Optimization of Integrative Passive Sampling Approaches for Use in the Epibenthic Environment
2016-12-23
Passive sampler, POCIS, Integrative, Sediment , Benthic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...Unexploded ordnance, Passive sampler, POCIS, Integrative, Sediment , Benthic v Acknowledgements Dr. Shane Morrison and Ms. Ingrid...flow and turbulence near the sampler. In complex environments at the sediment – water interface, this may limit the utility of passive sampling
Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W. G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C. E.; Furlong, E.T.
2004-01-01
As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.
HOLISTIC APPROACH FOR ASSESSING THE PRESENCE ...
As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device (SPMD) has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler (POCIS) is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device (SLMD) is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler (PIMS) is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence o,f a wide variety of contaminants in , the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for fmal polishing of secondary- treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides (OCs), polycyclic aromatic hydrocarbons
The purpose of this SOP is to describe the methods used to sample residential indoor and outdoor atmospheres for the presence of formaldehyde using the PF-1 passive formaldehyde sampler. The PF-1 passive sampler is used as a fixed location monitor to determine time integrated ex...
Evaluation of passive samplers for the collection of dissolved organic matter in streams.
Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V
2015-01-01
Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.
Characterization of five passive sampling devices for monitoring of pesticides in water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2015-07-31
Five different passive sampler devices were characterized under laboratory conditions for measurement of 124 legacy and current used pesticides in water. In addition, passive sampler derived time-weighted average (TWA) concentrations were compared to time-integrated active sampling in the field. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for individual pesticides using silicone rubber (SR), polar organic chemical integrative sampler (POCIS)-A, POCIS-B, Chemcatcher(®) SDB-RPS and Chemcatcher(®) C18. The median RS (Lday(-1)) decreased as follows: SR (0.86)>POCIS-B (0.22)>POCIS-A (0.18)>Chemcatcher(®) SDB-RPS (0.05)>Chemcatcher(®) C18 (0.02), while the median logKPW (Lkg(-1)) decreased as follows: POCIS-B (4.78)>POCIS-A (4.56)>Chemcatcher(®) SDB-RPS (3.17)>SR (3.14)>Chemcatcher(®)C18 (2.71). The uptake of the selected compounds depended on their physicochemical properties, i.e. SR showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW)>5.3), whereas POCIS-A, POCIS-B and Chemcatcher(®) SDB-RPS were more suitable for hydrophilic compounds (logKOW<0.70). Overall, the comparison between passive sampler and time-integrated active sampler concentrations showed a good agreement and the tested passive samplers were suitable for capturing compounds with a wide range of KOW's in water. Copyright © 2015 Elsevier B.V. All rights reserved.
Purity and Cleanness of Aeorgel as a Cosmic Dust Capture Medium
NASA Technical Reports Server (NTRS)
Tsou, P.; Fleming, R.; Lindley, P.; Craig, A.; Blake, D.
1994-01-01
The capability for capturing micrometeoroids intact through laboratory simulations [Tsou 1988] and in space [Tsou 1993] in passive underdense silica aerogel offers a valuable tool for cosmic dust research. The integrity of the sample handling medium can substantially modify the integrity of the sample. Intact capture is a violent hypervelocity event: the integrity of the capturing medium can cause even greater modification of the sample.
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Robert E.
2015-12-08
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Robert B.
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers
Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites...
Facility fence-line monitoring using passive samplers
In 2009, the U.S. EPA executed a year-long field study at a refinery in Corpus Christi, Texas, to evaluate the use of passive diffusive sampling technology for assessing time-averaged benzene concentrations at the facility fence line. The study utilized 14-day time-integrated Car...
Berton, André; Brugnera, Michelle F; Dores, Eliana F G C
2018-04-03
In this study, the quality of surface water in the headwaters of São Lourenço River in Mato Grosso, Brazil, was evaluated in relation to contamination by pesticides. For this purpose, samples were collected between December 2015 and June 2016 by grab sampling and by passive sampling using an integrative polar organic compound sampler installed in the field during four 14-day cycles between March and June 2016. The analyses were performed by gas chromatography (CG/MS) and by liquid chromatography (UPLC-MS/MS). The results showed the detection of two pesticides (atrazine and pyraclostrobin) of the five analyzed by passive sampling and eight active principles among the 20 analyzed (malathion, diuron, carbofuran, carbendazim, trifluralin, imidacloprid, metolachlor, and acetamiprid) by grab sampling. The detection of 10 pesticides, even almost a decade after the beginning of a recovery process of the ciliary forest, confirms the headwaters' vulnerability to these contaminants and passive sampling proved to be an important tool in capturing small concentrations of pesticides constituting an interesting complement to grab sampling.
NASA Astrophysics Data System (ADS)
Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-08-01
Silicone membrane tubes were functionalised by filling them with synthesised γ-Fe2O3 nanoparticles and used as a passive sampling device for monitoring microcystins and cylindrospermopsin in aquatic environments. This novel device was calibrated for the measurement of microcystin and cylindrospermopsin concentrations in water. The effect of temperature and hydrodynamics on the sampler performance was studied in a flow-through system under controlled conditions. The chemical uptake of microcystins (MCs) and cylindrospermopsin (CYN) into the passive sampler remained linear and integrative throughout the exposure period. The rate of accumulation of most of the MC compounds tested was dependent on temperature and flow velocity. The use of 13C labelled polychlorinated biphenyls as performance reference compounds (PRCs) in silicone membrane/γ-Fe2O3 nanoparticle passive sampler, Chemcatcher and polar organic chemical integrative sampler (POCIS) was evaluated. The majority of PRCs improved the semi quantitative nature of water concentration estimated by the three samplers. The corrected sampling rate values of model biotoxin compounds were used to estimate the time-weighted average concentrations in natural cyanobacterial water blooms of the Hartbeespoort dam. The corrected sampling rates RScorr values varied from 0.1140 to 0.5628 Ld-1 between samplers with silicone membrane having the least RScorr values compared to the Chemcatcher and POCIS. The three passive sampling devises provided a more relevant picture of the biotoxin concentration in the Hartbeespoort dam. The results suggested that the three sampling devices are suitable for use in monitoring microcystins and cylindrospermopsin concentrations in aquatic environments.
Vermeirssen, Etiënne L M; Asmin, Josef; Escher, Beate I; Kwon, Jung-Hwan; Steimen, Irene; Hollender, Juliane
2008-01-01
There is an increasing need to monitor concentrations of polar organic contaminants in the aquatic environment. Integrative passive samplers can be used to assess time weighted average aqueous concentrations, provided calibration data are available and sampling rates are known. The sampling rate depends on environmental factors, such as temperature and water flow rate. Here we introduce an apparatus to investigate the sampling properties of passive samplers using river-like flow conditions and ambient environmental matrices: river water and treated sewage effluent. As a model sampler we selected Empore SDB-RPS disks in a Chemcatcher housing. The disks were exposed for 1 to 8 days at flow rates between 0.03 and 0.4 m s(-1). Samples were analysed using a bioassay for estrogenic activity and by LC-MS-MS target analysis of the pharmaceuticals sulfamethoxazole, carbamazepine and clarithromycin. In order to assess sampling rates of SDB disks, we also measured aqueous concentrations of the pharmaceuticals. Sampling rates increased with increasing flow rate and this relationship was not affected by the environmental matrix. However, SDB disks were only sampling in the integrative mode at low flow rates <0.1 m s(-1) and/or for short sampling times. The duration of linear uptake was particularly short for sulfamethoxazole (1 day) and longer for clarithromycin (5 days). At 0.03 m s(-1) and 12-14 degrees C, the sampling rate of SDB disks was 0.09 L day(-1) for clarithromycin, 0.14 L day(-1) for sulfamethoxazole and 0.25 L day(-1) for carbamazepine. The results show that under controlled conditions, SDB disks can be effectively used as passive sampling devices.
Innovative flow controller for time integrated passive sampling using SUMMA canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, P.; Farant, J.P.; Cole, H.
1996-12-31
To restrict the entry of gaseous contaminants inside evacuated vessels such as SUMMA canisters, mechanical flow controllers are used to collect integrated atmospheric samples. From the passive force generated by the pressure gradient, the motion of gas can be controlled to obtain a constant flow rate. Presently, devices based on the principle of critical orifices are used and they are all limited to an upper integrated sampling time. A novel flow controller which can be designed to achieve any desired sampling time when used on evacuated vessels was recently developed. It can extend the sampling time for hours, days, weeksmore » or even months for the benefits of environmental, engineering and toxicological professionals. The design of the controller is obtained from computer simulations done with an original set of equations derived from fluid mechanic and gas kinetic laws. To date, the experimental results have shown excellent agreement, with predictions obtained from the mathematical model. This new controller has already found numerous applications. Units able to deliver a constant sampling rate between vacuum and approximately -10 inches Hg during continuous long term duration have been used with SUMMA canisters of different volumes (500 ml, 1 litre and 61). Essentially, any combination of sampling time and sampler volume is possible. The innovative flow controller has contributed to an air quality assessment around a sanitary landfill (indoor/outdoor), and inside domestic wastewater and pulpmill sludge treatment facilities. It is presently being used as an alternative methodology for atmospheric sampling in the Russian orbital station Mir. This device affords true long term passive monitoring of selected gaseous air pollutants for environmental studies. 14 refs., 3 figs.« less
McCarthy, Kathleen A.; Alvarez, David A.
2014-01-01
The Eugene Water & Electric Board (EWEB) supplies drinking water to approximately 200,000 people in Eugene, Oregon. The sole source of this water is the McKenzie River, which has consistently excellent water quality relative to established drinking-water standards. To ensure that this quality is maintained as land use in the source basin changes and water demands increase, EWEB has developed a proactive management strategy that includes a combination of conventional point-in-time discrete water sampling and time‑integrated passive sampling with a combination of chemical analyses and bioassays to explore water quality and identify where vulnerabilities may lie. In this report, we present the results from six passive‑sampling deployments at six sites in the basin, including the intake and outflow from the EWEB drinking‑water treatment plant (DWTP). This is the first known use of passive samplers to investigate both the source and finished water of a municipal DWTP. Results indicate that low concentrations of several polycyclic aromatic hydrocarbons and organohalogen compounds are consistently present in source waters, and that many of these compounds are also present in finished drinking water. The nature and patterns of compounds detected suggest that land-surface runoff and atmospheric deposition act as ongoing sources of polycyclic aromatic hydrocarbons, some currently used pesticides, and several legacy organochlorine pesticides. Comparison of results from point-in-time and time-integrated sampling indicate that these two methods are complementary and, when used together, provide a clearer understanding of contaminant sources than either method alone.
2017-09-01
this project, we launched at Esperanza pier (Figure 5-4), which required a minimum of 2 hours of travel time , including transit from Camp Garcia to the...concentrations of emerging contaminants by providing a time -integrated sample with low detection limits and in situ extraction. PSDs are fairly well...A continuous sampling approach allows detection and quantification of chemicals in an integrated manner, providing time - weighted average (TWA
Shahpoury, Pourya; Hageman, Kimberly J; Matthaei, Christoph D; Alumbaugh, Robert E; Cook, Michelle E
2014-10-07
Silicone passive samplers and macroinvertebrates were used to measure time-integrated concentrations of polycyclic aromatic hydrocarbons (PAHs) in alpine streams during annual snowmelt. The three sampling sites were located near a main highway in Arthur's Pass National Park in the Southern Alps of New Zealand. A similar set of PAH congeners, composed of 2-4 rings, were found in silicone passive samplers and macroinvertebrates. The background PAH concentrations were similar at all sites, implying that proximity to the highway did not affect concentrations. In passive samplers, an increase of PAH concentrations by up to seven times was observed during snowmelt. In macroinvertebrates, the concentration changes were moderate; however, macroinvertebrate sampling did not occur during the main pulse observed in the passive samplers. The extent of vegetation in the catchment appeared to affect the concentration patterns seen at the different stream sites. A strong correlation was found between PAH concentrations in passive samplers and the amount of rainfall in the study area, indicating that the washout of contaminants from snowpack by rainfall was an important process.
A photometrically and spectroscopically confirmed population of passive spiral galaxies
NASA Astrophysics Data System (ADS)
Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.
2016-10-01
We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.
Alvarez, David A.
2010-01-01
The success of an environmental monitoring study using passive samplers, or any sampling method, begins in the office or laboratory. Regardless of the specific methods used, the general steps include the formulation of a sampling plan, training of personnel, performing the field (sampling) work, processing the collected samples to recover chemicals of interest, analysis of the enriched extracts, and interpretation of the data. Each of these areas will be discussed in the following sections with emphasis on specific considerations with the use of passive samplers. Water is an extremely heterogeneous matrix both spatially and temporally (Keith, 1991). The mixing and distribution of dissolved organic chemicals in a water body are controlled by the hydrodynamics of the water, the sorption partition coefficients of the chemicals, and the amount of organic matter (suspended sediments, colloids, and dissolved organic carbon) present. In lakes and oceans, stratification because of changes in temperature, water movement, and water composition can occur resulting in dramatic changes in chemical concentrations with depth (Keith, 1991). Additional complications related to episodic events, such as surface runoff, spills, and other point source contamination, can result in isolated or short-lived pulses of contaminants in the water. The application of passive sampling technologies for the monitoring of legacy and emerging organic chemicals in the environment is becoming widely accepted worldwide. The primary use of passive sampling methods for environmental studies is in the area of surface-water monitoring; however, these techniques have been applied to air and groundwater monitoring studies. Although these samplers have no mechanical or moving parts, electrical or fuel needs which require regular monitoring, there are still considerations that need to be understood in order to have a successful study. Two of the most commonly used passive samplers for organic contaminants are the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS). The tips given in this document focus on these two samplers but are applicable to most types of passive sampling devices. The information in this guide is heavily weighted towards the sampling of water; however, information specific to the use of SPMDs for air sampling will also be covered.
Zhang, Zulin; Troldborg, Mads; Yates, Kyari; Osprey, Mark; Kerr, Christine; Hallett, Paul D; Baggaley, Nikki; Rhind, Stewart M; Dawson, Julian J C; Hough, Rupert L
2016-11-01
In many agricultural catchments of Europe and North America, pesticides occur at generally low concentrations with significant temporal variation. This poses several challenges for both monitoring and understanding ecological risks/impacts of these chemicals. This study aimed to compare the performance of passive and spot sampling strategies given the constraints of typical regulatory monitoring. Nine pesticides were investigated in a river currently undergoing regulatory monitoring (River Ugie, Scotland). Within this regulatory framework, spot and passive sampling were undertaken to understand spatiotemporal occurrence, mass loads and ecological risks. All the target pesticides were detected in water by both sampling strategies. Chlorotoluron was observed to be the dominant pesticide by both spot (maximum: 111.8ng/l, mean: 9.35ng/l) and passive sampling (maximum: 39.24ng/l, mean: 4.76ng/l). The annual pesticide loads were estimated to be 2735g and 1837g based on the spot and passive sampling data, respectively. The spatiotemporal trend suggested that agricultural activities were the primary source of the compounds with variability in loads explained in large by timing of pesticide applications and rainfall. The risk assessment showed chlorotoluron and chlorpyrifos posed the highest ecological risks with 23% of the chlorotoluron spot samples and 36% of the chlorpyrifos passive samples resulting in a Risk Quotient greater than 0.1. This suggests that mitigation measures might need to be taken to reduce the input of pesticides into the river. The overall comparison of the two sampling strategies supported the hypothesis that passive sampling tends to integrate the contaminants over a period of exposure and allows quantification of contamination at low concentration. The results suggested that within a regulatory monitoring context passive sampling was more suitable for flux estimation and risk assessment of trace contaminants which cannot be diagnosed by spot sampling and for determining if long-term average concentrations comply with specified standards. Copyright © 2016 Elsevier B.V. All rights reserved.
As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipe...
Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.
Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent
2014-06-01
Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.
Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers
Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.
2008-01-01
Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Characterization and Application of Passive Samplers for Monitoring of Pesticides in Water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2016-08-03
Five different water passive samplers were calibrated under laboratory conditions for measurement of 124 legacy and current used pesticides. This study provides a protocol for the passive sampler preparation, calibration, extraction method and instrumental analysis. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for silicone rubber, polar organic chemical integrative sampler POCIS-A, POCIS-B, SDB-RPS and C18 disk. The uptake of the selected compounds depended on their physicochemical properties, i.e., silicone rubber showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW) > 5.3), whereas POCIS-A, POCIS-B and SDB-RPS disk were more suitable for hydrophilic compounds (log KOW < 0.70).
76 FR 33703 - Endangered Species; Permit No. 16439
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... unmarked individuals with passive integrated transponder tags, and dart tags; and genetic tissue sampling. A first subset of fish would be anesthetized and tagged with acoustic transmitters; a second subset would have fin rays sampled for ageing; and a third subset of fish would be gastrically lavaged for diet...
Passive cavitation imaging with ultrasound arrays
Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas
2009-01-01
A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921
Passive cavitation imaging with ultrasound arrays.
Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas
2009-12-01
A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.
A passive integrative sampler for mercury vapor in air and neutral mercury species in water
Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.
2000-01-01
A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress.
Passive Earth Entry Vehicle Landing Test
NASA Technical Reports Server (NTRS)
Kellas, Sotiris
2017-01-01
Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.
Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.
2004-01-01
Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.
DEVELOPMENT OF A PASSIVE, IN SITU, INTEGRATIVE ...
Until recently, hydrophobic, bioconcentratable compounds have been the primary focus of most environmental organic contaminant investigations, There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants as well. This group of compounds includes a wide variety of chemicals, including potentially endocrine disrupting and estrogenic contaminants which have been shown to contribute to numerous abnormalities such as impaired reproduction in aquatic organisms exposed in environmental waters. To address this issue, we developed a passive, in situ, sampling device (the Polar Organic Chemical Integrative Sampler or POCIS) which integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations and provides a screening assessment of the toxicological significance of the complex mixture of waterborne contaminants. Using a prototype sampler (effective membrane sampling surface area = 18.2 cm 2) linear uptake of selected herbicides and pharmaceuticals was observed for up to 56 days. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS chemical sampling rates. The research focused on in the subtasks is the development and application of state-of
Kim Tiam, Sandra; Fauvelle, Vincent; Morin, Soizic; Mazzella, Nicolas
2016-01-01
Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS) and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD) extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively, aimed (i) at characterizing the “toxic potential” of waters using dose-response curves, and (ii) at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed. PMID:27667986
Passive sampling methods for contaminated sediments: State of the science for metals
Peijnenburg, Willie JGM; Teasdale, Peter R; Reible, Danny; Mondon, Julie; Bennett, William W; Campbell, Peter GC
2014-01-01
“Dissolved” concentrations of contaminants in sediment porewater (Cfree) provide a more relevant exposure metric for risk assessment than do total concentrations. Passive sampling methods (PSMs) for estimating Cfree offer the potential for cost-efficient and accurate in situ characterization of Cfree for inorganic sediment contaminants. In contrast to the PSMs validated and applied for organic contaminants, the various passive sampling devices developed for metals, metalloids, and some nonmetals (collectively termed “metals”) have been exploited to a limited extent, despite recognized advantages that include low detection limits, detection of time-averaged trends, high spatial resolution, information about dissolved metal speciation, and the ability to capture episodic events and cyclic changes that may be missed by occasional grab sampling. We summarize the PSM approaches for assessing metal toxicity to, and bioaccumulation by, sediment-dwelling biota, including the recognized advantages and limitations of each approach, the need for standardization, and further work needed to facilitate broader acceptance and application of PSM-derived information by decision makers. Integr Environ Assess Manag 2014;10:179–196. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. Key Points Passive sampling methods (PSMs) offer the potential for cost-efficient and accurate in situ characterization of the dissolved concentrations for inorganic sediment contaminants. PSMs are useful for evaluating the geochemical behavior of metals in surficial sediments, including determination of fluxes across the sediment-water interface, and post-depositional changes in metal speciation. Few studies have tried to link PSM responses in sediments to metal uptake and toxicity responses in benthic organisms. There is a clear need for further studies. Future PSMs could be designed to mimic saturable kinetics, which would fill the gap between the kinetic and the equilibrium regime samplers currently used, and may improve prediction of metals accumulation by benthic organisms. PMID:24470168
Alvarez, D.A.; Stackelberg, P.E.; Petty, J.D.; Huckins, J.N.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.
2005-01-01
Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.
Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.
Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang
2015-11-13
The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.
Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.
2002-01-01
A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.
Martin, Alexis; Margoum, Christelle; Coquery, Marina; Randon, Jérôme
2016-10-01
Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid-phase extraction sorbents, prepared as a receiving phase for passive sampling. A composite silicone rubber composed of polydimethylsiloxane/poly(divinylbenzene-co-N-vinylpyrrolidone) was selected by batch experiments for its high sorption properties for pesticides with octanol-water partition coefficients ranging from 2.3 to 5.5. We named this composite material "Polar/Apolar Composite Silicone Rubber". A structural study by scanning electron microscopy confirmed the homogeneous dispersion of the sorbent particles and the encapsulation of particles within the polydimethylsiloxane matrix. We also demonstrate that this composite material is resistant to common solvents used for the back-extraction of analytes and has a maximal resistance temperature of 350°C. Therefore, the characteristics of the "Polar/Apolar Composite Silicone Rubber" meet most of the criteria for use as a receiving phase for the passive sampling of pesticides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and methods of the Southeast Stream Quality Assessment (SESQA), 2014
Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Button, Daniel T.; Garrett, Jessica D.; Nakagaki, Naomi; Qi, Sharon L.; Bradley, Paul M.
2015-07-15
This report provides a detailed description of the SESQA study components, including surveys of ecological conditions, routine water sampling, deployment of passive polar organic compound integrative samplers for pesticides and contaminants of emerging concern, and synoptic sediment sampling and toxicity testing at all urban, confined animal feeding operation, and reference sites. Continuous water-quality monitoring and daily pesticide sampling efforts conducted at a subset of urban sites are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, A.C.; Knutson, E.O.; Tu, K.W.
1995-12-01
The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC).more » There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.« less
NASA Astrophysics Data System (ADS)
Assoumani, Azziz; Margoum, Christelle; Guillemain, Céline; Coquery, Marina
2014-05-01
The monitoring of water bodies regarding organic contaminants, and the determination of reliable estimates of concentrations are challenging issues, in particular for the implementation of the Water Framework Directive. Several strategies can be applied to collect water samples for the determination of their contamination level. Grab sampling is fast, easy, and requires little logistical and analytical needs in case of low frequency sampling campaigns. However, this technique lacks of representativeness for streams with high variations of contaminant concentrations, such as pesticides in rivers located in small agricultural watersheds. Increasing the representativeness of this sampling strategy implies greater logistical needs and higher analytical costs. Average automated sampling is therefore a solution as it allows, in a single analysis, the determination of more accurate and more relevant estimates of concentrations. Two types of automatic samplings can be performed: time-related sampling allows the assessment of average concentrations, whereas flow-dependent sampling leads to average flux concentrations. However, the purchase and the maintenance of automatic samplers are quite expensive. Passive sampling has recently been developed as an alternative to grab or average automated sampling, to obtain at lower cost, more realistic estimates of the average concentrations of contaminants in streams. These devices allow the passive accumulation of contaminants from large volumes of water, resulting in ultratrace level detection and smoothed integrative sampling over periods ranging from days to weeks. They allow the determination of time-weighted average (TWA) concentrations of the dissolved fraction of target contaminants, but they need to be calibrated in controlled conditions prior to field applications. In other words, the kinetics of the uptake of the target contaminants into the sampler must be studied in order to determine the corresponding sampling rate constants (Rs). Each constant links the mass of the a target contaminant accumulated in the sampler to its concentration in water. At the end of the field application, the Rs are used to calculate the TWA concentration of each target contaminant with the final mass of the contaminants accumulated in the sampler. Stir Bar Sorptive Extraction (SBSE) is a solvent free sample preparation technique dedicated to the analysis of moderately hydrophobic to hydrophobic compounds in liquid and gas samples. It is composed of a magnet enclosed in a glass tube coated with a thick film of polydimethysiloxane (PDMS). We recently developed the in situ application of SBSE as a passive sampling technique (herein named "Passive SBSE") for the monitoring of agricultural pesticides. The aim of this study is to perform the calibration of the passive SBSE in the laboratory, and to apply and compare this technique to active sampling strategies for the monitoring of 16 relatively hydrophobic to hydrophobic pesticides in streams, during 2 1-month sampling campaigns. Time-weighted averaged concentrations of the target pesticides obtained from passive SBSE were compared to the target pesticide concentrations of grab samples, and time-related and flow-dependent samples of the streams. Results showed passive SBSE as an efficient alternative to conventional active sampling strategies.
Purity and cleanness of aerogel as a cosmic dust capture medium
NASA Technical Reports Server (NTRS)
Tsou, P.; Fleming, R. H.; Lindley, P. M.; Craig, A. Y.; Blake, D.
1994-01-01
The capability for capturing micrometeoroids intact through laboratory simulations and in space in passive underdense silica aerogel offers a valuable tool for cosmic dust research. The integrity of the sample handling medium can substantially modify the integrity of the sample. Intact capture is a violent hypervelocity event: the integrity of the capturing medium can cause even greater modification of the sample. Doubts of the suitability of silica aerogel as a capture medium were raised at the 20th LPSC, and questions were raised again at the recent workshop on Particle Capture, Recovery, and Velocity Trajectory Measurement Technologies. Assessment of aerogel's volatile components and carbon contents have been made. We report the results of laboratory measurements of the purity and cleanliness of silica aerogel used for several Sample Return Experiments flown on the Get Away Special program.
Booij, Petra; Sjollema, Sascha B; Leonards, Pim E G; de Voogt, Pim; Stroomberg, Gerard J; Vethaak, A Dick; Lamoree, Marja H
2013-09-01
The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study. The purpose of our study was to extract and identify compounds which are inhibitors of photosystem II activity in microalgae from estuarine and coastal waters. Field sampling was conducted in the Western Scheldt estuary (Hansweert, The Netherlands). We compared four different commonly used extraction methods: passive sampling with silicone rubber sheets, polar organic integrative samplers (POCIS) and spot water sampling using two different solid phase extraction (SPE) cartridges. Toxic effects of extracts prepared from spot water samples and passive samplers were determined in the Pulse Amplitude Modulation (PAM) fluorometry bioassay. With target chemical analysis using LC-MS and GC-MS, a set of PAHs, PCBs and pesticides was determined in field samples. These compound classes are listed as priority substances for the marine environment by the OSPAR convention. In addition, recovery experiments with both SPE cartridges were performed to evaluate the extraction suitability of these methods. Passive sampling using silicone rubber sheets and POCIS can be applied to determine compounds with different structures and polarities for further identification and determination of toxic pressure on primary producers. The added value of SPE lies in its suitability for quantitative analysis; calibration of passive samplers still needs further investigation for quantification of field concentrations of contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.
System for portable nucleic acid testing in low resource settings
NASA Astrophysics Data System (ADS)
Lu, Hsiang-Wei; Roskos, Kristina; Hickerson, Anna I.; Carey, Thomas; Niemz, Angelika
2013-03-01
Our overall goal is to enable timely diagnosis of infectious diseases through nucleic acid testing at the point-of-care and in low resource settings, via a compact system that integrates nucleic acid sample preparation, isothermal DNA amplification, and nucleic acid lateral flow (NALF) detection. We herein present an interim milestone, the design of the amplification and detection subsystem, and the characterization of thermal and fluidic control and assay execution within this system. Using an earlier prototype of the amplification and detection unit, comprised of a disposable cartridge containing flexible pouches, passive valves, and electrolysis-driven pumps, in conjunction with a small heater, we have demonstrated successful execution of an established and clinically validated isothermal loop-mediated amplification (LAMP) reaction targeting Mycobacterium tuberculosis (M.tb) DNA, coupled to NALF detection. The refined design presented herein incorporates miniaturized and integrated electrolytic pumps, novel passive valves, overall design changes to facilitate integration with an upstream sample preparation unit, and a refined instrument design that automates pumping, heating, and timing. Nucleic acid amplification occurs in a two-layer pouch that facilitates fluid handling and appropriate thermal control. The disposable cartridge is manufactured using low-cost and scalable techniques and forms a closed system to prevent workplace contamination by amplicons. In a parallel effort, we are developing a sample preparation unit based on similar design principles, which performs mechanical lysis of mycobacteria and DNA extraction from liquefied and disinfected sputum. Our next step is to combine sample preparation, amplification, and detection in a final integrated cartridge and device, to enable fully automated sample-in to answer-out diagnosis of active tuberculosis in primary care facilities of low-resource and high-burden countries.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-05-03
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-04-26
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Apell, Jennifer N; Tcaciuc, A Patricia; Gschwend, Philip M
2016-07-01
Polymeric passive samplers have become a common method for estimating freely dissolved concentrations in environmental media. However, this approach has not yet been adopted by investigators conducting remedial investigations of contaminated environmental sites. Successful adoption of this sampling methodology relies on an understanding of how passive samplers accumulate chemical mass as well as developing guidance for the design and deployment of passive samplers. Herein, we outline the development of a simple mathematical relationship of the environmental, polymer, and chemical properties that control the uptake rate. This relationship, called a timescale, is then used to illustrate how each property controls the rate of equilibration in samplers deployed in the water or in the sediment. Guidance is also given on how to use the timescales to select an appropriate polymer, deployment time, and suite of performance reference compounds. Integr Environ Assess Manag 2016;12:486-492. © 2015 SETAC. © 2015 SETAC.
Investigation of Low Cost Sensor-Based Leak Detection System for Fence Line Applications
With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source ...
Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens
Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...
2015-08-12
Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less
Pesce, Stéphane; Morin, Soizic; Lissalde, Sophie; Montuelle, Bernard; Mazzella, Nicolas
2011-03-01
Polar organic chemical integrative samplers (POCIS) are valuable tools in passive sampling methods for monitoring polar organic pesticides in freshwaters. Pesticides extracted from the environment using such methods can be used to toxicity tests. This study evaluated the acute effects of POCIS extracts on natural phototrophic biofilm communities. Our results demonstrate an effect of POCIS pesticide mixtures on chlorophyll a fluorescence, photosynthetic efficiency and community structure. Nevertheless, the range of biofilm responses differs according to origin of the biofilms tested, revealing spatial variations in the sensitivity of natural communities in the studied stream. Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. Copyright © 2010 Elsevier Ltd. All rights reserved.
A new passive radon-thoron discriminative measurement system.
Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M
2010-10-01
A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.
Discreet passive explosive detection through 2-sided waveguided fluorescence
Harper, Ross James [Stillwater, OK; la Grone, Marcus [Cushing, OK; Fisher, Mark [Stillwater, OK
2011-10-18
The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.
Sampled-data consensus in switching networks of integrators based on edge events
NASA Astrophysics Data System (ADS)
Xiao, Feng; Meng, Xiangyu; Chen, Tongwen
2015-02-01
This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.
Investigation of a Low Cost Sensor-Based Leak Detection System for Fence Line Applications
With recent technological advances, low-cost time-resolved sensors may become effective tools to support time-integrated passive sampling strategies by helping to decipher origin of emissions in real-time. As part of the Petroleum Refinery Risk and Technology Review, New Source P...
Occurrence of antibiotics in an agricultural watershed in south-central Idaho
USDA-ARS?s Scientific Manuscript database
The polar organic compound integrative sampler (POCIS) is a tool that has been effectively used to passively sample organic pollutants in water. In this study, POCIS were used to investigate the occurrence of 21 veterinary and human antibiotics and a beta agonist (ractopamine) in irrigation return f...
Discreet passive explosive detection through 2-sided wave guided fluorescence
Harper, Ross James; la Grone, Marcus; Fisher, Mark
2012-10-16
The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.
Systematic review of smartphone-based passive sensing for health and wellbeing.
Cornet, Victor P; Holden, Richard J
2018-01-01
To review published empirical literature on the use of smartphone-based passive sensing for health and wellbeing. A systematic review of the English language literature was performed following PRISMA guidelines. Papers indexed in computing, technology, and medical databases were included if they were empirical, focused on health and/or wellbeing, involved the collection of data via smartphones, and described the utilized technology as passive or requiring minimal user interaction. Thirty-five papers were included in the review. Studies were performed around the world, with samples of up to 171 (median n = 15) representing individuals with bipolar disorder, schizophrenia, depression, older adults, and the general population. The majority of studies used the Android operating system and an array of smartphone sensors, most frequently capturing accelerometry, location, audio, and usage data. Captured data were usually sent to a remote server for processing but were shared with participants in only 40% of studies. Reported benefits of passive sensing included accurately detecting changes in status, behavior change through feedback, and increased accountability in participants. Studies reported facing technical, methodological, and privacy challenges. Studies in the nascent area of smartphone-based passive sensing for health and wellbeing demonstrate promise and invite continued research and investment. Existing studies suffer from weaknesses in research design, lack of feedback and clinical integration, and inadequate attention to privacy issues. Key recommendations relate to developing passive sensing strategies matching the problem at hand, using personalized interventions, and addressing methodological and privacy challenges. As evolving passive sensing technology presents new possibilities for health and wellbeing, additional research must address methodological, clinical integration, and privacy issues. Doing so depends on interdisciplinary collaboration between informatics and clinical experts. Copyright © 2017 Elsevier Inc. All rights reserved.
Passive sampling methods for contaminated sediments: Risk assessment and management
Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F
2014-01-01
This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr Environ Assess Manag 2014;10:224–236. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24343931
Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian
2018-06-15
In this work, Oasis HLB® beads were embedded in a silicone matrix to make a single phase passive sampler with a higher affinity for polar and ionisable compounds than silicone alone. The applicability of this mixed polymer sampler (MPS) was investigated for 34 aquatic contaminants (log K OW -0.03 to 6.26) in batch experiments. The influence of flow was investigated by comparing uptake under static and stirred conditions. The sampler characteristics of the MPS was assessed in terms of sampling rates (R S ) and sampler-water partition coefficients (K SW ), and these were compared to those of the polar organic chemical integrative sampler (POCIS) as a reference kinetic passive sampler. The MPS was characterized as an equilibrium sampler for both polar and non-polar compounds, with faster uptake rates and a shorter time to reach equilibrium than the POCIS. Water flow rate impacted sampling rates by up to a factor of 12 when comparing static and stirred conditions. In addition, the relative accumulation of compounds in the polyethersulfone (PES) membranes versus the inner Oasis HLB sorbent was compared for the POCIS, and ranged from <1% to 83% depending on the analyte properties. This is indicative of a potentially significant lag-phase for less polar compounds within POCIS. The findings of this study can be used to quantitatively describe the partitioning and kinetic behaviour of MPS and POCIS for a range of aquatic organic contaminants for application in field sampling. Copyright © 2018 Elsevier B.V. All rights reserved.
Addeck, Amr; Croes, Kim; Van Langenhove, Kersten; Denison, Michael S.; Afify, Ahmed S.; Gao, Yue; Elskens, Marc; Baeyens, Willy
2015-01-01
Ceramic passive samplers or toximeters (packed with active carbon 1% w/w on celite), in combination with the CALUX bioassay have been used as a time-integrated monitoring technique for dissolved dioxin-like PCBs in urban and industrial wastewaters. The technique showed to be reliable during laboratory experiments: (1) PCB-126 amounts extracted from the passive samplers increased linearly with the time of exposure and (2) PCB-126 concentrations calculated from the amounts accumulated by the passive samplers were in agreement with their concentrations in the testing solution. Afterwards the toximeters were applied in the field. Two sampling sites located in Egypt were chosen: the Belbeis drainage canal, and the EMAK paper mill. A total of 18 ceramic toximeters were exposed to the wastewater in both sampling sites for a maximum period of 4 weeks. Two samplers were collected weekly from each site to monitor the increase in target analytes over time. Extracts were analyzed using the CALUX bioassay and the total dioxin-like PCB toxicity was reported for the aqueous phase (water column), as well as the solid phase (sediment and sludge) in both sampling sites. The time-weighted average concentration (TWA) of dl-PCBs in wastewater of the paper mill during the sampling period ranged between 7.1 and 9.1 pg-BEQ L-1, while that of the drainage canal ranged between 9.5 and 12.2 pg-BEQ L-1. The dl-PCBs in the fibrous sludge (paper mill) and bottom sediment (drainage canal) were 0.5 and 0.4 pg-BEQ g-1 dry-weight, respectively. The organic-carbon normalized partition coefficients between sediment and water (log Koc) for the paper mill and the canal were 2.4 and 4.3, respectively. PMID:24468390
Hazrati, Sadegh; Harrad, Stuart
2007-03-01
PUF disk passive air samplers are increasingly employed for monitoring of POPs in ambient air. In order to utilize them as quantitative sampling devices, a calibration experiment was conducted. Time integrated indoor air concentrations of PCBs and PBDEs were obtained from a low volume air sampler operated over a 50 d period alongside the PUF disk samplers in the same office microenvironment. Passive sampling rates for the fully-sheltered sampler design employed in our research were determined for the 51 PCB and 7 PBDE congeners detected in all calibration samples. These values varied from 0.57 to 1.55 m3 d(-1) for individual PCBs and from 1.1 to 1.9 m3 d(-1) for PBDEs. These values are appreciably lower than those reported elsewhere for different PUF disk sampler designs (e.g. partially sheltered) employed under different conditions (e.g. in outdoor air), and derived using different calibration experiment configurations. This suggests that sampling rates derived for a specific sampler configuration deployed under specific environmental conditions, should not be extrapolated to different sampler configurations. Furthermore, our observation of variable congener-specific sampling rates (consistent with other studies), implies that more research is required in order to understand fully the factors that influence sampling rates. Analysis of wipe samples taken from the inside of the sampler housing, revealed evidence that the housing surface scavenges particle bound PBDEs.
Zhang, Zulin; Lebleu, Melanie; Osprey, Mark; Kerr, Christine; Courtot, Estelle
2017-06-28
Emerging contaminants (ECs) such as endocrine-disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) attracted global concern during the last decades due to their potential adverse effects on humans and ecosystems. This work is the first study to assess the spatiotemporal changes, annual fluxes and ecological risk of ECs (4 EDCs and 6 PPCPs) by different monitoring strategies (spot and passive sampling) over 12 months in a Scottish priority catchment (River Ugie, Scotland, 335 km 2 ). Overall, the total concentration in water ranged from
A Review on Passive and Integrated Near-Field Microwave Biosensors
Guha, Subhajit; Jamal, Farabi Ibne
2017-01-01
In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617
Söderström, Hanna; Lindberg, Richard H; Fick, Jerker
2009-01-16
Although polar organic contaminants (POCs) such as pharmaceuticals are considered as some of today's most emerging contaminants few of them are regulated or included in on-going monitoring programs. However, the growing concern among the public and researchers together with the new legislature within the European Union, the registration, evaluation and authorisation of chemicals (REACH) system will increase the future need of simple, low cost strategies for monitoring and risk assessment of POCs in aquatic environments. In this article, we overview the advantages and shortcomings of traditional and novel sampling techniques available for monitoring the emerging POCs in water. The benefits and drawbacks of using active and biological sampling were discussed and the principles of organic passive samplers (PS) presented. A detailed overview of type of polar organic PS available, and their classes of target compounds and field of applications were given, and the considerations involved in using them such as environmental effects and quality control were discussed. The usefulness of biological sampling of POCs in water was found to be limited. Polar organic PS was considered to be the only available, but nevertheless, an efficient alternative to active water sampling due to its simplicity, low cost, no need of power supply or maintenance, and the ability of collecting time-integrative samples with one sample collection. However, the polar organic PS need to be further developed before they can be used as standard in water quality monitoring programs.
Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.
2015-01-01
Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C)more » 2015 Optical Society of America« less
This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...
Mayer, Philipp; Parkerton, Thomas F; Adams, Rachel G; Cargill, John G; Gan, Jay; Gouin, Todd; Gschwend, Philip M; Hawthorne, Steven B; Helm, Paul; Witt, Gesine; You, Jing; Escher, Beate I
2014-01-01
Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree. Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments. Integr Environ Assess Manag 2014;10:197–209. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24288295
Use of low density polyethylene membranes for assessment of genotoxicity of PAHs in the Seine River.
Vincent-Hubert, Françoise; Uher, Emmanuelle; Di Giorgio, Carole; Michel, Cécile; De Meo, Michel; Gourlay-France, Catherine
2017-03-01
The genotoxicity of river water dissolved contaminants is usually estimated after grab sampling of river water. Water contamination can now be obtained with passive samplers that allow a time-integrated sampling of contaminants. Since it was verified that low density polyethylene membranes (LDPE) accumulate labile hydrophobic compounds, their use was proposed as a passive sampler. This study was designed to test the applicability of passive sampling for combined chemical and genotoxicity measurements. The LDPE extracts were tested with the umu test (TA1535/pSK1002 ± S9) and the Ames assay (TA98, TA100 and YG1041 ± S9). We describe here this new protocol and its application in two field studies on four sites of the Seine River. Field LDPE extracts were negative with the YG1041 and TA100 and weakly positive with the TA98 + S9 and Umu test. Concentrations of labile mutagenic PAHs were higher upstream of Paris than downstream of Paris. Improvement of the method is needed to determine the genotoxicity of low concentrations of labile dissolved organic contaminants.
Comparisons of discrete and integrative sampling accuracy in estimating pulsed aquatic exposures.
Morrison, Shane A; Luttbeg, Barney; Belden, Jason B
2016-11-01
Most current-use pesticides have short half-lives in the water column and thus the most relevant exposure scenarios for many aquatic organisms are pulsed exposures. Quantifying exposure using discrete water samples may not be accurate as few studies are able to sample frequently enough to accurately determine time-weighted average (TWA) concentrations of short aquatic exposures. Integrative sampling methods that continuously sample freely dissolved contaminants over time intervals (such as integrative passive samplers) have been demonstrated to be a promising measurement technique. We conducted several modeling scenarios to test the assumption that integrative methods may require many less samples for accurate estimation of peak 96-h TWA concentrations. We compared the accuracies of discrete point samples and integrative samples while varying sampling frequencies and a range of contaminant water half-lives (t 50 = 0.5, 2, and 8 d). Differences the predictive accuracy of discrete point samples and integrative samples were greatest at low sampling frequencies. For example, when the half-life was 0.5 d, discrete point samples required 7 sampling events to ensure median values > 50% and no sampling events reporting highly inaccurate results (defined as < 10% of the true 96-h TWA). Across all water half-lives investigated, integrative sampling only required two samples to prevent highly inaccurate results and measurements resulting in median values > 50% of the true concentration. Regardless, the need for integrative sampling diminished as water half-life increased. For an 8-d water half-life, two discrete samples produced accurate estimates and median values greater than those obtained for two integrative samples. Overall, integrative methods are the more accurate method for monitoring contaminants with short water half-lives due to reduced frequency of extreme values, especially with uncertainties around the timing of pulsed events. However, the acceptability of discrete sampling methods for providing accurate concentration measurements increases with increasing aquatic half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance evaluation of a tailor-made passive sampler for monitoring of tropospheric ozone.
Ozden, Ozlem; Döğeroğlu, Tuncay
2012-09-01
This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone. The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers. There was an agreement (R (2) = 0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42 μg m(-3) for an exposure period of 1 week, and the sampler can be stored safely for a period of up to 8 weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21 mL min(-1) in a very good agreement with the theoretical uptake rate (10.32 mL min(-1)). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R (2) = 0.93) between two passive samplers. The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.
Nanotechnology Propellant Health Monitoring Sensors; Success Through Multi-Stakeholder Interests
2014-11-01
Passive AgeAlert sensors integrate well with passive (no battery!) RFID technology: • RFID reader provides rf energy to read tag providing tag...be added • Reader access to secure server means real time updates Propellant aging sensor Shock sensor Passive RFID tag RFID reader Polymer Aging...Aging Concepts, Inc., Distribution A: Approved for Public Release; Distribution Unlimited Integration of AgeAlert Sensors and Passive RFID 12
2018-01-01
This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (
Passive sampling of bioavailable organic chemicals in Perry County, Missouri cave streams.
Fox, J Tyler; Adams, Ginny; Sharum, Martin; Steelman, Karen L
2010-12-01
Two types of passive samplers--semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS)--were deployed in spring 2008 to assess bioavailable concentrations of aquatic contaminants in five cave streams and resurgences in Perry County, Missouri. Study sites represent areas of high cave biodiversity and the only known habitat for grotto sculpin (Cottus carolinae). Time-weighted average (TWA) water concentrations were calculated for 20 compounds (n = 9 SPMDs; n = 11 POCIS) originating primarily from agricultural sources, including two organochlorine insecticides, dieldrin and heptachlor epoxide, which were found at levels exceeding U.S. EPA criteria for the protection of aquatic life. GIS data were used to quantify and map sinkhole distribution and density within the study area. Infiltration of storm runoff and its influence on contaminant transport were also evaluated using land cover and hydrological data. This work provides evidence of cave stream contamination by a mix of organic chemicals and demonstrates the applicability of passive samplers for monitoring water quality in dynamic karst environments where rapid transmission of storm runoff makes instantaneous water sampling difficult.
Configurations and calibration methods for passive sampling techniques.
Ouyang, Gangfeng; Pawliszyn, Janusz
2007-10-19
Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.
Li, Qilu; Yang, Kong; Li, Jun; Zeng, Xiangying; Yu, Zhiqiang; Zhang, Gan
2018-05-01
In this study, we conducted an assessment of polyurethane foam (PUF) passive sampling for metals combining active sampling. Remarkably, we found that the metals collected in the passive samples differed greatly from those collected in active samples. By composition, Cu and Ni accounted for significantly higher proportions in passive samples than in active samples, leading to significantly higher uptake rates of Cu and Ni. In assessing seasonal variation, metals in passive samples had higher concentrations in summer (excluding Heshan), which differed greatly from the pattern of active samples (winter > summer), indicating that the uptake rates of most metals were higher in summer than in winter. Overall, due to the stable passive uptake rates, we considered that PUF passive samplers can be applied to collect atmospheric metals. Additionally, we created a snapshot of the metal pollution in the Pearl River Delta using principal component analysis of PUF samples and their source apportionment. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom Harner; Mahiba Shoeib; Todd Gouin
2006-09-01
Passive air samplers made from polyurethane foam (PUF) disks housed in stainless steel chambers were deployed over four seasons during 2002-2003, at 15 sites in the Laurentian Great lakes, to assess spatial and temporal trends of polychlorinated naphthalenes (PCNs). Sampling rates, determined using depuration compounds pre-spiked into the PUF disk prior to exposure, were, on average, 2.9 {+-} 1.1 m{sup 3} d{sup -1}, consistent with previous studies employing these samplers. PCN air concentrations exhibited strong urban-rural differences - typically a few pg m{sup 3} at rural sites and an order of magnitude higher at urban sites (Toronto, 12-31 pg m{supmore » -3} and Chicago, 13-52 pg m{sup -3}). The high concentrations at urban sites were attributed to continued emissions of historically used technical PCN. Contributions from combustion-derived PCNs seemed to be more important at rural locations where congeners 24 and 50, associated with wood and coal burning, were elevated. Congener 66/67, associated with incineration and other industrial thermal processes, was elevated at two sites and explained by nearby and/or upwind sources. Probability density maps were constructed for each site and for every integration period were shown to be a useful complement to seasonally integrated passive sampling data to resolve source-receptor relationship for PCNs and other pollutants. 25 refs., 7 figs., 1 tabs.« less
High-frequency acoustic spectrum analyzer based on polymer integrated optics
NASA Astrophysics Data System (ADS)
Yacoubian, Araz
This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.
Jálová, V; Jarošová, B; Bláha, L; Giesy, J P; Ocelka, T; Grabic, R; Jurčíková, J; Vrana, B; Hilscherová, K
2013-09-01
Passive and composite sampling in combination with in vitro bioassays and identification and quantification of individual chemicals were applied to characterize pollution by compounds with several specific modes of action in urban area in the basin of two rivers, with 400,000 inhabitants and a variety of industrial activities. Two types of passive samplers, semipermeable membrane devices (SPMD) for hydrophobic contaminants and polar organic chemical integrative samplers (POCIS) for polar compounds such as pesticides and pharmaceuticals, were used to sample wastewater treatment plant (WWTP) influent and effluent as well as rivers upstream and downstream of the urban complex and the WWTP. Compounds with endocrine disruptive potency were detected in river water and WWTP influent and effluent. Year-round, monthly assessment of waste waters by bioassays documented estrogenic, androgenic and dioxin-like potency as well as cytotoxicity in influent waters of the WWTP and allowed characterization of seasonal variability of these biological potentials in waste waters. The WWTP effectively removed cytotoxic compounds, xenoestrogens and xenoandrogens. There was significant variability in treatment efficiency of dioxin-like potency. The study indicates that the WWTP, despite its up-to-date technology, can contribute endocrine disrupting compounds to the river. Riverine samples exhibited dioxin-like, antiestrogenic and antiandrogenic potencies. The study design enabled characterization of effects of the urban complex and the WWTP on the river. Concentrations of PAHs and contaminants and specific biological potencies sampled by POCIS decreased as a function of distance from the city. © 2013.
This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practica...
This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical...
Booij, Kees; Robinson, Craig D; Burgess, Robert M; Mayer, Philipp; Roberts, Cindy A; Ahrens, Lutz; Allan, Ian J; Brant, Jan; Jones, Lisa; Kraus, Uta R; Larsen, Martin M; Lepom, Peter; Petersen, Jördis; Pröfrock, Daniel; Roose, Patrick; Schäfer, Sabine; Smedes, Foppe; Tixier, Céline; Vorkamp, Katrin; Whitehouse, Paul
2016-01-05
We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.
Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.
2014-01-01
A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.
Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A
2014-03-01
A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method. Published by Elsevier B.V.
Alvarez, David A; Maruya, Keith A; Dodder, Nathan G; Lao, Wenjian; Furlong, Edward T; Smalling, Kelly L
2014-04-30
Three passive sampling devices (PSDs), polar organic chemical integrative samplers (POCIS), polyethylene devices (PEDs), and solid-phase microextraction (SPME) samplers were used to sample a diverse set of chemicals in the coastal waters of San Francisco Bay and the Southern California Bight. Seventy one chemicals (including fragrances, phosphate flame retardants, pharmaceuticals, PAHs, PCBs, PBDEs, and pesticides) were measured in at least 50% of the sites. The chemical profile from the San Francisco Bay sites was distinct from profiles from the sites in the Southern California Bight. This distinction was not due to a single compound or class, but by the relative abundances/concentrations of the chemicals. Comparing the PSDs to mussel (Mytilus spp.) tissues, a positive correlation exists for the 25 and 26 chemicals in common for the PEDs and SPME, respectively. Diphenhydramine was the only common chemical out of 40 analyzed in both POCIS and tissues detected at a common site. Published by Elsevier Ltd.
Alvarez, David A.; Maruya, Keith A.; Dodder, Nathan G.; Lao, Wenjian; Furlong, Edward T.; Smalling, Kelly L.
2014-01-01
Three passive sampling devices (PSDs), polar organic chemical integrative samplers (POCIS), polyethylene devices (PEDs), and solid-phase microextraction (SPME) samplers were used to sample a diverse set of chemicals in the coastal waters of San Francisco Bay and the Southern California Bight. Seventy one chemicals (including fragrances, phosphate flame retardants, pharmaceuticals, PAHs, PCBs, PBDEs, and pesticides) were measured in at least 50% of the sites. The chemical profile from the San Francisco Bay sites was distinct from profiles from the sites in the Southern California Bight. This distinction was not due to a single compound or class, but by the relative abundances/concentrations of the chemicals. Comparing the PSDs to mussel (Mytilus spp.) tissues, a positive correlation exists for the 25 and 26 chemicals in common for the PEDs and SPME, respectively. Diphenhydramine was the only common chemical out of 40 analyzed in both POCIS and tissues detected at a common site.
Integrated passive/active vibration absorber for multi-story buildings
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.
1995-01-01
Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.
Surface passivation and aging of InGaAs/InP heterojunction phototransistors
NASA Astrophysics Data System (ADS)
Park, Min-Su; Razaei, Mohsen; Barnhart, Katie; Tan, Chee Leong; Mohseni, Hooman
2017-06-01
We report the effect of different surface treatment and passivation techniques on the stability of InGaAs/InP heterojunction phototransistors (HPTs). An In0.53Ga0.47As surface passivated with aqueous ammonium sulfide ((NH4)2S), aluminum oxide (Al2O3) grown by atomic layer deposition (ALD), and their combination is evaluated by using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All samples were kept in the air ambient, and their performances were periodically measured to investigate their long-term stability. Raman spectroscopy revealed that the peak intensity of the GaAs-like longitudinal optical phonon of all passivated samples is decreased compared with that of the control sample. This is attributable to the diminution of the carriers near the passivated surfaces, which was proven by extracted surface potential (Vs). The Vs of all passivated samples was decreased to less than half of that for the control sample. XPS evaluation of As3d spectra showed that arsenic oxides (As2O3 and As2O5) on the surfaces of the samples can be removed by passivation. However, both Raman and XPS spectra show that the (NH4)2S passivated sample reverts back over time and will resemble the untreated control sample. When capped with ALD-grown Al2O3, passivated samples irrespective of the pretreatment show no degradation over the measured time of 4 weeks. Similar conclusions are made from our experimental measurement of the performance of differently passivated HPTs. The ALD-grown Al2O3 passivated devices show an improved optical gain at low optical powers and long-term stability.
Ghosh, Upal; Driscoll, Susan Kane; Burgess, Robert M; Jonker, Michiel To; Reible, Danny; Gobas, Frank; Choi, Yongju; Apitz, Sabine E; Maruya, Keith A; Gala, William R; Mortimer, Munro; Beegan, Chris
2014-01-01
This article provides practical guidance on the use of passive sampling methods (PSMs) that target the freely dissolved concentration (Cfree) for improved exposure assessment of hydrophobic organic chemicals in sediments. Primary considerations for selecting a PSM for a specific application include clear delineation of measurement goals for Cfree, whether laboratory-based “ex situ” and/or field-based “in situ” application is desired, and ultimately which PSM is best-suited to fulfill the measurement objectives. Guidelines for proper calibration and validation of PSMs, including use of provisional values for polymer–water partition coefficients, determination of equilibrium status, and confirmation of nondepletive measurement conditions are defined. A hypothetical example is described to illustrate how the measurement of Cfree afforded by PSMs reduces uncertainty in assessing narcotic toxicity for sediments contaminated with polycyclic aromatic hydrocarbons. The article concludes with a discussion of future research that will improve the quality and robustness of Cfree measurements using PSMs, providing a sound scientific basis to support risk assessment and contaminated sediment management decisions. Integr Environ Assess Manag 2014;10:210–223. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24288273
Field application of passive SBSE for the monitoring of pesticides in surface waters.
Assoumani, A; Coquery, M; Liger, L; Mazzella, N; Margoum, C
2015-03-01
Spot sampling lacks representativeness for monitoring organic contaminants in most surface waters. Passive sampling has emerged as a cost-effective complementary sampling technique. We recently developed passive stir bar sorptive extraction (passive SBSE), with Twister from Gerstel, for monitoring moderately hydrophilic to hydrophobic pesticides (2.18 < log K ow < 5.11) in surface water. The aims of the present study were to assess this new passive sampler for the determination of representative average concentrations and to evaluate the contamination levels of two French rivers. Passive SBSE was evaluated for the monitoring of 16 pesticides in two rivers located in a small vineyard watershed during two 1-month field campaigns in spring 2010 and spring 2011. Passive SBSE was applied for periods of 1 or 2 weeks during the field campaigns and compared with spot sampling and weekly average automated sampling. The results showed that passive SBSE could achieve better time-representativeness than spot sampling and lower limits of quantification than automated sampling coupled with analytical SBSE for the pesticides studied. Finally, passive SBSE proved useful for revealing spatial and temporal variations in pesticide contamination of both rivers and the impact of rainfall and runoff on the river water quality.
Egidi, Giovanna; Caramazza, Alfonso
2016-10-01
This research studies the neural systems underlying two integration processes that take place during natural discourse comprehension: consistency evaluation and passive comprehension. Evaluation was operationalized with a consistency judgment task and passive comprehension with a passive listening task. Using fMRI, the experiment examined the integration of incoming sentences with more recent, local context and with more distal, global context in these two tasks. The stimuli were stories in which we manipulated the consistency of the endings with the local context and the relevance of the global context for the integration of the endings. A whole-brain analysis revealed several differences between the two tasks. Two networks previously associated with semantic processing and attention orienting showed more activation during the judgment than the passive listening task. A network previously associated with episodic memory retrieval and construction of mental scenes showed greater activity when global context was relevant, but only during the judgment task. This suggests that evaluation, more than passive listening, triggers the reinstantiation of global context and the construction of a rich mental model for the story. Finally, a network previously linked to fluent updating of a knowledge base showed greater activity for locally consistent endings than inconsistent ones, but only during passive listening, suggesting a mode of comprehension that relies on a local scope approach to language processing. Taken together, these results show that consistency evaluation and passive comprehension weigh differently on distal and local information and are implemented, in part, by different brain networks.
Lee, Eun Gyung; Magrm, Rana; Kusti, Mohannad; Kashon, Michael L; Guffey, Steven; Costas, Michelle M; Boykin, Carie J; Harper, Martin
2017-01-01
This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer's updated uptake rate) for passive samples. All active and passive 8-hr time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with the OSHA PEL would be a valid conclusion. However, individual passive samples can show lower results than a paired active sampler so that a single result should be treated with caution.
Low temperature storage container for transporting perishables to space station
NASA Technical Reports Server (NTRS)
Dean, William G (Inventor); Owen, James W. (Inventor)
1988-01-01
This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.
Lin, Chun; McKenna, Paul; Timmis, Roger; Jones, Kevin C
2010-07-08
This paper reports the first field deployment and testing of a directional passive air sampler (DPAS) which can be used to cost-effectively identify and quantify air pollutants and their sources. The sampler was used for ambient nitrogen dioxide (NO(2)) over ten weeks from twelve directional sectors in an urban setting, and tested alongside an automatic chemiluminescent monitor. The time-integrated passive directional results were compared with the directional analysis of the active monitoring results using wind data recorded at a weather station. The DPAS discriminated air pollutant signals directionally. The attempts to derive quantitative data yielded reasonable results--usually within a factor of two of those obtained by the chemiluminescent analyser. Ultimately, whether DPAS approaches are adopted will depend on their reliability, added value and cost. It is argued that added value was obtained here from the DPAS approach applied in a routine monitoring situation, by identifying source sectors. Both the capital and running costs of DPAS were <5% of those for the automatic monitor. It is envisaged that different sorbents or sampling media will enable this rotatable DPAS design to be used for other airborne pollutants. In summary, there are reasons to be optimistic that directional passive air sampling, together with careful interpretation of results, will be of added value to air quality practitioners in future.
Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers.
Metcalfe, Chris; Hoque, M Ehsanul; Sultana, Tamanna; Murray, Craig; Helm, Paul; Kleywegt, Sonya
2014-03-01
Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven "indicator compounds" which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L(-1) concentrations, which are not considered to be a threat to human health.
Morphological Integration of the Modern Human Mandible during Ontogeny
Polanski, Joshua M.
2011-01-01
Craniofacial integration is prevalent in anatomical modernity research. Little investigation has been done on mandibular integration. Integration patterns were quantified in a longitudinal modern human sample of mandibles. This integration pattern is one of modularization between the alveolar and muscle attachment regions, but with age-specific differences. The ascending ramus and nonalveolar portions of the corpus remain integrated throughout ontogeny. The alveolar region is dynamic, becoming modularized according to the needs of the mandible at a particular developmental stage. Early in ontogeny, this modularity reflects the need for space for the developing dentition; later, modularity is more reflective of mastication. The overall pattern of modern human mandibular integration follows the integration pattern seen in other mammals, including chimpanzees. Given the differences in craniofacial integration patterns between humans and chimpanzees, but the similarities in mandibular integration, it is likely that the mandible has played the more passive role in hominin skull evolution. PMID:21716741
Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen
2017-06-10
This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.
Integrated Micro-scale Power Conversion
2012-08-01
Micro Power Converters (μPC) Loads: Sources: μ-Power Converter (μPC) Thin-film battery Solar Cell Micro- fuel Cell Vibration Harvester...passive size • Hybrid integration with MEMS passives, particularly inductors Hybrid integration ARL focus Bubble Size = Volume [mm3] Industry Focus...Power converters survey Compiled by Bedair, Bashirullah Switched inductor (SI) Switched capacitor (SC) Resonant Resonat piezo Hybrid - SI / SC
INNOVATIVE EASY-TO-USE PASSIVE TECHNIQUE FOR 222RN AND 220RN DECAY PRODUCT DETECTION.
Mishra, Rosaline; Rout, R; Prajith, R; Jalalluddin, S; Sapra, B K; Mayya, Y S
2016-10-01
The decay products of radon and thoron are essentially the radioisotopes of polonium, bismuth and lead, and are solid particulates, which deposit in different parts of the respiratory tract upon inhalation, subsequently emitting high-energy alpha particles upon their radioactive decay. Development of passive deposition-based direct progeny sensors known as direct radon and thoron progeny sensors have provided an easy-to-use technique for time-integrated measurements of the decay products only. These dosemeters are apt for large-scale population dosimetry to assign inhalation doses to the public. The paper gives an insight into the technique, the calibration, comparison with the prevalently used active grab filter paper sampling technique, alpha track diameter analysis in these progeny sensors, progeny deposition velocity measurements carried out using these detector systems in the indoor as well as outdoor environment, and applications of these sensors for time-integrated unattached fraction estimation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2017-04-01
This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.
Cold Gas in Quenched Dwarf Galaxies using HI-MaNGA
NASA Astrophysics Data System (ADS)
Bonilla, Alaina
2017-01-01
MaNGA (Mapping of Nearby Galaxies at Apache Point Observatory) is a 6-year Sloan Digital Sky Survey fourth generation (SDSS-IV) project that will obtain integral field spectroscopy of a catalogue of 10,000 nearby galaxies. In this study, we explore the properties of the passive dwarf galaxy sample presented in Penny et al. 2016, making use of MaNGA IFU (Integral Field Unit) data to plot gas emission, stellar velocity, and flux maps. In addition, HI-MaNGA, a legacy radio-survey of MaNGA, collects single dish HI data retrieved from the GBT (Green Bank Telescope), which we use to study the the 21cm emission lines present in HI detections. Studying the HI content of passive dwarves will help us reveal the processes that are preventing star formation, such as possible AGN feedback. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from the Sloan Foundation to the Astrophysical Research Consortium.
Photonic integrated circuits based on sampled-grating distributed-Bragg-reflector lasers
NASA Astrophysics Data System (ADS)
Barton, Jonathon S.; Skogen, Erik J.; Masanovic, Milan L.; Raring, James; Sysak, Matt N.; Johansson, Leif; DenBaars, Steven P.; Coldren, Larry A.
2003-07-01
The Sampled-Grating Distributed-Bragg-Reflector laser(SGDBR) provides wide tunability (>40nm), and high output power (>10mW). Driven by the demand for network reconfigurability and ease of implementation, the SGDBR has moved from the research lab to be commercially viable in the marketplace. The SGDBR is most often implemented using an offset-quantum well epitaxial structure in which the quantum wells are etched off in the passive sections. Alternatively, quantum well intermixing has been used recently to achieve the same goal - resulting in improved optical gain and the potential for multiple bandgaps along the device structure. These epitaxial "platforms" provide the basis for more exotic opto-electronic device functionality exhibiting low chirp for digital applications and enhanced linearity for analog applications. This talk will cover state-of-the-art opto-electronic devices based on the SGDBR platform including: integrated Mach-Zehnder modulators, and integrated electro-absorption modulators.
Petersen, Jördis; Pröfrock, Daniel; Paschke, Albrecht; Broekaert, Jose A C; Prange, Andreas
2015-10-01
Little knowledge is available about water concentrations of rare earth elements (REEs) in the marine environment. The direct measurement of REEs in coastal waters is a challenging task due to their ultra-low concentrations as well as the high salt content in the water samples. To quantify these elements at environmental concentrations (pg L(-1) to low ng L(-1)) in coastal waters, current analytical techniques are generally expensive and time consuming, and require complex chemical preconcentration procedures. Therefore, an integrative passive sampler was tested as a more economic alternative sampling approach for REE analysis. We used a Chemcatcher-Metal passive sampler consisting of a 3M Empore Chelating Disk as the receiving phase, as well as a cellulose acetate membrane as the diffusion-limiting layer. The effect of water turbulence and temperature on the uptake rates of REEs was analyzed during 14-day calibration experiments by a flow-through exposure tank system. The sampling rates were in the range of 0.42 mL h(-1) (13 °C; 0.25 m s(-1)) to 4.01 mL h(-1) (13 °C; 1 m s(-1)). Similar results were obtained for the different REEs under investigation. The water turbulence was the most important influence on uptake. The uptake rates were appropriate to ascertain time-weighted average concentrations of REEs during a field experiment in the Elbe Estuary near Cuxhaven Harbor (exposure time 4 weeks). REE concentrations were determined to be in the range 0.2 to 13.8 ng L(-1), where the highest concentrations were found for neodymium and samarium. In comparison, most of the spot samples measured along the Chemcatcher samples had REE concentrations below the limit of detection, in particular due to necessary dilution to minimize the analytical problems that arise with the high salt content in marine water samples. This study was among the first efforts to measure REE levels in the field using a passive sampling approach. Our results suggest that passive samplers could be an effective tool to monitor ultra-trace concentrations of REEs in coastal waters with high salt content.
NASA Astrophysics Data System (ADS)
Weiss, Frederik; Wey, Hannah; Stamm, Christian; Ruepert, Clemens; Zurbrügg, Christian; Eggen, Rik
2017-04-01
Highest pesticide application rates and high surface runoff potentials are found in tropical countries. Global data indicate that among these countries, Costa Rica's agriculture is one of the most pesticide intensive worldwide. After use, pesticides can be transported from the fields into surface water through heavy raining events via wash-off, leaching, surface runoff and erosion processes, or direct as point source due to poor pesticide application practices and deteriorate the water quality and impair aquatic organisms. Even if the risk of pesticide pollution is well documented in Costa Rica, comprehensive information about the diffuse and direct pesticide entry routes, their environmental behavior, and the degree of water pollution is often lacking. Generally, only grab samples are taken and time integrated methods for environmental monitoring are seldom used so far. There is a need for more time integrated data at catchment scale. Current passive sampling techniques are low-costs options that, when combined with advanced analytical screening methods, allow for a broad assessment of pesticide pollution in streams. This will lead to a better systematic understanding of the environmental fate of pesticides and to describe their impacts to non-target organisms in tropical aquatic environments in the short- and long-term. We implemented such an approach in the tropical Río Tapezco catchment in the Zarcero canton, Costa Rica. The area covers 5112 ha, ranges between an altitude of 1100 and 2200 m above sea level and receives an average annual precipitation of 2000 - 2500 mm/yr. The catchment is intensively used for the horticultural production of vegetables, potatoes and herbs and it is specially characterized by its agricultural fields with steep slopes. The area is a hot spot of pesticide use with an average application rate of about 22 kg/ha of arable land and cropping cycle. For time-integrated monitoring, the rivers of the study area were sampled at five points in biweekly intervals between end of July and beginning of October 2015 by using three passive sampling systems (Camcather® with styrene-divinylbenzene reverse phase sulfonated discs, polydimethylsiloxane sheets, and a water level proportional water sampler). Additionally, pressure loggers were installed at all sites for recording water temperature and level continuously and daily precipitation data from one meteorological station (Zarcero Palmira) were available. For the quantification of about 260 substances GC-MS/MS and LC HR-MS was used. In 2015, more than 60 pesticides were detected in the Río Tapezco catchment with biweekly time weighted average concentrations ranging from few ng/L to several µg/L. Furthermore the available European environmental quality standards for several compounds were exceeded and present a potential risk for water organisms.
Baseline ambient gaseous ammonia concentrations in the Four Corners area and eastern Oklahoma, USA.
Sather, Mark E; Mathew, Johnson; Nguyen, Nghia; Lay, John; Golod, George; Vet, Robert; Cotie, Joseph; Hertel, Terry; Aaboe, Erik; Callison, Ryan; Adam, Jacque; Keese, Danielle; Freise, Jeremy; Hathcoat, April; Sakizzie, Brenda; King, Michael; Lee, Chris; Oliva, Sylvia; San Miguel, George; Crow, Leon; Geasland, Frank
2008-11-01
Ambient ammonia monitoring using Ogawa passive samplers was conducted in the Four Corners area and eastern Oklahoma, USA during 2007. The resulting data will be useful in the multipollutant management of ozone, nitrogen oxides, and visibility (atmospheric regional haze) in the Four Corners area, an area with growing oil/gas production and increasing coal-based power plant construction. The passive monitoring data also add new ambient ammonia concentration information for the U.S. and will be useful to scientists involved in present and future visibility modeling exercises. Three week integrated passive ammonia samples were taken at five sites in the Four Corners area and two sites in eastern Oklahoma from December, 2006 through December, 2007 (January, 2008 for two sites). Results show significantly higher regional background ammonia concentrations in eastern Oklahoma (1.8 parts per billion (ppb) arithmetic mean) compared to the Four Corners area (0.2 ppb arithmetic mean). Annual mean ammonia concentrations for all Four Corners area sites for the 2007 study ranged from 0.2 ppb to 1.5 ppb. Peak ambient ammonia concentrations occurred in the spring and summer in both areas. The passive samplers deployed at the Stilwell, Oklahoma site compared favorably with other passive samplers and a continuous ammonia monitoring instrument.
Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16
This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...
The Utilization of Starute Decelerators for Improved Upper Atmosphere Measurements
1974-12-01
34 ECOM-5489, May 1973. 17. Miller, Walter B., and Donald R. Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM...20. Miller, Walter B., and Donald R. Veazey , "Vertical Efficiency of Active and Passive Balloon Tracking Systems from a Standpoint of Integrated Error...5542, May 1974. 60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong
2017-05-01
Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.
Integration of quantum cascade lasers and passive waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish
2015-07-20
We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in themore » mid-infrared (λ ∼ 3–16 μm)« less
[Study on corrosion resistance of three non-noble porcelain alloys].
Wu, Zhikai; Xu, Sheng; Li, Wei; Teng, Jin; Li, Ning
2011-10-01
To study the electrochemical corrosion behavior of Co-Cr, Ni-Cr and Ni-Cr-Be based porcelain alloys in NaCl solution. Five samples of each alloy were made respectively, electric polarization curve of each alloy was obtained using potentiodynamic polarization technique. Self-corrosion potential (E(corr)), self-corrosion current density (I(corr), passive region and transpassivation potential were tested. Microstructure and constituent was examined using scanning electron microscopy and energy dispersive spectroscopy. Co-Cr alloy possessed the most desirable corrosion resistance because of its integrated, homogeneous and compact passive film. The poor compactness of Ni-Cr alloy's passive film decreased its corrosion resistance. Ni-Cr-Be alloy exhibited the worst corrosion resistance due to the Cr and Mo depleted Ni-Be eutectic phases in the alloy. Taking biological security into consideration, it is necessary to avoid the application of porcelain alloys with Be element. Co-Cr alloy with better biocompatibility possesses much broader prospect in the field of dental restoration.
Integrated, Continuous Emulsion Creamer.
Cochrane, Wesley G; Hackler, Amber L; Cavett, Valerie J; Price, Alexander K; Paegel, Brian M
2017-12-19
Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.
Passive sampling methods for contaminated sediments: State of the science for organic contaminants
Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu
2014-01-01
This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24307344
Harman, Christopher; Thomas, Kevin V; Tollefsen, Knut Erik; Meier, Sonnich; Bøyum, Olav; Grung, Merete
2009-11-01
In order to assess the environmental impact of aquatic discharges from the offshore oil industry, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs) were deployed around an oil platform and at reference locations in the North Sea. Exposure to polycyclic aromatic hydrocarbons (PAH) and alkylated phenols (AP) was determined from passive sampler accumulations using an empirical uptake model, the dissipation of performance reference compounds and adjusted laboratory derived sampling rates. Exposure was relatively similar within 1-2 km of the discharge point, with levels dominated by short chained C1-C3 AP isomers (19-51 ngL(-1)) and alkylated naphthalenes, phenanthrenes and dibenzothiophenes (NPD, 29-45 ngL(-1)). Exposure stations showed significant differences to reference sites for NPD, but not always for more hydrophobic PAH. These concentrations are several orders of magnitude lower than those reported to give both acute and sub-lethal effects, although their long term consequences are unknown.
Assoumani, A; Margoum, C; Lombard, A; Guillemain, C; Coquery, M
2017-03-01
Passive samplers are theoretically capable of integrating variations of concentrations of micropollutants in freshwater and providing accurate average values. However, this property is rarely verified and quantified experimentally. In this study, we investigated, in controlled conditions, how the polydimethylsiloxane-coated stir bars (passive Twisters) can integrate fluctuating concentrations of 20 moderately hydrophilic to hydrophobic pesticides (2.18 < Log K ow < 5.51). In the first two experiments, we studied the pesticide accumulation in the passive Twisters during high concentration peaks of various durations in tap water. We then followed their elimination from the passive Twisters placed in non-contaminated water (experiment no. 1) or in water spiked at low concentrations (experiment no. 2) for 1 week. In the third experiment, we assessed the accuracy of the time-weighted average concentrations (TWAC) obtained from the passive Twisters exposed for 4 days to several concentration variation scenarios. We observed little to no elimination of hydrophobic pesticides from the passive Twisters placed in non-contaminated water and additional accumulation when placed in water spiked at low concentrations. Moreover, passive Twisters allowed determining accurate TWAC (accuracy, determined by TWAC-average measured concentrations ratios, ranged from 82 to 127 %) for the pesticides with Log K ow higher than 4.2. In contrast, fast and large elimination was observed for the pesticides with Log K ow lower than 4.2 and poorer TWAC accuracy (ranging from 32 to 123 %) was obtained.
Koirala, Gyan Raj; Dhakal, Rajendra; Kim, Eun-Seong; Yao, Zhao; Kim, Nam-Young
2018-04-03
We present a microfabricated spiral-coupled passive resonator sensor realized through integrated passive device (IPD) technology for the sensitive detection and characterization of water-ethanol solutions. In order to validate the performance of the proposed device, we explicitly measured and analyzed the radio frequency (RF) characteristics of various water-ethanol solution compositions. The measured results showed a drift in the resonance frequency from 1.16 GHz for deionized (DI) water to 1.68 GHz for the solution containing 50% ethanol, whereas the rejection level given by the reflection coefficient decreased from -29.74 dB to -14.81 dB. The obtained limit of detection was 3.82% volume composition of ethanol in solution. The derived loaded capacitance was 21.76 pF for DI water, which gradually decreased to 8.70 pF for the 50% ethanol solution, and the corresponding relative permittivity of the solution decreased from 80.14 to 47.79. The dissipation factor increased with the concentration of ethanol in the solution. We demonstrated the reproducibility of the proposed sensor through iterative measures of the samples and the study of surface morphology. Successive measurement of different samples had no overlapping and had very minimum bias between RF characteristics for each measured sample. The surface profile for bare sensors was retained after the sample test, resulting a root mean square (RMS) value of 11.416 nm as compared to 10.902 nm for the bare test. The proposed sensor was shown to be a viable alternative to existing sensors for highly sensitive water-ethanol concentration detection.
Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.
2014-01-01
In the summers of 2011 and 2012, we compared passive and active acoustic sampling for bats at 31 sites at Fort Drum Military Installation, New York. We defined active sampling as acoustic sampling that occurred in 30-min intervals between the hours of sunset and 0200 with a user present to manipulate the directionality of the microphone. We defined passive sampling as acoustic sampling that occurred over a 12-h period (1900–0700 hours) without a user present and with the microphone set in a predetermined direction. We detected seven of the nine possible species at Fort Drum, including the federally endangered Indiana bat Myotis sodalis, the proposed-for-listing northern bat M. septentrionalis, the little brown bat M. lucifugus, and the big brown bat Eptesicus fuscus, which are impacted by white-nose syndrome (WNS); and the eastern red bat Lasiurus borealis, the hoary bat L. cinereus, and the silver-haired bat Lasionycteris noctivagans, which are not known to be impacted by WNS. We did not detect two additional WNS-impacted species known to historically occur in the area: the eastern small-footed bat Myotis leibii and the tri-colored bat Perimyotis subflavus. Single-season occupancy models revealed lower detection probabilities of all detected species using active sampling versus passive sampling. Additionally, overall detection probabilities declined in detected WNS-impacted species between years. A paired t-test of simultaneous sampling on 21 occasions revealed that overall recorded foraging activity per hour was greater using active than passive sampling for big brown bats and greater using passive than active sampling for little brown bats. There was no significant difference in recorded activity between methods for other WNS-impacted species, presumably because these species have been so reduced in number that their “apparency” on the landscape is lower. Finally, a cost analysis of standard passive and active sampling protocols revealed that passive sampling is substantially more cost-effective than active sampling per hour of data collection. We recommend passive sampling over active sampling methodologies as they are defined in our study for detection probability and/or occupancy studies focused on declining bat species in areas that have experienced severe WNS-associated impacts.
2009-01-05
ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.
Intercomparison of active and passive instruments for radon and radon progeny in North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, A.C.; Tu, Keng-Wu; Knutson, E.O.
1995-02-01
An intercomparison exercise for radon and radon progeny instruments and methods was held at the Environmental Measurements Laboratory (EML) from April 22--May 2, 1994. The exercise was conducted in the new EML radon test and calibration facility in which conditions of exposure are very well controlled. The detection systems of the intercompared instruments consisted of. (1) pulse ionization chambers, (2) electret ionization chambers, (3) scintillation detectors, (4) alpha particle spectrometers with silicon diodes, surface barrier or diffused junction detectors, (5) registration of nuclear tracks in solid-state materials, and (6) activated carbon collectors counted by gamma-ray spectrometry or by alpha- andmore » beta-liquid scintillation counting. 23 private firms, government laboratories and universities participated with a 165 passive integrating devices consisting of: Activated carbon collectors, nuclear alpha track detectors and electret ionization chambers, and 11 active and passive continuous radon monitors. Five portable integrating and continuous instruments were intercompared for radon progeny. Forty grab samples for radon progeny were taken by five groups that participated in person to test and evaluate their primary instruments and methods that measure individual radon progeny and the potential alpha energy concentration (PAEC) in indoor air. Results indicate that more than 80% of the measurements for radon performed with a variety of instruments, are within {plus_minus}10% of actual value. The majority of the instruments that measure individual radon progeny and the PAEC gave results that are in good agreement with the EML reference value. Radon progeny measurements made with continuous and integrating instruments are satisfactory with room for improvement.« less
Chen, Wei; Pan, Suhong; Cheng, Hao; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C
2018-06-15
A passive water sampler based on the diffusive gradients in thin-films (DGT) technique was developed and tested for 3 groups of endocrine disrupting chemicals (EDCs, including oestrogens, alkyl-phenols and bisphenols). Three different resins (hydrophilic-lipophilic-balanced (HLB), XAD18 and Strata-XL-A (SXLA)) were investigated for their suitability as the binding phase for DGT devices. Laboratory tests across a range of pH (3.5-9.5), ionic strength (0.001-0.5 M) and dissolved organic matter concentration (0-20 mg L -1 ) showed HLB and XAD18-DGT devices were more stable compared to SXLA-DGT. HLB-DGT and XAD18-DGT accumulated test chemicals with time consistent with theoretical predictions, while SXLA-DGT accumulated reduced amounts of chemical. DGT performance was also compared in field deployments up to 28 days, alongside conventional active sampling at a wastewater treatment plant. Uptake was linear to the samplers over 18 days, and then began to plateau/decline, indicating the maximum deployment time in those conditions. Concentrations provided by the DGT samplers compared well with those provided by auto-samplers. DGT integrated concentrations over the deployment period in a way that grab-sampling cannot. The advantages of the DGT sampler over active sampling include: low cost, ease of simultaneous multi-site deployment, in situ analyte pre-concentration and reduction of matrix interferences compared with conventional methods. Compared to other passive sampler designs, DGT uptake is independent of flow rate and therefore allows direct derivation of field concentrations from measured compound diffusion coefficients. This passive DGT sampler therefore constitutes a viable and attractive alternative to conventional grab and active water sampling for routine monitoring of selected EDCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
2016-04-01
concentration and toxicity to invertebrates (Kreitinger et al. 2007). Bulk contaminant sediment measurements do not reveal the differences across...feed on fish and invertebrates , while others can affect wildlife through direct contact or ingestion; regardless, both effects are influenced by and...sediment management. PAHs are risk drivers primarily because of the potential for adverse effects on benthic invertebrates and sediment-associated fish
Multiple mechanisms quench passive spiral galaxies
NASA Astrophysics Data System (ADS)
Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.
2018-02-01
We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ < 1 × 1010 M⊙) passive spiral galaxies are located in the rich Virgo cluster. This is in contrast to low-mass spiral galaxies with star formation, which inhabit a range of environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy; Parra, Amanda; Russell, Marion
Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less
Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D
2011-08-01
To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.
Feasibility study of silicon nitride protection of plastic encapsulated semiconductors
NASA Technical Reports Server (NTRS)
Peters, J. W.; Hall, T. C.; Erickson, J. J.; Gebhart, F. L.
1979-01-01
The application of low temperature silicon nitride protective layers on wire bonded integrated circuits mounted on lead frame assemblies is reported. An evaluation of the mechanical and electrical compatibility of both plasma nitride and photochemical silicon nitride (photonitride) passivations (parallel evaluations) of integrated circuits which were then encapsulated in plastic is described. Photonitride passivation is compatible with all wire bonded lead frame assemblies, with or without initial chip passivation. Plasma nitride passivation of lead frame assemblies is possible only if the chip is passivated before lead frame assembly. The survival rate after the environmental test sequence of devices with a coating of plasma nitride on the chip and a coating of either plasma nitride or photonitride over the assembled device is significantly greater than that of devices assembled with no nitride protective coating over either chip or lead frame.
Evaluating the Relationship between Equilibrium Passive ...
This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measured water quality. Of these investigations, 19 provided direct comparisons relating passive sampler concentrations and organism bioaccumulation. Passive sampling polymers included in the review were: low density polyethylene (LDPE); polyoxymethylene (POM); and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Log-linear regressions correlating bioaccumulation (CL) and passive sampler concentration (CPS) were used to assess the strength of observed relationships. In general, the passive sampler concentrations resulted in statistically-significant, logarithmic, predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Overall, bioaccumulation values were greater than passive sampler concentrations. A mean ratio of CL to CPS was 10.8 ± 18.4 (n = 609) for available data. Given that all studies presented resulted in a strong CL versus CPS relationship suggests that using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based measurements can provide useful information for ma
Use of equilibrium passive samplers for performing aquatic environmental monitoring at contaminated sediment sites, including Superfund sites, is becoming more common. However, a current challenge in passive sampling is determining when equilibrium is achieved between the sampl...
Multifunctional graded dielectrics fabricated using dry powder printing
NASA Astrophysics Data System (ADS)
Good, Austin J.; Roper, David; Good, Brandon; Yarlagadda, Shridhar; Mirotznik, Mark S.
2017-09-01
The ability to fabricate multifunctional devices that combine good structural properties with embedded electromagnetic functionality has many practical applications, including antireflective surfaces for structural radomes, load bearing conformal antennas, integrated RF transmission lines and passive beam forming networks. We describe here a custom made 3D printer that can print high dielectric constant ceramic powders within a low-loss structural composite substrate to produce mechanically robust parts with integrated graded dielectric properties. We fabricated a number of these parts and evaluated their anisotropic dielectric properties by determining the complete permittivity tensor of the printed samples as a function of local powder weight. This data was then experimentally validated using two practical examples: a Chebyshev antireflective stack and a 2D passive beamsteering network. The results of both electromagnetic systems displayed acceptable agreement between the simulated and measured results. This agreement shows that powder printing is a potential approach for fabricating spatially graded dielectric electromagnetic systems. This paper was submitted for review on 15 February 2017. The project is funded by the Office of Naval Research, Code 331.
A passivity criterion for sampled-data bilateral teleoperation systems.
Jazayeri, Ali; Tavakoli, Mahdi
2013-01-01
A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.
Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan
2017-10-01
Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok
2017-11-07
Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.
THE IMPACT OF PASSIVE SAMPLING METHODOLOGIES USED IN THE DEARS
This abstract details the use of passive sampling methodologies in the Detroit Exposure and Aerosol Research Study (DEARS). A discussion about the utility of various gas-phase passive samplers used in the study will be described along with examples of field data measurements empl...
Evaluating the Relationship between Equilibrium Passive ...
This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low-density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in log–log predictive relationships, most of which were within one to 2 orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS, and POM were 0.68, 0.76, and 0.58, respectively. For the available raw, untransformed data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs. This review evaluates passive sampler uptake of hydrophobi
Focal Plane Array Technology for IR Detectors
1996-06-01
samples are determined. Our results on p-(HgCd)Te coated with passivation layers are evident from Figs 3.1 and 3.2. In the first case (native sulphides ...samples are evident from the Table II. We studied influence of (a) atmosphere, (b) ZnS passivation, (c) native sulphides + ZnS passivation. The (HgCd)Te...native sulphides + ZnS, full symbols RH<O, open symbols RH>O. 10 5 6408A3 10- 010o E 102 000 2 days after passivation 10 : 80 days after passivation 0
Passive and electro-optic polymer photonics and InP electronics integration
NASA Astrophysics Data System (ADS)
Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.
2015-05-01
Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.
Hosted by the Contaminated Sediment Forum, this half-day course will introduce the RPM to the use of passive samplers to assess bioavailability and in ecological risk assessment. Passive sampling devices (PSD) are a technology with growing acceptance for measuring porewater conce...
Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng
2014-08-07
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.
Overview of the US EPA/SERDP/ESTCP: Laboratory, Field ...
Passive sampling can be used for applications at contaminated sediment sites including performing assessments of contaminant bioavailability (i.e., freely dissolved concentration (Cfree)), conducting remedial investigations and feasibility studies, and assessing the potential for contaminant bioaccumulation. Previous research articles and documents have discussed many aspects of passive sampling however no definitive guidance on the laboratory, field and analytical procedures for using passive sampling at contaminated sediment sites has been provided. The document discussed in this presentation provides passive sampler users with the guidance necessary to apply the technology to evaluate contaminated sediments. Contaminants discussed include polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the metals, cadmium, copper, nickel, lead and zinc. The document is divided into sections including discussions of different types of samplers used commonly in the United States, the selection and use of performance reference compounds (PRCs), the extraction and instrumental analysis of passive samplers, data analysis and quality assurance/quality control, and a list of passive sampling related references. The document is not intended to serve as a series of standard operating procedures (SOPs) but rather seeks to provide users with the information needed to develop their own SOPs. The document also includes the names of selected passive sam
Integrated resonant micro-optical gyroscope and method of fabrication
Vawter, G Allen [Albuquerque, NM; Zubrzycki, Walter J [Sandia Park, NM; Guo, Junpeng [Albuquerque, NM; Sullivan, Charles T [Albuquerque, NM
2006-09-12
An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.
A study of safety and tolerability of rotatory vestibular input for preschool children
Su, Wen-Ching; Lin, Chin-Kai; Chang, Shih-Chung
2015-01-01
The objectives of this study were to determine a safe rotatory vestibular stimulation input for preschool children and to study the effects of grade level and sex of preschool children during active, passive, clockwise, and counterclockwise rotation vestibular input. This study adopted purposive sampling with 120 children from three kindergarten levels (K1, K2, and K3) in Taiwan. The subjects ranged in age from 46 to 79 months of age (mean: 62.1 months; standard deviation =9.60). This study included testing with four types of vestibular rotations. The number, duration, and speed of rotations were recorded. The study found that the mean number of active rotations was 10.28; the mean duration of rotation was 24.17 seconds; and the mean speed was 2.29 seconds per rotation. The mean number of passive rotations was 23.04. The differences in number of rotations in clockwise, counterclockwise, active, and passive rotations were not statistically significant. Sex and grade level were not important related factors in the speed and time of active rotation. Different sexes, rotation methods (active, passive), and grades made significant differences in the number of rotations. The safety and tolerability of rotatory vestibular stimulation input data obtained in this study can provide useful reference data for therapists using sensory integration therapy. PMID:25657579
Carriot, Jerome; Jamali, Mohsen; Brooks, Jessica X.
2015-01-01
Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life. PMID:25716854
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Lina, Liu
2018-02-01
An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.
SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.
2011-01-01
A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860
Battery management systems with thermally integrated fire suppression
Bandhauer, Todd M.; Farmer, Joseph C.
2017-07-11
A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.
Burgess, Robert M; Lohmann, Rainer; Schubauer-Berigan, Joseph P; Reitsma, Pamela; Perron, Monique M; Lefkovitz, Lisa; Cantwell, Mark G
2015-08-01
Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2) = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites. Published 2015 SETAC. This article is a US Government work and is in the public domain in the USA.
Amato, Elvio D; Covaci, Adrian; Town, Raewyn M; Hereijgers, Jonas; Bellekens, Ben; Giacometti, Valentina; Breugelmans, Tom; Weyn, Maarten; Dardenne, Freddy; Bervoets, Lieven; Blust, Ronny
2018-06-14
Passive sampling with in situ devices offers several advantages over traditional sampling methods (i.e., discrete spot sampling), however, data interpretation from conventional passive samplers is hampered by difficulties in estimating the thickness of the diffusion layer at the sampler/medium interface (δ), often leading to inaccurate determinations of target analyte concentrations. In this study, the performance of a novel device combining active and passive sampling was investigated in the laboratory. The active-passive sampling (APS) device is comprised of a diffusion cell fitted with a pump and a flowmeter. Three receiving phases traditionally used in passive sampling devices (i.e., chelex resin, Oasis HLB, and silicone rubber), were incorporated in the diffusion cell and allowed the simultaneous accumulation of cationic metals, polar, and non-polar organic compounds, respectively. The flow within the diffusion cell was accurately controlled and monitored, and, combined with diffusion coefficients measurements, enabled the average δ to be estimated. Strong agreement between APS and time-averaged total concentrations measured in discrete water samples was found for most of the substances investigated. Accuracies for metals ranged between 87 and 116%, except Cu and Pb (∼50%), whilst accuracies between 64 and 101%, and 92 and 151% were achieved for polar and non-polar organic compounds, respectively. These results indicate that, via a well-defined in situ preconcentration step, the proposed APS approach shows promise for monitoring the concentration of a range of pollutants in water. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oliver, Karen D.; Cousett, Tamira A.; Whitaker, Donald A.; Smith, Luther A.; Mukerjee, Shaibal; Stallings, Casson; Thoma, Eben D.; Alston, Lillian; Colon, Maribel; Wu, Tai; Henkle, Stacy
2017-08-01
A sample integrity evaluation and an interlaboratory comparison were conducted in application of U.S. Environmental Protection Agency (EPA) Methods 325A and 325B for diffusively monitoring benzene and other selected volatile organic compounds (VOCs) using Carbopack X sorbent tubes. To evaluate sample integrity, VOC samples were refrigerated for up to 240 days and analyzed using thermal desorption/gas chromatography-mass spectrometry at the EPA Office of Research and Development laboratory in Research Triangle Park, NC, USA. For the interlaboratory comparison, three commercial analytical laboratories were asked to follow Method 325B when analyzing samples of VOCs that were collected in field and laboratory settings for EPA studies. Overall results indicate that the selected VOCs collected diffusively on sorbent tubes generally were stable for 6 months or longer when samples were refrigerated. This suggests the specified maximum 30-day storage time of VOCs collected diffusively on Carbopack X passive samplers and analyzed using Method 325B might be able to be relaxed. Interlaboratory comparison results were in agreement for the challenge samples collected diffusively in an exposure chamber in the laboratory, with most measurements within ±25% of the theoretical concentration. Statistically significant differences among laboratories for ambient challenge samples were small, less than 1 part per billion by volume (ppbv). Results from all laboratories exhibited good precision and generally agreed well with each other.
Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)
NASA Technical Reports Server (NTRS)
Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.
1997-01-01
The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.
Li, Ying; Yang, Cunman; Bao, Yijun; Ma, Xueru; Lu, Guanghua; Li, Yi
2016-08-01
A modified polar organic chemical integrative sampler (POCIS) could provide a convenient way of monitoring perfluorinated chemicals (PFCs) in water. In the present study, the modified POCIS was calibrated to monitor PFCs. The effects of water temperature, pH, and dissolved organic matter (DOM) on the sampling rate (R s) of PFCs were evaluated with a static renewal system. During laboratory validation over a 14-day period, the uptake kinetics of PFCs was linear with the POCIS. DOM and water temperature slightly influenced POCIS uptake rates, which is in consistent with the theory for uptake into POCIS. Therefore, within a narrow span of DOM and water temperatures, it was unnecessary to adjust the R s value for POCIS. Laboratory experiments were conducted with water over pH ranges of 3, 7, and 9. The R s values declined significantly with pH increase for PFCs. Although pH affected the uptake of PFCs, the effect was less than twofold. Application of the R s value to analyze PFCs with POCIS deployed in the field provided similar concentrations obtained from grab samples.
Evaluating the Relationship between Equilibrium Passive ...
This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in logarithmic predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). This review concludes that in many applications passive sampling may serve as a reliable surrogate for biomonitoring organisms when biomonitoring organisms are not available. When applied properly, passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs
Urban Air Toxics Monitoring Program, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAllister, R.A.; Moore, W.H.; Rice, J.
1990-10-01
From January 1989 through January 1990 samples of ambient air were collected at 14 sites in the eastern part of the U.S. Every 12 days, air was integrated over 24-hour periods into passivated stainless steel canisters. Simultaneously, air was drawn through cartridges containing dinitrophenylhydrazine to collect carbonyl compounds. The samples were analyzed at a central laboratory for a total of 37 halogenated and aromatic hydrocarbons, formaldehyde, acetaldehyde, and other oxygenated species. The hydrocarbon species were analyzed by gas chromatography/multiple detectors and gas chromatography/mass spectrometry, while the carbonyl species were analyzed by liquid chromatography. An extensive quality assurance program was carriedmore » on to secure high quality data. Complete data for all the carbonyl samples are presented in the report.« less
Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.
2013-01-01
A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance) were detected in more than half of the extracts from passive samplers, but they were not detected in any discrete water sample. The Yeast Estrogen Screen assay identified measurable estrogenicity in one passive sampler extract from the most downstream wetland site in both the April and November–December 2011 deployments and in passive sampler extracts from one residential and one upstream site in the November–December 2011 deployment only. Surface-water levels in the restored wetland cells were monitored continuously using submersible pressure transducers in hand-driven well points screened in the surface water. Surface-water levels in the wetland cells responded quickly to precipitation and substantially receded within 2 days following the largest rainfall events. Seasonal patterns in water levels generally showed higher and more variable surface-water levels in the wetland cells during spring and early summer. Water levels in the wetland cells fell below the elevation of the control structures and ceased to flow over the spillways during extended dry periods (primarily late summer and early fall). Daily loads of seven organic wastewater compounds, as indicators of septic system effluent, were estimated for samples collected at wetland outlet spillways when flow measurements could be made. Median daily loads of the indicator organic wastewater compounds increased in downstream order, and the largest median loads were measured at the most downstream site. Median daily loads were higher for samples collected in spring and summer than those collected in fall, as the higher seasonal water levels increased streamflow at the wetland outlet spillways. Wetland sediment samples were analyzed for 84 organic wastewater compounds, polycyclic aromatic hydrocarbons, and semivolatile organic compounds to investigate the fate of contaminants in Great Marsh. The top five detected compounds by total mass in wetland sediment samples were beta-sitosterol, beta-stigmastanol, cholesterol, bis(2-ethylhexyl) phthalate, and phenol. Polycyclic aromatic hydrocarbons also were frequently detected in wetland sediment samples. Source apportionment of polycyclic aromatic hydrocarbon detections indicated atmospheric sources of pyrogenic compounds, rather than residential sources. Comparisons of polycyclic aromatic hydrocarbon concentrations in wetland sediment samples to sediment quality target guidelines indicated the potential for harmful effects on sediment-dwelling organisms at several sites. Biodegradation of select endocrine-disrupting compounds (17α-ethinylestradiol, 4-nonylphenol, triclocarban, and bisphenol A) in shallow wetland sediments was evaluated in laboratory experiments by using carbon-14 radiolabeled model contaminants. Substantial biodegradation of certain organic wastewater compounds were demonstrated, primarily in oxic (oxygen containing) environments. One of four modeled compounds, bisphenol A, was biodegraded in anoxic (oxygen free) environments. Only sediments collected nearest residential areas exhibited degradation of the synthetic birth control pharmaceutical, 17α-ethinylestradiol, possibly owing to adaptation and acclimation of the indigenous microbial community to septic discharge and the resultant selection of a microbial capability for biodegradation of 17α-ethinylestradiol.
Xu, Jianqiao; Huang, Shuyao; Jiang, Ruifen; Cui, Shufen; Luan, Tiangang; Chen, Guosheng; Qiu, Junlang; Cao, Chenyang; Zhu, Fang; Ouyang, Gangfeng
2016-04-21
Elucidating the availability of the bound analytes for the mass transfer through the diffusion boundary layers (DBLs) adjacent to passive samplers is important for understanding the passive sampling kinetics in complex samples, in which the lability factor of the bound analyte in the DBL is an important parameter. In this study, the mathematical expression of lability factor was deduced by assuming a pseudo-steady state during passive sampling, and the equation indicated that the lability factor was equal to the ratio of normalized concentration gradients between the bound and free analytes. Through the introduction of the mathematical expression of lability factor, the modified effective average diffusion coefficient was proven to be more suitable for describing the passive sampling kinetics in the presence of mobile binding matrixes. Thereafter, the lability factors of the bound polycyclic aromatic hydrocarbons (PAHs) with sodium dodecylsulphate (SDS) micelles as the binding matrixes were figured out according to the improved theory. The lability factors were observed to decrease with larger binding ratios and smaller micelle sizes, and were successfully used to predict the mass transfer efficiencies of PAHs through DBLs. This study would promote the understanding of the availability of bound analytes for passive sampling based on the theoretical improvements and experimental assessments. Copyright © 2016 Elsevier B.V. All rights reserved.
AP1000{sup R} severe accident features and post-Fukushima considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scobel, J. H.; Schulz, T. L.; Williams, M. G.
2012-07-01
The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, themore » AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)« less
Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.
McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz
2014-05-01
This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.
Review of atrazine sampling by polar organic chemical integrative samplers and Chemcatcher.
Booij, Kees; Chen, Sunmao
2018-04-24
A key success factor for the performance of passive samplers is the proper calibration of sampling rates. Sampling rates for a wide range of polar organic compounds are available for Chemcatchers and polar organic chemical integrative samplers (POCIS), but the mechanistic models that are needed to understand the effects of exposure conditions on sampling rates need improvement. Literature data on atrazine sampling rates by these samplers were reviewed with the aim of assessing what can be learned from literature reports of this well-studied compound and identifying knowledge gaps related to the effects of flow and temperature. The flow dependency of sampling rates could be described by a mass transfer resistance model with 1 (POCIS) or 2 (Chemcatcher) adjustable parameters. Literature data were insufficient to evaluate the temperature effect on the sampling rates. An evaluation of reported sampler configurations showed that standardization of sampler design can be improved: for POCIS with respect to surface area and sorbent mass, and for Chemcatcher with respect to housing design. Several reports on atrazine sampling could not be used because the experimental setups were insufficiently described with respect to flow conditions. Recommendations are made for standardization of sampler layout and documentation of flow conditions in calibration studies. Environ Toxicol Chem 2018;9999:1-13. © 2018 SETAC. © 2018 SETAC.
NASA Astrophysics Data System (ADS)
Audet, J.; Martinsen, L.; Hasler, B.; de Jonge, H.; Karydi, E.; Ovesen, N. B.; Kronvang, B.
2014-07-01
Eutrophication of aquatic ecosystems caused by excess concentrations of nitrogen and phosphorus may have harmful consequences for biodiversity and poses a health risk to humans via the water supplies. Reduction of nitrogen and phosphorus losses to aquatic ecosystems involves implementation of costly measures, and reliable monitoring methods are therefore essential to select appropriate mitigation strategies and to evaluate their effects. Here, we compare the performances and costs of three methodologies for the monitoring of nutrients in rivers: grab sampling, time-proportional sampling and passive sampling using flow proportional samplers. Assuming time-proportional sampling to be the best estimate of the "true" nutrient load, our results showed that the risk of obtaining wrong total nutrient load estimates by passive samplers is high despite similar costs as the time-proportional sampling. Our conclusion is that for passive samplers to provide a reliable monitoring alternative, further development is needed. Grab sampling was the cheapest of the three methods and was more precise and accurate than passive sampling. We conclude that although monitoring employing time-proportional sampling is costly, its reliability precludes unnecessarily high implementation expenses.
NASA Astrophysics Data System (ADS)
Audet, J.; Martinsen, L.; Hasler, B.; de Jonge, H.; Karydi, E.; Ovesen, N. B.; Kronvang, B.
2014-11-01
Eutrophication of aquatic ecosystems caused by excess concentrations of nitrogen and phosphorus may have harmful consequences for biodiversity and poses a health risk to humans via water supplies. Reduction of nitrogen and phosphorus losses to aquatic ecosystems involves implementation of costly measures, and reliable monitoring methods are therefore essential to select appropriate mitigation strategies and to evaluate their effects. Here, we compare the performances and costs of three methodologies for the monitoring of nutrients in rivers: grab sampling; time-proportional sampling; and passive sampling using flow-proportional samplers. Assuming hourly time-proportional sampling to be the best estimate of the "true" nutrient load, our results showed that the risk of obtaining wrong total nutrient load estimates by passive samplers is high despite similar costs as the time-proportional sampling. Our conclusion is that for passive samplers to provide a reliable monitoring alternative, further development is needed. Grab sampling was the cheapest of the three methods and was more precise and accurate than passive sampling. We conclude that although monitoring employing time-proportional sampling is costly, its reliability precludes unnecessarily high implementation expenses.
Interior design for passive solar homes
NASA Astrophysics Data System (ADS)
Breen, J. C.
1981-07-01
The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.
NASA Astrophysics Data System (ADS)
Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana
2017-10-01
Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.
Vroblesky, Don A.; Pravecek, Tasha
2002-01-01
Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.
A simple linear model for estimating ozone AOT40 at forest sites from raw passive sampling data.
Ferretti, Marco; Cristofolini, Fabiana; Cristofori, Antonella; Gerosa, Giacomo; Gottardini, Elena
2012-08-01
A rapid, empirical method is described for estimating weekly AOT40 from ozone concentrations measured with passive samplers at forest sites. The method is based on linear regression and was developed after three years of measurements in Trentino (northern Italy). It was tested against an independent set of data from passive sampler sites across Italy. It provides good weekly estimates compared with those measured by conventional monitors (0.85 ≤R(2)≤ 0.970; 97 ≤ RMSE ≤ 302). Estimates obtained using passive sampling at forest sites are comparable to those obtained by another estimation method based on modelling hourly concentrations (R(2) = 0.94; 131 ≤ RMSE ≤ 351). Regression coefficients of passive sampling are similar to those obtained with conventional monitors at forest sites. Testing against an independent dataset generated by passive sampling provided similar results (0.86 ≤R(2)≤ 0.99; 65 ≤ RMSE ≤ 478). Errors tend to accumulate when weekly AOT40 estimates are summed to obtain the total AOT40 over the May-July period, and the median deviation between the two estimation methods based on passive sampling is 11%. The method proposed does not require any assumptions, complex calculation or modelling technique, and can be useful when other estimation methods are not feasible, either in principle or in practice. However, the method is not useful when estimates of hourly concentrations are of interest.
Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng
2014-01-01
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561
Passive sampling of gas-phase air toxics and criteria pollutants has become an attractive monitoring method in human exposure studies due to the relatively low sampling cost and ease of use. This study evaluates the performance of Model 3300 Ogawa(TM) Passive NO2 Samplers and 3...
Li, Qiuxu; Lu, Yao; Jin, Jun; Li, Guangyao; Li, Peng; He, Chang; Wang, Ying
2016-03-01
Polyurethane foam (PUF) passive samplers were deployed and tree bark samples were collected at 15 sites across western China in 2013, and the organochlorine pesticide (OCP) concentrations in the samples were determined. Dichlorodiphenyltrichloroethane and its degradation products (collectively called DDTs), hexachlorocyclohexanes (HCHs), and hexachlorobenzene (HCB) were the dominant OCPs in the PUF samples and tree bark samples. The mean DDTs, HCHs and HCB concentrations were 33, 22 and 18ng/sample in the PUF samples, and 428, 74, and 43ng/(g lipid weight (lw)) in the tree bark, respectively. The OCP concentrations in the air, calculated using PUF-air and tree-bark-air partitioning models, were of the same order of magnitude. Both sample types showed that relatively fresh inputs of DDT and HCHs to the environment have occurred in western China. Meanwhile, PUF passive samplers were compared with the use of tree bark samples as passive samplers. The OCP compositions in the PUF and tree bark samples were different. Only the relatively stable OCPs (such as HCB, β-HCH and p,p'-dichlorodiphenyldichloro-ethylene (DDE)) were consistent in the PUF and tree bark samples. Copyright © 2015. Published by Elsevier B.V.
Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica
NASA Astrophysics Data System (ADS)
Barry, Louse; Copley, Mark; Holmes, Justin D.; Otway, David J.; Kazakova, Olga; Morris, Michael A.
2007-12-01
Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO 2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas.
Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika
2017-01-01
The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.
Niu, Lili; Xu, Chao; Zhang, Chunlong; Zhou, Yuting; Zhu, Siyu; Liu, Weiping
2017-10-01
Tree bark is considered as an effective passive sampler for estimating the atmospheric status of pollutants. In this study, we conducted a national scale tree bark sampling campaign across China. Concentration profiles revealed that Eastern China, especially the Jing-Jin-Ji region (including Hebei Province, Beijing and Tianjin) was a hot spot of bark DDT pollution. The enantioselective accumulation of o,p'-DDT was observed in most of the samples and 68% of them showed a preferential depletion of (+)-o,p'-DDT. These results suggest that DDTs in rural bark are likely from combined sources including historical technical DDTs and fresh dicofol usage. The tree bulk DDT levels were found to correlate with soil DDT concentrations, socioeconomy and PM 2.5 of the sampling sites. It thus becomes evident that the reemission from soils and subsequent atmospheric deposition were the major pathways leading to the accumulation of DDTs in bark. Based on a previously established bark-air partitioning model, the concentrations of DDTs in the air were estimated from measured concentrations in tree bark, and the results were comparable to those obtained by the use of passive sampling with polyurethane foam (PUF) disks. Our results demonstrate the feasibility of delineating the spatial variations in atmospheric concentration and tracing sources of DDTs by integrating the use of tree bark with enantiomeric analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jung, Jae Hwan; Kim, Gha-Young; Seo, Tae Seok
2011-10-21
Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (∼10(4)) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.
Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L
2015-02-06
The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.
Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H
2014-09-01
Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources. Copyright © 2014 Elsevier B.V. All rights reserved.
Multi-family update to the passive solar construction handbook
NASA Astrophysics Data System (ADS)
Howard, B. D.; Callahan, K. D.
1983-11-01
Builders and developers will accept passive solar construction and designs for integration with their existing practice if accurate and detailed plans of actual, proven passive solar subsystems and assemblies are made available to them. A Passive Solar Construction Handbook was developed. It focuses primarily upon single family homes. The multifamily update of the Handbook, is described and examples of the valuable builder information are shown. It represents a new breakthrough in DOE sponsored projects, performing a Technology Transfer on a most useful level.
The Kormendy relation of galaxies in the Frontier Fields clusters: Abell S1063 and MACS J1149.5+2223
NASA Astrophysics Data System (ADS)
Tortorelli, Luca; Mercurio, Amata; Paolillo, Maurizio; Rosati, Piero; Gargiulo, Adriana; Gobat, Raphael; Balestra, Italo; Caminha, G. B.; Annunziatella, Marianna; Grillo, Claudio; Lombardi, Marco; Nonino, Mario; Rettura, Alessandro; Sartoris, Barbara; Strazzullo, Veronica
2018-06-01
We analyse the Kormendy relations (KRs) of the two Frontier Fields clusters, Abell S1063, at z = 0.348, and MACS J1149.5+2223, at z = 0.542, exploiting very deep Hubble Space Telescope photometry and Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy. With this novel data set, we are able to investigate how the KR parameters depend on the cluster galaxy sample selection and how this affects studies of galaxy evolution based on the KR. We define and compare four different galaxy samples according to (a) Sérsic indices: early-type (`ETG'), (b) visual inspection: `ellipticals', (c) colours: `red', (d) spectral properties: `passive'. The classification is performed for a complete sample of galaxies with mF814W ≤ 22.5 ABmag (M* ≳ 1010.0 M⊙). To derive robust galaxy structural parameters, we use two methods: (1) an iterative estimate of structural parameters using images of increasing size, in order to deal with closely separated galaxies and (2) different background estimations, to deal with the intracluster light contamination. The comparison between the KRs obtained from the different samples suggests that the sample selection could affect the estimate of the best-fitting KR parameters. The KR built with ETGs is fully consistent with the one obtained for ellipticals and passive. On the other hand, the KR slope built on the red sample is only marginally consistent with those obtained with the other samples. We also release the photometric catalogue with structural parameters for the galaxies included in the present analysis.
Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1
NASA Technical Reports Server (NTRS)
Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry;
2014-01-01
This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
Bessel beam CARS of axially structured samples
NASA Astrophysics Data System (ADS)
Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
2015-06-01
We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.
Bessel beam CARS of axially structured samples.
Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
2015-06-05
We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.
Urban-air-toxics Monitoring Program, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-06-01
From March 1990 through February 1991 samples of ambient air were collected at 12 sites in the eastern part of the U.S. Every 12 days, air was integrated over 24-hour periods into passivated stainless steel canisters. Simultaneously, air was drawn through cartridges containing dinitrophenylhydrazine to collect carbonyl compounds. The samples were analyzed at a central laboratory for a total of 37 halogenated and aromatic hydrocarbons, formaldehyde, acetaldehyde, and other oxygenated species. The hydrocarbon species were analyzed by gas chromatography/multiple detectors and gas chromatography/mass spectrometry, while the carbonyl species were analyzed by liquid chromatography. Complete data for all the hydrocarbon samplesmore » are presented in the report.« less
Shi, X; Zhou, J L; Zhao, H; Hou, L; Yang, Y
2014-09-01
Polar organic chemical integrative sampler (POCIS) was used in assessing the occurrence and risk of 12 widely used antibiotics and 5 most potent endocrine disrupting chemicals (EDCs) in the Yangtze Estuary, China. During laboratory validation, the kinetics of pollutant uptake by POCIS were linear, and the sampling rates of most compounds were raised by flow rate and salinity, reaching the highest values at salinity 14‰. The sampling rates varied with the target compounds with the EDCs showing the highest values (overall average=0.123Ld(-1)), followed by chloramphenicols (0.100Ld(-1)), macrolides (0.089Ld(-1)), and finally sulfonamides (0.056Ld(-1)). Validation in the Yangtze Estuary in 2013 showed that the field sampling rates were significantly greater for all compounds except bisphenol A, in comparison to laboratory results, and high-frequency spot sampling is critical for fully validating the passive sampler. The field studies show that antibiotics were widely detected in the Yangtze Estuary, with concentrations varying from below quantification to 1613ngL(-1), suggesting their widespread use and persistence in estuarine waters. The dominating pollutants in July were sulfonamides with a total concentration of 258ngL(-1) and in October were macrolides with a total concentration of 350ngL(-1). The calculation of risk quotient suggested that sulfapyridine, sulfaquinoxaline and erythromycin-H2O may have caused medium damage to sensitive organisms such as fish. Copyright © 2014. Published by Elsevier Ltd.
Passive hybrid sensing tag with flexible substrate saw device
Skinner, Jack L.; Chu, Eric Y.; Ho, Harvey
2012-12-25
The integration of surface acoustic wave (SAW) filters, microfabricated transmission lines, and sensors onto polymer substrates in order to enable a passive wireless sensor platform is described herein. Incident microwave pulses on an integrated antenna are converted to an acoustic wave via a SAW filter and transmitted to an impedance based sensor, which for this work is a photodiode. Changes in the sensor state induce a corresponding change in the impedance of the sensor resulting in a reflectance profile. Data collected at a calibrated receiver is used to infer the state of the sensor. Based on this principal, light levels were passively and wirelessly demonstrated to be sensed at distances of up to about 12 feet.
Integration of Quantum Cascade Lasers and Passive Waveguides
2015-06-01
Optics, 2005. (CLEO). Conference on , Vol. 2 (2005) pp. 863–865. 2J. Montoya , A. Sanchez-Rubio, R. Hatch, and H . Payson, Appl. Opt. 53, 7551 (2014...Integration of Quantum Cascade Lasers and Passive Waveguidesa) Juan Montoya ,1, b) Christine Wang,1 Anish Goyal,1 Kevin Creedon,1 Michael Connors,1...active sec- tion quantum cascade laser material is biased to achieve gain. Proton ( H +) implantation reduces the free-carrier con- centration and
Soil gas screening for chlorinated solvents at three contaminated karst sites in Tennessee
Wolfe, W.J.; Williams, S.D.
2002-01-01
Soil gas was sampled using active sampling techniques and passive collectors at three sites in Tennessee to evaluate the effectiveness of these techniques for locating chlorinated solvent sources and flowpaths in karst aquifers. Actively collected soil gas samples were analyzed in the field with a portable gas chromatograph, and the passive soil gas collectors were analyzed in the lab with gas chromatography/mass spectrometry. Results of the sampling indicate that the effectiveness of both techniques is highly dependent on the distribution of the contaminants in the subsurface, the geomorphic and hydrogeologic characteristics of the site, and, in one case, on seasonal conditions. Both active and passive techniques identified areas of elevated subsurface chlorinated solvent concentrations at a landfill site where contamination remains concentrated in the regolith. Neither technique detected chlorinated solvents known to be moving in the bedrock at a manufacturing site characterized by thick regolith and an absence of surficial karst features. Passive soil gas sampling had varied success detecting flowpaths for chloroform in the bedrock at a train derailment site characterized by shallow regolith and abundant surficial karst features. At the train derailment site, delineation of the contaminant flowpath through passive soil gas sampling was stronger and more detailed under Winter conditions than summer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAllister, R.A.; Moore, W.H.; Rice, J.
1989-04-01
From October, 1987 to October, 1988 samples of ambient air were collected at 19 sites in the eastern part of the U.S. Every 12 days, air was integrated over 24-hour periods into passivated stainless steel canisters. Simultaneously, air was drawn through cartridges containing dinitrophenylhydrazine to collect carbonyl compounds. The samples were analyzed at a central laboratory for a total of 37 halogenated and aromatic hydrocarbons, formaldehyde, acetaldehyde, and other oxygenated species. The hydrocarbon species were analyzed by gas chromatography/multiple detectors and gas chromatography/mass spectrometry, while the carbonyl species were analyzed by liquid chromatography. An extensive quality assurance program was carriedmore » on to secure high quality data. Complete data for all the hydrocarbon samples are presented in the report.« less
Past, present and future of passive homes in solar village 3, Athens
NASA Astrophysics Data System (ADS)
Kalogridis, Achilles
Solar village 3 in Pefki, Athens, was part of an ambitious program for the promotion of solar technology, applied to a large scale social housing scheme, designed in mid 80's and firstly inhabited in the early 1990's. Among the aims of the project was the demonstration of the latest of technology in active solar systems and passive techniques, incorporated in a new settlement's layout and houses' building envelop, in order to create an energy saving, comfortable environment. More than fifteen years later, the housing complex remains the largest residential development of bioclimatic "solar" architecture in Athens, with the active and passive solar systems providing space and water heating for about 1750 inhabitants. The study focuses in the passive solar systems that have been applied to a number of the buildings of the settlement. The systems provide space heating with no need of any active mechanism, however with demand of the participation of the end users for their proper operation. The essay reviews various previous studies, monitoring reports and criticisms that have appeared throughout the past years, and identifies how the houses perform today, through a recent survey, sample monitoring and thermal comfort simulation. The report records things that have changed, features which worked well or others that did not and comments on the residents' behaviour. Interesting findings come into question, regarding the passive solar systems, their integration into the building's design, their current condition and their contribution to energy savings and thermal comfort conditions. Finally, current plans concerning the future of the settlement are highlighted, and considerations about the houses sustainability are suggested.
Trapping behavior of Shockley-Read-Hall recombination centers in silicon solar cells
NASA Astrophysics Data System (ADS)
Gogolin, R.; Harder, N. P.
2013-08-01
We investigate the correlation between increased apparent carrier lifetime in photoconductance-based lifetime measurements and actually reduced recombination lifetime as measured by photoluminescence measurements. These findings are further reconfirmed by I-V curve measurements of solar cells. In particular, we show experimental results for lifetime samples and solar cells with and without hydrogen passivation. In the samples and solar cells without hydrogen passivation, we find both a stronger trapping behavior and a lower recombination lifetime. Our model provides a consistent description of the observation of both, the increased apparent lifetime from carrier trapping and the decreasing recombination lifetime. In our model, both are caused by a single physical mechanism; i.e., by Recombination-Active-Trap (RAT) states. Upon fitting the experimental lifetime data, we find that the RAT-defect parameters for the hydrogen-passivated and non-hydrogen-passivated lifetime samples and solar cells are identical except for the defect concentration: hydrogen-passivation reduced the defect density by 50% in both, the lifetime samples and solar cells. We conclude that trapping should be considered as an indication for hidden, yet potentially strongly increased, low injection recombination activity.
Passive and Active Control of Space Structures (PACOSS)
NASA Astrophysics Data System (ADS)
Morosow, G.; Harcrow, H.; Rogers, L.
1985-04-01
Passive and Active Control of Space Structures (PACOSS) is a five-year program designed to investigate highly damped structures in conjunction with active control systems, and in particular to develop technology that integrates passive damping and active control to achieve precise pointing control. Major areas of research include metal matrix composites; viscoelastic materials; damping devices; dynamic test article design, fabrication and testing; and active damping.
NASA Astrophysics Data System (ADS)
Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv
2018-02-01
Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.
Quantitative passive soil vapor sampling for VOCs--part 1: theory.
McAlary, Todd; Wang, Xiaomin; Unger, Andre; Groenevelt, Hester; Górecki, Tadeusz
2014-03-01
Volatile organic compounds are the primary chemicals of concern at many contaminated sites and soil vapor sampling and analysis is a valuable tool for assessing the nature and extent of contamination. Soil gas samples are typically collected by applying vacuum to a probe in order to collect a whole-gas sample, or by drawing gas through a tube filled with an adsorbent (active sampling). There are challenges associated with flow and vacuum levels in low permeability materials, and leak prevention and detection during active sample collection can be cumbersome. Passive sampling has been available as an alternative to conventional gas sample collection for decades, but quantitative relationships between the mass of chemicals sorbed, the soil vapor concentrations, and the sampling time have not been established. This paper presents transient and steady-state mathematical models of radial vapor diffusion to a drilled hole and considerations for passive sampler sensitivity and practical sampling durations. The results indicate that uptake rates in the range of 0.1 to 1 mL min(-1) will minimize the starvation effect for most soil moisture conditions and provide adequate sensitivity for human health risk assessment with a practical sampling duration. This new knowledge provides a basis for improved passive soil vapour sampler design.
Mixing in microfluidic devices and enhancement methods
Ward, Kevin; Fan, Z Hugh
2015-01-01
Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel’s hydraulic diameter, flow velocity, and solution’s kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types. PMID:26549938
Mixing in microfluidic devices and enhancement methods.
Ward, Kevin; Fan, Z Hugh
2015-09-01
Mixing in microfluidic devices presents a challenge due to laminar flows in microchannels, which result from low Reynolds numbers determined by the channel's hydraulic diameter, flow velocity, and solution's kinetic viscosity. To address this challenge, novel methods of mixing enhancement within microfluidic devices have been explored for a variety of applications. Passive mixing methods have been created, including those using ridges or slanted wells within the microchannels, as well as their variations with improved performance by varying geometry and patterns, by changing the properties of channel surfaces, and by optimization via simulations. In addition, active mixing methods including microstirrers, acoustic mixers, and flow pulsation have been investigated and integrated into microfluidic devices to enhance mixing in a more controllable manner. In general, passive mixers are easy to integrate, but difficult to control externally by users after fabrication. Active mixers usually take efforts to integrate within a device and they require external components (e.g. power sources) to operate. However, they can be controlled by users to a certain degree for tuned mixing. In this article, we provide a general overview of a number of passive and active mixers, discuss their advantages and disadvantages, and make suggestions on choosing a mixing method for a specific need as well as advocate possible integration of key elements of passive and active mixers to harness the advantages of both types.
PCBs were used extensively in school building materials (caulk and lighting fixture ballasts) during the approximate period of 1950-1978. Most of the schools built nationwide during this period have not had indoor air sampling conducted for PCBs. Passive air sampling holds promi...
Integrated prioritization method for active and passive highway-rail crossings.
DOT National Transportation Integrated Search
2013-01-01
This two-year research project developed a prioritization system for highway-rail at-grade crossings that addressed the following major concerns: (1) warrants to identify low-volume, passive crossings with risk factors; (2) a broader priority index t...
Optics-Integrated Microfluidic Platforms for Biomolecular Analyses
Bates, Kathleen E.; Lu, Hang
2016-01-01
Compared with conventional optical methods, optics implemented on microfluidic chips provide small, and often much cheaper ways to interrogate biological systems from the level of single molecules up to small model organisms. The optical probing of single molecules has been used to investigate the mechanical properties of individual biological molecules; however, multiplexing of these measurements through microfluidics and nanofluidics confers many analytical advantages. Optics-integrated microfluidic systems can significantly simplify sample processing and allow a more user-friendly experience; alignments of on-chip optical components are predetermined during fabrication and many purely optical techniques are passively controlled. Furthermore, sample loss from complicated preparation and fluid transfer steps can be virtually eliminated, a particularly important attribute for biological molecules at very low concentrations. Excellent fluid handling and high surface area/volume ratios also contribute to faster detection times for low abundance molecules in small sample volumes. Although integration of optical systems with classical microfluidic analysis techniques has been limited, microfluidics offers a ready platform for interrogation of biophysical properties. By exploiting the ease with which fluids and particles can be precisely and dynamically controlled in microfluidic devices, optical sensors capable of unique imaging modes, single molecule manipulation, and detection of minute changes in concentration of an analyte are possible. PMID:27119629
a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors
NASA Astrophysics Data System (ADS)
Gonzalez, Jesus Antonio
A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.
Chembath, Manju; Balaraju, J N; Sujata, M
2015-11-01
The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in Hanks' solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Hemispherical reflectance model for passive images in an outdoor environment.
Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar
2015-05-01
We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.
A passive sampler for airborne formaldehyde
NASA Astrophysics Data System (ADS)
Grosjean, Daniel; Williams, Edwin L.
A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.
Face-Referenced Measurement of Perioral Stiffness and Speech Kinematics in Parkinson's Disease
Barlow, Steven M.; Lee, Jaehoon
2015-01-01
Purpose Perioral biomechanics, labial kinematics, and associated electromyographic signals were sampled and characterized in individuals with Parkinson's disease (PD) as a function of medication state. Method Passive perioral stiffness was sampled using the OroSTIFF system in 10 individuals with PD in a medication ON and a medication OFF state and compared to 10 matched controls. Perioral stiffness, derived as the quotient of resultant force and interoral angle span, was modeled with regression techniques. Labial movement amplitudes and integrated electromyograms from select lip muscles were evaluated during syllable production using a 4-D computerized motion capture system. Results Multilevel regression modeling showed greater perioral stiffness in patients with PD, consistent with the clinical correlate of rigidity. In the medication-OFF state, individuals with PD manifested greater integrated electromyogram levels for the orbicularis oris inferior compared to controls, which increased further after consumption of levodopa. Conclusions This study illustrates the application of biomechanical, electrophysiological, and kinematic methods to better understand the pathophysiology of speech motor control in PD. PMID:25629806
SiGe/Si Monolithically Integrated Amplifier Circuits
NASA Technical Reports Server (NTRS)
Katehi, Linda P. B.; Bhattacharya, Pallab
1998-01-01
With recent advance in the epitaxial growth of silicon-germanium heterojunction, Si/SiGe HBTs with high f(sub max) and f(sub T) have received great attention in MMIC applications. In the past year, technologies for mesa-type Si/SiGe HBTs and other lumped passive components with high resonant frequencies have been developed and well characterized for circuit applications. By integrating the micromachined lumped passive elements into HBT fabrication, multi-stage amplifiers operating at 20 GHz have been designed and fabricated.
Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mule, S.J.; Lomax, P.; Gross, S.J.
Human urine samples obtained before and after active and passive exposure to marijuana were analyzed by immune kits (Roche, Amersham, and Syva) and gas chromatography/mass spectrometry (GC/MS). Seven of eight subjects were positive for the entire five-day test period with one immune kit. The latter correlated with GC/MS in 98% of the samples. Passive inhalation experiments under conditions likely to reflect realistic exposure resulted consistently in less than 10 ng/mL of cannabinoids. The 10-100-ng/mL cannabinoid concentration range essential for detection of occasional and moderate marijuana users is thus unaffected by realistic passive inhalation.
NASA Astrophysics Data System (ADS)
Attarzadeh, Farid Reza; Elmkhah, Hassan; Fattah-Alhosseini, Arash
2017-02-01
In this study, the electrochemical behaviors of pure titanium (Ti) and nanostructured (NS) Ti-coated AISI 304 stainless steel (SS) in strongly acidic solutions of H2SO4 were investigated and compared. A type of physical vapor deposition method, cathodic arc evaporation, was applied to deposit NS Ti on 304 SS. Scanning electron microscope and X-ray diffraction were used to characterize surface coating morphology. Potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky (M-S) analysis were used to evaluate the passive behavior of the samples. Electrochemical measurements revealed that the passive behavior of NS Ti coating was better than that of pure Ti in 0.1 and 0.01 M H2SO4 solutions. M-S analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and the deposition method did not affect the semiconducting type of passive films formed on the coated samples. In addition, this analysis showed that the NS Ti coating had lower donor densities. Finally, all electrochemical tests showed that the passive behavior of the Ti-coated samples was superior, mainly due to the formation of thicker, yet less defective passive films.
Cox, S.E.
2002-01-01
Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.
Perron, Monique M; Burgess, Robert M; Suuberg, Eric M; Cantwell, Mark G; Pennell, Kelly G
2013-10-01
Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants. © 2013 SETAC.
Background/Objectives. Passive sampling is becoming a frequently used measurement technique at Superfund sites with contaminated sediments. Passive sampling measures the concentrations of freely dissolved chemicals (Cfrees) in the sediment interstitial water. The freely dissol...
Development of quantitative screen for 1550 chemicals with GC-MS.
Bergmann, Alan J; Points, Gary L; Scott, Richard P; Wilson, Glenn; Anderson, Kim A
2018-05-01
With hundreds of thousands of chemicals in the environment, effective monitoring requires high-throughput analytical techniques. This paper presents a quantitative screening method for 1550 chemicals based on statistical modeling of responses with identification and integration performed using deconvolution reporting software. The method was evaluated with representative environmental samples. We tested biological extracts, low-density polyethylene, and silicone passive sampling devices spiked with known concentrations of 196 representative chemicals. A multiple linear regression (R 2 = 0.80) was developed with molecular weight, logP, polar surface area, and fractional ion abundance to predict chemical responses within a factor of 2.5. Linearity beyond the calibration had R 2 > 0.97 for three orders of magnitude. Median limits of quantitation were estimated to be 201 pg/μL (1.9× standard deviation). The number of detected chemicals and the accuracy of quantitation were similar for environmental samples and standard solutions. To our knowledge, this is the most precise method for the largest number of semi-volatile organic chemicals lacking authentic standards. Accessible instrumentation and software make this method cost effective in quantifying a large, customizable list of chemicals. When paired with silicone wristband passive samplers, this quantitative screen will be very useful for epidemiology where binning of concentrations is common. Graphical abstract A multiple linear regression of chemical responses measured with GC-MS allowed quantitation of 1550 chemicals in samples such as silicone wristbands.
4 pitfalls to clinical integration.
Redding, John
2012-11-01
Four common mistakes can easily thwart clinical integration: Assuming that EHR adoption is the cornerstone of successful integration; Delaying the development of ambulatory services that support clinical integration; Believing that knowledge of clinical integration initiatives will passively diffuse through the ranks; Attaching too much weight to Federal Trade Commission/Department of Justice approval of a clinical integration model.
Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David
2014-05-01
The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling rate. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Highly air stable passivation of graphene based field effect devices.
Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich
2015-02-28
The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.
Passive acoustic monitoring of bed load for fluvial applications
USDA-ARS?s Scientific Manuscript database
The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...
Selecting Performance Reference Compounds (PRCS) for Low Density Polyethylene Passive Samplers
Use of equilibrium passive samplers for performing aquatic environmental monitoring at contaminated sites is becoming more common. However, a current challenge in passive sampling is determining when equilibrium is achieved between the sampler, target contaminants, and environm...
Branavan, Manoharanehru; Mackay, Ruth E; Craw, Pascal; Naveenathayalan, Angel; Ahern, Jeremy C; Sivanesan, Tulasi; Hudson, Chris; Stead, Thomas; Kremer, Jessica; Garg, Neha; Baker, Mark; Sadiq, Syed T; Balachandran, Wamadeva
2016-08-01
This paper presents the design of a modular point of care test platform that integrates a proprietary sample collection device directly with a microfluidic cartridge. Cell lysis, within the cartridge, is conducted using a chemical method and nucleic acid purification is done on an activated cellulose membrane. The microfluidic device incorporates passive mixing of the lysis-binding buffers and sample using a serpentine channel. Results have shown extraction efficiencies for this new membrane of 69% and 57% compared to the commercial Qiagen extraction method of 85% and 59.4% for 0.1ng/µL and 100ng/µL salmon sperm DNA respectively spiked in phosphate buffered solution. Extraction experiments using the serpentine passive mixer cartridges incorporating lysis and nucleic acid purification showed extraction efficiency around 80% of the commercial Qiagen kit. Isothermal amplification was conducted using thermophillic helicase dependant amplification and recombinase polymerase amplification. A low cost benchtop real-time isothermal amplification platform has been developed capable of running six amplifications simultaneously. Results show that the platform is capable of detecting 1.32×10(6) of sample DNA through thermophillic helicase dependant amplification and 1×10(5) copy numbers Chlamydia trachomatis genomic DNA within 10min through recombinase polymerase nucleic acid amplification tests. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Liao, Chunyang; Richards, Jaben; Taylor, Allison R; Gan, Jay
2017-12-01
Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
This article provides practical guidance on the use of passive sampling methods(PSMs) that target the freely dissolved concentration (Cfree) for improved exposure assessment of hydrophobic organic chemicals in sediments. Primary considerations for selecting a PSM for a specific a...
Mijangos, Leire; Ziarrusta, Haizea; Prieto, Ailette; Zugazua, Oihane; Zuloaga, Olatz; Olivares, Maitane; Usobiaga, Aresatz; Paschke, Albrecht; Etxebarria, Nestor
2018-08-01
The calibration of two passive samplers for the determination of 20 emerging organic compounds in seawater is described in this work: i) a new version of polar organic chemical integrative sampler (POCIS) containing 100 mg of mixed-mode anion exchanger (Strata X-AW) and 100 mg of polymeric HLB (Plexa) sorbent materials and using a highly porous Nylon membrane (30-μm pore size) and ii) polyethersulfone (PES) hollow fibre. Among the studied contaminants, herbicides, hormones, life style products (stimulants and artificial sweeteners), industrial chemicals (corrosion inhibitor and fluorinated compounds), personal care products and several pharmaceuticals were included. In the case of POCIS, both the sorbents and the Nylon membranes were extracted and analysed independently. The calibration set up consisted on a continuous-flow tank that was fed with a continuous flow of seawater (2 L/h) and a stock mixture of contaminants (20 mL/h), assuring a nominal concentration of ~ 600 ng/L (each analyte) in the tank. The uptake was linear in POCIS sorbent and Nylon membranes but exponential for PES hollow fibres. Furthermore, the highest sampling rates (Rs) values were obtained in POCIS sorbent (between 2.7 for acetaminophen and 491 mL/day for perfluoro-n-octanoic acid, PFOA) followed by Nylon membranes (between 3.6 for OBT and 50 mL/day for telmisartan) and the lowest were those from PES fibres (between 1.7 for bezafibrate and 157 mL/day for butylparaben). Additionally, five deuterated compounds ([ 2 H 5 ]-atrazine, [ 2 H 3 ]-amitriptyline, [ 2 H 7 ]-irbesartan, [ 2 H 3 ]-ketoprofen and [ 2 H 9 ]-progesterone) were studied as candidates for performance reference compounds (PRCs) in both POCIS and PES, and though [ 2 H 5 ]-atrazine, [ 2 H 9 ]-progesterone and [ 2 H 3 ]-amitriptyline showed acceptable results in the case of POCIS, only [ 2 H 5 ]-atrazine provided a good validation. In the case of PES fibres, the PRC corrections did not provide acceptable results due to a low dissipation of the PRCs. Finally, POCIS were deployed in two sites of the low part of the estuary of Bilbao (northern Spain) from where water samples were also taken and analysed. As a result, in addition to the overall good agreement between the passive and active samplings, passive samplers allowed the determination of several compounds that were below the detection limits in the active sampling. Copyright © 2018. Published by Elsevier B.V.
Ansari, Ghazaleh; Fattah-Alhosseini, Arash
2017-06-01
The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.
The United States Environmental Protection Agency (EPA) has long maintained an interest in potential applications of passive sampling devices (PSDs) for estimating the concentrations of various pollutants in air. Typically PSDs were designed for the workplace monitoring of vola...
ERIC Educational Resources Information Center
Laine, Teemu H.; Nygren, Eeva
2016-01-01
Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…
Faith-Learning Integration, Critical Thinking Skills, and Student Development in Christian Education
ERIC Educational Resources Information Center
Bailey, Karl G. D.
2012-01-01
Although the integration of faith and learning presupposes a learner, little theoretical work has addressed the role of students in faith-learning integration. Moreover, many students perceive faith-learning integration to be the work of teachers and institutions, suggesting that for learners, integration is a passive experience. This theoretical…
Napoli, Christian; Marcotrigiano, Vincenzo; Montagna, Maria Teresa
2012-08-02
Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.
Passive alcohol sensors tested in 3 states for youth alcohol enforcement
DOT National Transportation Integrated Search
1996-05-01
Passive alcohol sensors were tested in three states to determine their effectiveness in enforcing zero tolerance or low BAC laws for under 21 age drivers. The passive alcohol sensor was designed to sample the air immediately around the suspect for si...
Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe
2017-10-03
Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.
Development of a passive sampler for gaseous mercury
NASA Astrophysics Data System (ADS)
Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.
2011-10-01
Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.
Effect of surface pre-treatments on biocompatibility of magnesium.
Lorenz, Carla; Brunner, Johannes G; Kollmannsberger, Philip; Jaafar, Leila; Fabry, Ben; Virtanen, Sannakaisa
2009-09-01
This study reports the influence of Mg surface passivation on the survival rate of human HeLa cells and mouse fibroblasts in cell culture experiments. Polished samples of commercially pure Mg show high reactivity in the cell culture medium, leading to a pH shift in the alkaline direction, and therefore cell adhesion and survival is strongly impaired. Passivation of the Mg surface in 1M NaOH can strongly enhance cell survival. The best initial cell adhesion is observed for Mg samples incubated in simulated body fluid (M-SBF), which leads to the formation of a biomimetic, amorphous Ca/Mg-phosphate layer with high surface roughness. This surface layer, however, passivates and seals the Mg surface only partially. Subsequent Mg dissolution leads to a significantly stronger pH increase compared to NaOH-passivated samples, which prevents long-term cell survival. These results demonstrate that surface passivation with NaOH and M-SBF together with the associated changes of surface reactivity, chemistry and roughness provide a viable strategy to facilitate cell survival on otherwise non-biocompatible Mg surfaces.
Thermal control materials on EOIM-3
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Linton, Roger C.; Kamenetzky, Rachel R.; Vaughn, Jason A.
1995-01-01
Thermal control paints, anodized aluminum, and beta cloth samples were flown on STS-46 as part of the Evaluation of Oxygen Interaction with Materials Experiment (EOIM-3). The thermal control paints flown on EOIM-3 include ceramic and polyurethane-based paints. Passively exposed samples are compared to actively heated samples and controlled exposure samples. Optical property measurements of absorptivity, emissivity, and spectrofluorescence are presented for each paint. Several variations of anodized aluminum, including chromic acid anodize, sulfuric acid anodize, and boric/sulfuric acid anodize were flown on the actively heated trays and the passive exposure trays. The post-flight optical properties are within tolerances for these materials. Also flown were two samples of yellow anodized aluminum. The yellow anodized aluminum samples darkened noticeably. Samples of aluminized and unaluminized beta cloth, a fiberglass woven mat impregnated with TFE Teflon, were flown with passive exposure to the space environment. Data from this part of the experiment is correlated to observations from LDEF and erosion of the Teflon thin film samples also flown on EOIM-3 and LDEF.
This study evaluates performance of nitrogen dioxide NO2 and volatile organic compounds (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005.
We reviewed compliance monitoring requirements in the European Union (EU), the United States(USA), and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic (OSPAR), and evaluated if these are met by passive sampling methods for nonpola...
NASA Astrophysics Data System (ADS)
Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram
2013-01-01
The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.
The Effects of Applied Stress and Sensitization on the Passive Film Stability of Al-Mg Alloys
2013-06-01
and residual tensile and compressive stresses impact the passive layer film and the material’s electrochemistry. Sample plates of AA5083 were...electrochemistry. Sample plates of AA5083 were sensitized to different levels to promote the formation of intergranular β phase (Al3Mg2). The...41 A. MATERIAL PROCESSING: FABRICATION AND APPLIED STRESSES OF TEST SAMPLES
Shojania, S; Oleschuk, R D; McComb, M E; Gesser, H D; Chow, A
1999-08-23
A new and simple method of solventless extraction of volatile organic compounds (VOCs) from air is presented. The sampling device has an adsorbing carbon coating on the interior surface of a hollow needle, and is called the inside needle capillary adsorption trap (INCAT). This paper describes a study of the reproducibility in the preparation and sampling of the INCAT device. In addition, this paper examines the effects of sample volume in active sampling and exposure time in passive sampling on the analyte adsorption. Analysis was achieved by sampling the air from an environmental chamber doped with benzene, toluene, ethyl benzene and xylenes (BTEX) compounds. Initial rates of adsorption were found to vary among the different compounds, but ranged from 0.0099 to 0.016 nmol h(-1) for passive sampling and from 2.2 to 10 nmol h(-1) for active sampling. Analysis was done by thermal desorption of the adsorbed compounds directly into a gas chromatograph injection port. Quantification of the analysis was done by comparison to actively sampled activated carbon solid phase extraction (SPE) measurements.
Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions
NASA Astrophysics Data System (ADS)
Zhou, Jianping; Xu, Shengyuan; Shen, Hao; Zhang, Baoyong
2013-08-01
This article deals with the problem of passivity analysis for delayed reaction-diffusion bidirectional associative memory (BAM) neural networks with weight uncertainties. By using a new integral inequality, we first present a passivity condition for the nominal networks, and then extend the result to the case with linear fractional weight uncertainties. The proposed conditions are expressed in terms of linear matrix inequalities, and thus can be checked easily. Examples are provided to demonstrate the effectiveness of the proposed results.
Summary of Fuel Cell Programs at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla
2000-01-01
The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-04-01
The Columbia County (New York) Habitat for Humanity (Columbia County Habitat) affiliate has been experimenting with high-performance building since 2012, starting with ENERGY STAR® Certified Homes. In 2013, they constructed their first homes aimed at the Passive House standards. Building off of this effort, in 2014 they began work on a second set of Passive Townhomes in Hudson, New York, in partnership with the Advanced Residential Integrated Energy Solutions (ARIES) Building America team and BarlisWedlick Architects.
NASA Astrophysics Data System (ADS)
Kiran, Rajni; Mallick, Shubhrangshu; Hahn, Suk-Ryong; Lee, T. S.; Sivananthan, Sivalingam; Ghosh, Siddhartha; Wijewarnasuriya, P. S.
2006-06-01
The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/ f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.
Continuous-Integration Laser Energy Lidar Monitor
NASA Technical Reports Server (NTRS)
Karsh, Jeremy
2011-01-01
This circuit design implements an integrator intended to allow digitization of the energy output of a pulsed laser, or the energy of a received pulse of laser light. It integrates the output of a detector upon which the laser light is incident. The integration is performed constantly, either by means of an active integrator, or by passive components.
WATER QUALITY MONITORING OF PHARMACEUTICALS ...
The demand on freshwater to sustain the needs of the growing population is of worldwide concern. Often this water is used, treated, and released for reuse by other communities. The anthropogenic contaminants present in this water may include complex mixtures of pesticides, prescription and nonprescription drugs, personal care and common consumer products, industrial and domestic-use materials and degradation products of these compounds. Although, the fate of these pharmaceuticals and personal care products (PPCPs) in wastewater treatment facilities is largely unknown, the limited data that does exist suggests that many of these chemicals survive treatment and some others are returned to their biologically active form via deconjugation of metabolites.Traditional water sampling methods (i.e., grab or composite samples) often require the concentration of large amounts of water to detect trace levels of PPCPs. A passive sampler, the polar organic chemical integrative sampler (POCIS), has been developed to integratively concentrate the trace levels of these chemicals, determine the time-weighted average water concentrations, and provide a method of estimating the potential exposure of aquatic organisms to these complex mixtures of waterborne contaminants. The POCIS (U.S. Patent number 6,478,961) consists of a hydrophilic microporous membrane, acting as a semipermeable barrier, enveloping various solid-phase sorbents that retain the sampled chemicals. Sampling rates f
USDA-ARS?s Scientific Manuscript database
Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...
Measurement of gaseous PAHs with an innovative passive sampler in community exposure studies
A sensitive, simple, and cost-effective passive sampling methodology was developed to quantify gaseous polycyclic aromatic hydrocarbons (PAHs) in personal, indoor and outdoor air. A Fan-Lioy passive PAH sampler (FL-PPS) is constructed from four 80 sections of 1 cm long SPB-5 GC c...
Two modified passive samplers were evaluated at multiple field locations. The sampling rate (SR) of the modified polyurethane foam (PUF)-disk passive sampler for total gaseous mercury (TGM) using gold-coated quartz fiber filters (GcQFF) and gaseous oxidized mercury (GOM) using io...
Evaluating the Relationship between Equilibrium Passive ...
Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Results/Lessons Learned. Passive sampling based concentrations resulted in strong logarithmic regression relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Passive sampler uptake and bioaccumulation were not found to be identical (i.e., CPS ≠ CL) but the logarithmic-based relationships between these values were consistently linear and predictive. This review concludes that in many applications passive sampling may serve as a
Morris, Mohy G.
2009-01-01
With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cm H2O (V30). The (dynamic) functional residual capacity (FRCdyn) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V30 or total lung capacity (TLC30). Measurements were performed on seventeen healthy infants aged 8.6–119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V30 during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRCst) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity (jSVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRCdyn and FRCst measurements overlapped (p= 0.6420) but neither did with the RV (p<0.0001). Means (95% confidence interval) of FRCdyn, IC, FRCst, jSVC, RV, forced vital capacity and tidal volume were 21.2 (19.7–22.7), 36.7 (33.0–40.4), 21.2 (19.6–22.8), 40.7 (37.2–44.2), 18.1 (16.6–19.7), 40.7 (37.1–44.2) and 10.2 (9.6–10.7) ml/kg, respectively. Static lung volumes and capacities at V30 and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically-integrated approach for in-depth investigation of lung function at V30 in infants. PMID:19897058
Passive sampling can be used for applications at contaminated sediment sites including performing assessments of contaminant bioavailability (i.e., freely dissolved concentration (Cfree)), conducting remedial investigations and feasibility studies, and assessing the potential for...
Passive sampling is used for applications at contaminated sediment sites including performing assessments of contaminant bioavailability (i.e., freely dissolved concentration (Cfree)), conducting remedial investigations and feasibility studies, and assessing the potential for con...
Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Pre-calibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were...
A methodology for developing remediation goals for sites with contaminated sediments is provided. The remediation goals are based upon the concentrations of chemicals in the sediment interstitial water measured using the passive sampling technique. The passive sampling technique ...
2012-01-01
Background Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. Methods The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). Results The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. Conclusion It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information. PMID:22853006
Ferroelectric thin-film capacitors and piezoelectric switches for mobile communication applications.
Klee, Mareike; van Esch, Harry; Keur, Wilco; Kumar, Biju; van Leuken-Peters, Linda; Liu, Jin; Mauczok, Rüdiger; Neumann, Kai; Reimann, Klaus; Renders, Christel; Roest, Aarnoud L; Tiggelman, Mark P J; de Wild, Marco; Wunnicke, Olaf; Zhao, Jing
2009-08-01
Thin-film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small, miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100 nF/mm2 for stacked capacitors combined with breakdown voltages of 90 V have been achieved. The integration of these high-density capacitors with extremely high breakdown voltage is a major accomplishment in the world of passive components and has not yet been reported for any other passive integration technology. Furthermore, thin-film tunable capacitors based on barium strontium titanate with high tuning range and high quality factor at 1 GHz have been demonstrated. Finally, piezoelectric thin films for piezoelectric switches with high switching speed have been realized.
Mustajärvi, Lukas; Eriksson-Wiklund, Ann-Kristin; Gorokhova, Elena; Jahnke, Annika; Sobek, Anna
2017-11-15
Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose-response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.
Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2017-01-25
The micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way. The transport of solutions is made through cotton threads by capillary force facilitated by gravity. After studying and optimizing several features related to the device, were obtained a flow rate of 2.2 ± 0.1 μL s -1 , an analytical frequency of 208 injections per hour, a sample injection volume of 2.0 μL and a waste volume of approximately 40 μL per analysis. For chronoamperometric determination of naproxen, a detection limit of 0.29 μmol L -1 was reached, with a relative standard deviation (RSD) of 1.69% between injections and a RSD of 3.79% with five different devices. Thus, based on the performance presented by proposed microfluidic device, it is possible to overcome some limitations of the μFIA systems based on passive pumps and allow expansion in the use of this technique. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Byrd, Kenneth; Szu, Harold
2006-04-01
According to our generalized Shannon Sampling Theorem of developmental system biology, we should increase the sampling frequency of the passive Infrared (IR) spectrum ratio test, (I 8~12mm / I 3~5mm). This procedure proved to be effective in DCIS using the satellite-grade IR spectrum cameras for an early developmental symptom of the "angiogenesis" effect. Thus, we propose to augment the annual hospital checkup of, or biannual Colonoscopy, with an inexpensive non-imaging IR-Flexi-scope intensity measurement device which could be conducted regularly at a household residence without the need doctoral expertise or a data basis system. The only required component would be a smart PC, which would be used to compute the degree of thermal activities through the IR spectral ratio. It will also be used to keep track of the record and send to the medical center for tele-diagnosis. For the purpose of household screening, we propose to have two integrated passive IR probes of dual-IR-color spectrum inserted into the body via the IR fiber-optic device. In order to extract the percentage of malignancy, based on the ratio of dual color IR measurements, the key enabler is the unsupervised learning algorithm in the sense of the Duda & Hart Unlabelled Data Classifier without lookup table exemplars. This learning methodology belongs to the Natural Intelligence (NI) of the human brain, which can effortlessly reduce the redundancy of pair inputs and thereby enhance the Signal to Noise Ratio (SNR) better than any single sensor for the salient feature extraction. Thus, we can go beyond a closed data basis AI expert system to tailor to the individual ground truth without the biases of the prior knowledge.
Spectral imaging and passive sampling to investigate particle sources in urban desert regions.
Wagner, Jeff; Casuccio, Gary
2014-07-01
Two types of electron microscopy analyses were employed along with geographic information system (GIS) mapping to investigate potential sources of PM2.5 and PM10 (airborne particulate matter smaller than 2.5 and 10 μm, respectively) in two urbanized desert areas known to exhibit PM excursions. Integrated spectral imaging maps were obtained from scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) analyses of 13 filters collected in Imperial Valley, California. Seven were from 24 h PM10 Federal Reference Method (FRM) samplers and six were from PM2.5 FRM samplers. This technique enabled extraction of information from particles collected on complex filter matrices, and indicated that all samples exhibited substantial proportions of crustal particles. Six Imperial PM2.5 and PM10 filters selected from unusually high-PM days exhibited more large particles (2.5-15 and 10-30 μm, respectively) than did filters from low-PM days, and were more consistent with soils analyzed from the region. High winds were present on three of the six high-PM days. One of the high-PM2.5 filters also exhibited substantial fine carbonaceous soot PM, suggesting significant contributions from a combustion source. Computer-controlled SEM/EDS (CCSEM/EDS) was conducted on PM collected with UNC Passive samplers from Phoenix, Arizona. The passive samplers showed good agreement with co-located FRM PM10 and PM2.5 measurements (μg m(-3)), and also enabled detailed individual particle analysis. The CCSEM/EDS data revealed mostly crustal particles in both the Phoenix fine and coarse PM10 fractions. GIS maps of multiple dust-related parameters confirm that both Imperial Valley and Phoenix possess favorable conditions for airborne crustal PM from natural and anthropogenic sources.
A Passive Earth-Entry Capsule for Mars Sample Return
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Kellas, Sotiris
1999-01-01
A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.
Fernández, Diego; Vermeirssen, Etiënne L M; Bandow, Nicole; Muñoz, Katherine; Schäfer, Ralf B
2014-11-01
Rainfall-triggered runoff is a major driver of pesticide input in streams. Only few studies have examined the suitability of passive sampling to quantify such episodic exposures. In this study, we used Empore™ styrene-divinylbenzene reverse phase sulfonated disks (SDB disks) and event-driven water samples (EDS) to assess exposure to 15 fungicides and 4 insecticides in 17 streams in a German vineyard area during 4 rainfall events. We also conducted a microcosm experiment to determine the SDB-disk sampling rates and provide a free-software solution to derive sampling rates under time-variable exposure. Sampling rates ranged from 0.26 to 0.77 L d(-1) and time-weighted average (TWA) concentrations from 0.05 to 2.11 μg/L. The 2 sampling systems were in good agreement and EDS exceeded TWA concentrations on average by a factor of 3. Our study demonstrates that passive sampling is suitable to quantify episodic exposures from polar organic pesticides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Passive sampling is becoming a frequently used measurement technique at Superfund sites with contaminated sediments. Passive sampling measures the concentrations of freely dissolved chemicals (Cfrees) in the sediment pore water. Cfree has been found to be a very practical means f...
The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The ob...
Alvarez, David A.; Perkins, Stephanie D.; Nilsen, Elena B.; Morace, Jennifer L.
2014-01-01
The Lower Columbia River in Oregon and Washington, USA, is an important resource for aquatic and terrestrial organisms, agriculture, and commerce. An 86-mile stretch of the river was sampled over a 3 year period in order to determine the spatial and temporal trends in the occurrence and concentration of water-borne organic contaminants. Sampling occurred at 10 sites along this stretch and at 1 site on the Willamette River using the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) passive samplers. Contaminant profiles followed the predicted trends of lower numbers of detections and associated concentrations in the rural areas to higher numbers and concentrations at the more urbanized sites. Industrial chemicals, plasticizers, and PAHs were present at the highest concentrations. Differences in concentrations between sampling periods were related to the amount of rainfall during the sampling period. In general, water concentrations of wastewater-related contaminants decreased and concentrations of legacy contaminants slightly increased with increasing rainfall amounts.
A new method of snowmelt sampling for water stable isotopes
Penna, D.; Ahmad, M.; Birks, S. J.; Bouchaou, L.; Brencic, M.; Butt, S.; Holko, L.; Jeelani, G.; Martinez, D. E.; Melikadze, G.; Shanley, J.B.; Sokratov, S. A.; Stadnyk, T.; Sugimoto, A.; Vreca, P.
2014-01-01
We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground-snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low-cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons.
Bargar, Timothy A.; Garrison, Virginia H.; Alvarez, David A.; Echols, Kathy
2013-01-01
Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17–0.31 ng/L 17-β-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.
2017-03-10
formats by the co- integration of a passive 90 degree optical hybrid, highspeed balanced Ge photodetectors and a high-speed two-channel transimpedance...40 Gbaud and can handle advanced modulation formats by the co-integration of a passive 90 degree optical hybrid, high- speed balanced Ge...reached at an OSNR of 12.4 dB. The hard -decision FEC (HD-FEC) threshold (BER of 3.8 × 10-3 for 7% overhead) requires 14 dB OSNR. For 16-QAM this requires
Horton, G.E.; Dubreuil, T.L.; Letcher, B.H.
2007-01-01
Our goal was to understand movement and its interaction with survival for populations of stream salmonids at long-term study sites in the northeastern United States by employing passive integrated transponder (PIT) tags and associated technology. Although our PIT tag antenna arrays spanned the stream channel (at most flows) and were continuously operated, we are aware that aspects of fish behavior, environmental characteristics, and electronic limitations influenced our ability to detect 100% of the emigration from our stream site. Therefore, we required antenna efficiency estimates to adjust observed emigration rates. We obtained such estimates by testing a full-scale physical model of our PIT tag antenna array in a laboratory setting. From the physical model, we developed a statistical model that we used to predict efficiency in the field. The factors most important for predicting efficiency were external radio frequency signal and tag type. For most sampling intervals, there was concordance between the predicted and observed efficiencies, which allowed us to estimate the true emigration rate for our field populations of tagged salmonids. One caveat is that the model's utility may depend on its ability to characterize external radio frequency signals accurately. Another important consideration is the trade-off between the volume of data necessary to model efficiency accurately and the difficulty of storing and manipulating large amounts of data.
Burdick, Summer M.
2013-01-01
Survival of juvenile endangered Lost River and shortnose suckers is thought to limit recruitment into the adult populations and ultimately limit the recovery of these species in Upper Klamath Lake, Oregon. Although many hypotheses exist about the sources of mortality, the contribution of each speculated source of mortality has not been examined. To examine causes of mortality, validate estimated age to maturity, and examine movement patterns for juvenile suckers in Upper Klamath Lake, passive integrated transponder (PIT) tags and remote tag detection systems were used. Age-1 suckers were opportunistically tagged in 2009 and 2010 during another study on juvenile sucker distribution. After the distribution study concluded in 2010, USGS redirected sampling efforts to target age-1 suckers for tagging. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican (Pelecanus erythrorhynchos), double-crested cormorant (Phalacrocorax auritus), and Forster’s tern (Sterna forsteri) breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of juvenile sucker movement. Sucker PIT tag detections in the Sprague and Williamson Rivers in mid-summer and in autumn indicate tagged juvenile suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds was a cause of mortality.
Gibbs, Jenna L; Yost, Michael G; Negrete, Maria; Fenske, Richard A
2017-03-01
Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m 3 for chlorpyrifos, 0.03 to 20 ng/m 3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m 3 for azinphos-methyl, and < LOD to 0.8 ng/m 3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households ( p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for infiltration of indoor living environments. Citation: Gibbs JL, Yost MG, Negrete M, Fenske RA. 2017. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333-341; http://dx.doi.org/10.1289/EHP425.
Portuondo-Campa, E; Paschotta, R; Lecomte, S
2013-08-01
We report on the ultralow timing jitter of the 100 MHz pulse trains generated by two identical passively mode-locked diode-pumped solid-state lasers (DPSSLs) emitting at 1556 nm. Ultralow timing jitter of 83 as (integrated from 10 kHz to 50 MHz) for one laser has been measured with a balanced optical cross-correlator as timing discriminator. Extremely low intensity noise has been measured as well. Several measurement techniques have been used and show similar jitter results. Different possible noise sources have been theoretically investigated and compared to the measured jitter power spectral density. It is found that although the measured integrated jitter is quite low, it is still significantly above the quantum limit in the considered frequency span. Therefore, there is a substantial potential for technical improvements that could make passively mode-locked DPSSL outperform fiber lasers as source of microwaves with low phase noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia
2015-04-26
Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less
Hapke, Whitney B; Morace, Jennifer L; Nilsen, Elena B; Alvarez, David A; Masterson, Kevin
2016-01-01
Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.
Temple, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David; Masterson, Kevin
2016-01-01
Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.
Hapke, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David A.; Masterson, Kevin
2016-01-01
Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown. PMID:27348521
Analysis of the "-sja" Passive of Russian Verbs of Governing and Wanting as a Conceptual Integration
ERIC Educational Resources Information Center
Min, Junghee
2011-01-01
This dissertation represents a study of the formation of "-sja" passives of Russian verbs of governing and wanting. I explore five imperfective verbs of governing: "zavedovat" "manage"; "komandovat" "command"; "pravit" "govern"; "rukovdit" "direct"; and "upravljat" "manage"; as well as four imperfective verbs of wanting: "iskat" "seek"; "trebovat"…
Decay of passive scalar fluctuations in axisymmetric turbulence
NASA Astrophysics Data System (ADS)
Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio
2016-11-01
Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.
Select volatile organic compounds (VOCs) in ambient air were measured at four fenceline sites at a petroleum refinery in Whiting, Indiana, USA using modified EPA Method 325 A/B with passive tubes and EPA Compendium Method TO-15 with canister samplers. One-week, time-integrated s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.
2014-09-12
This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.
NASA Astrophysics Data System (ADS)
Ceacaru, Mihai C.
2012-11-01
In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.
Combining Radiography and Passive Measurements for Radiological Threat Detection in Cargo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.
Abstract Radiography is widely understood to provide information complimentary to passive detection: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions which may mask a passive radiological signal. We present a method for combining radiographic and passive data which uses the radiograph to provide an estimate of scatter and attenuation for possible sources. This approach allows quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present first results for this method for a simple modeled test case of a cargo container drivingmore » through a PVT portal. With this inversion approach, we address criteria for an integrated passive and radiographic screening system and how detection of SNM threats might be improved in such a system.« less
Prospects of passive radio detection of a subsurface ocean on Europa with a lander
NASA Astrophysics Data System (ADS)
Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve
2016-09-01
We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).
Raub, Kristin B; Vlahos, Penny; Whitney, Michael
2015-08-01
Laboratory and field trials evaluated the efficacy of three methods of detecting aquatic pesticide concentrations. Currently used pesticides: atrazine, metolachlor, and diazinon and legacy pesticide dieldrin were targeted. Pesticides were extracted using solid-phase extraction (SPE) of water samples, titanium plate passive samplers coated in ethylene vinyl acetate (EVA) and eastern oysters (Crassostrea viginica) as biosamplers. A laboratory study assessed the extraction efficiencies and precision of each method. Passive samplers yielded the highest precision of the three methods (RSD: 3-14% EVA plates; 19-60% oysters; and 25-56% water samples). Equilibrium partition coefficients were derived. A significant relationship was found between the concentration in oyster tissue and the ambient aquatic concentration. In the field (Housatonic River, CT (U.S.)) water sampling (n = 5) detected atrazine at 1.61-7.31 μg L(-1), oyster sampling (n = 2×15) detected dieldrin at n.d.-0.096 μg L(-1) SW and the passive samplers (n = 5×3) detected atrazine at 0.97-3.78 μg L(-1) SW and dieldrin at n.d.-0.68 μg L(-1) SW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Apell, Jennifer N; Gschwend, Philip M
2016-11-01
Superfund sites with sediments contaminated by hydrophobic organic compounds (HOCs) can be difficult to characterize because of the complex nature of sorption to sediments. Porewater concentrations, which are often used to model transport of HOCs from the sediment bed into overlying water, benthic organisms, and the larger food web, are traditionally estimated using sediment concentrations and sorption coefficients estimated using equilibrium partitioning (EqP) theory. However, researchers have begun using polymeric samplers to determine porewater concentrations since this method does not require knowledge of the sediment's sorption properties. In this work, polyethylene passive samplers were deployed into sediments in the field (in situ passive sampling) and mixed with sediments in the laboratory (ex situ active sampling) that were contaminated with polychlorinated biphenyls (PCBs). The results show that porewater concentrations based on in situ and ex situ sampling generally agreed within a factor of two, but in situ concentrations were consistently lower than ex situ porewater concentrations. Imprecision arising from in situ passive sampling procedures does not explain this bias suggesting that field processes like bioirrigation may cause the differences observed between in situ and ex situ polymeric samplers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radon in earth-sheltered structures
Landa, E.R.
1984-01-01
Radon concentration in the indoor air of six residential and three non-residential earth-sheltered buildings in eastern Colorado was monitored quarterly over a nine-month period using passive, integrating detectors. Average radon concentrations during the three-month sampling periods ranged from about 1 to 9 pCi/L, although one building, a poorly ventilated storage bunker, had concentrations as high as 39 pCi/L. These radon concentrations are somewhat greater than those typically reported for conventional buildings (around 1 pCi/L); but they are of the same order of magnitude as radon concentrations reported for energy-efficient buildings which are not earth-sheltered. ?? 1984.
Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel
2014-01-01
Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT. PMID:24761288
RF performances of inductors integrated on localized p+-type porous silicon regions
2012-01-01
To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are presented. A first comparison is done between the performances of inductors integrated on same-thickness localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate. PMID:23009746
A fast passive and planar liquid sample micromixer.
Melin, Jessica; Gimenéz, Guillem; Roxhed, Niclas; van der Wijngaart, Wouter; Stemme, Göran
2004-06-01
A novel microdevice for passively mixing liquid samples based on surface tension and a geometrical mixing chamber is presented. Due to the laminar flow regime on the microscale, mixing becomes difficult if not impossible. We present a micromixer where a constantly changing time dependent flow pattern inside a two sample liquid plug is created as the plug simply passes through the planar mixer chamber. The device requires no actuation during mixing and is fabricated using a single etch process. The effective mixing of two coloured liquid samples is demonstrated.
Passive injection control for microfluidic systems
Paul, Phillip H.; Arnold, Don W.; Neyer, David W.
2004-12-21
Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.
Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm
2009-05-08
The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p < 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m3) to 16780 CFUs/m3 were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p < 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.
Yu, Shang-yun; Zhou, Yan-mei
2015-08-01
This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.
High Resolution UAV-based Passive Microwave L-band Imaging of Soil Moisture
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Stachura, M.; Elston, J.; McIntyre, E. M.
2013-12-01
Due to long electrical wavelengths and aperture size limitations the scaling of passive microwave remote sensing of soil moisture from spaceborne low-resolution applications to high resolution applications suitable for precision agriculture requires use of low flying aerial vehicles. This presentation summarizes a project to develop a commercial Unmanned Aerial Vehicle (UAV) hosting a precision microwave radiometer for mapping of soil moisture in high-value shallow root-zone crops. The project is based on the use of the Tempest electric-powered UAV and a compact digital L-band (1400-1427 MHz) passive microwave radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated UAV/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a lobe-correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAV above the ground while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer incorporates digital sampling and radio frequency interference mitigation along with infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction. This NASA-sponsored project is being developed both for commercial application in cropland water management, L-band satellite validation, and estuarian plume studies.
Park, BuSik; Neuberger, Thomas; Webb, Andrew G.; Bigler, Don C.; Collins, Christopher M.
2009-01-01
A comparison of methods to decrease RF power dissipation and related heating in conductive samples using passive conductors surrounding a sample in a solenoid coil is presented. Full-Maxwell finite difference time domain numerical calculations were performed to evaluate the effect of the passive conductors by calculating conservative and magnetically-induced electric field and magnetic field distributions. To validate the simulation method, experimental measurements of temperature increase were conducted using a solenoidal coil (diameter 3 mm), a saline sample (10 mM NaCl) and passive copper shielding wires (50 μm diameter). The temperature increase was 58% lower with the copper wires present for several different input powers to the coil. This was in good agreement with simulation for the same geometry, which indicated 57% lower power dissipated in the sample with conductors present. Simulations indicate that some designs should be capable of reducing temperature increase by more than 85%. PMID:19879784
An economic passive sampling method to detect particulate pollutants using magnetic measurements.
Cao, Liwan; Appel, Erwin; Hu, Shouyun; Ma, Mingming
2015-10-01
Identifying particulate matter (PM) emitted from industrial processes into the atmosphere is an important issue in environmental research. This paper presents a passive sampling method using simple artificial samplers that maintains the advantage of bio-monitoring, but overcomes some of its disadvantages. The samplers were tested in a heavily polluted area (Linfen, China) and compared to results from leaf samples. Spatial variations of magnetic susceptibility from artificial passive samplers and leaf samples show very similar patterns. Scanning electron microscopy suggests that the collected PM are mostly in the range of 2-25 μm; frequent occurrence of spherical shape indicates industrial combustion dominates PM emission. Magnetic properties around power plants show different features than other plants. This sampling method provides a suitable and economic tool for semi-quantifying temporal and spatial distribution of air quality; they can be installed in a regular grid and calibrate the weight of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening
Rupp, Andre; Celikel, Tansu
2018-01-01
Abstract Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration. PMID:29662943
Role of Active Versus Passive Complementary and Integrative Health Approaches in Pain Management.
Cosio, David; Lin, Erica
2018-01-01
A general conclusion about the treatment of chronic, noncancer pain is that the results from traditional, passive modalities are disheartening. Perhaps this may be due to the propensity of patients to seek out passive versus active treatments. In pain management, active treatments should be the primary focus, with passive interventions as an adjunct. The current study tested the hypotheses that Veterans would report a greater significant increase in active versus transitional and active versus passive complementary and integrative health (CIH) utilization after completing a formal pain education program. The current study is a secondary analysis of existing data from an original study. The current study used a quasi-experimental, 1-group, pre-/posttest design. One hundred three Veterans completed a 12-week, "Pain Education School" program at a Midwestern VA Medical Center between November 4, 2011, and October 26, 2012. As part of the introduction and conclusion of the program, all Veterans completed a pre- and posteducation assessment which included an adaptation of the Complementary and Alternative Medicine Questionnaire©, SECTION A: Use of Alternative Health Care Providers measure. Significant differences were found between the pre- and posttest measures of use of active ( P = .000) ( p <.001), transitional ( P = .011), and passive ( P = .007) CIH modalities. The current findings suggest that an educational intervention in conjunction with the availability of treatment options has the potential to increase the use of those treatments. The current pain education program also seems to be aligned with the goal of pain self-management, which is to utilize more active interventions as a primary therapy.
Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.
Górska, Urszula; Rupp, Andre; Boubenec, Yves; Celikel, Tansu; Englitz, Bernhard
2018-01-01
Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.
Measure Guideline: Passive Vents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, David; Neri, Robin
2016-02-05
This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less
Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products
NASA Astrophysics Data System (ADS)
Nobis, T. E.
2017-12-01
Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.
Integrated anode structure for passive direct methanol fuel cells with neat methanol operation
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui
2014-02-01
A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.
Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina
2017-12-01
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
Polyurethane foam (PUF) passive samplers for monitoring phenanthrene in stormwater.
Dou, Yueqin; Zhang, Tian C; Zeng, Jing; Stansbury, John; Moussavi, Massoum; Richter-Egger, Dana L; Klein, Mitchell R
2016-04-01
Pollution from highway stormwater runoff has been an increasing area of concern. Many structural Best Management Practices (BMPs) have been implemented for stormwater treatment and management. One challenge for these BMPs is to sample stormwater and monitor BMP performance. The main objective of this study was to evaluate the feasibility of using polyurethane foam (PUF) passive samplers (PSs) for sampling phenanthrene (PHE) in highway stormwater runoff and BMPs. Tests were conducted using batch reactors, glass-tube columns, and laboratory-scale BMPs (bioretention cells). Results indicate that sorption for PHE by PUF is mainly linearly relative to time, and the high sorption capacity allows the PUF passive sampler to monitor stormwater events for months or years. The PUF passive samplers could be embedded in BMPs for monitoring influent and effluent PHE concentrations. Models developed to link the results of batch and column tests proved to be useful for determining removal or sorption parameters and performance of the PUF-PSs. The predicted removal efficiencies of BMPs were close to the real values obtained from the control columns with errors ranging between -8.46 and 1.52%. This research showed that it is possible to use PUF passive samplers for sampling stormwater and monitoring the performance of stormwater BMPs, which warrants the field-scale feasibility studies in the future.
Fabrication of microfluidic integrated biosensor
NASA Astrophysics Data System (ADS)
Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.
2017-09-01
An event of miniaturizing for sensor systems to carry out biological diagnostics are gaining wade spread acceptance. The system may contain several different sensor units for the detection of specific analyte, the analyte to be detected might be any kind of biological molecules (DNA, mRNA or proteins) or chemical substances. In most cases, the detection is based on receptor-ligand binding like DNA hybridization or antibody-antigen interaction, achieving this on a nanostructure. DNA or protein must be attached to certain locations within the structure. Critical for this is to have a robust binding chemistry to the surface in the microstructure. Here we successfully designed and fabricated microfluidics element for passive fluid delivery into polysilicon Nanowire sensing domain, we further demonstrated a very simple and effective way of integrating the two devices to give full functionalities of laboratory on a single chip. The sensing element was successfully surface modified and tested on real biomedical clinical sample for evaluation and validation.
ERIC Educational Resources Information Center
Murberg, Terje A.
2010-01-01
The present study prospectively explored the effects of personal attributes (self-esteem and introversion) and social support factors on passive behaviour in the classroom in a sample of 259 (132 females, 127 males) students in two secondary schools. In the longitudinal multivariate analysis, the student's perceived passive behaviour in the…
Eisele, Adam P; Mukerjee, Shaibal; Smith, Luther A; Thoma, Eben D; Whitaker, Donald A; Oliver, Karen D; Wu, Tai; Colon, Maribel; Alston, Lillian; Cousett, Tamira A; Miller, Michael C; Smith, Donald M; Stallings, Casson
2016-04-01
A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually ≤10%) and that they can be useful to assess spatial gradients and operational conditions at well pad locations over time-integrated periods. Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at multiple fenceline locations at petrochemical refineries. This pilot study presents initial data demonstrating the utility of Methods 325A/B for monitoring at ONG facilities. Measurements revealed elevated concentrations reflective of production levels and spatial gradients of VOCs relative to source proximity at the Barnett well pad, as well as operational changes at the DJB well pad. Though limited, these findings indicate that Methods 325A/B can be useful in application to characterize VOCs at well pad boundaries.
Small passive student experiments on G324 261 individual quests for student knowledge
NASA Technical Reports Server (NTRS)
Nicholson, James H.; Tempel, Carol A.; Ashcraft, Ruth; Rutherford, Robin
1995-01-01
The Charleston County School District CAN DO Project payload on STS-57 had a primary goal of photographing the Earth with the GeoCam camera system. In addition, the payload carried 261 passive student experiments representing the efforts of several thousand students throughout the district and in four other states. These experiments represented the individual concepts of teams ranging in age from pre-school to high school. Consequently, a tremendous variety of samples from collard green seeds to microscopic 'water bears' were flown. Each prospective team was provided a simple kit equipped with five vials. Each student team submitted five coded samples, one for space flight and four control samples. The control samples were exposed to radiation, cold and centrifugation respectively while one negative control sample was passively stored. The students received the samples back still coded so that they were unaware of which samples were flown. They then investigated their samples according to their individual research protocols. The results were presented in poster and platform form at a student research symposium. Space Trees grown from tree seeds flown in the payload have been planted at all district schools, and at many guest schools. These seeds represented another way in which to involve additional classes and students. Both the passive experiments and the space trees were housed in what otherwise would have been wasted space within the payload. They extended the GAS programs worthwhile ballast concept to another level. The opportunity to fly an experiment in space is too previous not to be extended to the greatest number of students possible.
Plaisance, H; Sagnier, I; Saison, J Y; Galloo, J C; Guillermo, R
2002-11-01
The performances and applicability of a diffusion tube sampler for the simultaneous measurements of NO2 and SO2 in ambient air were evaluated. SO2 and NO2 are collected by the passive sampler using triethanolamine as trapping agent and are determined as sulphate and nitrite with ion chromatography. The detection limit (2.3 microg m(-3) of NO2 and 4.2 microg m(-3) of SO2 for two weeks sampling) is adequate for the determination of concentrations in urban and industrial areas. Precision of the method as RSD is in mean 5% for NO2 and 12% for SO2 at the concentration levels in urban areas. Calibration of the method was performed in the field conditions by comparison between the responses of sampler and the concentrations measured by the continuous monitors. High degree of linearity (correlation coefficients > 0.8) is found between the passive sampler tube and the continuous monitor data for both NO2 and SO2. To reduce the wind velocity influence on passive sampling of diffusion tubes, a protective shelter was tested in this study. The overall uncertainty of one measure for the optimised method is estimated at 5 microg m(-3) for NO2 and 6 microg m(-3) for SO2. Suitability of this passive sampling method for air pollution monitoring in urban areas was demonstrated by the results shown in this paper on a campaign carried out in the French agglomeration.
Smith, Dennis; Artursson, Per; Avdeef, Alex; Di, Li; Ecker, Gerhard F; Faller, Bernard; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; van de Waterbeemd, Han; Sugano, Kiyohiko; Testa, Bernard
2014-06-02
Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.
NASA Technical Reports Server (NTRS)
Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.
2012-01-01
The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized forest AGB sampling errors by 15 - 38%. Furthermore, spaceborne global scale accuracy requirements were achieved. At least 80% of the grid cells at 100m, 250m, 500m, and 1km grid levels met AGB density accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500m and 250m grid level, respectively.
"Riding the Rip": An Experiential and Integrated Human-Physical Geography Curriculum in Costa Rica
ERIC Educational Resources Information Center
Brannstrom, Christian; Houser, Chris
2015-01-01
Integrating research into short-term study abroad programs is challenging because of language, fieldwork logistics, and traditional learning models based on passive classroom experiences. Experiential learning often makes use of research as experience, but relatively few examples integrate human and physical geography. Here, we describe an…
Chip-integrated optical power limiter based on an all-passive micro-ring resonator
NASA Astrophysics Data System (ADS)
Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang
2014-10-01
Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less
NASA Astrophysics Data System (ADS)
Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu
2014-06-01
A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.
High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas
Kazyak, David C.; Zydlewski, Joseph D.
2012-01-01
Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.
Integrated coding-aware intra-ONU scheduling for passive optical networks with inter-ONU traffic
NASA Astrophysics Data System (ADS)
Li, Yan; Dai, Shifang; Wu, Weiwei
2016-12-01
Recently, with the soaring of traffic among optical network units (ONUs), network coding (NC) is becoming an appealing technique for improving the performance of passive optical networks (PONs) with such inter-ONU traffic. However, in the existed NC-based PONs, NC can only be implemented by buffering inter-ONU traffic at the optical line terminal (OLT) to wait for the establishment of coding condition, such passive uncertain waiting severely limits the effect of NC technique. In this paper, we will study integrated coding-aware intra-ONU scheduling in which the scheduling of inter-ONU traffic within each ONU will be undertaken by the OLT to actively facilitate the forming of coding inter-ONU traffic based on the global inter-ONU traffic distribution, and then the performance of PONs with inter-ONU traffic can be significantly improved. We firstly design two report message patterns and an inter-ONU traffic transmission framework as the basis for the integrated coding-aware intra-ONU scheduling. Three specific scheduling strategies are then proposed for adapting diverse global inter-ONU traffic distributions. The effectiveness of the work is finally evaluated by both theoretical analysis and simulations.
Morris, Mohy G
2010-02-28
With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cmH(2)O (V(30)). The (dynamic) functional residual capacity (FRC(dyn)) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V(30) or total lung capacity (TLC(30)). Measurements were performed on 17 healthy infants aged 8.6-119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V(30) during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRC(st)) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity ((j)SVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRC(dyn) and FRC(st) measurements overlapped (p=0.6420) but neither did with the RV (p<0.0001). Means (95% confidence interval) of FRC(dyn), IC, FRC(st), (j)SVC, RV, forced vital capacity and tidal volume were 21.2 (19.7-22.7), 36.7 (33.0-40.4), 21.2 (19.6-22.8), 40.7 (37.2-44.2), 18.1 (16.6-19.7), 40.7 (37.1-44.2) and 10.2 (9.6-10.7)ml/kg, respectively. Static lung volumes and capacities at V(30) and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically integrated approach for in-depth investigation of lung function at V(30) in infants. Copyright 2009 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
McDowell, Brona C.; Salazar-Torres, Jose J.; Kerr, Claire; Cosgrove, Aidan P.
2012-01-01
-While passive range of motion (PROM) is commonly used to inform decisions on therapeutic management, knowledge of PROM of children with spastic cerebral palsy (CP) is limited. A population-based sample of 178 children with spastic CP (110 male; unilateral, n = 94; bilateral, n = 84; age range 4-17 years) and 68 typically developing children (24…
2012-05-11
their uses: Table 10. Types of Solid Sorbent Tubes Tube Type Typical Uses Anasorb® 747 Methyl Ethyl Ketone , Ethylene Oxide Charcoal Tube...Silica Gel Aliphatic Amines, Methanol, Aldehydes , Acid Mist 2.5.3 Passive Samplers. Passive samplers do not require a sampling pump (Figure 9). They...often encountered within the first 6 inches of soil. Water-soluble contaminants such as metals, acids, ketones , and alcohols will be encountered at
Tak For Yu, Zeta; Guan, Huijiao; Ki Cheung, Mei; McHugh, Walker M.; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping
2015-01-01
Immunoassays represent one of the most popular analytical methods for detection and quantification of biomolecules. However, conventional immunoassays such as ELISA and flow cytometry, even though providing high sensitivity and specificity and multiplexing capability, can be labor-intensive and prone to human error, making them unsuitable for standardized clinical diagnoses. Using a commercialized no-wash, homogeneous immunoassay technology (‘AlphaLISA’) in conjunction with integrated microfluidics, herein we developed a microfluidic immunoassay chip capable of rapid, automated, parallel immunoassays of microliter quantities of samples. Operation of the microfluidic immunoassay chip entailed rapid mixing and conjugation of AlphaLISA components with target analytes before quantitative imaging for analyte detections in up to eight samples simultaneously. Aspects such as fluid handling and operation, surface passivation, imaging uniformity, and detection sensitivity of the microfluidic immunoassay chip using AlphaLISA were investigated. The microfluidic immunoassay chip could detect one target analyte simultaneously for up to eight samples in 45 min with a limit of detection down to 10 pg mL−1. The microfluidic immunoassay chip was further utilized for functional immunophenotyping to examine cytokine secretion from human immune cells stimulated ex vivo. Together, the microfluidic immunoassay chip provides a promising high-throughput, high-content platform for rapid, automated, parallel quantitative immunosensing applications. PMID:26074253
Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S
2016-10-01
Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis characteristics. © The International Society for Prosthetics and Orthotics 2015.
Mazzella, N.; Lissalde, S.; Moreira, S.; Delmas, F.; Mazellier, P.; Huckins, J.N.
2010-01-01
Passive samplers such as the Polar Organic Chemical Integrative Sampler (POCIS) are useful tools for monitoring trace levels of polar organic chemicals in aquatic environments. The use of performance reference compounds (PRC) spiked into the POCIS adsorbent for in situ calibration may improve the semiquantitative nature of water concentration estimates based on this type of sampler. In this work, deuterium labeled atrazine-desisopropyl (DIA-d5) was chosen as PRC because of its relatively high fugacity from Oasis HLB (the POCIS adsorbent used) and our earlier evidence of its isotropic exchange. In situ calibration of POCIS spiked with DIA-d5was performed, and the resulting time-weighted average concentration estimates were compared with similar values from an automatic sampler equipped with Oasis HLB cartridges. Before PRC correction, water concentration estimates based on POCIS data sampling ratesfrom a laboratory calibration exposure were systematically lower than the reference concentrations obtained with the automatic sampler. Use of the DIA-d5 PRC data to correct POCIS sampling rates narrowed differences between corresponding values derived from the two methods. Application of PRCs for in situ calibration seems promising for improving POCIS-derived concentration estimates of polar pesticides. However, careful attention must be paid to the minimization of matrix effects when the quantification is performed by HPLC-ESI-MS/MS. ?? 2010 American Chemical Society.
Srirekha, A; Rashmi, K; Hegde, Jayshree; Lekha, S; Rupali, K; Reshmi, George
2013-09-01
This study evaluated the removal of debris and smear layer after post space preparation using different irrigations and passive ultrasonic agitation. Sixty human premolars were decoronated and post space prepared after endodontic therapy. The samples were then randomly divided into three experimental groups (Groups A, B, C) and one control group (Group D) with fifteen samples in each group. Groups A and B samples were treated with 10 % citric acid and 17 % ethylenediamintetraacetic acid (EDTA), respectively and passive ultrasonic agitation was done, rinsed with sodium hypochlorite and finally flushed with saline. Group C samples were conditioned with 36 % phosphoric acid and then rinsed with saline. The control group was treated with 3 % sodium hypochlorite, passive ultrasonic agitation done and flushed with saline. The samples were sectioned and evaluated for debris and smear layer removal under scanning electron microscope. 10 % citric acid showed the best removal of smear layer when compared with 17 % EDTA and 36 % phosphoric acid, but was not statistically significant (p > 0.05). The difference in scoring for debris and smear layer removal in the coronal, middle and apical third of post space of experimental groups in comparison with control group was statistically significant (p < 0.001).
Gibbs, Jenna L.; Yost, Michael G.; Negrete, Maria; Fenske, Richard A.
2016-01-01
Background: Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. Objectives: We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. Methods: The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Results: Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m3 for chlorpyrifos, 0.03 to 20 ng/m3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m3 for azinphos-methyl, and < LOD to 0.8 ng/m3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households (p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. Conclusions: We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for infiltration of indoor living environments. Citation: Gibbs JL, Yost MG, Negrete M, Fenske RA. 2017. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333–341; http://dx.doi.org/10.1289/EHP425 PMID:27517732
Applying active learning to supervised word sense disambiguation in MEDLINE.
Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua
2013-01-01
This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models.
Applying active learning to supervised word sense disambiguation in MEDLINE
Chen, Yukun; Cao, Hongxin; Mei, Qiaozhu; Zheng, Kai; Xu, Hua
2013-01-01
Objectives This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. Methods We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collection. Three different uncertainty sampling-based active learning algorithms were implemented with the SVM classifiers and were compared with a passive learner (PL) based on random sampling. For each ambiguous term and each learning algorithm, a learning curve that plots the accuracy computed from the test set as a function of the number of annotated samples used in the model was generated. The area under the learning curve (ALC) was used as the primary metric for evaluation. Results Our experiments demonstrated that active learners (ALs) significantly outperformed the PL, showing better performance for 177 out of 197 (89.8%) WSD tasks. Further analysis showed that to achieve an average accuracy of 90%, the PL needed 38 annotated samples, while the ALs needed only 24, a 37% reduction in annotation effort. Moreover, we analyzed cases where active learning algorithms did not achieve superior performance and identified three causes: (1) poor models in the early learning stage; (2) easy WSD cases; and (3) difficult WSD cases, which provide useful insight for future improvements. Conclusions This study demonstrated that integrating active learning strategies with supervised WSD methods could effectively reduce annotation cost and improve the disambiguation models. PMID:23364851
NASA Astrophysics Data System (ADS)
Briley, Chad; Mock, Alyssa; Korlacki, Rafał; Hofmann, Tino; Schubert, Eva; Schubert, Mathias
2017-11-01
We present magneto-optical dielectric tensor data of cobalt and cobalt oxide slanted columnar thin films obtained by vector magneto-optical generalized ellipsometry. Room-temperature hysteresis magnetization measurements were performed in longitudinal and polar Kerr geometries on samples prior to and after a heat treatment process with and without a conformal Al2O3 passivation coating. The samples have been characterized by generalized ellipsometry, scanning electron microscopy, and Raman spectroscopy in conjuncture with density functional theory. We observe strongly anisotropic hysteresis behaviors, which depend on the nanocolumn and magnetizing field orientations. We find that deposited cobalt films that have been exposed to heat treatment and subsequent atmospheric oxidation into Co3O4, when not conformally passivated, reveal no measurable magneto-optical properties while cobalt films with passivation coatings retain highly anisotropic magneto-optical properties.
Chemical vapor deposition for automatic processing of integrated circuits
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1980-01-01
Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza
2016-10-01
Electrochemical behavior of coarse- and nano-grained pure copper were modified and improved to a large extent by the application of cyclic potentiodynamic passivation. The efficacy of this method was evaluated on the basis of grain size which is of great importance in corrosion studies. In this study, the eight passes of accumulative roll bonding process at room temperature were successfully performed to produce nano-grained pure copper. Transmission electron microscopy image indicated that the average grain size reached below 100 nm after eight passes. On the basis of cyclic voltammetry and also the electrochemical tests performed after that, it was revealed that cyclic potentiodynamic passivation had a significant improving effect on the passive behavior of both coarse- and nano-grained samples. In addition, a superior behavior of nano-grained sample in comparison to coarse-grained one was distinguished by its smaller cyclic voltammogram loops, nobler free potentials, larger capacitive arcs in the Nyquist plots, and less charge carrier densities within the passive film.
On the corrosion behavior of zircaloy-4 in spent fuel pools under accidental conditions
NASA Astrophysics Data System (ADS)
Lavigne, O.; Shoji, T.; Sakaguchi, K.
2012-07-01
After zircaloy cladding tubes have been subjected to irradiation in the reactor core, they are stored temporarily in spent fuel pools. In case of an accident, the integrity of the pool may be affected and the composition of the coolant may change drastically. This was the case in Fukushima Daiichi in March 2011. Successive incidents have led to an increase in the pH of the coolant and to chloride contamination. Moreover, water radiolysis may occur owing to the remnant radioactivity of the spent fuel. In this study, we propose to evaluate the corrosion behavior of oxidized Zr-4 (in autoclave at 288 °C for 32 days) in function of the pH and the presence of chloride and radical forms. The generation of radicals is achieved by the sonolysis of the solution. It appears that the increase in pH and the presence of radicals lead to an increase in current densities. However, the current densities remain quite low (depending on the conditions, between 1 and 10 μA cm-2). The critical parameter is the presence of chloride ions. The chloride ions widely decrease the passive range of the oxidized samples (the pitting potential is measured around +0.6 V (vs. SCE)). Moreover, if the oxide layer is scratched or damaged (which is likely under accidental conditions), the pitting potential of the oxidized sample reaches the pitting potential of the non-oxidized sample (around +0.16 V (vs. SCE)), leaving a shorter stable passive range for the Zr-4 cladding tubes.
Laboratory, Field, and Analytical Procedures for Using ...
Regardless of the remedial technology invoked to address contaminated sediments in the environment, there is a critical need to have tools for assessing the effectiveness of the remedy. In the past, these tools have included chemical and biomonitoring of the water column and sediments, toxicity testing and bioaccumulation studies performed on site sediments, and application of partitioning, transport and fate modeling. All of these tools served as lines of evidence for making informed environmental management decisions at contaminated sediment sites. In the last ten years, a new tool for assessing remedial effectiveness has gained a great deal of attention. Passive sampling offers a tool capable of measuring the freely dissolved concentration (Cfree) of legacy contaminants in water and sediments. In addition to assessing the effectiveness of the remedy, passive sampling can be applied for a variety of other contaminated sediments site purposes involved with performing the preliminary assessment and site inspection, conducting the remedial investigation and feasibility study, preparing the remedial design, and assessing the potential for contaminant bioaccumulation. While there is a distinct need for using passive sampling at contaminated sediments sites and several previous documents and research articles have discussed various aspects of passive sampling, there has not been definitive guidance on the laboratory, field and analytical procedures for using pas
Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides
NASA Astrophysics Data System (ADS)
Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus
2017-02-01
A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.
Experiments on integral length scale control in atmospheric boundary layer wind tunnel
NASA Astrophysics Data System (ADS)
Varshney, Kapil; Poddar, Kamal
2011-11-01
Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Chang, A. T. C.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.
NASA Astrophysics Data System (ADS)
Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.
2012-07-01
Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.
Treweek, Jennifer B; Chan, Ken Y; Flytzanis, Nicholas C; Yang, Bin; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2015-11-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
High quality silicon-based substrates for microwave and millimeter wave passive circuits
NASA Astrophysics Data System (ADS)
Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.
2017-09-01
Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous silicon as new substrate, such as characterization of FinFET components.
Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.
2009-01-01
Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.
Electronic integrated disease surveillance system and pathogen asset control system.
Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K
2012-06-20
Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA).
NASA Astrophysics Data System (ADS)
Maity, Debotyam
This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.
NASA Astrophysics Data System (ADS)
Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.
2017-08-01
An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.
Statistical Methods for Passive Vehicle Classification in Urban Traffic Surveillance and Control
DOT National Transportation Integrated Search
1980-01-01
A statistical approach to passive vehicle classification using the phase-shift signature from electromagnetic presence-type vehicle detectors is developed with digitized samples of the analog phase-shift signature, the problem of classifying vehicle ...
Rapp, Bastian E; Schickling, Benjamin; Prokop, Jürgen; Piotter, Volker; Rapp, Michael; Länge, Kerstin
2011-10-01
We describe an integration strategy for arbitrary sensors intended to be used as biosensors in biomedical or bioanalytical applications. For such devices ease of handling (by a potential end user) as well as strict disposable usage are of importance. Firstly we describe a generic array compatible polymer sensor housing with an effective sample volume of 1.55 μl. This housing leaves the sensitive surface of the sensor accessible for the application of biosensing layers even after the embedding. In a second step we show how this sensor housing can be used in combination with a passive disposable microfluidic chip to set up arbitrary 8-fold sensor arrays and how such a system can be complemented with an indirect microfluidic flow injection analysis (FIA) system. This system is designed in a way that it strictly separates between disposable and reusable components- by introducing tetradecane as an intermediate liquid. This results in a sensor system compatible with the demands of most biomedical applications. Comparative measurements between a classical macroscopic FIA system and this integrated indirect microfluidic system are presented. We use a surface acoustic wave (SAW) sensor as an exemplary detector in this work.
Yuan, Mingquan; Alocilja, Evangelyn C; Chakrabartty, Shantanu
2016-08-01
This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology.
Model-based monitoring of stormwater runoff quality.
Birch, Heidi; Vezzaro, Luca; Mikkelsen, Peter Steen
2013-01-01
Monitoring of micropollutants (MP) in stormwater is essential to evaluate the impacts of stormwater on the receiving aquatic environment. The aim of this study was to investigate how different strategies for monitoring of stormwater quality (combining a model with field sampling) affect the information obtained about MP discharged from the monitored system. A dynamic stormwater quality model was calibrated using MP data collected by automatic volume-proportional sampling and passive sampling in a storm drainage system on the outskirts of Copenhagen (Denmark) and a 10-year rain series was used to find annual average (AA) and maximum event mean concentrations. Use of this model reduced the uncertainty of predicted AA concentrations compared to a simple stochastic method based solely on data. The predicted AA concentration, obtained by using passive sampler measurements (1 month installation) for calibration of the model, resulted in the same predicted level but with narrower model prediction bounds than by using volume-proportional samples for calibration. This shows that passive sampling allows for a better exploitation of the resources allocated for stormwater quality monitoring.
Jin, Si Hyung; Jeong, Heon-Ho; Lee, Byungjin; Lee, Sung Sik; Lee, Chang-Soo
2015-01-01
We present a programmable microfluidic static droplet array (SDA) device that can perform user-defined multistep combinatorial protocols. It combines the passive storage of aqueous droplets without any external control with integrated microvalves for discrete sample dispensing and dispersion-free unit operation. The addressable picoliter-volume reaction is systematically achieved by consecutively merging programmable sequences of reagent droplets. The SDA device is remarkably reusable and able to perform identical enzyme kinetic experiments at least 30 times via automated cross-contamination-free removal of droplets from individual hydrodynamic traps. Taking all these features together, this programmable and reusable universal SDA device will be a general microfluidic platform that can be reprogrammed for multiple applications.
Techniques for active passivation
Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.
2016-12-20
In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.
Integrated active and passive control design methodology for the LaRC CSI evolutionary model
NASA Technical Reports Server (NTRS)
Voth, Christopher T.; Richards, Kenneth E., Jr.; Schmitz, Eric; Gehling, Russel N.; Morgenthaler, Daniel R.
1994-01-01
A general design methodology to integrate active control with passive damping was demonstrated on the NASA LaRC CSI Evolutionary Model (CEM), a ground testbed for future large, flexible spacecraft. Vibration suppression controllers designed for Line-of Sight (LOS) minimization were successfully implemented on the CEM. A frequency-shaped H2 methodology was developed, allowing the designer to specify the roll-off of the MIMO compensator. A closed loop bandwidth of 4 Hz, including the six rigid body modes and the first three dominant elastic modes of the CEM was achieved. Good agreement was demonstrated between experimental data and analytical predictions for the closed loop frequency response and random tests. Using the Modal Strain Energy (MSE) method, a passive damping treatment consisting of 60 viscoelastically damped struts was designed, fabricated and implemented on the CEM. Damping levels for the targeted modes were more than an order of magnitude larger than for the undamped structure. Using measured loss and stiffness data for the individual damped struts, analytical predictions of the damping levels were very close to the experimental values in the (1-10) Hz frequency range where the open loop model matched the experimental data. An integrated active/passive controller was successfully implemented on the CEM and was evaluated against an active-only controller. A two-fold increase in the effective control bandwidth and further reductions of 30 percent to 50 percent in the LOS RMS outputs were achieved compared to an active-only controller. Superior performance was also obtained compared to a High-Authority/Low-Authority (HAC/LAC) controller.
NASA Astrophysics Data System (ADS)
Kleinert, M.; Reinke, P.; Bach, H.-G.; Brinker, W.; Zawadzki, C.; Dietrich, A.; de Felipe, D.; Keil, N.; Schell, M.
2017-02-01
Graphene with its high carrier mobility as well as its tunable light absorption is an attractive active material for highspeed electro-absorption modulators (EAMs). Large-area CVD-grown graphene monolayers can be transferred onto arbitrary substrates to add active optoelectronic properties to intrinsically passive photonic integration platforms. In this work, we present graphene-based EAMs integrated in passive polymer waveguides. To facilitate modulation frequencies in the GHz range, a 50 Ω termination resistor as well as a DC blocking capacitor are integrated with graphene EAMs for the first time. Large signal data transmission experiments were carried out across the O, C and L optical communications bands. The fastest devices exhibit a 3-dB bandwidth of more than 4 GHz. Our analytical model of the modulation response for the graphene-based EAMs is in good agreement with the measurement results. It predicts that bandwidths greater than 50 GHz are possible with future device iterations. Owing to the absorption properties of the graphene layers, the devices are expected to be functional at smaller wavelengths of interest for optical interconnects and data-communications as well, offering a novel flexibility for the integration of high-speed functionalities in optoelectronic integrated circuits. Our work is the first step towards an Active Optical Printed Circuit Board, hiding the optics completely inside the board and thus removing entry barriers in manufacturing. We believe this will lead to the same success as observed in Active Optical Cables for short range optically wired connections.
Different neural strategies for multimodal integration: comparison of two macaque monkey species.
Sadeghi, Soroush G; Mitchell, Diana E; Cullen, Kathleen E
2009-05-01
The integration of neck proprioceptive and vestibular inputs underlies the generation of accurate postural and motor control. Recent studies have shown that central mechanisms underlying the integration of these sensory inputs differ across species. Notably, in rhesus monkey (Macaca mulata), an Old World monkey, neurons in the vestibular nuclei are insensitive to passive stimulation of neck proprioceptors. In contrast, in squirrel monkey, a New World monkey, stimulation produces robust modulation. This has led to the suggestion that there are differences in how sensory information is integrated during self-motion in Old versus New World monkeys. To test this hypothesis, we recorded from neurons in the vestibular nuclei of another species in the Macaca genus [i.e., M. fascicularis (cynomolgus monkey)]. Recordings were made from vestibular-only (VO) and position-vestibular-pause (PVP) neurons. The majority (53%) of neurons in both groups were sensitive to neck proprioceptive and vestibular stimulation during passive body-under-head and whole-body rotation, respectively. Furthermore, responses during passive rotations of the head-on-body were well predicted by the linear summation of vestibular and neck responses (which were typically antagonistic). During active head movement, the responses of VO and PVP neurons were further attenuated (relative to a model based on linear summation) for the duration of the active head movement or gaze shift, respectively. Taken together, our findings show that the brain's strategy for the central processing of sensory information can vary even within a single genus. We suggest that similar divergence may be observed in other areas in which multimodal integration occurs.
Different Neural Strategies for Multimodal Integration: Comparison of two Macaque Monkey Species
Sadeghi, Soroush G.; Mitchell, Diana E.; Cullen, Kathleen E.
2012-01-01
The integration of neck proprioceptive and vestibular inputs underlies the generation of accurate postural and motor control. Recent studies have shown that central mechanisms underlying the integration of these sensory inputs differ across species. Notably, in rhesus monkey (macaca mulata), an Old World monkey, neurons in the vestibular nuclei are insensitive to passive stimulation of neck proprioceptors. In contrast, in squirrel monkey, a New World monkey, stimulation produces robust modulation. This has led to the suggestion that there are differences in how sensory information is integrated during self motion in old versus New World monkeys. To test this hypothesis, we recorded from neurons in the vestibular nuclei of another species in the macaca genus (i.e., macaca fascicularis (cynomolgus monkey)). Recordings were made from vestibular-only (VO) and position-vestibular-pause (PVP) neurons. The majority (53%) of neurons in both groups were sensitive to neck proprioceptive and vestibular stimulation during passive body-under-head and whole body rotation, respectively. Furthermore, responses during passive rotations of the head-on-body were well predicted by the linear summation of vestibular and neck responses (which were typically antagonistic). During active head movement, the responses of VO and PVP neurons were further attenuated (relative to a model based on linear summation) for the duration of the active head movement or gaze shift, respectively. Taken together, our findings show that the brain's strategy for the central processing of sensory information can vary even within a single genus. We suggest that similar divergence may be observed in other areas in which multimodal integration occurs. PMID:19283371
Increased integrity of white matter pathways after dual n-back training.
Salminen, Tiina; Mårtensson, Johan; Schubert, Torsten; Kühn, Simone
2016-06-01
Dual n-back WM training has been shown to produce broad transfer effects to different untrained cognitive functions. The task is demanding to the cognitive system because it includes a bi-modal (auditory and visual) dual-task component. A previous WM training study showed increased white matter integrity in the parietal lobe as well as the anterior part of the corpus callosum after visual n-back training. We investigated dual n-back training-related changes in white matter pathways. We anticipated dual n-back training to increase white matter integrity in pathways that connect brain regions related to WM processes. Additionally, we hypothesized that dual n-back training would produce more brain-wide white matter changes than single n-back training because of the involvement of two modalities and the additional dual-task coordination component of the task. The dual n-back training group showed increased white matter integrity (reflected as increased fractional anisotropy, FA) after training. The effects were mostly left lateralized as compared with changes from pretest to posttest in the passive and active control groups. Additionally, significant effects were observed in the anterior part of the corpus callosum, when the training group was compared with the passive control group. There were no changes in pretest to posttest FA changes between the passive and active control groups. The results therefore show that dual n-back training produces increased integrity in white matter pathways connecting different brain regions. The results are discussed in reference to the bi-modal dual-task component of the training task. Copyright © 2016 Elsevier Inc. All rights reserved.
Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas
2013-10-01
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.
NASA Astrophysics Data System (ADS)
Kikuchi, Takahiro; Kubo, Ryogo
2016-08-01
In energy-efficient passive optical network (PON) systems, the increase in the queuing delays caused by the power-saving mechanism of optical network units (ONUs) is an important issue. Some researchers have proposed quality-of-service (QoS)-aware ONU cyclic sleep controllers in PON systems. We have proposed proportional (P) and proportional-derivative (PD)-based controllers to maintain the average queuing delay at a constant level regardless of the amount of downstream traffic. However, sufficient performance has not been obtained because of the sleep period limitation. In this paper, proportional-integral (PI) and proportional-integral-derivative (PID)-based controllers considering the sleep period limitation, i.e., using an anti-windup (AW) technique, are proposed to improve both the QoS and power-saving performance. Simulations confirm that the proposed controllers provide better performance than conventional controllers in terms of the average downstream queuing delay and the time occupancy of ONU active periods.
NASA Astrophysics Data System (ADS)
Charton, Remi; Bertotti, Giovanni; Arantegui, Angel; Luber, Tim; Redfern, Jonathan
2017-04-01
Traditional models of passive margin evolution suggesting generalised regional subsidence with rates decreasing after the break-up have been questioned in the last decade by a number of detailed studies. The occurrence of episodic km-scale exhumation well within the post-rift stage, possibly associated with significant erosion, have been documented along the Atlantic continental margins. Despite the wide-spread and increasing body of evidence supporting post-rift exhumation, there is still limited understanding of the mechanism or scale of these phenomena. Most of these enigmatic vertical movements have been discovered using low-temperature geochronology and time-temperature modelling along strike of passive margins. As proposed in previous work, anomalous upward movements in the exhuming domain are coeval with higher-than-normal downward movements in the subsiding domain. These observations call for an integrated analysis of the entire source-to-sink system as a pre-requisite for a full understanding of the involved tectonics. We reconstruct the geological evolution of a 50km long transect across the Moroccan passive margin from the Western Anti-Atlas (Ifni area) to the offshore passive margin basin. Extending the presently available low-temperature geochronology database and using a new stratigraphic control of the Mesozoic sediments, we present a reconstruction of vertical movements in the area. Further, we integrate this with the analysis of an offshore seismic line and the pattern of vertical movements in the Anti-Atlas as documented in Gouiza et al. (2016). The results based on sampled rocks indicate exhumation by circa 6km after the Variscan orogeny until the Middle Jurassic. During the Late Jurassic to Early Cretaceous the region was subsequently buried by 1-2km, and later exhumed by 1-2km from late Early/Late Cretaceous onwards. From the Permian to present day, the Ifni region is the link between the generally exhuming Anti Atlas and continually subsiding offshore basins. Along strike, the rifted margin exhibits significant variability in the architecture of the Mesozoic deposits onshore and present day offshore shelf. North of the High Atlas, the ca. 2km thick Mesozoic succession is characterized by continuous sedimentation. South of the High Atlas the thickness increases to 6km in the offshore Tarfaya basin, where the Jurassic succession may be separated by a regional unconformity. Further south, close to the border with Mauritania, the Triassic to Jurassic succession is missing and the Cretaceous attains less than a kilometre of strata. In the Meseta and High Atlas, studies documented a similar kinematic Mesozoic evolution, whereas in the Anti-Atlas Gouiza et al. (2016) and this study document a different evolution. In addition, the kinematic evolution of the Reguibate domain to the south is also different from the other segments, showing post-Variscan exhumation with amplitudes lower than the ones observed in the Anti-Atlas. These observations highlight changes in the pattern of enigmatic movements along the same passive continental margin thereby showing that passive continental margins are more complex than expected only a few years ago. Gouiza, M., Charton, R., Bertotti, G., Andriessen, P. and Storms, J.E.A., 2016. Post-Variscan evolution of the Anti-Atlas belt of Morocco constrained from low-temperature geochronology: International Journal of Earth Sciences.
NASA Technical Reports Server (NTRS)
Krainak, Michael; Merritt, Scott
2016-01-01
Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.
Small Radioisotope Power System Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis
2013-01-01
In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.
Eikonal approximation for proton-helium electron-capture processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, K.; Toshima, N.; Ishihara, T.
1985-09-01
We calculate the capture cross sections for H/sup +/+He..-->..H+He/sup +/, treating the passive electron explicitly in a distorted-wave formalism based on the eikonal approximation. It is found that the shape of the differential cross sections is influenced considerably by the interaction between the passive electron and the incident proton, while the integrated cross sections are much less sensitive to that. The differential cross section at 293 keV agrees well with the experimental data except at extremely small scattering angles. The forward peak is reproduced well at higher energies. The integrated cross sections are in excellent agreement with experiments for themore » incident energy above 250 keV.« less
Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation
NASA Technical Reports Server (NTRS)
Roberts, Barry; Bhanu, Bir
1992-01-01
Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.
1 kW peak power passively Q-switched Nd(3+)-doped glass integrated waveguide laser.
Charlet, B; Bastard, L; Broquin, J E
2011-06-01
Embedded optical sensors always require more compact, stable, and powerful laser sources. In this Letter, we present a fully integrated passively Q-switched laser, which has been realized by a Ag(+)/Na(+) ion exchange on a Nd(3+)-doped phosphate glass. A BDN-doped cellulose acetate thick film is deposited on the waveguide, acting as an upper cladding and providing a distributed saturable absorption. At λ=1054 nm, the device emits pulses of 1.3 ns FWHM with a repetition rate of 28 kHz. These performances, coupled with the 1 kW peak power, are promising for applications such as supercontinuum generation. © 2011 Optical Society of America
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less
Optical effects module and passive sample array
NASA Technical Reports Server (NTRS)
Linton, R. C.
1983-01-01
The Optical Effects Module (OEM) has the objective to monitor the effects of the deposition and adhesion of both molecular species and particles on optical surfaces in the Shuttle cargo bay environment. The OEM performs inflight measurements of the ultraviolet (253.7 nm) transmittance and diffuse reflectance of five optical samples at regular intervals throughout the orbital mission. Most of the obtained results indicates or implies the absence of a significant accumulation of contamination other than particulates on the samples. The contaminant species (or particulates) adhering to the samples of the Passive Sample Array (PSA) were identified by means of Auger and X-ray energy dispersive analyses. The elements silicon, chlorine, and phosphorus were discovered.
Petrich, Nicholas T.; Spak, Scott N.; Carmichael, Gregory R.; Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C.
2013-01-01
Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semi-volatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semi-volatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations; simulates nonlinear PUF uptake; and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, Illinois during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds, and confirming quasi-linear uptake. Results indicate hourly, daily and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%). PMID:23837599
Munitions Detection Using Unmanned Underwater Vehicles Equipped with Advanced Sensors
2012-06-29
buried target. The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal magnetic-field vector components at 3...surveys. Figure 6 shows the RTG magnetic sensor in both an open (showing the fluxgate magnetometers ) and enclosed state (mode for integration onto...7.6 Real-time Tracking Gradiometer (RTG) System The RTG is a small passive magnetic sensor using fluxgate magnetometers measuring 3- orthogonal
Hybridization of active and passive elements for planar photonic components and interconnects
NASA Astrophysics Data System (ADS)
Pearson, M.; Bidnyk, S.; Balakrishnan, A.
2007-02-01
The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.
Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan (TCS), can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling meth...
Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.
2007-01-01
The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.
Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C
2011-01-01
The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.
Silva, Sérgio M C; Hu, Longsheng; Sousa, João J S; Pais, Alberto A C C; Michniak-Kohn, Bozena B
2012-04-01
The present work reports the evaluation of three nonionic ether-monohydroxyl surfactants (C(12)E(1), C(12)E(5,) and C(12)E(8)) as skin permeation enhancers in the transdermal drug delivery of two drugs: ondansetron hydrochloride and diltiazem hydrochloride, formulated as hydrogels. The enhancers are used alone, or in combination with iontophoresis (0.3 mA - 8h). After 1h of pre-treatment with 0.16 M enhancer solutions in propylene glycol (PG), passive and iontophoretic 24 h in vitro studies across dermatomed porcine skin were performed using vertical Franz diffusion cells. Data obtained showed that the nonionic surfactant C(12)E(5) was the most effective permeation enhancer, both for the passive process as well as for samples subjected to iontophoresis, resulting in cumulative amounts of ondansetron HCl after 24h of approximately 93 μg/cm(2) and 336 μg/cm(2), respectively. Data obtained using diltiazem HCl showed a similar trend. The use of the nonionic surfactant C(12)E(5) resulted in higher enhancement ratios (ER) in passive studies, but C(12)E(8) yielded slightly higher values of drug permeated (2678 μg/cm(2)) than C(12)E(5) (2530 μg/cm(2)) when iontophoresis was also employed. Skin integrity studies were performed to assess potential harmful effects on the tissues resulting from the compounds applied and/or from the methodology employed. Skin samples used in permeation studies visualized by light microscopy and Scanning Electron Microscopy (SEM) at different levels of magnification did not show significant morphological and structural changes, when compared to untreated samples. Complementary studies were performed to gain information regarding the relative cytotoxicity of the penetration enhancers on skin cells. MTS assay data using human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) indicated that HEK are more sensitive to the presence of the enhancers than HDF and that the toxicity of these compounds is enhancer molecular weight dependent. Copyright © 2011 Elsevier B.V. All rights reserved.
Passive sampling for the isotopic fingerprinting of atmospheric mercury
NASA Astrophysics Data System (ADS)
Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.
2017-12-01
Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to experimental work, initial field data will be presented including a transect of increasing distance from a known strong source of Hg (Mt. Amiata mine, Italy), downwind of Kilauea volcano in Hawaii, and several other locales including the Arctic station Alert and various sites across Ontario, Canada.
Estabrooks, Paul; You, Wen; Hedrick, Valisa; Reinholt, Margaret; Dohm, Erin; Zoellner, Jamie
2017-01-19
A primary challenge for behavior change strategies is ensuring that interventions can be effective while also attracting a broad and representative sample of the target population. The purpose of this case-study was to report on (1) the reach of a randomized controlled trial targeting reduced sugary beverages, (2) potential participant characteristic differences based on active versus passive recruitment strategies, and (3) recruitment strategy cost. Demographic and recruitment information was obtained for 8 counties and for individuals screened for participation. Personnel activities and time were tracked. Costs were calculated and compared by active versus passive recruitment. Six-hundred and twenty, of 1,056 screened, individuals were eligible and 301enrolled (77% women; 90% white; mean income $21,981 ± 16,443). Eighty-two and 44% of those responding to passive and active methods, respectively, enrolled in the trial. However, active recruitment strategies yielded considerably more enrolled (active = 199; passive = 102) individuals. Passive recruitment strategies yielded a less representative sample in terms of gender (more women), education (higher), and income (higher; p's <0.05). The average cost of an actively recruited and enrolled participant was $278 compared to $117 for a passively recruited and enrolled participant. Though passive recruitment is more cost efficient it may reduce the reach of sugary drink reduction strategies in lower educated and economic residents in rural communities. Clinicaltrials.gov; ID: NCT02193009 , July 2014, retrospectively registered.
Westinghouse Small Modular Reactor passive safety system response to postulated events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. C.; Wright, R. F.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. Themore » integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)« less
Carratalá, A; Moreno-González, R; León, V M
2017-01-01
The occurrence and seasonal distribution of polycyclic aromatic hydrocarbons (PAHs) and legacy and current-use pesticides (CUPs) in air were characterized around the Mar Menor lagoon using both active and passive sampling devices. The seasonal distribution of these pollutants was determined at 6 points using passive samplers. Passive sampler sampling rates were estimated for all detected analytes using an active sampler, considering preferentially winter data, due to probable losses in active sampling during summer (high temperatures and solar irradiation). The presence of 28 compounds (14 CUPs, 11 PAHs and 3 organochlorinated pesticides) were detected in air by polyurethane passive sampling. The most commonly detected contaminants (>95% of samples) in air were chlorpyrifos, chlorpyrifos-methyl and phenanthrene. The maximum concentrations corresponded to phenanthrene (6000 pg m -3 ) and chlorpyrifos (4900 pg m -3 ). The distribution of contaminants was spatially and seasonally heterogeneous. The highest concentrations of PAHs were found close to the airport, while the highest concentrations of pesticides were found in the influence area of agricultural fields (western stations). PAH and herbicide concentrations were higher in winter than in the other seasons, although some insecticides such as chlorpyrifos were more abundant in autumn. The presence of PAHs and legacy and current-use pesticides in air confirmed their transference potential to marine coastal areas such as the Mar Menor lagoon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics.
Rao, Sandro; Pangallo, Giovanni; Della Corte, Francesco Giuseppe
2016-01-06
Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34-40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.
Hu, Jingwen; Flannagan, Carol A; Bao, Shan; McCoy, Robert W; Siasoco, Kevin M; Barbat, Saeed
2015-11-01
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers' head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset. Parametric studies with a total of 4800 MADYMO simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks and on the optimal restraint designs. By combining the results for the delta-V and head position distribution changes, a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can adapt to the specific delta-V and pre-crash posture. This study demonstrated the potential for further reducing occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature. Future analyses considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA or active safety systems.
High Bandwidth, Multi-Purpose Passive Radar Receiver Design For Aerospace and Geoscience Targets
NASA Astrophysics Data System (ADS)
Vertatschitsch, Laura
Passive radar permits inexpensive and stealthy detection and tracking of aerospace and geoscience targets. Transmitters of opportunity such as commercial FM broadcast, DTV broadcast, and cell phone towers are already illuminating many populated areas with continuous power. Passive radar receivers can be located at a distance from the transmitter, and can sense this direct transmission as well as any reflections from ground clutter, aircraft, ionospheric turbulence and meteor trails. The 100% duty cycle allows for long coherent integration, increasing the sensitivity of these instruments greatly. Traditional radar receivers employ analog front end downconverters to translate the radio frequency spectrum to an intermediate frequency (IF) for sampling and signal processing. Such downconverters limit the spectrum available for study, and can introduce nonlinearities which limit the detectability of weak signals in the presence of strong signals. With suitably fast digitizers one can bypass the downconversion stage completely. Very fast digitizers may have relatively few bits, but precision is recovered in subsequent signal processing. We present a new passive radar receiver designed to utilize a broad spectrum of commercial transmitters without the use of a front end analog downconverter. The receiver centers around a Reconfigurable Open Architecture Computing Hardware (ROACH) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) group. Fast sampling rates (8-bit samples as fast as 3 GSps) combined with 640 multiply/addition operations on the Virtex-5 FPGA centered on the ROACH allows for coherent processing of broad spectrum and dynamic decision-making on one device all while sharing a single front end, putting this device on the cutting edge of wideband receiver technology. The radar is also designed to support mobile operation. It fits within a 19'' rack, it is equipped with solid state hard drives, and can run off an uninterruptible power supply (UPS) for up to 1 hour of continuous operation. In this document we provide technical details of the hardware, firmware, and software of the system and design strategies and decisions. We cover the topic of coherent processing for passive radar, specifically an overview of the cross-ambiguity function as a detection mechanism. While the applications of a system like this are incredibly broad, the initial validation and performance analysis was applied specifically to detection of aircraft using Digital Television (DTV) broadcast as an illuminator. We present results of both stationary and mobile operation. In stationary operation, the same helicopter has been detected using two different DTV transmissions. Early mobile operation results show the Doppler-spread ground clutter and possible detection of aircraft. In addition to the fully-functional aircraft detection signal chain, alternative FPGA designs are presented with modes for fast sampling on two antennas or four antennas, with access to an aggregate 240 MHz of spectrum, with 8-bit samples. At these extremely high data rates, moderate data loss occurs while saving this data to disk, but as detailed within this document, it can be accounted for and the effects minimalized, still allowing for detection of aircraft. With these modes, FM transmission and DTV transmission can be captured synchronously from a single antenna and digitizer feed, an exciting result that offers promise for both aerospace and geoscience applications.
NASA Astrophysics Data System (ADS)
Geary, Kevin
The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.
Quantitative Frequency-Domain Passive Cavitation Imaging
Haworth, Kevin J.; Bader, Kenneth B.; Rich, Kyle T.; Holland, Christy K.; Mast, T. Douglas
2017-01-01
Passive cavitation detection has been an instrumental technique for measuring cavitation dynamics, elucidating concomitant bioeffects, and guiding ultrasound therapies. Recently, techniques have been developed to create images of cavitation activity to provide investigators with a more complete set of information. These techniques use arrays to record and subsequently beamform received cavitation emissions, rather than processing emissions received on a single-element transducer. In this paper, the methods for performing frequency-domain delay, sum, and integrate passive imaging are outlined. The method can be applied to any passively acquired acoustic scattering or emissions, including cavitation emissions. In order to compare data across different systems, techniques for normalizing Fourier transformed data and converting the data to the acoustic energy received by the array are described. A discussion of hardware requirements and alternative imaging approaches are additionally outlined. Examples are provided in MATLAB. PMID:27992331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunden, Melissa; Faulkner, David; Heredia, Elizabeth
2012-10-01
This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison betweenmore » different gas sampling methods, and the effect of different ventilation conditions.« less
Xu, Wei; Riley, Erin A; Austin, Elena; Sasakura, Miyoko; Schaal, Lanae; Gould, Timothy R; Hartin, Kris; Simpson, Christopher D; Sampson, Paul D; Yost, Michael G; Larson, Timothy V; Xiu, Guangli; Vedal, Sverre
2017-03-01
Air pollution exposure prediction models can make use of many types of air monitoring data. Fixed location passive samples typically measure concentrations averaged over several days to weeks. Mobile monitoring data can generate near continuous concentration measurements. It is not known whether mobile monitoring data are suitable for generating well-performing exposure prediction models or how they compare with other types of monitoring data in generating exposure models. Measurements from fixed site passive samplers and mobile monitoring platform were made over a 2-week period in Baltimore in the summer and winter months in 2012. Performance of exposure prediction models for long-term nitrogen oxides (NO X ) and ozone (O 3 ) concentrations were compared using a state-of-the-art approach for model development based on land use regression (LUR) and geostatistical smoothing. Model performance was evaluated using leave-one-out cross-validation (LOOCV). Models performed well using the mobile peak traffic monitoring data for both NO X and O 3 , with LOOCV R 2 s of 0.70 and 0.71, respectively, in the summer, and 0.90 and 0.58, respectively, in the winter. Models using 2-week passive samples for NO X had LOOCV R 2 s of 0.60 and 0.65 in the summer and winter months, respectively. The passive badge sampling data were not adequate for developing models for O 3 . Mobile air monitoring data can be used to successfully build well-performing LUR exposure prediction models for NO X and O 3 and are a better source of data for these models than 2-week passive badge data.
Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen
2017-09-15
Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10 -3 -3.6×10 -1 nmol/L in the influent and from 1.3×10 -2 -2.2×10 -1 nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.
Licen, Sabina; Tolloi, Arianna; Briguglio, Sara; Piazzalunga, Andrea; Adami, Gianpiero; Barbieri, Pierluigi
2016-05-15
Benzene is known as a human carcinogen, whose annual mean concentration exceeded the EU limit value (5 μg/m(3)) only in very few locations in Europe during 2012. Nevertheless 10% to 12% of the EU-28 urban population was still exposed to benzene concentrations above the WHO reference level of 1.7 μg/m(3). WHO recommended a wise choice of monitoring stations positioning in proximity of "hot spots" to define and assess the representativeness of each site paying attention to micro-scale conditions. In this context benzene and other VOCs of health concern (toluene, ethylbenzene, xylenes) concentrations have been investigated, with weekly passive sampling for one year, both in outdoor and indoor air in inhabited buildings in close proximity (180 m far up to 1100 m) of an integrated steel plant in NE of Italy. Even though the outdoor mean annual benzene concentration was below the EU limit in every site, in the site closest to the works the benzene concentration was above 5 μg/m(3) in 14 weeks. These events were related to a benzene over toluene ratio above one, which is diagnostic for the presence of an industrial source, and to meteorological factors. These information pointed at the identification of the coke ovens of the plant as the dominant outdoor source of benzene. Benzene gradients with the increasing distance from coke ovens have been found for both outdoor and indoor air. Linear models linking outdoor to indoor benzene concentrations have been then identified, allowing to estimate indoor exposure from ambient air benzene data. In the considered period, a narrow area of about 250 m appeared impacted at a higher degree than the other sites both considering outdoor and indoor air. Passive BTEX sampling permits to collect information on both ambient air and daily life settings, allowing to assemble a valuable data support for further environmental cost-benefit analyses. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of water-based recovery on blood lactate removal after high-intensity exercise.
Lucertini, Francesco; Gervasi, Marco; D'Amen, Giancarlo; Sisti, Davide; Rocchi, Marco Bruno Luigi; Stocchi, Vilberto; Benelli, Piero
2017-01-01
This study assessed the effectiveness of water immersion to the shoulders in enhancing blood lactate removal during active and passive recovery after short-duration high-intensity exercise. Seventeen cyclists underwent active water- and land-based recoveries and passive water and land-based recoveries. The recovery conditions lasted 31 minutes each and started after the identification of each cyclist's blood lactate accumulation peak, induced by a 30-second all-out sprint on a cycle ergometer. Active recoveries were performed on a cycle ergometer at 70% of the oxygen consumption corresponding to the lactate threshold (the control for the intensity was oxygen consumption), while passive recoveries were performed with subjects at rest and seated on the cycle ergometer. Blood lactate concentration was measured 8 times during each recovery condition and lactate clearance was modeled over a negative exponential function using non-linear regression. Actual active recovery intensity was compared to the target intensity (one sample t-test) and passive recovery intensities were compared between environments (paired sample t-tests). Non-linear regression parameters (coefficients of the exponential decay of lactate; predicted resting lactates; predicted delta decreases in lactate) were compared between environments (linear mixed model analyses for repeated measures) separately for the active and passive recovery modes. Active recovery intensities did not differ significantly from the target oxygen consumption, whereas passive recovery resulted in a slightly lower oxygen consumption when performed while immersed in water rather than on land. The exponential decay of blood lactate was not significantly different in water- or land-based recoveries in either active or passive recovery conditions. In conclusion, water immersion at 29°C would not appear to be an effective practice for improving post-exercise lactate removal in either the active or passive recovery modes.
Evaluating the precision of passive sampling methods using PRCs in the water column
Low-Density polyethylene (LDPE) sheets are often used as passive samplers for aquatic environmental monitoring to measure the dissolved concentrations of hydrophobic organic contaminants (HOCs). HOCs that are freely dissolved in water (Cfree) will partition into the LDPE until a ...
A challenge in environmental passive sampling is determining when equilibrium is achieved between the sampler, target contaminants, and environmental phases. A common approach is the use of performance reference compounds (PRCs) to indicate degree of equilibrium. One logistical...
Wang, Rui; Zhang, Peng; Lv, Xin; Gao, Chunshi; Song, Yuanyuan; Li, Zhijun; Yu, Yaqin; Li, Bo
2016-07-29
Many studies have suggested exposure to secondhand smoke (SHS) is a risk factor for various somatic diseases, but only few studies based on small sample size or specific groups have explored the association between passive smoking and mental distress. We performed this study to examine the relationship between passive smoking and mental distress in adult never-smokers of north-east China. Multistage, stratified random cluster sampling design was used in this cross-sectional study in 2012. A total of 12 978 never-smokers from Jilin, north-east China, were included. Data on passive smoking and baseline characteristics were collected by face-to-face interviews. The 12-item General Health Questionnaire (GHQ-12) was used to measure mental health status. Rao-Scott χ(2) tests were used to compare the prevalence between different groups; multivariable logistic regression was used to assess the association between passive smoking and mental distress, and Spearman rank analysis was employed to assess the correlation between passive smoking and GHQ-12 scores. The estimated prevalence of mental distress among never-smokers in Jilin province is 24.5%, and the estimated prevalence of passive smoking among the mental distressing group is 65.0%. After adjusting for gender, age, region, body mass index (BMI), occupation, marriage, education, drinking status and family monthly income per capita, passive smoking conferred a risk for mental distress (adjusted OR=1.26, 95% CI 1.13 to 1.40). A high proportion of adults, especially women, were passive smokers at home, but for men, passive smoking was more common at workplace. The more frequently participants exposed to SHS, the higher GHQ-12 scores they got. Passive smoking is an important risk factor for mental distress in never-smokers of Jilin province, which reminds Chinese government of increasing the awareness of public health and take measure to prevent SHS, especially with regard to SHS exposure at home and workplace. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M
2015-12-01
Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.
Electrical properties of spin coated ultrathin titanium oxide films on GaAs
NASA Astrophysics Data System (ADS)
Dutta, Shankar; Pal, Ramjay; Chatterjee, Ratnamala
2015-04-01
In recent years, ultrathin (<50 nm) metal oxide films have been being extensively studied as high-k dielectrics for future metal oxide semiconductor (MOS) technology. This paper discusses deposition of ultrathin TiO2 films (˜10 nm) on GaAs substrates (one sulfur-passivated, another unpassivated) by spin coating technique. The sulfur passivation is done to reduce the surface states of GaAs substrate. After annealing at 400 °C in a nitrogen environment, the TiO2 films are found to be polycrystalline in nature with rutile phase. The TiO2 films exhibit consistent grain size of 10-20 nm with thickness around 10-12 nm. Dielectric constants of the films are found to be 65.4 and 47.1 corresponding to S-passivated and unpassivated substrates, respectively. Corresponding threshold voltages of the MOS structures are measured to be -0.1 V to -0.3 V for the S-passivated and unpassivated samples, respectively. The S-passivated TiO2 film showed improved (lower) leakage current density (5.3 × 10-4 A cm-2 at 3 V) compared to the unpassivated film (1.8 × 10-3 A/cm2 at 3 V). Dielectric breakdown-field of the TiO2 films on S-passivated and unpassivated GaAs samples are found to be 8.4 MV cm-1 and 7.2 MV cm-1 respectively.
Edwards, Mervyn; Nathanson, Andrew; Carroll, Jolyon; Wisch, Marcus; Zander, Oliver; Lubbe, Nils
2015-01-01
Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs-for example, the European New Car Assessment Programme (Euro NCAP)-are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis. The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB. A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car. The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using "harm"-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost. A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.
A Microfluidic Interface for the Culture and Sampling of Adiponectin from Primary Adipocytes
Godwin, Leah A.; Brooks, Jessica C.; Hoepfner, Lauren D.; Wanders, Desiree; Judd, Robert L.; Easley, Christopher J.
2014-01-01
Secreted from adipose tissue, adiponectin is a vital endocrine hormone that acts in glucose metabolism, thereby establishing its crucial role in diabetes, obesity, and other metabolic disease states. Insulin exposure to primary adipocytes cultured in static conditions has been shown to stimulate adiponectin secretion. However, conventional, static methodology for culturing and stimulating adipocytes falls short of truly mimicking physiological environments. Along with decreases in experimental costs and sample volume, and increased temporal resolution, microfluidic platforms permit small-volume flowing cell culture systems, which more accurately represent the constant flow conditions through vasculature in vivo. Here, we have integrated a customized primary tissue culture reservoir into a passively operated microfluidic device made of polydimethylsiloxane (PDMS). Fabrication of the reservoir was accomplished through unique PDMS “landscaping” above sampling channels, with a design strategy targeted to primary adipocytes to overcome issues of positive cell buoyancy. This reservoir allowed three-dimensional culture of primary murine adipocytes, accurate control over stimulants via constant perfusion, and sampling of adipokine secretion during various treatments. As the first report of primary adipocyte culture and sampling within microfluidic systems, this work sets the stage for future studies in adipokine secretion dynamics. PMID:25423362
An unattended device for high-voltage sampling and passive measurement of thoron decay products.
Gierl, Stefanie; Meisenberg, Oliver; Haninger, Thomas; Wielunski, Marek; Tschiersch, Jochen
2014-02-01
An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m(3) × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4-9.9 Bq/m(3) of thoron decay products were measured.
Corrosion protection of reusable surgical instruments.
Shah, Sadiq; Bernardo, Mildred
2002-01-01
To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.
NASA Astrophysics Data System (ADS)
Lo, Mu-Chieh; Guzmán, Robinson; Ali, Muhsin; Santos, Rui; Augustin, Luc; Carpintero, Guillermo
2017-10-01
We report on an optical frequency comb with 14nm (~1.8 THz) spectral bandwidth at -3 dB level that is generated using a passively mode-locked quantum-well (QW) laser in photonic integrated circuits (PICs) fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extra-cavity SOA as booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with ultrafast pulse that is 0.35-ps-wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
The Experimental Breeder Reactor II seismic probabilistic risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roglans, J; Hill, D J
1994-02-01
The Experimental Breeder Reactor II (EBR-II) is a US Department of Energy (DOE) Category A research reactor located at Argonne National Laboratory (ANL)-West in Idaho. EBR-II is a 62.5 MW-thermal Liquid Metal Reactor (LMR) that started operation in 1964 and it is currently being used as a testbed in the Integral Fast Reactor (IFR) Program. ANL has completed a Level 1 Probabilistic Risk Assessment (PRA) for EBR-II. The Level 1 PRA for internal events and most external events was completed in June 1991. The seismic PRA for EBR-H has recently been completed. The EBR-II reactor building contains the reactor, themore » primary system, and the decay heat removal systems. The reactor vessel, which contains the core, and the primary system, consisting of two primary pumps and an intermediate heat exchanger, are immersed in the sodium-filled primary tank, which is suspended by six hangers from a beam support structure. Three systems or functions in EBR-II were identified as the most significant from the standpoint of risk of seismic-induced fuel damage: (1) the reactor shutdown system, (2) the structural integrity of the passive decay heat removal systems, and (3) the integrity of major structures, like the primary tank containing the reactor that could threaten both the reactivity control and decay heat removal functions. As part of the seismic PRA, efforts were concentrated in studying these three functions or systems. The passive safety response of EBR-II reactor -- both passive reactivity shutdown and passive decay heat removal, demonstrated in a series of tests in 1986 -- was explicitly accounted for in the seismic PRA as it had been included in the internal events assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less
Annual variability in the radiocarbon age and source of dissolved CO2 in a peatland stream.
Garnett, Mark H; Dinsmore, Kerry J; Billett, Michael F
2012-06-15
Radiocarbon dating has the capacity to significantly improve our understanding of the aquatic carbon cycle. In this study we used a new passive sampler to measure the radiocarbon ((14)C) and stable carbon (δ(13)C) isotopic composition of dissolved CO(2) for the first time in a peatland stream throughout a complete year (May 2010-June 2011). The in-stream sampling system collected time-integrated samples of CO(2) continuously over approximately 1 month periods. The rate of CO(2) trapping was proportional to independently measured streamwater CO(2) concentrations, demonstrating that passive samplers can be used to estimate the time-averaged dissolved CO(2) concentration of streamwater. While there was little variation and no clear trend in δ(13)CO(2) values (suggesting a consistent CO(2) source), we found a clear temporal pattern in the (14)C concentration of dissolved CO(2). The (14)C age of CO(2) varied from 707±35 to 1210±39 years BP, with the youngest CO(2) in the autumn and oldest in spring/early summer. Mean stream discharge and (14)C content of dissolved CO(2) were positively correlated. We suggest that the observed pattern in the (14)C content of dissolved CO(2) reflects changes in its origin, with older carbon derived from deeper parts of the peat profile contributing proportionally more gaseous carbon during periods of low stream flow. Copyright © 2012 Elsevier B.V. All rights reserved.
An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.
Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen
2010-02-01
An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.
Enhancing the Performance of Passive Teleoperation Systems via Cutaneous Feedback.
Pacchierotti, Claudio; Tirmizi, Asad; Bianchini, Gianni; Prattichizzo, Domenico
2015-01-01
We introduce a novel method to improve the performance of passive teleoperation systems with force reflection. It consists of integrating kinesthetic haptic feedback provided by common grounded haptic interfaces with cutaneous haptic feedback. The proposed approach can be used on top of any time-domain control technique that ensures a stable interaction by scaling down kinesthetic feedback when this is required to satisfy stability conditions (e.g., passivity) at the expense of transparency. Performance is recovered by providing a suitable amount of cutaneous force through custom wearable cutaneous devices. The viability of the proposed approach is demonstrated through an experiment of perceived stiffness and an experiment of teleoperated needle insertion in soft tissue.
NASA Astrophysics Data System (ADS)
Ji, Wei
2013-07-01
Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.
Millimeter And Submillimeter-Wave Integrated Circuits On Quartz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter
1995-01-01
Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.
Potassium ions in SiO2: electrets for silicon surface passivation
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Wilshaw, Peter R.
2018-01-01
This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5 × 1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV < 7 cm s-1, in 1 Ω cm n-type material. This level of charge stability and passivation effectiveness has not been previously reported. Overall, this is a new and promising methodology to enhance surface passivation for the industrial manufacture of silicon optoelectronic devices.
Passivation of silicon surfaces by heat treatment in liquid water at 110 °C
NASA Astrophysics Data System (ADS)
Nakamura, Tomohiko; Sameshima, Toshiyuki; Hasumi, Masahiko; Mizuno, Tomohisa
2015-10-01
We report the effective passivation of silicon surfaces by heating single-crystalline silicon substrates in liquid water at 110 °C for 1 h. High photo-induced effective minority carrier lifetimes τeff were obtained ranging from 8.3 × 10-4 to 3.1 × 10-3 s and from 1.2 × 10-4 to 6.0 × 10-4 s for the n- and p-type samples, respectively, under 635 nm light illumination, while the τeff values of the initial bare samples were lower than 1.2 × 10-5 s. The heat treatment in liquid water at 110 °C for 1 h resulted in low surface recombination velocities ranging from 7 to 34 cm/s and from 49 to 250 cm/s for the n- and p-type samples, respectively. The photo-conductivity of the n-type sample was increased from 3.8 × 10-3 (initial) to 1.4 × 10-1 S/cm by the present heat treatment under air-mass (AM) 1.5 light illumination at 100 mW/cm2. The thickness of the passivation layer was estimated to be only approximately 0.7 nm. Metal-insulator-semiconductor-type solar cells were demonstrated with Al and Au metal formation on the passivated surface. Rectified current voltage and solar cell characteristics were observed. The open circuit voltages were obtained to be 0.52 and 0.49 V under AM 1.5 light illumination at 100 mW/cm2 for the n- and p-type samples, respectively.
Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira
2017-12-01
Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.
A study of active learning methods for named entity recognition in clinical text.
Chen, Yukun; Lasko, Thomas A; Mei, Qiaozhu; Denny, Joshua C; Xu, Hua
2015-12-01
Named entity recognition (NER), a sequential labeling task, is one of the fundamental tasks for building clinical natural language processing (NLP) systems. Machine learning (ML) based approaches can achieve good performance, but they often require large amounts of annotated samples, which are expensive to build due to the requirement of domain experts in annotation. Active learning (AL), a sample selection approach integrated with supervised ML, aims to minimize the annotation cost while maximizing the performance of ML-based models. In this study, our goal was to develop and evaluate both existing and new AL methods for a clinical NER task to identify concepts of medical problems, treatments, and lab tests from the clinical notes. Using the annotated NER corpus from the 2010 i2b2/VA NLP challenge that contained 349 clinical documents with 20,423 unique sentences, we simulated AL experiments using a number of existing and novel algorithms in three different categories including uncertainty-based, diversity-based, and baseline sampling strategies. They were compared with the passive learning that uses random sampling. Learning curves that plot performance of the NER model against the estimated annotation cost (based on number of sentences or words in the training set) were generated to evaluate different active learning and the passive learning methods and the area under the learning curve (ALC) score was computed. Based on the learning curves of F-measure vs. number of sentences, uncertainty sampling algorithms outperformed all other methods in ALC. Most diversity-based methods also performed better than random sampling in ALC. To achieve an F-measure of 0.80, the best method based on uncertainty sampling could save 66% annotations in sentences, as compared to random sampling. For the learning curves of F-measure vs. number of words, uncertainty sampling methods again outperformed all other methods in ALC. To achieve 0.80 in F-measure, in comparison to random sampling, the best uncertainty based method saved 42% annotations in words. But the best diversity based method reduced only 7% annotation effort. In the simulated setting, AL methods, particularly uncertainty-sampling based approaches, seemed to significantly save annotation cost for the clinical NER task. The actual benefit of active learning in clinical NER should be further evaluated in a real-time setting. Copyright © 2015 Elsevier Inc. All rights reserved.
Municipal waste stabilization in a reactor with an integrated active and passive aeration system.
Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna
2016-04-01
To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
The 4-8 GHz Microwave Active and Passive Spectrometer (MAPS). Volume 1: Radar section
NASA Technical Reports Server (NTRS)
Ulaby, F. T.
1973-01-01
The performance characteristics of the radar section of the prototype 4-8 GHz Microwave Active and Passive Spectrometer system are reported. Active and passive spectral responses were measured of natural, cultivated, and human-made surfaces over the 4-18 GHz region of frequencies for look angles between zero and 70 degrees and for all possible linear polarization combinations. Soil and plant samples were collected to measure their dielectric properties and moisture content. The FORTRAN program for area calculation is provided.
Evaluation of Urban Air Quality By Passive Sampling Technique
NASA Astrophysics Data System (ADS)
Nunes, T. V.; Miranda, A. I.; Duarte, S.; Lima, M. J.
Aveiro is a flat small city in the centre of Portugal, close to the Atlantic coast. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degrada- tion. In order to evaluate the urban air quality in Aveiro, a field-monitoring network by passive sampling with high space resolution was implemented. Twenty-four field places were distributed in a area of 3x3 Km2 and ozone and NO2 concentrations were measured. The site distribution density was higher in the centre, 250x250 m2 than in periphery where a 500x500 m2 grid was used. The selection of field places took into consideration the choice criteria recommendation by United Kingdom environmental authorities, and three tubes and a blank tube for each pollutant were used at each site. The sampling system was mounted at 3m from the ground usually profiting the street lampposts. Concerning NO2 acrylic tubes were used with 85 mm of length and an in- ternal diameter of 12mm, where in one of the extremities three steel grids impregnated with a solution of TEA were placed and fixed with a polyethylene end cup (Heal et al., 1999); PFA Teflon tube with 53 mm of length and 9 mm of internal diameter and three impregnated glass filters impregnated with DPE solution fixed by a teflon end cup was used for ozone sampling (Monn and Hargartner, 1990). The passive sampling method for ozone and nitrogen dioxide was compared with continuous measurements, but the amount of measurements wasnSt enough for an accurate calibration and validation of the method. Although this constraint the field observations (June to August 2001) for these two pollutants assign interesting information about the air quality in the urban area. A krigger method of interpolation (Surfer- Golden Software-2000) was applied to field data to obtain isolines distribution of NO2 and ozone concentration for the studied area. Even the used passive sampling method has many limitations it is possi- ble to say that the NO2 concentrations were strictly related with traffic intensity and in the centre 3 to 10 times higher values were observed than the incoming air to the city; on the contrary the ozone seems to be consumed where we observe the highest NO2 concentrations. Heal, M. R.; O'Donoghue, M. A. and Cape, J. N., Overestimation of Urban Nitrogen Dioxide by Passive Sampling Tubes: a comparative exposure and model study, Atmo- spheric Environment, Vol 33, pp 513-524, 1999 Monn, Ch., Hangartner, M., Passive Sampling for Ozone, J. of Air and Waste Management Association, Vol. 40, Nz 3, 1990
Evaluating the precision of passive sampling methods using PRCs in the water column.
To assess these models, four different thicknesses of low-density polyethylene (LDPE) passive samplers were co-deployed for 28 days in the water column at three sites in New Bedford Harbor, MA, USA. Each sampler was pre-loaded with six PCB performance reference compounds (PRCs) t...
Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.
Aull, Brian
2016-04-08
This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.
Powering up Technology from Passive Access to Active Integration
ERIC Educational Resources Information Center
Taylor, Shay
2015-01-01
For many educators, working with students who were deaf or hard of hearing was the need to have "access." Access to technology was the tool of choice for providing integration that has come to be so much more than gadgets. It is intercurricular--math software incorporates reading, science websites support language skills. It is…
Integrated photonics using colloidal quantum dots
NASA Astrophysics Data System (ADS)
Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.
2009-11-01
Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.
Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke
2015-01-01
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420
Kim, N Y; Dhakal, R; Adhikari, K K; Kim, E S; Wang, C
2015-05-15
A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide
2017-10-01
Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.
Assessing cellulolysis in passive treatment systems for mine drainage: a modified enzyme assay.
McDonald, Corina M; Gould, W Douglas; Lindsay, Matthew B J; Blowes, David W; Ptacek, Carol J; Condon, Peter D
2013-01-01
A modified cellulase enzyme assay was developed to monitor organic matter degradation in passive treatment systems for mine drainage. This fluorogenic substrate method facilitates assessment of exo-(1,4)-β-D-glucanase, endo-(1,4)-β-D-glucanase, and β-glucosidase, which compose an important cellulase enzyme system. The modified method was developed and refined using samples of organic carbon-amended mine tailings from field experiments where sulfate reduction was induced as a strategy for managing water quality. Sample masses (3 g) and the number of replicates ( ≥ 3) were optimized. Matrix interferences within these metal-rich samples were found to be insignificant. Application of this modified cellulase assay method provided insight into the availability and degradation of organic carbon within the amended tailings. Results of this study indicate that cellulase enzyme assays can be applied to passive treatment systems for mine drainage, which commonly contain elevated concentrations of metals. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Non-electrical-power temperature-time integrating sensor for RFID based on microfluidics
NASA Astrophysics Data System (ADS)
Schneider, Mike; Hoffmann, Martin
2011-06-01
The integration of RFID tags into packages offers the opportunity to combine logistic advantages of the technology with monitoring different parameters from inside the package at the same time. An essential demand for enhanced product safety especially in pharmacy or food industry is the monitoring of the time-temperature-integral. Thus, completely passive time-temperature-integrators (TTI) requiring no battery, microprocessor nor data logging devices are developed. TTI representing the sterilization process inside an autoclave system is a demanding challenge: a temperature of at least 120 °C have to be maintained over 45 minutes to assure that no unwanted organism remains. Due to increased temperature, the viscosity of a fluid changes and thus the speed of the fluid inside the channel increases. The filled length of the channel represents the time temperature integral affecting the system. Measurements as well as simulations allow drawing conclusions about the influence of the geometrical parameters of the system and provide the possibility of adaptation. Thus a completely passive sensor element for monitoring an integral parameter with waiving of external electrical power supply and data processing technology is demonstrated. Furthermore, it is shown how to adjust the specific TTI parameters of the sensor to different applications and needs by modifying the geometrical parameters of the system.
Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A
2014-09-01
Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacchiani, M.; Medich, C.; Rigamonti, M.
1995-09-01
The SPES-2 is a full height, full pressure experimental test facility reproducing the Westinghouse AP600 reactor with a scaling factor of 1/395. The experimental plant, designed and operated by SIET in Piacenza, consists of a full simulation of the AP600 primary core cooling system including all the passive and active safety systems. In 1992, Westinghouse, in cooperation with ENEL (Ente Nazionale per l` Energia Elettrica), ENEA (Enter per le numove Technlogie, l` Energia e l` Ambient), Siet (Societa Informazioni Esperienze Termoidraulich) and ANSALDO developed an experimental program to test the integrated behaviour of the AP600 passive safety systems. The SPES-2more » test matrix, concluded in November 1994, has examined the AP600 passive safety system response for a range of small break LOCAs at different locations on the primary system and on the passive system lines; single steam generator tube ruptures with passive and active safety systems and a main steam line break transient to demonstrate the boration capability of passive safety systems for rapid cooldown. Each of the tests has provided detailed experimental results for verification of the capability of the analysis methods to predict the integrated passive safety system behaviour. Cold and hot shakedown tests have been performed on the facility to check the characteristics of the plant before starting the experimental campaign. The paper first presents a description of the SPES-2 test facility then the main results of S01007 test {open_quotes}2{close_quotes} Cold Leg (CL) to Core Make-up Tank (CMT) pressure balance line break{close_quotes} are reported and compared with predictions performed using RELAP5/mod3/80 obtained by ANSALDO through agreement with U.S.N.R.C. (U.S. Nuclear Regulatory Commission). The SPES-2 nodalization and all the calculations here presented were performed by ANSALDO and sponsored by ENEL as a part of pre-test predictions for SPES-2.« less
Li, Juan-Ying; Tang, Janet Yat Man; Jin, Ling; Escher, Beate I
2013-12-01
Bioavailable and bioaccessible fractions of sediment-associated contaminants are considered as better dose metrics for sediment-quality assessment than total concentrations. The authors applied exhaustive solvent extraction and nondepletive equilibrium sampling techniques to sediment samples collected along the Brisbane River in South East Queensland, Australia, which range from pristine environments to urban and industry-impacted areas. The wide range of chemicals expected prevents comprehensive chemical analysis, but a battery of cell-based bioassays sheds light on mixture effects of chemicals in relation to various modes of toxic action. Toxic effects were expressed as bioanalytical equivalent concentrations (BEQs) normalized to the organic carbon content of each sediment sample. Bioanalytical equivalent concentrations from exhaustive extraction agreed fairly well with values estimated from polydimethylsiloxane passive sampling extracts via the constant organic carbon to polydimethylsiloxane partition coefficient. Agreement was best for bioassays indicative of photosynthesis inhibition and oxidative stress response and discrepancy within a factor of 3 for the induction of the aryl hydrocarbon receptor. For nonspecific cytotoxicity, BEQ from exhaustive extraction were 1 order of magnitude higher than values from equilibrium sampling, possibly because of coextraction of bioactive natural organic matter that led to an overestimation of toxicity in the exhaustive extracts, which suggests that passive sampling is better suited in combination with bioanalytical assessment than exhaustive extraction. © 2013 SETAC.
Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi
2014-11-28
Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Vu, David M; Kelly, Dominic; Heath, Paul T; McCarthy, Noel D; Pollard, Andrew J; Granoff, Dan M
2006-07-15
Group C meningococcal conjugate-vaccine effectiveness in the United Kingdom declines from ~90% in the first year to 0% between 1 and 4 years after immunization in infants immunized at 2, 3, and 4 months of age and to 61% in toddlers given a single dose. Confidence intervals are wide, and the extent of protection is uncertain. Serum samples were obtained from children 3-5 years of age who were participants in a preschool booster-vaccine trial. Serum bactericidal activity was measured with human complement. Group C anticapsular antibody concentrations were measured by a radioantigen binding assay. Passive protection was analyzed in an infant rat bacteremia model. Serum samples from UK children who had been immunized 2-3 years earlier as infants or toddlers had higher levels of radioantigen binding, bactericidal activity, and passive protection than did historical control serum samples from unimmunized children (P<.05). A higher proportion of children immunized as infants had serum bactericidal activity titers > or =1 : 4 (considered to be protective) than those immunized as toddlers (61% vs. 24%; P<.01), but there were no significant differences in the proportion of serum samples conferring passive protection (50% and 41%, respectively; P=.4). We found no evidence of lower immunity in children immunized as infants than as toddlers. On the basis of serum bactericidal activity and/or passive protection, 40%-50% of both age groups are protected at 2-3 years after immunization, which was significantly greater than in unimmunized historical controls (<5%).
Passive range estimation using dual baseline triangulation
NASA Astrophysics Data System (ADS)
Pieper, Ronald J.; Cooper, Alfred W.; Pelegris, G.
1996-03-01
Modern combat systems based on active radar sensing suffer disadvantages against low-flying targets in cluttered backgrounds. Use of passive infrared sensors with these systems, either in cooperation or as an alternative, shows potential for improving target detection and declaration range for targets crossing the horizon. Realization of this potential requires fusion of target position data from dissimilar sensors, or passive sensor measurement of target range. The availability of passive sensors that can supply both range and bearing data on such targets would significantly extend the robustness of an integrated ship self-defense system. This paper considers a new method of range determination with passive sensors based on the principle of triangulation, extending the principle to two orthogonal baselines. The performance of single or double baseline triangulation depends on sensor bearing precision and direction to target. An expression for maximum triangulation range at a required accuracy is derived as a function of polar angle relative to the center of the dual-baseline system. Limitations in the dual- baseline model due to the geometrically assessed horizon are also considered.
Novel maglev pump with a combined magnetic bearing.
Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru
2005-01-01
The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.
A passive ozone sampler based on a reaction with nitrite.
Koutrakis, P; Wolfson, J M; Bunyaviroch, A; Froehlich, S
1994-02-01
Standard ozone monitoring techniques utilize large, heavy, and expensive instruments that are not easily adapted for personal or microenvironmental monitoring. For large-scale monitoring projects that examine spatial variations of a pollutant and human exposure assessments, passive sampling devices can provide the methodology to meet monitoring and statistical goals. Recently, we developed a coated filter for ozone collection that we used in a commercially available passive sampling device. Successful preliminary results merited further validation tests, which are presented in this report. The passive ozone sampler used in field and laboratory experiments consists of a badge clip supporting a barrel-shaped body that contains two coated glass fiber filters. The principle component of the coating is nitrite ion, which in the presence of ozone is oxidized to nitrate ion on the filter medium (NO2- + O3 produces NO3- + O2). After sample collection, the filters were extracted with ultrapure water and analyzed for nitrate ion by ion chromatography. The results from laboratory and field validation tests indicated excellent agreement between the passive method and standard ozone monitoring techniques. We determined that relative humidity (ranging from 10% to 80%) and temperature (ranging from 0 degrees C to 40 degrees C) at typical ambient ozone levels (40 to 100 parts per billion) do not influence sampler performance. Face velocity and sampler orientation with respect to wind direction were found to affect the sampler's collection rate of ozone. Using a protective cup, which acts as both a wind screen and a rain cover, we were able to obtain a constant collection rate over a wide range of wind speeds.
Treweek, Jennifer B; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2016-01-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks. PMID:26492141
NASA Technical Reports Server (NTRS)
Elberg, R.
1984-01-01
This experiment has three objectives. The first and main objective is to detect a possible variation in the coefficient of thermal expansion of composite samples during a 1-year exposure to the near-Earth orbital environment. A second objective is to detect a possible change in the mechanical integrity of composite products, both simple elements and honeycomb sandwich assemblies. A third objective is to compare the behavior of two epoxy resins commonly used in space structural production. The experimental approach is to passively expose samples of epoxy matrix composite materials to the space environment and to compare preflight and postflight measurements of mechanical properties. The experiment will be located in one of the three FRECOPA (French cooperative payload) boxes in a 12-in.-deep peripheral tray that contains nine other experiments from France. The FRECOPA box will protect the samples from contamination during the launch and reentry phases of the mission. The coefficients of thermal expansion are measured on Earth before and after space exposure.
Sorimachi, Atsuyuki; Tokonami, Shinji; Kranrod, Chutima; Ishikawa, Tetsuo
2015-06-01
This paper describes preliminary experiments using a passive detector for integrating measurements of indoor thoron (²²⁰Rn) progeny concentrations with an aerosol chamber. A solid state nuclear detector (CR-39) covered with a thin aluminum-vaporized polyethylene plate (Mylar film) was used to detect only alpha particles emitted from ²¹²Po due to ²²⁰Rn progeny deposited on the detector surfaces. The initial experiment showed that Mylar film with area density of more than 5 mg cm⁻² was suitable to cut off completely alpha particles of 7.7 MeV from ²¹⁴Po of ²²²Rn progeny decay. In the experiment using the passive detector, it was observed that the net track density increased linearly with an increase of time-integrating ²²⁰Rn progeny concentration. As a result of dividing deposition rates by atom concentrations, the deposition velocity was given as 0.023 cm s⁻¹ for total ²²⁰Rn progeny. The model estimates of deposition velocities were 0.330 cm s⁻¹ for unattached ²²⁰Rn progeny and 0.0011 cm s⁻¹ for aerosol-attached ²²⁰Rn progeny using Lai-Nazaroff formulae. These deposition velocities were in the same range with the results reported in the literature. It was also found that the exposure experiments showed little influence of vertical profiles and surface orientations of the passive detector in the chamber on the detection responses, which was in good agreement with that in the model estimates. Furthermore, it was inferred that the main uncertainty of the passive detector was inhomogeneous deposition of Rn progeny onto its detection surfaces.
FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes
NASA Astrophysics Data System (ADS)
Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.
1992-02-01
A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.
2005-12-31
spectrum. 20060405003 AIRCRAFT ... ..... ... .... . ./ / "... ...... - - RECEIVER Passive radars are fundmentally bistatic (or multistatic), in nature... principle investigator has his main office, will not let us put any research equipment on their roof.) The 5th floor of Van Leer is also the home of Profs...signal already.) These splitters introduce losses that must be taken into account in system performance modeling. We must use both the 105 MHz and the
1989-09-30
Please choose a list of switches, or type ’"ok.’’ -- [3,5,7]. Changed the switch: parse-. tree --------------------------------- > ON Changed the switch...argument of the verb, especially in the passive (The car was found parked on Elm Street). Other verbs are clearer: They reported the car stolen doesn’t...object slot in the passive object passobj, as in the tree above. Strings, LXiRs and Disjunctive Rules In general, there are three basic types of rules in
1975-03-01
Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM-5500, June 1973. 18. Doll, Barry, "The Potential Use...Effect of Viewing Angle on the Ground Resolution of Satellite-Borne Sensors," ECOM-5502, July 1973. 20. Miller, Walter B., and Donald R. Veazey ...60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice of
High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland
NASA Astrophysics Data System (ADS)
Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.
2013-12-01
Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (<1km2) within a narrow valley stretching between Russells Glacier and Søndre Strømfjord in southwestern Greenland, which are part of an ongoing study of a series of seven lakes. Commercially available, 150 mL, polyethylene Passive Diffusion Bags (PDB's) were deployed in July 2013 for five days at 0.5-meter depth intervals. PDB samples were compared to samples collected with a submersible, electric pump taken immediately before PBD deployment. Preliminary CH4 concentrations and carbon isotopes for one lake were obtained in the field using a Los Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.
Passive Facebook usage undermines affective well-being: Experimental and longitudinal evidence.
Verduyn, Philippe; Lee, David Seungjae; Park, Jiyoung; Shablack, Holly; Orvell, Ariana; Bayer, Joseph; Ybarra, Oscar; Jonides, John; Kross, Ethan
2015-04-01
Prior research indicates that Facebook usage predicts declines in subjective well-being over time. How does this come about? We examined this issue in 2 studies using experimental and field methods. In Study 1, cueing people in the laboratory to use Facebook passively (rather than actively) led to declines in affective well-being over time. Study 2 replicated these findings in the field using experience-sampling techniques. It also demonstrated how passive Facebook usage leads to declines in affective well-being: by increasing envy. Critically, the relationship between passive Facebook usage and changes in affective well-being remained significant when controlling for active Facebook use, non-Facebook online social network usage, and direct social interactions, highlighting the specificity of this result. These findings demonstrate that passive Facebook usage undermines affective well-being. (c) 2015 APA, all rights reserved).
A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.
NASA Astrophysics Data System (ADS)
Chen, Guocun
The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0.1 M HCl provided a certain protection so that the pitting potential of the SRB-exposed Mo coupons was not considerably decreased. The interaction of the sulfur-containing proteins with Mo also provided mechanistic information about the adhesion of biofilm to Mo-bearing steels. Additionally, the interactions of SRB with other alloying elements, Cr and Ni, were investigated.
Optimal antibunching in passive photonic devices based on coupled nonlinear resonators
NASA Astrophysics Data System (ADS)
Ferretti, S.; Savona, V.; Gerace, D.
2013-02-01
We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.
Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking
NASA Astrophysics Data System (ADS)
Shen, Bing; Polson, Randy; Menon, Rajesh
2016-11-01
Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ~λ0/2 and designed waveguides with centre-to-centre spacing as small as 600 nm (<λ0/2.5). Our experiments show a transmission efficiency >-2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with better design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. The nanophotonic cloaks can be generally applied to all passive integrated photonics.
Use of Passive Samplers to Determine the Source of Dissolved PAHs in the Ottawa River, Toledo, Ohio
As part of a larger study on the remedy effectiveness on the Ottawa River, (Ohio, USA), research was focused on the source of PAHs to water and sediment. Polyethylene passive samplers, or polyethylene devices (PEDs), were deployed and analyzed, along with whole water samples and...
Passive samplers deployed at 25 sites for three week-long intervals were used to characterize spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in Cleveland, OH in summer 2008. The size and composition of individual particles deter...
A new passive sampling method with rapid low-cost spectral detection has recently been developed. The method makes use of an ultraviolet (UV)-transparent polymer which serves as both a concentrator for dissolved compounds, and an optical cell for UV spectral detection. Because ...
Strategy for Passivating Char Efficiently at the Pilot Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Timothy C
Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustionmore » in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation data was collected on pine and blended feedstocks and has been analyzed to characterize the exotherm of char samples. Observations and data collected while passivating char will be discussed.« less
The Distinct Build-Up Of Dense And Normal Massive Passive Galaxies In Vipers
NASA Astrophysics Data System (ADS)
Gargiulo, Adriana; Vipers Team
2017-06-01
At fixed stellar mass, the population of passive galaxies has increased its mean effective radius < Re > by a factor 5 in the last 10 Gyr, decreasing its mean stellar mass density (S = Mstar/(2πRe 2 ) by a factor >> 10. Whether this increase in < Re > is mainly due to the size-growth of individual galaxies through dry mergers, or to the fact that newly quenched galaxies have a larger size, is still matter of debate. A promising approach to shed light on this issue is to investigate the evolution of the number density of passive galaxies as a function of their mass density. In this context, massive (Mstar >10^11 Msun) passive galaxies are the most intriguing systems to study, since, in a hierarchical scenario, they are expected to accrete their stellar mass mainly by mergers. The wide area (˜ 16 sq. deg) and high sampling rate (˜ 40%) of the spectroscopic survey VIPERS allowed us to collect a sample of ˜ 2000 passive massive galaxies over the redshift range 0.5 < z < 1.0 and to study, with unprecedented statistics, the evolution of their number density as function of their mean stellar mass density in this redshift range. Taking advantage of both spectroscopic (D4000) and photometric (SED fitting) data available, we studied the age of the stellar population of passive galaxies as function both of redshift and mass density. This information, combined with the evolution of the number density allowed us to put constraints on the mass accretion scenarios of passive galaxies. In this talk I will present our results and conclusions and how they depend on the environment in which the galaxies reside.
Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing
2015-01-01
In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.
Enhanced Passive Cooling for Waterless-Power Production Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
2016-06-14
Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant,more » integrated energy systems are highly suitable for small grids, rural areas, and arid regions.« less
Multi-channel, passive, short-range anti-aircraft defence system
NASA Astrophysics Data System (ADS)
Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew
2018-01-01
The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.
NASA Astrophysics Data System (ADS)
Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.
2016-02-01
In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.
Tommasino, L; Tokonami, S
2011-05-01
Four passive sampling elements (quatrefoil) have been recently developed, which transform airborne radionuclides into surface-bound radionuclides. These samplers, once exposed, result in thin radiation sources that can be detected by any real-time or passive detector. In particular, by using a large collecting-area sampler with a low surface density (g cm(-2)), it is possible to measure radon and its decay products by beta surface-contamination monitors, which are rarely used for these applications. The results obtained to date prove that it is finally possible to carry out the measurements of radon (and its decay products) indoors, in soil and in water simply by a Pancake Geiger-Muller counter. Emphasis will be given to those measurements, which are difficult, if not impossible, to carry out with existing technologies.
76 FR 58471 - Endangered Species; File No. 15634
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... NMFS Southwest Fisheries Science Center (SWFSC), 3333 N. Torrey Pines Ct., La Jolla, CA 92037...; weigh; flipper and passive integrated transponder tag; ultrasound; tissue, blood, cloacal swab and fat...
Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent.
Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Zlabek, Vladimir; Randak, Tomas
2018-05-01
The fate of fourteen target perfluoroalkyl substances (PFASs) are described within a small stream affected by a sewage treatment plant (STP) effluent. Concentrations of target PFASs in samples of water, benthic macroinvertebrates and brown trout (Salmo trutta) are presented. Two hundred brown trout individuals originating from clean sites within the same stream were tagged and stocked into an experimental site affected by the STP's effluent. As a passive sampling approach, polar organic chemical integrative samplers (POCIS) were deployed in the water to reveal the water-macroinvertebrates-fish biotransformation processes of PFASs. Bioconcentration/bioaccumulation of target compounds was monitored one, three, and six months after stocking. Twelve of the fourteen target PFASs were found in concentration above the LOQ in at least one of the studied matrices. The compound pattern varied significantly between both the studied species and water samples. Concerning the accumulation of PFASs in fish, the highest concentrations were found in the liver of individuals sampled after three months of exposure. These concentrations rapidly decreased after six months although the water concentrations were slightly increasing during experiment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optical Spatial integration methods for ambiguity function generation
NASA Technical Reports Server (NTRS)
Tamura, P. N.; Rebholz, J. J.; Daehlin, O. T.; Lee, T. C.
1981-01-01
A coherent optical spatial integration approach to ambiguity function generation is described. It uses one dimensional acousto-optic Bragg cells as input tranducers in conjunction with a space variant linear phase shifter, a passive optical element, to generate the two dimensional ambiguity function in one exposure. Results of a real time implementation of this system are shown.
NASA Astrophysics Data System (ADS)
Garrison, M. L.
1982-06-01
Acceptance of passive solar technologies has been slow within the conventional building trades in Texas because it is a common misconception that solar is expensive, and data on local applications is severely limited or nonexistent. It is the purpose of this solar development to move passive solar design into the mainstream of public acceptance by helping to overcome and eliminate these barriers. Specifically, the goal is to develop a set of regional climatic building standards to help guide the conventional building trade toward the utilization of soft energy systems which will reduce overall consumption at a price and convenience most Texans can afford. To meet this objective, eight sample passive design structures are presented. These designs represent state of the art regional applications of passive solar space conditioning. The methodology used in the passive solar design process included: analysis of regional climatic data; analysis of historical regional building prototypes; determination of regional climatic design priorities and assets; prototypical design models for the discretionary housing market; quantitative thermal analysis of prototypical designs; and construction drawings of building prototypes.
APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING
Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...
NASA Astrophysics Data System (ADS)
Hou, Minmin; Jain, Sambhav R.; So, Hongyun; Heuser, Thomas A.; Xu, Xiaoqing; Suria, Ateeq J.; Senesky, Debbie G.
2017-11-01
In this paper, the electron mobility and sheet density of the two-dimensional electron gas (2DEG) in both air and argon environments at 600 °C were measured intermittently over a 5 h duration using unpassivated and Al2O3-passivated AlGaN/GaN (with 3 nm GaN cap) van der Pauw test structures. The unpassivated AlGaN/GaN heterostructures annealed in air showed the smallest decrease (˜8%) in 2DEG electron mobility while Al2O3-passivated samples annealed in argon displayed the largest drop (˜70%) based on the Hall measurements. Photoluminescence and atomic force microscopy showed that minimal strain relaxation and surface roughness changes have occurred in the unpassivated samples annealed in air, while those with Al2O3 passivation annealed in argon showed significant microstructural degradations. This suggests that cracks developed in the samples annealed in air were healed by oxidation reactions. To further confirm this, Auger electron spectroscopy was conducted on the unpassivated samples after the anneal in air and results showed that extra surface oxides have been generated, which could act as a dislocation pinning layer to suppress the strain relaxation in AlGaN. On the other hand, similar 2DEG sheet densities were observed in passivated and unpassivated AlGaN/GaN samples at the end of the 5-h anneal in air or argon due to the combined impact of strain relaxation and changes in the ionized electronic states. The results support the use of unpassivated GaN-capped AlGaN/GaN heterostructures as the material platform for high-temperature electronics and sensors used in oxidizing environmental conditions.
Bartkow, M.E.; Huckins, J.N.; Muller, J.F.
2004-01-01
Semipermeable membrane devices (SPMDs) have been used as passive air samplers of semivolatile organic compounds in a range of studies. However, due to a lack of calibration data for polyaromatic hydrocarbons (PAHs), SPMD data have not been used to estimate air concentrations of target PAHs. In this study, SPMDs were deployed for 32 days at two sites in a major metropolitan area in Australia. High-volume active sampling systems (HiVol) were co-deployed at both sites. Using the HiVol air concentration data from one site, SPMD sampling rates were measured for 12 US EPA Priority Pollutant PAHs and then these values were used to determine air concentrations at the second site from SPMD concentrations. Air concentrations were also measured at the second site with co-deployed HiVols to validate the SPMD results. PAHs mostly associated with the vapour phase (Fluorene to Pyrene) dominated both the HiVol and passive air samples. Reproducibility between replicate passive samplers was satisfactory (CV<20%) for the majority of compounds. Sampling rates ranged between 0.6 and 6.1 m3 d-1. SPMD-based air concentrations were calculated at the second site for each compound using these sampling rates and the differences between SPMD-derived air concentrations and those measured using a HiVol were, on average, within a factor of 1.5. The dominant processes for the uptake of PAHs by SPMDs were also assessed. Using the SPMD method described herein, estimates of particulate sorbed airborne PAHs with five rings or greater were within 1.8-fold of HiVol measured values. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rumpfhuber, E.; Keller, G. R.; Velasco, A. A.
2005-12-01
Many large-scale experiments conduct both controlled-source and passive deployments to investigate the lithospheric structure of a targeted region. Many of these studies utilize each data set independently, resulting in different images of the Earth depending on the data set investigated. In general, formal integration of these data sets, such as joint inversions, with other data has not been performed. The CD-ROM experiment, which included both 2-D controlled-source and passive recording along a profile extending from southern Wyoming to northern New Mexico serves as an excellent data set to develop a formal integration strategy between both controlled source and passive experiments. These data are ideal to develop this strategy because: 1) the analysis of refraction/wide-angle reflection data yields Vp structure, and sometimes Vs structure, of the crust and uppermost mantle; 2) analysis of the PmP phase (Moho reflection) yields estimates of the average Vp of the crust for the crust; and 3) receiver functions contain full-crustal reverberations and yield the Vp/Vs ratio, but do not constrain the absolute P and S velocity. Thus, a simple form of integration involves using the Vp/Vs ratio from receiver functions and the average Vp from refraction measurements, to solve for the average Vs of the crust. When refraction/ wide-angle reflection data and several receiver functions nearby are available, an integrated 2-D model can be derived. In receiver functions, the PS conversion gives the S-wave travel-time (ts) through the crust along the raypath traveled from the Moho to the surface. Since the receiver function crustal reverberation gives the Vp/Vs ratio, it is also possible to use the arrival time of the converted phase, PS, to solve for the travel time of the direct teleseismic P-wave through the crust along the ray path. Raytracing can yield the point where the teleseismic wave intersects the Moho. In this approach, the conversion point is essentially a pseudo-shotpoint, thus the converted arrival at the surface can be jointly modeled with refraction data using a 3-D inversion code. Employing the combined CD-ROM data sets, we will be investigating the joint inversion results of controlled source data and receiver functions.
Decision and function problems based on boson sampling
NASA Astrophysics Data System (ADS)
Nikolopoulos, Georgios M.; Brougham, Thomas
2016-07-01
Boson sampling is a mathematical problem that is strongly believed to be intractable for classical computers, whereas passive linear interferometers can produce samples efficiently. So far, the problem remains a computational curiosity, and the possible usefulness of boson-sampling devices is mainly limited to the proof of quantum supremacy. The purpose of this work is to investigate whether boson sampling can be used as a resource of decision and function problems that are computationally hard, and may thus have cryptographic applications. After the definition of a rather general theoretical framework for the design of such problems, we discuss their solution by means of a brute-force numerical approach, as well as by means of nonboson samplers. Moreover, we estimate the sample sizes required for their solution by passive linear interferometers, and it is shown that they are independent of the size of the Hilbert space.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Ansari, Ali Reza; Mazaheri, Yousef; Karimi, Mohsen
2017-02-01
In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.
Potential Use of Passive Sampling for Environmental Monitoring of Petroleum E&P Operations
Traditional environmental monitoring relies on water or soil samples being taken at various time increments and sent to offsite laboratories for analysis. Reliance on grab samples generally captures limited “snapshots” of environmental contaminant concentrations, is time intensive, costly, and generates residual waste from excess sample and/or reagents used in the analysis procedures. As an alternative, we are evaluating swellable organosilica sorbents to create passive sampling systems for monitoring applications. Previous work has focused on absorption and detection of fuels, chlorinated solvents, endocrine disruptors, explosives, pesticides, fluorinated chemicals, and metals including Ba, Sr, Hg, Pb, Fe, Cu, and Zn. The advantages of swellable organosilica are that the material cancapture target compounds for an extended periods of time, does not absorb natural organic matter, and resists biofilm formation since the sorbent possesses an animated surface morphology.
Męczykowska, Hanna; Kobylis, Paulina; Stepnowski, Piotr; Caban, Magda
2017-05-04
Passive sampling is one of the most efficient methods of monitoring pharmaceuticals in environmental water. The reliability of the process relies on a correctly performed calibration experiment and a well-defined sampling rate (R s ) for target analytes. Therefore, in this review the state-of-the-art methods of passive sampler calibration for the most popular pharmaceuticals: antibiotics, hormones, β-blockers and non-steroidal anti-inflammatory drugs (NSAIDs), along with the sampling rate variation, were presented. The advantages and difficulties in laboratory and field calibration were pointed out, according to the needs of control of the exact conditions. Sampling rate calculating equations and all the factors affecting the R s value - temperature, flow, pH, salinity of the donor phase and biofouling - were discussed. Moreover, various calibration parameters gathered from the literature published in the last 16 years, including the device types, were tabled and compared. What is evident is that the sampling rate values for pharmaceuticals are impacted by several factors, whose influence is still unclear and unpredictable, while there is a big gap in experimental data. It appears that the calibration procedure needs to be improved, for example, there is a significant deficiency of PRCs (Performance Reference Compounds) for pharmaceuticals. One of the suggestions is to introduce correction factors for R s values estimated in laboratory conditions.
Silicone rubber selection for passive sampling of pesticides in water.
Martin, A; Margoum, C; Randon, J; Coquery, M
2016-11-01
Silicone rubber can extract organic compounds with a broad range of polarities (logKow>2-3) from aqueous samples. Such compounds include substances of major concern in the protection of aquatic ecosystems and human health, e.g. pesticides. Silicone rubbers (SRs) with various characteristics have been successfully used in sorptive methods for water sample extraction in the laboratory (SPME, SBSE), and for passive sampling in aquatic environments. However, only few studies have evaluated variability in organic compound sorption due to the origin of SRs, particularly for pesticides. The aim of this study was to select an SR for the extraction of pesticides from water samples by passive sampling. To this end we measured the impact of seven SR formulations on sorption capacity, defined by the partition coefficient (Ksw). Kinetic experiments and sorption isotherms were performed to determine extraction recovery as a selection criterion for SRs, and pesticide partition coefficients. Very large differences in affinity for pesticides were found between two kinds of SRs: "Polymerized SR kits" and "Manufactured SRs". One SR was chosen among the "Manufactured SRs", and the Ksw values of 21 pesticides were determined, filling a gap in the literature (1.50
Characterization of two passive air samplers for per- and polyfluoroalkyl substances.
Ahrens, Lutz; Harner, Tom; Shoeib, Mahiba; Koblizkova, Martina; Reiner, Eric J
2013-12-17
Two passive air sampler (PAS) media were characterized under field conditions for the measurement of per- and polyfluoroalkyl substances (PFASs) in the atmosphere. The PASs, consisting of polyurethane foam (PUF) and sorbent-impregnated PUF (SIP) disks, were deployed for over one year in parallel with high volume active air samplers (HV-AAS) and low volume active air samplers (LV-AAS). Samples were analyzed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). Sampling rates and the passive sampler medium (PSM)-air partition coefficient (KPSM-A) were calculated for individual PFASs. Sampling rates were similar for PFASs present in the gas phase and particle phase, and the linear sampling rate of 4 m(-3) d(-1) is recommended for calculating effective air sample volumes in the SIP-PAS and PUF-PAS for PFASs except for the FOSAs and FOSEs in the PUF-PAS. SIP disks showed very good performance for all tested PFASs while PUF disks were suitable only for the PFSAs and their precursors. Experiments evaluating the suitability of different isotopically labeled fluorinated depuration compounds (DCs) revealed that (13)C8-perfluorooctanoic acid (PFOA) was suitable for the calculation of site-specific sampling rates. Ambient temperature was the dominant factor influencing the seasonal trend of PFASs.
NASA Astrophysics Data System (ADS)
Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.
2017-08-01
The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.
EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks
Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman
2014-01-01
Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639
Characterising Passive Dosemeters for Dosimetry of Biological Experiments in Space (dobies)
NASA Astrophysics Data System (ADS)
Vanhavere, Filip; Spurny, Frantisek; Yukihara, Eduardo; Genicot, Jean-Louis
Introduction: The DOBIES (Dosimetry of biological experi-ments in space) project focusses on the use of a stan-dard dosimetric method (as a combination of differ-ent passive techniques) to measure accurately the absorbed doses and equivalent doses in biological samples. Dose measurements on biological samples are of high interest in the fields of radiobiology and exobiology. Radiation doses absorbed by biological samples must be quantified to be able to determine the relationship between observed biological effects and the radiation dose. The radiation field in space is very complex, con-sisting of protons, neutrons, electrons and high-energy heavy charged particles. It is not straightfor-ward to measure doses in this radiation field, cer-tainly not with only small and light passive doseme-ters. The properties of the passive detectors must be tested in radiation fields that are representative of the space radiation. We will report on the characterisation of different type of passive detectors at high energy fields. The results from such characterisation measurements will be applied to recent exposures of detectors on the International Space Station. Material and methods: Following passive detectors are used: • thermoluminescent detectors (TLD) • optically stimulated luminescence detectors (OSLD) • track etch detectors (TED) The different groups have participated in the past to the ICCHIBAN series of irradiations. Here protons and other particles of high energy were used to de-termine the LET-dependency of the passive detec-tors. The last few months, new irradiations have been done at the iThemba labs (100-200 MeV protons), Dubna (145 MeV protons) and the JRC-IRMM (quasi mono energetic neutrons up to 19 MeV). All these detectors were also exposed to a simulated space radiation field at CERN (CERF-field). Discussion: The interpretation of the TLD and OSLD results is done using the measured LET spectrum (TED) and the LET-dependency curves of ths TLD and OSLDs. These LET- dependency curves are determined based on the different irradiations listed above. We will report on the results of the different detectors in these fields. Further information on the LET of the space irradia-tion can be deduced from the ratio of the different peaks of the TLDs after glow curve deconvolution, and from the shape of the decay curve of the OSLDs. The results in the CERF field can on the other hand directly being used as a calibration for space radia-tion fields. Conclusion: Combining different passive detectors will lead to improved information on the radiation field, and thus to a better estimation of the absorbed dose to the bio-logical samples. We use the characterisations on high energy accelerators to improve the estimation of some recent space doses.
A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography
NASA Astrophysics Data System (ADS)
Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.
2016-12-01
A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR has been used since 2013 with 100% reliability, and has been deployed operationally at 7 sites in Hawaii, 4 sites in Baja California, and 1 site in France.
Effect of forming gas annealing on the degradation properties of Ge-based MOS stacks
NASA Astrophysics Data System (ADS)
Aguirre, F.; Pazos, S.; Palumbo, F. R. M.; Fadida, S.; Winter, R.; Eizenberg, M.
2018-04-01
The influence of forming gas annealing on the degradation at a constant stress voltage of multi-layered germanium-based Metal-Oxide-Semiconductor capacitors (p-Ge/GeOx/Al2O3/High-K/Metal Gate) has been analyzed in terms of the C-V hysteresis and flat band voltage as a function of both negative and positive stress fields. Significant differences were found for the case of negative voltage stress between the annealed and non-annealed samples, independently of the stressing time. It was found that the hole trapping effect decreases in the case of the forming gas annealed samples, indicating strong passivation of defects with energies close to the valence band existing in the oxide-semiconductor interface during the forming gas annealing. Finally, a comparison between the degradation dynamics of Germanium and III-V (n-InGaAs) MOS stacks is presented to summarize the main challenges in the integration of reliable Ge-III-V hybrid devices.
NASA Astrophysics Data System (ADS)
ur Rahman, Zia; Deen, K. M.; Cano, Lawrence; Haider, Waseem
2017-07-01
Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m2). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm2) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (Rct) and passive film resistance (Rf) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.
Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport
Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego
2015-01-01
The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.
Ren, Yupeng; Kang, Sang Hoon; Park, Hyung-Soon; Wu, Yi-Ning; Zhang, Li-Qun
2013-05-01
Arm impairments in patients post stroke involve the shoulder, elbow and wrist simultaneously. It is not very clear how patients develop spasticity and reduced range of motion (ROM) at the multiple joints and the abnormal couplings among the multiple joints and the multiple degrees-of-freedom (DOF) during passive movement. It is also not clear how they lose independent control of individual joints/DOFs and coordination among the joints/DOFs during voluntary movement. An upper limb exoskeleton robot, the IntelliArm, which can control the shoulder, elbow, and wrist, was developed, aiming to support clinicians and patients with the following integrated capabilities: 1) quantitative, objective, and comprehensive multi-joint neuromechanical pre-evaluation capabilities aiding multi-joint/DOF diagnosis for individual patients; 2) strenuous and safe passive stretching of hypertonic/deformed arm for loosening up muscles/joints based on the robot-aided diagnosis; 3) (assistive/resistive) active reaching training after passive stretching for regaining/improving motor control ability; and 4) quantitative, objective, and comprehensive neuromechanical outcome evaluation at the level of individual joints/DOFs, multiple joints, and whole arm. Feasibility of the integrated capabilities was demonstrated through experiments with stroke survivors and healthy subjects.
Cost-effective parallel optical interconnection module based on fully passive-alignment process
NASA Astrophysics Data System (ADS)
Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang
2017-11-01
In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.
Linear and passive silicon diodes, isolators, and logic gates
NASA Astrophysics Data System (ADS)
Li, Zhi-Yuan
2013-12-01
Silicon photonic integrated devices and circuits have offered a promising means to revolutionalize information processing and computing technologies. One important reason is that these devices are compatible with conventional complementary metal oxide semiconductor (CMOS) processing technology that overwhelms current microelectronics industry. Yet, the dream to build optical computers has yet to come without the breakthrough of several key elements including optical diodes, isolators, and logic gates with low power, high signal contrast, and large bandwidth. Photonic crystal has a great power to mold the flow of light in micrometer/nanometer scale and is a promising platform for optical integration. In this paper we present our recent efforts of design, fabrication, and characterization of ultracompact, linear, passive on-chip optical diodes, isolators and logic gates based on silicon two-dimensional photonic crystal slabs. Both simulation and experiment results show high performance of these novel designed devices. These linear and passive silicon devices have the unique properties of small fingerprint, low power request, large bandwidth, fast response speed, easy for fabrication, and being compatible with COMS technology. Further improving their performance would open up a road towards photonic logics and optical computing and help to construct nanophotonic on-chip processor architectures for future optical computers.
The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions
Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben; ...
2017-04-19
Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less
The corrosion behavior of technetium metal exposed to aqueous sulfate and chloride solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolman, David Gary; Goff, George Scott; Cisneros, Michael Ruben
Here, metal waste forms are being studied as possible disposal forms for technetium and other fission products from spent nuclear fuel. As an initial step in assessing the viability of waste forms, technetium corrosion and passivity behavior was assessed across a broad pH spectrum (pH –1 to pH 13). Measurements indicate that the open circuit potential falls into the region of Tc +7 stability, more noble than the region of presumed passivity. Potentiodynamic polarization tests indicate that the Tc samples are not passive. Both electrochemical results and visual inspection suggest the presence of a nonprotective film. The corrosion rate ismore » relatively independent of pH and low, as measured by linear polarization resistance. No evidence of passivity was observed in the Tc +4 region of the potential-pH diagram following in-situ abrasion, suggesting that Tc does not passivate, regardless of potential.« less
How Does Active Parental Consent Influence the Findings of Drug-Use Surveys in Schools?
ERIC Educational Resources Information Center
White, Victoria M.; Hill, David J.; Effendi, Yuksel
2004-01-01
This study examines the impact of passive and active parental consent procedures on the type of adolescents participating in a school-based survey examining substance use. Schools recruited from a random sample of metropolitan schools were assigned to passive or active parental consent condition. Results showed that participation rates in active…
Freely dissolved and gas phase polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were measured in the water column and atmosphere at five locations within Newark Bay (New Jersey, USA) from May 2008 to August 2009 with polyethylene (PE) passive ...
Michael D. Bell; James O. Sickman; Andrzej Bytnerowicz; Pamela E. Padgett; Edith B. Allen
2014-01-01
The sources and oxidation pathways of atmospheric nitric acid (HNO3) can be evaluated using the isotopic signatures of oxygen (O) and nitrogen (N). This study evaluated the ability of Nylasorb nylon filters to passively collect unbiased isotopologues of atmospheric HNO3 under controlled and field conditions. Filters...
Uzun, O; Topuz, O; Tinaz, C; Nekoofar, M H; Dummer, P M H
2008-09-01
To evaluate ex vivo the accuracy of the integrated electronic root canal length measurement devices within TCM Endo V and Tri Auto ZX motors whilst removing gutta-percha and sealer from filled root canals. Forty freshly extracted maxillary and mandibular incisor teeth with mature apices were selected. Following access cavity preparation, the length of the root canals were measured visually 0.5 mm short of the major foramen (TL). The canals were prepared using the HERO 642 system and then filled with gutta-percha and AH26 sealer using a lateral compaction technique. After 7 days the coronal temporary filling was removed and the roots mounted in an alginate experimental model. The roots were then randomly divided in two groups. The access cavities were filled with chloroform to soften the gutta-percha and allow its penetration using the Tri Auto ZX and the TCM Endo V devices in groups 1 and 2, respectively. The 'automatic apical reverse function' (ARL) of both devices was set to start at the 0.5 setting and the rotary instrument inserted inside the root canal until a beeping sound was heard and the rotation of the file stopped automatically. Once the auto reverse function had been initiated, the foot pedal of the motor was inactivated and the rubber stop placed against the reference point. The distance between the file tip and rubber stop was measured using a digital calliper to 0.01 mm accuracy (ARL). Then, a size 20, 0.02 taper instrument was attached to each device and inserted into the root canals without rotary motion until the integrated ERCLMDs positioned the instrument tips at the 0.5 setting as suggested by the devices. This length was again measured using a digital calliper (EL). The Mann-Whitney U-test was used to investigate statistical differences between the true canal length and those indicated by the two devices when used in 'automatic ARL and when inserted passively (EL). In the presence of gutta-percha, sealer and chloroform, the auto-reverse function for the Tri Auto ZX and TCM Endo V, set to start at 0.5 level, was initiated beyond the foramen in 60% and 95% of the samples, respectively during active (rotary) penetration of the instruments. There was a statistically significant difference between the devices for the mean discrepancies between the length at which the auto reverse function was initiated and the true length (P < 0.001). Electronic detection of the apical terminus when the instruments were introduced passively (not rotating) was beyond the foramen in 20% and 37% of cases in the Tri Auto ZX group and the TCM Endo V group, respectively. There was a statistically significant difference between the devices for the mean discrepancies between the electronically determined (passive) length and true length (P < 0.01). The auto reverse function of the Tri Auto ZX and TCM Endo V devices, set to start at 0.5 level, were initiated beyond the foramen in the majority of root-filled teeth during active (rotating) penetration of root filling material. Thus, this automatic function must be used with caution when removing gutta-percha root fillings. There were significant differences between the accuracy of measurements in active (rotating) and passive (not-rotating) modes; both devices were more accurate when used in passive mode. However, the Tri Auto ZX was significantly more accurate in a greater proportion of cases.
Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; White, Carmen; Burgess, Robert M
2012-11-06
Passive sampling was used to deduce water concentrations of persistent organic pollutants (POPs) in the vicinity of a marine Superfund site on the Palos Verdes Shelf, California, USA. Precalibrated solid phase microextraction (SPME) fibers and polyethylene (PE) strips that were preloaded with performance reference compounds (PRCs) were codeployed for 32 d along an 11-station gradient at bottom, surface, and midwater depths. Retrieved samplers were analyzed for DDT congeners and their breakdown products (DDE, DDD, DDMU, and DDNU) and 43 PCB congeners using GC-EI- and NCI-MS. PRCs were used to calculate compound-specific fractional equilibration achieved in situ for the PE samplers, using both an exponential approach to equilibrium (EAE) and numerical integration of Fickian diffusion (NI) models. The highest observed concentrations were for p,p'-DDE, with 2200 and 990 pg/L deduced from PE and SPME, respectively. The difference in these estimates could be largely attributed to uncertainty in equilibrium partition coefficients, unaccounted for disequilibrium between samplers and water, or different time scales over which the samplers average. The concordance between PE and SPME estimated concentrations for DDE was high (R(2) = 0.95). PCBs were only detected in PE samplers, due to their much larger size. Near-bottom waters adjacent to and down current from sediments with the highest bulk concentrations exhibited aqueous concentrations of DDTs and PCBs that exceeded Ambient Water Quality Criteria (AWQC) for human and aquatic health, indicating the need for future monitoring to determine the effectiveness of remedial activities taken to reduce adverse effects of contaminated surface sediments.
Liu, Chao; Cox, Ronald B; Washburn, Isaac J; Croff, Julie M; Crethar, Hugh C
2017-07-01
Requiring parental consent may result in sampling biases that confound scientific conclusions and stifle the representation of children most at risk for adverse outcomes. This study aims to investigate whether active parental consent, compared with passive parental consent, creates a bias in response rate, demographic makeup, and adverse outcomes in adolescent samples. A meta-analysis was performed on peer-reviewed articles and unpublished dissertations from 1975 to 2016 in five computerized databases ERIC, PsycINFO, MEDLINE, PubMed and ProQuest. Quantitative studies were retained if they included the following keywords: active consent (or informed consent or parental consent), passive consent (or waiver of consent), risk behavior, adolescen*. Fifteen studies were identified with a total number of 104,074 children. Results showed (1) response rates were significantly lower for studies using active consent procedure than those using passive consent procedure (Z = 3.05, p = .002); (2) more females, younger participants, and less African-Americans were included in studies using active consent procedures than studies using passive procedures (Z = -2.73, p = .006; Z = -12.06, p < .00001; Z = 2.19, p = .03, respectively); (3) studies with passive consent procedures showed higher rates of self-reported substance use than studies using active consent procedures (Z = 3.07, p = .002). Requiring active parental consent can lead to a systematic bias in the sample where the population under study is misrepresented. Institutional review board committees should collaborate with researchers to find solutions that protect minors without silencing the voice of high-risk youth in the literature. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water
Harte, Philip T.; Brayton, Michael J.; Ives, Wayne
2000-01-01
Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.
Wille, Klaas; Claessens, Michiel; Rappé, Karen; Monteyne, Els; Janssen, Colin R; De Brabander, Hubert F; Vanhaecke, Lynn
2011-12-23
The presence of both pharmaceuticals and pesticides in the aquatic environment has become a well-known environmental issue during the last decade. An increasing demand however still exists for sensitive and reliable monitoring tools for these rather polar contaminants in the marine environment. In recent years, the great potential of passive samplers or equilibrium based sampling techniques for evaluation of the fate of these contaminants has been shown in literature. Therefore, we developed a new analytical method for the quantification of a high number of pharmaceuticals and pesticides in passive sampling devices. The analytical procedure consisted of extraction using 1:1 methanol/acetonitrile followed by detection with ultra-high performance liquid chromatography coupled to high resolution and high mass accuracy Orbitrap mass spectrometry. Validation of the analytical method resulted in limits of quantification and recoveries ranging between 0.2 and 20 ng per sampler sheet and between 87.9 and 105.2%, respectively. Determination of the sampler-water partition coefficients of all compounds demonstrated that several pharmaceuticals and most pesticides exert a high affinity for the polydimethylsiloxane passive samplers. Finally, the developed analytical methods were used to measure the time-weighted average (TWA) concentrations of the targeted pollutants in passive samplers, deployed at eight stations in the Belgian coastal zone. Propranolol, carbamazepine and seven pesticides were found to be very abundant in the passive samplers. These obtained long-term and large-scale TWA concentrations will contribute in assessing the environmental and human health risk of these emerging pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.
Active learning for clinical text classification: is it better than random sampling?
Figueroa, Rosa L; Zeng-Treitler, Qing; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P
2012-01-01
This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty.
Active learning for clinical text classification: is it better than random sampling?
Figueroa, Rosa L; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P
2012-01-01
Objective This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Design Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Measurements Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. Results The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. Conclusion For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty. PMID:22707743
50 CFR 635.32 - Specifically authorized activities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... public display are required to have either a conventional dart tag or a microchip Passive Integrated... supplied by NMFS. Conventional dart tags will be issued unless PIT tags are specifically requested in the...
50 CFR 635.32 - Specifically authorized activities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... public display are required to have either a conventional dart tag or a microchip Passive Integrated... supplied by NMFS. Conventional dart tags will be issued unless PIT tags are specifically requested in the...
Tsuji, Masayoshi; Kanda, Hideyuki; Hayakawa, Takehito; Mori, Yayoi; Ito, Teruna; Hidaka, Tomoo; Kakamu, Takeyasu; Kumagai, Tomohiro; Osaki, Yoneatsu; Kawazoe, Miki; Sato, Sei; Fukushima, Tetsuhito
2017-07-19
Nicotine concentration in hair is a useful marker of tobacco exposure. Detection of nicotine in the hair of non-smokers indicates passive smoking. Accurate measurement of nicotine among active and passive smokers can help in smoking cessation programs or programs designed to prevent secondhand smoke exposure. To establish, using high-performance liquid chromatography-ultraviolet detection (HPLC/UV), a hair nicotine cut-off value to distinguish active from passive smokers. Hair samples were collected from randomly chosen Japanese men (n= 192) between 2009 and 2011. Nicotine and cotinine levels in hair were measured using HPLC/UV with column-switching. T-tests and chi-square tests were performed to compare active and passive smokers, while receiver operating characteristic curves were used to evaluate the effectiveness of the cut-off value. There were 69 active smokers and 123 passive smokers. The nicotine and cotinine concentrations in hair were significantly higher in active than in passive smokers (p< 0.01). The area under the curve for nicotine was 0.92. A hair nicotine cut-off value of 5.68 ng/mg, with a sensitivity of 94.2% and specificity of 87.0%, was identified as the optimal cut-off value for separating active from passive smokers. Nicotine and cotinine concentrations in hair clearly distinguished active from passive smokers.
Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.
Zhang, Chunsun; Xing, Da; Li, Yuyuan
2007-01-01
This review surveys the advances of microvalves, micropumps, and micromixers within PCR microfluidic chips over the past ten years. First, the types of microvalves in PCR chips are discussed, including active and passive microvalves. The active microvalves are subdivided into mechanical (thermopneumatic and shape memory alloy), non-mechanical (hydrogel, sol-gel, paraffin, and ice), and external (modular built-in, pneumatic, and non-pneumatic) microvalves. The passive microvalves also include mechanical (in-line polymerized gel and passive plug) and non-mechanical (hydrophobic) microvalves. The review then discusses mechanical (piezoelectric, pneumatic, and thermopneumatic) and non-mechanical (electrokinetic, magnetohydrodynamic, electrochemical, acoustic-wave, surface tension and capillary, and ferrofluidic magnetic) micropumps in PCR chips. Next, different micromixers within PCR chips are presented, including passive (Y/T-type flow, recirculation flow, and drop) and active (electrokinetically-driven, acoustically-driven, magnetohydrodynamical-driven, microvalves/pumps) micromixers. Finally, general discussions on microvalves, micropumps, and micromixers for PCR chips are given. The microvalve/micropump/micromixers allow high levels of PCR chip integration and analytical throughput.
Sound source measurement by using a passive sound insulation and a statistical approach
NASA Astrophysics Data System (ADS)
Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.
2015-10-01
This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-30
The work done to extend the existing drain-down valve technology to provide passive drain-down freeze protection for thermosyphon-based solar water heaters is described. The basic design of the existing valve model is that of a spool valve, employing a cylindrical spool which moves axially in a mating cartridge to open and close o-rings at the two operating extremes (drain and operate) to perform the valving function. Three passive actuators to drive the basic valving mechanism were designed, fabricated, and tested. Two piping configurations used to integrate the spool valve with the thermosyphon system are described, as are the passive actuators.more » The three actuator designs are: photovoltaic driven, refrigerant-based bellows, and heat motor cable-drive designs. Costs are compared for the alternative actuator designs, and operating characteristics were examined for the thermosyphon system, including field tests. The market for the valve for thermosyphon systems is then assessed. (LEW)« less
Affordable passive solar homes - low-cost, compact designs. [Glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.
1984-01-01
The designs and plans of this book present total, integrative, energy design. They carefully integrate site, architecture, and interior for various population segments that meet a frugal budget. The book is divided into two sections. The first part gives data concerning design, construction, site, climatic factors, materials, interiors, financing, and other home ownership factors that enhance affordability. Basic information on the design assumptions and considerations incorporate into the homes is presented, along with passive solar systems descriptions. The second part presents designs and plans with a brief review of considerations that serve defined human living needs, as well single-family, attached,more » or multiple residential configurations. The plans are based on a dimensional grid using 4-foot and 2-foot (1.2 meter and .61 meter) increments compatible with economic standard lumber and materials sizes.« less
On-Chip Microwave Quantum Hall Circulator
NASA Astrophysics Data System (ADS)
Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.
2017-01-01
Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.
In planta passive sampling devices for assessing subsurface chlorinated solvents.
Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G
2014-06-01
Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.
2016-01-01
The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.
Thomas, Courtney; Lampert, David; Reible, Danny
2014-03-01
Passive sampling using polydimethylsiloxane (PDMS) profilers was evaluated as a tool to assess the performance of in situ sediment remedies at three locations, Chattanooga Creek (Chattanooga, TN), Eagle Harbor (Bainbridge Island, WA) and Hunter's Point (San Francisco, CA). The remedy at the first two locations was capping over PAH contaminated sediments while at Hunter's Point, the assessment was part of an in situ treatment demonstration led by R. G. Luthy (Stanford University) using activated carbon mixed into PCB contaminated sediments. The implementation and results at these contaminated sediment sites were used to illustrate the utility and usefulness of the passive sampling approach. Two different approaches were employed to evaluate kinetics of uptake onto the sorbent fibers. At the capping sites, the passive sampling approach was employed to measure intermixing during cap placement, contamination migration into the cap post-placement and recontamination over time. At the in situ treatment demonstration site, reductions in porewater concentrations in treated versus untreated sediments were compared to measurements of bioaccumulation of PCBs in Neanthes arenaceodentata.
Size, time, and asynchrony matter: the species-area relationship for parasites of freshwater fishes.
Zelmer, Derek A
2014-10-01
The tendency to attribute species-area relationships to "island biogeography" effectively bypasses the examination of specific mechanisms that act to structure parasite communities. Positive covariation between fish size and infrapopulation richness should not be examined within the typical extinction-based paradigm, but rather should be addressed from the standpoint of differences in colonization potential among individual hosts. Although most mechanisms producing the aforementioned pattern constitute some variation of passive sampling, the deterministic aspects of the accumulation of parasite individuals by fish hosts makes untenable the suggestion that infracommunities of freshwater fishes are stochastic assemblages. At the component community level, application of extinction-dependent mechanisms might be appropriate, given sufficient time for colonization, but these structuring forces likely act indirectly through their effects on the host community to increase the probability of parasite persistence. At all levels, the passive sampling hypothesis is a relevant null model. The tendency for mechanisms that produce species-area relationships to produce nested subset patterns means that for most systems, the passive sampling hypothesis can be addressed through the application of appropriate null models of nested subset structure.
St George, Tiffany; Vlahos, Penny; Harner, Tom; Helm, Paul; Wilford, Bryony
2011-02-01
Improving methods for assessing the spatial and temporal resolution of organic compound concentrations in marine environments is important to the sustainable management of our coastal systems. Here we evaluate the use of ethylene vinyl acetate (EVA) as a candidate polymer for thin-film passive sampling in waters of marine environments. Log K(EVA-W) partition coefficients correlate well (r(2) = 0.87) with Log K(OW) values for selected pesticides and polychlorinated biphenyls (PCBs) where Log K(EVA-W) = 1.04 Log K(OW) + 0.22. EVA is a suitable polymer for passive sampling due to both its high affinity for organic compounds and its ease of coating at sub-micron film thicknesses on various substrates. Twelve-day field deployments were effective in detecting target compounds with good precision making EVA a potential multi-media fugacity meter. Published by Elsevier Ltd.
Viewing Integrated-Circuit Interconnections By SEM
NASA Technical Reports Server (NTRS)
Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.
1990-01-01
Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.
Annual Industrial Capabilities Report to Congress
2013-10-01
platform concepts for airframe, propulsion, sensors , weapons integration, avionics, and active and passive survivability features will all be explored...for full integration into the National Airspace System. Greater computing power, combined with developments in miniaturization, sensors , and...the design engineering skills for missile propulsion systems is at risk. The Department relies on the viability of a small number of SRM and turbine
Integrating Meaning and Structure in L1-L2 and L2-L1 Translations
ERIC Educational Resources Information Center
Lim, Jung Hyun; Christianson, Kiel
2013-01-01
This article examined the integration of semantic and morphosyntactic information by Korean learners of English as a second language (L2). In Experiment 1, L2 learners listened to English active or passive sentences that were either plausible or implausible and translated them into Korean. A significant number of Korean translations maintained the…
Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays
NASA Astrophysics Data System (ADS)
Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.
1994-07-01
Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.
Modular microfluidic systems using reversibly attached PDMS fluid control modules
NASA Astrophysics Data System (ADS)
Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin
2013-05-01
The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.
Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman
2015-03-01
Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Non-experimental, cross-sectional, case-control design. An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Not applicable. Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects.
Li, Zhijun; Yao, Yan; Yu, Yaqin; Shi, Jieping; Liu, Yawen; Tao, Yuchun; Kou, Changgui; Zhang, Huiping; Han, Weiqing; Yin, Yutian; Jiang, Lingling; Li, Bo
2015-01-01
Background: The present study aimed to investigate the prevalence and associated socio-demographic factors of passive smoking among women in Jilin Province, China. Methods: A cross-sectional study was conducted in 2012, using a self-reported questionnaire interview. A representative sample of 9788 non-smoking women aged 18–79 years was collected in Jilin Province of China by a multistage stratified random cluster sampling design. Descriptive data analysis and 95% confidence intervals (CI) of prevalence/frequency were conducted. Multivariable logistic regressions were used to examine the associated socio-demographic factors of passive smoking. Results: The overall prevalence of passive smoking among non-smoking women in Jilin Province was 60.6% (95% CI: 59.3–61.8), 58.3% (95% CI: 56.7–59.9) from urban areas, and 63.4% (95% CI: 61.6–65.3) from rural areas. Twenty-six percent (95% CI: 24.9–27.1) of the non-smoking women reported daily passive smoking, of which 42.9% (95% CI: 41.6–44.1) reported passive smoking at home, and 5.1% (95% CI: 4.5–5.7) reported passive smoking in restaurants. Women in urban areas were less likely to be passive smokers than those in rural ones (OR-Odds Ratio: 0.825, 95% CI: 0.729–0.935), elderly women were less likely to be passive smokers than younger women (55–64 years OR: 0.481, 95% CI: 0.342–0.674; 65–79 years OR: 0.351, 95% CI: 0.241–0.511). Seperated/divorced women were less likely to be passive smokers (OR: 0.701, 95% CI: 0.500–0.982), and widowed women (OR: 0.564, 95%CI: 0.440–0.722), as the married were the reference group. Retired women second-hand smoked due to environmental causes significantly less than manual workers (OR: 0.810, 95% CI: 0.708–0.928). Women with a monthly family income of more than 5000 RMB were less likely to be passive smokers than those with an income less than 500 RMB (OR: 0.615, 95% CI: 0.432–0.876). Conclusions: The prevalence of passive smoking is lower than that reported in 2010 Global Adult Tobacco Survey (GATS) China, but passive smoking is still prevalent and has been an acute public health problem among non-smoking women in Jilin Province, China. Our findings suggest an urgent need for tobacco control and the efforts of public health should be both comprehensive and focus on high-risk populations in Jilin Province, China. PMID:26529002
Birch, Heidi; Mayer, Philipp; Lützhøft, Hans-Christian Holten; Mikkelsen, Peter Steen
2012-11-15
Partitioning of fluoranthene in stormwater runoff and other urban discharges was measured by a new analytical method based on passive dosing. Samples were collected at the inlet (n = 11) and outlet (n = 8) from a stormwater retention pond in Albertslund (Denmark), and for comparison samples were also obtained at a municipal wastewater treatment plant, a power plant, a contaminated site and a waste deposit in Copenhagen (n = 1 at each site). The freely dissolved concentration of (14)C-fluoranthene in the samples was controlled by equilibrium partitioning from a pre-loaded polymer and the total sample concentration measured. The measurements yielded free fractions of fluoranthene in stormwater in the range 0.04-0.15 in the inlet during the first part of the runoff events increasing to 0.3-0.5 at the end of the events and in the outlet from the retention pond. The enhanced capacity of the different stormwater samples for carrying fluoranthene was 2-23 relative to pure water and decreasing during rain events. The enhanced capacity of stormwater showed a different relationship with suspended solid concentrations than the other types of urban discharges. Partitioning of fluoranthene to dissolved organic carbon was lower than partitioning to particulate organic carbon. Partitioning of fluoranthene to particulate organic matter in the 19 stormwater samples yielded a log K(POM) of 5.18. The presented results can be used in stormwater quality modeling and assessment of efficiency of stormwater treatment systems. This work also shows the potential of the passive dosing method to obtain conversion factors between total concentrations, which are needed for comparison with water quality criteria, and freely dissolved concentrations, which are more related to toxicity and obtained by the use of most passive samplers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf
NASA Astrophysics Data System (ADS)
Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.
2012-08-01
A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.
Robust passive control for a class of uncertain neutral systems based on sliding mode observer.
Liu, Zhen; Zhao, Lin; Kao, Yonggui; Gao, Cunchen
2017-01-01
The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew
2016-11-01
Research on plant root chemical ecology has benefited greatly from recent developments in analytical chemistry. Numerous reports document techniques for sampling root volatiles, although only a limited number describe in situ collection. To demonstrate a new method for non-invasive in situ passive sampling using solid phase micro extraction (SPME), from the immediate vicinity of growing roots. SPME fibres inserted into polyfluorotetrafluoroethylene (PTFE) sampling tubes located in situ which were either perforated, covered with stainless steel mesh or with microporous PTFE tubing, were used for non-invasive sub-surface sampling of root volatiles from glasshouse-grown broccoli. Sampling methods were compared with above surface headspace collection using Tenax TA. The roots were either mechanically damaged or infested with Delia radicum larvae. Principal component analysis (PCA) was used to investigate the effect of damage on the composition of volatiles released by broccoli roots. Analyses by gas chromatography-mass spectrometry (GC-MS) with SPME and automated thermal desorption (ATD) confirmed that sulphur compounds, showing characteristic temporal emission patterns, were the principal volatiles released by roots following insect larval damage. Use of SPME with in situ perforated PTFE sampling tubes was the most robust method for out-of-lab sampling. This study describes a new method for non-invasive passive sampling of volatiles in situ from intact and insect damaged roots using SPME. The method is highly suitable for remote sampling and has potential for wide application in chemical ecology/root/soil research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Duperron, Matthieu; Carroll, Lee; Rensing, Marc; Collins, Sean; Zhao, Yan; Li, Yanlu; Baets, Roel; O'Brien, Peter
2017-02-01
The cost-effective integration of laser sources on Silicon Photonic Integrated Circuits (Si-PICs) is a key challenge to realizing the full potential of on-chip photonic solutions for telecommunication and medical applications. Hybrid integration can offer a route to high-yield solutions, using only known-good laser-chips, and simple freespace micro-optics to transport light from a discrete laser-diode to a grating-coupler on the Si-PIC. In this work, we describe a passively assembled micro-optical bench (MOB) for the hybrid integration of a 1550nm 20MHz linewidth laser-diode on a Si-PIC, developed for an on-chip interferometer based medical device. A dual-lens MOB design minimizes aberrations in the laser spot transported to the standard grating-coupler (15 μm x 12 μm) on the Si-PIC, and facilitates the inclusion of a sub-millimeter latched-garnet optical-isolator. The 20dB suppression from the isolator helps ensure the high-frequency stability of the laser-diode, while the high thermal conductivity of the AlN submount (300/W=m.°C), and the close integration of a micro-bead thermistor, ensure the stable and efficient thermo-electric cooling of the laser-diode, which helps minimise low-frequency drift during the approximately 15s of operation needed for the point-of-care measurement. The dual-lens MOB is compatible with cost-effective passively-aligned mass-production, and can be optimised for alternative PIC-based applications.
Evaluation of a Passive Nature Viewing Program Set to Music.
Cadman, Sally J
2014-09-01
Research has revealed that passive nature viewing (viewing nature scenes without actually being in nature) has many health benefits but little is known about the best method of offering this complementary modality. The purpose of this pilot program was to evaluate the impact of a passive nature viewing program set to music on stress reduction in adults living in the community. A pre- and postsurvey design along with weekly recordings of stress and relaxation levels were used to evaluate the effect of this passive nature viewing program on stress reduction. Participants watched one of three preselected nature scenes for 5 minutes a day over 1 month and rated their stress and relaxation levels weekly on a 100-mm Visual Analogue Scale before and after viewing the nature DVD. Quantitative analysis were not performed because of the less number of subjects (n = 10) completing the study. Qualitative analysis found five key categories that have an impact on program use: (a) technology, (b) personal preferences, (c) time, (d) immersion, and (e) use of the program. Holistic nurses may consider integrating patient preferences and immersion strategies in the design of future passive nature viewing programs to reduce attrition and improve success. © The Author(s) 2013.