Hemispherical reflectance model for passive images in an outdoor environment.
Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar
2015-05-01
We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.
Emotional Valence and Arousal Effects on Memory and Hemispheric Asymmetries
ERIC Educational Resources Information Center
Mneimne, Malek; Powers, Alice S.; Walton, Kate E.; Kosson, David S.; Fonda, Samantha; Simonetti, Jessica
2010-01-01
This study examined predictions based upon the right hemisphere (RH) model, the valence-arousal model, and a recently proposed integrated model (Killgore & Yurgelun-Todd, 2007) of emotion processing by testing immediate recall and recognition memory for positive, negative, and neutral verbal stimuli among 35 right-handed women. Building upon…
From the left to the right: How the brain compensates progressive loss of language function.
Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F; Heiss, Wolf-Dieter
2006-07-01
In normal right-handed subjects language production usually is a function oft the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the left hemisphere in normal subjects are successfully employed for compensation but this integration process may need time to develop. We investigated right-handed patients with left hemisphere brain tumors as a model of continuously progressive brain damage to left hemisphere language areas using functional neuroimaging and transcranial magnetic stimulation (TMS) to identify factors which determine successful compensation of lost language function. Only patients with slowly progressing brain lesions recovered right-sided language function as detected by TMS. In patients with rapidly progressive lesions no right-sided language function was found and language performance was linearly correlated with the lateralization of language related brain activation to the left hemisphere. It can thus be concluded that time is the factor which determines successful integration of the right hemisphere into the language network for compensation of lost left hemisphere language function.
Chen, Jianhuai; Yao, Zhijian; Qin, Jiaolong; Yan, Rui; Hua, Lingling; Lu, Qing
2015-06-25
The human brain is a complex network of regions that are structurally interconnected by white matter (WM) tracts. Schizophrenia (SZ) can be conceptualized as a disconnection syndrome characterized by widespread disconnections in WM pathways. To assess whether or not anatomical disconnections are associated with disruption of the topological properties of inter- and intra-hemispheric networks in SZ. We acquired the diffusion tensor imaging data from 24 male patients with paranoid SZ during an acute phase of their illness and from 24 healthy age-matched male controls. The brain FA-weighted (fractional anisotropy-weighted) structural networks were constructed and the inter- and intra-hemispheric integration was assessed by estimating the average characteristic path lengths (CPLs) between and within the left and right hemisphere networks. The mean CPLs for all 18 inter-and intra-hemispheric CPLs assessed were longer in the SZ patient group than in the control group, but only some of these differences were significantly different: the CPLs for the overall inter-hemispheric and the left and right intra-hemispheric networks; the CPLs for the interhemisphere subnetworks of the frontal lobes, temporal lobes, and subcortical structures; and the CPL for the intra- frontal subnetwork in the right hemisphere. Among the 24 patients, the CPL of the inter-frontal subnetwork was positively associated with negative symptom severity, but this was the only significant result among 72 assessed correlations, so it may be a statistical artifact. Our findings suggest that the integrity of intra- and inter-hemispheric WM tracts is disrupted in males with paranoid SZ, supporting the brain network disconnection model (i.e., the (')connectivity hypothesis(')) of schizophrenia. Larger studies with less narrowly defined samples of individuals with schizophrenia are needed to confirm these results.
New constraints on Northern Hemisphere growing season net flux
NASA Astrophysics Data System (ADS)
Yang, Z.; Washenfelder, R. A.; Keppel-Aleks, G.; Krakauer, N. Y.; Randerson, J. T.; Tans, P. P.; Sweeney, C.; Wennberg, P. O.
2007-06-01
Observations of the column-averaged dry molar mixing ratio of CO2 above both Park Falls, Wisconsin and Kitt Peak, Arizona, together with partial columns derived from aircraft profiles over Eurasia and North America are used to estimate the seasonal integral of net ecosystem exchange (NEE) between the atmosphere and the terrestrial biosphere in the Northern Hemisphere. We find that NEE is ~25% larger than predicted by the Carnegie Ames Stanford Approach (CASA) model. We show that the estimates of NEE may have been biased low by too weak vertical mixing in the transport models used to infer seasonal changes in Northern Hemisphere CO2 mass from the surface measurements of CO2 mixing ratio.
Frässle, Stefan; Paulus, Frieder Michel; Krach, Sören; Schweinberger, Stefan Robert; Stephan, Klaas Enno; Jansen, Andreas
2016-01-01
Perceiving human faces constitutes a fundamental ability of the human mind, integrating a wealth of information essential for social interactions in everyday life. Neuroimaging studies have unveiled a distributed neural network consisting of multiple brain regions in both hemispheres. Whereas the individual regions in the face perception network and the right-hemispheric dominance for face processing have been subject to intensive research, the functional integration among these regions and hemispheres has received considerably less attention. Using dynamic causal modeling (DCM) for fMRI, we analyzed the effective connectivity between the core regions in the face perception network of healthy humans to unveil the mechanisms underlying both intra- and interhemispheric integration. Our results suggest that the right-hemispheric lateralization of the network is due to an asymmetric face-specific interhemispheric recruitment at an early processing stage - that is, at the level of the occipital face area (OFA) but not the fusiform face area (FFA). As a structural correlate, we found that OFA gray matter volume was correlated with this asymmetric interhemispheric recruitment. Furthermore, exploratory analyses revealed that interhemispheric connection asymmetries were correlated with the strength of pupil constriction in response to faces, a measure with potential sensitivity to holistic (as opposed to feature-based) processing of faces. Overall, our findings thus provide a mechanistic description for lateralized processes in the core face perception network, point to a decisive role of interhemispheric integration at an early stage of face processing among bilateral OFA, and tentatively indicate a relation to individual variability in processing strategies for faces. These findings provide a promising avenue for systematic investigations of the potential role of interhemispheric integration in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.
In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...
Global Warming and Northern Hemisphere Sea Ice Extent.
Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov
1999-12-03
Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.
Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A
2010-11-01
The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.
A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven
2005-01-01
We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.
Evaluation of blocking performance in ensemble seasonal integrations
NASA Astrophysics Data System (ADS)
Casado, M. J.; Doblas-Reyes, F. J.; Pastor, M. A.
2003-04-01
EVALUATION OF BLOCKING PERFOMANCE IN ENSEMBLE SEASONAL INTEGRATIONS M. J. Casado (1), F. J. Doblas-Reyes (2), A. Pastor (1) (1) I Instituto Nacional de Meteorología, c/Leonardo Prieto Castro,8,28071 ,Madrid,Spain, mjcasado@inm.es (2) ECMWF, Shinfield Park,RG2 9AX, Reading, UK, f.doblas-reyes@ecmwf.int Climate models have shown a robust inability to reliably predict blocking onset and frequency. This systematic error has been evaluated using multi-model ensemble seasonal integrations carried out in the framework of the Prediction Of climate Variations On Seasonal and interanual Timescales (PROVOST) project and compared to a blocking features assessment of the NCEP re-analyses. The PROVOST GCMs are able to adequately reproduce the spatial NCEP teleconnection patterns over the Northern Hemisphere, being notorious the great spatial correlation coefficient with some of the corresponding NCEP patterns. In spite of that, the different models show a consistent underestimation of blocking frequency which may impact on the ability to predict the seasonal amplitude of the leading modes of variability over the Northern Hemisphere.
NASA Technical Reports Server (NTRS)
Weaver, Clark J.; Douglass, Anne R.; Rood, Richard B.
1995-01-01
A three-dimensional transport model, which uses winds from a stratospheric data assimilation system, is used to study the transport of supersonic aircraft exhaust in the lower stratosphere. A passive tracer is continuously injected into the transport model. The tracer source distribution is based on realistic scenarios for the daily emission rate of reactive nitrogen species for all forecasted flight routes. Winds are from northern hemisphere winter/spring months for 1979 and 1989; there are minimal differences between the tracer integrations for the 2 years. During the integration, peak tracer mixing ratios in the flight corridors are compared with the zonal mean and found to be greater by a factor of 2 or less. This implies that the zonal mean assumption used in two dimensional models is reasonable during winter and spring. There is a preference for pollutant buildup in the heavily traveled North Pacific and North Atlantic flight corridors. Pollutant concentration in the corridors depends on the position of the Aleutian anticyclone and the northern hemisphere polar vortex edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Jinda; Ju, Y. Sungtaek, E-mail: just@seas.ucla.edu
One major challenge in incorporating flexible electronics or optoelectronics on curved surfaces is the requirement of significant stretchability. We report a tunable platform for incorporating flexible and yet non-stretching device layers on a hemisphere. In this configuration, an array of planar petals contractively maps onto the surface of an inflatable hemisphere through elastocapillary interactions mediated by an interface liquid. A mechanical model is developed to elucidate the dependence of the conformality of the petal structures on their elastic modulus and thickness and the liquid surface tension. The modeling results are validated against experimental results obtained using petal structures of differentmore » thicknesses, restoring elastic spring elements of different spring constants, and liquids with different surface tension coefficients. Our platform will enable facile integration of non-stretching electronic and optoelectronic components prepared using established planar fabrication techniques on tunable hemispherical surfaces.« less
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
Hübner, Ronald; Volberg, Gregor
2005-06-01
This article presents and tests the authors' integration hypothesis of global/local processing, which proposes that at early stages of processing, the identities of global and local units of a hierarchical stimulus are represented separately from information about their respective levels and that, therefore, identity and level information have to be integrated at later stages. It further states that the cerebral hemispheres differ in their capacities for these binding processes. Three experiments are reported in which the integration hypothesis was tested. Participants had to identify a letter at a prespecified level with the viewing duration restricted by a mask. False reporting of the letter at the nontarget level was predicted to occur more often when the integration of identity and level could fail. This was the case. Moreover, visual-field effects occurred, as expected. Finally, a multinomial model was constructed and fitted to the data. ((c) 2005 APA, all rights reserved).
Adaptive scaling model of the main pycnocline and the associated overturning circulation
NASA Astrophysics Data System (ADS)
Fuckar, Neven-Stjepan
This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.
Speech processing: from peripheral to hemispheric asymmetry of the auditory system.
Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier
2012-01-01
Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Unexpected Far-Ultraviolet Photometric Characteristics On Mimas
NASA Astrophysics Data System (ADS)
Royer, E. M.; Hendrix, A. R.
2013-12-01
While infrared and visible are the most common wavelength domains used to investigate planetary surfaces, ultraviolet (UV) data are significant and useful. Here, we present the first far-UV phase curves of Mimas, thus displaying another piece of the Saturnian System puzzle. Our preliminary results shows that, one more time, Mimas surface properties are far from what we was expected. Namely, we observe a leading hemisphere brighter than the trailing hemisphere at some far-UV wavelengths. We used the far-UV channel of the Cassini/UVIS instrument, ranging from 118 to 190 nm. Disk-integrated phase curves for the leading hemisphere and the trailing hemisphere, at 180nm, have been produced. Data points span from 0.5 to 163.5 degrees in phase angle. Mimas displays a leading hemisphere brighter than its trailing hemisphere, when theory and previous Voyager observations at longer wavelengths attest of a brighter trailing hemisphere due to the impact of the E-ring grains on this face of the satellite. Surprisingly, UVIS data show a very bright opposition effect on Mimas leading hemisphere, greater than what is observed on Tethys or Dione leading hemisphere at the same wavelength of 180 nm. Preliminary results of photometric properties modeling seem to indicate an important contribution of the coherent-backscattering process in the opposition surge. Exogenic processes such as bombardment by energetic electrons and/or E-ring grains are discussed to explain this unexpected surface property of Mimas.
EPA’s coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of c...
Right Hemisphere Dominance in Visual Statistical Learning
ERIC Educational Resources Information Center
Roser, Matthew E.; Fiser, Jozsef; Aslin, Richard N.; Gazzaniga, Michael S.
2011-01-01
Several studies report a right hemisphere advantage for visuospatial integration and a left hemisphere advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual feature combinations. A split-brain patient and normal control participants viewed…
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-01-01
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539
Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin
2017-10-01
Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Simon, Sven
2015-09-01
We develop a new analytical model of the Alfvén wing that is generated by the interaction between a planetary moon's ionosphere and its magnetospheric environment. While preceding analytical approaches assumed the obstacle's height-integrated ionospheric conductivities to be spatially constant, the model presented here can take into account a continuous conductance profile that follows a power law. The electric potential in the interaction region, determining the electromagnetic fields of the Alfvén wing, can then be calculated from an Euler-type differential equation. In this way, the model allows to include a realistic representation of the "suspension bridge"-like conductance profile expected for the moon's ionosphere. The major drawback of this approach is its restriction to interaction scenarios where the ionospheric Pedersen conductance is large compared to the Hall conductance, and thus, the Alfvénic perturbations are approximately symmetric between the planet-facing and the planet-averted hemispheres of the moon. The model is applied to the hemisphere coupling effect observed at Enceladus, i.e., to the surface currents and the associated magnetic discontinuities that arise from a north-south asymmetry of the obstacle to the plasma flow. We show that the occurrence of this effect is very robust against changes in the conductance profile of Enceladus' plume, and we derive upper limits for the strength of the magnetic field jumps generated by the hemisphere coupling effect. During all 11 reported detections of the hemisphere coupling currents at Enceladus, the observed magnetic field jumps were clearly weaker than the proposed limits. Our findings are also relevant for future in situ studies of putative plumes at the Jovian moon Europa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salajegheh, Nima; Abedrabbo, Nader; Pourboghrat, Farhang
An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the total cross section area of the representative volume element. This parameter is incorporated into the integration algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters ismore » carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in the numerical analysis is performed through element deletion using the critical damage value. The set of failure parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as well.« less
Modeling the imprint of Milankovitch cycles on early Pleistocene ice volume
NASA Astrophysics Data System (ADS)
Roychowdhury, R.; DeConto, R.; Pollard, D.
2017-12-01
Global climate during Quaternary and Late Pliocene (present-3.1 Ma) is characterized by alternating glacial and interglacial conditions. Several proposed theories associate these cycles with variations in the Earth's orbital configuration. In this study, we attempt to address the anomalously strong obliquity forcing in the Late Pliocene/Early Pleistocene ice volume records (41 kyr world), which stands in sharp contrast to the primary cyclicity of insolation, which is at precessional periods (23 kyr). Model results from GCM simulations show that at low eccentricities (e<0.015), the effect of precession is minimal, and the integrated insolation metrics (such as summer metric, PDD, etc.) vary in-phase between the two hemispheres. At higher eccentricities (e>0.015), precessional response is important, and the insolation metrics vary out-of-phase between the two hemispheres. Using simulations from a GCM-driven ice sheet model, we simulate time continuous ice volume changes from Northern and Southern Hemispheres. Under eccentricities lower than 0.015, ice sheets in both hemispheres respond only to obliquity cycle, and grow and melt together (in-phase). If the ice sheet is simulated with eccentricity higher than 0.015, both hemispheres become more sensitive to precessional variation, and vary out-of-phase with each other, which is consistent with proxy observations from the late Pleistocene glaciations. We use the simulated ice volumes from 2.0 to 1.0 ma to empirically calculate global benthic δ18O variations based on the assumption that relationships between collapse and growth of ice-sheets and sea level is linear and symmetric and that the isotopic signature of the individual ice-sheets has not changed with time. Our modeled global benthic δ18O values are broadly consistent with the paleoclimate proxy records such as the LR04 stack.
Tracer evolution in winds generated by a global spectral mechanistic model
NASA Technical Reports Server (NTRS)
Nielsen, J. E.; Rood, Richard B.; Couglass, Anne R.; Cerniglia, Mark C.; Allen, Dale J.; Rosenfield, Joan E.
1994-01-01
The lower boundary of a spectral mechanistic model is prescribed with 100 hPa geopotentials, and its performance during a November 1989 through March 1990 integration is compared with National Meteorological Center observations. Although the stratopause temperatures quickly become biased near the pole in both hemispheres, the model develops a residual mean circulation which shows significant descent over the winter pole and ascent in the tropics and over the summer pole at pressures less than 10 hPa. The daily correspondence of observed to modeled features in the upper stratosphere and mesosphere degrades after one month. However, the long-term variability qualitatively follows the observations. The results of off-line transport experiments are also described. A passive tracer is instantaneously injected into the flow over the poles and evolves in a manner which is consistent with the residual mean circulation. It demonstrates a significant cross-equatorial flux in the mesosphere near solstice, and air which originates in the southern hemisphere polar mesosphere can be found descending deep into the nothern polar stratosphere at the end of the integration. Nitrous oxide is also transported, and its ability to act as a dynamical tracer is evaluated by comparison to the evolution of the passive tracer.
NASA Astrophysics Data System (ADS)
Barnes, Elizabeth; Polvani, Lorenzo
2013-04-01
This work documents how the midlatitude, eddy-driven jets respond to climate change using output from 72 model integrations run for the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We consider separately the North Atlantic, the North Pacific and the Southern Hemisphere jets. Unlike previous studies, we do not limit our analysis to annual mean changes in the latitude and speed of the jets only, but also explore how the daily variability of each jet changes with increased greenhouse gases. Given the direct connection between synoptic activity and the location of the eddy-driven jet, changes in jet variability directly relate to the changes in the future storm tracks. We find that all jets migrate poleward with climate change: the Southern Hemisphere jet shifts poleward by 2 degrees of latitude between the Historical period and the end of the 21st century in the RCP8.5 scenario, whereas the Northern Hemisphere jets shift by only 1 degree. The speed of the Southern Hemisphere jet also increases markedly (by 1.2 m/s between 850-700 hPa), while the speed remains nearly constant for both jets in the Northern Hemisphere. The seasonality of the jet shifts will also be addressed, whereby the largest poleward jet shift occurs in the autumn of each hemisphere (i.e. MAM for the Southern Hemisphere jet, and SON for the North Atlantic and North Pacific jets). We find that the structure of the daily jet variability is a strong function of the jet position in all three sectors of the globe. For the Southern Hemisphere and the North Atlantic jets, the variability becomes less of a north-south wobbling (i.e. an `annular mode') with a poleward shift of the jet. In contrast, for the North Pacific jet, the variability becomes less of a pulsing and more of a north-south wobbling. In spite of these differences, we are able find a mechanism (based on Rossby wave breaking) that is able to explain many of the changes in jet variability within a single theoretical framework.
Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds.
Paterson, Amy K; Bottjer, Sarah W
2017-10-15
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCL SHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCL SHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCL SHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCL SHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior. © 2017 Wiley Periodicals, Inc.
Assessment of mid-latitude atmospheric variability in CMIP5 models using a process oriented-metric
NASA Astrophysics Data System (ADS)
Di Biagio, Valeria; Calmanti, Sandro; Dell'Aquila, Alessandro; Ruti, Paolo
2013-04-01
We compare, for the period 1962-2000, an estimate of the northern hemisphere mid-latitude winter atmospheric variability according several global climate models included in the fifth phase of the Climate Model Intercomparison Project (CMIP5) with the results of the models belonging to the previous CMIP3 and with the NCEP-NCAR reanalysis. We use the space-time Hayashi spectra of the 500hPa geopotential height fields to characterize the variability of atmospheric circulation regimes and we introduce an ad hoc integral measure of the variability observed in the Northern Hemisphere on different spectral sub-domains. The overall performance of each model is evaluated by considering the total wave variability as a global scalar measure of the statistical properties of different types of atmospheric disturbances. The variability associated to eastward propagating baroclinic waves and to planetary waves is instead used to describe the performance of each model in terms of specific physical processes. We find that the two model ensembles (CMIP3 and CMIP5) do not show substantial differences in the description of northern hemisphere winter mid-latitude atmospheric variability, although some CMIP5 models display performances superior to their previous versions implemented in CMIP3. Preliminary results for the 21th century RCP 4.5 scenario will be also discussed for the CMIP5 models.
ERIC Educational Resources Information Center
McNamee, Carole M.
2004-01-01
Neuroscience researchers identify a cerebral cortex with two functioning hemispheres: a left hemisphere associated with language and speech and a right hemisphere associated with visual-motor activities. Additionally, neuroscientists argue that contemporary lifestyles favor the verbal, logical left brain and often ignore the truths that present in…
NASA Technical Reports Server (NTRS)
Jones, Charles; Waliser, Duane E.; Lau, K. M.; Stern, W.
2003-01-01
The Madden-Julian Oscillation (MJO) is known as the dominant mode of tropical intraseasonal variability and has an important role in the coupled-atmosphere system. This study used twin numerical model experiments to investigate the influence of the MJO activity on weather predictability in the midlatitudes of the Northern Hemisphere during boreal winter. The National Aeronautics and Space Administration (NASA) Goddard laboratory for the Atmospheres (GLA) general circulation model was first used in a 10-yr simulation with fixed climatological SSTs to generate a validation data set as well as to select initial conditions for active MJO periods and Null cases. Two perturbation numerical experiments were performed for the 75 cases selected [(4 MJO phases + Null phase) _ 15 initial conditions in each]. For each alternative initial condition, the model was integrated for 90 days. Mean anomaly correlations in the midlatitudes of the Northern Hemisphere (2O deg N_60 deg.N) and standardized root-mean-square errors were computed to validate forecasts and control run. The analyses of 500-hPa geopotential height, 200-hPa Streamfunction and 850-hPa zonal wind component systematically show larger predictability during periods of active MJO as opposed to quiescent episodes of the oscillation.
Gurin, Lindsey; Blum, Sonja
2017-01-01
Delusions are beliefs that remain fixed despite evidence that they are incorrect. Although the precise neural mechanism of delusional belief remains to be elucidated, there is a predominance of right-hemisphere lesions among patients with delusional syndromes accompanied by structural pathology, suggesting that right-hemisphere lesions, or networks with key nodes in the right hemisphere, may be playing a role. The authors discuss the potential theoretical basis and empiric support for a specific right-hemisphere role in delusion production, drawing on its roles in pragmatic communication; perceptual integration; attentional surveillance and anomaly/novelty detection; and belief updating.
NASA Technical Reports Server (NTRS)
Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.
1994-01-01
Calibration of the visible and near-infrared (near-IR) channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1992 Atlantic Stratocumulus Transition Experiment (ASTEX) field deployment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Tests during the ASTEX deployment were conducted to calibrate the hemisphere and then the MAS. This report summarizes the ASTEX hemisphere calibration, and then describes how the MAS was calibrated from the hemisphere data. All MAS calibration measurements are presented and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. In addition, comparisons to an independent MAS calibration by Ames personnel using their 30-inch integrating sphere is discussed.
Hernández-Ceballos, M A; Hong, G H; Lozano, R L; Kim, Y I; Lee, H M; Kim, S H; Yeh, S-W; Bolívar, J P; Baskaran, M
2012-11-01
Massive amounts of anthropogenic radionuclides were released from the nuclear reactors located in Fukushima (northeastern Japan) between 12 and 16 March 2011 following the earthquake and tsunami. Ground level air radioactivity was monitored around the globe immediately after the Fukushima accident. This global effort provided a unique opportunity to trace the surface air mass movement at different sites in the Northern Hemisphere. Based on surface air radioactivity measurements around the globe and the air mass backward trajectory analysis of the Fukushima radioactive plume at various places in the Northern Hemisphere by employing the Hybrid Single-Particle Lagrangian Integrated Trajectory model, we show for the first time, that the uninterrupted complete revolution of the mid-latitude Surface Westerlies took place in less than 21 days, with an average zonal velocity of>60 km/h. The position and circulation time scale of Surface Westerlies are of wide interest to a large number of global researchers including meteorologists, atmospheric researchers and global climate modellers. Copyright © 2012 Elsevier B.V. All rights reserved.
Differential neural contributions to native- and foreign-language talker identification
Perrachione, Tyler K.; Pierrehumbert, Janet B.; Wong, Patrick C.M.
2009-01-01
Humans are remarkably adept at identifying individuals by the sound of their voice, a behavior supported by the nervous system’s ability to integrate information from voice and speech perception. Talker-identification abilities are significantly impaired when listeners are unfamiliar with the language being spoken. Recent behavioral studies describing the language-familiarity effect implicate functionally integrated neural systems for speech and voice perception, yet specific neuroscientific evidence demonstrating the basis for such integration has not yet been shown. Listeners in the present study learned to identify voices speaking a familiar (native) or unfamiliar (foreign) language. The talker-identification performance of neural circuitry in each cerebral hemisphere was assessed using dichotic listening. To determine the relative contribution of circuitry in each hemisphere to ecological (binaural) talker identification abilities, we compared the predictive capacity of dichotic performance on binaural performance across languages. We found listeners’ right-ear (left hemisphere) performance to be a better predictor of overall accuracy in their native language than a foreign one. The enhanced predictive capacity of the classically language-dominant left-hemisphere on overall talker-identification accuracy demonstrates functionally integrated neural systems for speech and voice perception during natural talker identification. PMID:19968445
Mars dust storms - Interannual variability and chaos
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.; Lyons, James R.
1993-01-01
The hypothesis is that the global climate system, consisting of atmospheric dust interacting with the circulation, produces its own interannual variability when forced at the annual frequency. The model has two time-dependent variables representing the amount of atmospheric dust in the northern and southern hemispheres, respectively. Absorption of sunlight by the dust drives a cross-equatorial Hadley cell that brings more dust into the heated hemisphere. The circulation decays when the dust storm covers the globe. Interannual variability manifests itself either as a periodic solution in which the period is a multiple of the Martian year, or as an aperiodic (chaotic) solution that never repeats. Both kinds of solution are found in the model, lending support to the idea that interannual variability is an intrinsic property of the global climate system. The next step is to develop a hierarchy of dust-circulation models capable of being integrated for many years.
Finding the Right Word: Hemispheric Asymmetries in the Use of Sentence Context Information
ERIC Educational Resources Information Center
Wlotko, Edward W.; Federmeier, Kara D.
2007-01-01
The cerebral hemispheres have been shown to be differentially sensitive to sentence-level information; in particular, it has been suggested that only the left hemisphere (LH) makes predictions about upcoming items, whereas the right (RH) processes words in a more integrative fashion. The current study used event-related potentials to jointly…
Van der Haegen, Lise; Brysbaert, Marc; Davis, Colin J
2009-02-01
It has recently been shown that interhemispheric communication is needed for the processing of foveally presented words. In this study, we examine whether the integration of information happens at an early stage, before word recognition proper starts, or whether the integration is part of the recognition process itself. Two lexical decision experiments are reported in which words were presented at different fixation positions. In Experiment 1, a masked form priming task was used with primes that had two adjacent letters transposed. The results showed that although the fixation position had a substantial influence on the transposed letter priming effect, the priming was not smaller when the transposed letters were sent to different hemispheres than when they were projected to the same hemisphere. In Experiment 2, stimuli were presented that either had high frequency hemifield competitors or could be identified unambiguously on the basis of the information in one hemifield. Again, the lexical decision times did not vary as a function of hemifield competitors. These results are consistent with the early integration account, as presented in the SERIOL model of visual word recognition.
Surprise but not coherence: sensitivity to verbal humor in right-hemisphere patients.
Brownell, H H; Michel, D; Powelson, J; Gardner, H
1983-01-01
Verbal humor deficits were investigated in right-hemisphere-damaged patients. It was hypothesized that the appreciation of jokes presupposes two elements: sensitivity to the surprise element entailed in the punch line of a joke and apprehension of the coherence which results when the punch line has been integrated with the body of the joke. The possible dissociation between these elements was tested by asking subjects to select from four alternatives the appropriate ending to a joke. Right-hemisphere patients exhibited a selective attraction to endings which contained an element of surprise but which were not otherwise coherent with the body of the joke. This finding suggests that right-hemisphere patients have difficulty in integrating content across parts of a narrative and confirms the psychological reality of the proposed distinction between the surprise and coherence elements of humor processing.
Transcallosal transfer of information and functional asymmetry of the human brain.
Nowicka, Anna; Tacikowski, Pawel
2011-01-01
The corpus callosum is the largest commissure in the brain and acts as a "bridge" of nerve fibres connecting the two cerebral hemispheres. It plays a crucial role in interhemispheric integration and is responsible for normal communication and cooperation between the two hemispheres. Evolutionary pressures guiding brain size are accompanied by reduced interhemispheric and enhanced intrahemispheric connectivity. Some lines of evidence suggest that the speed of transcallosal conduction is limited in large brains (e.g., in humans), thus favouring intrahemispheric processing and brain lateralisation. Patterns of directional symmetry/asymmetry of transcallosal transfer time may be related to the degree of brain lateralisation. Neural network modelling and electrophysiological studies on interhemispheric transmission provide data supporting this supposition.
Moving beyond the total sea ice extent in gauging model biases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.
Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less
Moving beyond the total sea ice extent in gauging model biases
Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; ...
2016-11-29
Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less
Factors Influencing Right Hemisphere Engagement During Metaphor Comprehension
Diaz, Michele T.; Eppes, Anna
2018-01-01
Although the left hemisphere is critical for language, clinical, behavioral, and neuroimaging research suggest that the right hemisphere also contributes to language comprehension. In particular, research has suggested that figurative language may be one type of language that preferentially engages right hemisphere regions. However, there is disagreement about whether these regions within the right hemisphere are sensitive to figurative language per se or to other factors that co-vary with figurativeness. In this article, we will review the neuroimaging literature on figurative language processing, focusing on metaphors, within the context of several theoretical perspectives that have been proposed about hemispheric function in language. Then we will examine three factors that may influence right hemisphere engagement: novelty, task difficulty, and context. We propose that factors that increase integration demands drive right hemisphere involvement in language processing, and that such recruitment is not limited to figurative language. PMID:29643825
A Left-Hemisphere Model for Right-Hemisphere Programmers.
ERIC Educational Resources Information Center
Krantz, Gordon C.
The paper presents an action-and-decision (left-hemisphere) algorithm as a model for planning by holistic, intuitive (right-hemisphere) managers of service programs, including programs for exceptional children. Because the model is not based upon an established literature in the field of service to exceptional individuals, and because it appears…
ERIC Educational Resources Information Center
Dumbrower, Jule; And Others
1981-01-01
This study attempts to obtain evidence of the construct validity of pupil ability tests hypothesized to represent orientation to right, left, or integrated hemispheric function, and of teacher observation subscales intended to reveal behaviors in school setting that were hypothesized to portray preference for right or left brain function. (Author)
NASA Astrophysics Data System (ADS)
Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.
2015-12-01
Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (TropOMI) and GEO (Sentinel-4, GEMS, and TEMPO) atmospheric chemistry satellite observing capabilities, the results from these model applications will be discussed in the context of how the new satellite observations could help constrain and reduce uncertainties in the models.
Belger, A; Banich, M T
1998-07-01
Because interaction of the cerebral hemispheres has been found to aid task performance under demanding conditions, the present study examined how this effect is moderated by computational complexity, the degree of lateralization for a task, and individual differences in asymmetric hemispheric activation (AHA). Computational complexity was manipulated across tasks either by increasing the number of inputs to be processed or by increasing the number of steps to a decision. Comparison of within- and across-hemisphere trials indicated that the size of the between-hemisphere advantage increased as a function of task complexity, except for a highly lateralized rhyme decision task that can only be performed by the left hemisphere. Measures of individual differences in AHA revealed that when task demands and an individual's AHA both load on the same hemisphere, the ability to divide the processing between the hemispheres is limited. Thus, interhemispheric division of processing improves performance at higher levels of computational complexity only when the required operations can be divided between the hemispheres.
Perkins, Thomas John; Stokes, Mark Andrew; McGillivray, Jane Anne; Mussap, Alexander Julien; Cox, Ivanna Anne; Maller, Jerome Joseph; Bittar, Richard Garth
2014-11-30
There is evidence emerging from Diffusion Tensor Imaging (DTI) research that autism spectrum disorders (ASD) are associated with greater impairment in the left hemisphere. Although this has been quantified with volumetric region of interest analyses, it has yet to be tested with white matter integrity analysis. In the present study, tract based spatial statistics was used to contrast white matter integrity of 12 participants with high-functioning autism or Aspergers syndrome (HFA/AS) with 12 typically developing individuals. Fractional Anisotropy (FA) was examined, in addition to axial, radial and mean diffusivity (AD, RD and MD). In the left hemisphere, participants with HFA/AS demonstrated significantly reduced FA in predominantly thalamic and fronto-parietal pathways and increased RD. Symmetry analyses confirmed that in the HFA/AS group, WM disturbance was significantly greater in the left compared to right hemisphere. These findings contribute to a growing body of literature suggestive of reduced FA in ASD, and provide preliminary evidence for RD impairments in the left hemisphere. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Stages of functional processing and the bihemispheric recognition of Japanese Kana script.
Yoshizaki, K
2000-04-01
Two experiments were carried out in order to examine the effects of functional steps on the benefits of interhemispheric integration. The purpose of Experiment 1 was to investigate the validity of the Banich (1995a) model, where the benefits of interhemispheric processing increase as the task involves more functional steps. The 16 right-handed subjects were given two types of Hiragana-Katakana script matching tasks. One was the Name Identity (NI) task, and the other was the vowel matching (VM) task, which involved more functional steps compared to the NI task. The VM task required subjects to make a decision whether or not a pair of Katakana-Hiragana scripts had a common vowel. In both tasks, a pair of Kana scripts (Katakana-Hiragana scripts) was tachistoscopically presented in the unilateral visual fields or the bilateral visual fields, where each letter was presented in each visual field. A bilateral visual fields advantage (BFA) was found in both tasks, and the size of this did not differ between the tasks, suggesting that these findings did not support the Banich model. The purpose of Experiment 2 was to examine the effects of imbalanced processing load between the hemispheres on the benefits of interhemispheric integration. In order to manipulate the balance of processing load across the hemispheres, the revised vowel matching (r-VM) task was developed by amending the VM task. The r-VM task was the same as the VM task in Experiment 1, except that a script that has only vowel sound was presented as a counterpart of a pair of Kana scripts. The 24 right-handed subjects were given the r-VM and NI tasks. The results showed that although a BFA showed up in the NI task, it did not in the r-VM task. These results suggested that the balance of processing load between hemispheres would have an influence on the bilateral hemispheric processing.
NASA Technical Reports Server (NTRS)
Witte, J. C.; Thompson, A. M.; Fortuin, P.; Einsudi, Franco (Technical Monitor)
2001-01-01
There are three years of data (more than 1000 individual ozone profiles) available from a network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project. Since late 1999, a tropical station in the northern hemisphere (Paramaribo, Surinam; lat/long) joined SHADOZ, providing coordinated weekly ozone and radiosonde data from the surface to approx. 7 hPa for satellite validation, process studies, and model evaluation. Profiles are also collected at: Ascension Island; Nairobi, Kenya; Irene, South Africa; R (union Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The archive, station characteristics and photos are available at http://code9l6.gsfc.nasa.gov/Data_ services/shadoz>. SHADOZ ozone time-series and profiles in 1998-2000 display highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Integrated total ozone column amounts from the sondes are lower than independent measurements from a ground-based network and from the TOMS (Total Ozone Mapping Spectrometer) satellite (version 7 data).
Effective connectivity associated with auditory error detection in musicians with absolute pitch
Parkinson, Amy L.; Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Larson, Charles R.; Robin, Donald A.
2014-01-01
It is advantageous to study a wide range of vocal abilities in order to fully understand how vocal control measures vary across the full spectrum. Individuals with absolute pitch (AP) are able to assign a verbal label to musical notes and have enhanced abilities in pitch identification without reliance on an external referent. In this study we used dynamic causal modeling (DCM) to model effective connectivity of ERP responses to pitch perturbation in voice auditory feedback in musicians with relative pitch (RP), AP, and non-musician controls. We identified a network compromising left and right hemisphere superior temporal gyrus (STG), primary motor cortex (M1), and premotor cortex (PM). We specified nine models and compared two main factors examining various combinations of STG involvement in feedback pitch error detection/correction process. Our results suggest that modulation of left to right STG connections are important in the identification of self-voice error and sensory motor integration in AP musicians. We also identify reduced connectivity of left hemisphere PM to STG connections in AP and RP groups during the error detection and corrections process relative to non-musicians. We suggest that this suppression may allow for enhanced connectivity relating to pitch identification in the right hemisphere in those with more precise pitch matching abilities. Musicians with enhanced pitch identification abilities likely have an improved auditory error detection and correction system involving connectivity of STG regions. Our findings here also suggest that individuals with AP are more adept at using feedback related to pitch from the right hemisphere. PMID:24634644
Geissler, Diana B; Ehret, Günter
2004-02-01
Details of brain areas for acoustical Gestalt perception and the recognition of species-specific vocalizations are not known. Here we show how spectral properties and the recognition of the acoustical Gestalt of wriggling calls of mouse pups based on a temporal property are represented in auditory cortical fields and an association area (dorsal field) of the pups' mothers. We stimulated either with a call model releasing maternal behaviour at a high rate (call recognition) or with two models of low behavioural significance (perception without recognition). Brain activation was quantified using c-Fos immunocytochemistry, counting Fos-positive cells in electrophysiologically mapped auditory cortical fields and the dorsal field. A frequency-specific labelling in two primary auditory fields is related to call perception but not to the discrimination of the biological significance of the call models used. Labelling related to call recognition is present in the second auditory field (AII). A left hemisphere advantage of labelling in the dorsoposterior field seems to reflect an integration of call recognition with maternal responsiveness. The dorsal field is activated only in the left hemisphere. The spatial extent of Fos-positive cells within the auditory cortex and its fields is larger in the left than in the right hemisphere. Our data show that a left hemisphere advantage in processing of a species-specific vocalization up to recognition is present in mice. The differential representation of vocalizations of high vs. low biological significance, as seen only in higher-order and not in primary fields of the auditory cortex, is discussed in the context of perceptual strategies.
Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping
2014-01-01
Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.
Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping
2014-01-01
Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models. PMID:25279567
Fast time variations of supernova neutrino signals from 3-dimensional models
Lund, Tina; Wongwathanarat, Annop; Janka, Hans -Thomas; ...
2012-11-19
Here, we study supernova neutrino flux variations in the IceCube detector, using 3D models based on a simplified neutrino transport scheme. The hemispherically integrated neutrino emission shows significantly smaller variations compared with our previous study of 2D models, largely because of the reduced activity of the standing accretion shock instability in this set of 3D models which we interpret as a pessimistic extreme. For the studied cases, intrinsic flux variations up to about 100 Hz frequencies could still be detected in a supernova closer than about 2 kpc.
ERIC Educational Resources Information Center
Tyler, Lorraine K.; Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.
2011-01-01
For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left…
Friston, Karl J.; Mattingley, Jason B.; Roepstorff, Andreas; Garrido, Marta I.
2014-01-01
Detecting the location of salient sounds in the environment rests on the brain's ability to use differences in sounds arriving at both ears. Functional neuroimaging studies in humans indicate that the left and right auditory hemispaces are coded asymmetrically, with a rightward attentional bias that reflects spatial attention in vision. Neuropsychological observations in patients with spatial neglect have led to the formulation of two competing models: the orientation bias and right-hemisphere dominance models. The orientation bias model posits a symmetrical mapping between one side of the sensorium and the contralateral hemisphere, with mutual inhibition of the ipsilateral hemisphere. The right-hemisphere dominance model introduces a functional asymmetry in the brain's coding of space: the left hemisphere represents the right side, whereas the right hemisphere represents both sides of the sensorium. We used Dynamic Causal Modeling of effective connectivity and Bayesian model comparison to adjudicate between these alternative network architectures, based on human electroencephalographic data acquired during an auditory location oddball paradigm. Our results support a hemispheric asymmetry in a frontoparietal network that conforms to the right-hemisphere dominance model. We show that, within this frontoparietal network, forward connectivity increases selectively in the hemisphere contralateral to the side of sensory stimulation. We interpret this finding in light of hierarchical predictive coding as a selective increase in attentional gain, which is mediated by feedforward connections that carry precision-weighted prediction errors during perceptual inference. This finding supports the disconnection hypothesis of unilateral neglect and has implications for theories of its etiology. PMID:24695717
Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model
On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.
2013-01-01
The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143
Evaluation of the high resolution DEHM/UBM model system over Denmark
NASA Astrophysics Data System (ADS)
Im, Ulas; Christensen, Jesper H.; Ellermann, Thomas; Ketzel, Matthias; Geels, Camilla; Hansen, Kaj M.; Plejdrup, Marlene S.; Brandt, Jørgen
2015-04-01
The air pollutant levels over Denmark are simulated using the high resolution DEHM/UBM model system for the years 2006 to 2014. The system employs a hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM; Brandt et al., 2012) that runs on a 150 km x 150 km resolution over the Northern Hemisphere, with nesting capability for higher resolutions over Europe, Northern Europe and Denmark on 50 km x 50 km, 16.7 km x 16.7 km and 5.6 km x 5.6 km resolutions, respectively, coupled to the Urban Background Model (UBM; Berkowicz, 2000; Brandt et al., 2001) that covers the whole of Denmark with a 1 km x 1 km spatial resolution. Over Denmark, the system uses the SPREAD emission model (Plejdrup and Gyldenkærne, 2011) that distributes the Danish emissions for all pollutants and all sectors in the national emission database on a 1 km x 1 km resolution grid covering Denmark and its national sea territory. The study will describe the model system and we will evaluate the performance of the model system in simulating hourly and daily ozone (O3), carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2) and particulate matter (PM10 and PM2.5) concentrations against surface measurements from eight monitoring stations. Finally we investigate the spatial variation of air pollutants over Denmark on different time scales. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt et al., 2012. An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport. Atmospheric Environment, 53, 156-176. Plejdrup, M.S., Gyldenkærne, S., 2011. Spatial distribution of pollutants to air - the SPREAD model. NERI Technical Report No. 823.
NASA Technical Reports Server (NTRS)
Parksinson, Claire; Vinnikov, Konstantin Y.; Cavalieri, Donald J.
2005-01-01
Comparison of polar sea ice results from 11 major global climate models and satellite-derived observations for 1979-2004 reveals that each of the models is simulating seasonal cycles that are phased at least approximately correctly in both hemispheres. Each is also simulating various key aspects of the observed ice cover distributions, such as winter ice not only throughout the central Arctic basin but also throughout Hudson Bay, despite its relatively low latitudes. However, some of the models simulate too much ice, others too little ice (in some cases varying depending on hemisphere and/or season), and some match the observations better in one season versus another. Several models do noticeably better in the Northern Hemisphere than in the Southern Hemisphere, and one does noticeably better in the Southern Hemisphere. In the Northern Hemisphere all simulate monthly average ice extents to within +/-5.1 x 10(exp 6)sq km of the observed ice extent throughout the year; and in the Southern Hemisphere all except one simulate the monthly averages to within +/-6.3 x 10(exp 6) sq km of the observed values. All the models properly simulate a lack of winter ice to the west of Norway; however, most do not obtain as much absence of ice immediately north of Norway as the observations show, suggesting an under simulation of the North Atlantic Current. The spread in monthly averaged ice extents amongst the 11 model simulations is greater in the Southern Hemisphere than in the Northern Hemisphere and greatest in the Southern Hemisphere winter and spring.
Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: A study via graph theory.
Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Della Marca, Giacomo; Vollono, Catello; Mazzucchi, Edoardo; Bramanti, Placido; Rossini, Paolo Maria
2015-06-01
It is believed that effective connectivity and optimal network structure are essential for proper information processing in the brain. Indeed, functional abnormalities of the brain are found to be associated with pathological changes in connectivity and network structures. The aim of the present study was to explore the interictal network properties of EEG signals from temporal lobe structures in the context of fronto-temporal lobe epilepsy. To complete this aim, the graph characteristics of the EEG data of 17 patients suffering from focal epilepsy of the fronto-temporal type, recorded during interictal periods, were examined and compared in terms of the affected versus the unaffected hemispheres. EEG connectivity analysis was performed using eLORETA software in 15 fronto-temporal regions (Brodmann Areas BAs 8, 9, 10, 11, 20, 21, 22, 37, 38, 41, 42, 44, 45, 46, 47) on both affected and unaffected hemispheres. The evaluation of the graph analysis parameters, such as 'global' (characteristic path length) and 'local' connectivity (clustering coefficient) showed a statistically significant interaction among side (affected and unaffected hemisphere) and Band (delta, theta, alpha, beta, gamma). Duncan post hoc testing showed an increase of the path length in the alpha band in the affected hemisphere with respect to the unaffected one, as evaluated by an inter-hemispheric marker. The affected hemisphere also showed higher values of local connectivity in the alpha band. In general, an increase of local and global graph theory parameters in the alpha band was found in the affected hemisphere. It was also demonstrated that these effects were more evident in drug-free patients than in those undergoing pharmacological therapy. The increased measures in the affected hemisphere of both functional local segregation and global integration could result from the combination of overlapping mechanisms, including reactive neuroplastic changes seeking to maintain constant integration and segregation properties. This reactive neuroplastic mechanism seeking to maintain constant integration and segregation properties seems to be more evident in the absence of antiepileptic treatment. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben
2016-04-01
A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system is based on the impact-pathway methodology, where the site-specific emissions will result, via atmospheric transport and chemistry, in a concentration distribution, which together with detailed population data, is used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different domain and scales; the Danish Eulerian Hemispheric Model (DEHM) to calculate the air pollution levels in the Northern Hemisphere with a resolution down to 5.6 km x 5.6 km and the Urban Background Model (UBM) to further calculate the air pollution in Denmark at 1 km x 1 km resolution using results from DEHM as boundary conditions. Both the emission data as well as the population density has been represented in the model system with the same high resolution. Previous health impact assessments related to air pollution have been made on a lower resolution. In this study, the integrated model system, EVA, has been used to estimate the health impacts and related external cost for Denmark at a 1 km x 1 km resolution. New developments of the integrated model system will be presented as well as the development of health impacts and related external costs in Europe and Denmark over a period of 36 years (1979-2014). Acknowledgements This work was funded by: DCE - National Centre for Environment and Energy. Project: "Health impacts and external costs from air pollution in Denmark over 25 years" and NordForsk under the Nordic Programme on Health and Welfare. Project: "Understanding the link between air pollution and distribution of related health impacts and welfare in the Nordic countries (NordicWelfAir)".
Categorization and Affect: Evidence for Intra-Hemispheric Interactions
ERIC Educational Resources Information Center
Ramon, Dan; Doron, Yonit; Faust, Miriam
2007-01-01
Both emotional reactivity and categorization have long been studied within the framework of hemispheric asymmetry. However, little attempt has been made to integrate both research areas using any form of neuropsychological research, despite behavioral data suggesting a consistent relationship between affective and categorization processes. The…
Simulating the onset of spring vegetation growth across the Northern Hemisphere.
Liu, Qiang; Fu, Yongshuo H; Liu, Yongwen; Janssens, Ivan A; Piao, Shilong
2018-03-01
Changes in the spring onset of vegetation growth in response to climate change can profoundly impact climate-biosphere interactions. Thus, robust simulation of spring onset is essential to accurately predict ecosystem responses and feedback to ongoing climate change. To date, the ability of vegetation phenology models to reproduce spatiotemporal patterns of spring onset at larger scales has not been thoroughly investigated. In this study, we took advantage of phenology observations via remote sensing to calibrate and evaluated six models, including both one-phase (considering only forcing temperatures) and two-phase (involving forcing, chilling, and photoperiod) models across the Northern Hemisphere between 1982 and 2012. Overall, we found that the model that integrated the photoperiod effect performed best at capturing spatiotemporal patterns of spring phenology in boreal and temperate forests. By contrast, all of the models performed poorly in simulating the onset of growth in grasslands. These results suggest that the photoperiod plays a role in controlling the onset of growth in most Northern Hemisphere forests, whereas other environmental factors (e.g., precipitation) should be considered when simulating the onset of growth in grasslands. We also found that the one-phase model performed as well as the two-phase models in boreal forests, which implies that the chilling requirement is probably fulfilled across most of the boreal zone. Conversely, two-phase models performed better in temperate forests than the one-phase model, suggesting that photoperiod and chilling play important roles in these temperate forests. Our results highlight the significance of including chilling and photoperiod effects in models of the spring onset of forest growth at large scales, and indicate that the consideration of additional drivers may be required for grasslands. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko
We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.
Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar
2018-06-01
TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.
Glacial morphology and depositional sequences of the Antarctic Continental Shelf
ten Brink, Uri S.; Schneider, Christopher
1995-01-01
Proposes a simple model for the unusual depositional sequences and morphology of the Antarctic continental shelf. It considers the regional stratal geometry and the reversed morphology to be principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the ice grounding line. The model offers several guidelines for stratigraphic interpretation of the Antarctic shelf and a Northern Hemisphere shelf, both of which were subject to many glacial advances and retreats. -Authors
Iapetus and Phoebe as Measured by the Cassini UVIS
NASA Technical Reports Server (NTRS)
Hendrix, A. R.; Hansen, C. J.
2005-01-01
The bizarre appearance of Iapetus has long intrigued researchers of this Saturnian moon. The leading hemisphere is very dark and reddish in color at visible-near-IR wavelengths. In contrast, the trailing hemisphere is relatively bright and its near-IR spectrum is dominated by water ice. The severe hemispherical brightness dichotomy has been explained by both endogenic and exogenic models. The primary endogenic model involves eruption of dark material onto the leading hemisphere from the interior of Iapetus. Exogenic models include exposure of dark underlying material by micrometeorite bombardment, contamination of Iapetus leading hemisphere by Titan tholin material, and the coating of the leading hemisphere by Phoebe dust. It has been shown that the dark material on Iapetus leading hemisphere is redder in color at visible wavelengths than Phoebe, which is spectrally gray at visible wavelengths. An additional exogenic model involves the coating of both Iapetus leading hemisphere and Hyperion with material from small retrograde satellites, which are reddish in color at visible wavelengths. We present the first FUV spectra of Iapetus and Phoebe to investigate whether the UV wavelength range can contribute to solving the puzzle of Iapetus.
Haywood, Jim M.; Jones, Andy; Dunstone, Nick; ...
2016-01-14
Despite the fact that the southern hemisphere contains a far greater proportion of dark ocean than the northern hemisphere, the total amount of sunlight reflected from the hemispheres is equal. However, the majority of climate models do not adequately represent this equivalence. Here we examine the impact of equilibrating hemispheric albedos by various idealised methods in a comprehensive coupled climate model and find significant improvements in what have been considered longstanding and apparently intractable model biases. Monsoon precipitation biases almost vanish over all continental land areas, the penetration of monsoon rainfall across the Sahel and the west African monsoon “jump”more » become well represented, and indicators of hurricane frequency are significantly improved. The results appear not to be model specific, implying that hemispheric albedo equivalence may provide a fundamental constraint for climate models that must be satisfied if the dynamics driving these processes, in particular the strength of the Hadley cell, are to be adequately represented. Cross-equatorial energy transport is implicated as a crucial component that must be accurately modelled in coupled general circulation models. The results also suggest that the commonly used practice of prescribing sea-surface temperatures in models provides a less accurate represention of precipitation than constraining the hemispheric albedos.« less
Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin
2018-05-11
Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Wang, Yun; Lan, Tian; Ni, Guoqiang
2016-12-20
We propose a scheme for designing a new optical receiving system that can reduce the received-energy spot size via integration of a compound parabolic concentrator with a hemispherical lens. SolidWorks is used to model the receiving system, while TracePro is employed for simulations. The field of view is set to 30° and the radius of the compound parabolic concentrator outlet is 5 mm, which is also the radius of the hemispherical lens. Ray-tracing results show that under the given simulation conditions, the radius of the spot area is reduced from 5 to 3 mm at the receiving system and the gain is 5.2. In regard to the relations between received power and the radius of the hemispherical lens R, and the received power and the distance d between the compound parabolic concentrator and hemispherical lens, our detailed analysis yields the following characteristics: (1) the received power increases as R increases, but decreases as d increases; (2) as R increases, the spot area increases and the received flux is dispersed over the receiving plane, which dispersion is disadvantageous for high-speed communication; (3) the gain of the receiving system also varies with R and d; (4) an increase in d leads to decrease in the received flux and gain when d>-2 mm. Based on these characteristics, we set R=5 mm and calculate the energy efficiency. We obtain maximum energy efficiencies for different detection areas.
Outpatient Treatment of Dyslexia through Stimulation of the Cerebral Hemispheres.
ERIC Educational Resources Information Center
Kappers, E. Jan
1997-01-01
Integrated treatment methods of neuropsychological and cognitive origin were evaluated with 80 Dutch children (ages 6-15) with severe dyslexia. Treatment with flash cards, which exercised automatic letter-sound conversions, had a robust and slight effect in preclinical and clinical phases respectively, whereas hemisphere stimulation produced…
Dynamics of hemispheric specialization and integration in the context of motor control.
Serrien, Deborah J; Ivry, Richard B; Swinnen, Stephan P
2006-02-01
Behavioural and neurophysiological evidence convincingly establish that the left hemisphere is dominant for motor skills that are carried out with either hand or those that require bimanual coordination. As well as this prioritization, we argue that specialized functions of the right hemisphere are also indispensable for the realization of goal-directed behaviour. As such, lateralization of motor function is a dynamic and multifaceted process that emerges across different timescales and is contingent on task- and performer-related determinants.
Modeling the Influence of Hemispheric Transport on Trends in O3 Distributions
We describe the development and application of the hemispheric version of the CMAQ to examine the influence of long-range pollutant transport on trends in surface level O3 distributions. The WRF-CMAQ model is expanded to hemispheric scales and multi-decadal model simulations were...
Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms
Mani, Saandeep; Mutha, Pratik K.; Przybyla, Andrzej; Haaland, Kathleen Y.; Good, David C.
2013-01-01
We have proposed a model of motor lateralization, in which the left and right hemispheres are specialized for different aspects of motor control: the left hemisphere for predicting and accounting for limb dynamics and the right hemisphere for stabilizing limb position through impedance control mechanisms. Our previous studies, demonstrating different motor deficits in the ipsilesional arm of stroke patients with left or right hemisphere damage, provided a critical test of our model. However, motor deficits after stroke are most prominent on the contralesional side. Post-stroke rehabilitation has also, naturally, focused on improving contralesional arm impairment and function. Understanding whether contralesional motor deficits differ depending on the hemisphere of damage is, therefore, of vital importance for assessing the impact of brain damage on function and also for designing rehabilitation interventions specific to laterality of damage. We, therefore, asked whether motor deficits in the contralesional arm of unilateral stroke patients reflect hemisphere-dependent control mechanisms. Because our model of lateralization predicts that contralesional deficits will differ depending on the hemisphere of damage, this study also served as an essential assessment of our model. Stroke patients with mild to moderate hemiparesis in either the left or right arm because of contralateral stroke and healthy control subjects performed targeted multi-joint reaching movements in different directions. As predicted, our results indicated a double dissociation; although left hemisphere damage was associated with greater errors in trajectory curvature and movement direction, errors in movement extent were greatest after right hemisphere damage. Thus, our results provide the first demonstration of hemisphere specific motor control deficits in the contralesional arm of stroke patients. Our results also suggest that it is critical to consider the differential deficits induced by right or left hemisphere lesions to enhance post-stroke rehabilitation interventions. PMID:23358602
Hemisphere Asymmetry of Response to Pharmacologic Treatment in an Alzheimer's Disease Mouse Model.
Manousopoulou, Antigoni; Saito, Satoshi; Yamamoto, Yumi; Al-Daghri, Nasser M; Ihara, Masafumi; Carare, Roxana O; Garbis, Spiros D
2016-01-01
The aim of this study was to examine hemisphere asymmetry of response to pharmacologic treatment in an Alzheimer's disease mouse model using cilostazol as a chemical stimulus. Eight-month-old mice were assigned to vehicle or cilostazol treatment for three months and hemispheres were analyzed using quantitative proteomics. Bioinformatics interpretation showed that following treatment, aggregation of blood platelets significantly decreased in the right hemisphere whereas neurodegeneration significantly decreased and synaptic transmission increased in the left hemisphere only. Our study provides novel evidence on cerebral laterality of pharmacologic activity, with important implications in deciphering regional pharmacodynamic effects of existing drugs thus uncovering novel hemisphere-specific therapeutic targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, Jim M.; Jones, Andy; Dunstone, Nick
Despite the fact that the southern hemisphere contains a far greater proportion of dark ocean than the northern hemisphere, the total amount of sunlight reflected from the hemispheres is equal. However, the majority of climate models do not adequately represent this equivalence. Here we examine the impact of equilibrating hemispheric albedos by various idealised methods in a comprehensive coupled climate model and find significant improvements in what have been considered longstanding and apparently intractable model biases. Monsoon precipitation biases almost vanish over all continental land areas, the penetration of monsoon rainfall across the Sahel and the west African monsoon “jump”more » become well represented, and indicators of hurricane frequency are significantly improved. The results appear not to be model specific, implying that hemispheric albedo equivalence may provide a fundamental constraint for climate models that must be satisfied if the dynamics driving these processes, in particular the strength of the Hadley cell, are to be adequately represented. Cross-equatorial energy transport is implicated as a crucial component that must be accurately modelled in coupled general circulation models. The results also suggest that the commonly used practice of prescribing sea-surface temperatures in models provides a less accurate represention of precipitation than constraining the hemispheric albedos.« less
On inter-hemispheric coupling in the middle atmosphere
NASA Astrophysics Data System (ADS)
Karlsson, Bodil; Bailey, S.; Benze, S.; Gumbel, J.; Harvey, V. L.; Kürnich, H.; Lossow, S.; McLandress, D. Marsh, C.; Merkel, A. W.; Mills, M.; Randall, C. E.; Russell, J.; Shepherd, T. G.
On inter-hemispheric coupling in the middle atmosphere From recent studies it is evident that planetary wave activity in the winter hemisphere influences the high-latitude summer mesosphere on the opposite side of the globe. This is an extraordinary example of multi-scale wave-mean flow interaction. The first indication of this inter-hemispheric coupling came from a model study by Becker and Schmitz (2003). Since then, the results have been reproduced in several models, and observations have confirmed the existence of this link. We present current understanding of inter-hemispheric coupling and its consequences for the middle atmosphere, focusing on the summer mesosphere where polar mesospheric clouds (PMCs) form. The results shown are based on year-to-year and intra-seasonal variability in PMCs ob-served by the Odin satellite and the Aeronomy of Ice in the Mesosphere (AIM) satellite, as well as on model results from the extended Canadian Middle Atmosphere Model (CMAM), the Whole Atmosphere Community Climate Model (WACCM) and the Kühlungsborn Mechanis-u tic general Circulation Model (KMCM). The latter has been used to pinpoint the proposed mechanism behind the inter-hemispheric coupling.
Toward an operational model of decision making, emotional regulation, and mental health impact.
Collura, Thomas Francis; Zalaquett, Ronald P; Bonnstetter, Carlos Joyce; Chatters, Seria J
2014-01-01
Current brain research increasingly reveals the underlying mechanisms and processes of human behavior, cognition, and emotion. In addition to being of interest to a wide range of scientists, educators, and professionals, as well as laypeople, brain-based models are of particular value in a clinical setting. Psychiatrists, psychologists, counselors, and other mental health professionals are in need of operational models that integrate recent findings in the physical, cognitive, and emotional domains, and offer a common language for interdisciplinary understanding and communication. Based on individual traits, predispositions, and responses to stimuli, we can begin to identify emotional and behavioral pathways and mental processing patterns. The purpose of this article is to present a brain-path activation model to understand individual differences in decision making and psychopathology. The first section discusses the role of frontal lobe electroencephalography (EEG) asymmetry, summarizes state- and trait-based models of decision making, and provides a more complex analysis that supplements the traditional simple left-right brain model. Key components of the new model are the introduction of right hemisphere parallel and left hemisphere serial scanning in rendering decisions, and the proposition of pathways that incorporate both past experiences as well as future implications into the decision process. Main attributes of each decision-making mechanism are provided. The second section applies the model within the realm of clinical mental health as a tool to understand specific human behavior and pathology. Applications include general and chronic anxiety, depression, paranoia, risk taking, and the pathways employed when well-functioning operational integration is observed. Finally, specific applications such as meditation and mindfulness are offered to facilitate positive functioning.
Model-driven harmonic parameterization of the cortical surface: HIP-HOP.
Auzias, G; Lefèvre, J; Le Troter, A; Fischer, C; Perrot, M; Régis, J; Coulon, O
2013-05-01
In the context of inter subject brain surface matching, we present a parameterization of the cortical surface constrained by a model of cortical organization. The parameterization is defined via an harmonic mapping of each hemisphere surface to a rectangular planar domain that integrates a representation of the model. As opposed to previous landmark-based registration methods we do not match folds between individuals but instead optimize the fit between cortical sulci and specific iso-coordinate axis in the model. This strategy overcomes some limitation to sulcus-based registration techniques such as topological variability in sulcal landmarks across subjects. Experiments on 62 subjects with manually traced sulci are presented and compared with the result of the Freesurfer software. The evaluation involves a measure of dispersion of sulci with both angular and area distortions. We show that the model-based strategy can lead to a natural, efficient and very fast (less than 5 min per hemisphere) method for defining inter subjects correspondences. We discuss how this approach also reduces the problems inherent to anatomically defined landmarks and open the way to the investigation of cortical organization through the notion of orientation and alignment of structures across the cortex.
Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M
2011-07-15
Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter-hemispheric integrity is specifically relevant for explicit sequence learning. Copyright © 2011 Elsevier Inc. All rights reserved.
Models of hemispheric specialization in facial emotion perception--a reevaluation.
Najt, Pablo; Bayer, Ulrike; Hausmann, Markus
2013-02-01
A considerable amount of research on functional cerebral asymmetries (FCAs) for facial emotion perception has shown conflicting support for three competing models: (i) the Right Hemisphere Hypothesis, (ii) the Valence-Specific Hypothesis, and (iii) the Approach/Withdrawal model. However, the majority of studies evaluating the Right Hemisphere or the Valence-Specific Hypotheses are rather limited by the small number of emotional expressions used. In addition, it is difficult to evaluate the Approach/Withdrawal Hypothesis due to insufficient data on anger and FCAs. The aim of the present study was (a) to review visual half field (VHF) studies of hemispheric specialization in facial emotion perception and (b) to reevaluate empirical evidence with respect to all three partly conflicting hypotheses. Results from the present study revealed a left visual field (LVF)/right hemisphere advantage for the perception of angry, fearful, and sad facial expressions and a right visual field (RVF)/left hemisphere advantage for the perception of happy expressions. Thus, FCAs for the perception of specific facial emotions do not fully support the Right Hemisphere Hypothesis, the Valence-Specific Hypothesis, or the Approach/Withdrawal model. A systematic literature review, together with the results of the present study, indicate a consistent LVF/right hemisphere advantage only for a subset of negative emotions including anger, fear and sadness, rather suggesting a "negative (only) valence model." PsycINFO Database Record (c) 2013 APA, all rights reserved.
Braun, Claude M J
2007-09-01
Excellent and rich reviews of lateralised behaviour in animals have recently been published indexing renewed interest in biological theorising about hemispheric specialisation and yielding rich theory. The present review proposes a new account of the evolution of hemispheric specialisation, a primitive system of "management of the body's energy resources". This model is distinct from traditionally evoked cognitive science categories such as verbal/spatial, analytic/holistic, etc., or the current dominant neuroethological model proposing that the key is approach/avoidance behaviour. Specifically, I show that autonomic, immune, psychomotor, motivational, perceptual, and memory systems are similarly and coherently specialised in the brain hemispheres in rodents and man. This energy resource management model, extended to human neuropsychology, is termed here the "psychic tonus" model of hemispheric specialisation.
Dacosta-Aguayo, Rosalia; Graña, Manuel; Fernández-Andújar, Marina; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Clemente, Immaculada; Monserrat, Pere Toran; Sas, Maite Alzamora; Dávalos, Antoni; Auer, Tibor; Mataró, Maria
2014-01-01
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and the Trail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere.
Dacosta-Aguayo, Rosalia; Graña, Manuel; Fernández-Andújar, Marina; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Clemente, Immaculada; Monserrat, Pere Toran; Sas, Maite Alzamora; Dávalos, Antoni
2014-01-01
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror’s regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere. PMID:24475078
Two distinct forms of functional lateralization in the human brain
Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex
2013-01-01
The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883
Molina, Iñigo; Morillo, Carmen; García-Meléndez, Eduardo; Guadalupe, Rafael; Roman, Maria Isabel
2011-01-01
One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ0). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r2 = 0.88). In turn, when effective LAI (LAIeff) has been taken into account, the parameters of the scattering canopy model are better estimated (r2 = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values. PMID:22164028
Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey
2018-01-01
The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922
Hemispheric Asymmetries of Magnetosphere-Ionosphere-Thermosphere Dynamics
NASA Astrophysics Data System (ADS)
Perlongo, Nicholas James
The geospace environment, comprised of the magnetosphere-ionosphere-thermosphere system, is a highly variable and non-linearly coupled region. The dynamics of the system are driven primarily by electromagnetic and particle radiation emanating from the Sun that occasionally intensify into what are known as solar storms. Understanding the interaction of these storms with the near Earth space environment is essential for predicting and mitigating the risks associated with space weather that can irreparably damage spacecraft, harm astronauts, disrupt radio and GPS communications, and even cause widespread power outages. The geo-effectiveness of solar storms has hemispheric, seasonal, local time, universal time, and latitudinal dependencies. This dissertation investigates those dependencies through a series of four concentrated modeling efforts. The first study focuses on how variations in the solar wind electric field impact the thermosphere at different times of the day. Idealized simulations using the Global Ionosphere Thermosphere Model (GITM) revealed that perturbations in thermospheric temperature and density were greater when the universal time of storm onset was such that the geomagnetic pole was pointed more towards the sun. This universal time effect was greater in the southern hemisphere where the offset of the geomagnetic pole is larger. The second study presents a model validation effort using GITM and the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) compared to GPS Total Electron Content (TEC) observations. The results were divided into seasonal, regional, and local time bins finding that the models performed best near the poles and on the dayside. Diffuse aurora created by electron loss in the inner magnetosphere is an important input to GITM that has primarily been modeled using empirical relationships. In the third study, this was addressed by developing the Hot Election Ion Drift Integrator (HEIDI) ring current model to include a self-consistent description of the aurora and electric field. The model was then coupled to GITM, allowing for a more physical aurora. Using this new configuration in the fourth study, the ill-constrained electron scattering rate was shown to have a large impact on auroral results. This model was applied to simulate a geomagnetic storm during each solstice. The hemispheric asymmetry and seasonal dependence of the storm-time TEC was investigated, finding that northern hemisphere winter storms are most geo-effective when the North American sector is on the dayside. Overall, the research presented in this thesis strives to accomplish two major goals. First, it describes an advancement of a numerical model of the ring current that can be further developed and used to improve our understanding of the interactions between the ionosphere and magnetosphere. Second, the time and spatial dependencies of the geospace response to solar forcing were discovered through a series of modeling efforts. Despite these advancements, there are still numerous open questions, which are also discussed.
NASA Astrophysics Data System (ADS)
Zhuang, Xuye; Chen, Binggen; Wang, Xinlong; Yu, Lei; Wang, Fan; Guo, Shuwen
2018-03-01
A novel approach for fabrication of polysilicon hemispherical resonator gyroscopes with integrated 3-D curved electrodes is developed and experimentally demonstrated. The 3-D polysilicon electrodes are integrated as a part of the hemispherical shell resonator’s fabrication process, and no extra assembly process are needed, ensuring the symmetry of the shell resonator. The fabrication process and materials used are compatible with the traditional semiconductor process, indicating the gyroscope has a high potential for mass production and commercial development. Without any trimming or tuning of the n=2 wineglass frequencies, a 28 kHz shell resonator demonstrates a 0.009% frequency mismatch between two degenerate wineglass modes, and a 13.6 kHz resonator shows a frequency split of 0.03%. The ring-down time of a fabricated resonator is 0.51 s, corresponding to a Q of 22000, at 0.01 Pa vacuum and room temperature. The prototype of the gyroscope is experimentally analyzed, and the scale factor of the gyro is 1.15 mV/°/s, the bias instability is 80 °/h.
Right hemisphere structures predict poststroke speech fluency.
Pani, Ethan; Zheng, Xin; Wang, Jasmine; Norton, Andrea; Schlaug, Gottfried
2016-04-26
We sought to determine via a cross-sectional study the contribution of (1) the right hemisphere's speech-relevant white matter regions and (2) interhemispheric connectivity to speech fluency in the chronic phase of left hemisphere stroke with aphasia. Fractional anisotropy (FA) of white matter regions underlying the right middle temporal gyrus (MTG), precentral gyrus (PreCG), pars opercularis (IFGop) and triangularis (IFGtri) of the inferior frontal gyrus, and the corpus callosum (CC) was correlated with speech fluency measures. A region within the superior parietal lobule (SPL) was examined as a control. FA values of regions that significantly predicted speech measures were compared with FA values from healthy age- and sex-matched controls. FA values for the right MTG, PreCG, and IFGop significantly predicted speech fluency, but FA values of the IFGtri and SPL did not. A multiple regression showed that combining FA of the significant right hemisphere regions with the lesion load of the left arcuate fasciculus-a previously identified biomarker of poststroke speech fluency-provided the best model for predicting speech fluency. FA of CC fibers connecting left and right supplementary motor areas (SMA) was also correlated with speech fluency. FA of the right IFGop and PreCG was significantly higher in patients than controls, while FA of a whole CC region of interest (ROI) and the CC-SMA ROI was significantly lower in patients. Right hemisphere white matter integrity is related to speech fluency measures in patients with chronic aphasia. This may indicate premorbid anatomical variability beneficial for recovery or be the result of poststroke remodeling. © 2016 American Academy of Neurology.
Right hemisphere structures predict poststroke speech fluency
Pani, Ethan; Zheng, Xin; Wang, Jasmine; Norton, Andrea
2016-01-01
Objective: We sought to determine via a cross-sectional study the contribution of (1) the right hemisphere's speech-relevant white matter regions and (2) interhemispheric connectivity to speech fluency in the chronic phase of left hemisphere stroke with aphasia. Methods: Fractional anisotropy (FA) of white matter regions underlying the right middle temporal gyrus (MTG), precentral gyrus (PreCG), pars opercularis (IFGop) and triangularis (IFGtri) of the inferior frontal gyrus, and the corpus callosum (CC) was correlated with speech fluency measures. A region within the superior parietal lobule (SPL) was examined as a control. FA values of regions that significantly predicted speech measures were compared with FA values from healthy age- and sex-matched controls. Results: FA values for the right MTG, PreCG, and IFGop significantly predicted speech fluency, but FA values of the IFGtri and SPL did not. A multiple regression showed that combining FA of the significant right hemisphere regions with the lesion load of the left arcuate fasciculus—a previously identified biomarker of poststroke speech fluency—provided the best model for predicting speech fluency. FA of CC fibers connecting left and right supplementary motor areas (SMA) was also correlated with speech fluency. FA of the right IFGop and PreCG was significantly higher in patients than controls, while FA of a whole CC region of interest (ROI) and the CC-SMA ROI was significantly lower in patients. Conclusions: Right hemisphere white matter integrity is related to speech fluency measures in patients with chronic aphasia. This may indicate premorbid anatomical variability beneficial for recovery or be the result of poststroke remodeling. PMID:27029627
Guimond, Anik; Braun, Claude M J; Daigneault, Sylvie; Farmer, Jean-Pierre
2013-10-01
Validity of two models of hemispheric specialization was compared. The "material-specific impairment" model was radicalized as postulating that left hemisphere (LH) lesions impair processing of verbal material and that right hemisphere (RH) lesions impair processing of visuospatial material, independently of response-bias distortions. The "response-bias distortion" model was radicalized as postulating that LH lesions distort response style toward omissiveness and that RH lesions distort response style toward commissiveness, regardless of material-specific impairments. Participants had comparable left (N=27) or right (N=24) hemisphere cortical lesions having occurred between birth and early adolescence. Four cognitive neuropsychological tests were adjusted to optimize applicability and comparability of the two theoretical models: Rey Complex Figure, Kimura's Recurring Figures, the Story Recall subtest of the Children's Memory Scale, and the California Verbal Learning Test. Both models significantly, independently, and equally distinguished the LH from the RH patients. Both these forms of hemispheric specialization seemed to be implemented very early in life and very rigidly. Intrahemispheric lesion sites, e.g., frontal vs nonfrontal, held no significant relation to the effects described above. © 2013 Elsevier Inc. All rights reserved.
Futter, M N; Löfgren, S; Köhler, S J; Lundin, L; Moldan, F; Bringmark, L
2011-12-01
Surface water concentrations of dissolved organic carbon ([DOC]) are changing throughout the northern hemisphere due to changes in climate, land use and acid deposition. However, the relative importance of these drivers is unclear. Here, we use the Integrated Catchments model for Carbon (INCA-C) to simulate long-term (1996-2008) streamwater [DOC] at the four Swedish integrated monitoring (IM) sites. These are unmanaged headwater catchments with old-growth forests and no major changes in land use. Daily, seasonal and long-term variations in streamwater [DOC] driven by runoff, seasonal temperature and atmospheric sulfate (SO₄(2-)) deposition were observed at all sites. Using INCA-C, it was possible to reproduce observed patterns of variability in streamwater [DOC] at the four IM sites. Runoff was found to be the main short-term control on [DOC]. Seasonal patterns in [DOC] were controlled primarily by soil temperature. Measured SO₄(2-) deposition explained some of the long-term [DOC] variability at all sites.
The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...
Magnetically guiding and orienting integrated chemical sensors
NASA Astrophysics Data System (ADS)
Anker, Jeffrey N.; Lee, Yong-Eun Koo; Kopelman, Raoul
2014-08-01
Fluorescent microsensors for detecting pH and oxygen were positioned and oriented using magnetic tweezers. These multifunctional integrated microsensors were fabricated by physically linking together nano-components including magnetic nanoparticles, fluorescent nanoparticles, and metal hemisphere-shells. Two such microsensors are magnetic roll-shaped polystyrene particles with 120 nm fluorescent oxygen-sensing ormosil nanospheres that are physically pressed ("breaded") into the roll surface, and 4-5 µm fluorescent microspheres that are capped with a 50 nm thick metal hemispherical shell. The magnetic tweezers consisted of an iron wire that was magnetized in an external magnetic field. Rotating this external field oriented and rotated the microsensors.
Hoefer, M; Tyll, S; Kanowski, M; Brosch, M; Schoenfeld, M A; Heinze, H-J; Noesselt, T
2013-10-01
Although multisensory integration has been an important area of recent research, most studies focused on audiovisual integration. Importantly, however, the combination of audition and touch can guide our behavior as effectively which we studied here using psychophysics and functional magnetic resonance imaging (fMRI). We tested whether task-irrelevant tactile stimuli would enhance auditory detection, and whether hemispheric asymmetries would modulate these audiotactile benefits using lateralized sounds. Spatially aligned task-irrelevant tactile stimuli could occur either synchronously or asynchronously with the sounds. Auditory detection was enhanced by non-informative synchronous and asynchronous tactile stimuli, if presented on the left side. Elevated fMRI-signals to left-sided synchronous bimodal stimulation were found in primary auditory cortex (A1). Adjacent regions (planum temporale, PT) expressed enhanced BOLD-responses for synchronous and asynchronous left-sided bimodal conditions. Additional connectivity analyses seeded in right-hemispheric A1 and PT for both bimodal conditions showed enhanced connectivity with right-hemispheric thalamic, somatosensory and multisensory areas that scaled with subjects' performance. Our results indicate that functional asymmetries interact with audiotactile interplay which can be observed for left-lateralized stimulation in the right hemisphere. There, audiotactile interplay recruits a functional network of unisensory cortices, and the strength of these functional network connections is directly related to subjects' perceptual sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.
1994-01-01
Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.
Multi-scale predictions of coniferous forest mortality in the northern hemisphere
NASA Astrophysics Data System (ADS)
McDowell, N. G.
2015-12-01
Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our incomplete understanding of the fundamental physiological thresholds of vegetation mortality during drought limits our ability to accurately simulate future vegetation distributions and associated climate feedbacks. Here we integrate experimental evidence with models to show potential widespread loss of needleleaf evergreen trees (NET; ~ conifers) within the Southwest USA by 2100; with rising temperature being the primary cause of mortality. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ypd) thresholds (April-August mean) beyond which photosynthesis, stomatal and hydraulic conductance, and carbohydrate availability approached zero. Empirical and mechanistic models accurately predicted NET Ypd, and 91% of predictions (10/11) exceeded mortality thresholds within the 21st century due to temperature rise. Completely independent global models predicted >50% loss of northern hemisphere NET by 2100, consistent with the findings for Southwest USA. The global models disagreed with the ecosystem process models in regards to future mortality in Southwest USA, however, highlighting the potential underestimates of future NET mortality as simulated by the global models and signifying the importance of improving regional predictions. Taken together, these results from the validated regional predictions and the global simulations predict global-scale conifer loss in coming decades under projected global warming.
A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents
NASA Technical Reports Server (NTRS)
Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.
2005-01-01
For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.
Exploring the North-South asymmetry in a Babcock-Leighton dynamo
NASA Astrophysics Data System (ADS)
Belucz , B.; Forgács-Dajka, E.; Dikpati, M.
2013-11-01
We present here a Babcock-Leighton, kinematic flux-transport solar dynamo model, based on an earlier model (Dikpati & Charbonneau 1999), operating in a full spherical shell of the convection zone, to investigate the properties of North-South (N-S) asymmetry. We develop a C language code for this model in order to examine the N-S asymmetry. The main components of the model are a solar-like internal differential rotation profile, a depth-dependent diffusivity, and a Babcock-Leighton type poloidal source. Our purpose here is to study what kind of North-South asymmetry is produced in solar cycle patterns when the Babcock-Leighton poloidal source is asymmetric between North and South. We present our solutions in the form of model butterfly diagrams in which we plot the tachocline toroidal field and surface radial field, and compare them with observations. We find that the dynamos in the northern and southern hemispheres operate nearly independently - if the Babcock-Leighton source is much smaller in the southern hemisphere with respect to that in the northern hemisphere, the dynamo in the southern hemisphere gets weaker and weaker, but the dynamo in the northern hemisphere runs without being affected by the dynamo in the southern hemisphere.
Bio-inspired hemispherical compound eye camera
NASA Astrophysics Data System (ADS)
Xiao, Jianliang; Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B.; Huang, Yonggang; Rogers, John A.
2014-03-01
Compound eyes in arthropods demonstrate distinct imaging characteristics from human eyes, with wide angle field of view, low aberrations, high acuity to motion and infinite depth of field. Artificial imaging systems with similar geometries and properties are of great interest for many applications. However, the challenges in building such systems with hemispherical, compound apposition layouts cannot be met through established planar sensor technologies and conventional optics. We present our recent progress in combining optics, materials, mechanics and integration schemes to build fully functional artificial compound eye cameras. Nearly full hemispherical shapes (about 160 degrees) with densely packed artificial ommatidia were realized. The number of ommatidia (180) is comparable to those of the eyes of fire ants and bark beetles. The devices combine elastomeric compound optical elements with deformable arrays of thin silicon photodetectors, which were fabricated in the planar geometries and then integrated and elastically transformed to hemispherical shapes. Imaging results and quantitative ray-tracing-based simulations illustrate key features of operation. These general strategies seem to be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).
Europa in the Far-UV: Spatial and Spectral Analysis from HST Observations
NASA Astrophysics Data System (ADS)
Becker, Tracy M.; Retherford, Kurt D.; Roth, Lorenz; Hendrix, Amanda R.; McGrath, Melissa; Alday, Juan; Saur, Joachim; Molyneux, Philippa M.; Raut, Ujjwal; Teolis, Benjamin
2017-10-01
We present a spatial and spectral analysis of Europa using far-UV observations from 1999 - 2015 made by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). Disk-integrated observations show that the far-UV spectrum from ~130 nm - 170 nm is blue (increasing albedo with decreasing wavelength) for the studied hemispheres: the leading, trailing, and anti-Jovian hemispheres. At Lyman-alpha (121.6 nm), the albedo of the trailing hemisphere continues the blue trend, but it reddens for the leading hemisphere. At wavelengths shorter than 133.5 nm, the leading hemisphere, which is brighter than the trailing hemisphere at near-UV and visible wavelengths, becomes darker than the trailing hemisphere. We find no evidence of a sharp water-ice absorption edge at 165 nm on any hemisphere of Europa, which is intriguing since such an absorption feature has been observed on most icy moons. This suggests the possibility that radiolytic alteration by Jovian magnetospheric plasma has made the surface more strongly absorbing, masking the absorption edge. We will also present a spatial map of Lyman-alpha across the entire surface of Europa. This map can then be used to distinguish variable H emissions in the atmosphere from surface reflectance, improving our ability to detect potential plumes occurring on the disk of Europa during an observation.
The influence of context on hemispheric recruitment during metaphor processing
Diaz, Michele T.; Hogstrom, Larson J.
2011-01-01
Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify language processes and facilitate comprehension. Here we investigated how figurativeness and context influenced brain activation, with a specific interest in right hemisphere function. Previous work in our lab indicated that novel stimuli engaged right inferior frontal gyrus and that both novel and familiar metaphors engaged right inferior frontal gyrus and right temporal pole. The Graded Salience Hypothesis (GSH) proposes that context may lessen integration demands, increase the salience of metaphors, and thereby reduce right hemisphere recruitment for metaphors. In the present study, functional Magnetic Resonance Imaging was used to investigate brain function while participants read literal and metaphoric sentences that were preceded by either a congruent or an incongruent literal sentence. Consistent with prior research, all sentences engaged traditional left hemisphere regions. Differences between metaphors and literal sentences were observed, but only in the left hemisphere. In contrast, a main effect of congruence was found in right inferior frontal gyrus, right temporal pole, and dorsal medial prefrontal cortex. Partially consistent with the GSH, our results highlight the strong influence of context on language, demonstrate the importance of the right hemisphere in discourse, and suggest that in a wider discourse context congruence has a greater influence on right hemisphere recruitment than figurativeness. PMID:21568642
NASA Astrophysics Data System (ADS)
Ackerley, Duncan; Reeves, Jessica; Barr, Cameron; Bostock, Helen; Fitzsimmons, Kathryn; Fletcher, Michael-Shawn; Gouramanis, Chris; McGregor, Helen; Mooney, Scott; Phipps, Steven J.; Tibby, John; Tyler, Jonathan
2017-11-01
This study uses the simplified patterns of temperature and effective precipitation
approach from the Australian component of the international palaeoclimate synthesis effort (INTegration of Ice core, MArine and TErrestrial records - OZ-INTIMATE) to compare atmosphere-ocean general circulation model (AOGCM) simulations and proxy reconstructions. The approach is used in order to identify important properties (e.g. circulation and precipitation) of past climatic states from the models and proxies, which is a primary objective of the Southern Hemisphere Assessment of PalaeoEnvironment (SHAPE) initiative. The AOGCM data are taken from the Paleoclimate Modelling Intercomparison Project (PMIP) mid-Holocene (ca. 6000 years before present, 6 ka) and pre-industrial control (ca. 1750 CE, 0 ka) experiments. The synthesis presented here shows that the models and proxies agree on the differences in climate state for 6 ka relative to 0 ka, when they are insolation driven. The largest uncertainty between the models and the proxies occurs over the Indo-Pacific Warm Pool (IPWP). The analysis shows that the lower temperatures in the Pacific at around 6 ka in the models may be the result of an enhancement of an existing systematic error. It is therefore difficult to decipher which one of the proxies and/or the models is correct. This study also shows that a reduction in the Equator-to-pole temperature difference in the Southern Hemisphere causes the mid-latitude westerly wind strength to reduce in the models; however, the simulated rainfall actually increases over the southern temperate zone of Australia as a result of higher convective precipitation. Such a mechanism (increased convection) may be useful for resolving disparities between different regional proxy records and model simulations. Finally, after assessing the available datasets (model and proxy), opportunities for better model-proxy integrated research are discussed.
Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M
2015-08-01
Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.
Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models
NASA Astrophysics Data System (ADS)
Screen, James A.; Deser, Clara; Smith, Doug M.; Zhang, Xiangdong; Blackport, Russell; Kushner, Paul J.; Oudar, Thomas; McCusker, Kelly E.; Sun, Lantao
2018-03-01
The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.
ERIC Educational Resources Information Center
Hsiao, Janet H.; Lam, Sze Man
2013-01-01
Through computational modeling, here we examine whether visual and task characteristics of writing systems alone can account for lateralization differences in visual word recognition between different languages without assuming influence from left hemisphere (LH) lateralized language processes. We apply a hemispheric processing model of face…
Hoyau, E; Cousin, E; Jaillard, A; Baciu, M
2016-12-01
We evaluated the effect of normal aging on the inter-hemispheric processing of semantic information by using the divided visual field (DVF) method, with words and pictures. Two main theoretical models have been considered, (a) the HAROLD model which posits that aging is associated with supplementary recruitment of the right hemisphere (RH) and decreased hemispheric specialization, and (b) the RH decline theory, which assumes that the RH becomes less efficient with aging, associated with increased LH specialization. Two groups of subjects were examined, a Young Group (YG) and an Old Group (OG), while participants performed a semantic categorization task (living vs. non-living) in words and pictures. The DVF was realized in two steps: (a) unilateral DVF presentation with stimuli presented separately in each visual field, left or right, allowing for their initial processing by only one hemisphere, right or left, respectively; (b) bilateral DVF presentation (BVF) with stimuli presented simultaneously in both visual fields, followed by their processing by both hemispheres. These two types of presentation permitted the evaluation of two main characteristics of the inter-hemispheric processing of information, the hemispheric specialization (HS) and the inter-hemispheric cooperation (IHC). Moreover, the BVF allowed determining the driver-hemisphere for processing information presented in BVF. Results obtained in OG indicated that: (a) semantic categorization was performed as accurately as YG, even if more slowly, (b) a non-semantic RH decline was observed, and (c) the LH controls the semantic processing during the BVF, suggesting an increased role of the LH in aging. However, despite the stronger involvement of the LH in OG, the RH is not completely devoid of semantic abilities. As discussed in the paper, neither the HAROLD nor the RH decline does fully explain this pattern of results. We rather suggest that the effect of aging on the hemispheric specialization and inter-hemispheric cooperation during semantic processing is explained not by only one model, but by an interaction between several complementary mechanisms and models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Persinger, M A; Richards, P M
1995-06-01
A protocol was designed to identify quantitative indicators of the function of the medial surfaces of the cerebral hemispheres. Normative data were collected from 40 volunteers for foot agility, toe gnosis, and toe graphaesthesia. A total of 100 patients (most of whom had been referred for possible closed-head injuries) completed thorough neuropsychological and cognitive assessments. Deficits for toe graphaesthesia were most consistently correlated with general brain impairment and with scores for tasks whose normal performance requires the integrity of structures within the dorsal half of the medial cerebral hemispheres.
Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena
2007-06-01
Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.
ERIC Educational Resources Information Center
Polson, Martha C.; And Others
A study tested a multiple-resources model of human information processing wherein the two cerebral hemispheres are assumed to have separate, limited-capacity pools of undifferentiated resources. The subjects were five right-handed males who had demonstrated right visual field-left hemisphere (RVF-LH) superiority for processing a centrally…
Inter- and Intrahemispheric Connectivity Differences When Reading Japanese Kanji and Hiragana
Kawabata Duncan, Keith J.; Twomey, Tae; Parker Jones, ‘Ōiwi; Seghier, Mohamed L.; Haji, Tomoki; Sakai, Katsuyuki; Price, Cathy J.; Devlin, Joseph T.
2014-01-01
Unlike most languages that are written using a single script, Japanese uses multiple scripts including morphographic Kanji and syllabographic Hiragana and Katakana. Here, we used functional magnetic resonance imaging with dynamic causal modeling to investigate competing theories regarding the neural processing of Kanji and Hiragana during a visual lexical decision task. First, a bilateral model investigated interhemispheric connectivity between ventral occipito–temporal (vOT) cortex and Broca's area (“pars opercularis”). We found that Kanji significantly increased the connection strength from right-to-left vOT. This is interpreted in terms of increased right vOT activity for visually complex Kanji being integrated into the left (i.e. language dominant) hemisphere. Secondly, we used a unilateral left hemisphere model to test whether Kanji and Hiragana rely preferentially on ventral and dorsal paths, respectively, that is, they have different intrahemispheric functional connectivity profiles. Consistent with this hypothesis, we found that Kanji increased connectivity within the ventral path (V1 ↔ vOT ↔ Broca's area), and that Hiragana increased connectivity within the dorsal path (V1 ↔ supramarginal gyrus ↔ Broca's area). Overall, the results illustrate how the differential processing demands of Kanji and Hiragana influence both inter- and intrahemispheric interactions. PMID:23382515
Inter- and intrahemispheric connectivity differences when reading Japanese Kanji and Hiragana.
Kawabata Duncan, Keith J; Twomey, Tae; Parker Jones, 'Ōiwi; Seghier, Mohamed L; Haji, Tomoki; Sakai, Katsuyuki; Price, Cathy J; Devlin, Joseph T
2014-06-01
Unlike most languages that are written using a single script, Japanese uses multiple scripts including morphographic Kanji and syllabographic Hiragana and Katakana. Here, we used functional magnetic resonance imaging with dynamic causal modeling to investigate competing theories regarding the neural processing of Kanji and Hiragana during a visual lexical decision task. First, a bilateral model investigated interhemispheric connectivity between ventral occipito-temporal (vOT) cortex and Broca's area ("pars opercularis"). We found that Kanji significantly increased the connection strength from right-to-left vOT. This is interpreted in terms of increased right vOT activity for visually complex Kanji being integrated into the left (i.e. language dominant) hemisphere. Secondly, we used a unilateral left hemisphere model to test whether Kanji and Hiragana rely preferentially on ventral and dorsal paths, respectively, that is, they have different intrahemispheric functional connectivity profiles. Consistent with this hypothesis, we found that Kanji increased connectivity within the ventral path (V1 ↔ vOT ↔ Broca's area), and that Hiragana increased connectivity within the dorsal path (V1 ↔ supramarginal gyrus ↔ Broca's area). Overall, the results illustrate how the differential processing demands of Kanji and Hiragana influence both inter- and intrahemispheric interactions.
The Southern Hemisphere VLBI experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, R.A.; Meier, D.L.; Louie, A.P.
1989-07-01
Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.
Pinzon-Morales, Ruben-Dario; Hirata, Yutaka
2014-01-01
To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning.
Pinzon-Morales, Ruben-Dario; Hirata, Yutaka
2014-01-01
To acquire and maintain precise movement controls over a lifespan, changes in the physical and physiological characteristics of muscles must be compensated for adaptively. The cerebellum plays a crucial role in such adaptation. Changes in muscle characteristics are not always symmetrical. For example, it is unlikely that muscles that bend and straighten a joint will change to the same degree. Thus, different (i.e., asymmetrical) adaptation is required for bending and straightening motions. To date, little is known about the role of the cerebellum in asymmetrical adaptation. Here, we investigate the cerebellar mechanisms required for asymmetrical adaptation using a bi-hemispheric cerebellar neuronal network model (biCNN). The bi-hemispheric structure is inspired by the observation that lesioning one hemisphere reduces motor performance asymmetrically. The biCNN model was constructed to run in real-time and used to control an unstable two-wheeled balancing robot. The load of the robot and its environment were modified to create asymmetrical perturbations. Plasticity at parallel fiber-Purkinje cell synapses in the biCNN model was driven by error signal in the climbing fiber (cf) input. This cf input was configured to increase and decrease its firing rate from its spontaneous firing rate (approximately 1 Hz) with sensory errors in the preferred and non-preferred direction of each hemisphere, as demonstrated in the monkey cerebellum. Our results showed that asymmetrical conditions were successfully handled by the biCNN model, in contrast to a single hemisphere model or a classical non-adaptive proportional and derivative controller. Further, the spontaneous activity of the cf, while relatively small, was critical for balancing the contribution of each cerebellar hemisphere to the overall motor command sent to the robot. Eliminating the spontaneous activity compromised the asymmetrical learning capabilities of the biCNN model. Thus, we conclude that a bi-hemispheric structure and adequate spontaneous activity of cf inputs are critical for cerebellar asymmetrical motor learning. PMID:25414644
Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.
He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E
2013-02-07
According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2) concentration provided the critical feedback on global deglaciation.
NASA Astrophysics Data System (ADS)
Cariolle, D.; Teyssèdre, H.
2007-01-01
This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory works. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the resolution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small. The model also reproduces fairly well the polar ozone variability, with notably the formation of "ozone holes" in the southern hemisphere with amplitudes and seasonal evolutions that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone contents inside the polar vortex of the southern hemisphere over longer periods in spring time. It is concluded that for the study of climatic scenarios or the assimilation of ozone data, the present parameterization gives an interesting alternative to the introduction of detailed and computationally costly chemical schemes into general circulation models.
The formulation of Lamb's Dust Veil Index
NASA Technical Reports Server (NTRS)
Kelly, P. M.; Sear, C. B.
1982-01-01
A catalog of the major explosive volcanic eruptions since 1500 AD and formulated the Dust Veil Index (DVI) is presented. The DVI quantifies the impact on the Earth's energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI for a particular eruption quantifies the climatic impact of the dust and aerosol injection from the eruption integrated over the years following the event. The formulation of the DVI is described. All references are to Lamb (1970). A distinction is made between the catalog of volcanic activity, and the tabulation of the northern hemisphere DVI apportioned over the years. The DVI data are updated to 1975 for any particular eruption, the catalog gives three DVI values: global, Southern Hemisphere, and Northern Hemisphere. The global DVI given in the catalog is considered. The other two DVIs relate to the impact on the hemispheres considered separately and their estimation involves an additional factor apportioning the dust veil between the hemispheres on the basis of the latitude of injection.
Mazoyer, Bernard; Zago, Laure; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Perchey, Guy; Mellet, Emmanuel; Petit, Laurent; Tzourio-Mazoyer, Nathalie
2014-01-01
Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely “Typical” (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), “Ambilateral” (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and “Strongly-atypical” (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance. PMID:24977417
Mazoyer, Bernard; Zago, Laure; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Perchey, Guy; Mellet, Emmanuel; Petit, Laurent; Tzourio-Mazoyer, Nathalie
2014-01-01
Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.
NASA Technical Reports Server (NTRS)
Lucas, Michael J.; Marcolini, Michael A.
1997-01-01
The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.
OBSERVATIONS AND MODELING OF NORTH-SOUTH ASYMMETRIES USING A FLUX TRANSPORT DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetye, Juie; Tripathi, Durgesh; Dikpati, Mausumi
2015-02-01
The peculiar behavior of solar cycle 23 and its prolonged minima has been one of the most studied problems over the past few years. In the present paper, we study the asymmetries in active region magnetic flux in the northern and southern hemispheres during the complete solar cycle 23 and the rising phase of solar cycle 24. During the declining phase of solar cycle 23, we find that the magnetic flux in the southern hemisphere is about 10 times stronger than that in the northern hemisphere; however, during the rising phase of cycle 24, this trend is reversed. The magnetic fluxmore » becomes about a factor of four stronger in the northern hemisphere than in the southern hemisphere. Additionally, we find that there was a significant delay (about five months) in change of the polarity in the southern hemisphere in comparison with the northern hemisphere. These results provide us with hints of how the toroidal fluxes have contributed to the solar dynamo during the prolonged minima in solar cycle 23 and in the rising phase of solar cycle 24. Using a solar flux-transport dynamo model, we demonstrate that persistently stronger sunspot cycles in one hemisphere could be caused by the effect of greater inflows into active region belts in that hemisphere. Observations indicate that greater inflows are associated with stronger activity. Some other change or difference in meridional circulation between hemispheres could cause the weaker hemisphere to become the stronger one.« less
NASA Astrophysics Data System (ADS)
Yeh, Ting-Tso; Huang, Tsung-Yu; Tanaka, Takuo; Yen, Ta-Jen
2017-04-01
We design and construct a three-dimensional (3D) negative index medium (NIM) composed of gold hemispherical shells to supplant an integration of a split-ring resonator and a discrete plasmonic wire for both negative permeability and permittivity at THz gap. With the proposed highly symmetric gold hemispherical shells, the negative index is preserved at multiple incident angles ranging from 0° to 85° for both TE and TM waves, which is further evidenced by negative phase flows in animated field distributions and outweighs conventional fishnet structures with operating frequency shifts when varying incident angles. Finally, the fabrication of the gold hemispherical shells is facilitated via standard UV lithographic and isotropic wet etching processes and characterized by μ-FTIR. The measurement results agree the simulated ones very well.
Thinking ahead: The role and roots of prediction in language comprehension
Federmeier, Kara D.
2009-01-01
Reviewed are studies using event-related potentials to examine when and how sentence context information is used during language comprehension. Results suggest that, when it can, the brain uses context to predict features of likely upcoming items. However, although prediction seems important for comprehension, it also appears susceptible to age-related deterioration and can be associated with processing costs. The brain may address this trade-off by employing multiple processing strategies, distributed across the two cerebral hemispheres. In particular, left hemisphere language processing seems to be oriented toward prediction and the use of top-down cues, whereas right hemisphere comprehension is more bottom-up, biased toward the veridical maintenance of information. Such asymmetries may arise, in turn, because language comprehension mechanisms are integrated with language production mechanisms only in the left hemisphere (the PARLO framework). PMID:17521377
NASA Astrophysics Data System (ADS)
Sinha, Bablu; Blaker, Adam; Duchez, Aurelie; Grist, Jeremy; Hewitt, Helene; Hirschi, Joel; Hyder, Patrick; Josey, Simon; Maclachlan, Craig; New, Adrian
2017-04-01
A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control simulation is integrated from September 1 to 28 February and compared with a similar ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface (deeper than 180m) temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010, which is known to have re-emerged at the ocean surface in subsequent months. The perturbation is confined to the North Atlantic Ocean between the Equator and 65 degrees North. The model has 1/4 degree horizontal resolution in the ocean and the experiment is repeated for two atmosphere horizontal resolutions ( 60km and 25km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. The ensembles display a wide range of reemergence behaviour, in some cases re-emergence occurs by November, in others it is delayed or does not occur at all. A wide range of amplitudes of the re-emergent temperature anomalies is observed. In cases where re-emergence occurs, there is a marked effect on both the regional (North Atlantic and Europe) and hemispheric surface pressure and temperature patterns. The results highlight a potentially important process whereby ocean memory of conditions up to a year earlier can significantly enhance seasonal forecast skill.
NASA Astrophysics Data System (ADS)
Wang, K.
2008-04-01
Previous studies of the exceptional 2002 Southern Hemisphere (SH) stratospheric warming event lead to some uncertainty, namely the question of whether excessive heat fluxes in the upper troposphere and lower stratosphere are a symptom or cause of the 2002 SH warming event. In this work, we use a hemispheric version of the MM5 model with nudging capability and we devised a novel approach to separately test the significance of the stratosphere and troposphere for this year. We paired the flow conditions from 2002 in the stratosphere and troposphere, respectively, against the conditions in 1998 (a year with displaced polar vortex) and in 1948 (a year with strong polar vortex that coincided with the geographical South Pole). Our experiments show that the flow conditions from below determine the stratospheric flow features over the polar region. Regardless of the initial stratospheric conditions in 1998 or 1948, when we simulated these past stratospheres with the troposphere/lower stratosphere conditions constrained to 2002 levels, the simulated middle stratospheres resemble those observed in 2002 stratosphere over the polar region. On the other hand, when the 2002 stratosphere was integrated with the troposphere/lower stratosphere conductions constrained to 1948 and 1998, respectively, the simulated middle stratospheric conditions over the polar region shift toward those of 1948 and 1998. Thus, our experiments further support the wave-forcing theory as the cause of the 2002 SH warming event.
Hwang, Yen-Ting; Frierson, Dargan M. W.
2013-01-01
The double-Intertropical Convergence Zone (ITCZ) problem, in which excessive precipitation is produced in the Southern Hemisphere tropics, which resembles a Southern Hemisphere counterpart to the strong Northern Hemisphere ITCZ, is perhaps the most significant and most persistent bias of global climate models. In this study, we look to the extratropics for possible causes of the double-ITCZ problem by performing a global energetic analysis with historical simulations from a suite of global climate models and comparing with satellite observations of the Earth’s energy budget. Our results show that models with more energy flux into the Southern Hemisphere atmosphere (at the top of the atmosphere and at the surface) tend to have a stronger double-ITCZ bias, consistent with recent theoretical studies that suggest that the ITCZ is drawn toward heating even outside the tropics. In particular, we find that cloud biases over the Southern Ocean explain most of the model-to-model differences in the amount of excessive precipitation in Southern Hemisphere tropics, and are suggested to be responsible for this aspect of the double-ITCZ problem in most global climate models. PMID:23493552
Connectome Signatures of Neurocognitive Abnormalities in Euthymic Bipolar I Disorder
Ajilore, Olusola; Vizueta, Nathalie; Walshaw, Patricia; Zhan, Liang; Leow, Alex; Altshuler, Lori L.
2015-01-01
Objectives Connectomics have allowed researchers to study integrative patterns of neural connectivity in humans. Yet, it is unclear how connectomics may elucidate structure-function relationships in bipolar I disorder (BPI). Expanding on our previous structural connectome study, here we used an overlapping sample with additional psychometric and fMRI data to relate structural connectome properties to both fMRI signals and cognitive performance. Methods 42 subjects completed a neuropsychological (NP) battery covering domains of processing speed, verbal memory, working memory, and cognitive flexibility. 32 subjects also had fMRI data performing a Go/NoGo task. Results Bipolar participants had lower NP performance across all domains, but only working memory reached statistical significance. In BPI participants, processing speed was significantly associated with both white matter integrity (WMI) in the corpus callosum and interhemispheric network integration. Mediation models further revealed that the relationship between interhemispheric integration and processing speed was mediated by WMI, and processing speed mediated the relationship between WMI and working memory. Bipolar subjects had significantly decreased BA47 activation during NoGo vs. Go. Significant predictors of BA47 fMRI activations during the Go/NoGo task were its nodal path length (left hemisphere) and its nodal clustering coefficient (right hemisphere). Conclusions This study suggests that structural connectome changes underlie abnormalities in fMRI activation and cognitive performance in euthymic BPI subjects. Results support that BA47 structural connectome changes may be a trait marker for BPI. Future studies are needed to determine if these “connectome signatures” may also confer a biological risk and/or serve as predictors of relapse. PMID:26228398
Yuan, Naiming; Fu, Zuntao; Liu, Shida
2014-01-01
Long term memory (LTM) in climate variability is studied by means of fractional integral techniques. By using a recently developed model, Fractional Integral Statistical Model (FISM), we in this report proposed a new method, with which one can estimate the long-lasting influences of historical climate states on the present time quantitatively, and further extract the influence as climate memory signals. To show the usability of this method, two examples, the Northern Hemisphere monthly Temperature Anomalies (NHTA) and the Pacific Decadal Oscillation index (PDO), are analyzed in this study. We find the climate memory signals indeed can be extracted and the whole variations can be further decomposed into two parts: the cumulative climate memory (CCM) and the weather-scale excitation (WSE). The stronger LTM is, the larger proportion the climate memory signals will account for in the whole variations. With the climate memory signals extracted, one can at least determine on what basis the considered time series will continue to change. Therefore, this report provides a new perspective on climate prediction. PMID:25300777
Modeling the Influence of Hemispheric Transport on Trends in ...
We describe the development and application of the hemispheric version of the CMAQ to examine the influence of long-range pollutant transport on trends in surface level O3 distributions. The WRF-CMAQ model is expanded to hemispheric scales and multi-decadal model simulations were recently performed for the period spanning 1990-2010 to examine changes in hemispheric air pollution resulting from changes in emissions over this period. Simulated trends in ozone and precursor species concentrations across the U.S. and the northern hemisphere over the past two decades are compared with those inferred from available measurements during this period. Additionally, the decoupled direct method (DDM) in CMAQ is used to estimate the sensitivity of O3 to emissions from different source regions across the northern hemisphere. The seasonal variations in source region contributions to background O3 is then estimated from these sensitivity calculations and will be discussed. A reduced form model combining these source region sensitivities estimated from DDM with the multi-decadal simulations of O3 distributions and emissions trends, is then developed to characterize the changing contributions of different source regions to background O3 levels across North America. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas
Chang, Edward F; Wang, Doris D; Perry, David W; Barbaro, Nicholas M; Berger, Mitchel S
2011-04-01
Language dominance in the right hemisphere is rare. Therefore, the organization of essential language sites in the dominant right hemisphere is unclear, especially compared with cases involving the more prevalent left dominant hemisphere. The authors reviewed the medical records of 15 patients who underwent awake craniotomy for tumor or epilepsy surgery and speech mapping of right hemisphere perisylvian language areas at the University of California, San Francisco. All patients were determined to have either complete right-sided or bilateral language dominance by preoperative Wada testing. All patients but one were left-handed. Of more than 331 total stimulation sites, 27 total sites were identified as essential for language function (14 sites for speech arrest/anarthria; 12 for anomia; and 1 for alexia). While significant interindividual variability was observed, the general pattern of language organization was similar to classic descriptions of frontal language production and posterior temporal language integration for the left hemisphere. Speech arrest sites were clustered in the ventral precentral gyrus and pars opercularis. Anomia sites were more widely distributed, but were focused in the posterior superior and middle temporal gyri as well as the inferior parietal gyrus. One alexia site was found over the superior temporal gyrus. Face sensory and motor cortical sites were also identified along the ventral sensorimotor strip. The prevalence and specificity of essential language sites were greater in unilateral right hemisphere-dominant patients, compared with those with bilateral dominance by Wada testing. The authors' results suggest that the organization of language in right hemisphere dominance mirrors that of left hemisphere dominance. Awake speech mapping is a safe and reliable surgical adjunct in these rare clinical cases and should be done in the setting of right hemisphere dominance to avoid preventable postoperative aphasia.
Investigations of conjugate MSTIDS over the Brazilian sector during daytime
NASA Astrophysics Data System (ADS)
Jonah, O. F.; Kherani, E. A.; De Paula, E. R.
2017-09-01
This study focuses on the daytime medium-scale traveling ionospheric disturbances (MSTIDs) observed at conjugate hemispheres. It is the first time that the geomagnetical conjugate daytime MSTIDs are observed over the South America sector. To observe the MSTID characteristics, we used detrended total electron content (TEC) derived from Global Navigation Satellite Systems receivers located at Brazilian sector covering the Northern and Southern Hemispheres along the same magnetic meridian. The geographic grid of 1°N to 14°S in latitude and 60°S to 50°S in longitude was selected for this study. The cross-correlation method between two latitudes and longitudes in time was used to observe the propagation of the MSTID waves. The following features are noted: (a) MSTIDs are well developed at both hemispheres; (b) the peak MSTIDs amplitudes vary from one hemisphere to another; hence, we suppose that MSTIDs generated in Southern Hemisphere or Northern Hemisphere mirrored in the conjugate hemisphere; (c) the gravity wave-induced electric fields from one hemisphere map along the field lines and generate the mirrored MSTIDs in the conjugate region. To investigate the hemispheric mapping mechanism, a rough approximation for the integrated field line conductivity ratio of E and F regions is calculated using digisonde E and F region parameters. We noted that during the period of mapping the decrease in E region conductivity results in an increase in total conductivity. This shows that the E region was partially short circuited; hence, electric field generated at F region could map to the conjugate hemisphere during daytime: daytime MSTIDs at conjugate regions; mechanisms responsible for daytime electrified MSTIDs; gravity wave-induced electric field role in daytime MSTIDs.
Possible causes of data model discrepancy in the temperature history of the last Millennium.
Neukom, Raphael; Schurer, Andrew P; Steiger, Nathan J; Hegerl, Gabriele C
2018-05-15
Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role.
Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.
Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida
2015-12-01
Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim
2018-02-01
We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.
2011-01-01
For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left hemisphere damage and healthy participants to ask whether the left inferior frontal gyrus is essential for syntactic processing. In a functional neuroimaging study, participants listened to spoken sentences that either contained a syntactically ambiguous or matched unambiguous phrase. Behavioural data on three tests of syntactic processing were subsequently collected. In controls, syntactic processing co-activated left hemisphere Brodmann areas 45/47 and posterior middle temporal gyrus. Activity in a left parietal cluster was sensitive to working memory demands in both patients and controls. Exploiting the variability in lesion location and performance in the patients, voxel-based correlational analyses showed that tissue integrity and neural activity—primarily in left Brodmann area 45 and posterior middle temporal gyrus—were correlated with preserved syntactic performance, but unlike the controls, patients were insensitive to syntactic preferences, reflecting their syntactic deficit. These results argue for the essential contribution of the left inferior frontal gyrus in syntactic analysis and highlight the functional relationship between left Brodmann area 45 and the left posterior middle temporal gyrus, suggesting that when this relationship breaks down, through damage to either region or to the connections between them, syntactic processing is impaired. On this view, the left inferior frontal gyrus may not itself be specialized for syntactic processing, but plays an essential role in the neural network that carries out syntactic computations. PMID:21278407
Fine tuning breath-hold-based cerebrovascular reactivity analysis models.
van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Bozinov, Oliver; Pangalu, Athina; Valavanis, Antonios; Regli, Luca; Fierstra, Jorn
2016-02-01
We elaborate on existing analysis methods for breath-hold (BH)-derived cerebrovascular reactivity (CVR) measurements and describe novel insights and models toward more exact CVR interpretation. Five blood-oxygen-level-dependent (BOLD) fMRI datasets of neurovascular patients with unilateral hemispheric hemodynamic impairment were used to test various BH CVR analysis methods. Temporal lag (phase), percent BOLD signal change (CVR), and explained variance (coherence) maps were calculated using three different sine models and two novel "Optimal Signal" model-free methods based on the unaffected hemisphere and the sagittal sinus fMRI signal time series, respectively. All models showed significant differences in CVR and coherence between the affected-hemodynamic impaired-and unaffected hemisphere. Voxel-wise phase determination significantly increases CVR (0.60 ± 0.18 vs. 0.82 ± 0.27; P < 0.05). Incorporating different durations of breath hold and resting period in one sine model (two-task) did increase coherence in the unaffected hemisphere, as well as eliminating negative phase commonly obtained by one-task frequency models. The novel model-free "optimal signal" methods both explained the BOLD MR data similar to the two task sine model. Our CVR analysis demonstrates an improved CVR and coherence after implementation of voxel-wise phase and frequency adjustment. The novel "optimal signal" methods provide a robust and feasible alternative to the sine models, as both are model-free and independent of compliance. Here, the sagittal sinus model may be advantageous, as it is independent of hemispheric CVR impairment.
Southward shift of the global wind energy resource under high carbon dioxide emissions
NASA Astrophysics Data System (ADS)
Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei
2018-01-01
The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.
Adapting to change: The role of the right hemisphere in mental model building and updating.
Filipowicz, Alex; Anderson, Britt; Danckert, James
2016-09-01
We recently proposed that the right hemisphere plays a crucial role in the processes underlying mental model building and updating. Here, we review the evidence we and others have garnered to support this novel account of right hemisphere function. We begin by presenting evidence from patient work that suggests a critical role for the right hemisphere in the ability to learn from the statistics in the environment (model building) and adapt to environmental change (model updating). We then provide a review of neuroimaging research that highlights a network of brain regions involved in mental model updating. Next, we outline specific roles for particular regions within the network such that the anterior insula is purported to maintain the current model of the environment, the medial prefrontal cortex determines when to explore new or alternative models, and the inferior parietal lobule represents salient and surprising information with respect to the current model. We conclude by proposing some future directions that address some of the outstanding questions in the field of mental model building and updating. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Electronic switching spherical array antenna
NASA Technical Reports Server (NTRS)
Stockton, R.
1978-01-01
This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.
Wallez, Catherine; Schaeffer, Jennifer; Meguerditchian, Adrien; Vauclair, Jacques; Schapiro, Steven J.; Hopkins, William D.
2013-01-01
Studies involving oro-facial asymmetries in nonhuman primates have largely demonstrated a right hemispheric dominance for communicative signals and conveyance of emotional information. A recent study on chimpanzee reported the first evidence of significant left-hemispheric dominance when using attention-getting sounds and rightward bias for species-typical vocalizations (Losin, Russell, Freeman, Meguerditchian, Hopkins & Fitch, 2008). The current study sought to extend the findings from Losin et al. (2008) with additional oro-facial assessment in a new colony of chimpanzees. When combining the two populations, the results indicated a consistent leftward bias for attention-getting sounds and a right lateralization for species-typical vocalizations. Collectively, the results suggest that both voluntary- controlled oro-facial and gestural communication might share the same left-hemispheric specialization and might have coevolved into a single integrated system present in a common hominid ancestor. PMID:22867751
Origami silicon optoelectronics for hemispherical electronic eye systems.
Zhang, Kan; Jung, Yei Hwan; Mikael, Solomon; Seo, Jung-Hun; Kim, Munho; Mi, Hongyi; Zhou, Han; Xia, Zhenyang; Zhou, Weidong; Gong, Shaoqin; Ma, Zhenqiang
2017-11-24
Digital image sensors in hemispherical geometries offer unique imaging advantages over their planar counterparts, such as wide field of view and low aberrations. Deforming miniature semiconductor-based sensors with high-spatial resolution into such format is challenging. Here we report a simple origami approach for fabricating single-crystalline silicon-based focal plane arrays and artificial compound eyes that have hemisphere-like structures. Convex isogonal polyhedral concepts allow certain combinations of polygons to fold into spherical formats. Using each polygon block as a sensor pixel, the silicon-based devices are shaped into maps of truncated icosahedron and fabricated on flexible sheets and further folded either into a concave or convex hemisphere. These two electronic eye prototypes represent simple and low-cost methods as well as flexible optimization parameters in terms of pixel density and design. Results demonstrated in this work combined with miniature size and simplicity of the design establish practical technology for integration with conventional electronic devices.
Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses
NASA Technical Reports Server (NTRS)
Christy, John R.
1991-01-01
Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.
Changes in atmospheric composition inferred from ionospheric production rates
NASA Technical Reports Server (NTRS)
Titheridge, J. E.
1974-01-01
Changes in the total electron content of the ionosphere near sunrise are used to determine the integrated production rate in the ionosphere (Q) from 1965 to 1971 at latitudes of 34S, 20N, and 34N. The observed regular semiannual variation in Q through a range of 1:3:1 is interpreted as an increase in the ratio O/N2 (relative densities) near the equinoxes. It follows that there is a worldwide semiannual variation in atmospheric composition, with the above ratio maximum just after the equinoxes. There is a large seasonal variation in the Northern hemisphere with a maximum in mid-summer. This effect is absent in the Southern hemisphere. At all times except solar maximum in the Northern hemisphere there is a global asymmetry. The ratio O/N2 is about three times as large in the Northern hemisphere. The overall mechanism appears to be N2 absorption.
NASA Astrophysics Data System (ADS)
Smith, Michael D.; Daerden, Frank; Neary, Lori; Khayat, Alain
2018-02-01
Radiative transfer modeling of near-infrared spectra taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument onboard Mars Reconnaissance Orbiter (MRO) enables the column-integrated abundance of carbon monoxide (CO) and water vapor (H2O) to be retrieved. These results provide a detailed global description of the seasonal and spatial distribution of CO in the Mars atmosphere and new information about the interannual variability of H2O. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be near 800 ppm, but with strong seasonal variations, especially at high latitudes. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure and shows little variation with topography. At high latitudes, carbon monoxide is depleted in the summer hemisphere by a factor of two or more, while in the winter hemisphere there is relatively higher mixing ratio in regions with low-lying topography. Water vapor shows only modest interannual variations, with the largest observed difference being unusually dry conditions in the wake of the Mars Year 28 global dust storm. Modeling results from the GEM-Mars general circulation model generally reproduce the observed seasonal and spatial trends and provide insight into the underlying physical processes.
An fMRI study on the influence of sommeliers' expertise on the integration of flavor
Pazart, Lionel; Comte, Alexandre; Magnin, Eloi; Millot, Jean-Louis; Moulin, Thierry
2014-01-01
Flavors guide consumers' choice of foodstuffs, preferring those that they like and meet their needs, and dismissing those for which they have a conditioned aversion. Flavor affects the learning and consumption of foods and drinks; what is already well-known is favored and what is new is apprehended. The flavor of foodstuffs is also crucial in explaining some eating behaviors such as overconsumption. The “blind” taste test of wine is a good model for assessing the ability of people to convert mouth feelings into flavor. To determine the relative importance of memory and sensory capabilities, we present the results of an fMRI neuro-imaging study involving 10 experts and 10 matched control subjects using wine as a stimulus in a blind taste test, focusing primarily on the assessment of flavor integration. The results revealed activations in the brain areas involved in sensory integration, both in experts and control subjects (insula, frontal operculum, orbitofrontal cortex, amygdala). However, experts were mainly characterized by a more immediate and targeted sensory reaction to wine stimulation with an economic mechanism reducing effort than control subjects. Wine experts showed brainstem and left-hemispheric activations in the hippocampal and parahippocampal formations and the temporal pole, whereas control subjects showed activations in different associative cortices, predominantly in the right hemisphere. These results also confirm that wine experts work simultaneously on sensory quality assessment and on label recognition of wine. PMID:25360093
Mars' paleomagnetic field as the result of a single-hemisphere dynamo.
Stanley, Sabine; Elkins-Tanton, Linda; Zuber, Maria T; Parmentier, E Marc
2008-09-26
Mars' crustal magnetic field was most likely generated by dynamo action in the planet's early history. Unexplained characteristics of the field include its strength, concentration in the southern hemisphere, and lack of correlation with any surface features except for the hemispheric crustal dichotomy. We used numerical dynamo modeling to demonstrate that the mechanisms proposed to explain crustal dichotomy formation can result in a single-hemisphere dynamo. This dynamo produces strong magnetic fields in only the southern hemisphere. This magnetic field morphology can explain why Mars' crustal magnetic field intensities are substantially stronger in the southern hemisphere without relying on any postdynamo mechanisms.
NASA Astrophysics Data System (ADS)
Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.
2014-11-01
We use aircraft observations from the 1991-2000 Cape Grim Overflight Program and the 2009-2011 HIAPER Pole-to-Pole Observations (HIPPO), together with output from four chemical transport and chemistry-climate models, to better understand the vertical distribution of carbon monoxide (CO) in the remote Southern Hemisphere. Observed CO vertical gradients at Cape Grim vary from 1.6 ppbv km-1 in austral autumn to 2.2 ppbv km-1 in austral spring. CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific during HIPPO, despite major differences in time periods, flight locations, and sampling strategies between the two datasets. Using multi-model simulations from the Southern Hemisphere Model Intercomparison Project (SHMIP), we find that observed CO vertical gradients in austral winter-spring are well-represented in models and can be attributed to primary CO emissions from biomass burning. In austral summer-autumn, inter-model variability in simulated gradients is much larger, and two of the four SHMIP models significantly underestimate the Cape Grim observations. Sensitivity simulations show that CO vertical gradients at this time of year are driven by long-range transport of secondary CO of biogenic origin, implying a large sensitivity of the remote Southern Hemisphere troposphere to biogenic emissions and chemistry. Inter-model variability in summer-autumn gradients can be explained by differences in both the chemical mechanisms that drive secondary production of CO from biogenic sources and the vertical transport that redistributes this CO throughout the Southern Hemisphere. This suggests that the CO vertical gradient in the remote Southern Hemisphere provides a sensitive test of the chemistry and transport processes that define the chemical state of the background atmosphere.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-10-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-11-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
Mars hemispherical albedo map: absolute value and interannual variability inferred from OMEGA data.
NASA Astrophysics Data System (ADS)
Vincendon, M.; Audouard, J.; Langevin, Y.; Poulet, F.; Bellucci, G.; Bibring, J.-P.; Gondet, B.
2012-04-01
The surface reflectance integrated over all directions and solar wavelengths ("hemispherical albedo") controls the radiative budget at the surface of Mars, and hence its climate. Reference albedo maps are usually derived from nadir observation of surface reflectance through clear atmospheric conditions. However, the atmosphere of Mars is permanently loaded with a significant amount of aerosols (typical visible optical depths of 0.5 under clear atmospheric conditions), which impacts the evaluation of "aerosol free" surface reflectances from remote sensing data. Moreover, the Martian surface is usually assumed to be Lambertian, both for simplicity and due to the lack of robust constraints about its bidirectional properties. We used OMEGA visible and near-IR measurements, with an appropriate UV extrapolation, to calculate as a function of space and time the hemispherical surface albedo of Mars. The contribution of aerosols is removed using a radiative transfer model and recent aerosols properties. Uncertainties associated with this procedure are calculated. The aerosols correction increases the bright/dark surfaces contrast. Typical, mean bidirectional reflectance properties of the martian surface are estimated using MER surface measurements and CRISM remote "EPF" observations. From these constraints, we have derived a typical relationship that makes it possible to convert single nadir measurements of the reflectance into hemispherical albedo. Accounting for the BRDF of the martian surface typically modify by ± 15% the derived albedo, depending on solar zenith angles. We will present our methods and preliminary results regarding seasonal and interannual variations of the surface albedo of Mars during years 2004-2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy J.; Bernacki, Bruce E.; Redding, Rebecca L.
2014-11-01
Accurate and calibrated directional-hemispherical reflectance spectra of solids are important for both in situ and remote sensing. Many solids are in the form of powders or granules and to measure their diffuse reflectance spectra in the laboratory, it is often necessary to place the samples behind a transparent medium such as glass for the ultraviolet (UV), visible, or near-infrared spectral regions. Using both experimental methods and a simple optical model, we demonstrate that glass (fused quartz in our case) leads to artifacts in the reflectance values. We report our observations that the measured reflectance values, for both hemispherical and diffusemore » reflectance, are distorted by the additional reflections arising at the air–quartz and sample–quartz interfaces. The values are dependent on the sample reflectance and are offset in intensity in the hemispherical case, leading to measured values up to ~6% too high for a 2% reflectance surface, ~3.8% too high for 10% reflecting surfaces, approximately correct for 40–60% diffuse-reflecting surfaces, and ~1.5% too low for 99% reflecting Spectralon® surfaces. For the case of diffuse-only reflectance, the measured values are uniformly too low due to the polished glass, with differences of nearly 6% for a 99% reflecting matte surface. The deviations arise from the added reflections from the quartz surfaces, as verified by both theory and experiment, and depend on sphere design. Finally, empirical correction factors were implemented into post-processing software to redress the artifact for hemispherical and diffuse reflectance data across the 300–2300 nm range.« less
NASA Astrophysics Data System (ADS)
Turney, C. S. M.; Haberle, S.; Fink, D.; Kershaw, A. P.; Barbetti, M.; Barrows, T. T.; Black, M.; Cohen, T. J.; Corrège, T.; Hesse, P. P.; Hua, Q.; Johnston, R.; Morgan, V.; Moss, P.; Nanson, G.; van Ommen, T.; Rule, S.; Williams, N. J.; Zhao, J.-X.; D'Costa, D.; Feng, Y.-X.; Gagan, M.; Mooney, S.; Xia, Q.
2006-10-01
The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric teleconnection and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright
High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Heeg, Jennifer; Larson, Terry J.; Ehernberger, L. J.; Hagen, Floyd W.; Deleo, Richard V.
1987-01-01
As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements.
Comer, Clinton S; Harrison, Patti Kelly; Harrison, David W
2015-01-01
Arousal theory as discussed within the present paper refers to those mechanisms and neural systems involved in central nervous system activation and more specifically the systems involved in cortical activation. Historical progress in the evolution of arousal theory has led to a better understanding of the functional neural systems involved in arousal or activation processes and ultimately contributed much to our current theories of emotion. Despite evidence for the dynamic interplay between the left and right cerebral hemispheres, the concepts of cerebral balance and dynamic activation have been emphasized in the neuropsychological literature. A conceptual model is proposed herein that incorporates the unique contributions from multiple neuropsychological theories of arousal and emotion. It is argued that the cerebral hemispheres may play oppositional roles in emotion partially due to the differences in their functional specializations and in their persistence upon activation. In the presence of a threat or provocation, the right hemisphere may activate survival relevant responses partially derived from hemispheric specializations in arousal and emotional processing, including the mobilization of sympathetic drive to promote heightened blood pressure, heart rate, glucose mobilization and respiratory support necessary for the challenge. Oppositional processes and mechanisms are discussed, which may be relevant to the regulatory control over the survival response; however, the capacity of these systems is necessarily limited. A limited capacity mechanism is proposed, which is familiar within other physiological systems, including that providing for the prevention of muscular damage under exceptional demand. This capacity theory is proposed, wherein a link may be expected between exceptional stress within a neural system and damage to the neural system. These mechanisms are proposed to be relevant to emotion and emotional disorders. Discussion is provided on the possible role of currently applied therapeutic interventions for emotional disorders.
Rapid calculation of acoustic fields from arbitrary continuous-wave sources.
Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T
2018-01-01
A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.
Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion.
Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I
2016-10-01
The current MMN study investigates whether brain lateralization during automatic discrimination of sound stimuli moving at different velocities is consistent with one of the three models of asymmetry: the right-hemispheric dominance model, the contralateral dominance model, or the neglect model. Auditory event-related potentials (ERPs) were recorded for three patterns of sound motion produced by linear or abrupt changes of interaural time differences. The slow motion (450deg/s) was used as standard, and the fast motion (620deg/s) and the abrupt sound shift served as deviants in the oddball blocks. All stimuli had the same onset/offset spatial positions. We compared the effects of the recording side (left, right) and of the direction of sound displacement (ipsi- or contralateral with reference to the side of recording) on the ERPs and mismatch negativity (MMN). Our results indicated different patterns of asymmetry for the ERPs and MMN responses. The ERPs showed a velocity-independent right-hemispheric dominance that emerged at the descending limb of N1 wave (at around 120-160ms) and could be related to overall context of the preattentive spatial perception. The MMNs elicited in the left hemisphere (at around 230-270ms) exhibited a contralateral dominance, whereas the right-hemispheric MMNs were insensitive to the direction of sound displacement. These differences in contralaterality between MMN responses produced by the left and the right hemisphere favour the neglect model of the preattentive motion processing indexed by MMN. Copyright © 2016 Elsevier Ltd. All rights reserved.
When One Hemisphere Takes Control: Metacontrol in Pigeons (Columba livia)
Adam, Ruth; Güntürkün, Onur
2009-01-01
Background Vertebrate brains are composed of two hemispheres that receive input, compute, and interact to form a unified response. How the partially different processes of both hemispheres are integrated to create a single output is largely unknown. In some cases one hemisphere takes charge of the response selection – a process known as metacontrol. Thus far, this phenomenon has only been shown in a handful of studies with primates, mostly conducted in humans. Metacontrol, however, is even more relevant for animals like birds with laterally placed eyes and complete chiasmatic decussation since visual input to the hemispheres is largely different. Methodology/Principal Findings Homing pigeons (Columba livia) were trained with a color discrimination task. Each hemisphere was trained with a different color pair and therefore had a different experience. Subsequently, the pigeons were binocularly examined with two additional stimuli that combined the positive color of one hemisphere with a negative color that had been shown to the other, omitting the availability of a coherent solution and confronting the pigeons with a conflicting situation. Some of the pigeons responded to both stimuli, indicating that none of the hemispheres dominated the overall preference. Some birds, however, responded primarily to one of the conflicting stimuli, showing that they based their choice on the left- or right-monocularly learned color pair, indicating hemispheric metacontrol. Conclusions/Significance We could demonstrate for the first time that metacontrol is a widespread phenomenon that also exists in birds, and thus in principle requires no corpus callosum. Our results are closely similar to those in humans: monocular performance was higher than binocular one and animals displayed different modes of hemispheric dominance. Thus, metacontrol is a dynamic and widely distributed process that possibly constitutes a requirement for all animals with a bipartite brain to confront the problem of choosing between two hemisphere-bound behavioral options. PMID:19390578
Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model
NASA Astrophysics Data System (ADS)
Mandal, Sudip; Karak, Bidya Binay; Banerjee, Dipankar
2017-12-01
In this paper, we explore the evolution of sunspot latitude distribution and explore its relations with the cycle strength. With the progress of the solar cycle, the distributions in two hemispheres from mid-latitudes propagate toward the equator and then (before the usual solar minimum) these two distributions touch each other. By visualizing the evolution of the distributions in two hemispheres, we separate the solar cycles by excluding this hemispheric overlap. From these isolated solar cycles in two hemispheres, we generate latitude distributions for each cycle, starting from cycle 8 to cycle 23. We find that the parameters of these distributions, namely the central latitude (C), width (δ), and height (H), evolve with the cycle number, and they show some hemispheric asymmetries. Although the asymmetries in these parameters persist for a few successive cycles, they get corrected within a few cycles, and the new asymmetries appear again. In agreement with the previous study, we find that distribution parameters are correlated with the strengths of the cycles, although these correlations are significantly different in two hemispheres. The general trend features, i.e., (i) stronger cycles that begin sunspot eruptions at relatively higher latitudes, and (ii) stronger cycles that have wider bands of sunspot emergence latitudes, are confirmed when combining the data from two hemispheres. We explore these features using a flux transport dynamo model with stochastic fluctuations. We find that these features are correctly reproduced in this model. The solar cycle evolution of the distribution center is also in good agreement with observations. Possible explanations of the observed features based on this dynamo model are presented.
The Effect of Inner Core Translation on Outer Core Flow and the Geomagnetic Field
NASA Astrophysics Data System (ADS)
Mound, J. E.; Davies, C. J.; Silva, L.
2015-12-01
Bulk translation of the inner core has been proposed to explain quasi-hemispheric patterns of seismic heterogeneity. Such a translation would result in differential melting and freezing at the inner core boundary (ICB) and hence a heterogeneous pattern of buoyancy flux that could influence convection in the outer core. This heterogeneous flux at the ICB will tend to promote upwelling on the trailing hemisphere, where enhanced inner core growth results in increased latent heat and light element release, and inhibit upwelling on the leading hemisphere, where melting of the inner core occurs. If this difference in convective driving between the two hemispheres propagated across the thickness of the outer core, then flows near the surface of the core could be linked to the ICB heterogeneity and result in a hemispheric imbalance in the geomagnetic field. We have investigated the influence of such ICB boundary conditions on core flows and magnetic field structure in numerical geodynamo models and analysed the resultant hemispheric imbalance relative to the hemispheric structure in models constructed from observations of Earth's field. Inner core translation at rates consistent with estimates for the Earth produce a strong hemispheric bias in the field, one that should be readily apparent in averages of the field over tens of thousands of years. Current models of the field over the Holocene may be able to rule out the most extreme ICB forcing scenarios, but more information on the dynamic structure of the field over these time scales will be needed to adequately test all cases.
Commentary on fast atmospheric pulsations. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vampola, A.L.
A recent paper proposed that Fast Atmospheric Light Pulsations (FAPs), which have been observed at L=1.5-2.2 in the northern hemisphere, are optical signatures of >2-MeV electrons associated with Lightning-induced Electron Precipitation (LEP) events produced by lightning strokes in the southern hemisphere. FAPs cannot be produced by >2-MeV electrons in the inner radiation belt because the upper limit for fluxes of such particles is only about 0.2% of the value that was used in the analysis and would lead to an unrealistically short electron lifetime. The discrepancy comes from using an electron model, AE-2, which included the Starfish fission electrons. Latermore » inner-zone electron environment models show the inner-zone to have negligible fluxes of electrons in excess of 2 MeV. The use of a model in which southern hemisphere lightning strokes result in northern hemisphere FAPs via a cyclotron mode interaction between magnetospheric electrons and lightning generated waves is also untenable because it would result in FAP intensities two orders of magnitude greater in the southern hemisphere than in the northern hemisphere, leading to a further two orders of magnitude reduction in estimated inner-zone electron lifetimes. The estimated light intensity of FAPs is within acceptable bounds compared to the lifetime of inner zone electrons if all electrons above 100 keV contribute to the light production, if southern hemisphere FAP intensity is no greater than the FAP intensity observed in the northern hemisphere, and if the light-production efficiency is of the order of .001.« less
Cerebral activations related to writing and drawing with each hand.
Potgieser, Adriaan R E; van der Hoorn, Anouk; de Jong, Bauke M
2015-01-01
Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca's area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually formatted information is used for subsequent sensorimotor integration along a dorsal visuomotor pathway. In this, the left posterior middle temporal gyrus subserves phonological-orthographical conversion, dissociating dorsal parietal-premotor circuitry from perisylvian circuitry including Broca's area.
Cerebral Activations Related to Writing and Drawing with Each Hand
Potgieser, Adriaan R. E.; van der Hoorn, Anouk; de Jong, Bauke M.
2015-01-01
Background Writing is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing. Methods Sixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM). Results Writing and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca’s area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation. Discussion The audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually formatted information is used for subsequent sensorimotor integration along a dorsal visuomotor pathway. In this, the left posterior middle temporal gyrus subserves phonological-orthographical conversion, dissociating dorsal parietal-premotor circuitry from perisylvian circuitry including Broca's area. PMID:25955655
A Hemispheric Version of the Community Multiscale Air Quality (CMAQ) Modeling System
This invited presentation will be given at the 4th Biannual Western Modeling Workshop in the Plenary session on Global model development, evaluation, and new source attribution tools. We describe the development and application of the hemispheric version of the CMAQ to examine th...
The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timesca...
Behavioural responses of dogs to asymmetrical tail wagging of a robotic dog replica.
Artelle, K A; Dumoulin, L K; Reimchen, T E
2011-03-01
Recent evidence suggests that bilateral asymmetry in the amplitude of tail wagging of domestic dogs (Canis familiaris) is associated with approach (right wag) versus withdrawal (left wag) motivation and may be the by-product of hemispheric dominance. We consider whether such asymmetry in motion of the tail, a crucial appendage in intra-specific communication in all canids, provides visual information to a conspecific leading to differential behaviour. To evaluate this, we experimentally investigated the approach behaviour of free-ranging dogs to the asymmetric tail wagging of a life-size robotic dog replica. Our data, involving 452 separate interactions, showed a significantly greater proportion of dogs approaching the model continuously without stopping when the tail wagged to the left, compared with a right wag, which was more likely to yield stops. While the results indicate that laterality of a wagging tail provides behavioural information to conspecifics, the responses are not readily integrated into the predicted behaviour based on hemispheric dominance.
Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario
2016-01-01
Coordinate measuring machines (CMM) are main instruments of measurement in laboratories and in industrial quality control. A compensation error model has been formulated (Part I). It integrates error and uncertainty in the feature measurement model. Experimental implementation for the verification of this model is carried out based on the direct testing on a moving bridge CMM. The regression results by axis are quantified and compared to CMM indication with respect to the assigned values of the measurand. Next, testing of selected measurements of length, flatness, dihedral angle, and roundness features are accomplished. The measurement of calibrated gauge blocks for length or angle, flatness verification of the CMM granite table and roundness of a precision glass hemisphere are presented under a setup of repeatability conditions. The results are analysed and compared with alternative methods of estimation. The overall performance of the model is endorsed through experimental verification, as well as the practical use and the model capability to contribute in the improvement of current standard CMM measuring capabilities. PMID:27754441
Liu, Xinjie; Liu, Liangyun; Hu, Jiaochan; Du, Shanshan
2017-01-01
The measurement of solar-induced chlorophyll fluorescence (SIF) is a new tool for estimating gross primary production (GPP). Continuous tower-based spectral observations together with flux measurements are an efficient way of linking the SIF to the GPP. Compared to conical observations, hemispherical observations made with cosine-corrected foreoptic have a much larger field of view and can better match the footprint of the tower-based flux measurements. However, estimating the equivalent radiation transfer path length (ERTPL) for hemispherical observations is more complex than for conical observations and this is a key problem that needs to be addressed before accurate retrieval of SIF can be made. In this paper, we first modeled the footprint of hemispherical spectral measurements and found that, under convective conditions with light winds, 90% of the total radiation came from an FOV of width 72°, which in turn covered 75.68% of the source area of the flux measurements. In contrast, conical spectral observations covered only 1.93% of the flux footprint. Secondly, using theoretical considerations, we modeled the ERTPL of the hemispherical spectral observations made with cosine-corrected foreoptic and found that the ERTPL was approximately equal to twice the sensor height above the canopy. Finally, the modeled ERTPL was evaluated using a simulated dataset. The ERTPL calculated using the simulated data was about 1.89 times the sensor’s height above the target surface, which was quite close to the results for the modeled ERTPL. Furthermore, the SIF retrieved from atmospherically corrected spectra using the modeled ERTPL fitted well with the reference values, giving a relative root mean square error of 18.22%. These results show that the modeled ERTPL was reasonable and that this method is applicable to tower-based hemispherical observations of SIF. PMID:28509843
Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Zhang, Qingyuan
2016-04-01
Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data have been extensively applied for crop yield prediction because of their daily temporal resolution and a global coverage. This study investigated global crop yield using daily two band Enhanced Vegetation Index (EVI2) derived from AVHRR (1981-1999) and MODIS (2000-2013) observations at a spatial resolution of 0.05° (∼5 km). Specifically, EVI2 temporal trajectory of crop growth was simulated using a hybrid piecewise logistic model (HPLM) for individual pixels, which was used to detect crop phenological metrics. The derived crop phenology was then applied to calculate crop greenness defined as EVI2 amplitude and EVI2 integration during annual crop growing seasons, which was further aggregated for croplands in each country, respectively. The interannual variations in EVI2 amplitude and EVI2 integration were combined to correlate to the variation in cereal yield from 1982-2012 for individual countries using a stepwise regression model, respectively. The results show that the confidence level of the established regression models was higher than 90% (P value < 0.1) in most countries in the northern hemisphere although it was relatively poor in the southern hemisphere (mainly in Africa). The error in the yield predication was relatively smaller in America, Europe and East Asia than that in Africa. In the 10 countries with largest cereal production across the world, the prediction error was less than 9% during past three decades. This suggests that crop phenology-controlled greenness from coarse resolution satellite data has the capability of predicting national crop yield across the world, which could provide timely and reliable crop information for global agricultural trade and policymakers.
Rastatter, M; Dell, C W; McGuire, R A; Loren, C
1987-03-01
Previous studies investigating hemispheric organization for processing concrete and abstract nouns have provided conflicting results. Using manual reaction time tasks some studies have shown that the right hemisphere is capable of analyzing concrete words but not abstract. Others, however, have inferred that the left hemisphere is the sole analyzer of both types of lexicon. The present study tested these issues further by measuring vocal reaction times of normal subjects to unilaterally presented concrete and abstract items. Results were consistent with a model of functional localization which suggests that the minor hemisphere is capable of differentially processing both types of lexicon in the presence of a dominant left hemisphere.
Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane
2017-07-17
High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O 2 Hb int ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L in ) and "outside" (L out ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R in and R out ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O 2 Hb int in the L in than L out ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O 2 Hb int "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.
Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding
ERIC Educational Resources Information Center
Florida, Jennifer
2012-01-01
The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…
Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld
2007-08-01
In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.
Hearing faces: how the infant brain matches the face it sees with the speech it hears.
Bristow, Davina; Dehaene-Lambertz, Ghislaine; Mattout, Jeremie; Soares, Catherine; Gliga, Teodora; Baillet, Sylvain; Mangin, Jean-François
2009-05-01
Speech is not a purely auditory signal. From around 2 months of age, infants are able to correctly match the vowel they hear with the appropriate articulating face. However, there is no behavioral evidence of integrated audiovisual perception until 4 months of age, at the earliest, when an illusory percept can be created by the fusion of the auditory stimulus and of the facial cues (McGurk effect). To understand how infants initially match the articulatory movements they see with the sounds they hear, we recorded high-density ERPs in response to auditory vowels that followed a congruent or incongruent silently articulating face in 10-week-old infants. In a first experiment, we determined that auditory-visual integration occurs during the early stages of perception as in adults. The mismatch response was similar in timing and in topography whether the preceding vowels were presented visually or aurally. In the second experiment, we studied audiovisual integration in the linguistic (vowel perception) and nonlinguistic (gender perception) domain. We observed a mismatch response for both types of change at similar latencies. Their topographies were significantly different demonstrating that cross-modal integration of these features is computed in parallel by two different networks. Indeed, brain source modeling revealed that phoneme and gender computations were lateralized toward the left and toward the right hemisphere, respectively, suggesting that each hemisphere possesses an early processing bias. We also observed repetition suppression in temporal regions and repetition enhancement in frontal regions. These results underscore how complex and structured is the human cortical organization which sustains communication from the first weeks of life on.
Mechanisms of hemispheric specialization: Insights from analyses of connectivity
Stephan, Klaas Enno; Fink, Gereon R.; Marshall, John C.
2007-01-01
Traditionally, anatomical and physiological descriptions of hemispheric specialization have focused on hemispheric asymmetries of local brain structure or local functional properties, respectively. This article reviews the current state of an alternative approach that aims at unraveling the causes and functional principles of hemispheric specialization in terms of asymmetries in connectivity. Starting with an overview of the historical origins of the concept of lateralization, we briefly review recent evidence from anatomical and developmental studies that asymmetries in structural connectivity may be a critical factor shaping hemispheric specialization. These differences in anatomical connectivity, which are found both at the intra- and inter-regional level, are likely to form the structural substrate of different functional principles of information processing in the two hemispheres. The main goal of this article is to describe how these functional principles can be characterized using functional neuroimaging in combination with models of functional and effective connectivity. We discuss the methodology of established models of connectivity which are applicable to data from positron emission tomography and functional magnetic resonance imaging and review published studies that have applied these approaches to characterize asymmetries of connectivity during lateralized tasks. Adopting a model-based approach enables functional imaging to proceed from mere descriptions of asymmetric activation patterns to mechanistic accounts of how these asymmetries are caused. PMID:16949111
Global scale diagnoses of FGGE data
NASA Technical Reports Server (NTRS)
Paegle, J.
1985-01-01
Descriptive global scale diagnoses of the First Global Atmospheric Research Experiment SOP-1 analyses were made and compared against controlled, real data integrations of the Goddard Laboratory of Atmospheric Science (GLAS) general circulation model (GCM) as well as other data sets. The effects of critical latitudes were studied; the influence of tropical wind data and latent heating upon the GLAS GCM was diagnosed; planetary wave structure on various time scales from the diurnal to the monthly was studied; and the GLAS analyses were compared with other analyses. Short term controlled GLAS GCM integrations show that: (1) the inclusion of tropical wind data in real data integrations has an important influence in the mid-latitude prediction in both hemispheres; and (2) the tropical divergent wind reacts almost immediately to alteration of the tropical latent heating. The presence or absence of zonally averaged easterlies depends strongly upon the presence of tropical latent heating.
Multi-decadal model calculations for the 1990-2010 period are performed with the coupled WRF-CMAQ modeling system over a domain encompassing the northern hemisphere and a nested domain over the continental U.S. Simulated trends in ozone and precursor species concentrations acros...
Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M
2017-05-01
A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.
ERP Evidence of Hemispheric Independence in Visual Word Recognition
ERIC Educational Resources Information Center
Nemrodov, Dan; Harpaz, Yuval; Javitt, Daniel C.; Lavidor, Michal
2011-01-01
This study examined the capability of the left hemisphere (LH) and the right hemisphere (RH) to perform a visual recognition task independently as formulated by the Direct Access Model (Fernandino, Iacoboni, & Zaidel, 2007). Healthy native Hebrew speakers were asked to categorize nouns and non-words (created from nouns by transposing two middle…
Schuppert, M; Münte, T F; Wieringa, B M; Altenmüller, E
2000-03-01
Perceptual musical functions were investigated in patients suffering from unilateral cerebrovascular cortical lesions. Using MIDI (Musical Instrument Digital Interface) technique, a standardized short test battery was established that covers local (analytical) as well as global perceptual mechanisms. These represent the principal cognitive strategies in melodic and temporal musical information processing (local, interval and rhythm; global, contour and metre). Of the participating brain-damaged patients, a total of 69% presented with post-lesional impairments in music perception. Left-hemisphere-damaged patients showed significant deficits in the discrimination of local as well as global structures in both melodic and temporal information processing. Right-hemisphere-damaged patients also revealed an overall impairment of music perception, reaching significance in the temporal conditions. Detailed analysis outlined a hierarchical organization, with an initial right-hemisphere recognition of contour and metre followed by identification of interval and rhythm via left-hemisphere subsystems. Patterns of dissociated and associated melodic and temporal deficits indicate autonomous, yet partially integrated neural subsystems underlying the processing of melodic and temporal stimuli. In conclusion, these data contradict a strong hemispheric specificity for music perception, but indicate cross-hemisphere, fragmented neural substrates underlying local and global musical information processing in the melodic and temporal dimensions. Due to the diverse profiles of neuropsychological deficits revealed in earlier investigations as well as in this study, individual aspects of musicality and musical behaviour very likely contribute to the definite formation of these widely distributed neural networks.
NASA Technical Reports Server (NTRS)
Conner, David A.; Page, Juliet A.
2002-01-01
To improve aircraft noise impact modeling capabilities and to provide a tool to aid in the development of low noise terminal area operations for rotorcraft and tiltrotors, the Rotorcraft Noise Model (RNM) was developed by the NASA Langley Research Center and Wyle Laboratories. RNM is a simulation program that predicts how sound will propagate through the atmosphere and accumulate at receiver locations located on flat ground or varying terrain, for single and multiple vehicle flight operations. At the core of RNM are the vehicle noise sources, input as sound hemispheres. As the vehicle "flies" along its prescribed flight trajectory, the source sound propagation is simulated and accumulated at the receiver locations (single points of interest or multiple grid points) in a systematic time-based manner. These sound signals at the receiver locations may then be analyzed to obtain single event footprints, integrated noise contours, time histories, or numerous other features. RNM may also be used to generate spectral time history data over a ground mesh for the creation of single event sound animation videos. Acoustic properties of the noise source(s) are defined in terms of sound hemispheres that may be obtained from theoretical predictions, wind tunnel experimental results, flight test measurements, or a combination of the three. The sound hemispheres may contain broadband data (source levels as a function of one-third octave band) and pure-tone data (in the form of specific frequency sound pressure levels and phase). A PC executable version of RNM is publicly available and has been adopted by a number of organizations for Environmental Impact Assessment studies of rotorcraft noise. This paper provides a review of the required input data, the theoretical framework of RNM's propagation model and the output results. Code validation results are provided from a NATO helicopter noise flight test as well as a tiltrotor flight test program that used the RNM as a tool to aid in the development of low noise approach profiles.
NASA Astrophysics Data System (ADS)
Cariolle, D.; Teyssèdre, H.
2007-05-01
This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2-D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory work. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the solution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results from the two versions show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small, of the order of 10%. The model also reproduces fairly well the polar ozone variability, notably the formation of "ozone holes" in the Southern Hemisphere with amplitudes and a seasonal evolution that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone content inside the polar vortex of the Southern Hemisphere over longer periods in spring time. It is concluded that for the study of climate scenarios or the assimilation of ozone data, the present parameterization gives a valuable alternative to the introduction of detailed and computationally costly chemical schemes into general circulation models.
Passive microwave remote sensing of an anisotropic random-medium layer
NASA Technical Reports Server (NTRS)
Lee, J. K.; Kong, J. A.
1985-01-01
The principle of reciprocity is invoked to calculate the brightness temperatures for passive microwave remote sensing of a two-layer anisotropic random medium. The bistatic scattering coefficients are first computed with the Born approximation and then integrated over the upper hemisphere to be subtracted from unity, in order to obtain the emissivity for the random-medium layer. The theoretical results are illustrated by plotting the emissivities as functions of viewing angles and polarizations. They are used to interpret remote sgnsing data obtained from vegetation canopy where the anisotropic random-medium model applies. Field measurements with corn stalks arranged in various configurations with preferred azimuthal directions are successfully interpreted with this model.
Characterizing the Influence of Hemispheric Transport on Regional Air Pollution
Expansion of the coupled WRF-CMAQ modeling system to hemispheric scales is pursued to enable the development of a robust modeling framework in which the interactions between atmospheric processes occurring at various spatial and temporal scales can be examined in a consistent man...
Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation
NASA Technical Reports Server (NTRS)
Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke
2015-01-01
The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.
The Influence of Internal Model Variability in GEOS-5 on Interhemispheric CO2 Exchange
NASA Technical Reports Server (NTRS)
Allen, Melissa; Erickson, David; Kendall, Wesley; Fu, Joshua; Ott, Leslie; Pawson, Steven
2012-01-01
An ensemble of eight atmospheric CO2 simulations was completed employing the National Aeronautics and Space Administration (NASA) Goddard Earth Observation System, Version 5 (GEOS-5) for the years 2000-2001, each with initial meteorological conditions corresponding to different days in January 2000 to examine internal model variability. Globally, the model runs show similar concentrations of CO2 for the two years, but in regions of high CO2 concentrations due to fossil fuel emissions, large differences among different model simulations appear. The phasing and amplitude of the CO2 cycle at Northern Hemisphere locations in all of the ensemble members is similar to that of surface observations. In several southern hemisphere locations, however, some of the GEOS-5 model CO2 cycles are out of phase by as much as four months, and large variations occur between the ensemble members. This result indicates that there is large sensitivity to transport in these regions. The differences vary by latitude-the most extreme differences in the Tropics and the least at the South Pole. Examples of these differences among the ensemble members with regard to CO2 uptake and respiration of the terrestrial biosphere and CO2 emissions due to fossil fuel emissions are shown at Cape Grim, Tasmania. Integration-based flow analysis of the atmospheric circulation in the model runs shows widely varying paths of flow into the Tasmania region among the models including sources from North America, South America, South Africa, South Asia and Indonesia. These results suggest that interhemispheric transport can be strongly influenced by internal model variability.
Functional language shift to the right hemisphere in patients with language-eloquent brain tumors.
Krieg, Sandro M; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian
2013-01-01
Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1 = left dominant; ratio <1 = right dominant). Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning "all errors" and "all errors without hesitations", which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur.
The effects of sunspots on solar irradiance
NASA Technical Reports Server (NTRS)
Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.
1982-01-01
It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.
Development of brain-wide connectivity architecture in awake rats.
Ma, Zilu; Ma, Yuncong; Zhang, Nanyin
2018-08-01
Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.
Disrupted inter-hemispheric functional and structural coupling in Internet addiction adolescents.
Bi, Yanzhi; Yuan, Kai; Feng, Dan; Xing, Lihong; Li, Yangding; Wang, Hongmei; Yu, Dahua; Xue, Ting; Jin, Chenwang; Qin, Wei; Tian, Jie
2015-11-30
Rapid progress had been made towards the effect of Internet addiction (IA) on the adolescents brain, relatively little is known about the alterations in inter-hemispheric resting state functional connectivity (RSFC) changes. In the current study, voxel-mirrored homotopic connectivity (VMHC) was used to examine inter-hemispheric RSFC in IA adolescents (n=21) and controls (n=21). The integrity of the fibers connecting the regions, which showed aberrant inter-hemispheric functional connectivity, was assessed by fiber tractography analysis. In addition, the coupling of inter-hemispheric functional and structural connectivity was investigated. Relative to controls, IA adolescents showed decreased VMHC of dorsolateral prefrontal cortex (DLPFC) and reduced fractional anisotropy (FA) values in the genu of corpus callosum (CC). The decreased VMHC of DLPFC was significantly negative correlated with the duration of IA. Moreover, the VMHC of DLPFC showed significant correlations with the FA of CC in healthy controls, which was disrupted in IA. Our findings provided more scientific evidence for the involvement of DLPFC in IA. It is hoped that multimodal imaging methods can provide deeper insights into the IA effects on the brain. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.
2018-03-01
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
Understanding the dust cycle at high latitudes: integrating models and observations
NASA Astrophysics Data System (ADS)
Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.; Winckler, G.; Potenza, M. A. C.; Baccolo, G.; Balkanski, Y.
2017-12-01
Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. Paleodust archives from land, ocean, and ice sheets preserve the history of dust deposition for a range of spatial scales from close to the major hemispheric sources to remote sinks such as the polar ice sheets. In each hemisphere common features on the glacial-interglacial time scale mark the baseline evolution of the dust cycle, and inspired the hypothesis that increased dust deposition to ocean stimulated the glacial biological pump contributing to the reduction of atmospheric carbon dioxide levels. On the other hand finer geographical and temporal scales features are superposed to these glacial-interglacial trends, providing the chance of a more sophisticated understanding of the dust cycle, for instance allowing distinctions in terms of source availability or transport patterns as recorded by different records. As such paleodust archives can prove invaluable sources of information, especially when characterized by a quantitative estimation of the mass accumulation rates, and interpreted in connection with climate models. We review our past work and present ongoing research showing how climate models can help in the interpretation of paleodust records, as well as the potential of the same observations for constraining the representation of the global dust cycle embedded in Earth System Models, both in terms of magnitude and physical parameters related to particle sizes and optical properties. Finally we show the impacts on climate, based on this kind of observationally constrained model simulations.
NASA Astrophysics Data System (ADS)
McLean, Danielle; Albert, Paul G.; Nakagawa, Takeshi; Suzuki, Takehiko; Staff, Richard A.; Yamada, Keitaro; Kitaba, Ikuko; Haraguchi, Tsuyoshi; Kitagawa, Junko; Smith, Victoria C.; SG14 Project Members
2018-03-01
Tephra (volcanic ash) layers have the potential to synchronise disparate palaeoenvironmental archives on regional to hemispheric scales. Highly productive arc regions, like those in East Asia, offer a considerable number of widespread isochrons, but before records can be confidently correlated using these layers, a refined and integrated framework of these eruptive events is required. Here we present the first high-resolution Holocene cryptotephra study in East Asia, using the Lake Suigetsu sedimentary archive in central Japan. The Holocene tephrostratigraphy has been extended from four to twenty ash layers using cryptotephra extraction techniques, which integrates the deposits from explosive eruptions from North Korea/China, South Korea and along the Japanese arc. This Lake Suigetsu tephrostratigraphy is now the most comprehensive record of East Asian volcanism, and the linchpin site for correlating sequences across this region. Major element glass geochemical compositions are presented for the tephra layers in the sequence, which have been compared to proximal datasets to correlate them to their volcanic source and specific eruptions. This study has significantly extended the ash dispersal of many key Holocene marker layers, and has identified the first distal occurrence of isochrons from Ulleungdo and Changbaishan volcanoes. Utilising the high-precision Lake Suigetsu chronology, we are able to provide constrained eruption ages for the tephra layers, which can be transferred into other site-specific age models containing these markers. This new framework indicates that several isochrons stratigraphically bracket abrupt climate intervals in Japan, and could be used to precisely assess the regional and hemispheric synchronicity of these events.
Farahibozorg, S; Hashemi-Golpayegani, S M; Ashburner, J
2015-03-01
To observe age- and sex-related differences in the complexity of the global and hemispheric white matter (WM) throughout adulthood by means of fractal dimension (FD). A box-counting algorithm was used to extract FD from the WM magnetic resonance images of 209 healthy adults from three structural layers, including general (gFD), skeleton (sFD), and boundaries (bFD). Model selection algorithms and statistical analyses, respectively, were used to examine the patterns and significance of the changes. gFD and sFD showed inverse U-shape patterns with aging, with a slighter slope of increase from young to mid-age and a steeper decrease to the old. bFD was less affected by age. Sex differences were evident, specifically in gFD and sFD, with men showing higher FDs. Age × sex interaction was significant mainly in the hemispheric analysis, with men undergoing sharper age-related changes. After adjusting for the volume effect, age-related results remained approximately the same, but sex differences changed in most of the features, with women indicating higher values, specifically in the left hemisphere and boundaries. Right hemisphere was still more complex in men. This study is the first that investigates the WM FD spanning adulthood, treating age both as a continuous and categorical variable. We found positive correlations between FD and volume, and our results show similarities with those investigating small-world properties of the brain networks, as well as those of functional complexity and WM integrity. These suggest that FD could yield a highly compact description of the structural changes and also might inform us about functional and cognitive variations.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2003-11-01
The isoprenoid pathway including endogenous digoxin was assessed in systemic lupus erythematosis (SLE). All the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. This was also studied for comparison in patients with right hemispheric and left hemispheric dominance. The isoprenoid pathway was upregulated with increased digoxin synthesis in patients with SLE and in those with right hemispheric dominance. In this group of patients (i) the tryptophan catabolites were increased and the tyrosine catabolites reduced, (ii) the dolichol and glycoconjugate levels were elevated, (iii) lysosomal stability was reduced, (iv) ubiquinone levels were low and free radical levels increased, and (v) the membrane cholesterol:phospholipid ratios were increased and membrane glycoconjugates reduced. On the other hand, in patients with left hemispheric dominance the reverse patterns were obtained. The biochemical patterns obtained in SLE is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. SLE occurs in right hemispheric chemically dominant individuals, and is a reflection of altered brain function. The role of the isoprenoid pathway in the pathogenesis of SLE and its relation to hemispheric dominance is discussed.
Tzourio-Mazoyer, Nathalie; Perrone-Bertolotti, Marcela; Jobard, Gael; Mazoyer, Bernard; Baciu, Monica
2017-01-01
This review synthesizes anatomo-functional variability of language hemispheric representation and specialization (hemispheric specialization for language, HSL) as well as its modulation by several variables (demographic, anatomical, developmental, genetic, clinical, and psycholinguistic) in physiological and pathological conditions. The left hemisphere (LH) dominance for language, observed in approximately 90% of healthy individuals and in 70% of patients, is grounded by intra-hemispheric connections mediated by associative bundles such as the arcuate fasciculus and inter-hemispheric transcallosal connections mediated by the corpus callosum that connects homotopic regions of the left and right hemispheres (RH). In typical brains, inter-hemispheric inhibition, exerted from the LH to the RH, permits the LH to maintain language dominance. In pathological conditions, inter- and intra-hemispheric inhibition is decreased, inducing modifications on the degree of HSL and of language networks. HSL evaluation is classically performed in clinical practice with the Wada test and electro-cortical stimulation, gold standard methods. The advent of functional neuroimaging has allowed a more detailed assessment of the language networks and their lateralization, consistent with the results provided by the gold standard methods. In the first part, we describe anatomo-functional support for HSL in healthy conditions, its developmental course, its relationship with cognitive skills, and the various modulatory factors acting on HSL. The second section is devoted to the assessment of HSL in patients with focal and drug-resistant epilepsy (FDRE). FDRE is considered a neurological model associated with patterns of language plasticity, both before and after surgery: FDRE patients show significant modification of language networks induced by changes mediated by transcallosal connections (explaining inter-hemispheric patterns of language reorganization) or collateral connections (explaining intra-hemispheric patterns of language reorganization). Finally, we propose several predictive and explicative models of language organization and reorganization. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoencamp, Jori; Stap, Lennert; Tuenter, Erik; Lourens, Luc; van de Wal, Roderik
2016-04-01
Knowledge on polar amplification is important to relate high latitude climate records to global mean temperature changes. Several studies have pointed out that the strength of polar amplification in the Northern Hemisphere varies considerably due to the presence of large ice sheets and more sea ice during colder climate conditions. As a result, the polar amplification in the Northern Hemisphere decreases for warmer climates. In this study, we address the fact that these changes in the Northern Hemisphere also affect the polar amplification in the Southern Hemisphere. We study the Southern and Northern Hemisphere amplification together over the past 5 million years with the CLIMBER-2 intermediate complexity model. Radiation, land ice extent and height, and greenhouse gases are prescribed as forcing. We find that in contrast to the reduction in polar amplification in the Northern Hemisphere, polar amplification in the Southern Hemisphere increases for warmer climates. The amplification decreases in the Northern Hemisphere from 2.7 during glacial conditions to 1.6 for a pre-industrial climate, which is line with other climate simulations. Over the same CO2 range the southern hemispheric polar amplification increases from 1 to 1.6. This is caused by the fact that the atmospheric transport needed to balance the radiation surplus in the equatorial region needs to be compensated by relatively stronger transport of energy in Southern direction while the transport in Northern direction reduces. This reduction in Northern direction is driven by less (land and sea) ice resulting in a smaller meridional gradient in Northern direction and hence a smaller atmospheric transport. As a consequence, the traditional scaled (with LGM temperature) Dome C record needs to be corrected with a maximum of 0.6 degrees half-way glacial and interglacial conditions, if it is to be interpreted as global mean temperature change indicator. While this changes the amplitude, the phasing of temperature records from the Southern Hemisphere remains unaffected.
2018-05-10
Stroke; Stroke, Acute; Ischemic Stroke; Hemorrhage; Clot (Blood); Brain; Subarachnoid Hemorrhage; Cerebral Infarction; Cerebral Hemorrhage; Cerebral Stroke; Intracerebral Hemorrhage; Intracerebral Injury
Developments in the realization of diffuse reflectance scales at NPL
NASA Astrophysics Data System (ADS)
Chunnilall, Christopher J.; Clarke, Frank J. J.; Shaw, Michael J.
2005-08-01
The United Kingdom scales for diffuse reflectance are realized using two primary instruments. In the 360 nm to 2.5 μm spectral region the National Reference Reflectometer (NRR) realizes absolute measurement of reflectance and radiance factor by goniometric measurements. Hemispherical reflectance scales are obtained through the spatial integration of these goniometric measurements. In the mid-infrared region (2.5 μm - 55 μm) the hemispherical reflectance scale is realized by the Absolute Hemispherical Reflectometer (AHR). This paper describes some of the uncertainties resulting from errors in aligning the NRR and non-ideality in sample topography, together with its use to carry out measurements in the 1 - 1.6 μm region. The AHR has previously been used with grating spectrometers, and has now been coupled to a Fourier transform spectrometer.
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.; Delworth, Thomas
1995-01-01
Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.
Looking Both Ways through Time: The Janus Model of Lateralized Cognition
ERIC Educational Resources Information Center
Dien, Joseph
2008-01-01
Existing models of laterality, while often successful at describing circumscribed domains, have not been successful as explanations of the overall patterns of hemispheric asymmetries. It is therefore suggested that a new approach is needed based on shared contributions to adaptive hemispheric roles rather than functional and structural…
We incorporate the Regional Atmospheric Chemistry Mechanism (RACM2) into the Community Multiscale Air Quality (CMAQ) hemispheric model and compare model predictions to those obtained using the existing Carbon Bond chemical mechanism with updated toluene chemistry (CB05TU). The RA...
Facilitative Orthographic Neighborhood Effects: The SERIOL Model Account
ERIC Educational Resources Information Center
Whitney, Carol; Lavidor, Michal
2005-01-01
A large orthographic neighborhood (N) facilitates lexical decision for central and left visual field/right hemisphere (LVF/RH) presentation, but not for right visual field/left hemisphere (RVF/LH) presentation. Based on the SERIOL model of letter-position encoding, this asymmetric N effect is explained by differential activation patterns at the…
Chen, Min; Melaas, Eli K; Gray, Josh M; Friedl, Mark A; Richardson, Andrew D
2016-11-01
A spring phenology model that combines photoperiod with accumulated heating and chilling to predict spring leaf-out dates is optimized using PhenoCam observations and coupled into the Community Land Model (CLM) 4.5. In head-to-head comparison (using satellite data from 2003 to 2013 for validation) for model grid cells over the Northern Hemisphere deciduous broadleaf forests (5.5 million km 2 ), we found that the revised model substantially outperformed the standard CLM seasonal-deciduous spring phenology submodel at both coarse (0.9 × 1.25°) and fine (1 km) scales. The revised model also does a better job of representing recent (decadal) phenological trends observed globally by MODIS, as well as long-term trends (1950-2014) in the PEP725 European phenology dataset. Moreover, forward model runs suggested a stronger advancement (up to 11 days) of spring leaf-out by the end of the 21st century for the revised model. Trends toward earlier advancement are predicted for deciduous forests across the whole Northern Hemisphere boreal and temperate deciduous forest region for the revised model, whereas the standard model predicts earlier leaf-out in colder regions, but later leaf-out in warmer regions, and no trend globally. The earlier spring leaf-out predicted by the revised model resulted in enhanced gross primary production (up to 0.6 Pg C yr -1 ) and evapotranspiration (up to 24 mm yr -1 ) when results were integrated across the study region. These results suggest that the standard seasonal-deciduous submodel in CLM should be reconsidered, otherwise substantial errors in predictions of key land-atmosphere interactions and feedbacks may result. © 2016 John Wiley & Sons Ltd.
White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.
Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef
2013-08-01
Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.
EEG power and coherence while male adults watch emotional video films.
Schellberg, D; Besthorn, C; Klos, T; Gasser, T
1990-10-01
Quantitative EEG analysis recorded at F3, F4, T3, T4, P3, P4 was performed for a group of healthy right-handed male adults (n = 9) viewing video films varying in their inductiveness on the affective valence dimension. Digital EOG-correction permitted the inclusion of trials with eye movements. Muscle artifacts were statistically treated by means of analysis of covariance (ANCOVA). The configuration of topographically motivated EEG parameters corresponded to the subjective valence rating of different video films. Low broad band coherences (COHs) ranked films along the subjective ratings within each hemisphere by the fronto-temporal COHs and interhemispherically by the T4-T3 COH, as did, restricted to the right hemisphere, similarity of beta 2 band power topography over time. High frequencies may be involved in the processing and low frequencies in the transmission of differential affective information, which to integrate seemed to utilize resources of both hemispheres. Alpha 2 and beta 1 COHs were sensitive to variations in an integrality/disassociation dimension with regard to the arrangement of verbal-visual affective cues. Power fluctuations at frontal leads pointed to difficulties in interpreting interhemispheric EEG asymmetries in emotion research, if information on time dynamics is discarded.
The WRF-CMAQ modeling system was applied over a domain encompassing the northern hemisphere and a nested domain over the U.S. Model simulations for the 1990-2010 were performed to examine trends in various air pollutant concentrations. Trends in O3 mixing ratios over the U.S. are...
Regional fuel load modeled for two contrasting years in central and southern Africa
NASA Astrophysics Data System (ADS)
Hely, C.; Dowty, P. R.; Alleaume, S.; Caylor, K. K.; Shugart, H. H.
2001-12-01
Fuel load has been modeled for southern hemisphere Africa for the 1991-92 and 1999-2000 growing seasons. The 1991-92 year was generally dry due to a strong El Nino event in contrast to the particularly wet year of 1999-2000. The method integrates site-level process modeling with 15 day AVHRR NDVI data. The site model was used to simulate landscape light-use efficiency (LUE) at a series of sites in the Kalahari region ranging from evergreen woodland to arid shrubland. This site-level LUE is extrapolated over the southern African region with gridded tree cover data and gridded rainfall. The predicted net primary production (NPP) is allocated into the different fuel types (grass, litter, twigs) using empirical based relationships. The model results are compared with field measurements of fuel load at a number of sites. The results will be used for modeling of biomass burning emissions.
Functional Language Shift to the Right Hemisphere in Patients with Language-Eloquent Brain Tumors
Krieg, Sandro M.; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian
2013-01-01
Objectives Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Experimental design Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1 = left dominant; ratio <1 = right dominant). Results Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning “all errors” and “all errors without hesitations”, which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. Conclusions This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur. PMID:24069410
Synchoronous inter-hemispheric alpine glacier advances during the Late Glacial?
NASA Astrophysics Data System (ADS)
Bakke, Jostein; Paasche, Øyvind
2016-04-01
The termination of the last glaciation in both hemispheres was a period of rapid climate swings superimposed on the overall warming trend, resulting from large-scale reorganizations of the atmospheric and oceanic circulation patterns in both hemispheres. Environmental changes during the deglaciation have been inferred from proxy records, as well as by model simulations. Several oscillations took place both in northern and southern hemispheres caused by melt water releases such as during the Younger Dryas in north and the Antarctic Cold Reversal in south. However, a consensus on the hemispheric linkages through ocean and atmosphere are yet to be reached. Here we present a new multi-proxy reconstruction from a sub-annually resolved lake sediment record from Lake Lusvatnet in Arctic Norway compared with a new reconstruction from the same time interval at South Georgia, Southern Ocean, suggesting inter-hemispheric climate linkages during the Bølling/Allerød time period. Our reconstruction of the alpine glacier in the lake Lusvatnet catchment show a synchronous glacier advance with the Birch-hill moraine complex in the Southern Alps, New Zealand during the Intra Allerød Cooling period. We propose these inter hemispheric climate swings to be forced by the northward migration of the southern Subtropical Front during the Antarctic Cold Reversal. Such a northward migration of the Subtropical Front is shown in model simulation and in palaeorecords to reduce the Agulhas leakage impacting the strength of the Atlantic meridional overturning circulation. We simply ask if this can be the carrier of rapid climate swings from one hemisphere to another? Our high-resolution reconstructions provide the basis for an enhanced understanding of the tiny balance between migration of the Subtropical Front in the Southern Ocean and the teleconnection to northern hemisphere.
Model predictions of latitude-dependent ozone depletion due to aerospace vehicle operations
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Riegel, C. A.; Maples, A. L.; Capone, L. A.
1976-01-01
Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.
Swanson, H L
1987-01-01
Three theoretical models (additive, independence, maximum rule) that characterize and predict the influence of independent hemispheric resources on learning-disabled and skilled readers' simultaneous processing were tested. Predictions related to word recall performance during simultaneous encoding conditions (dichotic listening task) were made from unilateral (dichotic listening task) presentations. The maximum rule model best characterized both ability groups in that simultaneous encoding produced no better recall than unilateral presentations. While the results support the hypothesis that both ability groups use similar processes in the combining of hemispheric resources (i.e., weak/dominant processing), ability group differences do occur in the coordination of such resources.
Discrete cloud structure on Neptune
NASA Technical Reports Server (NTRS)
Hammel, H. B.
1989-01-01
Recent CCD imaging data for the discrete cloud structure of Neptune shows that while cloud features at CH4-band wavelengths are manifest in the southern hemisphere, they have not been encountered in the northern hemisphere since 1986. A literature search has shown the reflected CH4-band light from the planet to have come from a single discrete feature at least twice in the last 10 years. Disk-integrated photometry derived from the imaging has demonstrated that a bright cloud feature was responsible for the observed 8900 A diurnal variation in 1986 and 1987.
Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment.
NASA Astrophysics Data System (ADS)
Lewis, John M.
1998-01-01
In the mid-1950s, amid heated debate over the physical mechanisms that controlled the known features of the atmosphere's general circulation, Norman Phillips simulated hemispheric motion on the high-speed computer at the Institute for Advanced Study. A simple energetically consistent model was integrated for a simulated time of approximately 1 month. Analysis of the model results clarified the respective roles of the synoptic-scale eddies (cyclones-anticyclones) and mean meridional circulation in the maintenance of the upper-level westerlies and the surface wind regimes. Furthermore, the modeled cyclones clearly linked surface frontogenesis with the upper-level Charney-Eady wave. In addition to discussing the model results in light of the controversy and ferment that surrounded general circulation theory in the 1940s-1950s, an effort is made to follow Phillips's scientific path to the experiment.
Large-Scale Transport Responses to Tropospheric Circulation Changes Using GEOS-5
NASA Technical Reports Server (NTRS)
Orbe, Clara; Molod, Andrea; Arnold, Nathan; Waugh, Darryn W.; Yang, Huang
2017-01-01
The mean age since air was last at the Northern Hemisphere midlatitude surface is a fundamental property of tropospheric transport. Recent comparisons among chemistry climate models, however, reveal that there are large differences in the mean age among models and that these differences are most likely related to differences in tropical (parameterized) convection. Here we use aquaplanet simulations of the Goddard Earth Observing System Model Version 5 (GEOS-5) to explore the sensitivity of the mean age to changes in the tropical circulation. Tropical circulation changes are forced by prescribed localized off-equatorial warm sea surface temperature anomalies that (qualitatively) reproduce the convection and circulation differences among the comprehensive models. Idealized chemical species subject to prescribed OH loss are also integrated in parallel in order to illustrate the impact of tropical transport changes on interhemispheric constituent transport.
A model of stratospheric chemistry and transport on an isentropic surface
NASA Technical Reports Server (NTRS)
Austin, John; Holton, James R.
1990-01-01
This paper presents a new photochemical transport model designed to simulate the behavior of stratospheric trace species in the middle stratosphere. The model has an Eulerian grid with the latitude and longitude coordinates on a single isentropic surface (hemispheric or global), in which both the dynamical and the photochemical processes can be accurately represented. The model is intgegrated for 12 days with winds and temperatures supplied by three-dimensional integration of an idealized wavenumber-one disturbance. The results for the long-lived tracers such as N2O showed excellent correlation with the potential vorticity distribution, validating the transport scheme. Calculations with zonally averaged wind and temperature fields showed that discrepancies in the calculation of the zonal mean were less than 10 percent for O3 and HNO3, compared with the zonal mean of the previous results.
Towards a comprehensive model of Earth's disk-integrated Stokes vector
NASA Astrophysics Data System (ADS)
García Muñoz, A.
2015-07-01
A significant body of work on simulating the remote appearance of Earth-like exoplanets has been done over the last decade. The research is driven by the prospect of characterizing habitable planets beyond the Solar System in the near future. In this work, I present a method to produce the disk-integrated signature of planets that are described in their three-dimensional complexity, i.e. with both horizontal and vertical variations in the optical properties of their envelopes. The approach is based on Pre-conditioned Backward Monte Carlo integration of the vector Radiative Transport Equation and yields the full Stokes vector for outgoing reflected radiation. The method is demonstrated through selected examples inspired by published work at wavelengths from the visible to the near infrared and terrestrial prescriptions of both cloud and surface albedo maps. I explore the performance of the method in terms of computational time and accuracy. A clear strength of this approach is that its computational cost does not appear to be significantly affected by non-uniformities in the planet optical properties. Earth's simulated appearance is strongly dependent on wavelength; both brightness and polarization undergo diurnal variations arising from changes in the planet cover, but polarization yields a better insight into variations with phase angle. There is partial cancellation of the polarized signal from the northern and southern hemispheres so that the outgoing polarization vector lies preferentially either in the plane parallel or perpendicular to the planet scattering plane, also for non-uniform cloud and albedo properties and various levels of absorption within the atmosphere. The evaluation of circular polarization is challenging; a number of one-photon experiments of 109 or more is needed to resolve hemispherically integrated degrees of circular polarization of a few times 10-5. Last, I introduce brightness curves of Earth obtained with one of the Messenger cameras at three wavelengths (0.48, 0.56 and 0.63 μm) during a flyby in 2005. The light curves show distinct structure associated with the varying aspect of the Earth's visible disk (phases of 98-107°) as the planet undergoes a full 24 h rotation; the structure is reasonably well reproduced with model simulations.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kucera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.
2011-05-01
Nine thousand years ago, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration with a minimum of the precession index. To assess the impact of the "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated in the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular a subsurface warming in the Cretan and Western Levantine areas. The comparison between the SST simulated for the HIM and the reconstructions from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. However, a reinterpretation of the reconstructions is proposed, to consider the conditions throughout the upper water column. Such a depth-integrated approach accounts for the vertical range of preferred habitat depths of the foraminifera used for the reconstructions and strongly improves the agreement between modelled and reconstructed temperature signal. The subsurface warming is recorded by both model and proxies, with a light shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the Western Levantine; this leads to an enhanced heat piracy in this region.
Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K
2015-12-16
The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when details had to be integrated across both visual hemifields. We found enhanced interhemispheric gamma-band coherence in typically developed participants when communication between cortical hemispheres was required by the task. Importantly, participants with ASD failed to show this enhanced coherence between bilateral posterior superior temporal sulci. The findings suggest that visual integration is disturbed at the local and global synchronization scale, which might bear implications for object recognition in ASD. Copyright © 2015 the authors 0270-6474/15/3516352-10$15.00/0.
An ice-ocean coupled model for the Northern Hemisphere
NASA Technical Reports Server (NTRS)
Cheng, Abe; Preller, Ruth
1992-01-01
The Hibler ice model has been modified and adapted to a domain that includes most of the sea ice-covered areas in the Northern Hemisphere. This model, joined with the Cox ocean model, is developed as an enhancement to the U.S. Navy's sea ice forecasting, PIPS, and is termed PIPS2.0. Generally, the modeled ice edge is consistent with the Navy-NOAA Joint Ice Center weekly analysis, and the modeled ice thickness distribution agrees with submarine sonar data in the central Arctic basin.
Trends in air quality across the Northern Hemisphere over a 21-year period (1990–2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting WRF) simulations and internally ...
Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surfa...
The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...
The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models
Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; ...
2005-06-29
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. Furthermore, it is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.« less
The Precession Index and a Nonlinear Energy Balance Climate Model
NASA Technical Reports Server (NTRS)
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.
Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.
Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo
2016-04-01
Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ivanova, Maria V; Isaev, Dmitry Yu; Dragoy, Olga V; Akinina, Yulia S; Petrushevskiy, Alexey G; Fedina, Oksana N; Shklovsky, Victor M; Dronkers, Nina F
2016-12-01
A growing literature is pointing towards the importance of white matter tracts in understanding the neural mechanisms of language processing, and determining the nature of language deficits and recovery patterns in aphasia. Measurements extracted from diffusion-weighted (DW) images provide comprehensive in vivo measures of local microstructural properties of fiber pathways. In the current study, we compared microstructural properties of major white matter tracts implicated in language processing in each hemisphere (these included arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior frontal-occipital fasciculus (IFOF), uncinate fasciculus (UF), and corpus callosum (CC), and corticospinal tract (CST) for control purposes) between individuals with aphasia and healthy controls and investigated the relationship between these neural indices and language deficits. Thirty-seven individuals with aphasia due to left hemisphere stroke and eleven age-matched controls were scanned using DW imaging sequences. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) values for each major white matter tract were extracted from DW images using tract masks chosen from standardized atlases. Individuals with aphasia were also assessed with a standardized language test in Russian targeting comprehension and production at the word and sentence level. Individuals with aphasia had significantly lower FA values for left hemisphere tracts and significantly higher values of MD, RD and AD for both left and right hemisphere tracts compared to controls, all indicating profound impairment in tract integrity. Language comprehension was predominantly related to integrity of the left IFOF and left ILF, while language production was mainly related to integrity of the left AF. In addition, individual segments of these three tracts were differentially associated with language production and comprehension in aphasia. Our findings highlight the importance of fiber pathways in supporting different language functions and point to the importance of temporal tracts in language processing, in particular, comprehension. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quasi-static axisymmetric eversion hemispherical domes made of elastomers
NASA Astrophysics Data System (ADS)
Kabrits, Sergey A.; Kolpak, Eugeny P.
2016-06-01
The paper considers numerical solution for the problem of quasi-static axisymmetric eversion of a spherical shell (hemisphere) under action of external pressure. Results based on the general nonlinear theory of shells made of elastomers, proposed by K. F. Chernykh. It is used two models of shells based on the hypotheses of the Kirchhoff and Timoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. The article presents diagrams of equilibrium states of eversion hemispheres for both models as well as the shape of the shell at different points in the diagram.
Anomalous top layer in the inner core beneath the eastern hemisphere
NASA Astrophysics Data System (ADS)
Yu, W.; Wen, L.; Niu, F.
2003-12-01
Recent studies reported hemispheric variations in seismic velocity and attenuation in the top of the inner core. It, however, remains unclear how the inner core hemisphericity extends deep in the inner core. Here, we analyze PKPbc-PKIKP and PKiKP-PKIKP waveforms collected from the Global Seismographic Network (GSN), regional recordings from the German Regional Seismic Network (GRSN) and Graefenberg (GRF) sampling along the equatorial path (the ray path whose ray angle is larger than 35o from the Earth's rotation axis). The observed global and regional PKPbc-PKIKP differential traveltimes and PKIKP/PKPbc amplitude ratios suggest a simple W2 model (Wen/Niu:2002) in the western hemisphere with a constant velocity gradient of 0.049(km/sec)/100km and a Q value of 600 in the top 400 km of the inner core. In the eastern hemisphere, the data require a change of velocity gradient and Q value at about 235 km below the inner core boundary (ICB). Based on forward modeling, we construct radial velocity and attenuation models in the eastern hemisphere which can explain both the PKiKP-PKIKP and PKPbc-PKIKP observations. The inner core in the eastern hemisphere has a flat velocity gradient extending to about 235 km below the ICB. We test two solutions for the velocity models in the deeper portion of the inner core, with one having a first-order discontinuity at 235 km below the ICB with a velocity jump of 0.07(km/sec) followed by the PREM gradient, and the other having a gradual velocity transition with 0.1(km/sec)/100km gradient extended from 235 km to 375 km below the ICB followed by the PREM gradient. The observed traveltimes exclude the sharp discontinuity velocity model, as it predicts a kink in differential traveltimes at distance of 151o-152o which is not observed in the global and regional datasets. The observed PKIKP/PKPbc amplitude ratios can be best explained by a step function of attenuation with a Q value of 250 at the top 300 km and a Q value of 600 at 300-400 km below the ICB. The top portion of the inner core in the eastern hemisphere is anomalous compared to the rest of the inner core, in having a flat velocity gradient, higher velocities and higher attenuation.
Magnetic reconnection in 3D magnetosphere models: magnetic separators and open flux production
NASA Astrophysics Data System (ADS)
Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P.
2014-12-01
There are multiple competing definitions of magnetic reconnection in 3D (e.g., Hesse and Schindler [1988], Lau and Finn [1990], and Boozer [2002]). In this work we focus on separator reconnection. A magnetic separator can be understood as the 3D analogue of a 2D x line with a guide field, and is defined by the line corresponding to the intersection of the separatrix surfaces associated with the magnetic nulls. A separator in the magnetosphere represents the intersection of four distinct magnetic topologies: solar wind, closed, open connected to the northern hemisphere, and open connected to the southern hemisphere. The integral of the parallel electric field along the separator defines the rate of open flux production, and is one measure of the reconnection rate. We present three methods for locating magnetic separators and apply them to 3D resistive MHD simulations of the Earth's magnetosphere using the BATS-R-US code. The techniques for finding separators and determining the reconnection rate are insensitive to IMF clock angle and can in principle be applied to any magnetospheric model. The present work examines cases of high and low resistivity, for two clock angles. We also examine the separator during Flux Transfer Events (FTEs) and Kelvin-Helmholtz instability.
Domeisen, Daniela I. V.
2016-01-01
Characterizing the stratosphere as a turbulent system, temporal fluctuations often show different correlations for different time scales as well as intermittent behaviour that cannot be captured by a single scaling exponent. In this study, the different scaling laws in the long-term stratospheric variability are studied using multifractal de-trended fluctuation analysis (MF-DFA). The analysis is performed comparing four re-analysis products and different realizations of an idealized numerical model, isolating the role of topographic forcing and seasonal variability, as well as the absence of climate teleconnections and small-scale forcing. The Northern Hemisphere (NH) shows a transition of scaling exponents for time scales shorter than about 1 year, for which the variability is multifractal and scales in time with a power law corresponding to a red spectrum, to longer time scales, for which the variability is monofractal and scales in time with a power law corresponding to white noise. Southern Hemisphere (SH) variability also shows a transition at annual scales. The SH also shows a narrower dynamical range in multifractality than the NH, as seen in the generalized Hurst exponent and in the singularity spectra. The numerical integrations show that the models are able to reproduce the low-frequency variability but are not able to fully capture the shorter term variability of the stratosphere. PMID:27493560
Seismic velocity and attenuation structures at the top 400 km of the inner core
NASA Astrophysics Data System (ADS)
Yu, W.; Wen, L.; Niu, F.
2002-12-01
Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient and Q structure, obtained from modeling the PKiKP-PKIKP observations, explain the PKPbc-PKIKP observations well.
Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica
2013-01-01
HIGHLIGHTSThe redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific processes and various levels of word processing.
Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica
2013-01-01
HIGHLIGHTS The redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific processes and various levels of word processing. PMID:23818879
NASA Astrophysics Data System (ADS)
Goosse, Hugues
2017-03-01
Available proxy-based temperature reconstructions covering the past millennium display contrasted evolutions between the continents. The difference is particularly large between the two hemispheres. When driven by realistic natural and anthropogenic forcings, climate models tend to simulate a more spatially homogenous temperature response. This is associated with a relatively good agreement between model results and reconstructions in the Northern Hemisphere but a low consistency in the Southern Hemisphere. Here, simulations with data assimilations are performed to analyse the causes of this apparent disagreement. It shows that, when the uncertainties are taken into account, states of the climate system compatible with the forcing estimates, the reconstructions and the model physics can be obtained over the past millennium, except for the twentieth century in Antarctica where the simulated warming is always much larger than in the reconstructions. Such states consistent with all sources of information can be achieved even if the uncertainties of the reconstructions are underestimated. Although, well within the range of the proxy-based reconstructions, the temperatures obtained after data assimilation display more similar developments between the hemispheres than in those reconstructions. Ensuring the compatibility does not require to systematically reduce the model response to the forcing or to strongly enhance the model internal variability. From those results, there is thus no reason to suspect that the model is strongly biased in one aspect or another. The constraint imposed by the data assimilation is too low to unambiguously identify the origin of each feature displayed in the reconstructions but, as expected, changes in atmospheric circulation likely played a role in many of them. Furthermore, ocean heat uptake and release as well as oceanic heat transport are key elements to understand the delayed response of the Southern Hemisphere compared to the northern one during some transitions from warmer to colder states or from colder to warmer ones. The last millennium is thus an interesting test period to better understand and quantify the associated mechanisms.
Investigating model deficiencies in the global budget of ethane
NASA Astrophysics Data System (ADS)
Tzompa Sosa, Z. A.; Keller, C. A.; Turner, A. J.; Mahieu, E.; Franco, B.; Fischer, E. V.
2015-12-01
Many locations in the Northern Hemisphere show a statistically-significant sharp increase in measurements of ethane (C2H6) since 2009. It is hypothesized that the recent massive growth of shale gas exploitation in North America could be the source of this change. However, state-of-the-science chemical transport models are currently unable to reproduce the hemispheric burden of C2H6 or the recent sharp increase, pointing to a potential problem with current emission inventories. To resolve this, we used space-borne CH4 observations from the Greenhouse Gases Observing SATellite (GOSAT) to derive C2H6 emissions. By using known emission ratios to CH4, we estimated emissions of C2H6 from oil and gas activities, biofuels, and biomass burning over North America. The GEOS-Chem global chemical transport model was used to simulate atmospheric abundances of C2H6 with the new emissions estimates. The model is able to reproduce Northern Hemisphere surface concentrations. However, the model significantly under-predicts the amount of C2H6 throughout the column and the observed Northern Hemispheric gradient as diagnosed by comparisons to aircraft observations from the Hiaper Pole-to-Pole (HIPPO) Campaign.
NASA Astrophysics Data System (ADS)
Rajesh, P. K.; Lin, C. C. H.; Liu, T. J. Y.; Chen, A. B. C.; Hsu, R. R.; Chen, C. H.; Huba, J. D.
2017-12-01
In this work characteristics of nighttime medium-scale travelling ionospheric disturbances (MSTID) are investigated using 630.0 nm limb images by Imager of Sprites and Upper Atmospheric Lightnings (ISUAL), onboard FORMOSAT-2 satellite. The limb integrated measurements, when projected to a horizontal plane, reveal bands of intensity perturbation with distinct southwest to northeast orientation in the southern hemisphere. Airglow simulations are carried out by artificially introducing MSTID fluctuations in model electron density to confirm if such azimuthally oriented features could be identified in the ISUAL viewing geometry. Further statistical analysis shows more MSTID occurrence in solstices with peak in June-July months. The wavelengths of the observed perturbations were in the range 150-300 km. The wave fronts were oriented about 30°-50° from the east-west plane, indicating that coupled Perkins and Es-layer instability might be important in the MSTID generation. The results demonstrate that space based airglow imaging is an effective method for global investigation of MSTID events that are appropriately aligned with the viewing geometry.
Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys.
Muntané, Gerard; Santpere, Gabriel; Verendeev, Andrey; Seeley, William W; Jacobs, Bob; Hopkins, William D; Navarro, Arcadi; Sherwood, Chet C
2017-09-01
Handedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.
The role of water vapor in the ITCZ response to hemispherically asymmetric forcings
NASA Astrophysics Data System (ADS)
Clark, S.; Ming, Y.; Held, I.
2016-12-01
Studies using both comprehensive and simplified models have shown that changes to the inter-hemispheric energy budget can lead to changes in the position of the ITCZ. In these studies, the mean position of the ITCZ tends to shift toward the hemisphere receiving more energy. While included in many studies using comprehensive models, the role of the water vapor-radiation feedback in influencing ITCZ shifts has not been focused on in isolation in an idealized setting. Here we use an aquaplanet idealized moist general circulation model initially developed by Dargan Frierson, without clouds, newly coupled to a full radiative transfer code to investigate the role of water vapor in the ITCZ response to hemispherically asymmetric forcings. We induce a southward ITCZ shift by reducing the incoming solar radiation in the northern hemisphere. To isolate the radiative impact of water vapor, we run simulations where the radiation code sees the prognostic water vapor field, which responds dynamically to temperature, parameterized convection, and the circulation and also run simulations where the radiation code sees a prescribed static climatological water vapor field. We find that under Earth-like climate conditions, a shifting water vapor distribution's interaction with longwave radiation amplifies the latitudinal displacement of the ITCZ in response to a given hemispherically asymmetric forcing roughly by a factor of two; this effect appears robust to the convection scheme used. We argue that this amplifying effect can be explained using the energy flux equator theory for the position of the ITCZ.
TMS measures of motor cortex function after stroke: A meta-analysis.
McDonnell, Michelle N; Stinear, Cathy M
Transcranial magnetic stimulation (TMS) is commonly used to measure the effects of stroke on corticomotor excitability, intracortical function, and interhemispheric interactions. The interhemispheric inhibition model posits that recovery of motor function after stroke is linked to rebalancing of asymmetric interhemispheric inhibition and corticomotor excitability. This model forms the rationale for using neuromodulation techniques to suppress unaffected motor cortex excitability, and facilitate affected motor cortex excitability. However, the evidence base for using neuromodulation techniques to promote post-stroke motor recovery is inconclusive. The aim of this meta-analysis was to compare measures of corticomotor excitability, intracortical function, and interhemispheric inhibition, between the affected and unaffected hemispheres of people with stroke, and measures made in healthy adults. A literature search was conducted to identify studies that made TMS measures of the motor cortex in adult stroke patients. Two authors independently extracted data, and the quality of included studies was assessed. TMS measures were compared between the affected and unaffected hemispheres of stroke patients, between the affected hemisphere and healthy controls, and between the unaffected hemisphere and healthy controls. Analyses were carried out with data grouped according to the muscle from which responses were recorded, and separately according to time post-stroke (<3 months, and ≥6 months). Meta-analyses were carried out using a random effects model. There were 844 studies identified, and 112 studies included in the meta-analysis. Results were very similar across muscle groups. Affected hemisphere M1 excitability is lower than unaffected and healthy control M1 excitability after stroke. Affected hemisphere short interval intracortical inhibition (SICI) is lower than unaffected and healthy control SICI early after stroke, and not different in the chronic phase. There were no differences detected between the unaffected hemisphere and healthy controls. There were only seven studies of interhemispheric inhibition that could be included, with no clear effects of hemisphere or time post-stroke. The neurophysiological effects of stroke are primarily localised to the affected hemisphere, and there is no clear evidence for hyper-excitability of the unaffected hemisphere or imbalanced interhemispheric inhibition. This indicates that facilitating affected M1 excitability directly may be more beneficial than suppressing unaffected M1 excitability for promoting post-stroke recovery. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, G.L.; MacCracken, M.C.; Ellsaesser, H.W.
1975-08-01
Recent interest in the cause of the sub-Sahara drought has initiated several investigations implying possible anthropogenic origin through increased surface albedo due to reduced plant cover from overgrazing. Results of two integrations of the Zonal Atmospheric Model (ZAM2) are presented, differing only in the prescribed surface albedo for the subtropical land masses of the northern hemisphere. These studies were initiated to determine whether an albedo change alone can bring about such dramatic impacts on local precipitation rates as have been implied. Preliminary results indicate that an albedo change can affect the climate, not just at the latitude of change butmore » also at other latitudes due to various atmospheric feedback mechanisms. (auth)« less
Wang, Jiandong; Xing, Jia; Mathur, Rohit; Pleim, Jonathan E; Wang, Shuxiao; Hogrefe, Christian; Gan, Chuen-Meei; Wong, David C; Hao, Jiming
2017-03-01
Air quality across the northern hemisphere over the past two decades has witnessed dramatic changes, with continuous improvement in developed countries in North America and Europe, but a contrasting sharp deterioration in developing regions of Asia. This study investigates the historical trend in the long-term exposure to PM 2.5 and PM 2.5 -related premature mortality (PM 2.5 -mortality) and its response to changes in emission that occurred during 1990-2010 across the northern hemisphere. Implications for future trends in human exposure to air pollution in both developed and developing regions of the world are discussed. We employed the integrated exposure-response model developed by Health Effects Institute to estimate the PM 2.5 -mortality. The 1990-2010 annual average PM 2.5 concentrations were obtained from the simulations using the WRF-CMAQ model. Emission mitigation efficiencies of sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), ammonia (NH 3 ), and primary PM are estimated from the PM 2.5 -mortality responses to the emission variations. Estimated PM 2.5 -mortalities in East Asia and South Asia increased by 21% and 85% respectively, from 866,000 and 578,000 in 1990, to 1,048,000 and 1,068,000 in 2010. PM 2.5 -mortalities in developed regions (i.e., Europe and high-income North America) decreased substantially by 67% and 58% respectively. Over the past two decades, correlations between population and PM 2.5 have become weaker in Europe and North America due to air pollution controls but stronger in East Asia due to deteriorating air quality. Mitigation of primary PM appears to be the most efficient way for increasing health benefits (i.e., providing the largest mortality reduction per unit emissions). However, reductions in emissions of NH 3 are needed to maximize the effectiveness of NO x emission controls. Citation: Wang J, Xing J, Mathur R, Pleim JE, Wang S, Hogrefe C, Gan CM, Wong DC, Hao J. 2017. Historical trends in PM 2.5 -related premature mortality during 1990-2010 across the northern hemisphere. Environ Health Perspect 125:400-408; http://dx.doi.org/10.1289/EHP298.
NASA Technical Reports Server (NTRS)
Villanueva, G. L.; Mumma, M. J.; Magee-Sauer, K.
2011-01-01
Ethane and other hydrocarbon gases have strong rovibrational transitions in the 3.3 micron spectral region owing to C-H, CH2, and CH3 vibrational modes, making this spectral region prime for searching possible biomarker gases in extraterrestrial atmospheres (e.g., Mars, exoplanets) and organic molecules in comets. However, removing ethane spectral signatures from high-resolution terrestrial transmittance spectra has been imperfect because existing quantum mechanical models have been unable to reproduce the observed spectra with sufficient accuracy. To redress this problem, we constructed a line-by-line model for the n7 band of ethane (C2H6) and applied it to compute telluric transmittances and cometary fluorescence efficiencies. Our model considers accurate spectral parameters, vibration-rotation interactions, and a functional characterization of the torsional hot band. We integrated the new band model into an advanced radiative transfer code for synthesizing the terrestrial atmosphere (LBLRTM), achieving excellent agreement with transmittance data recorded against Mars using three different instruments located in the Northern and Southern hemispheres. The retrieved ethane abundances demonstrate the strong hemispheric asymmetry noted in prior surveys of volatile hydrocarbons. We also retrieved sensitive limits for the abundance of ethane on Mars. The most critical validation of the model was obtained by comparing simulations of C2H6 fluorescent emission with spectra of three hydrocarbon-rich comets: C/2004 Q2 (Machholz), 8P/Tuttle, and C/2007 W1 (Boattini). The new model accurately describes the complex emission morphology of the nu7 band at low rotational temperatures and greatly increases the confidence of the retrieved production rates (and rotational temperatures) with respect to previously available fluorescence models.
Geometry of the hemispherical radiometric footprint over plant canopies
NASA Astrophysics Data System (ADS)
Marcolla, B.; Cescatti, A.
2017-11-01
Radiometric measurements of hemispherical surface reflectance and long-wave irradiance are required to quantify the broadband albedo and the outgoing thermal radiation. These observations are typically integrated with eddy covariance measurements of sensible and latent heat fluxes to characterize the surface energy budget. While the aerodynamic footprint has been widely investigated, the geometry of the hemispherical radiometric footprint over plant canopies has been rarely tackled. In the present work, the size and shape of the hemispherical radiometric footprint are formalized for a bare surface and in presence of a vegetation cover. For this purpose, four idealized canopies are analyzed and the dependency of the radiometric footprint on leaf area index and canopy height is explored. Besides, the radiometric footprint is compared with the aerodynamic footprint in conditions of neutral stability. It was observed that almost 100% of the hemispherical radiometric signal originates within a distance of a few radiometer heights, while only about 50-80% of the cumulative aerodynamic signal is generated within a distance of about 20 sensor heights. In order to achieve comparable extensions of the footprint areas, hemispherical radiometric measurements should therefore be taken about 6-15 times higher than turbulent flux ones, depending on the vegetation type. The analysis also highlights that the size of the radiative footprint decreases at increasing leaf area index, whereas the aerodynamic footprint shows an opposite behavior. For the abovementioned reasons, this work may support the interpretation of energy flux measurements and the optimal design of eddy covariance stations located in heterogeneous sites.
Impulsive artistic creativity as a presentation of transient cognitive alterations.
Finkelstein, Y; Vardi, J; Hod, I
1991-01-01
A 27-year-old right-handed male mosaic artisan who had not shown any interest in drawing or artistic activity was admitted to the Department of Neurology for attacks of bizarre behavior and convulsive disorder. The patient reported feeling "waves" engulfing him during the attacks, leaving him floating helplessly. During some attacks, the patient impulsively initiated drawing activity. Interictal sleep-deprivation EEG showed a left frontotemporal focus of paroxysmal discharge. Brain tomography with SPECT showed low 99Tc-HMPAO uptake in the left frontoparietal region. Psychodiagnostic tests gave evidence of dysfunction of the left frontal region, with preference of the right hemisphere. It is suggested that the attacks of altered cognitive state were, in this case, provoked by spreading depression of the left hemisphere, while the integrative functions of the right hemisphere remained intact. Thus, the impulsive artistic creativity during the attacks may represent a "release phenomenon" of the complex visuospatial skills of the right (subdominant) hemisphere. This symptomatology of transient cognitive alterations is unique and, to the best of our knowledge, has not been previously reported.
Insolation and the Precession Index
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2000-01-01
Simple nonlinear climate models yield a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin omega, where e is the Earth's orbital eccentricity and omega is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these periods. Two such models, a grey body and an energy balance climate model with an added quadratic term, produce e sin omega terms in temperature. These terms, which without feedback mechanisms achieve extreme values of about plus or minus 0.48 K for the grey body and plus or minus 0.64 K for the energy balance model, simultaneously cool one hemisphere while they warm the other. Moreover, they produce long-term cooling in the northern hemisphere when the Sun's perigee is near northern solstice and long-term warming in the northern hemisphere when the perigee is near southern solstice. Thus this seemingly paradoxical mechanism works against the standard model which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it may be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is close to the Earth during southern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.
daily and monthly statistics. The daily and monthly verification processing is broken down into three geopotential height and wind using daily statistics from the gdas1 prepbufr files at 00Z; 06Z; 12Z; and, 18Z Hemisphere; the Southern Hemisphere; and the Tropics. Daily S1 scores from the GFS and NAM models are
ERIC Educational Resources Information Center
Cohen, Gillian
1979-01-01
Kinsbourne's attentional model of hemisphere differences is reviewed, and some difficulties inherent in this model are described. Although others have succeeded in identifying some factors that govern effects of selective activation, effects of general activation are uncertain, so the overall outcome of concurrent memory loading is still difficult…
An Update on the Conceptual-Production Systems Model of Apraxia: Evidence from Stroke
ERIC Educational Resources Information Center
Stamenova, Vessela; Black, Sandra E.; Roy, Eric A.
2012-01-01
Limb apraxia is a neurological disorder characterized by an inability to pantomime and/or imitate gestures. It is more commonly observed after left hemisphere damage (LHD), but has also been reported after right hemisphere damage (RHD). The Conceptual-Production Systems model (Roy, 1996) suggests that three systems are involved in the control of…
Gent, Peter R
2016-01-01
Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.
ERIC Educational Resources Information Center
Hubner, Ronald; Volberg, Gregor
2005-01-01
This article presents and tests the authors' integration hypothesis of global/local processing, which proposes that at early stages of processing, the identities of global and local units of a hierarchical stimulus are represented separately from information about their respective levels and that, therefore, identity and level information have to…
NASA Astrophysics Data System (ADS)
Sinnhuber, Miriam; Berger, Uwe; Funke, Bernd; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan
2018-01-01
We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top.Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002-2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1-2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5-1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar winter, ranging from 10-50 % during solar maximum to 2-10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.
The Role of Sea Ice in 2 x CO2 Climate Model Sensitivity. Part 2; Hemispheric Dependencies
NASA Technical Reports Server (NTRS)
Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.
1997-01-01
How sensitive are doubled CO2 simulations to GCM control-run sea ice thickness and extent? This issue is examined in a series of 10 control-run simulations with different sea ice and corresponding doubled CO2 simulations. Results show that with increased control-run sea ice coverage in the Southern Hemisphere, temperature sensitivity with climate change is enhanced, while there is little effect on temperature sensitivity of (reasonable) variations in control-run sea ice thickness. In the Northern Hemisphere the situation is reversed: sea ice thickness is the key parameter, while (reasonable) variations in control-run sea ice coverage are of less importance. In both cases, the quantity of sea ice that can be removed in the warmer climate is the determining factor. Overall, the Southern Hemisphere sea ice coverage change had a larger impact on global temperature, because Northern Hemisphere sea ice was sufficiently thick to limit its response to doubled CO2, and sea ice changes generally occurred at higher latitudes, reducing the sea ice-albedo feedback. In both these experiments and earlier ones in which sea ice was not allowed to change, the model displayed a sensitivity of -0.02 C global warming per percent change in Southern Hemisphere sea ice coverage.
Cassini Visual and Infrared Mapping Spectrometer observations of Iapetus: Detection of CO2
Buratti, B.J.; Cruikshank, D.P.; Brown, R.H.; Clark, R.N.; Bauer, J.M.; Jaumann, R.; McCord, T.B.; Simonelli, D.P.; Hibbitts, C.A.; Hansen, G.B.; Owen, T.C.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Roush, T.L.; Soderlund, K.; Muradyan, A.
2005-01-01
The Visual and Infrared Mapping Spectrometer (VIMS) instrument aboard the Cassini spacecraft obtained its first spectral map of the satellite lapetus in which new absorption bands are seen in the spectra of both the low-albedo hemisphere and the H2O ice-rich hemisphere. Carbon dioxide is identified in the low-albedo material, probably as a photochemically produced molecule that is trapped in H2O ice or in some mineral or complex organic solid. Other absorption bands are unidentified. The spectrum of the low-albedo hemisphere is satisfactorily modeled with a combination of organic tholin, poly-HCN, and small amounts of H2O ice and Fe 2O3. The high-albedo hemisphere is modeled with H 2O ice slightly darkened with tholin. The detection of CO2 in the low-albedo material on the leading hemisphere supports the contention that it is carbon-bearing material from an external source that has been swept up by the satellite's orbital motion. ?? 2005. The American Astronomical Society. All rights reserved.
Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation
NASA Astrophysics Data System (ADS)
Sandu, Irina; Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton
2016-03-01
A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales.
NASA Astrophysics Data System (ADS)
Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves
2018-05-01
Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity (about 0.4) and with good uniformity of emissivity values (within ±0.015).
Aberg, Kristoffer Carl; Doell, Kimberly Crystal; Schwartz, Sophie
2016-08-01
Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lisiecki, L. E.; Herrero, C.; García-Olivares, A.
2016-12-01
The Marine Isotope Stage (MIS) 13 interglacial is unusual in that warm Northern Hemisphere conditions were accompanied by relatively cool Southern Hemisphere conditions and because it was preceded by a mild glaciation (MIS 14) with less ice volume and higher CO2 levels than the two preceding glacial maxima. Here we investigate Late Pleistocene glacial cycles, and MIS 13 in particular, using two relaxation models from García-Olivares & Herrero [2013] that describe the relationships between global ice volume (V), atmospheric CO2 (C) and the extent of the Antarctic ice shelves (A). The two models differ in parameterizing deep ocean stratification as either a function of V and A (model 3τ) or as a function of C and A (model LS). Note that global ice volume, V, is most closely related to Northern hemisphere climate, whereas C and A are most closely related to Antarctic climate. Here we present the results of using a sea level stack [Spratt & Lisiecki, 2016] as the ice volume tuning target instead of benthic δ18O. We find that tuning to the sea level stack dramatically improves the simulation of MIS 13 in the 3τ model. With the sea level stack, 3τ correctly reproduces the weak amplitudes of MIS 13 and 14 and a double peak in CO2 during MIS 13, whereas the LS model does not reproduce these features using either tuning target. The first peak in CO2 follows a minor ice volume decrease at 530 kyr but significantly precedes a second, larger sea level rise at 500 kyr. The later sea level rise coincides with a second benthic δ18O decrease and likely triggered the second CO2 peak. This two-step transition to peak interglacial conditions might be caused by deep ocean stratification and Antarctic ice cover acting out of phase: weakened stratification produced an initial pulse of CO2 from the deep ocean, but because Antarctic warming was unusually weak, the Antarctic ice shelf remained relatively wide and less CO2 than usual was released from the deep ocean. Because ocean stratification in the 3τ model is affected by both hemispheres, hemispheric asymmetry during MIS 13 produced a less stable stratification that allowed for a second CO2 pulse. Thus, the unusual hemispheric asymmetry during MIS 13 allows us to identify the influences of both Northern and Southern hemisphere climate on deep ocean stratification and its role in regulating atmospheric CO2.
Predicting optical and thermal characteristics of transparent single-glazed domed skylights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laouadi, A.; Atif, M.R.
1999-07-01
Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less
Gebauer, D.; Fink, A.; Filippini, N.; Johansen-Berg, H.; Reishofer, G.; Koschutnig, K.; Kargl, R.; Purgstaller, C.; Fazekas, F.; Enzinger, C.
2013-01-01
While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme- based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research. PMID:22198594
Gebauer, D; Fink, A; Filippini, N; Johansen-Berg, H; Reishofer, G; Koschutnig, K; Kargl, R; Purgstaller, C; Fazekas, F; Enzinger, C
2012-07-01
While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme-based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research.
An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface
NASA Astrophysics Data System (ADS)
Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga
We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, B.; Valdes, P.J.
The U.K. University Global Atmospheric Modeling Programme GCM is used to investigate whether the growth of Northern Hemisphere ice sheets could have been initiated by changes of orbital parameters and sea surface temperatures. Two different orbital configurations, corresponding to the present day and 115 kyr BP are used. The reduced summer solar insolation in the Northern Hemisphere results in a decrease of the surface temperature by 4{degrees} to 10{degrees}C in the northern continents and to perennial snow in some high-latitude regions. Therefore, the model results support the hypothesis that a deficit of summer insolation can create conditions favorable for initiationmore » of ice sheet growth in the Northern Hemisphere. A decreased sea surface temperature northward of 65{degrees}N during the Northern Hemisphere summer may contribute to the maintenance of ice sheets. A simple mixed-layer ocean model coupled to the GCM indicates that the changes of sea surface temperature and extension of sea ice due to insolation changes play an important role in inception of the Fennoscandian, Laurentide, and Cordilleran ice sheets. The model results suggest that the regions of greatest sensitivity for ice initiation are the Canadian Archipelago, Baffin Island, Tibetan Plateau, Scandinavia, Siberia, Alaska, and Keewatin, where changing orbital parameters to 115 kyr BP results in the snow cover remaining throughout the warmer summer, leading to long-term snow accumulation. The model results are in general agreement with geological evidence and are the first time that a GCM coupled with a mixed layer ocean has reproduced the inception of the Northern Hemisphere ice sheets. 69 refs., 21 figs., 3 tabs.« less
Modeling and measurement of microwave emission and backscattering from bare soil surfaces
NASA Technical Reports Server (NTRS)
Saatchi, S.; Wegmuller, U.
1992-01-01
A multifrequency ground-based radiometer-scatterometer system working at frequencies between 3.0 GHz and 11.0 GHz has been used to study the effect of soil moisture and roughness on microwave emission and backscattering. The freezing and thawing effect of the soil surface and the changes of the surface roughness due to rain and erosion are reported. To analyze the combined active and passive data, a scattering model based on physical optics approximation for the low frequency and geometrical optics approximation for high frequency has been developed. The model is used to calculate the bistatic scattering coefficients from the surface. By considering the conservation of energy, the result has been integrated over a hemisphere above the surface to calculate the emissivity. The backscattering and emission model has been coupled with the observed data in order to extract soil moisture and surface roughness.
ERIC Educational Resources Information Center
Miller, Jeff; Van Nes, Fenna
2007-01-01
Two experiments tested predictions of the hemispheric coactivation model for redundancy gain (J. O. Miller, 2004). Simple reaction time was measured in divided attention tasks with visual stimuli presented to the left or right of fixation or redundantly to both sides. Experiment 1 tested the prediction that redundancy gain--the decrease in…
Inter-hemispheric asymmetry of Pedersen conductance
NASA Astrophysics Data System (ADS)
Deng, Y.; Lu, Y.; Sheng, C.; Yue, X.
2015-12-01
Ionospheric conductance is very important to the magnetosphere-ionosphere coupling in the high latitude region, since it connects the polar cap potential with the currents. Meanwhile, the altitudinal distribution of Pederson conductance gives us a rough idea about the altitudinal distribution of Joule heating at high latitudes. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites observations of electron density profiles from 2009-2014, Pedersen conductivity has been calculated. A climatologic study of the height-integrated Pedersen conductivities in both E (100-150 km) and F (150-600 km) regions and their ratio in different seasons, solar and geomagnetic conditions have been conducted. A significant inter-hemispheric asymmetry is identified in the seasonal variation. Meanwhile, the conductance in both regions and the conductance ratio show a strong dependence on F10.7 and Ap indices. This result will strongly help our understanding of the inter-hemispheric difference in the high-latitude electrodynamics.
NASA Astrophysics Data System (ADS)
Bolaji, O. S.; Oyeyemi, E. O.; Adewale, A. O.; Wu, Q.; Okoh, D.; Doherty, P. H.; Kaka, R. O.; Abbas, M.; Owolabi, C.; Jidele, P. A.
2017-11-01
In Africa, we assessed the performance of all the three options of International Reference Ionosphere 2012, IRI-2012 (i.e. IRI-2001, IRI-2001COR and IRI-NeQuick), NeQuick-2 and IRI-Plas 2015 models prior to and during 2009 sudden stratospheric warming (SSW) event to predict equatorial ionization anomaly (EIA) crest locations and their magnitudes using total electron content (TEC) from experimental records of Global Positioning System (GPS). We confirmed that the IRI-Plas 2015 that appeared as the best compared to all of the models as regard prediction of the EIA crest locations in the northern hemisphere of Africa is due to discontinuities in the GPS data between ∼8° N and 22° N. As regard the predictions of EIA crest magnitudes and the location of EIA crests in the southern hemisphere of Africa, they are not present in all the models. The NeQuick-2 model does not have the capability to predict either the EIA crest location in the northern or southern hemisphere. The SSW effect on the low latitude was able to modify a single EIA crest to pre-noon and post noon EIA crests in the northern hemisphere during the SSW peak phase and significantly reduced the GPS TEC magnitudes over the hemispheres as well. These SSW effects and delays of plasma transportation to higher latitudes in GPS TEC were absent in all the models. For future improvements of IRI-2012, NeQuick-2 and IRI-Plas 2015 models, SSW conditions should be included in order to characterize the effect of lower atmosphere on the ionosphere. The EIA trough modeling is only present in IRI-2001COR and IRI-2001NeQuick options. In the middle latitude, all the model could not predict the location of highest TEC magnitudes found at RBAY (Richardsbay, South Africa).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maclaurin, Galen; Sengupta, Manajit; Xie, Yu
A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less
NASA Technical Reports Server (NTRS)
Oneill, A.
1989-01-01
The aim of the MASH project is to study the dynamics of the middle atmosphere in the Southern Hemisphere, emphasizing inter-hemispheric differences. Both observational data and data from simulations with numerical models are being used. It is intended that MASH will be complemented by parallel studies on the transport and photochemistry of trace species in the Southern Hemisphere. Impetus for such studies has come from the unexpected finding of a springtime ozone hole over Antarctica. A summary of recent progress with the MASH project is given. Data from polar orbiting satellites are used to discuss the large scale circulation found in the Southern Hemisphere at extratropical latitudes. Comparisons are made with that of the Northern Hemisphere. Particular attention is paid to the springtime final warming, the most spectacular large scale phenomenon in the statosphere of the Southern Hemisphere. The circulation before and after this event has to be taken into account in theories for the formation and subsequent disappearance of the ozone hole.
The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception.
Pinto, Yair; de Haan, Edward H F; Lamme, Victor A F
2017-11-01
The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the 'conscious unity, split perception' model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Convergent models of handedness and brain lateralization
Sainburg, Robert L.
2014-01-01
The pervasive nature of handedness across human history and cultures is a salient consequence of brain lateralization. This paper presents evidence that provides a structure for understanding the motor control processes that give rise to handedness. According to the Dynamic Dominance Model, the left hemisphere (in right handers) is proficient for processes that predict the effects of body and environmental dynamics, while the right hemisphere is proficient at impedance control processes that can minimize potential errors when faced with unexpected mechanical conditions, and can achieve accurate steady-state positions. This model can be viewed as a motor component for the paradigm of brain lateralization that has been proposed by Rogers et al. (MacNeilage et al., 2009) that is based upon evidence from a wide range of behaviors across many vertebrate species. Rogers proposed a left-hemisphere specialization for well-established patterns of behavior performed in familiar environmental conditions, and a right hemisphere specialization for responding to unforeseen environmental events. The dynamic dominance hypothesis provides a framework for understanding the biology of motor lateralization that is consistent with Roger's paradigm of brain lateralization. PMID:25339923
Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher
2017-09-05
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.
McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher
2017-01-01
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357
ERIC Educational Resources Information Center
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2018-01-01
The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…
NASA Astrophysics Data System (ADS)
Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.
2018-05-01
The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.
SYSTEMATIC REGULARITY OF HEMISPHERIC SUNSPOT AREAS OVER THE PAST 140 YEARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, L. H.; Xiang, Y. Y.; Qu, Z. N.
2016-03-15
Solar magnetic activity varies with time in the two hemispheres in different ways. The hemispheric interconnection of solar activity phenomena provides an important clue to understanding the dynamical behavior of solar dynamo actions. In this paper, several analysis approaches are proposed to analyze the systematic regularity of hemispheric asynchronism and amplitude asymmetry of long-term sunspot areas during solar cycles 9–24. It is found that, (1) both the hemispheric asynchronism and the amplitude asymmetry of sunspot areas are prevalent behaviors and are not anomalous, but the hemispheric asynchronism exhibits a much more regular behavior than the amplitude asymmetry; (2) the phase-leadingmore » hemisphere returns back to the identical hemisphere every 8 solar cycles, and the secular periodic pattern of hemispheric phase differences follows 3 (south leading) + 5 (north leading) solar cycles, which probably corresponds to the Gleissberg cycle; and (3) the pronounced periodicities of (absolute and normalized) asymmetry indices and lines of synchronization (LOSs) are not identical: the significant periodic oscillations are 80.65 ± 6.31, 20.91 ± 0.40, and 13.45 ± 0.16 years for the LOS values, and 51.34 ± 2.48, 8.83/8.69 ± 0.07, and 3.77 ± 0.02 years for the (absolute and normalized) asymmetry indices. The analysis results improve our knowledge on the hemispheric interrelation of solar magnetic activity and may provide valuable constraints for solar dynamo models.« less
NASA Astrophysics Data System (ADS)
Fougere, Nicolas; Altwegg, K.; Berthelier, J.-J.; Bieler, A.; Bockelée-Morvan, D.; Calmonte, U.; Capaccioni, F.; Combi, M. R.; De Keyser, J.; Debout, V.; Erard, S.; Fiethe, B.; Filacchione, G.; Fink, U.; Fuselier, S. A.; Gombosi, T. I.; Hansen, K. C.; Hässig, M.; Huang, Z.; Le Roy, L.; Leyrat, C.; Migliorini, A.; Piccioni, G.; Rinaldi, G.; Rubin, M.; Shou, Y.; Tenishev, V.; Toth, G.; Tzou, C.-Y.
2016-11-01
We analyse the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) - the Double Focusing Mass Spectrometer data between 2014 August and 2016 February to examine the effect of seasonal variations on the four major species within the coma of 67P/Churyumov-Gerasimenko (H2O, CO2, CO, and O2), resulting from the tilt in the orientation of the comet's spin axis. Using a numerical data inversion, we derive the non-uniform activity distribution at the surface of the nucleus for these species, suggesting that the activity distribution at the surface of the nucleus has not significantly been changed and that the differences observed in the coma are solely due to the variations in illumination conditions. A three-dimensional Direct Simulation Monte Carlo model is applied where the boundary conditions are computed with a coupling of the surface activity distributions and the local illumination. The model is able to reproduce the evolution of the densities observed by ROSINA including the changes happening at equinox. While O2 stays correlated with H2O as it was before equinox, CO2 and CO, which had a poor correlation with respect to H2O pre-equinox, also became well correlated with H2O post-equinox. The integration of the densities from the model along the line of sight results in column densities directly comparable to the VIRTIS-H observations. Also, the evolution of the volatiles' production rates is derived from the coma model showing a steepening in the production rate curves after equinox. The model/data comparison suggests that the seasonal effects result in the Northern hemisphere of 67P's nucleus being more processed with a layered structure while the Southern hemisphere constantly exposes new material.
Investigate wave-mean flow interaction and transport in the extratropical winter stratosphere
NASA Technical Reports Server (NTRS)
Smith, Anne K.
1993-01-01
The grant supported studies using several models along with observations in order to investigate some questions of wave-mean flow interaction and transport in the extratropical winter stratosphere. A quasi-geostrophic wave model was used to investigate the possibility that resonant growth of planetary wave 2 may have played a role in the sudden stratospheric warming of February 1979. The results of the time-dependent integration support the interpretation of resonance during February, 1979. Because of the possibility that the model treatment of critical line interactions exerted a controlling influence on the atmospheric dynamics, a more accurate model was needed for wave-mean flow interaction studies. A new model was adapted from the 3-dimensional primitive equation model developed by K. Rose and G. Brasseur. In its present form the model is global, rather than hemispheric; it contains an infrared cooling algorithm and a parameterized solar heating; it has parameterized gravity wave drag; and the chemistry has been entirely revised.
Hemispheric Coupling: Comparing Dynamo Simulations and Observations
NASA Astrophysics Data System (ADS)
Norton, A. A.; Charbonneau, P.; Passos, D.
2014-12-01
Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.
Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?
NASA Astrophysics Data System (ADS)
Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.
2017-12-01
Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.
Two-stream modeling of plasmaspheric refilling
NASA Technical Reports Server (NTRS)
Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.
1995-01-01
Plasmaspheric refilling on an L = 4 flux tube was studied by using a time-dependent, hydrodynamic plasmaspheric flow model in which the ion streams from the two hemispheres are treated as distinct fluids. In the model the continuity, momentum, and energy equations of a two-ion (O(+) and H(+)), quasi-neutral, currentless plasma are solved along a closed geomagnetic field line; diffusive equilibrium is not assumed. collisions between all stream pairs and with neutral species are included. The model includes a corotating, tilted dipole magnetic field and neutral winds. Ionospheric sources and sinks are accounted for in a self-consistent manner. Electrons are assumed to be heated by photoelectrons. The model flux tube extends from a 200-km altitude in one hemisphere to a 200-km altitude in the other hemisphere. Initially, the upwelling streams pass through each other practically unimpeded. When the streams approach the boundary in the conjugate ionosphere, a shock develops there, which moves upward and dissipates slowly; at about the same time a reverse shock develops in the hemisphere of origin, which moves upward. After about 1 hour, large shocks develop in each stream near the equator; these shocks move toward the equator and downward after crossing the equator. However, these shocks are probably artificial, because counterstreaming flows occur in each H(+) fluid, which the model can only handle by creating shocks.
In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.
Bitar, Malak; Friederici, Vera; Imgrund, Philipp; Brose, Claudia; Bruinink, Arie
2012-05-04
Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.
An interdecadal climate dipole between Northeast Asia and Antarctica over the past five centuries
NASA Astrophysics Data System (ADS)
Fang, Keyan; Chen, Deliang; Guo, Zhengtang; Zhao, Yan; Frank, David; He, Maosheng; Zhou, Feifei; Shi, Feng; Seppä, Heikki; Zhang, Peng; Neukom, Raphael
2018-03-01
Climate models emphasize the need to investigate inter-hemispheric climatic interactions. However, these models often underestimate the inter-hemispheric differences in climate change. With the wide application of reanalysis data since 1948, we identified a dipole pattern between the geopotential heights (GPHs) in Northeast Asia and Antarctica on the interdecadal scale in boreal summer. This Northeast Asia/Antarctica (NAA) dipole pattern is not conspicuous on the interannual scale, probably in that the interannual inter-hemispheric climate interaction is masked by strong interannual signals in the tropics associated with the El Niño-Southern Oscillation (ENSO). Unfortunately, the instrumental records are not sufficiently long-lasting to detect the interdecadal variability of the NAA. We thus reconstructed GPHs since 1565, making using the proxy records mostly from tree rings in Northeast Asia and ice cores from Antarctica. The strength of the NAA is time-varying and it is most conspicuous in the eighteenth century and after the late twentieth century. The strength of the NAA matches well with the variations of the solar radiation and tends to increase in along with its enhancement. In boreal summer, enhanced heating associated with high solar radiation in the Northern Hemisphere drives more air masses from the South to the North. This inter-hemispheric interaction is particularly strong in East Asia as a result of the Asian summer monsoon. Northeast Asia and Antarctica appear to be the key regions responsible for inter-hemispheric interactions on the interdecadal scale in boreal summer since they are respectively located at the front and the end of this inter-hemispheric trajectory.
Split-brain patients neglect left personal space during right-handed gestures.
Lausberg, Hedda; Kita, Sotaro; Zaidel, Eran; Ptito, Alain
2003-01-01
Since some patients with right hemisphere damage or with spontaneous callosal disconnection neglect the left half of space, it has been suggested that the left cerebral hemisphere predominantly attends to the right half of space. However, clinical investigations of patients having undergone surgical callosal section have not shown neglect when the hemispheres are tested separately. These observations question the validity of theoretical models that propose a left hemispheric specialisation for attending to the right half of space. The present study aims to investigate neglect and the use of space by either hand in gestural demonstrations in three split-brain patients as compared to five patients with partial callosotomy and 11 healthy subjects. Subjects were asked to demonstrate with precise gestures and without speaking the content of animated scenes with two moving objects. The results show that in the absence of primary perceptual or representational neglect, split-brain patients neglect left personal space in right-handed gestural demonstrations. Since this neglect of left personal space cannot be explained by directional or spatial akinesia, it is suggested that it originates at the conceptual level, where the spatial coordinates for right-hand gestures are planned. The present findings are at odds with the position that the separate left hemisphere possesses adequate mechanisms for acting in both halves of space and neglect results from right hemisphere suppression of this potential. Rather, the results provide support for theoretical models that consider the left hemisphere as specialised for processing the right half of space during the execution of descriptive gestures.
Inverse Modeling of Tropospheric Methane Constrained by 13C Isotope in Methane
NASA Astrophysics Data System (ADS)
Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.
2001-12-01
Understanding the budget of methane is crucial to predicting climate change and managing earth's carbon reservoirs. Methane is responsible for approximately 15% of the anthropogenic greenhouse forcing and has a large impact on the oxidative capacity of Earth's atmosphere due to its reaction with hydroxyl radical. At present, many of the sources and sinks of methane are poorly understood, due in part to the large spatial and temporal variability of the methane flux. Model calculations of methane mixing ratios using most process-based source estimates typically over-predict the inter-hemispheric gradient of atmospheric methane. Inverse models, which estimate trace gas budgets by using observations of atmospheric mixing ratios and transport models to estimate sources and sinks, have been used to incorporate features of the atmospheric observations into methane budgets. While inverse models of methane generally tend to find a decrease in northern hemisphere sources and an increase in southern hemisphere sources relative to process-based estimates,no inverse study has definitively associated the inter-hemispheric gradient difference with a specific source process or group of processes. In this presentation, observations of isotopic ratios of 13C in methane and isotopic signatures of methane source processes are used in conjunction with an inverse model of methane to further constrain the source estimates of methane. In order to investigate the advantages of incorporating 13C, the TM3 three-dimensional transport model was used. The methane and carbon dioxide measurements used are from a cooperative international effort, the Cooperative Air Sampling Network, lead by the Climate Monitoring Diagnostics Laboratory (CMDL) at the National Oceanic and Atmospheric Administration (NOAA). Experiments using model calculations based on process-based source estimates show that the inter-hemispheric gradient of δ 13CH4 is not reproduced by these source estimates, showing that the addition of observations of δ 13CH4 should provide unique insight into the methane problem.
Seismic velocity and attenuation structures in the Earth's inner core
NASA Astrophysics Data System (ADS)
Yu, Wen-Che
2007-12-01
I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the isotropic upper inner core and 150 to 400 for the anisotropic lower inner core.
Look over there! Unilateral gaze increases geographical memory of the 50 United States.
Propper, Ruth E; Brunyé, Tad T; Christman, Stephen D; Januszewskia, Ashley
2012-02-01
Based on their specialized processing abilities, the left and right hemispheres of the brain may not contribute equally to recall of general world knowledge. US college students recalled the verbal names and spatial locations of the 50 US states while sustaining leftward or rightward unilateral gaze, a procedure that selectively activates the contralateral hemisphere. Compared to a no-unilateral gaze control, right gaze/left hemisphere activation resulted in better recall, demonstrating left hemisphere superiority in recall of general world knowledge and offering equivocal support for the hemispheric encoding asymmetry model of memory. Unilateral gaze- regardless of direction- improved recall of spatial, but not verbal, information. Future research could investigate the conditions under which unilateral gaze increases recall. Sustained unilateral gaze can be used as a simple, inexpensive, means for testing theories of hemispheric specialization of cognitive functions. Results support an overall deficit in US geographical knowledge in undergraduate college students. Copyright © 2011 Elsevier Inc. All rights reserved.
Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.
Tulving, E; Kapur, S; Craik, F I; Moscovitch, M; Houle, S
1994-01-01
Data are reviewed from positron emission tomography studies of encoding and retrieval processes in episodic memory. These data suggest a hemispheric encoding/retrieval asymmetry model of prefrontal involvement in encoding and retrieval of episodic memory. According to this model, the left and right prefrontal lobes are part of an extensive neuronal network that subserves episodic remembering, but the two prefrontal hemispheres play different roles. Left prefrontal cortical regions are differentially more involved in retrieval of information from semantic memory and in simultaneously encoding novel aspects of the retrieved information into episodic memory. Right prefrontal cortical regions, on the other hand, are differentially more involved in episodic memory retrieval. PMID:8134342
Gainotti, Guido
2011-04-01
In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
DArrigo, R.; Davi, N.; Jacoby, G.; Wiles, G.
2002-05-01
The Maunder Minimum interval (from the mid-1600s-early 1700s) is believed to have been one of the coldest periods of the past thousand years in the Northern Hemisphere. A maximum latewood density temperature reconstruction for the Wrangell Mountains, southern Alaska (1593-1992) provides information on regional temperature change during the Maunder Minimum and other periods of severe cold over the past four centuries. The Wrangell density record, which reflects warm season (July-September) temperatures, shows an overall cooling over the Maunder Minimum period with annual values reaching as low as -1.8oC below the long-term mean. Ring widths, which can integrate annual as well as summer conditions, also show pronounced cooling at the Wrangell site during this time, as do Arctic and hemispheric-scale temperature reconstructions based on tree rings and other proxy data. Maximum ages of glacial advance based on kill dates from overrun logs (which reflect cooler temperatures) coincide temporally with the cooling seen in the density and ring width records. In contrast, a recent modeling study indicates that during this period there was cold season (November-April) warming over much of Alaska, but cooling over other northern continental regions, as a result of decreased solar irradiance initiating low Arctic Oscillation index conditions. The influence of other forcings on Alaskan climate, the absence of ocean dynamical feedbacks in the model, and the different seasonality represented by the model and the trees may be some of the possible explanations for the different model and proxy results.
A Discussion of Upper Stratospheric Ozone Asymmetry and Ozone Trend Changes
NASA Technical Reports Server (NTRS)
Li, Jinlong; Cunnold, Derek M.; Wang, Hsiang-Jui; Yang, Eun-Su; Newchurch, Mike J.
2002-01-01
Analyses from SAGE I/II version 6.0 data exhibit upper stratospheric ozone trends which are not significantly different from those in version 5.96 data. Trend calculations show larger downward trends at mid-high latitudes in the Southern Hemisphere than in the Northern Hemisphere, particularly in 1980s. There are also indications of decreasing downward trends with time from 1979 to 1999. We have used a chemical box model and the UARS measurements of long lived gases, CH4, H2O, NO(x), and temperature to show that, with a constant Cl(sub y) trend, a hemispheric ozone trend asymmetry of 1%/decade at 45 deg. around 43 km is expected due to the hemispheric differences of temperature and CH4 during late winter/early. Also ozone trends should have been approximately 1%/decade more negative from 1979-1989 than from 1989-1999 because of the chemical feedbacks. The model results further indicate that both the reported decrease in CH4 and the increase in H2O in HALOE measurements will result in a larger downward ozone trend and a decrease in the hemispheric ozone trend asymmetry.
Huang, Qin; Liu, Rui; Gui, Shen; Lu, Jinling; Li, Pengcheng
2018-03-07
Cortical spreading depression (CSD), a propagation wave of transient neuronal and glial depolarization followed by suppression of spontaneous brain activity, has been hypothesized to be the underlying mechanism of migraine aura and triggers the headache attack. Evidence from various animal models accumulates since its first discovery in 1944 and provides support for this hypothesis. In this paper, alterations of bilateral cortical responses are investigated in a mice migrainous model of CSD using voltage-sensitive dye imaging under hindlimb and cortical stimulation. After CSD induction in the right hemisphere, bilateral sensory responses evoked by left hindlimb stimulation dramatically decreases, whereas right hindlimb stimulation can still activate bilateral responses with an increased response of the left hemisphere and a well-preserved response of the right hemisphere. In addition, cortical neural excitability remains after CSD assessed by direct activation of the right hemisphere in spite of the sensory deficit under contralateral hindlimb stimulation. These results depict the sensory disturbance of bilateral hemispheres after CSD, which may be helpful in understanding how sensory disturbance occur during migraine aura. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The solsticial pause on Mars: 2 modelling and investigation of causes
NASA Astrophysics Data System (ADS)
Mulholland, David P.; Lewis, Stephen R.; Read, Peter L.; Madeleine, Jean-Baptiste; Forget, Francois
2016-01-01
The martian solsticial pause, presented in a companion paper (Lewis et al., 2016), was investigated further through a series of model runs using the UK version of the LMD/UK Mars Global Climate Model. It was found that the pause could not be adequately reproduced if radiatively active water ice clouds were omitted from the model. When clouds were used, along with a realistic time-dependent dust opacity distribution, a substantial minimum in near-surface transient eddy activity formed around solstice in both hemispheres. The net effect of the clouds in the model is, by altering the thermal structure of the atmosphere, to decrease the vertical shear of the westerly jet near the surface around solstice, and thus reduce baroclinic growth rates. A similar effect was seen under conditions of large dust loading, implying that northern midlatitude eddy activity will tend to become suppressed after a period of intense flushing storm formation around the northern cap edge. Suppression of baroclinic eddy generation by the barotropic component of the flow and via diabatic eddy dissipation were also investigated as possible mechanisms leading to the formation of the solsticial pause but were found not to make major contributions. Zonal variations in topography were found to be important, as their presence results in weakened transient eddies around winter solstice in both hemispheres, through modification of the near-surface flow. The zonal topographic asymmetry appears to be the primary reason for the weakness of eddy activity in the southern hemisphere relative to the northern hemisphere, and the ultimate cause of the solsticial pause in both hemispheres. The meridional topographic gradient was found to exert a much weaker influence on near-surface transient eddies.
Lateral specialization in unilateral spatial neglect: a cognitive robotics model.
Conti, Daniela; Di Nuovo, Santo; Cangelosi, Angelo; Di Nuovo, Alessandro
2016-08-01
In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans.
NASA Astrophysics Data System (ADS)
Jeong, Dae Il; Sushama, Laxmi; Naveed Khaliq, M.
2017-06-01
Snow is an important component of the cryosphere and it has a direct and important influence on water storage and supply in snowmelt-dominated regions. This study evaluates the temporal evolution of snow water equivalent (SWE) for the February-April spring period using the GlobSnow observation dataset for the 1980-2012 period. The analysis is performed for different regions of hemispherical to sub-continental scales for the Northern Hemisphere. The detection-attribution analysis is then performed to demonstrate anthropogenic and natural effects on spring SWE changes for different regions, by comparing observations with six CMIP5 model simulations for three different external forcings: all major anthropogenic and natural (ALL) forcings, greenhouse gas (GHG) forcing only, and natural forcing only. The observed spring SWE generally displays a decreasing trend, due to increasing spring temperatures. However, it exhibits a remarkable increasing trend for the southern parts of East Eurasia. The six CMIP5 models with ALL forcings reproduce well the observed spring SWE decreases at the hemispherical scale and continental scales, whereas important differences are noted for smaller regions such as southern and northern parts of East Eurasia and northern part of North America. The effects of ALL and GHG forcings are clearly detected for the spring SWE decline at the hemispherical scale, based on multi-model ensemble signals. The effects of ALL and GHG forcings, however, are less clear for the smaller regions or with single-model signals, indicating the large uncertainty in regional SWE changes, possibly due to stronger influence of natural climate variability.
Elemental Water Impact Test: Phase 1 20-Inch Hemisphere
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.
2015-01-01
Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 1 of the EWIT series featured water impact tests of a 20-inch hemisphere dropped from heights of 5 feet and 10 feet. The hemisphere was outfitted with an accelerometer and three pressure gages. The focus of this report is the correlation of analytical models against test data.
Asymmetric top-down modulation of ascending visual pathways in pigeons.
Freund, Nadja; Valencia-Alfonso, Carlos E; Kirsch, Janina; Brodmann, Katja; Manns, Martina; Güntürkün, Onur
2016-03-01
Cerebral asymmetries are a ubiquitous phenomenon evident in many species, incl. humans, and they display some similarities in their organization across vertebrates. In many species the left hemisphere is associated with the ability to categorize objects based on abstract or experience-based behaviors. Using the asymmetrically organized visual system of pigeons as an animal model, we show that descending forebrain pathways asymmetrically modulate visually evoked responses of single thalamic units. Activity patterns of neurons within the nucleus rotundus, the largest thalamic visual relay structure in birds, were differently modulated by left and right hemispheric descending systems. Thus, visual information ascending towards the left hemisphere was modulated by forebrain top-down systems at thalamic level, while right thalamic units were strikingly less modulated. This asymmetry of top-down control could promote experience-based processes within the left hemisphere, while biasing the right side towards stimulus-bound response patterns. In a subsequent behavioral task we tested the possible functional impact of this asymmetry. Under monocular conditions, pigeons learned to discriminate color pairs, so that each hemisphere was trained on one specific discrimination. Afterwards the animals were presented with stimuli that put the hemispheres in conflict. Response patterns on the conflicting stimuli revealed a clear dominance of the left hemisphere. Transient inactivation of left hemispheric top-down control reduced this dominance while inactivation of right hemispheric top-down control had no effect on response patterns. Functional asymmetries of descending systems that modify visual ascending pathways seem to play an important role in the superiority of the left hemisphere in experience-based visual tasks. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.
2012-01-01
Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.
Hsiao, Janet H; Cheung, Kit
2016-03-01
In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing. Nevertheless, it remains unclear whether this is due to phonetic radical position or character type frequency. Through computational modeling with artificial lexicons, in which we implement a theory of hemispheric asymmetry in perception but do not assume phonological processing being LH lateralized, we show that the difference in character type frequency alone is sufficient to exhibit the effect that the dominant type has a stronger LH lateralization than the minority type. This effect is due to higher visual similarity among characters in the dominant type than the minority type, demonstrating the modulation of visual similarity of words on hemispheric lateralization. Copyright © 2015 Cognitive Science Society, Inc.
Niina, Megumi; Okamura, Jun-ya; Wang, Gang
2015-10-01
Scalp event-related potential (ERP) studies have demonstrated larger N170 amplitudes when subjects view faces compared to items from object categories. Extensive attempts have been made to clarify face selectivity and hemispheric dominance for face processing. The purpose of this study was to investigate hemispheric differences in N170s activated by human faces and non-face objects, as well as the extent of overlap of their sources. ERP was recorded from 20 subjects while they viewed human face and non-face images. N170s obtained during the presentation of human faces appeared earlier and with larger amplitude than for other category images. Further source analysis with a two-dipole model revealed that the locations of face and object processing largely overlapped in the left hemisphere. Conversely, the source for face processing in the right hemisphere located more anterior than the source for object processing. The results suggest that the neuronal circuits for face and object processing are largely shared in the left hemisphere, with more distinct circuits in the right hemisphere. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kuhlen, H.; Horn, P.
1990-01-01
A new concept for a satellite based public mobile communications system, LOOPUS Mob-D, is introduced, whereby most of the classical problems in mobile satellite systems are approached in a different way. The LOOPUS system will offer a total capacity of 6000 high rate channels in three service areas (Europe, Asia, and North America), covering the entire Northern Hemisphere with a set of group special mobile (GSM) compatible mobile services, eventually providing the 'office in the car'. Special characteristics of the LOOPUS orbit and the communications network architecture are highlighted.
NASA Astrophysics Data System (ADS)
Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.
2016-12-01
A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.
Transport of infrared radiation in cuboidal clouds
NASA Technical Reports Server (NTRS)
HARSHVARDHAN; Weinman, J. A.; Davies, R.
1981-01-01
The transport of infrared radiation in a single cuboidal cloud using a vertical two steam approximation was modeled. The emittance of the top face of the model cloud is always less than that for a plane parallel cloud of the same optical depth. The hemisphere flux escaping from the cloud top has a gradient from the center to the edges which brighten when the cloud is over warmer ground. Cooling rate calculations in the 8 to 13.6 micrometer region show that there is cooling from the sides of the cloud at all levels even when there is heating of the core from the ground below. The radiances exiting from model cuboidal clouds were computed by path integration over the source function obtained with the two stream approximation. It is suggested that the brightness temperature measured from finite clouds will overestimate the cloud top temperature.
Climate Sensitivity to Realistic Solar Heating of Snow and Ice
NASA Astrophysics Data System (ADS)
Flanner, M.; Zender, C. S.
2004-12-01
Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.
MacKillop, James; Amlung, Michael T; Wier, Lauren M; David, Sean P; Ray, Lara A; Bickel, Warren K; Sweet, Lawrence H
2012-04-30
Neuroeconomics integrates behavioral economics and cognitive neuroscience to understand the neurobiological basis for normative and maladaptive decision making. Delay discounting is a behavioral economic index of impulsivity that reflects capacity to delay gratification and has been consistently associated with nicotine dependence. This preliminary study used functional magnetic resonance imaging to examine delay discounting for money and cigarette rewards in 13 nicotine dependent adults. Significant differences between preferences for smaller immediate rewards and larger delayed rewards were evident in a number of regions of interest (ROIs), including the medial prefrontal cortex, anterior insular cortex, middle temporal gyrus, middle frontal gyrus, and cingulate gyrus. Significant differences between money and cigarette rewards were generally lateralized, with cigarette choices associated with left hemisphere activation and money choices associated with right hemisphere activation. Specific ROI differences included the posterior parietal cortex, medial and middle frontal gyrus, ventral striatum, temporoparietal cortex, and angular gyrus. Impulsivity as measured by behavioral choices was significantly associated with both individual ROIs and a combined ROI model. These findings provide initial evidence in support of applying a neuroeconomic approach to understanding nicotine dependence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Using NWP to assess the influence of the Arctic atmosphere on midlatitude weather and climate
NASA Astrophysics Data System (ADS)
Semmler, Tido; Jung, Thomas; Kasper, Marta A.; Serrar, Soumia
2018-01-01
The influence of the Arctic atmosphere on Northern Hemisphere midlatitude tropospheric weather and climate is explored by comparing the skill of two sets of 14-day weather forecast experiments using the ECMWF model with and without relaxation of the Arctic atmosphere towards ERA-Interim reanalysis data during the integration. Two pathways are identified along which the Arctic influences midlatitude weather: a pronounced one over Asia and Eastern Europe, and a secondary one over North America. In general, linkages are found to be strongest (weakest) during boreal winter (summer) when the amplitude of stationary planetary waves over the Northern Hemisphere is strongest (weakest). No discernible Arctic impact is found over the North Atlantic and North Pacific region, which is consistent with predominantly southwesterly flow. An analysis of the flow-dependence of the linkages shows that anomalous northerly flow conditions increase the Arctic influence on midlatitude weather over the continents. Specifically, an anomalous northerly flow from the Kara Sea towards West Asia leads to cold surface temperature anomalies not only over West Asia but also over Eastern and Central Europe. Finally, the results of this study are discussed in the light of potential midlatitude benefits of improved Arctic prediction capabilities.
The imprint of surface fluxes and transport on variations in total column carbon dioxide
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.
2011-07-01
New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.
The imprint of surface fluxes and transport on variations in total column carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA
2012-01-01
New observations of the vertically integrated CO{sub 2} mixing ratio,
The imprint of surface fluxes and transport on variations in total column carbon dioxide
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.
2012-03-01
New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.
Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems
NASA Astrophysics Data System (ADS)
Zeng, C.; Deng, W.; Wu, C.; Insall, M.
2017-12-01
In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.
Joliot, M; Tzourio-Mazoyer, N; Mazoyer, B
2016-12-01
Asymmetry in intra-hemispheric intrinsic connectivity, and its association with handedness and hemispheric dominance for language, were investigated in a sample of 290 healthy volunteers enriched in left-handers (52.7%). From the resting-state FMRI data of each participant, we derived an intra-hemispheric intrinsic connectivity asymmetry (HICA) matrix as the difference between the left and right intra-hemispheric matrices of intrinsic correlation computed for each pair of the AICHA atlas ROIs. We defined a similarity measure between the HICA matrices of two individuals as the correlation coefficient of their corresponding elements, and computed for each individual an index of intra-hemispheric intrinsic connectivity asymmetry as the average similarity measure of his HICA matrix to those of the other subjects of the sample (HICAs). Gaussian-mixture modeling of the age-corrected HICAs sample distribution revealed that two types of HICA patterns were present, one (Typical_HICA) including 92.4% of the participants while the other (Atypical_HICA) included only 7.6% of them, mostly left-handers. In addition, we investigated the relationship between asymmetry in intra-hemispheric intrinsic connectivity and language hemispheric dominance, including a potential effect of handedness on this relationship, thanks to an FMRI acquisition during language production from which an hemispheric functional lateralization index for language (HFLI) and a type of hemispheric dominance for language, namely leftward, ambilateral, or rightward, were derived for each individual. There was a significant association between the types of language hemispheric dominance and of intra-hemispheric intrinsic connectivity asymmetry, occurrence of Atypical_HICAs individuals being very high in the group of individuals rightward-lateralized for language (80%), reduced in the ambilateral group (19%) and rare in individuals leftward-lateralized for language (less than 3%). Quantitatively, we found a significant positive linear relationship between the HICAs and HFLI indices, with an effect of handedness on the intercept but not on the slope of this relationship. These findings demonstrate that handedness and hemispheric dominance for language are significantly but independently associated with the asymmetry of intra-hemispheric intrinsic connectivity. These findings suggest that asymmetry in intra-hemispheric connectivity is a variable phenotype shaped in part by hemispheric lateralization for language, but possibly also depending on other lateralized functions. Copyright © 2016 Elsevier Ltd. All rights reserved.
A single dual-stream framework for syntactic computations in music and language.
Musso, Mariacristina; Weiller, Cornelius; Horn, Andreas; Glauche, Volkmer; Umarova, Roza; Hennig, Jürgen; Schneider, Albrecht; Rijntjes, Michel
2015-08-15
This study is the first to compare in the same subjects the specific spatial distribution and the functional and anatomical connectivity of the neuronal resources that activate and integrate syntactic representations during music and language processing. Combining functional magnetic resonance imaging with functional connectivity and diffusion tensor imaging-based probabilistic tractography, we examined the brain network involved in the recognition and integration of words and chords that were not hierarchically related to the preceding syntax; that is, those deviating from the universal principles of grammar and tonal relatedness. This kind of syntactic processing in both domains was found to rely on a shared network in the left hemisphere centered on the inferior part of the inferior frontal gyrus (IFG), including pars opercularis and pars triangularis, and on dorsal and ventral long association tracts connecting this brain area with temporo-parietal regions. Language processing utilized some adjacent left hemispheric IFG and middle temporal regions more than music processing, and music processing also involved right hemisphere regions not activated in language processing. Our data indicate that a dual-stream system with dorsal and ventral long association tracts centered on a functionally and structurally highly differentiated left IFG is pivotal for domain-general syntactic competence over a broad range of elements including words and chords. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Calvet, Marie; Margerin, Ludovic
2018-01-01
Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.
NASA Astrophysics Data System (ADS)
Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny
2016-04-01
Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.
Determining the Sun's Deep Meridional Flow Speed Using Active Latitude Drift Rates Since 1874
NASA Astrophysics Data System (ADS)
Hathaway, D. H.; Wilson, R. M.
2005-05-01
Dynamo models that incorporate a deep meridional return flow indicate that this flow regulates both the period and the amplitude of the sunspot cycle (Dikpati & Charbonneau 1999, ApJ, 518, 508 and Charbonneau & Dikpati 2000, ApJ, 543, 1027). We recently examined the equatorward drift of the active latitudes (as given by the centroid of the sunspot areas in each hemisphere) and found evidence supporting this view (Hathaway et al. 2003, ApJ, 589, 665 and Hathaway et al. 2004, ApJ, 602, 543). In those studies we fit the equatorward drift in each hemisphere for each sunspot cycle with a simple parabola - giving us a drift rate and its deceleration for each hemisphere/cycle. Here we analyze the same data (the Royal Greenwich Observatory/USAF/NOAA daily active region summaries) to determine the drift rates in each hemisphere on a yearly basis (rotation-by-rotation measurements smoothed to remove high frequencies) and fit them with a simple model for the meridional flow that provides the meridional flow speed as a function of latitude and time from 1874 to 2005. These flow speeds can be used to test dynamo models -- some of which have predictive capabilities.
Fine-coarse semantic processing in schizophrenia: a reversed pattern of hemispheric dominance.
Zeev-Wolf, Maor; Goldstein, Abraham; Levkovitz, Yechiel; Faust, Miriam
2014-04-01
Left lateralization for language processing is a feature of neurotypical brains. In individuals with schizophrenia, lack of left lateralization is associated with the language impairments manifested in this population. Beeman׳s fine-coarse semantic coding model asserts left hemisphere specialization in fine (i.e., conventionalized) semantic coding and right hemisphere specialization in coarse (i.e., non-conventionalized) semantic coding. Applying this model to schizophrenia would suggest that language impairments in this population are a result of greater reliance on coarse semantic coding. We investigated this hypothesis and examined whether a reversed pattern of hemispheric involvement in fine-coarse semantic coding along the time course of activation could be detected in individuals with schizophrenia. Seventeen individuals with schizophrenia and 30 neurotypical participants were presented with two word expressions of four types: literal, conventional metaphoric, unrelated (exemplars of fine semantic coding) and novel metaphoric (an exemplar of coarse semantic coding). Expressions were separated by either a short (250 ms) or long (750 ms) delay. Findings indicate that whereas during novel metaphor processing, controls displayed a left hemisphere advantage at 250 ms delay and right hemisphere advantage at 750 ms, individuals with schizophrenia displayed the opposite. For conventional metaphoric and unrelated expressions, controls showed left hemisphere advantage across times, while individuals with schizophrenia showed a right hemisphere advantage. Furthermore, whereas individuals with schizophrenia were less accurate than control at judging literal, conventional metaphoric and unrelated expressions they were more accurate when judging novel metaphors. Results suggest that individuals with schizophrenia display a reversed pattern of lateralization for semantic coding which causes them to rely more heavily on coarse semantic coding. Thus, for individuals with schizophrenia, speech situation are always non-conventional, compelling them to constantly seek for meanings and prejudicing them toward novel or atypical speech acts. This, in turn, may disadvantage them in conventionalized communication and result in language impairment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bajaj, Sahil; Housley, Stephen N.; Wu, David; Dhamala, Mukesh; James, G. A.; Butler, Andrew J.
2016-01-01
Balance of motor network activity between the two brain hemispheres after stroke is crucial for functional recovery. Several studies have extensively studied the role of the affected brain hemisphere to better understand changes in motor network activity following stroke. Very few studies have examined the role of the unaffected brain hemisphere and confirmed the test–retest reliability of connectivity measures on unaffected hemisphere. We recorded blood oxygenation level dependent functional magnetic resonance imaging (fMRI) signals from nine stroke survivors with hemiparesis of the left or right hand. Participants performed a motor execution task with affected hand, unaffected hand, and both hands simultaneously. Participants returned for a repeat fMRI scan 1 week later. Using dynamic causal modeling (DCM), we evaluated effective connectivity among three motor areas: the primary motor area (M1), the premotor cortex (PMC) and the supplementary motor area for the affected and unaffected hemispheres separately. Five participants’ manual motor ability was assessed by Fugl-Meyer Motor Assessment scores and root-mean square error of participants’ tracking ability during a robot-assisted game. We found (i) that the task performance with the affected hand resulted in strengthening of the connectivity pattern for unaffected hemisphere, (ii) an identical network of the unaffected hemisphere when participants performed the task with their unaffected hand, and (iii) the pattern of directional connectivity observed in the affected hemisphere was identical for tasks using the affected hand only or both hands. Furthermore, paired t-test comparison found no significant differences in connectivity strength for any path when compared with one-week follow-up. Brain-behavior linear correlation analysis showed that the connectivity patterns in the unaffected hemisphere more accurately reflected the behavioral conditions than the connectivity patterns in the affected hemisphere. Above findings enrich our knowledge of unaffected brain hemisphere following stroke, which further strengthens our neurobiological understanding of stroke-affected brain and can help to effectively identify and apply stroke-treatments. PMID:28082882
Interaction of Saturn's dual rotation periods
NASA Astrophysics Data System (ADS)
Smith, C. G. A.
2018-03-01
We develop models of the interaction of Rossby wave disturbances in the northern and southern ionospheres of Saturn. We show that interhemispheric field-aligned currents allow the exchange of vorticity, modifying the background Rossby wave propagation speed. This leads to interaction of the northern and southern Rossby wave periods. In a very simple symmetric model without a plasma disk the periods merge when the overall conductivity is sufficiently high. A more complex model taking account of the inertia of the plasma disk and the asymmetry of the two hemispheres predicts a rich variety of possible wave modes. We find that merging of the northern and southern periods can only occur when (i) the conductivities of both hemispheres are sufficiently low (a criterion that is fulfilled for realistic parameters) and (ii) the background Rossby wave periods in the two hemispheres are identical. We reconcile the second criterion with the observations of a merged period that also drifts by noting that ranges of Rossby wave propagation speeds are possible in each hemisphere. We suggest that a merged disturbance in the plasma disk may act as an 'anchor' and drive Rossby waves in each hemisphere within the range of possible propagation speeds. This suggestion predicts behaviour that qualitatively matches the observed merging and splitting of the northern and southern rotation periods that occurred in 2013 and 2014. Low conductivity modes also show long damping timescales that are consistent with the persistence of the periodic signals.
Nusbaum, Fanny; Hannoun, Salem; Kocevar, Gabriel; Stamile, Claudio; Fourneret, Pierre; Revol, Olivier; Sappey-Marinier, Dominique
2017-01-01
Objectives: The main goal of this study was to investigate and compare the neural substrate of two children's profiles of high intelligence quotient (HIQ). Methods: Two groups of HIQ children were included with either a homogeneous (Hom-HIQ: n = 20) or a heterogeneous IQ profile (Het-HIQ: n = 24) as defined by a significant difference between verbal comprehension index and perceptual reasoning index. Diffusion tensor imaging was used to assess white matter (WM) microstructure while tract-based spatial statistics (TBSS) analysis was performed to detect and localize WM regional differences in fractional anisotropy (FA), mean diffusivity, axial (AD), and radial diffusivities. Quantitative measurements were performed on 48 regions and 21 fiber-bundles of WM. Results: Hom-HIQ children presented higher FA than Het-HIQ children in widespread WM regions including central structures, and associative intra-hemispheric WM fasciculi. AD was also greater in numerous WM regions of Total-HIQ, Hom-HIQ, and Het-HIQ groups when compared to the Control group. Hom-HIQ and Het-HIQ groups also differed by their hemispheric lateralization in AD differences compared to Controls. Het-HIQ and Hom-HIQ groups showed a lateralization ratio (left/right) of 1.38 and 0.78, respectively. Conclusions: These findings suggest that both inter- and intra-hemispheric WM integrity are enhanced in HIQ children and that neural substrate differs between Hom-HIQ and Het-HIQ. The left hemispheric lateralization of Het-HIQ children is concordant with their higher verbal index while the relative right hemispheric lateralization of Hom-HIQ children is concordant with their global brain processing and adaptation capacities as evidenced by their homogeneous IQ. PMID:28420955
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
Top-Down CO Emissions Based On IASI Observations and Hemispheric Constraints on OH Levels
NASA Astrophysics Data System (ADS)
Müller, J.-F.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Sweeney, C.
2018-02-01
Assessments of carbon monoxide emissions through inverse modeling are dependent on the modeled abundance of the hydroxyl radical (OH) which controls both the primary sink of CO and its photochemical source through hydrocarbon oxidation. However, most chemistry transport models (CTMs) fall short of reproducing constraints on hemispherically averaged OH levels derived from methylchloroform (MCF) observations. Here we construct five different OH fields compatible with MCF-based analyses, and we prescribe those fields in a global CTM to infer CO fluxes based on Infrared Atmospheric Sounding Interferometer (IASI) CO columns. Each OH field leads to a different set of optimized emissions. Comparisons with independent data (surface, ground-based remotely sensed, aircraft) indicate that the inversion adopting the lowest average OH level in the Northern Hemisphere (7.8 × 105 molec cm-3, ˜18% lower than the best estimate based on MCF measurements) provides the best overall agreement with all tested observation data sets.
Spiders: water-driven erosive structures in the southern hemisphere of Mars.
Prieto-Ballesteros, Olga; Fernández-Remolar, David C; Rodríguez-Manfredi, José Antonio; Selsis, Franck; Manrubia, Susanna C
2006-08-01
Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.
Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne
2014-11-01
Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.
NASA Technical Reports Server (NTRS)
Yung, Y. L.
2008-01-01
A principal component analysis (PCA) is applied to the Southern Hemisphere (SH) total column ozone following the method established for analyzing the data in the Northern Hemisphere (NH) in a companion paper. The interannual variability (IAV) of extratropical O-3 in the SH is characterized by four main modes, which account for 75% of the total variance. The first two leading modes are approximately zonally symmetric and relate to the Southern Hemisphere annular mode and the quasi-biennial oscillation. The third and fourth modes exhibit wavenumber-1 structures. Contrary to the Northern Hemisphere, the third and fourth are nor related to stationary waves. Similar results obtained for the 30 100-hPa geopotential thickness.The decreasing O3 trend in the SH is captured in the first mode. The largest trend is at the South Pole, with value similar to-2 Dobson Units (DU)/yr. Both the spatial pattern and trends in the column ozone are captured by the Goddard Earth Observation System chemistry-climate model (GEOS-CCM) in the SH.
Inter-Hemispheric Comparisons of the Ground Magnetic Response to an Interplanetary Shock
NASA Astrophysics Data System (ADS)
Hartinger, M.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.
2016-12-01
Models predict that hemispheric differences in ionospheric conductivity affect the high-latitude ground magnetic response during interplanetary shock events. Using ground magnetometer observations from dense north-south chains in both the Northern (Greenland) and Southern (East Antarctic Plateau) hemispheres, we show an event study where that is not the case: nearly the same magnetic response is observed in both hemispheres, despite near-solstice conditions when hemispheric conductivity differences should be large. We compare observations to virtual ground magnetometer output from global magnetohydrodynamic (MHD) simulations with the same driving conditions but different ionospheric conductivity profiles: (1) uniform conductivity, (2) variable conductivity appropriate for solar illumination during solstice, (3) the same as 2 but with additional conductivity contributions from auroral precipitation. There are major quantitative differences between simulations, with simulation 3 exhibiting the best agreement with data. Our results demonstrate the importance of constraining ionospheric conductivity - especially contributions from auroral precipitation - before interpreting hemispheric differences in ground magnetic perturbation amplitude. We discuss the application of these results to techniques that relate high-latitude ground magnetometer observations to current or voltage generators.
Hemispheric asymmetry in the hierarchical perception of music and speech.
Rosenthal, Matthew A
2016-11-01
The perception of music and speech involves a higher level, cognitive mechanism that allows listeners to form expectations for future music and speech events. This article comprehensively reviews studies on hemispheric differences in the formation of melodic and harmonic expectations in music and selectively reviews studies on hemispheric differences in the formation of syntactic and semantic expectations in speech. On the basis of this review, it is concluded that the higher level mechanism flexibly lateralizes music processing to either hemisphere depending on the expectation generated by a given musical context. When a context generates in the listener an expectation whose elements are sequentially ordered over time, higher level processing is dominant in the left hemisphere. When a context generates in the listener an expectation whose elements are not sequentially ordered over time, higher level processing is dominant in the right hemisphere. This article concludes with a spreading activation model that describes expectations for music and speech in terms of shared temporal and nontemporal representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Güttler, D.; Adolphi, F.; Beer, J.; Bleicher, N.; Boswijk, G.; Christl, M.; Hogg, A.; Palmer, J.; Vockenhuber, C.; Wacker, L.; Wunder, J.
2015-02-01
In 2012, Miyake et al. reported a sudden and strong increase of the atmospheric radiocarbon (14C) content in Japanese cedar trees of 1.2% between AD 774 and 775. While their findings were quickly confirmed by a German oak chronology for the Northern Hemisphere (NH), the question remained if the effect was seen in both hemispheres. Here we present the first annually resolved Southern Hemisphere (SH) 14C record spanning the interval AD 760-787, using New Zealand kauri (Agathis australis) chronology wood. An almost identical distinct increase compared to Northern Hemisphere data was observed, suggesting a cosmic event with globally uniform impact as a potential cause for the increase. Deploying a carbon cycle box model a worldwide averaged net 14C production of 2.2 ×108 14C atoms cm-2 was estimated, which is 3.7 times higher than the average annual 14C production. The immediate appearance of the event in tree rings on both hemispheres suggests a short duration event of significantly less than 1 yr.
Wang, Jiandong; Xing, Jia; Mathur, Rohit; Pleim, Jonathan E.; Wang, Shuxiao; Hogrefe, Christian; Gan, Chuen-Meei; Wong, David C.; Hao, Jiming
2016-01-01
Background: Air quality across the northern hemisphere over the past two decades has witnessed dramatic changes, with continuous improvement in developed countries in North America and Europe, but a contrasting sharp deterioration in developing regions of Asia. Objective: This study investigates the historical trend in the long-term exposure to PM2.5 and PM2.5-related premature mortality (PM2.5-mortality) and its response to changes in emission that occurred during 1990–2010 across the northern hemisphere. Implications for future trends in human exposure to air pollution in both developed and developing regions of the world are discussed. Methods: We employed the integrated exposure–response model developed by Health Effects Institute to estimate the PM2.5-mortality. The 1990–2010 annual average PM2.5 concentrations were obtained from the simulations using the WRF-CMAQ model. Emission mitigation efficiencies of sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), and primary PM are estimated from the PM2.5-mortality responses to the emission variations. Results: Estimated PM2.5-mortalities in East Asia and South Asia increased by 21% and 85% respectively, from 866,000 and 578,000 in 1990, to 1,048,000 and 1,068,000 in 2010. PM2.5-mortalities in developed regions (i.e., Europe and high-income North America) decreased substantially by 67% and 58% respectively. Conclusions: Over the past two decades, correlations between population and PM2.5 have become weaker in Europe and North America due to air pollution controls but stronger in East Asia due to deteriorating air quality. Mitigation of primary PM appears to be the most efficient way for increasing health benefits (i.e., providing the largest mortality reduction per unit emissions). However, reductions in emissions of NH3 are needed to maximize the effectiveness of NOx emission controls. Citation: Wang J, Xing J, Mathur R, Pleim JE, Wang S, Hogrefe C, Gan CM, Wong DC, Hao J. 2017. Historical trends in PM2.5-related premature mortality during 1990–2010 across the northern hemisphere. Environ Health Perspect 125:400–408; http://dx.doi.org/10.1289/EHP298 PMID:27539607
Lateralization of spatial information processing in response monitoring
Stock, Ann-Kathrin; Beste, Christian
2014-01-01
The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855
What Does the Right Hemisphere Know about Phoneme Categories?
ERIC Educational Resources Information Center
Wolmetz, Michael; Poeppel, David; Rapp, Brenda
2011-01-01
Innate auditory sensitivities and familiarity with the sounds of language give rise to clear influences of phonemic categories on adult perception of speech. With few exceptions, current models endorse highly left-hemisphere-lateralized mechanisms responsible for the influence of phonemic category on speech perception, based primarily on results…
Topographic brain mapping of emotion-related hemisphere asymmetries.
Roschmann, R; Wittling, W
1992-03-01
The study used topographic brain mapping of visual evoked potentials to investigate emotion-related hemisphere asymmetries. The stimulus material consisted of color photographs of human faces, grouped into two emotion-related categories: normal faces (neutral stimuli) and faces deformed by dermatological diseases (emotional stimuli). The pictures were presented tachistoscopically to 20 adult right-handed subjects. Brain activity was recorded by 30 EEG electrodes with linked ears as reference. The waveforms were averaged separately with respect to each of the two stimulus conditions. Statistical analysis by means of significance probability mapping revealed significant differences between stimulus conditions for two periods of time, indicating right hemisphere superiority in emotion-related processing. The results are discussed in terms of a 2-stage-model of emotional processing in the cerebral hemispheres.
Detection of Northern Hemisphere transient eddies at Gale Crater Mars
NASA Astrophysics Data System (ADS)
Haberle, Robert M.; Juárez, Manuel de la Torre; Kahre, Melinda A.; Kass, David M.; Barnes, Jeffrey R.; Hollingsworth, Jeffery L.; Harri, Ari-Matti; Kahanpää, Henrik
2018-06-01
The Rover Environmental Monitoring Station (REMS) on the Curiosity Rover is operating in the Southern Hemisphere of Mars and is detecting synoptic period oscillations in the pressure data that we attribute to Northern Hemisphere transient eddies. We base this interpretation on the similarity in the periods of the eddies and their seasonal variations with those observed in northern midlatitudes by Viking Lander 2 (VL-2) 18 Mars years earlier. Further support for this interpretation comes from global circulation modeling which shows similar behavior in the transient eddies at the grid points closest to Curiosity and VL-2. These observations provide the first in situ evidence that the frontal systems often associated with "Flushing Dust Storms" do cross the equator and extend into the Southern Hemisphere.
Gilson, Matthieu; Deco, Gustavo; Friston, Karl J; Hagmann, Patric; Mantini, Dante; Betti, Viviana; Romani, Gian Luca; Corbetta, Maurizio
2017-10-09
Our behavior entails a flexible and context-sensitive interplay between brain areas to integrate information according to goal-directed requirements. However, the neural mechanisms governing the entrainment of functionally specialized brain areas remain poorly understood. In particular, the question arises whether observed changes in the regional activity for different cognitive conditions are explained by modifications of the inputs to the brain or its connectivity? We observe that transitions of fMRI activity between areas convey information about the tasks performed by 19 subjects, watching a movie versus a black screen (rest). We use a model-based framework that explains this spatiotemporal functional connectivity pattern by the local variability for 66 cortical regions and the network effective connectivity between them. We find that, among the estimated model parameters, movie viewing affects to a larger extent the local activity, which we interpret as extrinsic changes related to the increased stimulus load. However, detailed changes in the effective connectivity preserve a balance in the propagating activity and select specific pathways such that high-level brain regions integrate visual and auditory information, in particular boosting the communication between the two brain hemispheres. These findings speak to a dynamic coordination underlying the functional integration in the brain. Copyright © 2017. Published by Elsevier Inc.
Pacheco-Labrador, Javier; Martín, M. Pilar
2015-01-01
Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects. PMID:25679315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil
Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 daysmore » in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.« less
A model-based method for estimating Ca2+ release fluxes from linescan images in Xenopus oocytes.
Baran, Irina; Popescu, Anca
2009-09-01
We propose a model-based method of interpreting linescan images observed in Xenopus oocytes with the use of Oregon Green-1 as a fluorescent dye. We use a detailed modeling formalism based on numerical simulations that incorporate physical barriers for local diffusion, and, by assuming a Gaussian distribution of release durations, we derive the distributions of release Ca(2+) amounts and currents, fluorescence amplitudes, and puff widths. We analyze a wide set of available data collected from 857 and 281 events observed in the animal and the vegetal hemispheres of the oocyte, respectively. A relatively small fraction of events appear to involve coupling of two or three adjacent clusters of Ca(2+) releasing channels. In the animal hemisphere, the distribution of release currents with a mean of 1.4 pA presents a maximum at 1.0 pA and a rather long tail extending up to 5 pA. The overall distribution of liberated Ca(2+) amounts exhibits a dominant peak at 120 fC, a smaller peak at 375 fC, and an average of 166 fC. Ca(2+) amounts and release fluxes in the vegetal hemisphere appear to be 3.6 and 1.6 times smaller than in the animal hemisphere, respectively. Predicted diameters of elemental release sites are approximately 1.0 microm in the animal and approximately 0.5 microm in the vegetal hemisphere, but the side-to-side separation between adjacent sites appears to be identical (approximately 0.4 microm). By fitting the model to individual puffs we can estimate the quantity of liberated calcium, the release current, the orientation of the scan line, and the dimension of the corresponding release site.
NASA Astrophysics Data System (ADS)
Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla
2015-04-01
We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt, J., J. D. Silver, L. M. Frohn, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, C. A. Skjøth, H. Villadsen, A. Zare, and J. H. Christensen, 2012: An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport. Atmospheric Environment, Volume 53, June 2012, pp. 156-176, doi:10.1016/j.atmosenv.2012.01.011 Brandt, J., J. D. Silver, J. H. Christensen, M. S. Andersen, J. Bønløkke, T. Sigsgaard, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, E. Kaas and L. M. Frohn, 2013a: "Contribution from the ten major emission sectors in Europe to the Health-Cost Externalities of Air Pollution using the EVA Model System - an integrated modelling approach". Atmospheric Chemistry and Physics, Vol. 13, pp. 7725-7746, 2013. www.atmos-chem-phys.net/13/7725/2013/, doi:10.5194/acp-13-7725-2013. Brandt, J., J. D. Silver, J. H. Christensen, M. S. Andersen, J. Bønløkke, T. Sigsgaard, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. Hedegaard, E. Kaas and L. M. Frohn, 2013b: "Assessment of Past, Present and Future Health-Cost Externalities of Air Pollution in Europe and the contribution from international ship traffic using the EVA Model System". Atmospheric Chemistry and Physics. Vol. 13, pp. 7747-7764, 2013. www.atmos-chem-phys.net/13/7747/2013/. doi:10.5194/acp-13-7747-2013. Plejdrup, M.S., Gyldenkærne, S., 2011. Spatial distribution of pollutants to air - the SPREAD model. NERI Technical Report No. 823.
NASA Astrophysics Data System (ADS)
Hsu, Shih-Chieh; Huh, Chih-An; Chan, Chuen-Yu; Lin, Shuen-Hsin; Lin, Fei-Jan; Liu, Shaw Chen
2012-01-01
Radioactivities of particulate 131I and 137Cs released from the Fukushima nuclear accident were monitored in a regional aerosol network including two high mountain sites (central Taiwan and Tibetan Plateau). The results were integrated with data measured elsewhere around the world, with special focus on the mid-latitudes. The hemispheric transport of the Fukushima radiation clouds (FRCs) by the westerlies took ˜18 days, displaying an exponential-like decrease eastward, with a dilution factor of at least five orders of magnitude following a full circuit around the globe. The initial two waves of FRCs may travel at different atitudes: the first one at ˜3-4 km, whereas the second one up to 5 km or more. 131I and 137Cs were fractionated during transport, with 137Cs concentrated in the shallower layer, susceptible to depositional removal, while 131I moving faster and higher. This accident may be exemplified to identify some atmospheric processes on the hemispheric scale.
NASA Astrophysics Data System (ADS)
Bolaji, Olawale; Owolabi, Oluwafisayo; Falayi, Elijah; Jimoh, Emmanuel; Kotoye, Afolabi; Odeyemi, Olumide; Rabiu, Babatunde; Doherty, Patricia; Yizengaw, Endawoke; Yamazaki, Yosuke; Adeniyi, Jacob; Kaka, Rafiat; Onanuga, Kehinde
2017-01-01
In this work, we investigated the veracity of an ion continuity equation in controlling equatorial ionization anomaly (EIA) morphology using total electron content (TEC) of 22 GPS receivers and three ground-based magnetometers (Magnetic Data Acquisition System, MAGDAS) over Africa and the Middle East (Africa-Middle East) during the quietest periods. Apart from further confirmation of the roles of equatorial electrojet (EEJ) and integrated equatorial electrojet (IEEJ) in determining hemispheric extent of EIA crest over higher latitudes, we found some additional roles played by thermospheric meridional neutral wind. Interestingly, the simultaneous observations of EIA crests in both hemispheres of Africa-Middle East showed different morphology compared to that reported over Asia. We also observed interesting latitudinal twin EIA crests domiciled at the low latitudes of the Northern Hemisphere. Our results further showed that weak EEJ strength associated with counter electrojet (CEJ) during sunrise hours could also trigger twin EIA crests over higher latitudes.
NASA Technical Reports Server (NTRS)
Eck, Thomas F.; Deering, Donald W.
1992-01-01
Measurements of plant canopy bidirectional reflectance made by the PARABOLA (portable apparatus for rapid acquisition of bidirectional observations of the land and atmosphere) instrument in three spectral bands are analyzed for steppe grassland sites of differing productivity levels. The variation of spectral reflectance and the normalized difference vegetation index in the solar principal plane is presented. Comparisons are made with PARABOLA measurements from selected first ISLSCP field experiment (FIFE) grassland sites in the Konza prairie, Kansas. The Streletskaya steppe sites showed no strong hot spot reflectance, while this effect was present in some FIFE sites but absent in others. The hot spot effect seems to be dependent on canopy geometry and background reflectance characteristics of these sites. Spectral hemispherical reflectance was computed from the angular integration of the bidirectional measurements for the steppe sites. Total shortwave albedo was estimated from these hemispherical reflectance measurements and compared to albedo measured by pyranometers. The albedo estimates from PARABOLA were found to be approximately 12-17 percent higher than the pyranometer measurements.
The UV Spectrum of Phobos as measured by MAVEN/IUVS
NASA Astrophysics Data System (ADS)
Chaffin, M.; Deighan, J.; Schneider, N. M.; Thiemann, E.; Stewart, I. F.; Jain, S.; Lo, D.; Crismani, M. M. J.; Stiepen, A.; Clarke, J. T.; Mayyasi, M.; Montmessin, F.; Holsclaw, G.; McClintock, B.; Epavier, F.; Jakosky, B. M.
2017-12-01
In late 2015, the Mars Atmosphere and Volatile Evolution (MAVEN) mission apoapsis was near the orbit of Phobos and the spacecraft had several close encounters with the moon. Using a specially designed imaging sequence, MAVEN's Imaging Ultraviolet Spectrograph (IUVS) was able to gather the first spectral images of the moon in the mid-ultraviolet. IUVS observed the trailing hemisphere of the moon, producing spectra useful for comparison with the leading hemisphere measurements of the Mariner 9 UV spectrometer and Mars Express SPICAM observations. IUVS shows the trailing side to be bluer than the leading side, potentially revealing differences in the space weathering history of the hemispheres. In addition, there is marginal evidence for an absorption feature longward of 300 nm, potentially produced by organic compounds. Due to short integration times, the FUV spectrum of the moon is limited to some reflectance signal at Lyman alpha, constraining the albedo at this wavelength and placing an upper limit on it elsewhere.
The hemispherical asymmetry of the residual polar caps on Mars
NASA Technical Reports Server (NTRS)
Lindner, Bernhard Lee
1991-01-01
A model of the polar caps of Mars was created which allows: (1) for light penetration into the cap; (2) ice albedo to vary with age, latitude, hemisphere, dust content, and solar zenith angle; and (3) for diurnal variability. The model includes the radiative effects of clouds and dust, and heat transport as represented by a thermal wind. The model reproduces polar cap regression data very well, including the survival of CO2 frost at the south pole and reproduces the general trend in the Viking Lander pressure data.
NASA Technical Reports Server (NTRS)
Wang, J.-T.; Gates, W. L.; Kim, J.-W.
1984-01-01
A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.
NASA Astrophysics Data System (ADS)
Mendillo, Michael; Lollo, Anthony; Withers, Paul; Matta, Majd; Pätzold, Martin; Tellmann, Silvia
2011-11-01
We have analyzed a brief period of same-day observations of the Martian ionosphere using data obtained in December 2004 from the Mars Global Surveyor (MGS) and Mars Express (MEX) radio occultation experiments. These data were taken shortly after sunrise under solstice conditions in both hemispheres, with MGS in the summer (northern) hemisphere at high latitudes while MEX was in the winter (southern) hemisphere at midlatitudes. Such two-satellite, dual-hemisphere data sets are unique for the modern era of ionospheric observations at Mars and provide good test cases for constraints of key parameters commonly used in models of the Martian ionosphere. Several iterations of a 1-dimensional model are developed in attempts to simulate more successfully the altitudes, absolute magnitudes and shapes of the two photo-chemical layers (M1 and M2) obtained during the joint MGS-MEX observing period. Three basic processes are examined: (1) selection of the optimal model neutral atmospheres, (2) the effects due to departures from thermal equilibrium between electrons, ions and neutrals, (3) methods of handling secondary ionization. While general circulation models fully coupled to plasma transport codes are required for global simulations of the full system, the computational complexity and computer resources needed often result in the use of parameterizations relating electron and ion temperatures to neutral temperatures and secondary ionization to primary photo-ionization profiles. Here we develop such schemes and test them within the framework of same day observations in both hemispheres. The occurrence of same day, separate hemisphere, radio occultation profiles is important because the solar irradiance has to be held constant for modeling both sites, and thus this is the first study of this kind to be done. The overall results stress the dominant influence of solar zenith angle effects on production for the M2-layer via primary solar ionization, its augmentation by ˜30% due to secondary ionization, and further enhancements due to reduced chemical loss when the electron temperature exceeds the neutral temperature. Secondary ionization is the most crucial process for the M1-layer. The influence of very different crustal magnetic field morphologies at the two observing locations did not seem to be a crucial source of differentiation for processes that control the average values of the peak electron densities of the two photo-chemical layers.
NASA Astrophysics Data System (ADS)
Gusain, S.
2017-12-01
We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.
Long-term variability in Northern Hemisphere snow cover and associations with warmer winters
McCabe, Gregory J.; Wolock, David M.
2010-01-01
A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.
Long-term variability in Northern Hemisphere snow cover and associations with warmer winters
McCabe, G.J.; Wolock, D.M.
2010-01-01
A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease. ?? 2009 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Krasting, John P.
Snowfall is an important feature of the Earth's climate system that has the ability to influence both the natural world and human activity. This dissertation examines past and future changes in snowfall related to increasing concentrations of anthropogenic greenhouse gases. Snowfall observations for North America, derived snowfall products for the Northern Hemisphere, and simulations performed with 13 coupled atmosphere-ocean global climate models are analyzed. The analysis of the spatial pattern of simulated annual trends on a grid point basis from 1951 to 1999 indicates that a transition zone exists above 60° N latitude across the Northern Hemisphere that separates negative trends in annual snowfall in the mid-latitudes and positive trends at higher latitudes. Regional analysis of observed annual snowfall indicates that statistically significant trends are found in western North America, Japan, and southern Russia. A majority of the observed historical trends in annual snowfall elsewhere in the Northern Hemisphere, however, are not statistically significant and this result is consistent with model simulations. Projections of future snowfall indicate the presence of a similar transition zone between negative and positive snowfall trends that corresponds with the area between the -10 to -15°C isotherms of the multi-model mean temperature of the late twentieth century in each of the fall, winter, and spring seasons. Redistributions of snowfall throughout the entire snow season are likely -- even in locations where there is little change in annual snowfall. Changes in the fraction of precipitation falling as snow contribute to decreases in snowfall across most Northern Hemisphere regions, while changes in precipitation typically contribute to increases in snowfall. Snowfall events less than or equal to 5 cm are found to decrease in the future across most of the Northern Hemisphere, while snowfall events greater than or equal to 20 cm increase in some locations, such as northern Quebec. A signal-to-noise analysis reveals that the projected changes in snowfall are likely to become apparent during the twenty-first century for most locations in the Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Frauenfeld, O. W.; Peng, X.; Zhang, T.
2016-12-01
Both the thawing index (TI) and active layer thickness (ALT) can be useful indicators of climate change in cold regions and have important implications for various surface-atmosphere interactions. Here, we analyze the spatial and temporal variability of the Northern Hemisphere TI and ALT under historical and projected climate change. We combine gridded and station-based observations to assess the multi-model ensemble mean of 16 of the Coupled Model Intercomparison Project phase 5 (CMIP5) models over 1850-2005. The TI and ALT are assessed based on 1901-2014 Climatic Research Unit (CRU) data, and observational ALT from 348 station locations across the Northern Hemisphere. We then employ three representative concentration pathways (RCP 2.6, 4.5, and 8.5) from the same CMIP5 multi-model ensemble means to evaluate changes for 2006-2100. Over the historical period, the TI varies from 0-11,000°C-days in the Northern Hemisphere, and we find good agreement between CMIP5 models and CRU data; however, the models generally underestimate observed TI and its long-term trends. Over the 2006-2100 period, the multi-model ensemble averaged TI increases significantly for all three RCPs, ranging from 1.5°C-days/yr for RCP 2.6, to 14°C-days/yr for RCP 8.5. The spatial variations in ALT from observing stations exhibit significant variability and generally range from 80-320 cm across the Northern Hemisphere, with some extreme values of 900 cm in the European Alps. Calculating observational ALT for 1971-2000 from CRU, we find lower values (30-650 cm). The CMIP5 climatology agrees well with the CRU estimates. ALT trends over the observational period are generally less than 1.5 cm/decade, but as high as 3 cm/decade in some isolated regions. While this general trend magnitude agrees with that from CMIP5, the multi-model ensemble underestimates trends and exhibits much less spatial variability. Projected trends range from 0.77 cm/decade in RCP 2.6, to 6.5 cm/decade in RCP 8.5 in the permafrost regions across the Northern Hemisphere. Over the observational period, summer air temperature and precipitation are found to be the main drivers of ALT variability. However, the declining Arctic sea ice trend is also strongly negatively correlated with ALT increases, pointing to a common driver of these cryospheric changes.
NASA Astrophysics Data System (ADS)
Arruda, Daniela C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, Vivian M.; Takahashi, H.; Medeiros, A. F.; Buriti, R. A.
2006-01-01
This work presents equatorial ionospheric plasma bubble zonal drift velocity observations and their comparison with model calculations. The bubble zonal velocities were measured using airglow OI630 nm all-sky digital images and the model calculations were performed taking into account flux-tube integrated Pedersen conductivity and conductivity weighted neutral zonal winds. The digital images were obtained from an all-sky imaging system operated over the low-latitude station Cachoeira Paulista (Geogr. 22.5S, 45W, dip angle 31.5S) during the period from October 1998 to August 2000. Out of the 138 nights of imager observation, 29 nights with the presence of plasma bubbles are used in this study. These 29 nights correspond to geomagnetically rather quiet days (∑K P < 24+) and were grouped according to season. During the early night hours, the calculated zonal drift velocities were found to be larger than the experimental values. The best matching between the calculated and observed zonal velocities were seen to be for a few hours around midnight. The model calculation showed two humps around 20 LT and 24 LT that were not present in the data. Average decelerations obtained from linear regression between 20 LT and 24 LT were found to be: (a) Spring 1998, -8.61 ms -1 h -1; (b) Summer 1999, -0.59 ms -1 h -1; (c) Spring 1999, -11.72 ms -1 h -1; and (d) Summer 2000, -8.59 ms -1 h -1. Notice that Summer and Winter here correspond to southern hemisphere Summer and Winter, not northern hemisphere.
Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation
Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton
2016-01-01
Abstract A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model‐dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model‐dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low‐level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales. PMID:27668040
NASA Astrophysics Data System (ADS)
Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.
2018-04-01
We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.
Seasonal Predictability in a Model Atmosphere.
NASA Astrophysics Data System (ADS)
Lin, Hai
2001-07-01
The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.
ERIC Educational Resources Information Center
Rourke, Byron P.; Conway, James A.
1997-01-01
Reviews current research on brain-behavior relationships in disabilities of arithmetic and mathematical reasoning from both a neurological and a neuropsychological perspective. Defines developmental dyscalculia and the developmental importance of right versus left hemisphere integrity for the mediation of arithmetic learning and explores…
The right hemisphere's contribution to discourse processing: A study in temporal lobe epilepsy.
Lomlomdjian, Carolina; Múnera, Claudia P; Low, Daniel M; Terpiluk, Verónica; Solís, Patricia; Abusamra, Valeria; Kochen, Silvia
2017-08-01
Discourse skills - in which the right hemisphere has an important role - enables verbal communication by selecting contextually relevant information and integrating it coherently to infer the correct meaning. However, language research in epilepsy has focused on single word analysis related mainly to left hemisphere processing. The purpose of this study was to investigate discourse abilities in patients with right lateralized medial temporal lobe epilepsy (RTLE) by comparing their performance to that of patients with left temporal lobe epilepsy (LTLE). 74 pharmacoresistant temporal lobe epilepsy (TLE) patients were evaluated: 34 with RTLE and 40 with LTLE. Subjects underwent a battery of tests that measure comprehension and production of conversational and narrative discourse. Disease related variables and general neuropsychological data were evaluated. The RTLE group presented deficits in interictal conversational and narrative discourse, with a disintegrated speech, lack of categorization and misinterpretation of social meaning. LTLE group, on the other hand, showed a tendency to lower performance in logical-temporal sequencing. RTLE patients showed discourse deficits which have been described in right hemisphere damaged patients due to other etiologies. Medial and anterior temporal lobe structures appear to link semantic, world knowledge, and social cognition associated areas to construct a contextually related coherent meaning. Copyright © 2017 Elsevier Inc. All rights reserved.
Curtiss, Susan; de Bode, Stella
2003-08-01
We examined the morphosyntax of eight left hemispherectomized children at two different stages and compared it to MLU-matched normals. We found that the language of the hemispherectomies paralleled that of their MLU matches with respect to the specific morphosyntactic characteristics of each stage. Our findings provide strong evidence for the presence of functional categories in all early grammars and demonstrate that grammatical development, regardless of its neural substrate, is highly constrained by UG and follows a narrowly determined course. We discuss our findings within a neurobiological framework in which etiology defines the integrity of the remaining hemisphere, which in turn, determines its potential for linguistic reorganization and/or acquisition.
The Influence of Hemispheric Dominance on Scores of the Myers-Briggs Type Indicator.
ERIC Educational Resources Information Center
Hartman, Steve E.; And Others
1997-01-01
Results for 75 medical students and 248 undergraduates suggest that the Myers-Briggs Type Indicator appears to sample only 3 bipolar personality dimensions rather than the 4 that the use of "type tables" implies. One of these dimensions shares substantial variance with the cognitive model of hemispheric dominance. (SLD)
Climate Prediction Center - Seasonal Outlook
LEAST THROUGH THE NORTHERN HEMISPHERE SUMMER 2018, WITH THE POSSIBILITY OF EL NINO NEARING 50% BY PRECIPITATION ARE LOWERED. SOME ENSO FORECAST MODELS PREDICT A WARM EVENT (EL NINO) BY THE NORTHERN HEMISPHERE WINTER 2018-19. IF CORRECT, HISTORICAL EL NINO COMPOSITES FAVOR INCREASED ODDS FOR DRY CONDITIONS FOR
We employ the Community Multiscale Air Quality model to examine tropospheric sulfateproduction in the northern hemisphere using the Carbon Bond 2005 chemical mechanism withupdated toluene chemistry (CB05TU) and the Regional Atmospheric Chemistry Mechanism(RACM2) without and with ...
ERIC Educational Resources Information Center
Friedman, Alinda; And Others
1982-01-01
Two experiments tested the limiting case of a multiple resources approach to resource allocation in information processing. Results contradict a single-capacity model, supporting the idea that the hemispheres' resource supplies are independent and have implications for both cerebral specialization and divided attention issues. (Author/PN)
Temporal processing asymmetries between the cerebral hemispheres: evidence and implications.
Nicholls, M E
1996-07-01
This paper reviews a large body of research which has investigated the capacities of the cerebral hemispheres to process temporal information. This research includes clinical, non-clinical, and electrophysiological experimentation. On the whole, the research supports the notion of a left hemisphere advantage for temporal resolution. The existence of such an asymmetry demonstrates that cerebral lateralisation is not limited to the higher-order functions such as language. The capacity for the resolution of fine temporal events appears to play an important role in other left hemisphere functions which require a rapid sequential processor. The functions that are facilitated by such a processor include verbal, textual, and fine movement skills. The co-development of these functions with an efficient temporal processor can be accounted for with reference to a number of evolutionary scenarios. Physiological evidence favours a temporal processing mechanism located within the left temporal cortex. The function of this mechanism may be described in terms of intermittency or travelling moment models of temporal processing. The travelling moment model provides the most plausible account of the asymmetry.
Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change
NASA Astrophysics Data System (ADS)
Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin
2017-04-01
Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.
Yano, Kazuo; Kawasaki, Koh; Hattori, Tsuyoshi; Tawara, Shunsuke; Toshima, Yoshinori; Ikegaki, Ichiro; Sasaki, Yasuo; Satoh, Shin-ichi; Asano, Toshio; Seto, Minoru
2008-10-10
Evidence that Rho-kinase is involved in cerebral infarction has accumulated. However, it is uncertain whether Rho-kinase is activated in the brain parenchyma in cerebral infarction. To answer this question, we measured Rho-kinase activity in the brain in a rat cerebral infarction model. Sodium laurate was injected into the left internal carotid artery, inducing cerebral infarction in the ipsilateral hemisphere. At 6 h after injection, increase of activating transcription factor 3 (ATF3) and c-Fos was found in the ipsilateral hemisphere, suggesting that neuronal damage occurs. At 0.5, 3, and 6 h after injection of laurate, Rho-kinase activity in extracts of the cerebral hemispheres was measured by an ELISA method. Rho-kinase activity in extracts of the ipsilateral hemisphere was significantly increased compared with that in extracts of the contralateral hemisphere at 3 and 6 h but not 0.5 h after injection of laurate. Next, localization of Rho-kinase activity was evaluated by immunohistochemical analysis in sections of cortex and hippocampus including infarct area 6 h after injection of laurate. Staining for phosphorylation of myosin-binding subunit (phospho-MBS) and myosin light chain (phospho-MLC), substrates of Rho-kinase, was elevated in neuron and blood vessel, respectively, in ipsilateral cerebral sections, compared with those in contralateral cerebral sections. These findings indicate that Rho-kinase is activated in neuronal and vascular cells in a rat cerebral infarction model, and suggest that Rho-kinase could be an important target in the treatment of cerebral infarction.
Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting
NASA Astrophysics Data System (ADS)
Lindsey, Charles; Braun, Douglas
2017-06-01
The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called "p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.
Seismic imaging of the Sun's far hemisphere and its applications in space weather forecasting.
Lindsey, Charles; Braun, Douglas
2017-06-01
The interior of the Sun is filled acoustic waves with periods of about 5 min. These waves, called " p modes," are understood to be excited by convection in a thin layer beneath the Sun's surface. The p modes cause seismic ripples, which we call "the solar oscillations." Helioseismic observatories use Doppler observations to map these oscillations, both spatially and temporally. The p modes propagate freely throughout the solar interior, reverberating between the near and far hemispheres. They also interact strongly with active regions at the surfaces of both hemispheres, carrying the signatures of said interactions with them. Computational analysis of the solar oscillations mapped in the Sun's near hemisphere, applying basic principles of wave optics to model the implied p modes propagating through the solar interior, gives us seismic maps of large active regions in the Sun's far hemisphere. These seismic maps are useful for space weather forecasting. For the past decade, NASA's twin STEREO spacecraft have given us full coverage of the Sun's far hemisphere in electromagnetic (EUV) radiation from the far side of Earth's orbit about the Sun. We are now approaching a decade during which the STEREO spacecraft will lose their farside vantage. There will occur significant periods from thence during which electromagnetic coverage of the Sun's far hemisphere will be incomplete or nil. Solar seismology will make it possible to continue our monitor of large active regions in the Sun's far hemisphere for the needs of space weather forecasters during these otherwise blind periods.
Schulte, T; Müller-Oehring, E M; Sullivan, E V; Pfefferbaum, A
2012-10-01
Alcoholism (ALC) and HIV-1 infection (HIV) each affects emotional and attentional processes and integrity of brain white matter fibers likely contributing to functional compromise. The highly prevalent ALC+HIV comorbidity may exacerbate compromise. We used diffusion tensor imaging (DTI) and an emotional Stroop Match-to-Sample task in 19 ALC, 16 HIV, 15 ALC+HIV, and 15 control participants to investigate whether disruption of fiber system integrity accounts for compromised attentional and emotional processing. The task required matching a cue color to that of an emotional word with faces appearing between the color cue and the Stroop word in half of the trials. Nonmatched cue-word color pairs assessed selective attention, and face-word pairs assessed emotion. Relative to controls, DTI-based fiber tracking revealed lower inferior longitudinal fasciculus (ilf) integrity in HIV and ALC+HIV and lower uncinate fasciculus (uf) integrity in all three patient groups. Controls exhibited Stroop effects to positive face-word emotion, and greater interference was related to greater callosal, cingulum and ilf integrity. By contrast, HIV showed greater interference from negative Stroop words during color-nonmatch trials, correlating with greater uf compromise. For face trials, ALC and ALC+HIV showed greater Stroop-word interference, correlating with lower cingulate and callosal integrity. Thus, in HIV, conflict resolution was diminished when challenging conditions usurped resources needed to manage interference from negative emotion and to disengage attention from wrongly cued colors (nonmatch). In ALC and ALC+HIV, poorer callosal integrity was related to enhanced emotional interference suggesting curtailed interhemispheric exchange needed between preferentially right-hemispheric emotion and left-hemispheric Stroop-word functions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Duecker, Felix; Formisano, Elia; Sack, Alexander T
2013-08-01
Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.
Allen, Robert J; Sherwood, Steven C; Norris, Joel R; Zender, Charles S
2012-05-16
Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.
Supermodeling With A Global Atmospheric Model
NASA Astrophysics Data System (ADS)
Wiegerinck, Wim; Burgers, Willem; Selten, Frank
2013-04-01
In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra-tropical circulation in the Northern Hemisphere winter.
Global organization of tectonic deformation on Venus
NASA Astrophysics Data System (ADS)
Bilotti, Frank; Connors, Chris; Suppe, John
1993-03-01
The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.
Global organization of tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Bilotti, Frank; Connors, Chris; Suppe, John
1993-01-01
The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.
NASA Astrophysics Data System (ADS)
Iritani, R.; Takeuchi, N.; Kawakatsu, H.
2012-12-01
Previous studies suggested the existence of the hemispheric heterogeneities in the top 100 km of the inner core [eg. Wen and Niu, 2002]. Although depth profiles of the attenuation and velocity of the inner core provide important clues to constrain the physical mechanism and the growing process of the inner core, they have not yet been well constrained primarily due to difficulties in analyzing core phases with phase overlapping. We have previously developed a waveform inversion method to be applicable to such complex waveforms [Iritani et al., 2010, GRL] and revealed the depth profile of the attenuation beneath North America [Iritani et al., 2011, AGU]. In this study, we applied our method to a large number of broadband seismic arrays to compare depth profiles of the top half of the inner core in various regions. The data set consists of about 8,500 traces from Japanese F-net, NECESSArray (a large temporary broadband seismic array installed in northeastern China), permanent European stations, USArray and PASSCAL arrays deployed in a number of places in the world. Regions of the inner core sampled by core phases are beneath eastern Pacific, North America and Africa in the western hemisphere (WH), and beneath eastern and central Asia in the eastern hemisphere (EH). The obtained attenuation models for the WH show the gradually increase from ICB and have a peak around a 200 km depth. In contrast, the models for the EH have a high attenuation zone at the top 150 km layer. However, almost all models show common features below a depth of 250 km where the attenuation starts to gradually decrease with depth. It appears that hemispheric heterogeneities of the inner core are confined to the top 150 - 250 km of the inner core. Velocity models obtained by using various core phase data (PKP(DF), PKP(BC), PKP(CD) and PKP(Cdiff)) will be also presented to infer the origin of hemispherical heterogeneities and their relationship to the growing process of the inner core.
Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children
ERIC Educational Resources Information Center
Cantlon, Jessica F.; Davis, Simon W.; Libertus, Melissa E.; Kahane, Jill; Brannon, Elizabeth M.; Pelphrey, Kevin A.
2011-01-01
In an effort to understand the role of interhemispheric transfer in numerical development, we investigated the relationship between children's developing knowledge of numbers and the integrity of their white matter connections between the cerebral hemispheres (the corpus callosum). We used diffusion tensor imaging (DTI) tractography analyses to…
Futurism - Neither Nurturing Nor Training for Education.
ERIC Educational Resources Information Center
Kise, Leonard K.; Swanson, Jennie E.
The paper considers the future of education, particularly special education, in terms of theory. Reviewed is research in neurology relating to contra-lateral development in brain hemispheres, cephalo-caudal and caudal-cephalo myelination patterns or neural systems, and integration of neural patterns and neo-cortical control of the brain. Also…
NASA Technical Reports Server (NTRS)
Wellck, R. E.; Pearce, M. L.
1976-01-01
As part of the SEASAT program of NASA, a set of four hemispheric, atmospheric prediction models were developed. The models, which use a polar stereographic grid in the horizontal and a sigma coordinate in the vertical, are: (1) PECHCV - five sigma layers and a 63 x 63 horizontal grid, (2) PECHFV - ten sigma layers and a 63 x 63 horizontal grid, (3) PEFHCV - five sigma layers and a 187 x 187 horizontal grid, and (4) PEFHFV - ten sigma layers and a 187 x 187 horizontal grid. The models and associated computer programs are described.
Ozone Depletion in the Arctic Lower Stratosphere; Timing and Impacts on the Polar Vortex.
NASA Astrophysics Data System (ADS)
Rae, Cameron; Pyle, John
2017-04-01
There a strong link between ozone depletion in the Antarctic lower stratosphere and the strength/duration of the southern hemisphere polar vortex. Ozone depletion arising from enhanced levels of ODS in the lower stratosphere during the last few decades of the 20th century has been accompanied by a delay in the final warming date in the southern hemisphere. The delay in final warming is associated with anomalous tropospheric conditions. The relationship in the Arctic, however, is less clear as the northern hemisphere experiences relatively less intense ozone destruction in the Arctic lower stratosphere and the polar vortex is generally less stable. This study investigates the impacts of imposed lower stratospheric ozone depletion on the evolution of the polar vortex, particularly in the late-spring towards the end of its lifetime. A perpetual-year integration is compared with a series of near-identical seasonal integrations which differ only by an imposed artificial ozone depletion event, occurring a fixed number of days before the polar vortex final warming date each year. Any differences between the seasonal forecasts and perpetual year simulation are due to the timely occurrence of a strong ozone depletion event in the late-spring Arctic polar vortex. This ensemble of seasonal forecasts demonstrates the impacts that a strong ozone depletion event in the Arctic lower stratosphere will have on the evolution of the polar vortex, and highlights tropospheric impacts associated with this phenomenon.
Historical Trends in Pm2.5-Related Premature Mortality ...
Background: Air quality across the northern hemisphere over the past two decades has witnessed dramatic changes, with continuous improvement in developed countries in North America and Europe, but a contrasting sharp deterioration in developing regions of Asia. Objective: This study investigates the historical trend in the long-term exposure to PM2.5 and PM2.5-related premature mortality (PM2.5-mortality) and its response to changes in emission that occurred during 1990-2010 across the northern hemisphere. Implications for future trends in human exposure to air pollution in both developed and developing regions of the world are discussed. Methods: We employed the integrated exposure-response model developed by Health Effects Institute to estimate the PM2.5-mortality. The 1990-2010 annual-average PM2.5 concentrations were obtained from the simulations using WRF-CMAQ model. Emission mitigation efficiencies of SO2, NOx, NH3 and primary PM are estimated from the PM2.5-mortality responses to the emission variations. Results: Estimated PM2.5-mortalities in East Asia and South Asia increased by 21% and 85% respectively, from 866,000 and 578,000 in 1990, to 1,048,000 and 1,068,000 in 2010. PM2.5-mortalities in developed regions, i.e., Europe and high-income North America decreased substantially by 67% and 58% respectively. Conclusions: Over the past two decades, correlations between population and PM2.5 have become weaker in Europe and North America due to air pollu
Garbuzova-Davis, Svitlana; Rodrigues, Maria C. O.; Hernandez-Ontiveros, Diana G.; Tajiri, Naoki; Frisina-Deyo, Aric; Boffeli, Sean M.; Abraham, Jerry V.; Pabon, Mibel; Wagner, Andrew; Ishikawa, Hiroto; Shinozuka, Kazutaka; Haller, Edward; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesario V.
2013-01-01
Background Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB) competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. Methodology/Principal Findings In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO), significant BBB alterations characterized by large Evans Blue (EB) parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. Conclusions/Significance These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke. PMID:23675488
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
NASA Technical Reports Server (NTRS)
Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.
2011-01-01
A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.
Ganymede and Callisto - Surface textural dichotomies and photometric analysis
NASA Technical Reports Server (NTRS)
Buratti, Bonnie J.
1991-01-01
Complete solar phase curves of the Ganymede and Callisto leading and trailing hemispheres, which have been obtained by reducing Voyager imaging observations and combining them with ground-based telescopic data, are presently fit to scattering models in order to derive hemispherical values of the single scattering albedo, the single particle phase function (SPPF), the compaction state (CS) of the optically active portion of the regolith, and the mean slope angle of macroscopic features. While Callisto's leading side is composed of particles that are more strongly backscattering than the trailing side, no hemispheric differences are found in the CS, surface roughness, or SPPF.
The influence of thermal inertia on temperatures and frost stability on Triton
NASA Technical Reports Server (NTRS)
Spencer, John R.; Moore, Jeffrey M.
1992-01-01
It is presently argued, in view of (1) a thermal inertia model for the surface of Triton which (like previous ones) predicts a monotonic recession of permanent N2 deposits toward the poles and very little seasonal N2 frost in the southern hemisphere, and (2) new spectroscopic evidence for nonvolatile CO2 on Triton's bright southern hemisphere, that much of that bright southern material is not N2. Such bright southern hemisphere volatiles may allow the formation of seasonal frosts, thereby helping to explain the observed spectroscopic changes of Triton during the last decade.
Left hemisphere predominance of pilocarpine-induced rat epileptiform discharges
2009-01-01
Background The left cerebral hemisphere predominance in human focal epilepsy has been observed in a few studies, however, there is no related systematic study in epileptic animal on hemisphere predominance. The main goal of this paper is to observe if the epileptiform discharges (EDs) of Pilocarpine-induced epileptic rats could present difference between left hemisphere and right hemisphere or not. Methods The electrocorticogram (ECoG) and electrohippocampogram (EHG) from Pilocarpine-induced epileptic rats were recorded and analyzed using Synchronization likelihood (SL) in order to determine the synchronization relation between different brain regions, then visual check and cross-correlation analysis were adopted to evaluate if the EDs were originated more frequently from the left hemisphere than the right hemisphere. Results The data show that the synchronization between left-EHG and right-EHG, left-ECoG and left-EHG, right-ECoG and right-EHG, left-ECoG and right-ECoG, are significantly strengthened after the brain functional state transforms from non-epileptiform discharges to continuous-epileptiform discharges(p < 0.05). When the state transforms from continuous EDs to periodic EDs, the synchronization is significantly weakened between left-ECoG and left-EHG, left-EHG and right-EHG (p < 0.05). Visual check and the time delay (τ) based cross-correlation analysis finds that 10 out of 13 EDs have a left predominance (77%) and 3 out of 13 EDs are right predominance (23%). Conclusion The results suggest that the left hemisphere may be more prone to EDs in the Pilocarpine-induced rat epilepsy model and implicate that the left hemisphere might play an important role in epilepsy states transition. PMID:19948024
Liao, Lun-De; Liu, Yu-Hang; Lai, Hsin-Yi; Bandla, Aishwarya; Shih, Yen-Yu Ian; Chen, You-Yin; Thakor, Nitish V
2015-03-01
To investigate the potential therapeutic effects of peripheral sensory stimulation during the hyperacute phase of stroke, the present study utilized electrophysiology and photoacoustic imaging techniques to evaluate neural and vascular responses of the rat cortex following ischemic insult. We employed a rat model of photothrombotic ischemia (PTI), which targeted the forelimb region of the primary somatosensory cortex (S1FL), due to its high reproducibility in creating localized ischemic injury. We also established a hybrid, dual-modality system, including six-channel electrocorticography (ECoG) and functional photoacoustic microscopy (fPAM), termed ECoG-fPAM, to image brain functional responses to peripheral sensory stimulation during the hyperacute phase of PTI. Our results showed that the evoked cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) recovered to 84±7.4% and 79±6.2% of the baseline, respectively, when stimulation was delivered within 2.5 h following PTI induction. Moreover, neural activity significantly recovered, with 77±8.6%, 76±5.3% and 89±8.2% recovery for the resting-state inter-hemispheric coherence, alpha-to-delta ratio (ADR) and somatosensory evoked potential (SSEP), respectively. Additionally, we integrated the CBV or SO2 with ADR values as a recovery indicator (RI) to assess functional recovery after PTI. The RI indicated that 80±4.2% of neurovascular function was preserved when stimulation was delivered within 2.5h. Additionally, stimulation treatment within this optimal time window resulted in a minimal infarct volume in the ischemic hemisphere (4.6±2.1%). In contrast, the infarct volume comprised 13.7±1.7% of the ischemic hemisphere when no stimulation treatment was applied. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Hou, Jing; Du, Lingtong; Liu, Ke; Hu, Yue; Zhu, Yuguo
2018-06-01
The vegetation in desert/grassland biome transition zones is part of a fragile ecosystem that is sensitive to climate change. Thus, in recent decades, studying vegetation activity in desert/grassland biome transition zones has become important. Here, vegetation activity and the evolutionary tendencies of the temporal and spatial differentiation of the phenology of the desert/grassland biome transition zones were analyzed based on the Normalized Difference Vegetation Index (NDVI) of the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset. Additionally, the relationship between vegetation activity and climatic factors was analyzed based on NDVI and global meteorological reanalysis data. The results showed that the vegetation phenology of desert/grassland biome transition zones exhibits sharply contrasting characteristics between the Northern and Southern hemispheres, particularly when comparing differences before and after the breakpoint in global climate change (1998). The length of the growing season (LOS) of the Northern Hemisphere was shorter after 1998 than before it, and the integral of the growing season (IOS) of the NDVI decreased correspondingly. By contrast, the LOS in the Southern Hemisphere was longer, and after 1998, the IOS of the NDVI increased compared to its previous value. The vegetation activity trend and the fluctuation of the desert/grassland biome transition zones in the last 30 years can be divided into nine combined modes. However, these features also have an obvious turning point in 1998. The effects of evapotranspiration and precipitation on vegetation activity were most obvious, and these climatic factors drove the phenology changes in the different regions. Global warming limited the vegetation activity in low-latitude areas, but promoted it in middle-latitude areas.
Phase-amplitude coupling within the anterior thalamic nuclei during seizures.
Ibrahim, George M; Wong, Simeon; Morgan, Benjamin R; Lipsman, Nir; Fallah, Aria; Weil, Alexander G; Krishna, Vibhor; Wennberg, Richard A; Lozano, Andres A
2018-04-01
Cross-frequency phase-amplitude coupling (cfPAC) subserves an integral role in the hierarchical organization of interregional neuronal communication and is also expressed by epileptogenic cortex during seizures. Here, we sought to characterize patterns of cfPAC expression in the anterior thalamic nuclei during seizures by studying extra-operative recordings in patients implanted with deep brain stimulation electrodes for intractable epilepsy. Nine seizures from two patients were analyzed in the peri-ictal period. CfPAC was calculated using the modulation index and interregional functional connectivity was indexed using the phase-locking value. Statistical analysis was performed within subjects on the basis of nonparametric permutation and corrected with Gaussian field theory. Five of the nine analyzed seizures demonstrated significant cfPAC. Significant cfPAC occurred during the pre-ictal and ictal periods in three seizures, as well as the postictal windows in four seizures. The preferred phase at which cfPAC occurred differed 1) in space, between the thalami of the epileptogenic and nonepileptogenic hemispheres; and 2) in time, at seizure termination. The anterior thalamic nucleus of the epileptogenic hemisphere also exhibited altered interregional phase-locking synchrony concurrent with the expression of cfPAC. By analyzing extraoperative recordings from the anterior thalamic nuclei, we show that cfPAC associated with altered interregional phase synchrony is lateralized to the thalamus of the epileptogenic hemisphere during seizures. Electrophysiological differences in cfPAC, including preferred phase of oscillatory interactions may be further investigated as putative targets for individualized neuromodulation paradigms in patients with drug-resistant epilepsy. NEW & NOTEWORTHY The association between fast brain activity and slower oscillations is an integral mechanism for hierarchical neuronal communication, which is also manifested in epileptogenic cortex. Our data suggest that the same phenomenon occurs in the anterior thalamic nuclei during seizures. Further, the preferred phase of modulation shows differences in space, between the epileptogenic and nonepileptogenic hemispheres and time, as seizures terminate. Our data encourage the study of cross-frequency coupling for targeted, individualized closed-loop stimulation paradigms.
Estimating Leaf Area Index in Southeast Alaska: A Comparison of Two Techniques
Eckrich, Carolyn A.; Flaherty, Elizabeth A.; Ben-David, Merav
2013-01-01
The relationship between canopy structure and light transmission to the forest floor is of particular interest for studying the effects of succession, timber harvest, and silviculture prescriptions on understory plants and trees. Indirect measurements of leaf area index (LAI) estimated using gap fraction analysis with linear and hemispheric sensors have been commonly used to assess radiation interception by the canopy, although the two methods often yield inconsistent results. We compared simultaneously obtained measurements of LAI from a linear ceptometer and digital hemispheric photography in 21 forest stands on Prince of Wales Island, Alaska. We assessed the relationship between these estimates and allometric LAI based on tree diameter at breast height (LAIDBH). LAI values measured at 79 stations in thinned, un-thinned controls, old-growth and clearcut stands were highly correlated between the linear sensor (AccuPAR) and hemispheric photography, but the latter was more negatively biased compared to LAIDBH. In contrast, AccuPAR values were more similar to LAIDBH in all stands with basal area less than 30 m2ha−1. Values produced by integrating hemispheric photographs over the zenith angles 0–75° (Ring 5) were highly correlated with those integrated over the zenith angles 0–60° (Ring 4), although the discrepancies between the two measures were significant. On average, the AccuPAR estimates were 53% higher than those derived from Ring 5, with most of the differences in closed canopy stands (unthinned controls and old-growth) and less so in clearcuts. Following typical patterns of canopy closure, AccuPAR LAI values were higher in dense control stands than in old-growth, whereas the opposite was derived from Ring 5 analyses. Based on our results we advocate the preferential use of linear sensors where canopy openness is low, canopies are tall, and leaf distributions are clumped and angles are variable, as is common in the conifer forests of coastal Alaska. PMID:24223718
Icy Saturnian satellites: Disk-integrated UV-IR characteristics and links to exogenic processes
NASA Astrophysics Data System (ADS)
Hendrix, Amanda R.; Filacchione, Gianrico; Paranicas, Chris; Schenk, Paul; Scipioni, Francesca
2018-01-01
Combined Cassini observations obtained at similar observing geometries in the ultraviolet through infrared spectral range, along with additional ultraviolet (UV) data from Hubble Space Telescope where available, are used to study system-wide trends in spectral albedos of the inner icy Saturnian satellites (Mimas, Enceladus, Tethys, Dione, Rhea). We derive UV and visible geometric albedos and UV absorption strengths of the leading and trailing hemispheres and compare with E ring grain flux and charged particle intensities (electrons and ions of varying energies) to those hemispheres. We find that the UV absorption strength on the leading and trailing hemispheres is anti-correlated with E ring grain flux. On the trailing hemispheres, the UV absorption strength is correlated with intensity of electrons in the tens of keV range. We suggest that these relationships could imply links with the organic component of the E ring. Radiolytic processing of organics causes the products to become spectrally redder, increasing the UV absorption strength. Such processing occurs while organic-rich grains are in the E ring, and increases with exposure time in the E ring, such that grains interacting with Rhea are redder (more processed) than those impacting moons closer to Enceladus. Further processing (and associated darkening/reddening) occurs on the trailing hemispheres of the satellites, via radiolysis by electrons in the tens of keV range. Silicates and salts also redden with weathering; however because organics are present in the E ring in significantly greater abundance than salts or silicates, we suggest here that weathering of organics dominates the coloring of the inner Saturnian moons.
Yordanova, Juliana; Kolev, Vasil; Bruns, Eike; Kirov, Roumen; Verleger, Rolf
2017-11-01
The present study explored the sleep mechanisms which may support awareness of hidden regularities. Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].
Future Effects of Southern Hemisphere Stratospheric Zonal Asymmetries on Climate
NASA Astrophysics Data System (ADS)
Stone, K.; Solomon, S.; Kinnison, D. E.; Fyfe, J. C.
2017-12-01
Stratospheric zonal asymmetries in the Southern Hemisphere have been shown to have significant influences on both stratospheric and tropospheric dynamics and climate. Accurate representation of stratospheric ozone in particular is important for realistic simulation of the polar vortex strength and temperature trends. This is therefore also important for stratospheric ozone change's effect on the troposphere, both through modulation of the Southern Annular Mode (SAM), and more localized climate. Here, we characterization the impact of future changes in Southern Hemisphere zonal asymmetry on tropospheric climate, including changes to future tropospheric temperature, and precipitation. The separate impacts of increasing GHGs and ozone recovery on the zonal asymmetric influence on the surface are also investigated. For this purpose, we use a variety of models, including Chemistry Climate Model Initiative simulations from the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (CESM1(WACCM)) and the Australian Community Climate and Earth System Simulator-Chemistry Climate Model (ACCESS-CCM). These models have interactive chemistry and can therefore more accurately represent the zonally asymmetric nature of the stratosphere. The CESM1(WACCM) and ACCESS-CCM models are also compared to simulations from the Canadian Can2ESM model and CESM-Large Ensemble Project (LENS) that have prescribed ozone to further investigate the importance of simulating stratospheric zonal asymmetry.
Brain Hemispheric Consensus and the Quality of Investment Decisions.
ERIC Educational Resources Information Center
Boyd, Michael
This on-going study explores the hypothesis that stock fund managers who underperform do so because they make bad decisions, and examines whether their choices can be improved by using a decision model that invokes principles of brain hemispheric consensus. The study, begun in fall 1999, involves two groups of business students: the control group…
Contribution of NIRS to the Study of Prefrontal Cortex for Verbal Fluency in Aging
ERIC Educational Resources Information Center
Kahlaoui, Karima; Di Sante, Gabriele; Barbeau, Joannie; Maheux, Manon; Lesage, Frederic; Ska, Bernadette; Joanette, Yves
2012-01-01
Healthy aging is characterized by a number of changes on brain structure and function. Several neuroimaging studies have shown an age-related reduction in hemispheric asymmetry on various cognitive tasks, a phenomenon captured by Cabeza (2002) in the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) model. Although this phenomenon is…
ERIC Educational Resources Information Center
Alfano, Keith M.; Cimino, Cynthia R.
2008-01-01
The relative advantage of the left (LH) over the right hemisphere (RH) in processing of verbal material for most individuals is well established. Nevertheless, several studies have reported the ability of positively and negatively valenced stimuli to enhance and reverse, respectively, the usual LH greater than RH asymmetry. These studies, however,…
Acquired dysgraphia in adults following right or left-hemisphere stroke
Rodrigues, Jaqueline de Carvalho; da Fontoura, Denise Ren; de Salles, Jerusa Fumagalli
2014-01-01
Objective This study aimed to assess the strengths and difficulties in word and pseudoword writing in adults with left- and right-hemisphere strokes, and discuss the profiles of acquired dysgraphia in these individuals. Methods The profiles of six adults with acquired dysgraphia in left- or right-hemisphere strokes were investigated by comparing their performance on word and pseudoword writing tasks against that of neurologically healthy adults. A case series analysis was performed on the patients whose impairments on the task were indicative of acquired dysgraphia. Results Two patients were diagnosed with lexical dysgraphia (one with left hemisphere damage, and the other with right hemisphere damage), one with phonological dysgraphia, another patient with peripheral dysgraphia, one patient with mixed dysgraphia and the last with dysgraphia due to damage to the graphemic buffer. The latter patients all had left-hemisphere damage (LHD). The patterns of impairment observed in each patient were discussed based on the dual-route model of writing. Conclusion The fact that most patients had LHD rather than right-hemisphere damage (RHD) highlights the importance of the former structure for word processing. However, the fact that lexical dysgraphia was also diagnosed in a patient with RHD suggests that these individuals may develop writing impairments due to damage to the lexical route, leading to heavier reliance on phonological processing. Our results are of significant importance to the planning of writing interventions in neuropsychology. PMID:29213909
Breier, J.I.; Hasan, K.M.; Zhang, W.; Men, D.; Papanicolaou, A.C.
2011-01-01
BACKGROUND AND PURPOSE Knowledge of the anatomic basis of aphasia after stroke has both theoretic and clinical implications by informing models of cortical connectivity and providing data for diagnosis and prognosis. In this study we use diffusion tensor imaging to address the relationship between damage to specific white matter tracts and linguistic deficits after left hemisphere stroke. MATERIALS AND METHODS Twenty patients aged 38–77 years with a history of stroke in the left hemisphere underwent diffusion tensor imaging, structural MR imaging, and language testing. All of the patients were premorbidly right handed and underwent imaging and language testing at least 1 month after stroke. RESULTS Lower fractional anisotropy (FA) values in the superior longitudinal and arcuate fasciculi of the left hemisphere, an indication of greater damage to these tracts, were correlated with decreased ability to repeat spoken language. Comprehension deficits after stroke were associated with lower FA values in the arcuate fasciculus of the left hemisphere. The findings for repetition were independent of MR imaging ratings of the degree of damage to cortical areas of the left hemisphere involved in language function. There were no findings for homotopic tracts in the right hemisphere. CONCLUSION This study provides support for a specific role for damage to the superior longitudinal and arcuate fasciculi in the left hemisphere in patients with deficits in repetition of speech in aphasia after stroke. PMID:18039757
NASA Astrophysics Data System (ADS)
Saito, M.; Ito, A.; Maksyutov, S. S.
2013-12-01
This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial vegetation compositions in some grids. These misfits are assumed to derive from simplified representation in the biosphere model without the impact of land use change and dire disturbance and the seasonal variability in the physiological parameters.
Patterns of crop cover under future climates.
Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong
2017-04-01
We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.
The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface
NASA Technical Reports Server (NTRS)
Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen
2015-01-01
The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.
Chenausky, Karen; Kernbach, Julius; Norton, Andrea; Schlaug, Gottfried
2017-01-01
We investigated the relationship between imaging variables for two language/speech-motor tracts and speech fluency variables in 10 minimally verbal (MV) children with autism. Specifically, we tested whether measures of white matter integrity-fractional anisotropy (FA) of the arcuate fasciculus (AF) and frontal aslant tract (FAT)-were related to change in percent syllable-initial consonants correct, percent items responded to, and percent syllable insertion errors (from best baseline to post 25 treatment sessions). Twenty-three MV children with autism spectrum disorder (ASD) received Auditory-Motor Mapping Training (AMMT), an intonation-based treatment to improve fluency in spoken output, and we report on seven who received a matched control treatment. Ten of the AMMT participants were able to undergo a magnetic resonance imaging study at baseline; their performance on baseline speech production measures is compared to that of the other two groups. No baseline differences were found between groups. A canonical correlation analysis (CCA) relating FA values for left- and right-hemisphere AF and FAT to speech production measures showed that FA of the left AF and right FAT were the largest contributors to the synthetic independent imaging-related variable. Change in percent syllable-initial consonants correct and percent syllable-insertion errors were the largest contributors to the synthetic dependent fluency-related variable. Regression analyses showed that FA values in left AF significantly predicted change in percent syllable-initial consonants correct, no FA variables significantly predicted change in percent items responded to, and FA of right FAT significantly predicted change in percent syllable-insertion errors. Results are consistent with previously identified roles for the AF in mediating bidirectional mapping between articulation and acoustics, and the FAT in its relationship to speech initiation and fluency. They further suggest a division of labor between the hemispheres, implicating the left hemisphere in accuracy of speech production and the right hemisphere in fluency in this population. Changes in response rate are interpreted as stemming from factors other than the integrity of these two fiber tracts. This study is the first to document the existence of a subgroup of MV children who experience increases in syllable- insertion errors as their speech develops in response to therapy.
Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts
NASA Astrophysics Data System (ADS)
McGee, David; Moreno-Chamarro, Eduardo; Green, Brian; Marshall, John; Galbraith, Eric; Bradtmiller, Louisa
2018-01-01
The atmospheric Hadley cells, which meet at the Intertropical Convergence Zone (ITCZ), play critical roles in transporting heat, driving ocean circulation and supplying precipitation to the most heavily populated regions of the globe. Paleo-reconstructions can provide concrete evidence of how these major features of the atmospheric circulation can change in response to climate perturbations. While most such reconstructions have focused on ITCZ-related rainfall, here we show that trade wind proxies can document dynamical aspects of meridional ITCZ shifts. Theoretical expectations based on angular momentum constraints and results from freshwater hosing simulations with two different climate models predict that ITCZ shifts due to anomalous cooling of one hemisphere would be accompanied by a strengthening of the Hadley cell and trade winds in the colder hemisphere, with an opposite response in the warmer hemisphere. This expectation of hemispherically asymmetric trade wind changes is confirmed by proxy data of coastal upwelling and windblown dust from the Atlantic basin during Heinrich stadials, showing trade wind strengthening in the Northern Hemisphere and weakening in the Southern Hemisphere subtropics in concert with southward ITCZ shifts. Data from other basins show broadly similar patterns, though improved constraints on past trade wind changes are needed outside the Atlantic Basin. The asymmetric trade wind changes identified here suggest that ITCZ shifts are also marked by intensification of the ocean's wind-driven subtropical cells in the cooler hemisphere and a weakening in the warmer hemisphere, which induces cross-equatorial oceanic heat transport into the colder hemisphere. This response would be expected to prevent extreme meridional ITCZ shifts in response to asymmetric heating or cooling. Understanding trade wind changes and their coupling to cross-equatorial ocean cells is key to better constraining ITCZ shifts and ocean and atmosphere dynamical changes in the past, especially for regions and time periods for which few paleodata exist, and also improves our understanding of what changes may occur in the future.
NASA Astrophysics Data System (ADS)
Chau, J. L.; Hoffmann, P.; Pedatella, N. M.; Janches, D.; Murphy, D. J.; Stober, G.
2015-12-01
From recent ground- and satellite-based observations as well as from model results, it is well known that lunar tide signatures are amplified significantly during northern hemisphere sudden stratospheric warming events (SSWs). Such signatures have been observed in the equatorial and low latitude ionosphere and mesosphere, and at the mesosphere and lower thermosphere (MLT) at the northern mid and high latitude mesosphere. More recently, ionospheric signatures at mid-latitudes have been also observed in satellite instruments and such observations are corroborated with model results when the lunar tides are included. From these results (N. Pedatella, personal communication), there is a strong hemispheric asymmetry, where ionospheric perturbations occur primarily in the southern hemisphere. Motivated by these results, in this work we compare the tidal signatures in the MLT region at mid and high latitudes in both hemispheres. We make use of MLT winds obtained with specular meteor radars (SMR) at Juliusruh (54oN), Andøya (69oN), Rio Grande (54oS), and Davis (69oS) around the 2009 and 2013 major SSWs. In addition we complement our studies, with model results from the Whole Atmosphere Community Climate Model Extended version (WACCM-X) combined with the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) and the inclusions of lunar tides. Besides these results, we present a brief description and preliminary results of our new approach to derive wind fields in the MLT region using multi-static, multi-frequency specular meteor radars, called MMARIA.
Numerical convergence and validation of the DIMP inverse particle transport model
Nelson, Noel; Azmy, Yousry
2017-09-01
The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector re-sponses (using the adjoint transport solution) with measured responses. DIMP performs well with for-ward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to themore » correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search vol-ume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.« less
Effects of Auroral Potential Drops on Field-Aligned Currents and Nightside Reconnection Dynamos
NASA Astrophysics Data System (ADS)
Lotko, W.; Xi, S.; Zhang, B.; Wiltberger, M. J.; Lyon, J.
2016-12-01
The reaction of the magnetosphere-ionosphere system to dynamic auroral potential drops is investigated using the Lyon-Fedder-Mobarry global model and, for the first time in a global simulation, including the dissipative load of field-aligned potential drops in the low-altitude boundary condition. This extra load reduces the demand for field-aligned current (j||) from nightside reconnection dynamos. The system adapts by forcing the nightside x-line closer to Earth to reduce current lensing (j||/B = constant) at the ionosphere, with the plasma sheet undergoing additional contraction during substorm recovery and steady magnetospheric convection. For steady and moderate solar wind driving and with constant ionospheric conductance, the cross-polar cap potential and hemispheric field-aligned current are lower by approximately the ratio of the peak field-aligned potential drop to the cross polar cap potential (10-15%) when potential drops are included. Hemispheric ionospheric Joule dissipation is less by 8%, while the area-integrated, average work done on the fluid by the reconnecting magnetotail field increases by 50% within |y| < 8 RE. Effects on the nightside plasma sheet include: (1) an average x-line 4 RE closer to Earth; (2) a 12% higher mean reconnection rate; and (3) dawn-dusk asymmetry in reconnection with a 17% higher rate in the premidnight sector.
Effects of auroral potential drops on plasma sheet dynamics
NASA Astrophysics Data System (ADS)
Xi, Sheng; Lotko, William; Zhang, Binzheng; Wiltberger, Michael; Lyon, John
2016-11-01
The reaction of the magnetosphere-ionosphere system to dynamic auroral potential drops is investigated using the Lyon-Fedder-Mobarry global model including, for the first time in a global simulation, the dissipative load of field-aligned potential drops in the low-altitude boundary condition. This extra load reduces the field-aligned current (j||) supplied by nightside reconnection dynamos. The system adapts by forcing the nightside X line closer to Earth, with a corresponding reduction in current lensing (j||/B = constant) at the ionosphere and additional contraction of the plasma sheet during substorm recovery and steady magnetospheric convection. For steady and moderate solar wind driving and with constant ionospheric conductance, the cross polar cap potential and hemispheric field-aligned current are lower by approximately the ratio of the peak field-aligned potential drop to the cross polar cap potential (10-15%) when potential drops are included. Hemispheric ionospheric Joule dissipation is less by 8%, while the area-integrated, average work done on the fluid by the reconnecting magnetotail field increases by 50% within |y| < 8 RE. Effects on the nightside plasma sheet include (1) an average X line 4 RE closer to Earth; (2) a 12% higher mean reconnection rate; and (3) dawn-dusk asymmetry in reconnection with a 17% higher rate in the premidnight sector.
Jansen, Andreas; Lohmann, Hubertus; Scharfe, Stefanie; Sehlmeyer, Christina; Deppe, Michael; Knecht, Stefan
2007-04-01
The hemispheres of the human brain are functionally asymmetric. The left hemisphere tends to be dominant for language and superior in the control of manual dexterity. The mechanisms underlying these asymmetries are not known. Genetic as well as environmental factors are discussed. Recently, atypical anticlockwise hair-whorl direction has been related to an increased probability for non-right-handedness and atypical hemispheric language dominance. These findings are fascinating and important since hair-whorl direction is a structural marker of lateralization and could provide a readily observable anatomical clue to functional brain lateralization. Based on data on handedness and hair-whorl direction, Amar Klar proposed a genetic model ("random-recessive model") in that a single gene with two alleles controls both handedness and hair-whorl orientation (Klar, A.J.S., 2003. Human handedness and scalp hair-whorl direction develop from a common genetic mechanism. Genetics 165, 269-276). The present study was designed to further investigate the relationship between scalp hair-whorl direction with handedness and hemispheric language dominance. 1212 subjects were investigated for scalp hair-whorl direction and handedness. Additionally, we determined hemispheric language dominance (as assessed by a word generation task) in a subgroup of 212 subjects using functional transcranial Doppler sonography (fTCD). As for the single attributes - hair-whorl direction, handedness, and language dominance - we reproduced previously published results. However, we found no association between hair-whorl direction and either language dominance or handedness. These results strongly argue against a common genetic basis of handedness or language lateralization with scalp hair-whorl direction. Inspection of hair patterns will not help us to determine language dominance.
NASA Astrophysics Data System (ADS)
Peña-Ortiz, C.; Ribera, P.; García-Herrera, R.; Giorgetta, M. A.; García, R. R.
2008-08-01
The seasonality of the quasi-biennial oscillation (QBO) and its secondary circulation is analyzed in the European Reanalysis (ERA-40) and Middle Atmosphere European Centre Hamburg Model (MAECHAM5) general circulation model data sets through the multitaper method-singular value decomposition (MTM-SVD). In agreement with previous studies, the results reveal a strong seasonal dependence of the QBO secondary circulation. This is characterized by a two-cell structure symmetric about the equator during autumn and spring. However, anomalies strongly weaken in the summer hemisphere and strengthen in the winter hemisphere, leading to an asymmetric QBO secondary circulation characterized by a single-cell structure displaced into the winter hemisphere during the solstices. In ERA-40, this asymmetry is more pronounced during the northern than during the southern winter. These results provide the first observation of the QBO secondary circulation asymmetries in the ERA-40 reanalysis data set across the full stratosphere and the lower mesosphere, up to 0.1 hPa. The MTM-SVD reconstruction of the seasonal QBO signals in the residual circulation and the QBO signals in Eliassen Palm (EP) flux divergences suggest a particular mechanism for the seasonal asymmetries of the QBO secondary circulation and its extension across the midlatitudes. The analysis shows that the QBO modulates the EP flux in the winter hemispheric surf zone poleward of the QBO jets. The zonal wind forcing by EP flux divergence is transformed by the Coriolis effect into a meridional wind signal. The seasonality in the stratospheric EP flux and the hemispheric differences in planetary wave forcing cause the observed seasonality in the QBO secondary circulation and its hemispheric differences.
NASA Astrophysics Data System (ADS)
Mathur, R.; Kang, D.; Napelenok, S. L.; Xing, J.; Hogrefe, C.
2017-12-01
Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emission patterns across the globe (e.g. declining emissions in North America and Western Europe in response to implementation of control measures and increasing emissions across Asia due to economic and population growth) are resulting in heterogeneous changes in the tropospheric chemical composition and are likely altering long-range transport impacts and consequently background pollution levels at receptor regions. To quantify these impacts, the WRF-CMAQ model is expanded to hemispheric scales and multi-decadal model simulations are performed for the period spanning 1990-2010 to examine changes in hemispheric air pollution resulting from changes in emissions over this period. Simulated trends in ozone and precursor species concentrations across the U.S. and the Northern Hemisphere over the past two decades are compared with those inferred from available measurements during this period. Additionally, the decoupled direct method (DDM) in CMAQ, a first- and higher-order sensitivity calculation technique, is used to estimate the sensitivity of O3 to emissions from different source regions across the Northern Hemisphere. The seasonal variations in source region contributions to background O3 are then estimated from these sensitivity calculations and will be discussed. These source region sensitivities estimated from DDM are then combined with the multi-decadal simulations of O3 distributions and emissions trends to characterize the changing contributions of different source regions to background O3 levels across North America. This characterization of changing long-range transport contributions is critical for the design and implementation of tighter national air quality standards
Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo
2015-07-01
Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P < 0.001. The model explained 99.20% of the variation in the grouping variable and depicted an overall predictive accuracy of 98.8%. With the influence of gender; the selected gyri able to discriminate between hemispheres were middle orbital frontal gyrus (g.), angular g., supramarginal g., middle cingulum g., inferior orbital frontal g., calcarine g., inferior parietal lobule and the pars triangularis inferior frontal g. Specific brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.
Diwadkar, Vaibhav A; Bellani, Marcella; Chowdury, Asadur; Savazzi, Silvia; Perlini, Cinzia; Marinelli, Veronica; Zoccatelli, Giada; Alessandrini, Franco; Ciceri, Elisa; Rambaldelli, Gianluca; Ruggieri, Mirella; Carlo Altamura, A; Marzi, Carlo A; Brambilla, Paolo
2017-08-14
Because the visual cortices are contra-laterally organized, inter-hemispheric transfer tasks have been used to behaviorally probe how information briefly presented to one hemisphere of the visual cortex is integrated with responses resulting from the ipsi- or contra-lateral motor cortex. By forcing rapid information exchange across diverse regions, these tasks robustly activate not only gray matter regions, but also white matter tracts. It is likely that the response hand itself (dominant or non-dominant) modulates gray and white matter activations during within and inter-hemispheric transfer. Yet the role of uni-manual responses and/or right hand dominance in modulating brain activations during such basic tasks is unclear. Here we investigated how uni-manual responses with either hand modulated activations during a basic visuo-motor task (the established Poffenberger paradigm) alternating between inter- and within-hemispheric transfer conditions. In a large sample of strongly right-handed adults (n = 49), we used a factorial combination of transfer condition [Inter vs. Within] and response hand [Dominant(Right) vs. Non-Dominant (Left)] to discover fMRI-based activations in gray matter, and in narrowly defined white matter tracts. These tracts were identified using a priori probabilistic white matter atlases. Uni-manual responses with the right hand strongly modulated activations in gray matter, and notably in white matter. Furthermore, when responding with the left hand, activations during inter-hemispheric transfer were strongly predicted by the degree of right-hand dominance, with increased right-handedness predicting decreased fMRI activation. Finally, increasing age within the middle-aged sample was associated with a decrease in activations. These results provide novel evidence of complex relationships between uni-manual responses in right-handed subjects, and activations during within- and inter-hemispheric transfer suggest that the organization of the motor system exerts sophisticated functional effects. Moreover, our evidence of activation in white matter tracts is consistent with prior studies, confirming fMRI-detectable white matter activations which are systematically modulated by experimental condition.
Magnetic helicity of the global field in solar cycles 23 and 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Pevtsov, A. A.
2014-07-01
For the first time we reconstruct the magnetic helicity density of the global axisymmetric field of the Sun using the method proposed by Brandenburg et al. and Pipin et al. To determine the components of the vector potential, we apply a gauge which is typically employed in mean-field dynamo models. This allows for a direct comparison of the reconstructed helicity with the predictions from the mean-field dynamo models. We apply this method to two different data sets: the synoptic maps of the line-of-sight magnetic field from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) andmore » vector magnetic field measurements from the Vector Spectromagnetograph (VSM) on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) system. Based on the analysis of the MDI/SOHO data, we find that in solar cycle 23 the global magnetic field had positive (negative) magnetic helicity in the northern (southern) hemisphere. This hemispheric sign asymmetry is opposite to the helicity of the solar active regions, but it is in agreement with the predictions of mean-field dynamo models. The data also suggest that the hemispheric helicity rule may have reversed its sign during the early and late phases of cycle 23. Furthermore, the data indicate an imbalance in magnetic helicity between the northern and southern hemispheres. This imbalance seems to correlate with the total level of activity in each hemisphere in cycle 23. The magnetic helicity for the rising phase of cycle 24 is derived from SOLIS/VSM data, and qualitatively its latitudinal pattern is similar to the pattern derived from SOHO/MDI data for cycle 23.« less
Quantitative Analysis of Geometry and Lateral Symmetry of Proximal Middle Cerebral Artery.
Peter, Roman; Emmer, Bart J; van Es, Adriaan C G M; van Walsum, Theo
2017-10-01
The purpose of our work is to quantitatively assess clinically relevant geometric properties of proximal middle cerebral arteries (pMCA), to investigate the degree of their lateral symmetry, and to evaluate whether the pMCA can be modeled by using state-of-the-art deformable image registration of the ipsi- and contralateral hemispheres. Individual pMCA segments were identified, quantified, and statistically evaluated on a set of 55 publicly available magnetic resonance angiography time-of-flight images. Rigid and deformable image registrations were used for geometric alignment of the ipsi- and contralateral hemispheres. Lateral symmetry of relevant geometric properties was evaluated before and after the image registration. No significant lateral differences regarding tortuosity and diameters of contralateral M1 segments of pMCA were identified. Regarding the length of M1 segment, 44% of all subjects could be considered laterally symmetrical. Dominant M2 segment was identified in 30% of men and 9% of women in both brain hemispheres. Deformable image registration performed significantly better (P < .01) than rigid registration with regard to distances between the ipsi- and the contralateral centerlines of M1 segments (1.5 ± 1.1 mm versus 2.8 ± 1.2 mm respectively) and between the M1 and the anterior cerebral artery (ACA) branching points (1.6 ± 1.4 mm after deformable registration). Although natural lateral variation of the length of M1 may not allow for sufficient modeling of the complete pMCA, deformable image registration of the contralateral brain hemisphere to the ipsilateral hemisphere is feasible for localization of ACA-M1 branching point and for modeling 71 ± 23% of M1 segment. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Miller, James R.; Rind, David; Ruedy, Reto A.; Schmidt, Gavin A.; Sheth, Sukeshi
1999-01-01
Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.
NASA Astrophysics Data System (ADS)
Terray, P.; Sooraj, K. P.; Masson, S.; Krishna, R. P. M.; Samson, G.; Prajeesh, A. G.
2017-07-01
State-of-the-art global coupled models used in seasonal prediction systems and climate projections still have important deficiencies in representing the boreal summer tropical rainfall climatology. These errors include prominently a severe dry bias over all the Northern Hemisphere monsoon regions, excessive rainfall over the ocean and an unrealistic double inter-tropical convergence zone (ITCZ) structure in the tropical Pacific. While these systematic errors can be partly reduced by increasing the horizontal atmospheric resolution of the models, they also illustrate our incomplete understanding of the key mechanisms controlling the position of the ITCZ during boreal summer. Using a large collection of coupled models and dedicated coupled experiments, we show that these tropical rainfall errors are partly associated with insufficient surface thermal forcing and incorrect representation of the surface albedo over the Northern Hemisphere continents. Improving the parameterization of the land albedo in two global coupled models leads to a large reduction of these systematic errors and further demonstrates that the Northern Hemisphere subtropical deserts play a seminal role in these improvements through a heat low mechanism.
NASA Astrophysics Data System (ADS)
Kinsman, J. H.; Asher, D. J.
2017-09-01
No firm evidence has existed that the ancient Maya civilization recorded specific occurrences of meteor showers or outbursts in the corpus of Maya hieroglyphic inscriptions. In fact, there has been no evidence of any pre-Hispanic civilization in the Western Hemisphere recording any observations of any meteor showers on any specific dates. The authors numerically integrated meteoroid-sized particles released by Comet Halley as early as 1404 BC to identify years within the Maya Classic Period, AD 250-909, when Eta Aquariid outbursts might have occurred. Outbursts determined by computer model were then compared to specific events in the Maya record to see if any correlation existed between the date of the event and the date of the outburst. The model was validated by successfully explaining several outbursts around the same epoch in the Chinese record. Some outbursts observed by the Maya were due to recent revolutions of Comet Halley, within a few centuries, and some to resonant behavior in older Halley trails, of the order of a thousand years. Examples were found of several different Jovian mean motion resonances as well as the 1:3 Saturnian resonance that have controlled the dynamical evolution of meteoroids in apparently observed outbursts.
The contributions of vision and haptics to reaching and grasping
Stone, Kayla D.; Gonzalez, Claudia L. R.
2015-01-01
This review aims to provide a comprehensive outlook on the sensory (visual and haptic) contributions to reaching and grasping. The focus is on studies in developing children, normal, and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually guided grasping and a left-hand/right-hemisphere specialization for haptically guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference. PMID:26441777
Brief report: altered horizontal binding of single dots to coherent motion in autism.
David, Nicole; Rose, Michael; Schneider, Till R; Vogeley, Kai; Engel, Andreas K
2010-12-01
Individuals with autism often show a fragmented way of perceiving their environment, suggesting a disorder of information integration, possibly due to disrupted communication between brain areas. We investigated thirteen individuals with high-functioning autism (HFA) and thirteen healthy controls using the metastable motion quartet, a stimulus consisting of two dots alternately presented at four locations of a hypothetical square, thereby inducing an apparent motion percept. This percept is vertical or horizontal, the latter requiring binding of motion signals across cerebral hemispheres. Decreasing the horizontal distance between dots could facilitate horizontal percepts. We found evidence for altered horizontal binding in HFA: Individuals with HFA needed stronger facilitation to experience horizontal motion. These data are interpreted in light of reduced cross-hemispheric communication.
Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)
2009-01-01
A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,
NASA Astrophysics Data System (ADS)
Li, X.; St George, S.
2013-12-01
Both dendrochronological theory and regional and global networks of tree-ring width measurements indicate that trees can respond to climate variations quite differently from one location to another. To explain these geographical differences at hemispheric scale, we used a process-based model of tree-ring formation (the Vaganov-Shashkin model) to simulate tree growth at over 6000 locations across the Northern Hemisphere. We compared the seasonality and strength of climate signals in the simulated tree-ring records against parallel analysis conducted on a hemispheric network of real tree-ring observations, tested the ability of the model to reproduce behaviors that emerge from large networks of tree-ring widths and used the model outputs to explain why the network exhibits these behaviors. The simulated tree-ring records are consistent with observations with respect to the seasonality and relative strength of the encoded climate signals, and time-related changes in these climate signals can be predicted using the modeled relative growth rate due to temperature or soil moisture. The positive imprint of winter (DJF) precipitation is strongest in simulations from the American Southwest and northern Mexico as well as selected locations in the Mediterranean and central Asia. Summer (JJA) precipitation has higher positive correlations with simulations in the mid-latitudes, but some high-latitude coastal sites exhibit a negative association. The influence of summer temperature is mainly positive at high-latitude or high-altitude sites and negative in the mid-latitudes. The absolute magnitude of climate correlations are generally higher in simulations than in observations, but the pattern and geographical differences remain the same, demonstrating that the model has skill in reproducing tree-ring growth response to climate variability in the Northern Hemisphere. Because the model uses only temperature, precipitation and latitude as input and is not adjusted for species or other biological factors, the fact that the climate response of the simulations largely agrees with the observations may imply that climate, rather than biology, is the main factor that influences large-scale patterns of the climate information recorded by tree rings. Our results also suggest that the Vaganov-Shashkin model could be used to estimate the likely climate response of trees in ';frontier' areas that have not been sampled extensively. Seasonal Climate Correlations of Simulated Tree-ring Records
Assimilation of GNSS radio occultation observations in GRAPES
NASA Astrophysics Data System (ADS)
Liu, Y.; Xue, J.
2014-07-01
This paper reviews the development of the global navigation satellite system (GNSS) radio occultation (RO) observations assimilation in the Global/Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration, including the choice of data to assimilate, the data quality control, the observation operator, the tuning of observation error, and the results of the observation impact experiments. The results indicate that RO data have a significantly positive effect on analysis and forecast at all ranges in GRAPES not only in the Southern Hemisphere where conventional observations are lacking but also in the Northern Hemisphere where data are rich. It is noted that a relatively simple assimilation and forecast system in which only the conventional and RO observation are assimilated still has analysis and forecast skill even after nine months integration, and the analysis difference between both hemispheres is gradually reduced with height when compared with NCEP (National Centers for Enviromental Prediction) analysis. Finally, as a result of the new onboard payload of the Chinese FengYun-3 (FY-3) satellites, the research status of the RO of FY-3 satellites is also presented.
Martin, Elodie; Blais, Mélody; Albaret, Jean-Michel; Pariente, Jérémie; Tallet, Jessica
2017-10-01
Little attention is paid to motor control in Alzheimer's disease (AD) although it is a relevant sign of central nervous system integrity and functioning. In particular, unimanual and bimanual tapping is a relevant paradigm because it requires intra- and inter-hemispheric transfer (IHT). Previous results indicate that both unimanual and anti-phase tapping requires more IHT than in-phase tapping, especially produced without external stimulation. The aim of the present study was to test the production of unimanual, bimanual in-phase and anti-phase tapping with a synchronization-continuation paradigm with and without visual stimulation in AD patients (N=9) and control participants (N=12). In accordance with our hypothesis, these results suggest that unimanual and anti-phase tapping is more altered in AD than in control participants. Moreover, performance is globally more variable in the AD group. These alterations are discussed in terms of possible IHT modulation, in line with functional and structural findings in AD, revealing changes in the connectivity of brain regions across hemispheres and white matter damage. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lavidor, Michal; Hayes, Adrian; Shillcock, Richard; Ellis, Andrew W.
2004-01-01
The split fovea theory proposes that visual word recognition of centrally presented words is mediated by the splitting of the foveal image, with letters to the left of fixation being projected to the right hemisphere (RH) and letters to the right of fixation being projected to the left hemisphere (LH). Two lexical decision experiments aimed to…
NASA Technical Reports Server (NTRS)
Webster, C.; May, R.; Jaegle, L.; Hu, H.; Scott, D.; Stimpfle, R.; Salawitch, R.; Fahey, D.; Woodbridge, E.; Proffitt, M.;
1994-01-01
Stratospheric concentrations of HC1 measured in the northern hemisphere from the ER-2 aircraft are significantly lower than model predictions using both gas phase and heterogeneous chemistry, but measurements in the southern hemisphere are in much better agreement.
ERIC Educational Resources Information Center
Hsiao, Janet H.; Cheung, Kit
2016-01-01
In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing.…
Tompkins, Connie A.
2009-01-01
This article reviews and evaluates leading accounts of narrative comprehension deficits in adults with focal damage to the right cerebral hemisphere (RHD). It begins with a discussion of models of comprehension, which explain how comprehension proceeds through increasingly complex levels of representation. These models include two phases of comprehension processes, broad activation of information as well as pruning and focusing interpretation of meaning based on context. The potential effects of RHD on each processing phase are reviewed, focusing on factors that range from relatively specific (e.g., how the right versus the left hemisphere activate word meanings; how the right hemisphere is involved in inferencing) to more general (the influence of cognitive resource factors; the role of suppression of contextually-irrelevant information). Next, two specific accounts of RHD comprehension difficulties, coarse coding and suppression deficit, are described. These have been construed as opposing processes, but a possible reconciliation is proposed related to the different phases of comprehension and the extent of meaning activation. Finally, the article addresses the influences of contextual constraint on language processing and the continuity of literal and nonliteral language processing, two areas in which future developments may assist our clinical planning PMID:20011667
A STUDY OF THE HEMISPHERIC ASYMMETRY OF SUNSPOT AREA DURING SOLAR CYCLES 23 AND 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Partha; Choudhary, D. P.; Gosain, Sanjay, E-mail: partha240@yahoo.co.in, E-mail: parthares@gmail.com, E-mail: debiprasad.choudhary@csun.edu, E-mail: sgosain@nso.edu
2013-05-10
Solar activity indices vary over the Sun's disk, and various activity parameters are not considered to be symmetric between the northern and southern hemispheres of the Sun. The north-south asymmetry of different solar indices provides an important clue to understanding subphotospheric dynamics and solar dynamo action, especially with regard to nonlinear dynamo models. In the present work, we study the statistical significance of the north-south asymmetry of sunspot areas for the complete solar cycle 23 (1996-2008) and rising branch of cycle 24 (first 45 months). The preferred hemisphere in each year of cycles 23 and 24 has been identified bymore » calculating the probability of hemispheric distribution of sunspot areas. The statistically significant intermediate-term periodicities of the north-south asymmetry of sunspot area data have also been investigated using Lomb-Scargle and wavelet techniques. A number of short- and mid-term periods including the best-known Rieger one (150-160 days) are detected in cycle 23 and near Rieger-type periods during cycle 24, and most of them are found to be time variable. We present our results and discuss their possible explanations with the help of theoretical models and observations.« less
Automated EEG-based screening of depression using deep convolutional neural network.
Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat; Subha, D P
2018-07-01
In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI). Copyright © 2018 Elsevier B.V. All rights reserved.
Global monsoon precipitation responses to large volcanic eruptions
Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan
2016-01-01
Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141
SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp
2017-01-20
Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigatemore » the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.« less
Global monsoon precipitation responses to large volcanic eruptions.
Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan
2016-04-11
Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.
Canopy openness, understory light environments, and oak regeneration
Brian C. McCarthy; Scott A. Robison
2003-01-01
Understory light environments were evaluated in four mixed-oak forests in southern Ohio using hemispherical photography. Within each forest, plots were divided into nine treatment combinations based on three pretreatment fire categories and three Integrated Moisture Index (IMI) categories. For each of 108 photographs we determined the percentage of open sky, direct...
Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust
NASA Astrophysics Data System (ADS)
Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.
2016-05-01
Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.
A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)
NASA Technical Reports Server (NTRS)
Reardon, J. E.; Lee, Y. C.
1979-01-01
A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.
Comparison of the neural basis for imagined writing and drawing.
Harrington, Greg S; Farias, Dana; Davis, Christine H; Buonocore, Michael H
2007-05-01
Drawing and writing are complex processes that require the synchronization of cognition, language, and perceptual-motor skills. Drawing and writing have both been utilized in the treatment of aphasia to improve communication. Recent research suggests that the act of drawing an object facilitated naming, whereas writing the word diminished accurate naming in individuals with aphasia. However, the relationship between object drawing and subsequent phonological output is unclear. Although the right hemisphere is characteristically mute, there is evidence from split-brain research that the right hemisphere can integrate pictures and words, likely via a semantic network. We hypothesized that drawing activates right hemispheric and left perilesional regions that are spared in aphasic individuals and may contribute to semantic activation that supports naming. Eleven right-handed subjects participated in a functional MRI (fMRI) experiment involving imagined drawing and writing and 6 of the 11 subjects participated in a second fMRI experiment involving actual writing and drawing. Drawing and writing produced very similar group activation maps including activation bilaterally in the premotor, inferior frontal, posterior inferior temporal, and parietal areas. The comparison of drawing vs. writing revealed significant differences between the conditions in areas of the brain known for language processing. The direct comparison between drawing and writing revealed greater right hemisphere activation for drawing in language areas such as Brodmann area (BA) 46 and BA 37.
Arthropod eye-inspired digital camera with unique imaging characteristics
NASA Astrophysics Data System (ADS)
Xiao, Jianliang; Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B.; Huang, Yonggang; Rogers, John A.
2014-06-01
In nature, arthropods have a remarkably sophisticated class of imaging systems, with a hemispherical geometry, a wideangle field of view, low aberrations, high acuity to motion and an infinite depth of field. There are great interests in building systems with similar geometries and properties due to numerous potential applications. However, the established semiconductor sensor technologies and optics are essentially planar, which experience great challenges in building such systems with hemispherical, compound apposition layouts. With the recent advancement of stretchable optoelectronics, we have successfully developed strategies to build a fully functional artificial apposition compound eye camera by combining optics, materials and mechanics principles. The strategies start with fabricating stretchable arrays of thin silicon photodetectors and elastomeric optical elements in planar geometries, which are then precisely aligned and integrated, and elastically transformed to hemispherical shapes. This imaging device demonstrates nearly full hemispherical shape (about 160 degrees), with densely packed artificial ommatidia. The number of ommatidia (180) is comparable to those of the eyes of fire ants and bark beetles. We have illustrated key features of operation of compound eyes through experimental imaging results and quantitative ray-tracing-based simulations. The general strategies shown in this development could be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).
Evans, Karen M.; Federmeier, Kara D.
2009-01-01
We examined the nature and timecourse of hemispheric asymmetries in verbal memory by recording event-related potentials (ERPs) in a continuous recognition task. Participants made overt recognition judgments to test words presented in central vision that were either novel (new words) or had been previously presented in the left or right visual field (old words). An ERP memory effect linked to explicit retrieval revealed no asymmetries for words repeated at short and medium retention intervals, but at longer repetition lags (20–50 intervening words) this ‘old/new effect’ was more pronounced for words whose study presentation had been biased to the right hemisphere (RH). Additionally, a repetition effect linked to more implicit recognition processes (P2 amplitude changes) was observed at all lags for words preferentially encoded by the RH but was not observed for left hemisphere (LH)-encoded words. These results are consistent with theories that the RH encodes verbal stimuli more veridically whereas the LH encodes in a more abstract manner. The current findings provide a critical link between prior work on memory asymmetries, which has emphasized general LH advantages for verbal material, and on language comprehension, which has pointed to an important role for the RH in language processes that require the retention and integration of verbal information over long time spans. PMID:17291547
Tervaniemi, Mari; Sannemann, Christian; Noyranen, Maiju; Salonen, Johanna; Pihko, Elina
2011-08-01
The brain basis behind musical competence in its various forms is not yet known. To determine the pattern of hemispheric lateralization during sound-change discrimination, we recorded the magnetic counterpart of the electrical mismatch negativity (MMNm) responses in professional musicians, musical participants (with high scores in the musicality tests but without professional training in music) and non-musicians. While watching a silenced video, they were presented with short sounds with frequency and duration deviants and C major chords with C minor chords as deviants. MMNm to chord deviants was stronger in both musicians and musical participants than in non-musicians, particularly in their left hemisphere. No group differences were obtained in the MMNm strength in the right hemisphere in any of the conditions or in the left hemisphere in the case of frequency or duration deviants. Thus, in addition to professional training in music, musical aptitude (combined with lower-level musical training) is also reflected in brain functioning related to sound discrimination. The present magnetoencephalographic evidence therefore indicates that the sound discrimination abilities may be differentially distributed in the brain in musically competent and naïve participants, especially in a musical context established by chord stimuli: the higher forms of musical competence engage both auditory cortices in an integrative manner. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Correlation Factors Describing Primary and Spatial Sensations of Sound Fields
NASA Astrophysics Data System (ADS)
ANDO, Y.
2002-11-01
The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.
Rastatter, M P; Dell, C W
1987-03-01
Fourteen right-handed stutterers and 14 normal speakers (7 men & 7 women) responded to monaurally presented stimuli with their right and left hands. Results of an ANOVA with repeated measures showed that a significant ear-hand interaction existed in the normal subjects' data, with the right-ear, right-hand configuration producing the fastest responses. These findings were in concert with an efficiency model of neurolinguistic organization that suggests that the left hemisphere is dominant for language processing with the right hemisphere being capable of performing less efficient auditory-verbal analysis. Results of a similar ANOVA procedure showed that all main effects and interactions were nonsignificant for the stutterers. From these data a bilateral model of neurolinguistic organization was derived for the stutterers where both hemispheres must participate simultaneously in the decoding process. This held true regardless of sex or severity of stuttering.
Model of climate evolution based on continental drift and polar wandering
NASA Technical Reports Server (NTRS)
Donn, W. L.; Shaw, D. M.
1977-01-01
The thermodynamic meteorologic model of Adem is used to trace the evolution of climate from Triassic to present time by applying it to changing geography as described by continental drift and polar wandering. Results show that the gross changes of climate in the Northern Hemisphere can be fully explained by the strong cooling in high latitudes as continents moved poleward. High-latitude mean temperatures in the Northern Hemisphere dropped below the freezing point 10 to 15 m.y. ago, thereby accounting for the late Cenozoic glacial age. Computed meridional temperature gradients for the Northern Hemisphere steepened from 20 to 40 C over the 200-m.y. period, an effect caused primarily by the high-latitude temperature decrease. The primary result of the work is that the cooling that has occurred since the warm Mesozoic period and has culminated in glaciation is explainable wholly by terrestrial processes.
Hemispheric Transport of Air Pollutants: Issues, Progress, and Implications
NASA Astrophysics Data System (ADS)
Keating, T.
2007-12-01
Once thought of as only a local or regional issue, air quality is now understood to be influenced by local, regional, hemispheric, and global phenomena. There is well-documented evidence from ground-, aircraft-, and satellite- based observations for the intercontinental transport of ozone, aerosols, mercury, and some persistent organic pollutants. Global and regional models have provided a range of estimates of the influence of emissions on one continent on concentrations and deposition levels on another continent. These estimates have been difficult to compare and the significance of this intercontinental influence for the design of air pollution control policies is not well understood. The Task Force on Hemispheric Transport of Air Pollutants organized under the Convention on Long-Range Transboundary Air Pollution is developing the first systematic assessment of intercontinental transport and hemispheric pollution in the Northern Hemisphere. This presentation by one of the co-chairs of the Task Force will explore the motivations behind the creation of the Task Force, review its progress, and discuss the implications of its work for the development of domestic and international air quality management policies.
Streamlined, Inexpensive 3D Printing of the Brain and Skull.
Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S
2015-01-01
Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.
Modeling of polarimetric BRDF characteristics of painted surfaces
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wang, Zeying; Zhao, Huijie
2014-11-01
In this paper a pBRDF (polarimetric Bidirectional Reflectance Distribution Function) model of painted surfaces coupled with atmospheric polarization characteristics is built and the method of simulating polarimetric radiation reaching the imaging system is advanced. Firstly, the composition of the radiation reaching the sensor is analyzed. Then, the pBRDF model of painted surfaces is developed according to the microfacet theory presented by G. Priest and the downwelled skylight polarization is modeled based on the vector radiative transfer model RT3. Furthermore, the modeled polarization state of reflected light from the surfaces was achieved through integrating the directional polarimetric information of the whole hemisphere, adding the modeled polarimetric factors of incident diffused skylight. Finally, the polarimetric radiance reaching the sensor is summed up with the assumption that the target-sensor path is assumed to be negligible since it is relatively short in the current imaging geometry. The modeled results are related to the solar-sensor geometry, atmospheric conditions and the features of the painted surfaces. This result can be used to simulate the imaging under different weather conditions and further work for the validation experiments of the model need to be done.
Hemispheric asymmetries in discourse processing: evidence from false memories for lists and texts.
Ben-Artzi, Elisheva; Faust, Miriam; Moeller, Edna
2009-01-01
Previous research suggests that the right hemisphere (RH) may contribute uniquely to discourse and text processing by activating and maintaining a wide range of meanings, including more distantly related meanings. The present study used the word-lists false memory paradigm [Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803-814.] to examine the hypothesis that difference between the two cerebral hemispheres in discourse processing may be due, at least partly, to memory representations for implicit text-related semantic information. Specifically, we tested the susceptibility of the left hemisphere (LH) and RH to unpresented target words following the presentation of semantically related words appearing in either word lists or short texts. Findings showed that the RH produced more false alarms than the LH for unpresented target words following either word lists or texts. These findings reveal hemispheric differences in memory for semantically related information and suggest that RH advantage in long-term maintenance of a wide range of text-related word meanings may be one aspect of its unique contribution to the construction of a discourse model. The results support the RH coarse semantic coding theory [Beeman, M. (1998). Coarse semantic coding and discourse comprehension. In M. Beeman & C. Chiarello (Eds.), Right hemisphere language comprehension: Perspectives from cognitive neuroscience (pp. 255-284). Mahwah, NJ: Erlbaum.] and suggest that hemispheric differences in semantic processing during language comprehension extend also to verbal memory.
Fiebelkorn, Ian C; Foxe, John J; McCourt, Mark E; Dumas, Kristina N; Molholm, Sophie
2013-05-01
Behavioral evidence for an impaired ability to group objects based on similar physical or semantic properties in autism spectrum disorders (ASD) has been mixed. Here, we recorded brain activity from high-functioning children with ASD as they completed a visual-target detection task. We then assessed the extent to which object-based selective attention automatically generalized from targets to non-target exemplars from the same well-known object class (e.g., dogs). Our results provide clear electrophysiological evidence that children with ASD (N=17, aged 8-13 years) process the similarity between targets (e.g., a specific dog) and same-category non-targets (SCNT) (e.g., another dog) to a lesser extent than do their typically developing (TD) peers (N=21). A closer examination of the data revealed striking hemispheric asymmetries that were specific to the ASD group. These findings align with mounting evidence in the autism literature of anatomic underconnectivity between the cerebral hemispheres. Years of research in individuals with TD have demonstrated that the left hemisphere (LH) is specialized toward processing local (or featural) stimulus properties and the right hemisphere (RH) toward processing global (or configural) stimulus properties. We therefore propose a model where a lack of communication between the hemispheres in ASD, combined with typical hemispheric specialization, is a root cause for impaired categorization and the oft-observed bias to process local over global stimulus properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tsoi, Shuk C; Aiya, Utsav V; Wasner, Kobi D; Phan, Mimi L; Pytte, Carolyn L; Vicario, David S
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.
Wasner, Kobi D.; Phan, Mimi L.; Pytte, Carolyn L.; Vicario, David S.
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals. PMID:25251077
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1981-01-01
Thin film gages deposited at the stagnation region of small (8.1-mm-diameter) hemispheres and gages mounted flush with the surface of a sharp-leading-edge flat plate were tested in the Langley continuous-flow hypersonic tunnel and in the Langley hypersonic CF4 tunnel. Two substrate materials were tested, quartz and a machinable glass-ceramic. Small hemispheres were also tested utilizing the thin-skin transient calorimeter technique usually employed in conventional tunnels. One transient calorimeter model was a thin shell of stainless steel, and the other was a thin-skin insert of stainless steel mounted into a hemisphere fabricated from a machinable-glass-ceramic. Measured heat-transfer rates from the various hemispheres were compared with one another and with predicted rates. The results demonstrate the feasibility and advantages of using-film resistance heat-transfer gages in conventional hypersonic wind tunnels over a wide range of conditions.
Effects of neurological damage on production of formulaic language
Sidtis, D.; Canterucci, G.; Katsnelson, D.
2014-01-01
Early studies reported preserved formulaic language in left hemisphere damaged subjects and reduced incidence of formulaic expressions in the conversational speech of stroke patients with right hemispheric damage. Clinical observations suggest a possible role also of subcortical nuclei. This study examined formulaic language in the spontaneous speech of stroke patients with left, right, or subcortical damage. Four subjects were interviewed and their speech samples compared to normal speakers. Raters classified formulaic expressions as speech formulae, fillers, sentence stems, and proper nouns. Results demonstrated that brain damage affected novel and formulaic language competence differently, with a significantly smaller proportion of formulaic expressions in subjects with right or subcortical damage compared to left hemisphere damaged or healthy speakers. These findings converge with previous studies that support the proposal of a right hemisphere/subcortical circuit in the management of formulaic expressions, based on a dual-process model of language incorporating novel and formulaic language use. PMID:19382014
Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.
Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie
2016-12-01
Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.
Role of local assembly in the hierarchical crystallization of associating colloidal hard hemispheres
NASA Astrophysics Data System (ADS)
Lei, Qun-li; Hadinoto, Kunn; Ni, Ran
2017-10-01
Hierarchical self-assembly consisting of local associations of simple building blocks for the formation of complex structures widely exists in nature, while the essential role of local assembly remains unknown. In this work, by using computer simulations, we study a simple model system consisting of associating colloidal hemispheres crystallizing into face-centered-cubic crystals comprised of spherical dimers of hemispheres, focusing on the effect of dimer formation on the hierarchical crystallization. We found that besides assisting the crystal nucleation because of increasing the symmetry of building blocks, the association between hemispheres can also induce both reentrant melting and reentrant crystallization depending on the range of interaction. Especially when the interaction is highly sticky, we observe a novel reentrant crystallization of identical crystals, which melt only in a certain temperature range. This offers another axis in fabricating responsive crystalline materials by tuning the fluctuation of local association.
Synchronous interhemispheric Holocene climate trends in the tropical Andes
Polissar, Pratigya J.; Abbott, Mark B.; Wolfe, Alexander P.; Vuille, Mathias; Bezada, Maximiliano
2013-01-01
Holocene variations of tropical moisture balance have been ascribed to orbitally forced changes in solar insolation. If this model is correct, millennial-scale climate evolution should be antiphased between the northern and southern hemispheres, producing humid intervals in one hemisphere matched to aridity in the other. Here we show that Holocene climate trends were largely synchronous and in the same direction in the northern and southern hemisphere outer-tropical Andes, providing little support for the dominant role of insolation forcing in these regions. Today, sea-surface temperatures in the equatorial Pacific Ocean modulate rainfall variability in the outer tropical Andes of both hemispheres, and we suggest that this mechanism was pervasive throughout the Holocene. Our findings imply that oceanic forcing plays a larger role in regional South American climate than previously suspected, and that Pacific sea-surface temperatures have the capacity to induce abrupt and sustained shifts in Andean climate. PMID:23959896
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.
Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and themore » solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also discussed.« less
Golchert, Johannes; Smallwood, Jonathan; Jefferies, Elizabeth; Seli, Paul; Huntenburg, Julia M; Liem, Franziskus; Lauckner, Mark E; Oligschläger, Sabine; Bernhardt, Boris C; Villringer, Arno; Margulies, Daniel S
2017-02-01
Mind-wandering has a controversial relationship with cognitive control. Existing psychological evidence supports the hypothesis that episodes of mind-wandering reflect a failure to constrain thinking to task-relevant material, as well the apparently alternative view that control can facilitate the expression of self-generated mental content. We assessed whether this apparent contradiction arises because of a failure to consider differences in the types of thoughts that occur during mind-wandering, and in particular, the associated level of intentionality. Using multi-modal magnetic resonance imaging (MRI) analysis, we examined the cortical organisation that underlies inter-individual differences in descriptions of the spontaneous or deliberate nature of mind-wandering. Cortical thickness, as well as functional connectivity analyses, implicated regions relevant to cognitive control and regions of the default-mode network for individuals who reported high rates of deliberate mind-wandering. In contrast, higher reports of spontaneous mind-wandering were associated with cortical thinning in parietal and posterior temporal regions in the left hemisphere (which are important in the control of cognition and attention) as well as heightened connectivity between the intraparietal sulcus and a region that spanned limbic and default-mode regions in the ventral inferior frontal gyrus. Finally, we observed a dissociation in the thickness of the retrosplenial cortex/lingual gyrus, with higher reports of spontaneous mind-wandering being associated with thickening in the left hemisphere, and higher repots of deliberate mind-wandering with thinning in the right hemisphere. These results suggest that the intentionality of the mind-wandering state depends on integration between the control and default-mode networks, with more deliberation being associated with greater integration between these systems. We conclude that one reason why mind-wandering has a controversial relationship with control is because it depends on whether the thoughts emerge in a deliberate or spontaneous fashion. Copyright © 2016 Elsevier Inc. All rights reserved.
CO2 Annual and Semiannual Cycles from Satellite Retrievals and Models
NASA Astrophysics Data System (ADS)
Jiang, X.; Crisp, D.; Olsen, E. T.; Kulawik, S. S.; Miller, C. E.; Pagano, T. S.; Yung, Y. L.
2014-12-01
We have compared satellite CO2 retrievals from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric Infrared Sounder (AIRS), and Tropospheric Emission Spectrometer (TES) with in-situ measurements from the Earth System Research Laboratory (NOAA-ESRL) Surface CO2 and Total Carbon Column Observing Network (TCCON), and utilized zonal means to characterize variability and distribution of CO2. In general, zonally averaged CO2 from the three satellite data sets are consistent with the surface and TCCON XCO2 data. Retrievals of CO2 from the three satellites show more (less) CO2 in the northern hemisphere than that in the southern hemisphere in the northern hemispheric winter (summer) season. The difference between the three satellite CO2 retrievals might be related to the different averaging kernels in the satellites CO2 retrievals. A multiple regression method was used to calculate the CO2 annual cycle and semiannual cycle amplitudes from different satellite CO2 retrievals. The CO2 annual cycle and semiannual cycle amplitudes are largest at the surface, as seen in the NOAA-ESRL CO2 data sets. The CO2 annual cycle and semiannual cycle amplitudes in the GOSAT XCO2, AIRS mid-tropospheric CO2, and TES mid-tropospheric CO2 are smaller compared with those from the surface CO2. Similar regression analysis was applied to the Model for OZone And Related chemical Tracers-2 (MOZART-2) and CarbonTracker model CO2. The convolved model CO2 annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO2 retrievals, although the model tends to under-estimate the CO2 seasonal cycle amplitudes in the northern hemisphere mid-latitudes from the comparison with GOSAT and TES CO2 and underestimate the CO2 semi-annual cycle amplitudes in the high latitudes from the comparison with AIRS CO2. The difference between model and satellite CO2 can be used to identify possible deficiency in the model and improve the model in the future.
Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Domingue, Deborah; Verbiscer, Anne
1997-01-01
Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface roughness with hemisphere for any of the Galilean satellites.
Falasca, N W; D'Ascenzo, S; Di Domenico, A; Onofrj, M; Tommasi, L; Laeng, B; Franciotti, R
2015-04-01
Magnetoencephalography was recorded during a matching-to-sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas--the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top-down influence, supporting the idea that, in this task, top-down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto-parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow
NASA Astrophysics Data System (ADS)
Bourgeois, C. S.; Calanca, P.; Ohmura, A.
2006-10-01
Hemispherical directional reflectance factors (HDRF) were collected under solar zenith angles from 49° to 85°. The experimental site was the Greenland Summit Environmental Observatory (72°35'N, 34°30'W, 3203 m above sea level) where both the snow and the atmosphere are very clean. The observations were carried out for two prevailing snow surface types: a smooth surface with wind-broken small snow grains and a surface covered with rime causing a higher surface roughness. A specially designed Gonio-Spectrometer (wavelength range 350-1050 nm), was developed at the Institute for Atmospheric and Climate Science and used to collect spectral HDRFs over the hemisphere. The angular step size was 15° in zenith and azimuth. The HDRFs showed strong variations ranging from 0.6 to 13, depending on the solar zenith angle. The HDRF distribution was nearly isotropic at noon. It varied with increasing solar zenith angle, resulting in a strong forward scattering peak. Smooth surfaces exhibited stronger forward scattering than surfaces covered with rime. At a solar zenith of 85°, an HDRF of ˜13 was observed in the forward scattering direction for λ=900 nm. Spectral albedos were calculated by interpolating the HDRF data sets on a 2° grid and integrating individual wavelengths. Spectral albedos showed variations depending on the solar illumination geometry and the snow surface properties. Broadband albedos were calculated by integration of the spectral albedos over all wavelengths. The broadband albedos derived from directional measurements reproduced the diurnal pattern measured with two back-to-back broadband pyranometers.
Qin, Shuo; Ray, Nicholas R; Ramakrishnan, Nithya; Nashiro, Kaoru; O'Connell, Margaret A; Basak, Chandramallika
2016-11-01
Overloading the capacity of visual attention can result in mistakenly combining the various features of an object, that is, illusory conjunctions. We hypothesize that if the two hemispheres separately process visual information by splitting attention, connectivity of corpus callosum-a brain structure integrating the two hemispheres-would predict the degree of illusory conjunctions. In the current study, we assessed two types of illusory conjunctions using a memory-scanning paradigm; the features were either presented across the two opposite hemifields or within the same hemifield. Four objects, each with two visual features, were briefly presented together followed by a probe-recognition and a confidence rating for the recognition accuracy. MRI scans were also obtained. Results indicated that successful recollection during probe recognition was better for across hemifields conjunctions compared to within hemifield conjunctions, lending support to the bilateral advantage of the two hemispheres in visual short-term memory. Age-related differences regarding the underlying mechanisms of the bilateral advantage indicated greater reliance on recollection-based processing in young and on familiarity-based processing in old. Moreover, the integrity of the posterior corpus callosum was more predictive of opposite hemifield illusory conjunctions compared to within hemifield illusory conjunctions, even after controlling for age. That is, individuals with lesser posterior corpus callosum connectivity had better recognition for objects when their features were recombined from the opposite hemifields than from the same hemifield. This study is the first to investigate the role of the corpus callosum in splitting attention between versus within hemifields. © 2016 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Provan, G.; Cowley, S. W. H.; Bunce, E. J.; Hunt, G. J.; Dougherty, M. K.
2017-12-01
We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field data during the high cadence ( 7 days) F-ring and proximal orbits. Previous results have shown that there are two PPO systems, one in each hemisphere. Both PPO periods show seasonal dependence, and since mid-2014 the Northern PPO period has been 10.8 h and the Southern PPO period 10.7 h. The beat period of the two oscillations is 45 days. Previous results demonstrated that in the Northern (Southern) polar region only pure Northern (Southern) oscillations can be observed, whilst in the equatorial region both oscillations are present and constructively and destructively interfere over the beat-cycle of the two oscillations. The PPOs are believed to be driven by twin-cell convection patterns in the polar ionosphere/thermosphere regions, with two systems of field-aligned currents transmitting the PPO flows to the magnetospheric plasma.The F-ring and proximal orbits uniquely observe the PPOs over 6 orbits during each PPO beat cycle. This high-cadence data demonstrates that over a beat cycle both the periods and amplitudes of the PPO observed within the each polar region are modulated by the PPO system from the opposite hemisphere. When the two oscillations are in phase (anti-phase) the `drag' of one system on the other acts to decrease (increase) the amplitude of the oscillations and the two PPO periods diverge (converge). We present a theoretical model showing that this coupling is due to the PPO flows from one hemisphere not just being communicated to the magnetosphere as previously assumed, but also to the opposite hemisphere. The result is inter-hemispheric coupling of the PPO flow systems within the ionosphere/thermosphere system, so that the northern PPO system drives a northern twin-cell convection pattern in the southern hemisphere, and vice versa, thus leading to the observed polar modulations of the PPOs.We will also present PPO phase models determined throughout the entire Cassini mission. These models define the orientations of the two PPO current/field systems with respect to the Sun at any instant of time, thus allowing any Saturnian observations to be organized by PPO phase. The models are freely available to the community.
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.
2008-12-01
The present-day mantle structure is characterized by the African and Pacific superplumes surrounded by subduction slabs. This structure has been demonstrated to result from dynamic interaction between mantle convection and surface plate motion history in the last 120 Ma. With similar techniques, mantle structure has been constructed back to about 100 Ma ago. However, due to the lack in global plate motion reconstructions further back in time, mantle structure for earlier times is poorly understood, despite of their importance in understanding the continental tectonics and volcanisms. Zhong et al. (2007) suggested that the mantle structures alternate between spherical harmonic degrees-1 and -2 structures, modulated by supercontinent processes. In their model, a supercontinent forms in the hemisphere with cold downwellings, and after supercontinent formation, the cold downwellings are replaced with hot upwellings due to return flows associated with circum-supercontinent subduction. This model implies that the African superplume is younger than 330 Ma when Pangea was formed, which is supported by volcanic activities recorded on continents around Pangea time. By using paleomagnetic-geologically reconstructed continental motions between 500 and 200 Ma in a three-dimensional spherical models of mantle convection, this study, for the first time, investigates the time evolution of mantle structures in the African hemisphere associated with Pangea formation. We show that cold downwellings first develop in the mantle between the colliding Laurentia and Gondwana, and that the downwellings are then replaced by upwellings after the formation of Pangea and as circum-Pangea subduction is initiated, consistent with Zhong et al. (2007) and Li et al. (2008). We find that the return flows in response to the circum-Pangea subduction are responsible for the upwellings below Pangea. We also find that even if the mantle in the African hemisphere is initially occupied by hot upwellings, the cold downwellings associated with convergence between Laurentia and Gondwana would destroy the hot upwellings and cause the hemisphere to be cold. These results are insensitive to model parameters such as convective vigor, internal heating rate, and the plate motions in the oceanic hemisphere. We therefore suggest that the African superplume is younger than 330 Ma when Pangea was formed.
Modeling of Water Injection into a Vacuum
NASA Technical Reports Server (NTRS)
Alred, John W.; Smith, Nicole L.; Wang, K. C.; Lumpkin, Forrest E.; Fitzgerald, Steven M.
1997-01-01
A loosely coupled two-phase vacuum water plume model has been developed. This model consists of a source flow model to describe the expansion of water vapor, and the Lagrangian equations of motion for particle trajectories. Gas/Particle interaction is modeled through the drag force induced by the relative velocities. Particles are assumed traveling along streamlines. The equations of motion are integrated to obtain particle velocity along the streamline. This model has been used to predict the mass flux in a 5 meter radius hemispherical domain resulting from the burst of a water jet of 1.5 mm in diameter, mass flow rate of 24.2 g/s, and stagnation pressure of 21.0 psia, which is the nominal Orbiter water dump condition. The result is compared with an empirical water plume model deduced from a video image of the STS-29 water dump. To further improve the model, work has begun to numerically simulate the bubble formation and bursting present in a liquid stream injected into a vacuum. The technique of smoothed particle hydrodynamics was used to formulate this simulation. A status and results of the on-going effort are presented and compared to results from the literature.
Snow in Earth System Models: Recent Progress and Future Challenges
NASA Astrophysics Data System (ADS)
Clark, M. P.; Slater, A. G.
2016-12-01
Snow is the most variable of terrestrial boundary conditions. Some 50 million km^2 of the Northern Hemisphere typically sees periods of accumulation and ablation in the annual cycle. The wonderous properties of snow, such as high albedo, thermal insulation and its ability to act as a water store make it an integral part of the global climate system. Earliest inclusions of snow within climate models were simple adjustments to albedo and a moisture store. Modern Earth Syetem Models now represent snow through a myriad of model architectures and parameterizations that span a broad range of complexity. Understanding the impacts of modeling decisions upon simulation of snow and other Earth System components (either directly or via feedbacks) is an ongoing area of research. Snow models are progressing with multi-layer representations and capabilities such as complex albedo schemes that include contaminants. While considerable advances have been made, numerous challenges also remain. Simply getting a grasp on the mass of snow (seasonal or permanent) has proved more difficult than expected over the past 30 years. Snow interactions with vegetation has improved but the details of vegetation masking and emergence are still limited. Inclusion of blowing snow processes, in terms of transport and sublimation, is typically rare and sublimation remains a difficult quantity to measure. Contemplation of snow crystal form within models and integration with radiative transfer schemes for better understanding of full spectrum interations (from UV to long microwave) may simultaneously advance simulation and remote sensing. A series of international modeling experiments and directed field campaigns are planned in the near future with the aim of pushing our knowledge forward.
Successful physiological aging and episodic memory: a brain stimulation study.
Manenti, Rosa; Cotelli, Maria; Miniussi, Carlo
2011-01-01
Functional neuroimaging studies have shown that younger adults tend to asymmetrically recruit specific regions of an hemisphere in an episodic memory task (Hemispheric Encoding Retrieval Asymmetry-HERA model). In older adults, this hemispheric asymmetry is generally reduced as suggested by the Hemispheric Asymmetry Reduction for OLDer Adults-HAROLD-model. Recent works suggest that while low-performing older adults do not show this reduced asymmetry, high-performing older adults counteract age-related neural decline through a plastic reorganization of cerebral networks that results in reduced functional asymmetry. However, the issue of whether high- and low-performing older adults show different degrees of asymmetry and the relevance of this process for counteracting aging have not been clarified. We used transcranial magnetic stimulation (TMS) to transiently interfere with the function of the dorsolateral prefrontal cortex (DLPFC) during encoding or retrieval of associated and non-associated word pairs. A group of healthy older adults was studied during encoding and retrieval of word pairs. The subjects were divided in two subgroups according to their experimental performance (i.e., high- and low-performing). TMS effects on retrieval differed according to the subject's subgroup. In particular, the predominance of left vs. right DLPFC effects during encoding, predicted by the HERA model, was observed only in low-performing older adults, while the asymmetry reduction predicted by the HAROLD model was selectively shown for the high-performing group. The present data confirm that older adults with higher memory performance show less prefrontal asymmetry as an efficient strategy to counteract age-related memory decline. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin
2018-04-01
Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect. The anticyclonic circulation anomaly intensifies the southwesterly flow that transfers more moisture from the Bay of Bengal to East Asia and considerably increases the winter precipitation over the southern East Asia. This is strongly supported by the observational fact that there has been a significant interdecadal increase of winter precipitation over the southern China since the end of the 1970s.
NASA Astrophysics Data System (ADS)
Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.
2010-12-01
We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily attributable to response errors. Our results suggest that biases in multi-model average temperature trends over the satellite era can be plausibly linked to forcing errors. Better partitioning of the forcing and response components of model errors will require a systematic program of numerical experimentation, with a focus on exploring the climate response to uncertainties in key historical forcings.
Modelling of Black and Organic Carbon Variability in the Northern Hemisphere
NASA Astrophysics Data System (ADS)
Kurganskiy, Alexander; Nuterman, Roman; Mahura, Alexander; Kaas, Eigil; Baklanov, Alexander; Hansen Sass, Bent
2016-04-01
Black and organic carbon as short-lived climate forcers have influence on air quality and climate in Northern Europe and Arctic. Atmospheric dispersion, deposition and transport of these climate forcers from remote sources is especially difficult to model in Arctic regions due to complexity of meteorological and chemical processes and uncertainties of emissions. In our study, the online integrated meteorology-chemistry/aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of black and organic carbon aerosols in atmospheric composition in the Northern Hemisphere regions. The model setup included horizontal resolution of 0.72 deg, time step of 450 sec, 6 h meteorological surface data assimilation, 1 month spin-up; and model was run for the full year of 2010. Emissions included anthropogenic (ECLIPSE), shipping (AU_RCP&FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. Meteorological (from IFS at 0.75 deg) and chemical (from MACC Reanalysis at 1.125 deg) boundary conditions were obtained from ECMWF. Annual and month-to-month variability of mean concentration, accumulated dry/wet and total deposition fluxes is analyzed for the model domain and selected European and Arctic observation sites. Modelled and observed BC daily mean concentrations during January and July showed fair-good correlation (0.31-0.64) for stations in Germany, UK and Italy; however, for Arctic stations (Tiksi, Russia and Zeppelin, Norway) the correlations were negative in January, but higher correlations and positive (0.2-0.7) in July. For OC, it varied 0.45-0.67 in January and 0.19-0.57 in July. On seasonal scale, during both summer and winter seasons the BC and OC correlations are positive and higher for European stations compared with Arctic. On annual scale, both BC and OC correlations are positive and vary between 0.4-0.6 for European stations, and these are smoothed to negligible values for Arctic stations. Results of simulations showed that in general the model tends to underestimate both black and organic carbon concentrations for the Arctic and European stations.
Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A
2018-01-01
Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).
The Density Jump at the Inner Core Boundary in the Eastern and Western Hemispheres
NASA Astrophysics Data System (ADS)
Krasnoshchekov, D. N.; Ovtchinnikov, V. M.
2018-02-01
The results of analysis of more than 1300 new PKiKP/PcP amplitude ratios measured in Southeast Asia and South America at the epicentral distances of 3.2°-35.2° are presented. The density jump in the Eastern Hemisphere of the Earth's inner core (IC) is 0.3 g/cm3, and it is 0.9 g/cm3 in the Western one. Taking the large discrepancy in the obtained estimates into consideration, maintenance of such large lateral variations in the mosaic properties of the IC reflecting surface requires considerable variations in the thermodynamic parameters (mostly temperature) of the inner-outer core transition. However, if the observed asymmetry in the density jump distribution is of a global character, the data presented support the translation model of the IC dynamics. This model implies IC crystallization in the Western Hemisphere and melting in the Eastern one, not vice versa, as suggested by another geodynamic model based on thermochemical convection in the outer core and the thermal balance of the core-mantle system.
A quasi-hemispheric model of the Hermean's magnetic field
NASA Astrophysics Data System (ADS)
Thebault, E.; Oliveira, J.; Langlais, B.; Amit, H.
2015-10-01
We analyse and process magnetic field measurements provided by the MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) mission. The vect or magnetic field measurements are modelled with a dedicated regional scheme expanded in space and in time. Compared to the widely used global Spherical Harmonics (SH), the regional approach is particularly well suited because the partial and quasi hemispheric distribution of the MESSENGER data represents no major numerical difficulty. We confirm that the internal magnetic field of Mercury is mostly axisymmetric with a magnetic equator shifted northward. However, we also observe a time dependency in the model that is at present hardly explained only by time variations of the external magnetic fields. We present the major spatial and temporal structures shown by the regional model.
Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism
NASA Astrophysics Data System (ADS)
Citron, Robert I.; Zhong, Shijie
2012-12-01
The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern hemisphere as crustal production fronts spread radially out from the plume center and as the newly created crust cools in the presence of a dynamo with polarity reversals.
Millimeter-wave and terahertz integrated circuit antennas
NASA Technical Reports Server (NTRS)
Rebeiz, Gabriel M.
1992-01-01
This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.
NASA Astrophysics Data System (ADS)
Lindgren, E. A.; Sheshadri, A.; Plumb, R. A.
2017-12-01
Tropospheric heating perturbations are used to create Northern Hemisphere winter-like stratospheric variability in an idealized atmospheric GCM. Model results with wave 1 and 2 heating perturbations are compared to a model with wave 2 topography, which has previously been shown to produce a realistic sudden stratospheric warming frequency. It is found that both wave 1 and wave 2 heating perturbations cause both split and displacement sudden warmings. This is different from the wave 2 topographic forcing, which only produces splits. Furthermore, the tropospheric heating is shown to produce more reasonable annular mode timescales in the troposphere compared to the topographic forcing. It is argued that the model with wave 2 tropospheric heating perturbation is better at simulating Northern Hemisphere stratospheric variability compared to the model with wave 2 topographic forcing. The long-term variability of zonal winds in the wave 2 heating run is also investigated, under both perpetual winter conditions and with a seasonal cycle. It is found that midlatitude winds in the perpetual winter version of the model exhibit variability on timescales of around 1000 days. These variations are thought to be connected to the QBO-like oscillations in tropical winds found in the model. This connection is further explored in the seasonal cycle version of the model as well as full GCMs with QBOs, where the correlations between tropical winds and polar vortex strength are investigated.
Estimates of the seasonal mean vertical velocity fields of the extratropical Northern Hemisphere
NASA Technical Reports Server (NTRS)
White, G. H.
1983-01-01
Indirect methods are employed to estimate the wintertime and summertime mean vertical velocity fields of the extratropical Northern Hemisphere and intercomparisons are made, together with comparisons with mean seasonal patterns of cloudiness and precipitation. Twice-daily NMC operational analyses produced general circulation statistics for 11 winters and 12 summers, permitting calculation of the seasonal NMC averages for 6 hr forecasts, solution of the omega equation, integration of continuity equation downward from 100 mb, and solution of the thermodynamic energy equation in the absence of diabatic heating. The methods all yielded similar vertical velocity patterns; however, the magnitude of the vertical velocities could not be calculated with great accuracy. Orography was concluded to have less of an effect in summer than in winter, when winds are stronger.
Francis, Alexander L; Driscoll, Courtney
2006-09-01
We examined the effect of perceptual training on a well-established hemispheric asymmetry in speech processing. Eighteen listeners were trained to use a within-category difference in voice onset time (VOT) to cue talker identity. Successful learners (n=8) showed faster response times for stimuli presented only to the left ear than for those presented only to the right. The development of a left-ear/right-hemisphere advantage for processing a prototypically phonetic cue supports a model of speech perception in which lateralization is driven by functional demands (talker identification vs. phonetic categorization) rather than by acoustic stimulus properties alone.
NASA Astrophysics Data System (ADS)
Jiang, J. H.; Eckermann, S. D.; Wu, D. L.; Ma, J.; Wang, D. Y.
2003-04-01
Topography-related wintertime stratospheric gravity waves in both Northern and Southern Hemisphere are simulated using the Naval Research Laboratory Mountain Wave Forecast Model (MWFM). The results agree well with the observations from Upper Atmospheric Research Satellite Microwave Limb Sounder (MLS). Both the MWFM simulation and MLS observations found strong wave activities over the high-latitude mountain ridges of Scandinavia, Central Eurasia, Alaska, southern Greenland in Northern Hemisphere, and Andes, New Zealand, Antarctic rim in Southern Hemisphere. These mountain waves are dominated by wave modes with downward phase progression and horizontal phase velocities opposite to the stratospheric jet-stream. Agreements of minor wave activities are also found at low- to mid-latitudes over Zagros Mountains of Middle East, Colorado Rocky Mountains, Appalachians, and Sierra Madres of Central America. Some differences between the MWFM results and MLS data are explained by different horizontal resolution between the model and observation, and the fact that MLS may also see the non-orographic wave sources, such as mesoscale storms and jet-stream instabilities. The findings from this model-measurement comparison study demonstrate that satellite instruments such as MLS can provide global data needed to characterize mountain wave sources, their inter-annual variations, and to improve gravity wave parameterizations in global climate and forecast models.
Occurrence of pristine aerosol environments on a polluted planet.
Hamilton, Douglas S; Lee, Lindsay A; Pringle, Kirsty J; Reddington, Carly L; Spracklen, Dominick V; Carslaw, Kenneth S
2014-12-30
Natural aerosols define a preindustrial baseline state from which the magnitude of anthropogenic aerosol effects on climate are calculated and are a major component of the large uncertainty in anthropogenic aerosol-cloud radiative forcing. This uncertainty would be reduced if aerosol environments unperturbed by air pollution could be studied in the present--day atmosphere, but the pervasiveness of air pollution makes identification of unperturbed regions difficult. Here, we use global model simulations to define unperturbed aerosol regions in terms of two measures that compare 1750 and 2000 conditions-the number of days with similar aerosol concentrations and the similarity of the aerosol response to perturbations in model processes and emissions. The analysis shows that the aerosol system in many present-day environments looks and behaves like it did in the preindustrial era. On a global annual mean, unperturbed aerosol regions cover 12% of the Earth (16% of the ocean surface and 2% of the land surface). There is a strong seasonal variation in unperturbed regions of between 4% in August and 27% in January, with the most persistent conditions occurring over the equatorial Pacific. About 90% of unperturbed regions occur in the Southern Hemisphere, but in the Northern Hemisphere, unperturbed conditions are transient and spatially patchy. In cloudy regions with a radiative forcing relative to 1750, model results suggest that unperturbed aerosol conditions could still occur on a small number of days per month. However, these environments are mostly in the Southern Hemisphere, potentially limiting the usefulness in reducing Northern Hemisphere forcing uncertainty.
Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations
Silver, Michael A.
2015-01-01
Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746
NASA Technical Reports Server (NTRS)
Baker, W. E.; Paegle, J.
1983-01-01
An examination is undertaken of the sensitivity of short term Southern Hemisphere circulation prediction to tropical wind data and tropical latent heat release. The data assimilation experiments employ the Goddard Laboratory for Atmospheric Sciences' fourth-order general circulation model. Two of the experiments are identical, but for the fact that one uses tropical wind data while the other does not. A third experiment contains the identical initial conditions of forecasts with tropical winds, while suppressing tropical latent heat release.
NASA Technical Reports Server (NTRS)
Young, Eliot F.; Binzel, Richard P.
1993-01-01
Observations of Charon transits are used here to derive preliminary maps of Pluto's sub-Charon hemisphere. Three models are used to describe the brightness of Pluto's surface as functions of latitude and longitude. Mapping results are presented using spherical harmonic functions, polynomial functions, and finite elements. A smoothing algorithm applied to the maps is described and the validity and resolution of the maps is tested by reconstruction from synthetic data. A preliminary finding from the maps is that the south polar region has the highest albedo of any location on the planet.
Perception of emotional prosody: moving toward a model that incorporates sex-related differences.
Everhart, D Erik; Demaree, Heath A; Shipley, Amy J
2006-06-01
The overall purpose of this article is to review the literature that addresses the theoretical models, neuroanatomical mechanisms, and sex-related differences in the perception of emotional prosody. Specifically, the article focuses on the right-hemisphere model of emotion processing as it pertains to the perception of emotional prosody. This article also reviews more recent research that implicates a role for the left hemisphere and subcortical structures in the perception of emotional prosody. The last major section of this article addresses sex-related differences and the potential influence of hormones on the perception of emotional prosody. The article concludes with a section that offers directions for future research.
Internal Interdecadal Variability in CMIP5 Control Simulations
NASA Astrophysics Data System (ADS)
Cheung, A. H.; Mann, M. E.; Frankcombe, L. M.; England, M. H.; Steinman, B. A.; Miller, S. K.
2015-12-01
Here we make use of control simulations from the CMIP5 models to quantify the amplitude of the interdecadal internal variability component in Atlantic, Pacific, and Northern Hemisphere mean surface temperature. We compare against estimates derived from observations using a semi-empirical approach wherein the forced component as estimated using CMIP5 historical simulations is removed to yield an estimate of the residual, internal variability. While the observational estimates are largely consistent with those derived from the control simulations for both basins and the Northern Hemisphere, they lie in the upper range of the model distributions, suggesting the possibility of differences between the amplitudes of observed and modeled variability. We comment on some possible reasons for the disparity.
Zhang, Yumei; Wang, Chunxue; Zhao, Xingquan; Chen, Hongyan; Han, Zaizhu; Wang, Yongjun
2010-09-01
In contrast with disorders of comprehension and spontaneous expression, conduction aphasia is characterized by poor repetition, which is a hallmark of the syndrome. There are many theories on the repetition impairment of conduction aphasia. The disconnection theory suggests that a damaged in the arcuate fasciculus, which connects Broca's and Wernicke's area, is the cause of conduction aphasia. In this study, we examined the disconnection theory. We enrolled ten individuals with conduction aphasia and ten volunteers, and analysed their arcuate fasciculus using diffusion tensor imaging (DTI) and obtained fractional anisotropy (FA) values. Then, the results of the left hemisphere were compared with those of the right hemisphere, and the results of the conduction aphasia cases were compared with those of the volunteers. There were significant differences in the FA values between the left and right hemispheres of volunteers and conduction cases. In volunteers, there was an increase in fiber in the left hemisphere compared with the right hemisphere, whereas there was an increase in fiber in the right hemisphere compared with the left hemisphere in conduction aphasia patients. The results of diffusion tensor tractography suggested that the configuration of the arcuate fasciculus was different between conduction aphasia patients and volunteers, suggesting that there was damage to the arcuate fasciculus of conduction aphasia cases. The damage seen in the arcuate fasciculus of conduction aphasia cases in this study supports the Wernicke-Geschwind disconnection theory. A disconnection between Broca's area and Wernicke's area is likely to be one mechanism of conduction aphasia repetition impairment.
Frontotemporoparietal asymmetry and lack of illness awareness in schizophrenia.
Gerretsen, Philip; Chakravarty, M Mallar; Mamo, David; Menon, Mahesh; Pollock, Bruce G; Rajji, Tarek K; Graff-Guerrero, Ariel
2013-05-01
Lack of illness awareness or anosognosia occurs in both schizophrenia and right hemisphere lesions due to stroke, dementia, and traumatic brain injury. In the latter conditions, anosognosia is thought to arise from unilateral hemispheric dysfunction or interhemispheric disequilibrium, which provides an anatomical model for exploring illness unawareness in other neuropsychiatric disorders, such as schizophrenia. Both voxel-based morphometry using Diffeomorphic Anatomical Registration through Exponentiated Lie Algebra (DARTEL) and a deformation-based morphology analysis of hemispheric asymmetry were performed on 52 treated schizophrenia subjects, exploring the relationship between illness awareness and gray matter volume. Analyses included age, gender, and total intracranial volume as covariates. Hemispheric asymmetry analyses revealed illness unawareness was significantly associated with right < left hemisphere volumes in the anteroinferior temporal lobe (t = 4.83, P = 0.051) using DARTEL, and the dorsolateral prefrontal cortex (t = 5.80, P = 0.003) and parietal lobe (t = 4.3, P = 0.050) using the deformation-based approach. Trend level associations were identified in the right medial prefrontal cortex (t = 4.49, P = 0.127) using DARTEL. Lack of illness awareness was also strongly associated with reduced total white matter volume (r = 0.401, P < 0.01) and illness severity (r = 0.559, P < 0.01). These results suggest a relationship between anosognosia and hemispheric asymmetry in schizophrenia, supporting previous volume-based MRI studies in schizophrenia that found a relationship between illness unawareness and reduced right hemisphere gray matter volume. Functional imaging studies are required to examine the neural mechanisms contributing to these structural observations. Copyright © 2012 Wiley Periodicals, Inc.
Global Dynamic Modeling of Space-Geodetic Data
NASA Technical Reports Server (NTRS)
Bird, Peter
1995-01-01
The proposal had outlined a year for program conversion, a year for testing and debugging, and two years for numerical experiments. We kept to that schedule. In first (partial) year, author designed a finite element for isostatic thin-shell deformation on a sphere, derived all of its algebraic and stiffness properties, and embedded it in a new finite element code which derives its basic solution strategy (and some critical subroutines) from earlier flat-Earth codes. Also designed and programmed a new fault element to represent faults along plate boundaries. Wrote a preliminary version of a spherical graphics program for the display of output. Tested this new code for accuracy on individual model plates. Made estimates of the computer-time/cost efficiency of the code for whole-earth grids, which were reasonable. Finally, converted an interactive graphical grid-designer program from Cartesian to spherical geometry to permit the beginning of serious modeling. For reasons of cost efficiency, models are isostatic, and do not consider the local effects of unsupported loads or bending stresses. The requirements are: (1) ability to represent rigid rotation on a sphere; (2) ability to represent a spatially uniform strain-rate tensor in the limit of small elements; and (3) continuity of velocity across all element boundaries. Author designed a 3-node triangle shell element which has two different sets of basis functions to represent (vector) velocity and all other (scalar) variables. Such elements can be shown to converge to the formulas for plane triangles in the limit of small size, but can also applied to cover any area smaller than a hemisphere. The difficult volume integrals involved in computing the stiffness of such elements are performed numerically using 7 Gauss integration points on the surface of the sphere, beneath each of which a vertical integral is performed using about 100 points.
Fling, Brett W; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H; Horak, Fay B
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere's proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.
NASA Technical Reports Server (NTRS)
Garland, Benjamine J.; Chauvin, Leo T.
1957-01-01
Measurements of aerodynamic heat transfer have been made along the hemisphere and cylinder of a hemisphere-cylinder rocket-propelled model in free flight up to a Mach number of 3.88. The test Reynolds number based on free-stream condition and diameter of model covered a range from 2.69 x l0(exp 6) to 11.70 x 10(exp 6). Laminar, transitional, and turbulent heat-transfer coefficients were obtained. The laminar data along the body agreed with laminar theory for blunt bodies whereas the turbulent data along the cylinder were consistently lower than that predicted by the turbulent theory for a flat plate. Measurements of heat transfer at the stagnation point were, in general, lower than the theory for stagnation-point heat transfer. When the Reynolds number to the junction of the hemisphere-cylinder was greater than 6 x l0(exp 6), the transitional Reynolds number varied from 0.8 x l0(exp 6) to 3.0 x 10(exp 6); however, than 6 x l(exp 6) when the Reynolds number to the junction was less, than the transitional Reynolds number varied from 7.0 x l0(exp 6) to 24.7 x 10(exp 6).
NASA Astrophysics Data System (ADS)
Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II
2017-12-01
Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.
Numerical simulation of wave interactions during sudden stratospheric warming
NASA Astrophysics Data System (ADS)
Gavrilov, N. M.; Koval, A. V.; Pogoreltsev, A. I.; Savenkova, E. N.
2017-11-01
Parameterizations of normal atmospheric modes (NAMs) and orographic gravity waves (OGWs) are implemented into the mechanistic general circulation model of the middle and upper atmosphere (MUA). Numerical experiments of sudden stratospheric warming (SSW) events are performed for climatological conditions typical for January and February using meteorological reanalysis data from the UK MET Office in the MUA model averaged over the years 1992-2011 with the easterly phase of quasi-biennial oscillation (QBO). The simulation shows that an increase in the OGW amplitudes occurs at altitudes higher than 30 km in the Northern Hemisphere after SSW. The OGW amplitudes have maximums at altitudes of about 50 km over the North American and European mountain systems before and during SSW, as well as over the Himalayas after SSW. At high latitudes of the Northern Hemisphere, significant (up to 50-70%) variations in the amplitudes of stationary planetary waves (SPWs) are observed during and after the SSW. Westward travelling NAMs have local amplitude maximums not only in the Northern Hemisphere, but also in the Southern Hemisphere, where there are waveguides for the propagation of these modes. Calculated variations of SPW and NAM amplitudes correspond to changes in the mean temperature and wind fields, as well as the Eliassen-Palm flux and atmospheric refractive index for the planetary waves, during SSW. Including OGW thermal and dynamical effects leads to an increase in amplitude (by 30-70%) of almost all SPWs before and during SSW and to a decrease (up to 20-100%) after the SSW at middle and high latitudes of the Northern Hemisphere.
The role of the putamen in language: a meta-analytic connectivity modeling study.
Viñas-Guasch, Nestor; Wu, Yan Jing
2017-12-01
The putamen is a subcortical structure that forms part of the dorsal striatum of basal ganglia, and has traditionally been associated with reinforcement learning and motor control, including speech articulation. However, recent studies have shown involvement of the left putamen in other language functions such as bilingual language processing (Abutalebi et al. 2012) and production, with some authors arguing for functional segregation of anterior and posterior putamen (Oberhuber et al. 2013). A further step in exploring the role of putamen in language would involve identifying the network of coactivations of not only the left, but also the right putamen, given the involvement of right hemisphere in high order language functions (Vigneau et al. 2011). Here, a meta-analytic connectivity modeling technique was used to determine the patterns of coactivation of anterior and bilateral putamen in the language domain. Based on previous evidence, we hypothesized that left putamen coactivations would include brain regions directly associated with language processing, whereas right putamen coactivations would encompass regions involved in broader semantic processes, such as memory and visual imagery. The results showed that left anterior putamen coactivated with clusters predominantly in left hemisphere, encompassing regions directly associated with language processing, a left posterior putamen network spanning both hemispheres, and cerebellum. In right hemisphere, coactivations were in both hemispheres, in regions associated with visual and orthographic processing. These results confirm the differential involvement of right and left putamen in different language components, thus highlighting the need for further research into the role of putamen in language.
NASA Technical Reports Server (NTRS)
Levine, Jack; Rumsey, Charles B.
1958-01-01
The aerodynamic heat transfer to a hemispherical concave nose has been measured in free flight at Mach numbers from 3.5 to 6.6 with corresponding Reynolds numbers based on nose diameter from 7.4 x 10(exp 6) to 14 x 10(exp 6). Over the test Mach number range the heating on the cup nose, expressed as a ratio to the theoretical stagnation-point heating on a hemisphere nose of the same diameter, varied from 0.05 to 0.13 at the stagnation point of the cup, was approximately 0.1 at other locations within 40 deg of the stagnation point, and varied from 0.6 to 0.8 just inside the lip where the highest heating rates occurred. At a Mach number of 5 the total heat input integrated over the surface of the cup nose including the lip was 0.55 times the theoretical value for a hemisphere nose with laminar boundary layer and 0.76 times that for a flat face. The heating at the stagnation point was approximately 1/5 as great as steady-flow tunnel results. Extremely high heating rates at the stagnation point (on the order of 30 times the stagnation-point values of the present test), which have occurred in conjunction with unsteady oscillatory flow around cup noses in wind-tunnel tests at Mach and Reynolds numbers within the present test range, were not observed.
Elaina, Nor Safira; Malik, Aamir Saeed; Shams, Wafaa Khazaal; Badruddin, Nasreen; Abdullah, Jafri Malin; Reza, Mohammad Faruque
2018-06-01
To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches. Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests. The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches. Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.
Organic photodetectors and their applications for hemispherical imaging focal plane arrays
NASA Astrophysics Data System (ADS)
Xu, Xin
Softness of organic semiconducting materials holds promise for fabricating optoelectronic devices and circuits on nonplanar surfaces. The low growth temperature of organic small molecules also allows for the deposition onto a plastic substrate, which has the potential for significantly lowering the fabrication cost. However, the softness of organic small molecules can become problematic. Most of the well-established patterning techniques in the semiconductor industry are not suitable for patterning organic-based devices. High temperatures, high pressures, exposure to wet chemicals or high-energy particles that may exist in the conventional patterning approaches can damage the organic active layers. Although methods for large area patterning of organic electronics onto planar substrates have been demonstrated, in this thesis we extend the patterning capability to curved surfaces by using a novel three dimensional (3D) cold welding method. We use 3D cold welding to fabricate a hemispherical focal plane array (FPA) for compact imaging systems that mimic the architecture and function of the human eye. A 10 kilopixel organic photodetector FPA is thus demonstrated on a 1 cm radius hemisphere. By patterning brittle yet transparent indium tin oxide anodes instead of semitransparent metal anodes on the hemispheres, the detectivity of the FPA is improved. We introduce a sensitive hybrid photodetector employing a carbon nanotube/small molecular organic junction with a broad spectral response extending into the near infrared. Since the photodetector array shows an increased noise level with the array size, integrated arrays of organic photodetectors and thin film transistors as switches are demonstrated.
NASA Technical Reports Server (NTRS)
Lupu, A.; Kaminski, J. W.; Neary, L.; McConnell, J. C.; Toyota, K.; Rinsland, C. P.; Bernath, P. F.; Walker, K. A.; Boone, C. D.; Nagahama, Y.;
2009-01-01
We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the threedimensional Gobal multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004-2006 on a 1.5deg x 1.5deg global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May-July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ perform7s well globally for all seasons, except at northern hi gh and middle latitudes in surnmer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to explain most of the observed variability in the upper troposphere HCN field, includin g the interannual variations in the observed mixing ratio. A complementary comparison with daily total columns of HCN from two middle latitude ground-based stations in Northern Japan for the same simulation period shows that the model captures the observed seasonal variation and also points to an underestimation of model emissions in the Northern Hemisphere in the summer. The estimated average global emission equals 1.3 Tg N/yr. The average atmospheric burden is 0.53 Tg N, and the corresponding lifetime is 4.9 months.
NASA Technical Reports Server (NTRS)
Cooper, Morton; Mayo, Edward E.
1959-01-01
Measurements of the local heat transfer and pressure distribution have been made on six 2-inch-diameter, blunt, axially symmetric bodies in the Langley gas dynamics laboratory at a Mach number of 4.95 and at Reynolds numbers per foot up to 81 x 10(exp 6). During the investigation laminar flow was observed over a hemispherical-nosed body having a surface finish from 10 to 20 microinches at the highest test Reynolds number per foot (for this configuration) of 77.4 x 10(exp 6). Though it was repeatedly possible to measure completely laminar flow at this Reynolds number for the hemisphere, it was not possible to observe completely laminar flow on the flat-nosed body for similar conditions. The significance of this phenomenon is obscured by the observation that the effects of particle impacts on the surface in causing roughness were more pronounced on the flat-nosed body. For engineering purposes, a method developed by M. Richard Dennison while employed by Lockheed Aircraft Corporation appears to be a reasonable procedure for estimating turbulent heat transfer provided transition occurs at a forward location on the body. For rearward-transition locations, the method is much poorer for the hemispherical nose than for the flat nose. The pressures measured on the hemisphere agreed very well with those of the modified Newtonian theory, whereas the pressures on all other bodies, except on the flat-nosed body, were bracketed by modified Newtonian theory both with and without centrifugal forces. For the hemisphere, the stagnation-point velocity gradient agreed very well with Newtonian theory. The stagnation-point velocity gradient for the flat- nosed model was 0.31 of the value for the hemispherical-nosed model. If a Newtonian type of flow is assumed, the ratio 0.31 will be independent of Much number and real-gas effects.
Machinskaya, R I; Rozovskaya, R I; Kurgansky, A V; Pechenkova, E V
2016-01-01
A pattern of cortical functional connectivity in the source space was studied in a group of right-handed adult participants (N = 44:17 women, 27 men, aged M = 29.61 ± 6.45 years) who retained in their working memory (WM) traces of realistic pictures of positive, neutral, and negative emotional valence while in their working memory (WM) while performing same different task in which participants had to compare an etalon picture against a target picture that followed after a specified delay. A coherence (COH) between pairs of cortical sources chosen in advance according to fMRI data was estimated in the theta frequency range for the period of time preceding the etalon stimulus, distinct sets of functional links are found. The links of the first type that presumably reflect the involvement of sustained attention were between the dorsal anterior cingulate cortex, the prefrontal areas, and temporal areas of the right hemispheres. When compared to the rest period, links of this type showed strengthening not only during the retention period but also during the period preceding the etalon picture. The links of the second type presumably reflecting a progressive neocortex-to-hippocampus functional integration with increasing memory load and strengthened exclusively during retention period. Those links were between parietal, temporal and prefrontal cortices in the lateral surface of both hemispheres with the additional inclusion of the posterior cingulate cortex and the medial parietal cortex in the left hemisphere. An impact of emotional valence onto the strength and topography of the functional links of the second type was found. In the left hemisphere, an increase in the strength of cortical interaction was more pronounced for pictures of positive valence than for pictures of either neutral or negative valences. When compared to the pictures of neutral valence, the retention of pictorial information of both positive and negative valence showed some extraneous integration of the cortical areas for the theta rhythm. This finding might be related to the additional load exerted by emotionally colored pictures onto the mechanisms of short-time retention of visual information.
NASA Astrophysics Data System (ADS)
Kuncarayakti, H.; Galbany, L.; Anderson, J. P.; Krühler, T.; Hamuy, M.
2016-09-01
Context. Stellar populations are the building blocks of galaxies, including the Milky Way. The majority, if not all, extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, studies of these systems are mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. Aims: This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, that is, age and metallicity. Methods: Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, was used to study the properties of the cluster as both a resolved and unresolved stellar population. The unresolved stellar population was analysed using the Hα equivalent width as an age indicator and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT was used to infer these properties from the integrated spectrum. Independently, the resolved stellar population was analysed using the colour-magnitude diagram (CMD) to determine age and metallicity. As the SSP model represents the unresolved stellar population, the derived age and metallicity were tested to determine whether they agree with those derived from resolved stars. Results: The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 60.A-9344.