA Astrophysics Data System (ADS)

    Fenech, Stephen; Pace, Gordon J.; Schneider, Gerardo

    Many software applications are based on collaborating, yet competing, agents or virtual organisations exchanging services. Contracts, expressing obligations, permissions and prohibitions of the different actors, can be used to protect the interests of the organisations engaged in such service exchange. However, the potentially dynamic composition of services with different contracts, and the combination of service contracts with local contracts can give rise to unexpected conflicts, exposing the need for automatic techniques for contract analysis. In this paper we look at automatic analysis techniques for contracts written in the contract language mathcal{CL}. We present a trace semantics of mathcal{CL} suitable for conflict analysis, and a decision procedure for detecting conflicts (together with its proof of soundness, completeness and termination). We also discuss its implementation and look into the applications of the contract analysis approach we present. These techniques are applied to a small case study of an airline check-in desk.

  14. Pharmacological and electrophysiological characterization of nine, single nucleotide polymorphisms of the hERG-encoded potassium channel

    PubMed Central

    Männikkö, R; Overend, G; Perrey, C; Gavaghan, CL; Valentin, J-P; Morten, J; Armstrong, M; Pollard, CE

    2010-01-01

    Background and purpose: Potencies of compounds blocking KV11.1 [human ether-ago-go-related gene (hERG)] are commonly assessed using cell lines expressing the Caucasian wild-type (WT) variant. Here we tested whether such potencies would be different for hERG single nucleotide polymorphisms (SNPs). Experimental approach: SNPs (R176W, R181Q, Del187-189, P347S, K897T, A915V, P917L, R1047L, A1116V) and a binding-site mutant (Y652A) were expressed in Tet-On CHO-K1 cells. Potencies [mean IC50; lower/upper 95% confidence limit (CL)] of 48 hERG blockers was estimated by automated electrophysiology [IonWorks™ HT (IW)]. In phase one, rapid potency comparison of each WT-SNP combination was made for each compound. In phase two, any compound-SNP combinations from phase one where the WT upper/lower CL did not overlap with those of the SNPs were re-examined. Electrophysiological WT and SNP parameters were determined using conventional electrophysiology. Key results: IW detected the expected sixfold potency decrease for propafenone in Y652A. In phase one, the WT lower/upper CL did not overlap with those of the SNPs for 77 compound-SNP combinations. In phase two, 62/77 cases no longer yielded IC50 values with non-overlapping CLs. For seven of the remaining 15 cases, there were non-overlapping CLs but in the opposite direction. For the eight compound-SNP combinations with non-overlapping CLs in the same direction as for phase 1, potencies were never more than twofold apart. The only statistically significant electrophysiological difference was the voltage dependence of activation of R1047L. Conclusion and implications: Potencies of hERG channel blockers defined using the Caucasian WT sequence, in this in vitro assay, were representative of potencies for common SNPs. This article is part of a themed section on QT safety. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2010 PMID:19673885

  15. An Open-Source Hardware and Software System for Acquisition and Real-Time Processing of Electrophysiology during High Field MRI

    PubMed Central

    Purdon, Patrick L.; Millan, Hernan; Fuller, Peter L.; Bonmassar, Giorgio

    2008-01-01

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open source system for simultaneous electrophysiology and fMRI featuring low-noise (< 0.6 uV p-p input noise), electromagnetic compatibility for MRI (tested up to 7 Tesla), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has used in human EEG/fMRI studies at 3 and 7 Tesla examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3 Tesla fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038

  16. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.

    PubMed

    Purdon, Patrick L; Millan, Hernan; Fuller, Peter L; Bonmassar, Giorgio

    2008-11-15

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open-source system for simultaneous electrophysiology and fMRI featuring low-noise (<0.6microV p-p input noise), electromagnetic compatibility for MRI (tested up to 7T), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has been used in human EEG/fMRI studies at 3 and 7T examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3T fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level.

  17. 7 CFR 634.25 - Contracting.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.25 Contracting... agrees to apply his or her water-quality plan. Any person who controls, or shares control, of the farm... basic contract document, special provisions as needed, the participant's water-quality plan, schedule of...

  18. 7 CFR 634.25 - Contracting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.25 Contracting... agrees to apply his or her water-quality plan. Any person who controls, or shares control, of the farm... basic contract document, special provisions as needed, the participant's water-quality plan, schedule of...

  19. 7 CFR 634.25 - Contracting.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.25 Contracting... agrees to apply his or her water-quality plan. Any person who controls, or shares control, of the farm... basic contract document, special provisions as needed, the participant's water-quality plan, schedule of...

  20. The Joy of Contracts.

    ERIC Educational Resources Information Center

    Hegarty, Kevin

    This paper is a practical guide that explains and illustrates contracts between libraries and vendors for computerized circulation systems. It describes the elements of a typical contract to include the equipment and services that should be specified in the contract and establishes scheduling and acceptance testing needs. Included in a contract…

  1. Anhedonia and emotional numbing in treatment-seeking veterans: behavioural and electrophysiological responses to reward

    PubMed Central

    Karstoft, Karen-Inge; Andersen, Soren B.

    2018-01-01

    ABSTRACT Background: Anhedonia is a common symptom following exposure to traumatic stress and a feature of the PTSD diagnosis. In depression research, anhedonia has been linked to deficits in reward functioning, reflected in behavioural and neural responses. Such deficits following exposure to trauma, however, are not well understood. Objective: The current study aims to estimate the associations between anhedonia, PTSD symptom-clusters and behavioural and electrophysiological responses to reward. Methods: Participants (N = 61) were recruited among Danish treatment-seeking veterans at the Department of Military Psychology in the Danish Defence. Before entering treatment, participants were screened with symptom measurement instruments and participated in a joint behavioural-electrophysiological experiment. The experimental paradigm consisted of a signal-detection task aimed at assessing reward-driven learning. Simultaneous electrophysiological-recordings were analysed to evaluate neural responses upon receiving reward, as indicated by the Feedback-Related Negativity (FRN) component. Result: Anhedonia as conceptualized in depression correlated with behavioural learning (r = -0.28, p = .032). Neither anhedonia nor behavioural learning correlated with FRN. However, the anhedonia symptom cluster of PTSD did correlate with FRN (r = 0.29, p = .023). Extending upon this in an exploratory analysis, the specific PTSD-symptom emotional numbing was found to correlate moderately with FRN (r = 0.38, p = .003). Conclusion: The present data suggest that anhedonia in trauma-exposed individuals is related to the anticipatory aspect of reward, whereas the neural consummatory reward response seems unlinked. Interestingly, emotional numbing in the same population is related to the consummatory phase of reward, correlating with the FRN response. This suggests that anhedonia and emotional numbing in response to trauma might pertain to different phases of reward processing. PMID:29707167

  2. Clinical and electrophysiological aspects of tics in children.

    PubMed

    Safiullina, G I; Safiullina, A A

    2015-01-01

    Tics are diverse in nature inappropriate movements or vocalizations. They significantly degrade patients' quality of life, lead to social difficulties, and disturbance of learning especially during exacerbations. The prevalence of tics among children ranges from 4% to 24%, thus emphasizing the relevance of the problem. To study clinical and electrophysiological features of tics in children with development of new treatment methods. We conducted a comprehensive clinical and electrophysiological examination of 50 patients with tics, aged 5 to 15 years. The control group consisted of 20 healthy children. The research included a thorough study of the history, neurological examination, manual testing of skeletal muscles, psychological testing. Electrophysiological examination included a review of the functional state of corticospinal tract (CST) by the method of magnetic stimulation (MS), study of polysynaptic reflex excitability (PRE) according to a late component of the blink reflex (BR). Statistical analysis included parametric and nonparametric methods of data processing. All children of the study group showed signs of minimal brain dysfunction (MBD), they had complicated antenatal and postnatal history (trauma, disease, occurring with intoxication). There was a trend towards the increase of MBD signs with worsening of tics. Manual diagnosis in patients identified functional blockade at different levels of the vertebral column, sacroiliac joints, we identified latent myofascial trigger points (MFTP) mainly in the cervical-collar zone, in the area of the paravertebral muscles, periosteal triggers in the area of the sacroiliac joints.The research allowed determining decrease in propagation velocity of excitation (PVE) throughout CST in patients with tics. Correlation analysis revealed a negative correlation between the severity of tics and PVE (r = -0.38; p < 0.001).When studying polysynaptic reflex excitability (PRE) a significant predominance of hyper-excited types

  3. 48 CFR 632.705 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Contract clauses. 632.705 Section 632.705 Federal Acquisition Regulations System DEPARTMENT OF STATE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Contract Funding 632.705 Contract clauses. ...

  4. 48 CFR 32.705 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contract clauses. 32.705 Section 32.705 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Contract Funding 32.705 Contract clauses. ...

  5. Defense Contract Management Agency

    Science.gov Websites

    , May 24. Click the photo above for more information. Members of the Defense Contract Management Agency for more information. Members of the Defense Contract Management Agency International Region conduct Skip to main content (Press Enter). Toggle navigation Defense Contract Management Agency Search

  6. An Analysis of Air Force Service Contract Cases Appealed to the Armed Services Board of Contract Appeals

    DTIC Science & Technology

    1988-09-01

    DEM/88S- 1 AN ANALYSIS OF AIR FORCE SERVICE CONTRACT CASES APPEALED TO THE ARMED SERVICES BOARD OF CONTRACT APPEALS THESIS Diane L. Bowden First...CONTRACT CASES APPEALED TO THE ARMED SERVICES BOARD OF CONTRACT APPEALS THESIS Presented to the Faculty of the School of Systems and Logistics of the Air...analyze, and condense information that might be useful to contracting and contract management personnel. Armed Services Board of Contract Appeals

  7. 48 CFR 42.401 - Contract correspondence.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contract correspondence... MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Correspondence and Visits 42.401 Contract correspondence. (a) The contracting officer (or other contracting agency personnel) normally shall (1) forward...

  8. 48 CFR 1832.705 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contract clauses. 1832.705 Section 1832.705 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Contract Funding 1832.705 Contract clauses. ...

  9. 48 CFR 1242.7000 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Contract clauses. 1242.7000 Section 1242.7000 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Contract Administration Clauses 1242.7000 Contract...

  10. Safety of intraoperative electrophysiological monitoring (TES and EMG) for spinal and cranial lesions.

    PubMed

    Gazzeri, Roberto; Faiola, Andrea; Neroni, Massimiliano; Fiore, Claudio; Callovini, Giorgio; Pischedda, Mauro; Galarza, Marcelo

    2013-09-01

    Intraoperative motor evoked potentials (MEP) and electromyography (EMG) monitoring in patients with spinal and cranial lesions is a valuable tool for prevention of postoperative motor deficits. The purpose of this study was to determine whether electrophysiological monitoring during skull base, spinal cord, and spinal surgery might be useful for predicting postoperative motor deterioration. From January 2012 to March 2013, thirty-three consecutive patients were studied using intraoperative monitoring (Nuvasive NV-M5 System) to check the integrity of brainstem, spinal cord, and nerve roots, recording transcranial motor evoked potentials (TcMEPs) and electromyography. Changes in MEPs and EMGs were related to postoperative deficits. Preoperative diagnosis included skull base and brainstem lesions (6 patients), spinal tumors (11 patients), spinal deformity (16 cases). Using TcMEPs and EMG is a practicable and safe method. MEPs are useful in any surgery in which the brainstem and spinal cord are at risk. EMG stimulation helps to identify an optimal trans-psoas entry point for an extreme lateral lumbar interbody fusion (XLIF) approach to protect against potential nerve injury. This neural navigation technique via a surgeon-interpreted interface assists the surgical team in safely removing lesions and accessing the intervertebral disc space for minimally invasive spinal procedures.

  11. 48 CFR 846.312 - Construction contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Construction contracts. 846.312 Section 846.312 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 846.312 Construction contracts. The contracting officer shall...

  12. 48 CFR 543.205 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 543.205 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION CONTRACT MANAGEMENT CONTRACT MODIFICATIONS Change Orders 543.205 Contract clauses. The contracting officer shall insert 552.243-71, Equitable Adjustments, in solicitations and contracts containing FAR 52.243-4, Changes. [74 FR...

  13. 7 CFR 1780.61 - Construction contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Construction contracts. 1780.61 Section 1780.61..., Constructing and Inspections § 1780.61 Construction contracts. Contract documents must be sufficiently.... (a) Standard construction contract documents. If the construction contract documents utilized are not...

  14. 7 CFR 1780.61 - Construction contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Construction contracts. 1780.61 Section 1780.61..., Constructing and Inspections § 1780.61 Construction contracts. Contract documents must be sufficiently.... (a) Standard construction contract documents. If the construction contract documents utilized are not...

  15. 48 CFR 3443.106 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Contract clause. 3443.106 Section 3443.106 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION CONTRACT MANAGEMENT CONTRACT MODIFICATIONS 3443.106 Contract clause. The contracting officer shall insert...

  16. 48 CFR 543.205 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 543.205 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION CONTRACT MANAGEMENT CONTRACT MODIFICATIONS Change Orders 543.205 Contract clauses. The contracting officer shall insert 552.243-71, Equitable Adjustments, in solicitations and contracts containing FAR 52.243-4, Changes. [74 FR...

  17. Measurement of uterine activity in vitro by integrating muscle tension

    PubMed Central

    Styles, P. R.; Sullivan, T. J.

    1962-01-01

    Spontaneous or electrically stimulated activity of the uterus is measured isometrically in vitro by integrating tension against time. Uterine contractions move the operating rod of a potentiometer transducer, the output voltage from which is coupled to an electrical integrator motor and a servo recorder. Several parameters of uterine activity can be expressed in a single measurement, and a record of isometric contractions is obtained simultaneously. Oxytocin can be assayed accurately and the effect of drugs on uterine motility can be measured. PMID:13918066

  18. Essential tremor: electrophysiological and pharmacological evidence for a subdivision.

    PubMed Central

    Deuschl, G; Lücking, C H; Schenck, E

    1987-01-01

    Forty five patients with essential tremor have been investigated by means of clinical examination, polygraphic EMG records and testing of long-latency reflexes. Clinically there were no differences between the patients, whereas the electrophysiological investigations suggested two subtypes. One group of patients may be characterised by normal long-latency reflexes and synchronous tremor bursts in antagonists or activity of the antigravity muscle alone. The second group had abnormal long-latency reflexes and reciprocal EMG activity in antagonists. It is suggested that these two groups represent distinct subgroups of essential tremor. Patients of the first group responded well to propranolol, whereas those of the second group did not. PMID:3694203

  19. 41 CFR 102-79.105 - What is the Integrated Workplace?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What is the Integrated Workplace? 102-79.105 Section 102-79.105 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 79-ASSIGNMENT AND...

  20. 41 CFR 102-79.105 - What is the Integrated Workplace?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What is the Integrated Workplace? 102-79.105 Section 102-79.105 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 79-ASSIGNMENT AND...

  1. 41 CFR 102-79.105 - What is the Integrated Workplace?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What is the Integrated Workplace? 102-79.105 Section 102-79.105 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 79-ASSIGNMENT AND...

  2. Evidence for Acute Electrophysiological and Cognitive Changes Following Routine Soccer Heading.

    PubMed

    Di Virgilio, Thomas G; Hunter, Angus; Wilson, Lindsay; Stewart, William; Goodall, Stuart; Howatson, Glyn; Donaldson, David I; Ietswaart, Magdalena

    2016-11-01

    There is growing concern around the effects of concussion and sub-concussive impacts in sport. Routine game-play in soccer involves intentional and repeated head impacts through ball heading. Although heading is frequently cited as a risk to brain health, little data exist regarding the consequences of this activity. This study aims to assess the immediate outcomes of routine football heading using direct and sensitive measures of brain function. Nineteen amateur football players (5 females; age 22±3y) headed machine-projected soccer balls at standardized speeds, modelling routine soccer practice. The primary outcome measure of corticomotor inhibition measured using transcranial magnetic stimulation, was assessed prior to heading and repeated immediately, 24h, 48h and 2weeks post-heading. Secondary outcome measures were cortical excitability, postural control, and cognitive function. Immediately following heading an increase in corticomotor inhibition was detected; further to these electrophysiological alterations, measurable reduction memory function were also found. These acute changes appear transient, with values normalizing 24h post-heading. Sub-concussive head impacts routine in soccer heading are associated with immediate, measurable electrophysiological and cognitive impairments. Although these changes in brain function were transient, these effects may signal direct consequences of routine soccer heading on (long-term) brain health which requires further study. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.

    PubMed

    Siegle, Joshua H; López, Aarón Cuevas; Patel, Yogi A; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob

    2017-08-01

    Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard 'open-loop' visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.

  4. Caveats on Contract.

    ERIC Educational Resources Information Center

    Croxton, Tom A.

    1988-01-01

    Addresses concept of the therapeutic contract in clinical social work and psychotherapy. Defines "contract," describing legal implications, and implications for the professional relationship and course of treatment. Discusses mutuality, penalty clauses, voluntary participation in contractual process, malpractice and professional negligence,…

  5. 48 CFR 46.312 - Construction contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Construction contracts. 46... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.312 Construction contracts. The contracting officer shall insert the clause at 52.246-12, Inspection of Construction, in solicitations and contracts for...

  6. 48 CFR 46.312 - Construction contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Construction contracts. 46... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.312 Construction contracts. The contracting officer shall insert the clause at 52.246-12, Inspection of Construction, in solicitations and contracts for...

  7. 48 CFR 546.312 - Construction contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Construction contracts... CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 546.312 Construction contracts. Insert the clause at 552.246-72, Final Inspection and Tests, in solicitations and contracts for construction that include...

  8. 48 CFR 546.312 - Construction contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Construction contracts... CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 546.312 Construction contracts. Insert the clause at 552.246-72, Final Inspection and Tests, in solicitations and contracts for construction that include...

  9. 48 CFR 46.312 - Construction contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Construction contracts. 46... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.312 Construction contracts. The contracting officer shall insert the clause at 52.246-12, Inspection of Construction, in solicitations and contracts for...

  10. 48 CFR 546.312 - Construction contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Construction contracts... CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 546.312 Construction contracts. Insert the clause at 552.246-72, Final Inspection and Tests, in solicitations and contracts for construction that include...

  11. 48 CFR 46.312 - Construction contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Construction contracts. 46... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.312 Construction contracts. The contracting officer shall insert the clause at 52.246-12, Inspection of Construction, in solicitations and contracts for...

  12. 48 CFR 546.312 - Construction contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Construction contracts... CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 546.312 Construction contracts. Insert the clause at 552.246-72, Final Inspection and Tests, in solicitations and contracts for construction that include...

  13. 48 CFR 46.314 - Transportation contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Transportation contracts... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.314 Transportation contracts. The contracting officer shall insert the clause at 52.246-14, Inspection of Transportation, in solicitations and contracts for freight...

  14. 48 CFR 46.314 - Transportation contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Transportation contracts... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.314 Transportation contracts. The contracting officer shall insert the clause at 52.246-14, Inspection of Transportation, in solicitations and contracts for freight...

  15. 48 CFR 46.314 - Transportation contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Transportation contracts... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.314 Transportation contracts. The contracting officer shall insert the clause at 52.246-14, Inspection of Transportation, in solicitations and contracts for freight...

  16. 48 CFR 46.314 - Transportation contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Transportation contracts... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.314 Transportation contracts. The contracting officer shall insert the clause at 52.246-14, Inspection of Transportation, in solicitations and contracts for freight...

  17. 48 CFR 46.314 - Transportation contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Transportation contracts... MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.314 Transportation contracts. The contracting officer shall insert the clause at 52.246-14, Inspection of Transportation, in solicitations and contracts for freight...

  18. 48 CFR 2035.70 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 2035.70 Contract clauses. (a) The contracting officer shall insert the following clause in all solicitations and contracts for research and development by private contractors and universities and for other technical services, as appropriate: (1) Section 2052.235-70...

  19. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  20. Army Contract Writing System (ACWS)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Army Contract Writing System (ACWS) Defense Acquisition Management Information Retrieval...Program Information Program Name Army Contract Writing System (ACWS) DoD Component Army Responsible Office Program Manager References MAIS...UNCLASSIFIED 4 Program Description The Army Contract Writing System (ACWS) will be the Army’s single, next-generation, enterprise-wide contract writing