Sample records for intel xeon processors

  1. Exact diagonalization of quantum lattice models on coprocessors

    NASA Astrophysics Data System (ADS)

    Siro, T.; Harju, A.

    2016-10-01

    We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice models with different particle numbers, and conclude that for small systems, the multi-core CPU is the fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPU with sufficiently large particle number, reaching a speedup of 2.5.

  2. Cognitive Medical Wireless Testbed System (COMWITS)

    DTIC Science & Technology

    2016-11-01

    Number: ...... ...... Sub Contractors (DD882) Names of other research staff Inventions (DD882) Scientific Progress This testbed merges two ARO grants...bit 64 bit CPU Intel Xeon Processor E5-1650v3 (6C, 3.5 GHz, Turbo, HT , 15M, 140W) Intel Core i7-3770 (3.4 GHz Quad Core, 77W) Dual Intel Xeon

  3. Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel® Xeon Phi™ Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Jacquelin, Mathias; De Jong, Wibe A.

    2017-10-20

    Ab-initio Molecular Dynamics (AIMD) methods are an important class of algorithms, as they enable scientists to understand the chemistry and dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. Many-core architectures such as the Intel® Xeon Phi™ processor are an interesting and promising target for these algorithms, as they can provide the computational power that is needed to solve interesting problems in chemistry. In this paper, we describe the efforts of refactoring the existing AIMD plane-wave method of NWChem from an MPI-only implementation to a scalable, hybrid code that employs MPI and OpenMP tomore » exploit the capabilities of current and future many-core architectures. We describe the optimizations required to get close to optimal performance for the multiplication of the tall-and-skinny matrices that form the core of the computational algorithm. We present strong scaling results on the complete AIMD simulation for a test case that simulates 256 water molecules and that strong-scales well on a cluster of 1024 nodes of Intel Xeon Phi processors. We compare the performance obtained with a cluster of dual-socket Intel® Xeon® E5–2698v3 processors.« less

  4. GNAQPMS v1.1: accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on Intel Xeon Phi processors

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Chen, Huansheng; Wu, Qizhong; Lin, Junmin; Chen, Xueshun; Xie, Xinwei; Wang, Rongrong; Tang, Xiao; Wang, Zifa

    2017-08-01

    The Global Nested Air Quality Prediction Modeling System (GNAQPMS) is the global version of the Nested Air Quality Prediction Modeling System (NAQPMS), which is a multi-scale chemical transport model used for air quality forecast and atmospheric environmental research. In this study, we present the porting and optimisation of GNAQPMS on a second-generation Intel Xeon Phi processor, codenamed Knights Landing (KNL). Compared with the first-generation Xeon Phi coprocessor (codenamed Knights Corner, KNC), KNL has many new hardware features such as a bootable processor, high-performance in-package memory and ISA compatibility with Intel Xeon processors. In particular, we describe the five optimisations we applied to the key modules of GNAQPMS, including the CBM-Z gas-phase chemistry, advection, convection and wet deposition modules. These optimisations work well on both the KNL 7250 processor and the Intel Xeon E5-2697 V4 processor. They include (1) updating the pure Message Passing Interface (MPI) parallel mode to the hybrid parallel mode with MPI and OpenMP in the emission, advection, convection and gas-phase chemistry modules; (2) fully employing the 512 bit wide vector processing units (VPUs) on the KNL platform; (3) reducing unnecessary memory access to improve cache efficiency; (4) reducing the thread local storage (TLS) in the CBM-Z gas-phase chemistry module to improve its OpenMP performance; and (5) changing the global communication from writing/reading interface files to MPI functions to improve the performance and the parallel scalability. These optimisations greatly improved the GNAQPMS performance. The same optimisations also work well for the Intel Xeon Broadwell processor, specifically E5-2697 v4. Compared with the baseline version of GNAQPMS, the optimised version was 3.51 × faster on KNL and 2.77 × faster on the CPU. Moreover, the optimised version ran at 26 % lower average power on KNL than on the CPU. With the combined performance and energy improvement, the KNL platform was 37.5 % more efficient on power consumption compared with the CPU platform. The optimisations also enabled much further parallel scalability on both the CPU cluster and the KNL cluster scaled to 40 CPU nodes and 30 KNL nodes, with a parallel efficiency of 70.4 and 42.2 %, respectively.

  5. Vectorization for Molecular Dynamics on Intel Xeon Phi Corpocessors

    NASA Astrophysics Data System (ADS)

    Yi, Hongsuk

    2014-03-01

    Many modern processors are capable of exploiting data-level parallelism through the use of single instruction multiple data (SIMD) execution. The new Intel Xeon Phi coprocessor supports 512 bit vector registers for the high performance computing. In this paper, we have developed a hierarchical parallelization scheme for accelerated molecular dynamics simulations with the Terfoff potentials for covalent bond solid crystals on Intel Xeon Phi coprocessor systems. The scheme exploits multi-level parallelism computing. We combine thread-level parallelism using a tightly coupled thread-level and task-level parallelism with 512-bit vector register. The simulation results show that the parallel performance of SIMD implementations on Xeon Phi is apparently superior to their x86 CPU architecture.

  6. Nonlinear Wave Simulation on the Xeon Phi Knights Landing Processor

    NASA Astrophysics Data System (ADS)

    Hristov, Ivan; Goranov, Goran; Hristova, Radoslava

    2018-02-01

    We consider an interesting from computational point of view standing wave simulation by solving coupled 2D perturbed Sine-Gordon equations. We make an OpenMP realization which explores both thread and SIMD levels of parallelism. We test the OpenMP program on two different energy equivalent Intel architectures: 2× Xeon E5-2695 v2 processors, (code-named "Ivy Bridge-EP") in the Hybrilit cluster, and Xeon Phi 7250 processor (code-named "Knights Landing" (KNL). The results show 2 times better performance on KNL processor.

  7. Optimizing Performance of Combustion Chemistry Solvers on Intel's Many Integrated Core (MIC) Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, Hariswaran; Grout, Ray W

    This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved heremore » through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.« less

  8. Extension of the AMBER molecular dynamics software to Intel's Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Needham, Perri J.; Bhuiyan, Ashraf; Walker, Ross C.

    2016-04-01

    We present an implementation of explicit solvent particle mesh Ewald (PME) classical molecular dynamics (MD) within the PMEMD molecular dynamics engine, that forms part of the AMBER v14 MD software package, that makes use of Intel Xeon Phi coprocessors by offloading portions of the PME direct summation and neighbor list build to the coprocessor. We refer to this implementation as pmemd MIC offload and in this paper present the technical details of the algorithm, including basic models for MPI and OpenMP configuration, and analyze the resultant performance. The algorithm provides the best performance improvement for large systems (>400,000 atoms), achieving a ∼35% performance improvement for satellite tobacco mosaic virus (1,067,095 atoms) when 2 Intel E5-2697 v2 processors (2 ×12 cores, 30M cache, 2.7 GHz) are coupled to an Intel Xeon Phi coprocessor (Model 7120P-1.238/1.333 GHz, 61 cores). The implementation utilizes a two-fold decomposition strategy: spatial decomposition using an MPI library and thread-based decomposition using OpenMP. We also present compiler optimization settings that improve the performance on Intel Xeon processors, while retaining simulation accuracy.

  9. Does the Intel Xeon Phi processor fit HEP workloads?

    NASA Astrophysics Data System (ADS)

    Nowak, A.; Bitzes, G.; Dotti, A.; Lazzaro, A.; Jarp, S.; Szostek, P.; Valsan, L.; Botezatu, M.; Leduc, J.

    2014-06-01

    This paper summarizes the five years of CERN openlab's efforts focused on the Intel Xeon Phi co-processor, from the time of its inception to public release. We consider the architecture of the device vis a vis the characteristics of HEP software and identify key opportunities for HEP processing, as well as scaling limitations. We report on improvements and speedups linked to parallelization and vectorization on benchmarks involving software frameworks such as Geant4 and ROOT. Finally, we extrapolate current software and hardware trends and project them onto accelerators of the future, with the specifics of offline and online HEP processing in mind.

  10. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  11. Performance Evaluation of an Intel Haswell- and Ivy Bridge-Based Supercomputer Using Scientific and Engineering Applications

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Hood, Robert T.; Chang, Johnny; Baron, John

    2016-01-01

    We present a performance evaluation conducted on a production supercomputer of the Intel Xeon Processor E5- 2680v3, a twelve-core implementation of the fourth-generation Haswell architecture, and compare it with Intel Xeon Processor E5-2680v2, an Ivy Bridge implementation of the third-generation Sandy Bridge architecture. Several new architectural features have been incorporated in Haswell including improvements in all levels of the memory hierarchy as well as improvements to vector instructions and power management. We critically evaluate these new features of Haswell and compare with Ivy Bridge using several low-level benchmarks including subset of HPCC, HPCG and four full-scale scientific and engineering applications. We also present a model to predict the performance of HPCG and Cart3D within 5%, and Overflow within 10% accuracy.

  12. Parallel Mutual Information Based Construction of Genome-Scale Networks on the Intel® Xeon Phi™ Coprocessor.

    PubMed

    Misra, Sanchit; Pamnany, Kiran; Aluru, Srinivas

    2015-01-01

    Construction of whole-genome networks from large-scale gene expression data is an important problem in systems biology. While several techniques have been developed, most cannot handle network reconstruction at the whole-genome scale, and the few that can, require large clusters. In this paper, we present a solution on the Intel Xeon Phi coprocessor, taking advantage of its multi-level parallelism including many x86-based cores, multiple threads per core, and vector processing units. We also present a solution on the Intel® Xeon® processor. Our solution is based on TINGe, a fast parallel network reconstruction technique that uses mutual information and permutation testing for assessing statistical significance. We demonstrate the first ever inference of a plant whole genome regulatory network on a single chip by constructing a 15,575 gene network of the plant Arabidopsis thaliana from 3,137 microarray experiments in only 22 minutes. In addition, our optimization for parallelizing mutual information computation on the Intel Xeon Phi coprocessor holds out lessons that are applicable to other domains.

  13. Evaluation of the Xeon phi processor as a technology for the acceleration of real-time control in high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah; Vick, Andy; Schnetler, Hermine

    2014-08-01

    We present wavefront reconstruction acceleration of high-order AO systems using an Intel Xeon Phi processor. The Xeon Phi is a coprocessor providing many integrated cores and designed for accelerating compute intensive, numerical codes. Unlike other accelerator technologies, it allows virtually unchanged C/C++ to be recompiled to run on the Xeon Phi, giving the potential of making development, upgrade and maintenance faster and less complex. We benchmark the Xeon Phi in the context of AO real-time control by running a matrix vector multiply (MVM) algorithm. We investigate variability in execution time and demonstrate a substantial speed-up in loop frequency. We examine the integration of a Xeon Phi into an existing RTC system and show that performance improvements can be achieved with limited development effort.

  14. Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    ) and longer-term (/projects) storage. These file systems are mounted on all nodes. Peregrine has three -2670 Xeon processors and 64 GB of memory. In addition to mounting the /home, /nopt, /projects and # cores/node Memory/node Peak (DP) performance per node 88 Intel Xeon E5-2670 "Sandy Bridge" 8

  15. The parallel algorithm for the 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel

    2018-04-01

    The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.

  16. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  17. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    DOE PAGES

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...

    2015-05-22

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less

  18. GW Calculations of Materials on the Intel Xeon-Phi Architecture

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Biller, Ariel; Chelikowsky, James R.; Louie, Steven G.

    Intel Xeon-Phi processors are expected to power a large number of High-Performance Computing (HPC) systems around the United States and the world in the near future. We evaluate the ability of GW and pre-requisite Density Functional Theory (DFT) calculations for materials on utilizing the Xeon-Phi architecture. We describe the optimization process and performance improvements achieved. We find that the GW method, like other higher level Many-Body methods beyond standard local/semilocal approximations to Kohn-Sham DFT, is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-waves, band-pairs and frequencies. Support provided by the SCIDAC program, Department of Energy, Office of Science, Advanced Scientic Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-AC02-05CH11231 (LBNL).

  19. Scaling Support Vector Machines On Modern HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2015-02-01

    We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.

  20. Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.

    PubMed

    Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut

    2018-05-03

    Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.

  1. Simulating Hydrologic Flow and Reactive Transport with PFLOTRAN and PETSc on Emerging Fine-Grained Parallel Computer Architectures

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.

    2017-12-01

    As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.

  2. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  3. An efficient MPI/OpenMP parallelization of the Hartree–Fock–Roothaan method for the first generation of Intel® Xeon Phi™ processor architecture

    DOE PAGES

    Mironov, Vladimir; Moskovsky, Alexander; D’Mello, Michael; ...

    2017-10-04

    The Hartree-Fock (HF) method in the quantum chemistry package GAMESS represents one of the most irregular algorithms in computation today. Major steps in the calculation are the irregular computation of electron repulsion integrals (ERIs) and the building of the Fock matrix. These are the central components of the main Self Consistent Field (SCF) loop, the key hotspot in Electronic Structure (ES) codes. By threading the MPI ranks in the official release of the GAMESS code, we not only speed up the main SCF loop (4x to 6x for large systems), but also achieve a significant (>2x) reduction in the overallmore » memory footprint. These improvements are a direct consequence of memory access optimizations within the MPI ranks. We benchmark our implementation against the official release of the GAMESS code on the Intel R Xeon PhiTM supercomputer. Here, scaling numbers are reported on up to 7,680 cores on Intel Xeon Phi coprocessors.« less

  4. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™

    PubMed Central

    Gomes, Jeremias M.; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H.

    2016-01-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel® Xeon Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63× on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7× and 1.62×, respectively, as compared to efficient CPU and GPU implementations. PMID:27298591

  5. Efficient irregular wavefront propagation algorithms on Intel® Xeon Phi™.

    PubMed

    Gomes, Jeremias M; Teodoro, George; de Melo, Alba; Kong, Jun; Kurc, Tahsin; Saltz, Joel H

    2015-10-01

    We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a fundamental computing structure used in several image analysis operations, on the Intel ® Xeon Phi ™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging problem because of IWPP's irregularity and the use of atomic instructions in the original IWPP algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization instructions is critical to attain high performance. However, SIMD atomic instructions are not supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use cases. Our results show performance improvements of up to 5.63 × on top of the original IWPP due to vectorization. Moreover, the new IWPP achieves speedups of 45.7 × and 1.62 × , respectively, as compared to efficient CPU and GPU implementations.

  6. Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code

    NASA Astrophysics Data System (ADS)

    Hadade, Ioan; di Mare, Luca

    2016-08-01

    Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.

  7. Evaluating the networking characteristics of the Cray XC-40 Intel Knights Landing-based Cori supercomputer at NERSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerfler, Douglas; Austin, Brian; Cook, Brandon

    There are many potential issues associated with deploying the Intel Xeon Phi™ (code named Knights Landing [KNL]) manycore processor in a large-scale supercomputer. One in particular is the ability to fully utilize the high-speed communications network, given that the serial performance of a Xeon Phi TM core is a fraction of a Xeon®core. In this paper, we take a look at the trade-offs associated with allocating enough cores to fully utilize the Aries high-speed network versus cores dedicated to computation, e.g., the trade-off between MPI and OpenMP. In addition, we evaluate new features of Cray MPI in support of KNL,more » such as internode optimizations. We also evaluate one-sided programming models such as Unified Parallel C. We quantify the impact of the above trade-offs and features using a suite of National Energy Research Scientific Computing Center applications.« less

  8. Evaluation of an Adaptive Automation Trigger Based on Task Performance, Priority, and Frequency

    DTIC Science & Technology

    2013-06-01

    with dual Intel ® Xeon ® CPU x5550 processors @ 2.67 GHz each, 12.0 GB RAM, and a 1.5 GB PCIe nVidia Quadro FX 4800 graphics card (Microsoft...Cole Publishing Company . Miller, C. A., & Parasuraman, R. (2007). Designing for flexible interaction between humans and automation: Delegation

  9. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  10. Evaluation of the Intel Xeon Phi Co-processor to accelerate the sensitivity map calculation for PET imaging

    NASA Astrophysics Data System (ADS)

    Dey, T.; Rodrigue, P.

    2015-07-01

    We aim to evaluate the Intel Xeon Phi coprocessor for acceleration of 3D Positron Emission Tomography (PET) image reconstruction. We focus on the sensitivity map calculation as one computational intensive part of PET image reconstruction, since it is a promising candidate for acceleration with the Many Integrated Core (MIC) architecture of the Xeon Phi. The computation of the voxels in the field of view (FoV) can be done in parallel and the 103 to 104 samples needed to calculate the detection probability of each voxel can take advantage of vectorization. We use the ray tracing kernels of the Embree project to calculate the hit points of the sample rays with the detector and in a second step the sum of the radiological path taking into account attenuation is determined. The core components are implemented using the Intel single instruction multiple data compiler (ISPC) to enable a portable implementation showing efficient vectorization either on the Xeon Phi and the Host platform. On the Xeon Phi, the calculation of the radiological path is also implemented in hardware specific intrinsic instructions (so-called `intrinsics') to allow manually-optimized vectorization. For parallelization either OpenMP and ISPC tasking (based on pthreads) are evaluated.Our implementation achieved a scalability factor of 0.90 on the Xeon Phi coprocessor (model 5110P) with 60 cores at 1 GHz. Only minor differences were found between parallelization with OpenMP and the ISPC tasking feature. The implementation using intrinsics was found to be about 12% faster than the portable ISPC version. With this version, a speedup of 1.43 was achieved on the Xeon Phi coprocessor compared to the host system (HP SL250s Gen8) equipped with two Xeon (E5-2670) CPUs, with 8 cores at 2.6 to 3.3 GHz each. Using a second Xeon Phi card the speedup could be further increased to 2.77. No significant differences were found between the results of the different Xeon Phi and the Host implementations. The examination showed that a reasonable speedup of sensitivity map calculation could be achieved on the Xeon Phi either by a portable or a hardware specific implementation.

  11. A High Performance Computing Framework for Physics-based Modeling and Simulation of Military Ground Vehicles

    DTIC Science & Technology

    2011-03-25

    number one and Nebulae at number three. Both systems rely on GPU co-processing and use Intel Xeon processors cards and NVIDIA Tesla C2050 GPUs. In...spite of a theoretical peak capability of almost 3 Petaflop/s, Nebulae clocked at 1.271 PFlop/s when running the Linpack benchmark, which puts it

  12. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava

    2017-01-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particlemore » tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.« less

  13. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2017-08-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  14. Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Ciotti, Robert; Gunney, Brian T. N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias; hide

    2006-01-01

    The HPC Challenge (HPCC) benchmark suite and the Intel MPI Benchmark (IMB) are used to compare and evaluate the combined performance of processor, memory subsystem and interconnect fabric of five leading supercomputers - SGI Altix BX2, Cray XI, Cray Opteron Cluster, Dell Xeon cluster, and NEC SX-8. These five systems use five different networks (SGI NUMALINK4, Cray network, Myrinet, InfiniBand, and NEC IXS). The complete set of HPCC benchmarks are run on each of these systems. Additionally, we present Intel MPI Benchmarks (IMB) results to study the performance of 11 MPI communication functions on these systems.

  15. Kalman filter tracking on parallel architectures

    NASA Astrophysics Data System (ADS)

    Cerati, G.; Elmer, P.; Krutelyov, S.; Lantz, S.; Lefebvre, M.; McDermott, K.; Riley, D.; Tadel, M.; Wittich, P.; Wurthwein, F.; Yagil, A.

    2017-10-01

    We report on the progress of our studies towards a Kalman filter track reconstruction algorithm with optimal performance on manycore architectures. The combinatorial structure of these algorithms is not immediately compatible with an efficient SIMD (or SIMT) implementation; the challenge for us is to recast the existing software so it can readily generate hundreds of shared-memory threads that exploit the underlying instruction set of modern processors. We show how the data and associated tasks can be organized in a way that is conducive to both multithreading and vectorization. We demonstrate very good performance on Intel Xeon and Xeon Phi architectures, as well as promising first results on Nvidia GPUs.

  16. DD-αAMG on QPACE 3

    NASA Astrophysics Data System (ADS)

    Georg, Peter; Richtmann, Daniel; Wettig, Tilo

    2018-03-01

    We describe our experience porting the Regensburg implementation of the DD-αAMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knights Landing). We then describe the modifications in the communication library necessitated by the switch from InfiniBand to Omni-Path. Finally, we present the performance of the code on a single processor as well as the scaling on many nodes, where in both cases the speedup factor is close to the theoretical expectations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yao; Balaprakash, Prasanna; Meng, Jiayuan

    We present Raexplore, a performance modeling framework for architecture exploration. Raexplore enables rapid, automated, and systematic search of architecture design space by combining hardware counter-based performance characterization and analytical performance modeling. We demonstrate Raexplore for two recent manycore processors IBM Blue- Gene/Q compute chip and Intel Xeon Phi, targeting a set of scientific applications. Our framework is able to capture complex interactions between architectural components including instruction pipeline, cache, and memory, and to achieve a 3–22% error for same-architecture and cross-architecture performance predictions. Furthermore, we apply our framework to assess the two processors, and discover and evaluate a list ofmore » architectural scaling options for future processor designs.« less

  18. WinHPC System Configuration | High-Performance Computing | NREL

    Science.gov Websites

    CPUs with 48GB of memory. Node 04 has dual Intel Xeon E5530 CPUs with 24GB of memory. Nodes 05-20 have dual AMD Opteron 2374 HE CPUs with 16GB of memory. Nodes 21-30 have been decommissioned. Nodes 31-35 have dual Intel Xeon X5675 CPUs with 48GB of memory. Nodes 36-37 have dual Intel Xeon E5-2680 CPUs with

  19. List-mode PET image reconstruction for motion correction using the Intel XEON PHI co-processor

    NASA Astrophysics Data System (ADS)

    Ryder, W. J.; Angelis, G. I.; Bashar, R.; Gillam, J. E.; Fulton, R.; Meikle, S.

    2014-03-01

    List-mode image reconstruction with motion correction is computationally expensive, as it requires projection of hundreds of millions of rays through a 3D array. To decrease reconstruction time it is possible to use symmetric multiprocessing computers or graphics processing units. The former can have high financial costs, while the latter can require refactoring of algorithms. The Xeon Phi is a new co-processor card with a Many Integrated Core architecture that can run 4 multiple-instruction, multiple data threads per core with each thread having a 512-bit single instruction, multiple data vector register. Thus, it is possible to run in the region of 220 threads simultaneously. The aim of this study was to investigate whether the Xeon Phi co-processor card is a viable alternative to an x86 Linux server for accelerating List-mode PET image reconstruction for motion correction. An existing list-mode image reconstruction algorithm with motion correction was ported to run on the Xeon Phi coprocessor with the multi-threading implemented using pthreads. There were no differences between images reconstructed using the Phi co-processor card and images reconstructed using the same algorithm run on a Linux server. However, it was found that the reconstruction runtimes were 3 times greater for the Phi than the server. A new version of the image reconstruction algorithm was developed in C++ using OpenMP for mutli-threading and the Phi runtimes decreased to 1.67 times that of the host Linux server. Data transfer from the host to co-processor card was found to be a rate-limiting step; this needs to be carefully considered in order to maximize runtime speeds. When considering the purchase price of a Linux workstation with Xeon Phi co-processor card and top of the range Linux server, the former is a cost-effective computation resource for list-mode image reconstruction. A multi-Phi workstation could be a viable alternative to cluster computers at a lower cost for medical imaging applications.

  20. A GPU Parallelization of the Absolute Nodal Coordinate Formulation for Applications in Flexible Multibody Dynamics

    DTIC Science & Technology

    2012-02-17

    to be solved. Disclaimer: Reference herein to any specific commercial company , product, process, or service by trade name, trademark...data processing rather than data caching and control flow. To make use of this computational power, NVIDIA introduced a general purpose parallel...GPU implementations were run on an Intel Nehalem Xeon E5520 2.26GHz processor with an NVIDIA Tesla C2070 graphics card for varying numbers of

  1. Reducing adaptive optics latency using Xeon Phi many-core processors

    NASA Astrophysics Data System (ADS)

    Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah

    2015-11-01

    The next generation of Extremely Large Telescopes (ELTs) for astronomy will rely heavily on the performance of their adaptive optics (AO) systems. Real-time control is at the heart of the critical technologies that will enable telescopes to deliver the best possible science and will require a very significant extrapolation from current AO hardware existing for 4-10 m telescopes. Investigating novel real-time computing architectures and testing their eligibility against anticipated challenges is one of the main priorities of technology development for the ELTs. This paper investigates the suitability of the Intel Xeon Phi, which is a commercial off-the-shelf hardware accelerator. We focus on wavefront reconstruction performance, implementing a straightforward matrix-vector multiplication (MVM) algorithm. We present benchmarking results of the Xeon Phi on a real-time Linux platform, both as a standalone processor and integrated into an existing real-time controller (RTC). Performance of single and multiple Xeon Phis are investigated. We show that this technology has the potential of greatly reducing the mean latency and variations in execution time (jitter) of large AO systems. We present both a detailed performance analysis of the Xeon Phi for a typical E-ELT first-light instrument along with a more general approach that enables us to extend to any AO system size. We show that systematic and detailed performance analysis is an essential part of testing novel real-time control hardware to guarantee optimal science results.

  2. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors

    NASA Astrophysics Data System (ADS)

    Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B.

    2016-05-01

    This paper concerns the development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss the suitability of the method for Xeon Phi architecture and present our experience in the porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting without code modification gives performance on Xeon Phi close to that of an 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step optimization techniques, such as improving data locality, enhancing parallelization efficiency and vectorization leading to an overall 4.2 × speedup on CPU and 7.5 × on Xeon Phi compared to the baseline version. The optimized version achieves 16.9 ns per particle update on an Intel Xeon E5-2660 CPU and 9.3 ns per particle update on an Intel Xeon Phi 5110P. For a real problem of laser ion acceleration in targets with surface grating, where a large number of macroparticles per cell is required, the speedup of Xeon Phi compared to CPU is 1.6 ×.

  3. Evaluating the transport layer of the ALFA framework for the Intel® Xeon Phi™ Coprocessor

    NASA Astrophysics Data System (ADS)

    Santogidis, Aram; Hirstius, Andreas; Lalis, Spyros

    2015-12-01

    The ALFA framework supports the software development of major High Energy Physics experiments. As part of our research effort to optimize the transport layer of ALFA, we focus on profiling its data transfer performance for inter-node communication on the Intel Xeon Phi Coprocessor. In this article we present the collected performance measurements with the related analysis of the results. The optimization opportunities that are discovered, help us to formulate the future plans of enabling high performance data transfer for ALFA on the Intel Xeon Phi architecture.

  4. Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

    NASA Astrophysics Data System (ADS)

    Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam

    2016-12-01

    Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.

  5. Kalman Filter Tracking on Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2016-11-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.

  6. Analysis and Implementation of Particle-to-Particle (P2P) Graphics Processor Unit (GPU) Kernel for Black-Box Adaptive Fast Multipole Method

    DTIC Science & Technology

    2015-06-01

    5110P and 16 dx360M4 nodes each with one NVIDIA Kepler K20M/K40M GPU. Each node contained dual Intel Xeon E5-2670 (Sandy Bridge) central processing...kernel and as such does not employ multiple processors. This work makes use of a single processing core and a single NVIDIA Kepler K40 GK110...bandwidth (2 × 16 slot), 7.877 GFloat/s; Kepler K40 peak, 4,290 × 1 billion floating-point operations (GFLOPs), and 288 GB/s Kepler K40 memory

  7. MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Mielke, Steven L.; Clarkson, Kenneth L.; Truhlar, Donald G.

    2012-08-01

    We present a Fortran program package, MSTor, which calculates partition functions and thermodynamic functions of complex molecules involving multiple torsional motions by the recently proposed MS-T method. This method interpolates between the local harmonic approximation in the low-temperature limit, and the limit of free internal rotation of all torsions at high temperature. The program can also carry out calculations in the multiple-structure local harmonic approximation. The program package also includes six utility codes that can be used as stand-alone programs to calculate reduced moment of inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Catalogue identifier: AEMF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 77 434 No. of bytes in distributed program, including test data, etc.: 3 264 737 Distribution format: tar.gz Programming language: Fortran 90, C, and Perl Computer: Itasca (HP Linux cluster, each node has two-socket, quad-core 2.8 GHz Intel Xeon X5560 “Nehalem EP” processors), Calhoun (SGI Altix XE 1300 cluster, each node containing two quad-core 2.66 GHz Intel Xeon “Clovertown”-class processors sharing 16 GB of main memory), Koronis (Altix UV 1000 server with 190 6-core Intel Xeon X7542 “Westmere” processors at 2.66 GHz), Elmo (Sun Fire X4600 Linux cluster with AMD Opteron cores), and Mac Pro (two 2.8 GHz Quad-core Intel Xeon processors) Operating system: Linux/Unix/Mac OS RAM: 2 Mbytes Classification: 16.3, 16.12, 23 Nature of problem: Calculation of the partition functions and thermodynamic functions (standard-state energy, enthalpy, entropy, and free energy as functions of temperatures) of complex molecules involving multiple torsional motions. Solution method: The multi-structural approximation with torsional anharmonicity (MS-T). The program also provides results for the multi-structural local harmonic approximation [1]. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multi-torsional problems for which one can afford to calculate all the conformations and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes and six utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomain defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 24 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 seconds. J. Zheng, T. Yu, E. Papajak, I.M. Alecu, S.L. Mielke, D.G. Truhlar, Practical methods for including torsional anharmonicity in thermochemical calculations of complex molecules: The internal-coordinate multi-structural approximation, Phys. Chem. Chem. Phys. 13 (2011) 10885-10907.

  8. Initial results on computational performance of Intel Many Integrated Core (MIC) architecture: implementation of the Weather and Research Forecasting (WRF) Purdue-Lin microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    Purdue-Lin scheme is a relatively sophisticated microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme includes six classes of hydro meteors: water vapor, cloud water, raid, cloud ice, snow and graupel. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. In this paper, we accelerate the Purdue Lin scheme using Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi is a high performance coprocessor consists of up to 61 cores. The Xeon Phi is connected to a CPU via the PCI Express (PICe) bus. In this paper, we will discuss in detail the code optimization issues encountered while tuning the Purdue-Lin microphysics Fortran code for Xeon Phi. In particularly, getting a good performance required utilizing multiple cores, the wide vector operations and make efficient use of memory. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 4.2x. Furthermore, the same optimizations improved performance on Intel Xeon E5-2603 CPU by a factor of 1.2x compared to the original code.

  9. Accelerating the Pace of Protein Functional Annotation With Intel Xeon Phi Coprocessors.

    PubMed

    Feinstein, Wei P; Moreno, Juana; Jarrell, Mark; Brylinski, Michal

    2015-06-01

    Intel Xeon Phi is a new addition to the family of powerful parallel accelerators. The range of its potential applications in computationally driven research is broad; however, at present, the repository of scientific codes is still relatively limited. In this study, we describe the development and benchmarking of a parallel version of eFindSite, a structural bioinformatics algorithm for the prediction of ligand-binding sites in proteins. Implemented for the Intel Xeon Phi platform, the parallelization of the structure alignment portion of eFindSite using pragma-based OpenMP brings about the desired performance improvements, which scale well with the number of computing cores. Compared to a serial version, the parallel code runs 11.8 and 10.1 times faster on the CPU and the coprocessor, respectively; when both resources are utilized simultaneously, the speedup is 17.6. For example, ligand-binding predictions for 501 benchmarking proteins are completed in 2.1 hours on a single Stampede node equipped with the Intel Xeon Phi card compared to 3.1 hours without the accelerator and 36.8 hours required by a serial version. In addition to the satisfactory parallel performance, porting existing scientific codes to the Intel Xeon Phi architecture is relatively straightforward with a short development time due to the support of common parallel programming models by the coprocessor. The parallel version of eFindSite is freely available to the academic community at www.brylinski.org/efindsite.

  10. Task Parallel Incomplete Cholesky Factorization using 2D Partitioned-Block Layout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyungjoo; Rajamanickam, Sivasankaran; Stelle, George Widgery

    We introduce a task-parallel algorithm for sparse incomplete Cholesky factorization that utilizes a 2D sparse partitioned-block layout of a matrix. Our factorization algorithm follows the idea of algorithms-by-blocks by using the block layout. The algorithm-byblocks approach induces a task graph for the factorization. These tasks are inter-related to each other through their data dependences in the factorization algorithm. To process the tasks on various manycore architectures in a portable manner, we also present a portable tasking API that incorporates different tasking backends and device-specific features using an open-source framework for manycore platforms i.e., Kokkos. A performance evaluation is presented onmore » both Intel Sandybridge and Xeon Phi platforms for matrices from the University of Florida sparse matrix collection to illustrate merits of the proposed task-based factorization. Experimental results demonstrate that our task-parallel implementation delivers about 26.6x speedup (geometric mean) over single-threaded incomplete Choleskyby- blocks and 19.2x speedup over serial Cholesky performance which does not carry tasking overhead using 56 threads on the Intel Xeon Phi processor for sparse matrices arising from various application problems.« less

  11. Kalman Filter Tracking on Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2015-12-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter [2]. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.

  12. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    NASA Technical Reports Server (NTRS)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  13. Revisiting Intel Xeon Phi optimization of Thompson cloud microphysics scheme in Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2015-10-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.

  14. Benchmarking hardware architecture candidates for the NFIRAOS real-time controller

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm; Kerley, Dan; Herriot, Glen; Véran, Jean-Pierre

    2014-07-01

    As a part of the trade study for the Narrow Field Infrared Adaptive Optics System, the adaptive optics system for the Thirty Meter Telescope, we investigated the feasibility of performing real-time control computation using a Linux operating system and Intel Xeon E5 CPUs. We also investigated a Xeon Phi based architecture which allows higher levels of parallelism. This paper summarizes both the CPU based real-time controller architecture and the Xeon Phi based RTC. The Intel Xeon E5 CPU solution meets the requirements and performs the computation for one AO cycle in an average of 767 microseconds. The Xeon Phi solution did not meet the 1200 microsecond time requirement and also suffered from unpredictable execution times. More detailed benchmark results are reported for both architectures.

  15. Evaluation of the Intel Xeon Phi 7120 and NVIDIA K80 as accelerators for two-dimensional panel codes

    PubMed Central

    2017-01-01

    To optimize the geometry of airfoils for a specific application is an important engineering problem. In this context genetic algorithms have enjoyed some success as they are able to explore the search space without getting stuck in local optima. However, these algorithms require the computation of aerodynamic properties for a significant number of airfoil geometries. Consequently, for low-speed aerodynamics, panel methods are most often used as the inner solver. In this paper we evaluate the performance of such an optimization algorithm on modern accelerators (more specifically, the Intel Xeon Phi 7120 and the NVIDIA K80). For that purpose, we have implemented an optimized version of the algorithm on the CPU and Xeon Phi (based on OpenMP, vectorization, and the Intel MKL library) and on the GPU (based on CUDA and the MAGMA library). We present timing results for all codes and discuss the similarities and differences between the three implementations. Overall, we observe a speedup of approximately 2.5 for adding an Intel Xeon Phi 7120 to a dual socket workstation and a speedup between 3.4 and 3.8 for adding a NVIDIA K80 to a dual socket workstation. PMID:28582389

  16. Evaluation of the Intel Xeon Phi 7120 and NVIDIA K80 as accelerators for two-dimensional panel codes.

    PubMed

    Einkemmer, Lukas

    2017-01-01

    To optimize the geometry of airfoils for a specific application is an important engineering problem. In this context genetic algorithms have enjoyed some success as they are able to explore the search space without getting stuck in local optima. However, these algorithms require the computation of aerodynamic properties for a significant number of airfoil geometries. Consequently, for low-speed aerodynamics, panel methods are most often used as the inner solver. In this paper we evaluate the performance of such an optimization algorithm on modern accelerators (more specifically, the Intel Xeon Phi 7120 and the NVIDIA K80). For that purpose, we have implemented an optimized version of the algorithm on the CPU and Xeon Phi (based on OpenMP, vectorization, and the Intel MKL library) and on the GPU (based on CUDA and the MAGMA library). We present timing results for all codes and discuss the similarities and differences between the three implementations. Overall, we observe a speedup of approximately 2.5 for adding an Intel Xeon Phi 7120 to a dual socket workstation and a speedup between 3.4 and 3.8 for adding a NVIDIA K80 to a dual socket workstation.

  17. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    DOE PAGES

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; ...

    2017-06-01

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less

  18. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less

  19. Evaluating Multi-core Architectures through Accelerating the Three-Dimensional Lax–Wendroff Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2014-07-18

    Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time time-consuming, which greatly limits application’s performance and power efficiency. In this paper, we accelerate the forward modeling technique on the latest multi-core and many-core architectures such as Intel Sandy Bridge CPUs, NVIDIA Fermi C2070 GPU, NVIDIA Kepler K20x GPU, and the Intel Xeon Phi Co-processor. For the GPU platforms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels.more » For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best.« less

  20. Static analysis of the hull plate using the finite element method

    NASA Astrophysics Data System (ADS)

    Ion, A.

    2015-11-01

    This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.

  1. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-code Processors

    NASA Astrophysics Data System (ADS)

    Linderman, R.; Spetka, S.; Fitzgerald, D.; Emeny, S.

    The Physically-Constrained Iterative Deconvolution (PCID) image deblurring code is being ported to heterogeneous networks of multi-core systems, including Intel Xeons and IBM Cell Broadband Engines. This paper reports results from experiments using the JAWS supercomputer at MHPCC (60 TFLOPS of dual-dual Xeon nodes linked with Infiniband) and the Cell Cluster at AFRL in Rome, NY. The Cell Cluster has 52 TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes Infiniband, 10 Gigabit Ethernet and 1 Gigabit Ethernet to each of the 336 PS3s. The results compare approaches to parallelizing FFT executions across the Xeons and the Cell's Synergistic Processing Elements (SPEs) for frame-level image processing. The experiments included Intel's Performance Primitives and Math Kernel Library, FFTW3.2, and Carnegie Mellon's SPIRAL. Optimization of FFTs in the PCID code led to a decrease in relative processing time for FFTs. Profiling PCID version 6.2, about one year ago, showed the 13 functions that accounted for the highest percentage of processing were all FFT processing functions. They accounted for over 88% of processing time in one run on Xeons. FFT optimizations led to improvement in the current PCID version 8.0. A recent profile showed that only two of the 19 functions with the highest processing time were FFT processing functions. Timing measurements showed that FFT processing for PCID version 8.0 has been reduced to less than 19% of overall processing time. We are working toward a goal of scaling to 200-400 cores per job (1-2 imagery frames/core). Running a pair of cores on each set of frames reduces latency by implementing parallel FFT processing. Our current results show scaling well out to 100 pairs of cores. These results support the next higher level of parallelism in PCID, where groups of several hundred frames each producing one resolved image are sent to cliques of several hundred cores in a round robin fashion. Current efforts toward further performance enhancement for PCID are shifting toward using the Playstations in conjunction with the Xeons to take advantage of outstanding price/performance as well as the Flops/Watt cost advantage. We are fine-tuning the PCID parallization strategy to balance processing over Xeons and Cell BEs to find an optimal partitioning of PCID over the heterogeneous processors. A high performance information management system that exploits native Infiniband multicast is used to improve latency among the head nodes. Using a publication/subscription oriented information management system to implement a unified communications platform makes runs on large HPCs with thousands of intercommunicating cores more flexible and more fault tolerant. It features a loose couplingof publishers to subscribers through intervening brokers. We are also working on enhancing performance for both Xeons and Cell BEs, buy moving selected operations to single precision. Techniques for adapting the code to single precision and performance results are reported.

  2. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  3. NASA Center for Climate Simulation (NCCS) Presentation

    NASA Technical Reports Server (NTRS)

    Webster, William P.

    2012-01-01

    The NASA Center for Climate Simulation (NCCS) offers integrated supercomputing, visualization, and data interaction technologies to enhance NASA's weather and climate prediction capabilities. It serves hundreds of users at NASA Goddard Space Flight Center, as well as other NASA centers, laboratories, and universities across the US. Over the past year, NCCS has continued expanding its data-centric computing environment to meet the increasingly data-intensive challenges of climate science. We doubled our Discover supercomputer's peak performance to more than 800 teraflops by adding 7,680 Intel Xeon Sandy Bridge processor-cores and most recently 240 Intel Xeon Phi Many Integrated Core (MIG) co-processors. A supercomputing-class analysis system named Dali gives users rapid access to their data on Discover and high-performance software including the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT), with interfaces from user desktops and a 17- by 6-foot visualization wall. NCCS also is exploring highly efficient climate data services and management with a new MapReduce/Hadoop cluster while augmenting its data distribution to the science community. Using NCCS resources, NASA completed its modeling contributions to the Intergovernmental Panel on Climate Change (IPCG) Fifth Assessment Report this summer as part of the ongoing Coupled Modellntercomparison Project Phase 5 (CMIP5). Ensembles of simulations run on Discover reached back to the year 1000 to test model accuracy and projected climate change through the year 2300 based on four different scenarios of greenhouse gases, aerosols, and land use. The data resulting from several thousand IPCC/CMIP5 simulations, as well as a variety of other simulation, reanalysis, and observationdatasets, are available to scientists and decision makers through an enhanced NCCS Earth System Grid Federation Gateway. Worldwide downloads have totaled over 110 terabytes of data.

  4. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations improved performance on Intel Xeon E5-2670 by a factor of 2.8× compared to the original code.

  5. Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.

    2016-12-01

    The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.

  6. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures.

    PubMed

    Souris, Kevin; Lee, John Aldo; Sterpin, Edmond

    2016-04-01

    Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  7. Hot Chips and Hot Interconnects for High End Computing Systems

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  8. Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture.

    PubMed

    Aprà, E; Kowalski, K

    2016-03-08

    In this paper we discuss the implementation of multireference coupled-cluster formalism with singles, doubles, and noniterative triples (MRCCSD(T)), which is capable of taking advantage of the processing power of the Intel Xeon Phi coprocessor. We discuss the integration of two levels of parallelism underlying the MRCCSD(T) implementation with computational kernels designed to offload the computationally intensive parts of the MRCCSD(T) formalism to Intel Xeon Phi coprocessors. Special attention is given to the enhancement of the parallel performance by task reordering that has improved load balancing in the noniterative part of the MRCCSD(T) calculations. We also discuss aspects regarding efficient optimization and vectorization strategies.

  9. Underwater Threat Source Localization: Processing Sensor Network TDOAs with a Terascale Optical Core Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, Jacob; Imam, Neena

    2007-01-01

    Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less

  10. Face classification using electronic synapses

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H.-S. Philip; Qian, He

    2017-05-01

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  11. Face classification using electronic synapses.

    PubMed

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H-S Philip; Qian, He

    2017-05-12

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  12. Parallelization of the preconditioned IDR solver for modern multicore computer systems

    NASA Astrophysics Data System (ADS)

    Bessonov, O. A.; Fedoseyev, A. I.

    2012-10-01

    This paper present the analysis, parallelization and optimization approach for the large sparse matrix solver CNSPACK for modern multicore microprocessors. CNSPACK is an advanced solver successfully used for coupled solution of stiff problems arising in multiphysics applications such as CFD, semiconductor transport, kinetic and quantum problems. It employs iterative IDR algorithm with ILU preconditioning (user chosen ILU preconditioning order). CNSPACK has been successfully used during last decade for solving problems in several application areas, including fluid dynamics and semiconductor device simulation. However, there was a dramatic change in processor architectures and computer system organization in recent years. Due to this, performance criteria and methods have been revisited, together with involving the parallelization of the solver and preconditioner using Open MP environment. Results of the successful implementation for efficient parallelization are presented for the most advances computer system (Intel Core i7-9xx or two-processor Xeon 55xx/56xx).

  13. Intel Many Integrated Core (MIC) architecture optimization strategies for a memory-bound Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Goddard cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The WRF is a widely used weather prediction system in the world. It development is a done in collaborative around the globe. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the code of this important part of WRF. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU do. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 4.7x. Furthermore, the same optimizations improved performance on a dual socket Intel Xeon E5-2670 system by a factor of 2.8x compared to the original code.

  14. Acceleration of Cherenkov angle reconstruction with the new Intel Xeon/FPGA compute platform for the particle identification in the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Faerber, Christian

    2017-10-01

    The LHCb experiment at the LHC will upgrade its detector by 2018/2019 to a ‘triggerless’ readout scheme, where all the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40 MHz. This increases the data bandwidth from the detector down to the Event Filter farm to 40 TBit/s, which also has to be processed to select the interesting proton-proton collision for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered for use inside the new Event Filter farm. In the high performance computing sector more and more FPGA compute accelerators are used to improve the compute performance and reduce the power consumption (e.g. in the Microsoft Catapult project and Bing search engine). Also for the LHCb upgrade the usage of an experimental FPGA accelerated computing platform in the Event Building or in the Event Filter farm is being considered and therefore tested. This platform from Intel hosts a general CPU and a high performance FPGA linked via a high speed link which is for this platform a QPI link. On the FPGA an accelerator is implemented. The used system is a two socket platform from Intel with a Xeon CPU and an FPGA. The FPGA has cache-coherent memory access to the main memory of the server and can collaborate with the CPU. As a first step, a computing intensive algorithm to reconstruct Cherenkov angles for the LHCb RICH particle identification was successfully ported in Verilog to the Intel Xeon/FPGA platform and accelerated by a factor of 35. The same algorithm was ported to the Intel Xeon/FPGA platform with OpenCL. The implementation work and the performance will be compared. Also another FPGA accelerator the Nallatech 385 PCIe accelerator with the same Stratix V FPGA were tested for performance. The results show that the Intel Xeon/FPGA platforms, which are built in general for high performance computing, are also very interesting for the High Energy Physics community.

  15. Electromagnetic Physics Models for Parallel Computing Architectures

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  16. Spectral-element simulation of two-dimensional elastic wave propagation in fully heterogeneous media on a GPU cluster

    NASA Astrophysics Data System (ADS)

    Rudianto, Indra; Sudarmaji

    2018-04-01

    We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.

  17. Multi-threaded ATLAS simulation on Intel Knights Landing processors

    NASA Astrophysics Data System (ADS)

    Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration

    2017-10-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.

  18. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    PubMed

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.

  19. Application of Intel Many Integrated Core (MIC) accelerators to the Pleim-Xiu land surface scheme

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2015-10-01

    The land-surface model (LSM) is one physics process in the weather research and forecast (WRF) model. The LSM includes atmospheric information from the surface layer scheme, radiative forcing from the radiation scheme, and precipitation forcing from the microphysics and convective schemes, together with internal information on the land's state variables and land-surface properties. The LSM is to provide heat and moisture fluxes over land points and sea-ice points. The Pleim-Xiu (PX) scheme is one LSM. The PX LSM features three pathways for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from wet canopies. To accelerate the computation process of this scheme, we employ Intel Xeon Phi Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.3x and 11.7x as compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670.

  20. High Performance Computing and Visualization Infrastructure for Simultaneous Parallel Computing and Parallel Visualization Research

    DTIC Science & Technology

    2016-11-09

    Total Number: Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel receiving PHDs Names of other research staff...Broadcom 5720 QP 1Gb Network Daughter Card (2) Intel Xeon E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT , 12C/24T (120W...Broadcom 5720 QP 1Gb Network Daughter Card (2) Intel Xeon E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT , 12C/24T (120W

  1. Development of seismic tomography software for hybrid supercomputers

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.

  2. Investigating the Use of the Intel Xeon Phi for Event Reconstruction

    NASA Astrophysics Data System (ADS)

    Sherman, Keegan; Gilfoyle, Gerard

    2014-09-01

    The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. Work supported by the University of Richmond and the US Department of Energy.

  3. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo; Sterpin, Edmond

    2016-04-15

    Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithmmore » of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.« less

  4. Accelerated Application Development: The ORNL Titan Experience

    DOE PAGES

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; ...

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  5. Accelerated application development: The ORNL Titan experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Archibald, Rick; Berrill, Mark

    2015-08-01

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  6. Parallelization of MRCI based on hole-particle symmetry.

    PubMed

    Suo, Bing; Zhai, Gaohong; Wang, Yubin; Wen, Zhenyi; Hu, Xiangqian; Li, Lemin

    2005-01-15

    The parallel implementation of multireference configuration interaction program based on the hole-particle symmetry is described. The platform to implement the parallelization is an Intel-Architectural cluster consisting of 12 nodes, each of which is equipped with two 2.4-G XEON processors, 3-GB memory, and 36-GB disk, and are connected by a Gigabit Ethernet Switch. The dependence of speedup on molecular symmetries and task granularities is discussed. Test calculations show that the scaling with the number of nodes is about 1.9 (for C1 and Cs), 1.65 (for C2v), and 1.55 (for D2h) when the number of nodes is doubled. The largest calculation performed on this cluster involves 5.6 x 10(8) CSFs.

  7. Electromagnetic physics models for parallel computing architectures

    DOE PAGES

    Amadio, G.; Ananya, A.; Apostolakis, J.; ...

    2016-11-21

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part ofmore » the GeantV project. Finally, the results of preliminary performance evaluation and physics validation are presented as well.« less

  8. First experience of vectorizing electromagnetic physics models for detector simulation

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  9. Optimizing the Betts-Miller-Janjic cumulus parameterization with Intel Many Integrated Core (MIC) architecture

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.-L.

    2015-10-01

    The schemes of cumulus parameterization are responsible for the sub-grid-scale effects of convective and/or shallow clouds, and intended to represent vertical fluxes due to unresolved updrafts and downdrafts and compensating motion outside the clouds. Some schemes additionally provide cloud and precipitation field tendencies in the convective column, and momentum tendencies due to convective transport of momentum. The schemes all provide the convective component of surface rainfall. Betts-Miller-Janjic (BMJ) is one scheme to fulfill such purposes in the weather research and forecast (WRF) model. National Centers for Environmental Prediction (NCEP) has tried to optimize the BMJ scheme for operational application. As there are no interactions among horizontal grid points, this scheme is very suitable for parallel computation. With the advantage of Intel Xeon Phi Many Integrated Core (MIC) architecture, efficient parallelization and vectorization essentials, it allows us to optimize the BMJ scheme. If compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670, the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.4x and 17.0x, respectively.

  10. Interactive high-resolution isosurface ray casting on multicore processors.

    PubMed

    Wang, Qin; JaJa, Joseph

    2008-01-01

    We present a new method for the interactive rendering of isosurfaces using ray casting on multi-core processors. This method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data blocks. While static screen partitioning is widely used in the literature, our scheme performs dynamic allocation of groups of ray casting tasks to ensure almost equal loads among the different threads running on multi-cores while maintaining spatial locality. We also make careful use of memory management environment commonly present in multi-core processors. We test our system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86-GHz Intel Xeon Processor, for a number of widely different benchmarks. The detailed experimental results show that our system is efficient and scalable, and achieves high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous algorithms. In fact, we achieve an interactive isosurface rendering on a 1024(2) screen for all the datasets tested up to the maximum size of the main memory of our platform.

  11. High performance in silico virtual drug screening on many-core processors.

    PubMed

    McIntosh-Smith, Simon; Price, James; Sessions, Richard B; Ibarra, Amaurys A

    2015-05-01

    Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel's Xeon Phi and multi-core CPUs with SIMD instruction sets.

  12. Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture.

    PubMed

    Gorshkov, Anton V; Kirillin, Mikhail Yu

    2015-08-01

    Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.

  13. ELT-scale Adaptive Optics real-time control with thes Intel Xeon Phi Many Integrated Core Architecture

    NASA Astrophysics Data System (ADS)

    Jenkins, David R.; Basden, Alastair; Myers, Richard M.

    2018-05-01

    We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational demands of an AO real-time controller (RTC) scale with the fourth power of telescope diameter and so the next generation ELTs require orders of magnitude more processing power for the RTC pipeline than existing systems. The Xeon Phi contains a large number (≥64) of low power x86 CPU cores and high bandwidth memory integrated into a single socketed server CPU package. The increased parallelism and memory bandwidth are crucial to providing the performance for reconstructing wavefronts with the required precision for ELT scale AO. Here, we demonstrate that the Xeon Phi KNL is capable of performing ELT scale single conjugate AO real-time control computation at over 1.0kHz with less than 20μs RMS jitter. We have also shown that with a wavefront sensor camera attached the KNL can process the real-time control loop at up to 966Hz, the maximum frame-rate of the camera, with jitter remaining below 20μs RMS. Future studies will involve exploring the use of a cluster of Xeon Phis for the real-time control of the MCAO and MOAO regimes of AO. We find that the Xeon Phi is highly suitable for ELT AO real time control.

  14. Large Scale GW Calculations on the Cori System

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  15. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    PubMed

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  16. Using Intel's Knight Landing Processor to Accelerate Global Nested Air Quality Prediction Modeling System (GNAQPMS) Model

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, H.; Chen, X.; Wu, Q.; Wang, Z.

    2016-12-01

    The Global Nested Air Quality Prediction Modeling System for Hg (GNAQPMS-Hg) is a global chemical transport model coupled Hg transport module to investigate the mercury pollution. In this study, we present our work of transplanting the GNAQPMS model on Intel Xeon Phi processor, Knights Landing (KNL) to accelerate the model. KNL is the second-generation product adopting Many Integrated Core Architecture (MIC) architecture. Compared with the first generation Knight Corner (KNC), KNL has more new hardware features, that it can be used as unique processor as well as coprocessor with other CPU. According to the Vtune tool, the high overhead modules in GNAQPMS model have been addressed, including CBMZ gas chemistry, advection and convection module, and wet deposition module. These high overhead modules were accelerated by optimizing code and using new techniques of KNL. The following optimized measures was done: 1) Changing the pure MPI parallel mode to hybrid parallel mode with MPI and OpenMP; 2.Vectorizing the code to using the 512-bit wide vector computation unit. 3. Reducing unnecessary memory access and calculation. 4. Reducing Thread Local Storage (TLS) for common variables with each OpenMP thread in CBMZ. 5. Changing the way of global communication from files writing and reading to MPI functions. After optimization, the performance of GNAQPMS is greatly increased both on CPU and KNL platform, the single-node test showed that optimized version has 2.6x speedup on two sockets CPU platform and 3.3x speedup on one socket KNL platform compared with the baseline version code, which means the KNL has 1.29x speedup when compared with 2 sockets CPU platform.

  17. High-performance sparse matrix-matrix products on Intel KNL and multicore architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaka, Y; Matsuoka, S; Azad, A

    Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less

  18. LTE-Enhanced Cognitive Radio Network Testbed (LTE-CORNET)

    DTIC Science & Technology

    2016-11-01

    4 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel...Turbo, HT , 15M, 140W) Intel Core i7-3770 (3.4 GHz Quad Core, 77W) Dual Intel Xeon E5-2695 v4 (18C, 2.1GHz, 3.3GHz Turbo, 2400MHz, 45MB, 120W

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trędak, Przemysław, E-mail: przemyslaw.tredak@fuw.edu.pl; Rudnicki, Witold R.; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, ul. Pawińskiego 5a, 02-106 Warsaw

    The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPUmore » to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.« less

  20. A programming framework for data streaming on the Xeon Phi

    NASA Astrophysics Data System (ADS)

    Chapeland, S.; ALICE Collaboration

    2017-10-01

    ALICE (A Large Ion Collider Experiment) is the dedicated heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). After the second long shut-down of the LHC, the ALICE detector will be upgraded to cope with an interaction rate of 50 kHz in Pb-Pb collisions, producing in the online computing system (O2) a sustained throughput of 3.4 TB/s. This data will be processed on the fly so that the stream to permanent storage does not exceed 90 GB/s peak, the raw data being discarded. In the context of assessing different computing platforms for the O2 system, we have developed a framework for the Intel Xeon Phi processors (MIC). It provides the components to build a processing pipeline streaming the data from the PC memory to a pool of permanent threads running on the MIC, and back to the host after processing. It is based on explicit offloading mechanisms (data transfer, asynchronous tasks) and basic building blocks (FIFOs, memory pools, C++11 threads). The user only needs to implement the processing method to be run on the MIC. We present in this paper the architecture, implementation, and performance of this system.

  1. Advanced electronics for the CTF MEG system.

    PubMed

    McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A

    2004-11-30

    Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.

  2. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  3. Discrete Particle Model for Porous Media Flow using OpenFOAM at Intel Xeon Phi Coprocessors

    NASA Astrophysics Data System (ADS)

    Shang, Zhi; Nandakumar, Krishnaswamy; Liu, Honggao; Tyagi, Mayank; Lupo, James A.; Thompson, Karten

    2015-11-01

    The discrete particle model (DPM) in OpenFOAM was used to study the turbulent solid particle suspension flows through the porous media of a natural dual-permeability rock. The 2D and 3D pore geometries of the porous media were generated by sphere packing with the radius ratio of 3. The porosity is about 38% same as the natural dual-permeability rock. In the 2D case, the mesh cells reach 5 million with 1 million solid particles and in the 3D case, the mesh cells are above 10 million with 5 million solid particles. The solid particles are distributed by Gaussian distribution from 20 μm to 180 μm with expectation as 100 μm. Through the numerical simulations, not only was the HPC studied using Intel Xeon Phi Coprocessors but also the flow behaviors of large scale solid suspension flows in porous media were studied. The authors would like to thank the support by IPCC@LSU-Intel Parallel Computing Center (LSU # Y1SY1-1) and the HPC resources at Louisiana State University (http://www.hpc.lsu.edu).

  4. Thread-Level Parallelization and Optimization of NWChem for the Intel MIC Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Hongzhang; Williams, Samuel; Jong, Wibe de

    In the multicore era it was possible to exploit the increase in on-chip parallelism by simply running multiple MPI processes per chip. Unfortunately, manycore processors' greatly increased thread- and data-level parallelism coupled with a reduced memory capacity demand an altogether different approach. In this paper we explore augmenting two NWChem modules, triples correction of the CCSD(T) and Fock matrix construction, with OpenMP in order that they might run efficiently on future manycore architectures. As the next NERSC machine will be a self-hosted Intel MIC (Xeon Phi) based supercomputer, we leverage an existing MIC testbed at NERSC to evaluate our experiments.more » In order to proxy the fact that future MIC machines will not have a host processor, we run all of our experiments in tt native mode. We found that while straightforward application of OpenMP to the deep loop nests associated with the tensor contractions of CCSD(T) was sufficient in attaining high performance, significant effort was required to safely and efficiently thread the TEXAS integral package when constructing the Fock matrix. Ultimately, our new MPI OpenMP hybrid implementations attain up to 65x better performance for the triples part of the CCSD(T) due in large part to the fact that the limited on-card memory limits the existing MPI implementation to a single process per card. Additionally, we obtain up to 1.6x better performance on Fock matrix constructions when compared with the best MPI implementations running multiple processes per card.« less

  5. Thread-level parallelization and optimization of NWChem for the Intel MIC architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Hongzhang; Williams, Samuel; de Jong, Wibe

    In the multicore era it was possible to exploit the increase in on-chip parallelism by simply running multiple MPI processes per chip. Unfortunately, manycore processors' greatly increased thread- and data-level parallelism coupled with a reduced memory capacity demand an altogether different approach. In this paper we explore augmenting two NWChem modules, triples correction of the CCSD(T) and Fock matrix construction, with OpenMP in order that they might run efficiently on future manycore architectures. As the next NERSC machine will be a self-hosted Intel MIC (Xeon Phi) based supercomputer, we leverage an existing MIC testbed at NERSC to evaluate our experiments.more » In order to proxy the fact that future MIC machines will not have a host processor, we run all of our experiments in native mode. We found that while straightforward application of OpenMP to the deep loop nests associated with the tensor contractions of CCSD(T) was sufficient in attaining high performance, significant e ort was required to safely and efeciently thread the TEXAS integral package when constructing the Fock matrix. Ultimately, our new MPI+OpenMP hybrid implementations attain up to 65× better performance for the triples part of the CCSD(T) due in large part to the fact that the limited on-card memory limits the existing MPI implementation to a single process per card. Additionally, we obtain up to 1.6× better performance on Fock matrix constructions when compared with the best MPI implementations running multiple processes per card.« less

  6. (U) Status of Trinity and Crossroads Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Billy Joe; Lujan, James Westley; Hemmert, K. S.

    2017-01-10

    (U) This paper provides a general overview of current and future plans for the Advanced Simulation and Computing (ASC) Advanced Technology (AT) systems fielded by the New Mexico Alliance for Computing at Extreme Scale (ACES), a collaboration between Los Alamos Laboratory and Sandia National Laboratories. Additionally, this paper touches on research of technology beyond traditional CMOS. The status of Trinity, ASCs first AT system, and Crossroads, anticipated to succeed Trinity as the third AT system in 2020 will be presented, along with initial performance studies of the Intel Knights Landing Xeon Phi processors, introduced on Trinity. The challenges and opportunitiesmore » for our production simulation codes on AT systems will also be discussed. Trinity and Crossroads are a joint procurement by ACES and Lawrence Berkeley Laboratory as part of the Alliance for application Performance at EXtreme scale (APEX) http://apex.lanl.gov.« less

  7. Wilson and Domainwall Kernels on Oakforest-PACS

    NASA Astrophysics Data System (ADS)

    Kanamori, Issaku; Matsufuru, Hideo

    2018-03-01

    We report the performance of Wilson and Domainwall Kernels on a new Intel Xeon Phi Knights Landing based machine named Oakforest-PACS, which is co-hosted by University of Tokyo and Tsukuba University and is currently fastest in Japan. This machine uses Intel Omni-Path for the internode network. We compare performance with several types of implementation including that makes use of the Grid library. The code is incorporated with the code set Bridge++.

  8. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  9. Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU

    NASA Astrophysics Data System (ADS)

    Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.

    2016-09-01

    The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.

  10. GeantV: from CPU to accelerators

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Arora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Sehgal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The GeantV project aims to research and develop the next-generation simulation software describing the passage of particles through matter. While the modern CPU architectures are being targeted first, resources such as GPGPU, Intel© Xeon Phi, Atom or ARM cannot be ignored anymore by HEP CPU-bound applications. The proof of concept GeantV prototype has been mainly engineered for CPU's having vector units but we have foreseen from early stages a bridge to arbitrary accelerators. A software layer consisting of architecture/technology specific backends supports currently this concept. This approach allows to abstract out the basic types such as scalar/vector but also to formalize generic computation kernels using transparently library or device specific constructs based on Vc, CUDA, Cilk+ or Intel intrinsics. While the main goal of this approach is portable performance, as a bonus, it comes with the insulation of the core application and algorithms from the technology layer. This allows our application to be long term maintainable and versatile to changes at the backend side. The paper presents the first results of basket-based GeantV geometry navigation on the Intel© Xeon Phi KNC architecture. We present the scalability and vectorization study, conducted using Intel performance tools, as well as our preliminary conclusions on the use of accelerators for GeantV transport. We also describe the current work and preliminary results for using the GeantV transport kernel on GPUs.

  11. Accelerating gravitational microlensing simulations using the Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.; Baron, E.; Van der Mark, P.

    2017-04-01

    Recently Graphics Processing Units (GPUs) have been used to speed up very CPU-intensive gravitational microlensing simulations. In this work, we use the Xeon Phi coprocessor to accelerate such simulations and compare its performance on a microlensing code with that of NVIDIA's GPUs. For the selected set of parameters evaluated in our experiment, we find that the speedup by Intel's Knights Corner coprocessor is comparable to that by NVIDIA's Fermi family of GPUs with compute capability 2.0, but less significant than GPUs with higher compute capabilities such as the Kepler. However, the very recently released second generation Xeon Phi, Knights Landing, is about 5.8 times faster than the Knights Corner, and about 2.9 times faster than the Kepler GPU used in our simulations. We conclude that the Xeon Phi is a very promising alternative to GPUs for modern high performance microlensing simulations.

  12. Performance of a plasma fluid code on the Intel parallel computers

    NASA Technical Reports Server (NTRS)

    Lynch, V. E.; Carreras, B. A.; Drake, J. B.; Leboeuf, J. N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2.

  13. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  14. SoAx: A generic C++ Structure of Arrays for handling particles in HPC codes

    NASA Astrophysics Data System (ADS)

    Homann, Holger; Laenen, Francois

    2018-03-01

    The numerical study of physical problems often require integrating the dynamics of a large number of particles evolving according to a given set of equations. Particles are characterized by the information they are carrying such as an identity, a position other. There are generally speaking two different possibilities for handling particles in high performance computing (HPC) codes. The concept of an Array of Structures (AoS) is in the spirit of the object-oriented programming (OOP) paradigm in that the particle information is implemented as a structure. Here, an object (realization of the structure) represents one particle and a set of many particles is stored in an array. In contrast, using the concept of a Structure of Arrays (SoA), a single structure holds several arrays each representing one property (such as the identity) of the whole set of particles. The AoS approach is often implemented in HPC codes due to its handiness and flexibility. For a class of problems, however, it is known that the performance of SoA is much better than that of AoS. We confirm this observation for our particle problem. Using a benchmark we show that on modern Intel Xeon processors the SoA implementation is typically several times faster than the AoS one. On Intel's MIC co-processors the performance gap even attains a factor of ten. The same is true for GPU computing, using both computational and multi-purpose GPUs. Combining performance and handiness, we present the library SoAx that has optimal performance (on CPUs, MICs, and GPUs) while providing the same handiness as AoS. For this, SoAx uses modern C++ design techniques such template meta programming that allows to automatically generate code for user defined heterogeneous data structures.

  15. HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi

    DOE PAGES

    Dongarra, Jack; Gates, Mark; Haidar, Azzam; ...

    2015-01-01

    This paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for multicore with Intel Xeon Phi coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an overview of the MAGMA MIC library, an open source, high performance library, that incorporates the developments presented here and, more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting heterogeneous architectures that feature a mix of multicore CPUs and coprocessors. The LAPACK-compliance simplifies the use of the MAGMA MIC library in applications, while providing them with portably performant DLA.more » High performance is obtained through the use of the high-performance BLAS, hardware-specific tuning, and a hybridization methodology whereby we split the algorithm into computational tasks of various granularities. Execution of those tasks is properly scheduled over the heterogeneous hardware by minimizing data movements and mapping algorithmic requirements to the architectural strengths of the various heterogeneous hardware components. Our methodology and programming techniques are incorporated into the MAGMA MIC API, which abstracts the application developer from the specifics of the Xeon Phi architecture and is therefore applicable to algorithms beyond the scope of DLA.« less

  16. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  17. GeantV: From CPU to accelerators

    DOE PAGES

    Amadio, G.; Ananya, A.; Apostolakis, J.; ...

    2016-01-01

    The GeantV project aims to research and develop the next-generation simulation software describing the passage of particles through matter. While the modern CPU architectures are being targeted first, resources such as GPGPU, Intel© Xeon Phi, Atom or ARM cannot be ignored anymore by HEP CPU-bound applications. The proof of concept GeantV prototype has been mainly engineered for CPU's having vector units but we have foreseen from early stages a bridge to arbitrary accelerators. A software layer consisting of architecture/technology specific backends supports currently this concept. This approach allows to abstract out the basic types such as scalar/vector but also tomore » formalize generic computation kernels using transparently library or device specific constructs based on Vc, CUDA, Cilk+ or Intel intrinsics. While the main goal of this approach is portable performance, as a bonus, it comes with the insulation of the core application and algorithms from the technology layer. This allows our application to be long term maintainable and versatile to changes at the backend side. The paper presents the first results of basket-based GeantV geometry navigation on the Intel© Xeon Phi KNC architecture. We present the scalability and vectorization study, conducted using Intel performance tools, as well as our preliminary conclusions on the use of accelerators for GeantV transport. Lastly, we also describe the current work and preliminary results for using the GeantV transport kernel on GPUs.« less

  18. Application of Intel Many Integrated Core (MIC) architecture to the Yonsei University planetary boundary layer scheme in Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  19. IGA-ADS: Isogeometric analysis FEM using ADS solver

    NASA Astrophysics Data System (ADS)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  20. LHCb Kalman Filter cross architecture studies

    NASA Astrophysics Data System (ADS)

    Cámpora Pérez, Daniel Hugo

    2017-10-01

    The 2020 upgrade of the LHCb detector will vastly increase the rate of collisions the Online system needs to process in software, in order to filter events in real time. 30 million collisions per second will pass through a selection chain, where each step is executed conditional to its prior acceptance. The Kalman Filter is a fit applied to all reconstructed tracks which, due to its time characteristics and early execution in the selection chain, consumes 40% of the whole reconstruction time in the current trigger software. This makes the Kalman Filter a time-critical component as the LHCb trigger evolves into a full software trigger in the Upgrade. I present a new Kalman Filter algorithm for LHCb that can efficiently make use of any kind of SIMD processor, and its design is explained in depth. Performance benchmarks are compared between a variety of hardware architectures, including x86_64 and Power8, and the Intel Xeon Phi accelerator, and the suitability of said architectures to efficiently perform the LHCb Reconstruction process is determined.

  1. Traditional Tracking with Kalman Filter on Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; MacNeill, Ian; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2015-05-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this, we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. We report the results of our investigations into the potential and limitations of these algorithms on the new parallel hardware.

  2. Spectral Element Method for the Simulation of Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo Tibor; Murman, Scott M.

    2013-01-01

    This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.

  3. Methods for compressible fluid simulation on GPUs using high-order finite differences

    NASA Astrophysics Data System (ADS)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  4. Performance optimization of Qbox and WEST on Intel Knights Landing

    NASA Astrophysics Data System (ADS)

    Zheng, Huihuo; Knight, Christopher; Galli, Giulia; Govoni, Marco; Gygi, Francois

    We present the optimization of electronic structure codes Qbox and WEST targeting the Intel®Xeon Phi™processor, codenamed Knights Landing (KNL). Qbox is an ab-initio molecular dynamics code based on plane wave density functional theory (DFT) and WEST is a post-DFT code for excited state calculations within many-body perturbation theory. Both Qbox and WEST employ highly scalable algorithms which enable accurate large-scale electronic structure calculations on leadership class supercomputer platforms beyond 100,000 cores, such as Mira and Theta at the Argonne Leadership Computing Facility. In this work, features of the KNL architecture (e.g. hierarchical memory) are explored to achieve higher performance in key algorithms of the Qbox and WEST codes and to develop a road-map for further development targeting next-generation computing architectures. In particular, the optimizations of the Qbox and WEST codes on the KNL platform will target efficient large-scale electronic structure calculations of nanostructured materials exhibiting complex structures and prediction of their electronic and thermal properties for use in solar and thermal energy conversion device. This work was supported by MICCoM, as part of Comp. Mats. Sci. Program funded by the U.S. DOE, Office of Sci., BES, MSE Division. This research used resources of the ALCF, which is a DOE Office of Sci. User Facility under Contract DE-AC02-06CH11357.

  5. Efficient Approximation Algorithms for Weighted $b$-Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.

    2016-01-01

    We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for themore » problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.« less

  6. Accelerating 3D Elastic Wave Equations on Knights Landing based Intel Xeon Phi processors

    NASA Astrophysics Data System (ADS)

    Sourouri, Mohammed; Birger Raknes, Espen

    2017-04-01

    In advanced imaging methods like reverse-time migration (RTM) and full waveform inversion (FWI) the elastic wave equation (EWE) is numerically solved many times to create the seismic image or the elastic parameter model update. Thus, it is essential to optimize the solution time for solving the EWE as this will have a major impact on the total computational cost in running RTM or FWI. From a computational point of view applications implementing EWEs are associated with two major challenges. The first challenge is the amount of memory-bound computations involved, while the second challenge is the execution of such computations over very large datasets. So far, multi-core processors have not been able to tackle these two challenges, which eventually led to the adoption of accelerators such as Graphics Processing Units (GPUs). Compared to conventional CPUs, GPUs are densely populated with many floating-point units and fast memory, a type of architecture that has proven to map well to many scientific computations. Despite its architectural advantages, full-scale adoption of accelerators has yet to materialize. First, accelerators require a significant programming effort imposed by programming models such as CUDA or OpenCL. Second, accelerators come with a limited amount of memory, which also require explicit data transfers between the CPU and the accelerator over the slow PCI bus. The second generation of the Xeon Phi processor based on the Knights Landing (KNL) architecture, promises the computational capabilities of an accelerator but require the same programming effort as traditional multi-core processors. The high computational performance is realized through many integrated cores (number of cores and tiles and memory varies with the model) organized in tiles that are connected via a 2D mesh based interconnect. In contrary to accelerators, KNL is a self-hosted system, meaning explicit data transfers over the PCI bus are no longer required. However, like most accelerators, KNL sports a memory subsystem consisting of low-level caches and 16GB of high-bandwidth MCDRAM memory. For capacity computing, up to 400GB of conventional DDR4 memory is provided. Such a strict hierarchical memory layout means that data locality is imperative if the true potential of this product is to be harnessed. In this work, we study a series of optimizations specifically targeting KNL for our EWE based application to reduce the time-to-solution time for the following 3D model sizes in grid points: 1283, 2563 and 5123. We compare the results with an optimized version for multi-core CPUs running on a dual-socket Xeon E5 2680v3 system using OpenMP. Our initial naive implementation on the KNL is roughly 20% faster than the multi-core version, but by using only one thread per core and careful memory placement using the memkind library, we could achieve higher speedups. Additionally, by using the MCDRAM as cache for problem sizes that are smaller than 16 GB further performance improvements were unlocked. Depending on the problem size, our overall results indicate that the KNL based system is approximately 2.2x faster than the 24-core Xeon E5 2680v3 system, with only modest changes to the code.

  7. The Impact of IBM Cell Technology on the Programming Paradigm in the Context of Computer Systems for Climate and Weather Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shujia; Duffy, Daniel; Clune, Thomas

    The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratiomore » of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.« less

  8. Evaluating and optimizing the NERSC workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T; Cook, B; Deslippe, J

    2017-01-30

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  9. Evaluating and Optimizing the NERSC Workload on Knights Landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Taylor; Cook, Brandon; Doerfler, Douglas

    2016-01-01

    NERSC has partnered with 20 representative application teams to evaluate performance on the Xeon-Phi Knights Landing architecture and develop an application-optimization strategy for the greater NERSC workload on the recently installed Cori system. In this article, we present early case studies and summarized results from a subset of the 20 applications highlighting the impact of important architecture differences between the Xeon-Phi and traditional Xeon processors. We summarize the status of the applications and describe the greater optimization strategy that has formed.

  10. Performance of VPIC on Trinity

    NASA Astrophysics Data System (ADS)

    Nystrom, W. D.; Bergen, B.; Bird, R. F.; Bowers, K. J.; Daughton, W. S.; Guo, F.; Li, H.; Nam, H. A.; Pang, X.; Rust, W. N., III; Wohlbier, J.; Yin, L.; Albright, B. J.

    2016-10-01

    Trinity is a new major DOE computing resource which is going through final acceptance testing at Los Alamos National Laboratory. Trinity has several new and unique architectural features including two compute partitions, one with dual socket Intel Haswell Xeon compute nodes and one with Intel Knights Landing (KNL) Xeon Phi compute nodes. Additional unique features include use of on package high bandwidth memory (HBM) for the KNL nodes, the ability to configure the KNL nodes with respect to HBM model and on die network topology in a variety of operational modes at run time, and use of solid state storage via burst buffer technology to reduce time required to perform I/O. An effort is in progress to port and optimize VPIC to Trinity and evaluate its performance. Because VPIC was recently released as Open Source, it is being used as part of acceptance testing for Trinity and is participating in the Trinity Open Science Program which has resulted in excellent collaboration activities with both Cray and Intel. Results of this work will be presented on performance of VPIC on both Haswell and KNL partitions for both single node runs and runs at scale. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  11. Measurements of the LHCb software stack on the ARM architecture

    NASA Astrophysics Data System (ADS)

    Vijay Kartik, S.; Couturier, Ben; Clemencic, Marco; Neufeld, Niko

    2014-06-01

    The ARM architecture is a power-efficient design that is used in most processors in mobile devices all around the world today since they provide reasonable compute performance per watt. The current LHCb software stack is designed (and thus expected) to build and run on machines with the x86/x86_64 architecture. This paper outlines the process of measuring the performance of the LHCb software stack on the ARM architecture - specifically, the ARMv7 architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with chipsets from Calxeda - and makes comparisons with the performance on x86_64 architectures on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects of performance per core with respect to the power drawn by the compute nodes for the given performance - this ensures a fair real-world comparison with much more 'powerful' Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are also complemented with the standard synthetic benchmarks HEPSPEC and Coremark. The pitfalls and solutions for the non-trivial task of porting the source code to build for the ARMv7 instruction set are presented. The specific changes in the build process needed for ARM-specific portions of the software stack are described, to serve as pointers for further attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful compile are detailed - these cases are good indicators of where/how the software stack as well as the build system can be made more portable and multi-arch friendly. The experience gained from the tasks described in this paper are intended to i) assist in making an informed choice about ARM-based server solutions as a feasible low-power alternative to the current compute nodes, and ii) revisit the software design and build system for portability and generic improvements.

  12. Acceleration of boundary element method for linear elasticity

    NASA Astrophysics Data System (ADS)

    Zapletal, Jan; Merta, Michal; Čermák, Martin

    2017-07-01

    In this work we describe the accelerated assembly of system matrices for the boundary element method using the Intel Xeon Phi coprocessors. We present a model problem, provide a brief overview of its discretization and acceleration of the system matrices assembly using the coprocessors, and test the accelerated version using a numerical benchmark.

  13. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2015-04-01

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  14. Semiconductor Ion Implanters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKinnon, Barry A.; Ruffell, John P.

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intelmore » product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.« less

  15. Wilson Dslash Kernel From Lattice QCD Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Balint; Smelyanskiy, Mikhail; Kalamkar, Dhiraj D.

    2015-07-01

    Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show themore » technique gives excellent performance on regular Xeon Architecture as well.« less

  16. Fast generation of computer-generated hologram by graphics processing unit

    NASA Astrophysics Data System (ADS)

    Matsuda, Sho; Fujii, Tomohiko; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    A cylindrical hologram is well known to be viewable in 360 deg. This hologram depends high pixel resolution.Therefore, Computer-Generated Cylindrical Hologram (CGCH) requires huge calculation amount.In our previous research, we used look-up table method for fast calculation with Intel Pentium4 2.8 GHz.It took 480 hours to calculate high resolution CGCH (504,000 x 63,000 pixels and the average number of object points are 27,000).To improve quality of CGCH reconstructed image, fringe pattern requires higher spatial frequency and resolution.Therefore, to increase the calculation speed, we have to change the calculation method. In this paper, to reduce the calculation time of CGCH (912,000 x 108,000 pixels), we employ Graphics Processing Unit (GPU).It took 4,406 hours to calculate high resolution CGCH on Xeon 3.4 GHz.Since GPU has many streaming processors and a parallel processing structure, GPU works as the high performance parallel processor.In addition, GPU gives max performance to 2 dimensional data and streaming data.Recently, GPU can be utilized for the general purpose (GPGPU).For example, NVIDIA's GeForce7 series became a programmable processor with Cg programming language.Next GeForce8 series have CUDA as software development kit made by NVIDIA.Theoretically, calculation ability of GPU is announced as 500 GFLOPS. From the experimental result, we have achieved that 47 times faster calculation compared with our previous work which used CPU.Therefore, CGCH can be generated in 95 hours.So, total time is 110 hours to calculate and print the CGCH.

  17. A derivation and scalable implementation of the synchronous parallel kinetic Monte Carlo method for simulating long-time dynamics

    NASA Astrophysics Data System (ADS)

    Byun, Hye Suk; El-Naggar, Mohamed Y.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-10-01

    Kinetic Monte Carlo (KMC) simulations are used to study long-time dynamics of a wide variety of systems. Unfortunately, the conventional KMC algorithm is not scalable to larger systems, since its time scale is inversely proportional to the simulated system size. A promising approach to resolving this issue is the synchronous parallel KMC (SPKMC) algorithm, which makes the time scale size-independent. This paper introduces a formal derivation of the SPKMC algorithm based on local transition-state and time-dependent Hartree approximations, as well as its scalable parallel implementation based on a dual linked-list cell method. The resulting algorithm has achieved a weak-scaling parallel efficiency of 0.935 on 1024 Intel Xeon processors for simulating biological electron transfer dynamics in a 4.2 billion-heme system, as well as decent strong-scaling parallel efficiency. The parallel code has been used to simulate a lattice of cytochrome complexes on a bacterial-membrane nanowire, and it is broadly applicable to other problems such as computational synthesis of new materials.

  18. Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method

    NASA Astrophysics Data System (ADS)

    Izsák, Róbert; Neese, Frank

    2013-07-01

    The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.

  19. Application of the multireference equation of motion coupled cluster method, including spin-orbit coupling, to the atomic spectra of Cr, Mn, Fe and Co

    NASA Astrophysics Data System (ADS)

    Liu, Zhebing; Huntington, Lee M. J.; Nooijen, Marcel

    2015-10-01

    The recently introduced multireference equation of motion (MR-EOM) approach is combined with a simple treatment of spin-orbit coupling, as implemented in the ORCA program. The resulting multireference equation of motion spin-orbit coupling (MR-EOM-SOC) approach is applied to the first-row transition metal atoms Cr, Mn, Fe and Co, for which experimental data are readily available. Using the MR-EOM-SOC approach, the splittings in each L-S multiplet can be accurately assessed (root mean square (RMS) errors of about 70 cm-1). The RMS errors for J-specific excitation energies range from 414 to 783 cm-1 and are comparable to previously reported J-averaged MR-EOM results using the ACESII program. The MR-EOM approach is highly efficient. A typical MR-EOM calculation of a full spin-orbit spectrum takes about 2 CPU hours on a single processor of a 12-core node, consisting of Intel XEON 2.93 GHz CPUs with 12.3 MB of shared cache memory.

  20. Benchmarking GNU Radio Kernels and Multi-Processor Scheduling

    DTIC Science & Technology

    2013-01-14

    AMD E350 APU , comparable to Atom • ARM Cortex A8 running on a Gumstix Overo on an Ettus USRP E110 The general testing procedure consists of • Build...Intel Atom, and the AMD E350 APU . 3.2 Multi-Processor Scheduling Figure 1: GFLOPs per second through an FFT array on an Intel i7. Example output from

  1. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    DOE PAGES

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  2. (Re)engineering Earth System Models to Expose Greater Concurrency for Ultrascale Computing: Practice, Experience, and Musings

    NASA Astrophysics Data System (ADS)

    Mills, R. T.

    2014-12-01

    As the high performance computing (HPC) community pushes towards the exascale horizon, the importance and prevalence of fine-grained parallelism in new computer architectures is increasing. This is perhaps most apparent in the proliferation of so-called "accelerators" such as the Intel Xeon Phi or NVIDIA GPGPUs, but the trend also holds for CPUs, where serial performance has grown slowly and effective use of hardware threads and vector units are becoming increasingly important to realizing high performance. This has significant implications for weather, climate, and Earth system modeling codes, many of which display impressive scalability across MPI ranks but take relatively little advantage of threading and vector processing. In addition to increasing parallelism, next generation codes will also need to address increasingly deep hierarchies for data movement: NUMA/cache levels, on node vs. off node, local vs. wide neighborhoods on the interconnect, and even in the I/O system. We will discuss some approaches (grounded in experiences with the Intel Xeon Phi architecture) for restructuring Earth science codes to maximize concurrency across multiple levels (vectors, threads, MPI ranks), and also discuss some novel approaches for minimizing expensive data movement/communication.

  3. Recent Performance Results of VPIC on Trinity

    NASA Astrophysics Data System (ADS)

    Nystrom, W. D.; Bergen, B.; Bird, R. F.; Bowers, K. J.; Daughton, W. S.; Guo, F.; Le, A.; Li, H.; Nam, H.; Pang, X.; Stark, D. J.; Rust, W. N., III; Yin, L.; Albright, B. J.

    2017-10-01

    Trinity is a new DOE compute resource now in production at Los Alamos National Laboratory. Trinity has several new and unique features including two compute partitions, one with dual socket Intel Haswell Xeon compute nodes and one with Intel Knights Landing (KNL) Xeon Phi compute nodes, use of on package high bandwidth memory (HBM) for KNL nodes, ability to configure KNL nodes with respect to HBM model and on die network topology in a variety of operational modes at run time, and use of solid state storage via burst buffer technology to reduce time required to perform I/O. An effort is in progress to optimize VPIC on Trinity by taking advantage of these new architectural features. Results of work will be presented on performance of VPIC on Haswell and KNL partitions for single node runs and runs at scale. Results include use of burst buffers at scale to optimize I/O, comparison of strategies for using MPI and threads, performance benefits using HBM and effectiveness of using intrinsics for vectorization. Work performed under auspices of U.S. Dept. of Energy by Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by LANL LDRD program.

  4. The Acceleration of Structural Microarchitectural Simulation via Scheduling

    DTIC Science & Technology

    2006-11-01

    193 viii List of Tables 1.1 Size of Intel R ©Processors...Table 1.1 shows the total and estimated non-cache transistor counts in succeeding generations of Intel R ©microprocessors. (Cache array transistors are...Intel486TM 1989 1,200,000 800,000 Intel R ©Pentium R © 1993 3,100,000 2,300,000 Intel R ©Pentium R ©II 1997 7,500,000 5,500,000 Intel R ©Pentium R ©III 1999

  5. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  6. Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems.

    PubMed

    Andrade, G; Ferreira, R; Teodoro, George; Rocha, Leonardo; Saltz, Joel H; Kurc, Tahsin

    2014-10-01

    High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales.

  7. Efficient Execution of Microscopy Image Analysis on CPU, GPU, and MIC Equipped Cluster Systems

    PubMed Central

    Andrade, G.; Ferreira, R.; Teodoro, George; Rocha, Leonardo; Saltz, Joel H.; Kurc, Tahsin

    2015-01-01

    High performance computing is experiencing a major paradigm shift with the introduction of accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These processors have made available a tremendous computing power at low cost, and are transforming machines into hybrid systems equipped with CPUs and accelerators. Although these systems can deliver a very high peak performance, making full use of its resources in real-world applications is a complex problem. Most current applications deployed to these machines are still being executed in a single processor, leaving other devices underutilized. In this paper we explore a scenario in which applications are composed of hierarchical data flow tasks which are allocated to nodes of a distributed memory machine in coarse-grain, but each of them may be composed of several finer-grain tasks which can be allocated to different devices within the node. We propose and implement novel performance aware scheduling techniques that can be used to allocate tasks to devices. We evaluate our techniques using a pathology image analysis application used to investigate brain cancer morphology, and our experimental evaluation shows that the proposed scheduling strategies significantly outperforms other efficient scheduling techniques, such as Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the scheduling input data and that the performance gains are maintained as the application scales. PMID:26640423

  8. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  9. A new parallel-vector finite element analysis software on distributed-memory computers

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1993-01-01

    A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.

  10. Exploiting MIC architectures for the simulation of channeling of charged particles in crystals

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Karpusenko, Vadim

    2016-08-01

    Coherent effects of ultra-relativistic particles in crystals is an area of science under development. DYNECHARM + + is a toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures. The particle trajectory in a crystal is computed through numerical integration of the equation of motion. The code was revised and improved in order to exploit parallelization on multi-cores and vectorization of single instructions on multiple data. An Intel Xeon Phi card was adopted for the performance measurements. The computation time was proved to scale linearly as a function of the number of physical and virtual cores. By enabling the auto-vectorization flag of the compiler a three time speedup was obtained. The performances of the card were compared to the Dual Xeon ones.

  11. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava

    Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems ismore » expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.« less

  12. Theorem Proving in Intel Hardware Design

    NASA Technical Reports Server (NTRS)

    O'Leary, John

    2009-01-01

    For the past decade, a framework combining model checking (symbolic trajectory evaluation) and higher-order logic theorem proving has been in production use at Intel. Our tools and methodology have been used to formally verify execution cluster functionality (including floating-point operations) for a number of Intel products, including the Pentium(Registered TradeMark)4 and Core(TradeMark)i7 processors. Hardware verification in 2009 is much more challenging than it was in 1999 - today s CPU chip designs contain many processor cores and significant firmware content. This talk will attempt to distill the lessons learned over the past ten years, discuss how they apply to today s problems, outline some future directions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J; Dossa, D; Gokhale, M

    Critical data science applications requiring frequent access to storage perform poorly on today's computing architectures. This project addresses efficient computation of data-intensive problems in national security and basic science by exploring, advancing, and applying a new form of computing called storage-intensive supercomputing (SISC). Our goal is to enable applications that simply cannot run on current systems, and, for a broad range of data-intensive problems, to deliver an order of magnitude improvement in price/performance over today's data-intensive architectures. This technical report documents much of the work done under LDRD 07-ERD-063 Storage Intensive Supercomputing during the period 05/07-09/07. The following chapters describe:more » (1) a new file I/O monitoring tool iotrace developed to capture the dynamic I/O profiles of Linux processes; (2) an out-of-core graph benchmark for level-set expansion of scale-free graphs; (3) an entity extraction benchmark consisting of a pipeline of eight components; and (4) an image resampling benchmark drawn from the SWarp program in the LSST data processing pipeline. The performance of the graph and entity extraction benchmarks was measured in three different scenarios: data sets residing on the NFS file server and accessed over the network; data sets stored on local disk; and data sets stored on the Fusion I/O parallel NAND Flash array. The image resampling benchmark compared performance of software-only to GPU-accelerated. In addition to the work reported here, an additional text processing application was developed that used an FPGA to accelerate n-gram profiling for language classification. The n-gram application will be presented at SC07 at the High Performance Reconfigurable Computing Technologies and Applications Workshop. The graph and entity extraction benchmarks were run on a Supermicro server housing the NAND Flash 40GB parallel disk array, the Fusion-io. The Fusion system specs are as follows: SuperMicro X7DBE Xeon Dual Socket Blackford Server Motherboard; 2 Intel Xeon Dual-Core 2.66 GHz processors; 1 GB DDR2 PC2-5300 RAM (2 x 512); 80GB Hard Drive (Seagate SATA II Barracuda). The Fusion board is presently capable of 4X in a PCIe slot. The image resampling benchmark was run on a dual Xeon workstation with NVIDIA graphics card (see Chapter 5 for full specification). An XtremeData Opteron+FPGA was used for the language classification application. We observed that these benchmarks are not uniformly I/O intensive. The only benchmark that showed greater that 50% of the time in I/O was the graph algorithm when it accessed data files over NFS. When local disk was used, the graph benchmark spent at most 40% of its time in I/O. The other benchmarks were CPU dominated. The image resampling benchmark and language classification showed order of magnitude speedup over software by using co-processor technology to offload the CPU-intensive kernels. Our experiments to date suggest that emerging hardware technologies offer significant benefit to boosting the performance of data-intensive algorithms. Using GPU and FPGA co-processors, we were able to improve performance by more than an order of magnitude on the benchmark algorithms, eliminating the processor bottleneck of CPU-bound tasks. Experiments with a prototype solid state nonvolative memory available today show 10X better throughput on random reads than disk, with a 2X speedup on a graph processing benchmark when compared to the use of local SATA disk.« less

  14. Parallel Application Performance on Two Generations of Intel Xeon HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Christopher H.; Long, Hai; Sides, Scott

    2015-10-15

    Two next-generation node configurations hosting the Haswell microarchitecture were tested with a suite of microbenchmarks and application examples, and compared with a current Ivy Bridge production node on NREL" tm s Peregrine high-performance computing cluster. A primary conclusion from this study is that the additional cores are of little value to individual task performance--limitations to application parallelism, or resource contention among concurrently running but independent tasks, limits effective utilization of these added cores. Hyperthreading generally impacts throughput negatively, but can improve performance in the absence of detailed attention to runtime workflow configuration. The observations offer some guidance to procurement ofmore » future HPC systems at NREL. First, raw core count must be balanced with available resources, particularly memory bandwidth. Balance-of-system will determine value more than processor capability alone. Second, hyperthreading continues to be largely irrelevant to the workloads that are commonly seen, and were tested here, at NREL. Finally, perhaps the most impactful enhancement to productivity might occur through enabling multiple concurrent jobs per node. Given the right type and size of workload, more may be achieved by doing many slow things at once, than fast things in order.« less

  15. Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2014-10-01

    The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.

  16. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  17. DBPQL: A view-oriented query language for the Intel Data Base Processor

    NASA Technical Reports Server (NTRS)

    Fishwick, P. A.

    1983-01-01

    An interactive query language (BDPQL) for the Intel Data Base Processor (DBP) is defined. DBPQL includes a parser generator package which permits the analyst to easily create and manipulate the query statement syntax and semantics. The prototype language, DBPQL, includes trace and performance commands to aid the analyst when implementing new commands and analyzing the execution characteristics of the DBP. The DBPQL grammar file and associated key procedures are included as an appendix to this report.

  18. Modeling & Analysis of Multicore Architectures for Embedded SIGINT Applications

    DTIC Science & Technology

    2015-03-01

    NVIDIA Kepler K20 [7][8] 2496e 706 225 3520 15.6 Intel Xeon Phi 5110P [9] 60 1050 225 1010 4.5 Adapteva Epiphany [10] 16 – 4K 800 0.270 19 70.4...Cortex A15 and a Kepler GPU with 192 “CUDA” cores, and is more comparable as an HPEEC platform than Tesla series GPUs, such as the NVIDIA C2075 and K20

  19. SPP: A data base processor data communications protocol

    NASA Technical Reports Server (NTRS)

    Fishwick, P. A.

    1983-01-01

    The design and implementation of a data communications protocol for the Intel Data Base Processor (DBP) is defined. The protocol is termed SPP (Service Port Protocol) since it enables data transfer between the host computer and the DBP service port. The protocol implementation is extensible in that it is explicitly layered and the protocol functionality is hierarchically organized. Extensive trace and performance capabilities have been supplied with the protocol software to permit optional efficient monitoring of the data transfer between the host and the Intel data base processor. Machine independence was considered to be an important attribute during the design and implementation of SPP. The protocol source is fully commented and is included in Appendix A of this report.

  20. MIC-SVM: Designing A Highly Efficient Support Vector Machine For Advanced Modern Multi-Core and Many-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Fu, Haohuan

    2014-08-16

    Support Vector Machine (SVM) has been widely used in data-mining and Big Data applications as modern commercial databases start to attach an increasing importance to the analytic capabilities. In recent years, SVM was adapted to the field of High Performance Computing for power/performance prediction, auto-tuning, and runtime scheduling. However, even at the risk of losing prediction accuracy due to insufficient runtime information, researchers can only afford to apply offline model training to avoid significant runtime training overhead. To address the challenges above, we designed and implemented MICSVM, a highly efficient parallel SVM for x86 based multi-core and many core architectures,more » such as the Intel Ivy Bridge CPUs and Intel Xeon Phi coprocessor (MIC).« less

  1. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation

    PubMed Central

    2011-01-01

    Background The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. Results A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Conclusions Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance. PMID:21631914

  2. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.

    PubMed

    Rognes, Torbjørn

    2011-06-01

    The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.

  3. JPRS Report, Science & Technology, Europe.

    DTIC Science & Technology

    1991-04-30

    processor in collaboration with Intel . The processor , christened Touchstone, will be used as the core of a parallel computer with 2,000 processors . One of...ELECTRONIQUE HEBDO in French 24 Jan 91 pp 14-15 [Article by Claire Remy: "Everything Set for Neural Signal Processors " first paragraph is ELECTRONIQUE...paving the way for neural signal processors in so doing. The principal advantage of this specific circuit over a neuromimetic software program is

  4. Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Taylor, Arthur C., III

    1994-01-01

    This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.

  5. Digital Hardware Architecture Implementation

    DTIC Science & Technology

    1993-02-15

    of micro - MOTOROLA 63.7 50MHZ 64 BIT 2092 N/A processors during quarterly re- INTEL 42 50MHz 64 BIT 1092 N/A views and monthly reports. The 186o XP...27 3.2.1 Signal Processor (SP) Analysis...31 3.2.1.11 MasPar Software Statements ........................................................ 32 3.2.2 Data Processor

  6. Cost/Performance Ratio Achieved by Using a Commodity-Based Cluster

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac

    2001-01-01

    Researchers at the NASA Glenn Research Center acquired a commodity cluster based on Intel Corporation processors to compare its performance with a traditional UNIX cluster in the execution of aeropropulsion applications. Since the cost differential of the clusters was significant, a cost/performance ratio was calculated. After executing a propulsion application on both clusters, the researchers demonstrated a 9.4 cost/performance ratio in favor of the Intel-based cluster. These researchers utilize the Aeroshark cluster as one of the primary testbeds for developing NPSS parallel application codes and system software. The Aero-shark cluster provides 64 Intel Pentium II 400-MHz processors, housed in 32 nodes. Recently, APNASA - a code developed by a Government/industry team for the design and analysis of turbomachinery systems was used for a simulation on Glenn's Aeroshark cluster.

  7. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  8. GPU Lossless Hyperspectral Data Compression System for Space Applications

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Aranki, Nazeeh; Hopson, Ben; Kiely, Aaron; Klimesh, Matthew; Benkrid, Khaled

    2012-01-01

    On-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. At JPL, a novel, adaptive and predictive technique for lossless compression of hyperspectral data, named the Fast Lossless (FL) algorithm, was recently developed. This technique uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. Because of its outstanding performance and suitability for real-time onboard hardware implementation, the FL compressor is being formalized as the emerging CCSDS Standard for Lossless Multispectral & Hyperspectral image compression. The FL compressor is well-suited for parallel hardware implementation. A GPU hardware implementation was developed for FL targeting the current state-of-the-art GPUs from NVIDIA(Trademark). The GPU implementation on a NVIDIA(Trademark) GeForce(Trademark) GTX 580 achieves a throughput performance of 583.08 Mbits/sec (44.85 MSamples/sec) and an acceleration of at least 6 times a software implementation running on a 3.47 GHz single core Intel(Trademark) Xeon(Trademark) processor. This paper describes the design and implementation of the FL algorithm on the GPU. The massively parallel implementation will provide in the future a fast and practical real-time solution for airborne and space applications.

  9. Leveraging FPGAs for Accelerating Short Read Alignment.

    PubMed

    Arram, James; Kaplan, Thomas; Luk, Wayne; Jiang, Peiyong

    2017-01-01

    One of the key challenges facing genomics today is how to efficiently analyze the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialized processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper, we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to two mismatches. Our design is based on the FM-index, with optimizations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seed-and-compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with eight Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and nine times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.

  10. Computing effective properties of random heterogeneous materials on heterogeneous parallel processors

    NASA Astrophysics Data System (ADS)

    Leidi, Tiziano; Scocchi, Giulio; Grossi, Loris; Pusterla, Simone; D'Angelo, Claudio; Thiran, Jean-Philippe; Ortona, Alberto

    2012-11-01

    In recent decades, finite element (FE) techniques have been extensively used for predicting effective properties of random heterogeneous materials. In the case of very complex microstructures, the choice of numerical methods for the solution of this problem can offer some advantages over classical analytical approaches, and it allows the use of digital images obtained from real material samples (e.g., using computed tomography). On the other hand, having a large number of elements is often necessary for properly describing complex microstructures, ultimately leading to extremely time-consuming computations and high memory requirements. With the final objective of reducing these limitations, we improved an existing freely available FE code for the computation of effective conductivity (electrical and thermal) of microstructure digital models. To allow execution on hardware combining multi-core CPUs and a GPU, we first translated the original algorithm from Fortran to C, and we subdivided it into software components. Then, we enhanced the C version of the algorithm for parallel processing with heterogeneous processors. With the goal of maximizing the obtained performances and limiting resource consumption, we utilized a software architecture based on stream processing, event-driven scheduling, and dynamic load balancing. The parallel processing version of the algorithm has been validated using a simple microstructure consisting of a single sphere located at the centre of a cubic box, yielding consistent results. Finally, the code was used for the calculation of the effective thermal conductivity of a digital model of a real sample (a ceramic foam obtained using X-ray computed tomography). On a computer equipped with dual hexa-core Intel Xeon X5670 processors and an NVIDIA Tesla C2050, the parallel application version features near to linear speed-up progression when using only the CPU cores. It executes more than 20 times faster when additionally using the GPU.

  11. Parallel community climate model: Description and user`s guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain intomore » geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.« less

  12. Many-integrated core (MIC) technology for accelerating Monte Carlo simulation of radiation transport: A study based on the code DPM

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Brualla, L.

    2018-04-01

    Monte Carlo simulation of radiation transport is computationally demanding to obtain reasonably low statistical uncertainties of the estimated quantities. Therefore, it can benefit in a large extent from high-performance computing. This work is aimed at assessing the performance of the first generation of the many-integrated core architecture (MIC) Xeon Phi coprocessor with respect to that of a CPU consisting of a double 12-core Xeon processor in Monte Carlo simulation of coupled electron-photonshowers. The comparison was made twofold, first, through a suite of basic tests including parallel versions of the random number generators Mersenne Twister and a modified implementation of RANECU. These tests were addressed to establish a baseline comparison between both devices. Secondly, through the p DPM code developed in this work. p DPM is a parallel version of the Dose Planning Method (DPM) program for fast Monte Carlo simulation of radiation transport in voxelized geometries. A variety of techniques addressed to obtain a large scalability on the Xeon Phi were implemented in p DPM. Maximum scalabilities of 84 . 2 × and 107 . 5 × were obtained in the Xeon Phi for simulations of electron and photon beams, respectively. Nevertheless, in none of the tests involving radiation transport the Xeon Phi performed better than the CPU. The disadvantage of the Xeon Phi with respect to the CPU owes to the low performance of the single core of the former. A single core of the Xeon Phi was more than 10 times less efficient than a single core of the CPU for all radiation transport simulations.

  13. Using the GeoFEST Faulted Region Simulation System

    NASA Technical Reports Server (NTRS)

    Parker, Jay W.; Lyzenga, Gregory A.; Donnellan, Andrea; Judd, Michele A.; Norton, Charles D.; Baker, Teresa; Tisdale, Edwin R.; Li, Peggy

    2004-01-01

    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain.

  14. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

    PubMed

    Daily, Jeff

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  15. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  16. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors

    DTIC Science & Technology

    2009-09-01

    TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4   3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7  4 . RESULTS

  17. Optimization of Selected Remote Sensing Algorithms for Embedded NVIDIA Kepler GPU Architecture

    NASA Technical Reports Server (NTRS)

    Riha, Lubomir; Le Moigne, Jacqueline; El-Ghazawi, Tarek

    2015-01-01

    This paper evaluates the potential of embedded Graphic Processing Units in the Nvidias Tegra K1 for onboard processing. The performance is compared to a general purpose multi-core CPU and full fledge GPU accelerator. This study uses two algorithms: Wavelet Spectral Dimension Reduction of Hyperspectral Imagery and Automated Cloud-Cover Assessment (ACCA) Algorithm. Tegra K1 achieved 51 for ACCA algorithm and 20 for the dimension reduction algorithm, as compared to the performance of the high-end 8-core server Intel Xeon CPU with 13.5 times higher power consumption.

  18. Testing the Tester: Lessons Learned During the Testing of a State-of-the-Art Commercial 14nm Processor Under Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam R.; Label, Kenneth A.

    2017-01-01

    Testing of an Intel 14nm desktop processor was conducted under proton irradiation. We share lessons learned, demonstrating that complex devices beget further complex challenges requiring practical and theoretical investigative expertise to solve.

  19. Why K-12 IT Managers and Administrators Are Embracing the Intel-Based Mac

    ERIC Educational Resources Information Center

    Technology & Learning, 2007

    2007-01-01

    Over the past year, Apple has dramatically increased its share of the school computer marketplace--especially in the category of notebook computers. A recent study conducted by Grunwald Associates and Rockman et al. reports that one of the major reasons for this growth is Apple's introduction of the Intel processor to the entire line of Mac…

  20. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  1. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  2. Time-domain seismic modeling in viscoelastic media for full waveform inversion on heterogeneous computing platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard

    2017-03-01

    Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings of the ground motion with the direct solution of the wave equation. Modeling the wave propagation for realistic scenarios is computationally intensive, which limits the applicability of FWI. The current hardware evolution brings increasing parallel computing power that can speed up the computations in FWI. However, to take advantage of the diversity of parallel architectures presently available, new programming approaches are required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D viscoelastic FWI in the time domain. The code computes the forward and adjoint wavefields using finite-difference and outputs the gradient of the misfit function given by the adjoint state method. To demonstrate the code portability on different architectures, the performance of SeisCL is tested on three different devices: Intel CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed up the computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although OpenCL allows code portability, we show that some device-specific optimization is still required to get the best performance out of a specific architecture. Using OpenCL in conjunction with MPI allows the domain decomposition of large models on several devices located on different nodes of a cluster. For large enough models, the speedup of the domain decomposition varies quasi-linearly with the number of devices. Finally, we investigate two different approaches to compute the gradient by the adjoint state method and show the significant advantages of using OpenCL for FWI.

  3. A data base processor semantics specification package

    NASA Technical Reports Server (NTRS)

    Fishwick, P. A.

    1983-01-01

    A Semantics Specification Package (DBPSSP) for the Intel Data Base Processor (DBP) is defined. DBPSSP serves as a collection of cross assembly tools that allow the analyst to assemble request blocks on the host computer for passage to the DBP. The assembly tools discussed in this report may be effectively used in conjunction with a DBP compatible data communications protocol to form a query processor, precompiler, or file management system for the database processor. The source modules representing the components of DBPSSP are fully commented and included.

  4. Summary of Documentation for DYNA3D-ParaDyn's Software Quality Assurance Regression Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zywicz, Edward

    The Software Quality Assurance (SQA) regression test suite for DYNA3D (Zywicz and Lin, 2015) and ParaDyn (DeGroot, et al., 2015) currently contains approximately 600 problems divided into 21 suites, and is a required component of ParaDyn’s SQA plan (Ferencz and Oliver, 2013). The regression suite allows developers to ensure that software modifications do not unintentionally alter the code response. The entire regression suite is run prior to permanently incorporating any software modification or addition. When code modifications alter test problem results, the specific cause must be determined and fully understood before the software changes and revised test answers can bemore » incorporated. The regression suite is executed on LLNL platforms using a Python script and an associated data file. The user specifies the DYNA3D or ParaDyn executable, number of processors to use, test problems to run, and other options to the script. The data file details how each problem and its answer extraction scripts are executed. For each problem in the regression suite there exists an input deck, an eight-processor partition file, an answer file, and various extraction scripts. These scripts assemble a temporary answer file in a specific format from the simulation results. The temporary and stored answer files are compared to a specific level of numerical precision, and when differences are detected the test problem is flagged as failed. Presently, numerical results are stored and compared to 16 digits. At this accuracy level different processor types, compilers, number of partitions, etc. impact the results to various degrees. Thus, for consistency purposes the regression suite is run with ParaDyn using 8 processors on machines with a specific processor type (currently the Intel Xeon E5530 processor). For non-parallel regression problems, i.e., the two XFEM problems, DYNA3D is used instead. When environments or platforms change, executables using the current source code and the new resource are created and the regression suite is run. If differences in answers arise, the new answers are retained provided that the differences are inconsequential. This bootstrap approach allows the test suite answers to evolve in a controlled manner with a high level of confidence. Developers also run the entire regression suite with (serial) DYNA3D. While these results normally differ from the stored (parallel) answers, abnormal termination or wildly different values are strong indicators of potential issues.« less

  5. Parallelizing ATLAS Reconstruction and Simulation: Issues and Optimization Solutions for Scaling on Multi- and Many-CPU Platforms

    NASA Astrophysics Data System (ADS)

    Leggett, C.; Binet, S.; Jackson, K.; Levinthal, D.; Tatarkhanov, M.; Yao, Y.

    2011-12-01

    Thermal limitations have forced CPU manufacturers to shift from simply increasing clock speeds to improve processor performance, to producing chip designs with multi- and many-core architectures. Further the cores themselves can run multiple threads as a zero overhead context switch allowing low level resource sharing (Intel Hyperthreading). To maximize bandwidth and minimize memory latency, memory access has become non uniform (NUMA). As manufacturers add more cores to each chip, a careful understanding of the underlying architecture is required in order to fully utilize the available resources. We present AthenaMP and the Atlas event loop manager, the driver of the simulation and reconstruction engines, which have been rewritten to make use of multiple cores, by means of event based parallelism, and final stage I/O synchronization. However, initial studies on 8 andl6 core Intel architectures have shown marked non-linearities as parallel process counts increase, with as much as 30% reductions in event throughput in some scenarios. Since the Intel Nehalem architecture (both Gainestown and Westmere) will be the most common choice for the next round of hardware procurements, an understanding of these scaling issues is essential. Using hardware based event counters and Intel's Performance Tuning Utility, we have studied the performance bottlenecks at the hardware level, and discovered optimization schemes to maximize processor throughput. We have also produced optimization mechanisms, common to all large experiments, that address the extreme nature of today's HEP code, which due to it's size, places huge burdens on the memory infrastructure of today's processors.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh

    We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to performmore » $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $$1.6 \\times 10^{-2}$$ seconds on an Intel Xeon processor.« less

  7. Communication overhead on the Intel iPSC-860 hypercube

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1990-01-01

    Experiments were conducted on the Intel iPSC-860 hypercube in order to evaluate the overhead of interprocessor communication. It is demonstrated that: (1) contrary to popular belief, the distance between two communicating processors has a significant impact on communication time, (2) edge contention can increase communication time by a factor of more than 7, and (3) node contention has no measurable impact.

  8. Multibus-based parallel processor for simulation

    NASA Technical Reports Server (NTRS)

    Ogrady, E. P.; Wang, C.-H.

    1983-01-01

    A Multibus-based parallel processor simulation system is described. The system is intended to serve as a vehicle for gaining hands-on experience, testing system and application software, and evaluating parallel processor performance during development of a larger system based on the horizontal/vertical-bus interprocessor communication mechanism. The prototype system consists of up to seven Intel iSBC 86/12A single-board computers which serve as processing elements, a multiple transmission controller (MTC) designed to support system operation, and an Intel Model 225 Microcomputer Development System which serves as the user interface and input/output processor. All components are interconnected by a Multibus/IEEE 796 bus. An important characteristic of the system is that it provides a mechanism for a processing element to broadcast data to other selected processing elements. This parallel transfer capability is provided through the design of the MTC and a minor modification to the iSBC 86/12A board. The operation of the MTC, the basic hardware-level operation of the system, and pertinent details about the iSBC 86/12A and the Multibus are described.

  9. Roofline Analysis in the Intel® Advisor to Deliver Optimized Performance for applications on Intel® Xeon Phi™ Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, Tuomas S.; Lobet, Mathieu; Deslippe, Jack

    In this session we show, in two case studies, how the roofline feature of Intel Advisor has been utilized to optimize the performance of kernels of the XGC1 and PICSAR codes in preparation for Intel Knights Landing architecture. The impact of the implemented optimizations and the benefits of using the automatic roofline feature of Intel Advisor to study performance of large applications will be presented. This demonstrates an effective optimization strategy that has enabled these science applications to achieve up to 4.6 times speed-up and prepare for future exascale architectures. # Goal/Relevance of Session The roofline model [1,2] is amore » powerful tool for analyzing the performance of applications with respect to the theoretical peak achievable on a given computer architecture. It allows one to graphically represent the performance of an application in terms of operational intensity, i.e. the ratio of flops performed and bytes moved from memory in order to guide optimization efforts. Given the scale and complexity of modern science applications, it can often be a tedious task for the user to perform the analysis on the level of functions or loops to identify where performance gains can be made. With new Intel tools, it is now possible to automate this task, as well as base the estimates of peak performance on measurements rather than vendor specifications. The goal of this session is to demonstrate how the roofline feature of Intel Advisor can be used to balance memory vs. computation related optimization efforts and effectively identify performance bottlenecks. A series of typical optimization techniques: cache blocking, structure refactoring, data alignment, and vectorization illustrated by the kernel cases will be addressed. # Description of the codes ## XGC1 The XGC1 code [3] is a magnetic fusion Particle-In-Cell code that uses an unstructured mesh for its Poisson solver that allows it to accurately resolve the edge plasma of a magnetic fusion device. After recent optimizations to its collision kernel [4], most of the computing time is spent in the electron push (pushe) kernel, where these optimization efforts have been focused. The kernel code scaled well with MPI+OpenMP but had almost no automatic compiler vectorization, in part due to indirect memory addresses and in part due to low trip counts of low-level loops that would be candidates for vectorization. Particle blocking and sorting have been implemented to increase trip counts of low-level loops and improve memory locality, and OpenMP directives have been added to vectorize compute-intensive loops that were identified by Advisor. The optimizations have improved the performance of the pushe kernel 2x on Haswell processors and 1.7x on KNL. The KNL node-for-node performance has been brought to within 30% of a NERSC Cori phase I Haswell node and we expect to bridge this gap by reducing the memory footprint of compute intensive routines to improve cache reuse. ## PICSAR is a Fortran/Python high-performance Particle-In-Cell library targeting at MIC architectures first designed to be coupled with the PIC code WARP for the simulation of laser-matter interaction and particle accelerators. PICSAR also contains a FORTRAN stand-alone kernel for performance studies and benchmarks. A MPI domain decomposition is used between NUMA domains and a tile decomposition (cache-blocking) handled by OpenMP has been added for shared-memory parallelism and better cache management. The so-called current deposition and field gathering steps that compose the PIC time loop constitute major hotspots that have been rewritten to enable more efficient vectorization. Particle communications between tiles and MPI domain has been merged and parallelized. All considered, these improvements provide speedups of 3.1 for order 1 and 4.6 for order 3 interpolation shape factors on KNL configured in SNC4 quadrant flat mode. Performance is similar between a node of cori phase 1 and KNL at order 1 and better on KNL by a factor 1.6 at order 3 with the considered test case (homogeneous thermal plasma).« less

  10. Tactical Operations Analysis Support Facility.

    DTIC Science & Technology

    1981-05-01

    Punch/Reader 2 DMC-11AR DDCMP Micro Processor 2 DMC-11DA Network Link Line Unit 2 DL-11E Async Serial Line Interface 4 Intel IN-1670 448K Words MOS Memory...86 5.3 VIRTUAL PROCESSORS - VAX-11/750 ........................... 89 5.4 A RELATIONAL DATA MANAGEMENT SYSTEM - ORACLE...Central Processing Unit (CPU) is a 16 bit processor for high-speed, real time applications, and for large multi-user, multi- task, time shared

  11. Baryonic and mesonic 3-point functions with open spin indices

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Heybrock, Simon; Korcyl, Piotr; Löffler, Marius; Rödl, Rudolf; Schäfer, Andreas

    2018-03-01

    We have implemented a new way of computing three-point correlation functions. It is based on a factorization of the entire correlation function into two parts which are evaluated with open spin-(and to some extent flavor-) indices. This allows us to estimate the two contributions simultaneously for many different initial and final states and momenta, with little computational overhead. We explain this factorization as well as its efficient implementation in a new library which has been written to provide the necessary functionality on modern parallel architectures and on CPUs, including Intel's Xeon Phi series.

  12. Aging in the three-dimensional random-field Ising model

    NASA Astrophysics Data System (ADS)

    von Ohr, Sebastian; Manssen, Markus; Hartmann, Alexander K.

    2017-07-01

    We studied the nonequilibrium aging behavior of the random-field Ising model in three dimensions for various values of the disorder strength. This allowed us to investigate how the aging behavior changes across the ferromagnetic-paramagnetic phase transition. We investigated a large system size of N =2563 spins and up to 108 Monte Carlo sweeps. To reach these necessary long simulation times, we employed an implementation running on Intel Xeon Phi coprocessors, reaching single-spin-flip times as short as 6 ps. We measured typical correlation functions in space and time to extract a growing length scale and corresponding exponents.

  13. Parallel computation for biological sequence comparison: comparing a portable model to the native model for the Intel Hypercube.

    PubMed

    Nadkarni, P M; Miller, P L

    1991-01-01

    A parallel program for inter-database sequence comparison was developed on the Intel Hypercube using two models of parallel programming. One version was built using machine-specific Hypercube parallel programming commands. The other version was built using Linda, a machine-independent parallel programming language. The two versions of the program provide a case study comparing these two approaches to parallelization in an important biological application area. Benchmark tests with both programs gave comparable results with a small number of processors. As the number of processors was increased, the Linda version was somewhat less efficient. The Linda version was also run without change on Network Linda, a virtual parallel machine running on a network of desktop workstations.

  14. European Scientific Notes. Volume 35, Number 12,

    DTIC Science & Technology

    1981-12-31

    been redesigned to work A. Osorio, which was organized some 3 with the Intel 8085 microprocessor, it years ago and contains about half of the has the...operational set. attempt to derive a set of invariants MOISE is based on the Intel 8085A upon which virtually speaker-invariant microprocessor, and...FACILITY software interface; a Research Signal Processor (RSP) using reduced computational It has been IBM International’s complexity algorithms for

  15. A hybrid algorithm for parallel molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mangiardi, Chris M.; Meyer, R.

    2017-10-01

    This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.

  16. A comparison of SuperLU solvers on the intel MIC architecture

    NASA Astrophysics Data System (ADS)

    Tuncel, Mehmet; Duran, Ahmet; Celebi, M. Serdar; Akaydin, Bora; Topkaya, Figen O.

    2016-10-01

    In many science and engineering applications, problems may result in solving a sparse linear system AX=B. For example, SuperLU_MCDT, a linear solver, was used for the large penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from the incompressible blood flow simulation (see [1]). It is important to test the status and potential improvements of state-of-the-art solvers on new technologies. In this work, sequential, multithreaded and distributed versions of SuperLU solvers (see [2]) are examined on the Intel Xeon Phi coprocessors using offload programming model at the EURORA cluster of CINECA in Italy. We consider a portfolio of test matrices containing patterned matrices from UFMM ([3]) and randomly located matrices. This architecture can benefit from high parallelism and large vectors. We find that the sequential SuperLU benefited up to 45 % performance improvement from the offload programming depending on the sparse matrix type and the size of transferred and processed data.

  17. Dynamic overset grid communication on distributed memory parallel processors

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Weeratunga, Sisira K.; Meakin, Robert L.

    1993-01-01

    A parallel distributed memory implementation of intergrid communication for dynamic overset grids is presented. Included are discussions of various options considered during development. Results are presented comparing an Intel iPSC/860 to a single processor Cray Y-MP. Results for grids in relative motion show the iPSC/860 implementation to be faster than the Cray implementation.

  18. Perfmon2: a leap forward in performance monitoring

    NASA Astrophysics Data System (ADS)

    Jarp, S.; Jurga, R.; Nowak, A.

    2008-07-01

    This paper describes the software component, perfmon2, that is about to be added to the Linux kernel as the standard interface to the Performance Monitoring Unit (PMU) on common processors, including x86 (AMD and Intel), Sun SPARC, MIPS, IBM Power and Intel Itanium. It also describes a set of tools for doing performance monitoring in practice and details how the CERN openlab team has participated in the testing and development of these tools.

  19. Global synchronization algorithms for the Intel iPSC/860

    NASA Technical Reports Server (NTRS)

    Seidel, Steven R.; Davis, Mark A.

    1992-01-01

    In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms.

  20. P-Hint-Hunt: a deep parallelized whole genome DNA methylation detection tool.

    PubMed

    Peng, Shaoliang; Yang, Shunyun; Gao, Ming; Liao, Xiangke; Liu, Jie; Yang, Canqun; Wu, Chengkun; Yu, Wenqiang

    2017-03-14

    The increasing studies have been conducted using whole genome DNA methylation detection as one of the most important part of epigenetics research to find the significant relationships among DNA methylation and several typical diseases, such as cancers and diabetes. In many of those studies, mapping the bisulfite treated sequence to the whole genome has been the main method to study DNA cytosine methylation. However, today's relative tools almost suffer from inaccuracies and time-consuming problems. In our study, we designed a new DNA methylation prediction tool ("Hint-Hunt") to solve the problem. By having an optimal complex alignment computation and Smith-Waterman matrix dynamic programming, Hint-Hunt could analyze and predict the DNA methylation status. But when Hint-Hunt tried to predict DNA methylation status with large-scale dataset, there are still slow speed and low temporal-spatial efficiency problems. In order to solve the problems of Smith-Waterman dynamic programming and low temporal-spatial efficiency, we further design a deep parallelized whole genome DNA methylation detection tool ("P-Hint-Hunt") on Tianhe-2 (TH-2) supercomputer. To the best of our knowledge, P-Hint-Hunt is the first parallel DNA methylation detection tool with a high speed-up to process large-scale dataset, and could run both on CPU and Intel Xeon Phi coprocessors. Moreover, we deploy and evaluate Hint-Hunt and P-Hint-Hunt on TH-2 supercomputer in different scales. The experimental results illuminate our tools eliminate the deviation caused by bisulfite treatment in mapping procedure and the multi-level parallel program yields a 48 times speed-up with 64 threads. P-Hint-Hunt gain a deep acceleration on CPU and Intel Xeon Phi heterogeneous platform, which gives full play of the advantages of multi-cores (CPU) and many-cores (Phi).

  1. Parallel computation for biological sequence comparison: comparing a portable model to the native model for the Intel Hypercube.

    PubMed Central

    Nadkarni, P. M.; Miller, P. L.

    1991-01-01

    A parallel program for inter-database sequence comparison was developed on the Intel Hypercube using two models of parallel programming. One version was built using machine-specific Hypercube parallel programming commands. The other version was built using Linda, a machine-independent parallel programming language. The two versions of the program provide a case study comparing these two approaches to parallelization in an important biological application area. Benchmark tests with both programs gave comparable results with a small number of processors. As the number of processors was increased, the Linda version was somewhat less efficient. The Linda version was also run without change on Network Linda, a virtual parallel machine running on a network of desktop workstations. PMID:1807632

  2. Multi-Core Programming Design Patterns: Stream Processing Algorithms for Dynamic Scene Perceptions

    DTIC Science & Technology

    2014-05-01

    processor developed by IBM and other companies , incorpo- rates the verb—POWER5— processor as the Power Processor Element (PPE), one of the early general...deliver an power efficient single-precision peak performance of more than 256 GFlops. Substantially more raw power became available later, when nVIDIA ...algorithms, including IBM’s Cell/B.E., GPUs from NVidia and AMD and many-core CPUs from Intel.27 The vast growth of digital video content has been a

  3. Genten: Software for Generalized Tensor Decompositions v. 1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel

    Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.

  4. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2017-06-13

    We present an extension of our graphics processing units (GPU)-accelerated quantum chemistry package to employ OpenCL compute kernels, which can be executed on a wide range of computing devices like CPUs, Intel Xeon Phi, and AMD GPUs. Here, we focus on the use of AMD GPUs and discuss differences as compared to CUDA-based calculations on NVIDIA GPUs. First illustrative timings are presented for hybrid density functional theory calculations using serial as well as parallel compute environments. The results show that AMD GPUs are as fast or faster than comparable NVIDIA GPUs and provide a viable alternative for quantum chemical applications.

  5. Multi-GPU Accelerated Admittance Method for High-Resolution Human Exposure Evaluation.

    PubMed

    Xiong, Zubiao; Feng, Shi; Kautz, Richard; Chandra, Sandeep; Altunyurt, Nevin; Chen, Ji

    2015-12-01

    A multi-graphics processing unit (GPU) accelerated admittance method solver is presented for solving the induced electric field in high-resolution anatomical models of human body when exposed to external low-frequency magnetic fields. In the solver, the anatomical model is discretized as a three-dimensional network of admittances. The conjugate orthogonal conjugate gradient (COCG) iterative algorithm is employed to take advantage of the symmetric property of the complex-valued linear system of equations. Compared against the widely used biconjugate gradient stabilized method, the COCG algorithm can reduce the solving time by 3.5 times and reduce the storage requirement by about 40%. The iterative algorithm is then accelerated further by using multiple NVIDIA GPUs. The computations and data transfers between GPUs are overlapped in time by using asynchronous concurrent execution design. The communication overhead is well hidden so that the acceleration is nearly linear with the number of GPU cards. Numerical examples show that our GPU implementation running on four NVIDIA Tesla K20c cards can reach 90 times faster than the CPU implementation running on eight CPU cores (two Intel Xeon E5-2603 processors). The implemented solver is able to solve large dimensional problems efficiently. A whole adult body discretized in 1-mm resolution can be solved in just several minutes. The high efficiency achieved makes it practical to investigate human exposure involving a large number of cases with a high resolution that meets the requirements of international dosimetry guidelines.

  6. Innovative HPC architectures for the study of planetary plasma environments

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Wolf, Anna; Lembège, Bertrand; Zitz, Anke; Alvarez, Damian; Lapenta, Giovanni

    2016-04-01

    DEEP-ER is an European Commission founded project that develops a new type of High Performance Computer architecture. The revolutionary system is currently used by KU Leuven to study the effects of the solar wind on the global environments of the Earth and Mercury. The new architecture combines the versatility of Intel Xeon computing nodes with the power of the upcoming Intel Xeon Phi accelerators. Contrary to classical heterogeneous HPC architectures, where it is customary to find CPU and accelerators in the same computing nodes, in the DEEP-ER system CPU nodes are grouped together (Cluster) and independently from the accelerator nodes (Booster). The system is equipped with a state of the art interconnection network, a highly scalable and fast I/O and a fail recovery resiliency system. The final objective of the project is to introduce a scalable system that can be used to create the next generation of exascale supercomputers. The code iPic3D from KU Leuven is being adapted to this new architecture. This particle-in-cell code can now perform the computation of the electromagnetic fields in the Cluster while the particles are moved in the Booster side. Using fast and scalable Xeon Phi accelerators in the Booster we can introduce many more particles per cell in the simulation than what is possible in the current generation of HPC systems, allowing to calculate fully kinetic plasmas with very low interpolation noise. The system will be used to perform fully kinetic, low noise, 3D simulations of the interaction of the solar wind with the magnetosphere of the Earth and Mercury. Preliminary simulations have been performed in other HPC centers in order to compare the results in different systems. In this presentation we show the complexity of the plasma flow around the planets, including the development of hydrodynamic instabilities at the flanks, the presence of the collision-less shock, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with satellite data.

  7. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures

    PubMed Central

    Manolakos, Elias S.

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332

  8. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.

    PubMed

    Sharma, Anuj; Manolakos, Elias S

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.

  9. Accelerating Climate and Weather Simulations through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark

    2011-01-01

    Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.

  10. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

    PubMed

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J

    2004-09-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy.

  11. Federal Plan for High-End Computing. Report of the High-End Computing Revitalization Task Force (HECRTF)

    DTIC Science & Technology

    2004-07-01

    steadily for the past fifteen years, while memory latency and bandwidth have improved much more slowly. For example, Intel processor clock rates38 have... processor and memory performance) all greatly restrict the ability to achieve high levels of performance for science, engineering, and national...sub-nuclear distances. Guide experiments to identify transition from quantum chromodynamics to quark -gluon plasma. Accelerator Physics Accurate

  12. Performance Analysis of GFDL's GCM Line-By-Line Radiative Transfer Model on GPU and MIC Architectures

    NASA Astrophysics Data System (ADS)

    Menzel, R.; Paynter, D.; Jones, A. L.

    2017-12-01

    Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.

  13. Optimizing legacy molecular dynamics software with directive-based offload

    NASA Astrophysics Data System (ADS)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  14. Speeding-up Bioinformatics Algorithms with Heterogeneous Architectures: Highly Heterogeneous Smith-Waterman (HHeterSW).

    PubMed

    Gálvez, Sergio; Ferusic, Adis; Esteban, Francisco J; Hernández, Pilar; Caballero, Juan A; Dorado, Gabriel

    2016-10-01

    The Smith-Waterman algorithm has a great sensitivity when used for biological sequence-database searches, but at the expense of high computing-power requirements. To overcome this problem, there are implementations in literature that exploit the different hardware-architectures available in a standard PC, such as GPU, CPU, and coprocessors. We introduce an application that splits the original database-search problem into smaller parts, resolves each of them by executing the most efficient implementations of the Smith-Waterman algorithms in different hardware architectures, and finally unifies the generated results. Using non-overlapping hardware allows simultaneous execution, and up to 2.58-fold performance gain, when compared with any other algorithm to search sequence databases. Even the performance of the popular BLAST heuristic is exceeded in 78% of the tests. The application has been tested with standard hardware: Intel i7-4820K CPU, Intel Xeon Phi 31S1P coprocessors, and nVidia GeForce GTX 960 graphics cards. An important increase in performance has been obtained in a wide range of situations, effectively exploiting the available hardware.

  15. A polyphase filter for many-core architectures

    NASA Astrophysics Data System (ADS)

    Adámek, K.; Novotný, J.; Armour, W.

    2016-07-01

    In this article we discuss our implementation of a polyphase filter for real-time data processing in radio astronomy. The polyphase filter is a standard tool in digital signal processing and as such a well established algorithm. We describe in detail our implementation of the polyphase filter algorithm and its behaviour on three generations of NVIDIA GPU cards (Fermi, Kepler, Maxwell), on the Intel Xeon CPU and Xeon Phi (Knights Corner) platforms. All of our implementations aim to exploit the potential for data reuse that the algorithm offers. Our GPU implementations explore two different methods for achieving this, the first makes use of L1/Texture cache, the second uses shared memory. We discuss the usability of each of our implementations along with their behaviours. We measure performance in execution time, which is a critical factor for real-time systems, we also present results in terms of bandwidth (GB/s), compute (GFLOP/s/s) and type conversions (GTc/s). We include a presentation of our results in terms of the sample rate which can be processed in real-time by a chosen platform, which more intuitively describes the expected performance in a signal processing setting. Our findings show that, for the GPUs considered, the performance of our polyphase filter when using lower precision input data is limited by type conversions rather than device bandwidth. We compare these results to an implementation on the Xeon Phi. We show that our Xeon Phi implementation has a performance that is 1.5 × to 1.92 × greater than our CPU implementation, however is not insufficient to compete with the performance of GPUs. We conclude with a comparison of our best performing code to two other implementations of the polyphase filter, showing that our implementation is faster in nearly all cases. This work forms part of the Astro-Accelerate project, a many-core accelerated real-time data processing library for digital signal processing of time-domain radio astronomy data.

  16. Domain Wall Fermion Inverter on Pentium 4

    NASA Astrophysics Data System (ADS)

    Pochinsky, Andrew

    2005-03-01

    A highly optimized domain wall fermion inverter has been developed as part of the SciDAC lattice initiative. By designing the code to minimize memory bus traffic, it achieves high cache reuse and performance in excess of 2 GFlops for out of L2 cache problem sizes on a GigE cluster with 2.66 GHz Xeon processors. The code uses the SciDAC QMP communication library.

  17. Communication overhead on the Intel Paragon, IBM SP2 and Meiko CS-2

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1995-01-01

    Interprocessor communication overhead is a crucial measure of the power of parallel computing systems-its impact can severely limit the performance of parallel programs. This report presents measurements of communication overhead on three contemporary commercial multicomputer systems: the Intel Paragon, the IBM SP2 and the Meiko CS-2. In each case the time to communicate between processors is presented as a function of message length. The time for global synchronization and memory access is discussed. The performance of these machines in emulating hypercubes and executing random pairwise exchanges is also investigated. It is shown that the interprocessor communication time depends heavily on the specific communication pattern required. These observations contradict the commonly held belief that communication overhead on contemporary machines is independent of the placement of tasks on processors. The information presented in this report permits the evaluation of the efficiency of parallel algorithm implementations against standard baselines.

  18. Evaluation of the Intel iWarp parallel processor for space flight applications

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Fong, Terrence W.

    1993-01-01

    The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.

  19. Analysis of the Intel 386 and i486 microprocessors for the Space Station Freedom Data Management System

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei

    1991-01-01

    The feasibility is analyzed of upgrading the Intel 386 microprocessor, which has been proposed as the baseline processor for the Space Station Freedom (SSF) Data Management System (DMS), to the more advanced i486 microprocessors. The items compared between the two processors include the instruction set architecture, power consumption, the MIL-STD-883C Class S (Space) qualification schedule, and performance. The advantages of the i486 over the 386 are (1) lower power consumption; and (2) higher floating point performance. The i486 on-chip cache does not have parity check or error detection and correction circuitry. The i486 with on-chip cache disabled, however, has lower integer performance than the 386 without cache, which is the current DMS design choice. Adding cache to the 386/386 DX memory hierachy appears to be the most beneficial change to the current DMS design at this time.

  20. Analysis of the Intel 386 and i486 microprocessors for the Space Station Freedom Data Management System

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei

    1991-01-01

    The feasibility is analyzed of upgrading the Intel 386 microprocessor, which has been proposed as the baseline processor for the Space Station Freedom (SSF) Data Management System (DMS), to the more advanced i486 microprocessors. The items compared between the two processors include the instruction set architecture, power consumption, the MIL-STD-883C Class S (Space) qualification schedule, and performance. The advantages of the i486 over the 386 are (1) lower power consumption; and (2) higher floating point performance. The i486 on-chip cache does not have parity check or error detection and correction circuitry. The i486 with on-chip cache disabled, however, has lower integer performance than the 386 without cache, which is the current DMS design choice. Adding cache to the 386/387 DX memory hierarchy appears to be the most beneficial change to the current DMS design at this time.

  1. Exploring Machine Learning Techniques For Dynamic Modeling on Future Exascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shuaiwen; Tallent, Nathan R.; Vishnu, Abhinav

    2013-09-23

    Future exascale systems must be optimized for both power and performance at scale in order to achieve DOE’s goal of a sustained petaflop within 20 Megawatts by 2022 [1]. Massive parallelism of the future systems combined with complex memory hierarchies will form a barrier to efficient application and architecture design. These challenges are exacerbated with emerging complex architectures such as GPGPUs and Intel Xeon Phi as parallelism increases orders of magnitude and system power consumption can easily triple or quadruple. Therefore, we need techniques that can reduce the search space for optimization, isolate power-performance bottlenecks, identify root causes for software/hardwaremore » inefficiency, and effectively direct runtime scheduling.« less

  2. Performance of GeantV EM Physics Models

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2017-10-01

    The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.

  3. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor - System-on-a-Chip

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  4. An efficient implementation of semi-numerical computation of the Hartree-Fock exchange on the Intel Phi processor

    NASA Astrophysics Data System (ADS)

    Liu, Fenglai; Kong, Jing

    2018-07-01

    Unique technical challenges and their solutions for implementing semi-numerical Hartree-Fock exchange on the Phil Processor are discussed, especially concerning the single- instruction-multiple-data type of processing and small cache size. Benchmark calculations on a series of buckyball molecules with various Gaussian basis sets on a Phi processor and a six-core CPU show that the Phi processor provides as much as 12 times of speedup with large basis sets compared with the conventional four-center electron repulsion integration approach performed on the CPU. The accuracy of the semi-numerical scheme is also evaluated and found to be comparable to that of the resolution-of-identity approach.

  5. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor/System-on-a-Chip

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm “Broadwell” U-series processor / System-on-a-Chip (SoC) for total ionizing dose (TID) are presented, along with exploratory results from trials at a medical proton facility. Test method builds upon previous efforts [1] by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  6. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  7. Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.

    PubMed

    Falk, Carl F; Biesanz, Jeremy C

    2011-11-30

    Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.

  8. Multi-Kepler GPU vs. multi-Intel MIC for spin systems simulations

    NASA Astrophysics Data System (ADS)

    Bernaschi, M.; Bisson, M.; Salvadore, F.

    2014-10-01

    We present and compare the performances of two many-core architectures: the Nvidia Kepler and the Intel MIC both in a single system and in cluster configuration for the simulation of spin systems. As a benchmark we consider the time required to update a single spin of the 3D Heisenberg spin glass model by using the Over-relaxation algorithm. We present data also for a traditional high-end multi-core architecture: the Intel Sandy Bridge. The results show that although on the two Intel architectures it is possible to use basically the same code, the performances of a Intel MIC change dramatically depending on (apparently) minor details. Another issue is that to obtain a reasonable scalability with the Intel Phi coprocessor (Phi is the coprocessor that implements the MIC architecture) in a cluster configuration it is necessary to use the so-called offload mode which reduces the performances of the single system. As to the GPU, the Kepler architecture offers a clear advantage with respect to the previous Fermi architecture maintaining exactly the same source code. Scalability of the multi-GPU implementation remains very good by using the CPU as a communication co-processor of the GPU. All source codes are provided for inspection and for double-checking the results.

  9. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  10. Thermo-mechanical properties of carbon nanotubes and applications in thermal management

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Hong; Thang Bui, Hung; Trinh Pham, Van; Phan, Ngoc Hong; Nguyen, Tuan Hong; Chuc Nguyen, Van; Quang Le, Dinh; Khoi Phan, Hong; Phan, Ngoc Minh

    2016-06-01

    Thanks to their very high thermal conductivity, high Young’s modulus and unique tensile strength, carbon nanotubes (CNTs) have become one of the most suitable nano additives for heat conductive materials. In this work, we present results obtained for the synthesis of heat conductive materials containing CNT based thermal greases, nanoliquids and lubricating oils. These synthesized heat conductive materials were applied to thermal management for high power electronic devices (CPUs, LEDs) and internal combustion engines. The simulation and experimental results on thermal greases for an Intel Pentium IV processor showed that the thermal conductivity of greases increases 1.4 times and the saturation temperature of the CPU decreased by 5 °C by using thermal grease containing 2 wt% CNTs. Nanoliquids containing CNT based distilled water/ethylene glycol were successfully applied in heat dissipation for an Intel Core i5 processor and a 450 W floodlight LED. The experimental results showed that the saturation temperature of the Intel Core i5 processor and the 450 W floodlight LED decreased by about 6 °C and 3.5 °C, respectively, when using nanoliquids containing 1 g l-1 of CNTs. The CNTs were also effectively utilized additive materials for the synthesis of lubricating oils to improve the thermal conductivity, heat dissipation efficiency and performance efficiency of engines. The experimental results show that the thermal conductivity of lubricating oils increased by 12.5%, the engine saved 15% fuel consumption, and the longevity of the lubricating oil increased up to 20 000 km by using 0.1% vol. CNTs in the lubricating oils. All above results have confirmed the tremendous application potential of heat conductive materials containing CNTs in thermal management for high power electronic devices, internal combustion engines and other high power apparatus.

  11. Optimization of the Brillouin operator on the KNL architecture

    NASA Astrophysics Data System (ADS)

    Dürr, Stephan

    2018-03-01

    Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.

  12. Performance of VPIC on Sequoia

    NASA Astrophysics Data System (ADS)

    Nystrom, William

    2014-10-01

    Sequoia is a major DOE computing resource which is characteristic of future resources in that it has many threads per compute node, 64, and the individual processor cores are simpler and less powerful than cores on previous processors like Intel's Sandy Bridge or AMD's Opteron. An effort is in progress to port VPIC to the Blue Gene Q architecture of Sequoia and evaluate its performance. Results of this work will be presented on single node performance of VPIC as well as multi-node scaling.

  13. OpenMP Performance on the Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Haoqiang, Jin; Hood, Robert

    2005-01-01

    This presentation discusses Columbia World Class Supercomputer which is one of the world's fastest supercomputers providing 61 TFLOPs (10/20/04). Conceived, designed, built, and deployed in just 120 days. A 20-node supercomputer built on proven 512-processor nodes. The largest SGI system in the world with over 10,000 Intel Itanium 2 processors and provides the largest node size incorporating commodity parts (512) and the largest shared-memory environment (2048) with 88% efficiency tops the scalar systems on the Top500 list.

  14. High-Level Data-Abstraction System

    NASA Technical Reports Server (NTRS)

    Fishwick, P. A.

    1986-01-01

    Communication with data-base processor flexible and efficient. High Level Data Abstraction (HILDA) system is three-layer system supporting data-abstraction features of Intel data-base processor (DBP). Purpose of HILDA establishment of flexible method of efficiently communicating with DBP. Power of HILDA lies in its extensibility with regard to syntax and semantic changes. HILDA's high-level query language readily modified. Offers powerful potential to computer sites where DBP attached to DEC VAX-series computer. HILDA system written in Pascal and FORTRAN 77 for interactive execution.

  15. Astrophysical N-body Simulations Using Hierarchical Tree Data Structures

    NASA Astrophysics Data System (ADS)

    Warren, M. S.; Salmon, J. K.

    The authors report on recent large astrophysical N-body simulations executed on the Intel Touchstone Delta system. They review the astrophysical motivation and the numerical techniques and discuss steps taken to parallelize these simulations. The methods scale as O(N log N), for large values of N, and also scale linearly with the number of processors. The performance sustained for a duration of 67 h, was between 5.1 and 5.4 Gflop/s on a 512-processor system.

  16. Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators

    NASA Astrophysics Data System (ADS)

    Sclocco, A.; van Leeuwen, J.; Bal, H. E.; van Nieuwpoort, R. V.

    2016-01-01

    Dedispersion, the removal of deleterious smearing of impulsive signals by the interstellar matter, is one of the most intensive processing steps in any radio survey for pulsars and fast transients. We here present a study of the parallelization of this algorithm on many-core accelerators, including GPUs from AMD and NVIDIA, and the Intel Xeon Phi. We find that dedispersion is inherently memory-bound. Even in a perfect scenario, hardware limitations keep the arithmetic intensity low, thus limiting performance. We next exploit auto-tuning to adapt dedispersion to different accelerators, observations, and even telescopes. We demonstrate that the optimal settings differ between observational setups, and that auto-tuning significantly improves performance. This impacts time-domain surveys from Apertif to SKA.

  17. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    PubMed Central

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  18. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    PubMed

    Fang, Ye; Ding, Yun; Feinstein, Wei P; Koppelman, David M; Moreno, Juana; Jarrell, Mark; Ramanujam, J; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  19. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  20. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGES

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; ...

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  1. Optimization of atmospheric transport models on HPC platforms

    NASA Astrophysics Data System (ADS)

    de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María

    2016-12-01

    The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.

  2. Riding the Technology Wave.

    ERIC Educational Resources Information Center

    Malan, Pierre

    This paper presents an overview of information technology development. The first section sets the scene, comparing the first WAN (Wide Area Network) and Intel processor to current technology. The birth of the microcomputer is described in the second section, including historical background on semiconductors, microprocessors, and the microcomputer.…

  3. Digital Circuit Analysis Using an 8080 Processor.

    ERIC Educational Resources Information Center

    Greco, John; Stern, Kenneth

    1983-01-01

    Presents the essentials of a program written in Intel 8080 assembly language for the steady state analysis of a combinatorial logic gate circuit. Program features and potential modifications are considered. For example, the program could also be extended to include clocked/unclocked sequential circuits. (JN)

  4. Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik

    2012-12-01

    Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding,more » dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.« less

  5. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  6. Quark structure of static correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Bernard, Claude; DeGrand, Thomas A.; DeTar, Carleton; Gottlieb, Steven; Krasnitz, A.; Ogilvie, Michael C.; Sugar, R. L.; Toussaint, D.

    1992-07-01

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parallel processor. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure.

  7. Ghost writer | ASCR Discovery

    Science.gov Websites

    the one illustrated here, the outer membrane protein OprF of Pseudomonas aeruginosa in its -1990s, NWChem was designed to run on networked processors, as in an HPC system, using one-sided communication, says Jeff Hammond of Intel Corp.'s Parallel Computing Laboratory. In one-sided communication, a

  8. PyPWA: A partial-wave/amplitude analysis software framework

    NASA Astrophysics Data System (ADS)

    Salgado, Carlos

    2016-05-01

    The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.

  9. OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Young-S., Luis E.; Muruganandam, Paulsamy; Adhikari, Sadhan K.; Lončar, Vladimir; Vudragović, Dušan; Balaž, Antun

    2017-11-01

    We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross-Pitaevskii (GP) equation for a Bose-Einstein condensate in one, two, and three spatial dimensions, optimized for use with GNU and Intel compilers. We use the split-step Crank-Nicolson algorithm for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-stationary solutions, respectively. The present OpenMP programs are designed for computers with multi-core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful comments for the users. All input parameters are listed at the beginning of each program. Different output files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc. We also present speedup test results for new versions of the programs. Program files doi:http://dx.doi.org/10.17632/y8zk3jgn84.2 Licensing provisions: Apache License 2.0 Programming language: OpenMP GNU and Intel Fortran 90. Computer: Any multi-core personal computer or workstation with the appropriate OpenMP-capable Fortran compiler installed. Number of processors used: All available CPU cores on the executing computer. Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid.204 (2016) 209. Does the new version supersede the previous version?: Not completely. It does supersede previous Fortran programs from both references above, but not OpenMP C programs from Comput. Phys. Commun. 204 (2016) 209. Nature of problem: The present Open Multi-Processing (OpenMP) Fortran programs, optimized for use with commercially-licensed Intel Fortran and free open-source GNU Fortran compilers, solve the time-dependent nonlinear partial differential (GP) equation for a trapped Bose-Einstein condensate in one (1d), two (2d), and three (3d) spatial dimensions for six different trap symmetries: axially and radially symmetric traps in 3d, circularly symmetric traps in 2d, fully isotropic (spherically symmetric) and fully anisotropic traps in 2d and 3d, as well as 1d traps, where no spatial symmetry is considered. Solution method: We employ the split-step Crank-Nicolson algorithm to discretize the time-dependent GP equation in space and time. The discretized equation is then solved by imaginary- or real-time propagation, employing adequately small space and time steps, to yield the solution of stationary and non-stationary problems, respectively. Reasons for the new version: Previously published Fortran programs [1,2] have now become popular tools [3] for solving the GP equation. These programs have been translated to the C programming language [4] and later extended to the more complex scenario of dipolar atoms [5]. Now virtually all computers have multi-core processors and some have motherboards with more than one physical computer processing unit (CPU), which may increase the number of available CPU cores on a single computer to several tens. The C programs have been adopted to be very fast on such multi-core modern computers using general-purpose graphic processing units (GPGPU) with Nvidia CUDA and computer clusters using Message Passing Interface (MPI) [6]. Nevertheless, previously developed Fortran programs are also commonly used for scientific computation and most of them use a single CPU core at a time in modern multi-core laptops, desktops, and workstations. Unless the Fortran programs are made aware and capable of making efficient use of the available CPU cores, the solution of even a realistic dynamical 1d problem, not to mention the more complicated 2d and 3d problems, could be time consuming using the Fortran programs. Previously, we published auto-parallel Fortran programs [2] suitable for Intel (but not GNU) compiler for solving the GP equation. Hence, a need for the full OpenMP version of the Fortran programs to reduce the execution time cannot be overemphasized. To address this issue, we provide here such OpenMP Fortran programs, optimized for both Intel and GNU Fortran compilers and capable of using all available CPU cores, which can significantly reduce the execution time. Summary of revisions: Previous Fortran programs [1] for solving the time-dependent GP equation in 1d, 2d, and 3d with different trap symmetries have been parallelized using the OpenMP interface to reduce the execution time on multi-core processors. There are six different trap symmetries considered, resulting in six programs for imaginary-time propagation and six for real-time propagation, totaling to 12 programs included in BEC-GP-OMP-FOR software package. All input data (number of atoms, scattering length, harmonic oscillator trap length, trap anisotropy, etc.) are conveniently placed at the beginning of each program, as before [2]. Present programs introduce a new input parameter, which is designated by Number_of_Threads and defines the number of CPU cores of the processor to be used in the calculation. If one sets the value 0 for this parameter, all available CPU cores will be used. For the most efficient calculation it is advisable to leave one CPU core unused for the background system's jobs. For example, on a machine with 20 CPU cores such that we used for testing, it is advisable to use up to 19 CPU cores. However, the total number of used CPU cores can be divided into more than one job. For instance, one can run three simulations simultaneously using 10, 4, and 5 CPU cores, respectively, thus totaling to 19 used CPU cores on a 20-core computer. The Fortran source programs are located in the directory src, and can be compiled by the make command using the makefile in the root directory BEC-GP-OMP-FOR of the software package. The examples of produced output files can be found in the directory output, although some large density files are omitted, to save space. The programs calculate the values of actually used dimensionless nonlinearities from the physical input parameters, where the input parameters correspond to the identical nonlinearity values as in the previously published programs [1], so that the output files of the old and new programs can be directly compared. The output files are conveniently named such that their contents can be easily identified, following the naming convention introduced in Ref. [2]. For example, a file named -out.txt, where is a name of the individual program, represents the general output file containing input data, time and space steps, nonlinearity, energy and chemical potential, and was named fort.7 in the old Fortran version of programs [1]. A file named -den.txt is the output file with the condensate density, which had the names fort.3 and fort.4 in the old Fortran version [1] for imaginary- and real-time propagation programs, respectively. Other possible density outputs, such as the initial density, are commented out in the programs to have a simpler set of output files, but users can uncomment and re-enable them, if needed. In addition, there are output files for reduced (integrated) 1d and 2d densities for different programs. In the real-time programs there is also an output file reporting the dynamics of evolution of root-mean-square sizes after a perturbation is introduced. The supplied real-time programs solve the stationary GP equation, and then calculate the dynamics. As the imaginary-time programs are more accurate than the real-time programs for the solution of a stationary problem, one can first solve the stationary problem using the imaginary-time programs, adapt the real-time programs to read the pre-calculated wave function and then study the dynamics. In that case the parameter NSTP in the real-time programs should be set to zero and the space mesh and nonlinearity parameters should be identical in both programs. The reader is advised to consult our previous publication where a complete description of the output files is given [2]. A readme.txt file, included in the root directory, explains the procedure to compile and run the programs. We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs. The parameters used for testing are given in sample input files, provided in the corresponding directory together with the programs. In Table 1 we present wall-clock execution times for runs on 1, 6, and 19 CPU cores for programs compiled using Intel and GNU Fortran compilers. The corresponding columns "Intel speedup" and "GNU speedup" give the ratio of wall-clock execution times of runs on 1 and 19 CPU cores, and denote the actual measured speedup for 19 CPU cores. In all cases and for all numbers of CPU cores, although the GNU Fortran compiler gives excellent results, the Intel Fortran compiler turns out to be slightly faster. Note that during these tests we always ran only a single simulation on a workstation at a time, to avoid any possible interference issues. Therefore, the obtained wall-clock times are more reliable than the ones that could be measured with two or more jobs running simultaneously. We also studied the speedup of the programs as a function of the number of CPU cores used. The performance of the Intel and GNU Fortran compilers is illustrated in Fig. 1, where we plot the speedup and actual wall-clock times as functions of the number of CPU cores for 2d and 3d programs. We see that the speedup increases monotonically with the number of CPU cores in all cases and has large values (between 10 and 14 for 3d programs) for the maximal number of cores. This fully justifies the development of OpenMP programs, which enable much faster and more efficient solving of the GP equation. However, a slow saturation in the speedup with the further increase in the number of CPU cores is observed in all cases, as expected. The speedup tends to increase for programs in higher dimensions, as they become more complex and have to process more data. This is why the speedups of the supplied 2d and 3d programs are larger than those of 1d programs. Also, for a single program the speedup increases with the size of the spatial grid, i.e., with the number of spatial discretization points, since this increases the amount of calculations performed by the program. To demonstrate this, we tested the supplied real2d-th program and varied the number of spatial discretization points NX=NY from 20 to 1000. The measured speedup obtained when running this program on 19 CPU cores as a function of the number of discretization points is shown in Fig. 2. The speedup first increases rapidly with the number of discretization points and eventually saturates. Additional comments: Example inputs provided with the programs take less than 30 minutes to run on a workstation with two Intel Xeon E5-2650 v3 processors (2 QPI links, 10 CPU cores, 25 MB cache, 2.3 GHz).

  10. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  11. Sci-Thur PM – Brachytherapy 01: Fast brachytherapy dose calculations: Characterization of egs-brachy features to enhance simulation efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, Marc; Taylor, Randle E.P.; Rogers, Da

    2016-08-15

    Purpose: egs-brachy is a fast, new EGSnrc user-code for brachytherapy applications. This study characterizes egs-brachy features that enhance simulation efficiency. Methods: Calculations are performed to characterize efficiency gains from various features. Simulations include radionuclide and miniature x-ray tube sources in water phantoms and idealized prostate, breast, and eye plaque treatments. Features characterized include voxel indexing of sources to reduce boundary checks during radiation transport, scoring collision kerma via tracklength estimator, recycling photons emitted from sources, and using phase space data to initiate simulations. Bremsstrahlung cross section enhancement (BCSE), uniform bremsstrahlung splitting (UBS), and Russian Roulette (RR) are considered for electronicmore » brachytherapy. Results: Efficiency is enhanced by a factor of up to 300 using tracklength versus interaction scoring of collision kerma and by up to 2.7 and 2.6 using phase space sources and particle recycling respectively compared to simulations in which particles are initiated within sources. On a single 2.5 GHz Intel Xeon E5-2680 processor cor, simulations approximating prostate and breast permanent implant ((2 mm){sup 3} voxels) and eye plaque ((1 mm){sup 3}) treatments take as little as 9 s (prostate, eye) and up to 31 s (breast) to achieve 2% statistical uncertainty on doses within the PTV. For electronic brachytherapy, BCSE, UBS, and RR enhance efficiency by a factor >2000 compared to a factor of >10{sup 4} using a phase space source. Conclusion: egs-brachy features provide substantial efficiency gains, resulting in calculation times sufficiently fast for full Monte Carlo simulations for routine brachytherapy treatment planning.« less

  12. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy

    NASA Astrophysics Data System (ADS)

    Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.

    2016-12-01

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  13. GPU-Accelerated Voxelwise Hepatic Perfusion Quantification

    PubMed Central

    Wang, H; Cao, Y

    2012-01-01

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using CUDA-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, non-linear least squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626400 voxels in a patient’s liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10−6. The method will be useful for generating liver perfusion images in clinical settings. PMID:22892645

  14. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  15. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE PAGES

    Wang, Bei; Ethier, Stephane; Tang, William; ...

    2017-06-29

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  16. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  17. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.

    PubMed

    Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M

    2016-12-07

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  18. Simulation of Fault Tolerance in a Hypercube Arrangement of Discrete Processors.

    DTIC Science & Technology

    1987-12-01

    Geometric Properties .................... 22 Binary Properties ....................... 26 Intel Hypercube Hardware Arrangement ... 28 IV. Cube-Connected... Properties of the CCC..............35 CCC Redundancy............................... 38 iii 6L V. Re-Configurable Cube-Connected Cycles ....... 40 Global...o........ 74 iv List of Figures Page Figure 1: Hypercubes of Different Dimensions ......... 21 Figure 2: Hypercube Properties

  19. A Survey of Recent MARTe Based Systems

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Alves, Diogo; Boncagni, Luca; Carvalho, Pedro J.; Valcarcel, Daniel F.; Barbalace, Antonio; De Tommasi, Gianmaria; Fernandes, Horácio; Sartori, Filippo; Vitale, Enzo; Vitelli, Riccardo; Zabeo, Luca

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) is a data driven framework environment for the development and deployment of real-time control algorithms. The main ideas which led to the present version of the framework were to standardize the development of real-time control systems, while providing a set of strictly bounded standard interfaces to the outside world and also accommodating a collection of facilities which promote the speed and ease of development, commissioning and deployment of such systems. At the core of every MARTe based application, is a set of independent inter-communicating software blocks, named Generic Application Modules (GAM), orchestrated by a real-time scheduler. The platform independence of its core library provides MARTe the necessary robustness and flexibility for conveniently testing applications in different environments including non-real-time operating systems. MARTe is already being used in several machines, each with its own peculiarities regarding hardware interfacing, supervisory control configuration, operating system and target control application. This paper presents and compares the most recent results of systems using MARTe: the JET Vertical Stabilization system, which uses the Real Time Application Interface (RTAI) operating system on Intel multi-core processors; the COMPASS plasma control system, driven by Linux RT also on Intel multi-core processors; ISTTOK real-time tomography equilibrium reconstruction which shares the same support configuration of COMPASS; JET error field correction coils based on VME, PowerPC and VxWorks; FTU LH reflected power system running on VME, Intel with RTAI.

  20. Analysis of EDP performance

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The objective of this contract was the investigation of the potential performance gains that would result from an upgrade of the Space Station Freedom (SSF) Data Management System (DMS) Embedded Data Processor (EDP) '386' design with the Intel Pentium (registered trade-mark of Intel Corp.) '586' microprocessor. The Pentium ('586') is the latest member of the industry standard Intel X86 family of CISC (Complex Instruction Set Computer) microprocessors. This contract was scheduled to run in parallel with an internal IBM Federal Systems Company (FSC) Internal Research and Development (IR&D) task that had the goal to generate a baseline flight design for an upgraded EDP using the Pentium. This final report summarizes the activities performed in support of Contract NAS2-13758. Our plan was to baseline performance analyses and measurements on the latest state-of-the-art commercially available Pentium processor, representative of the proposed space station design, and then phase to an IBM capital funded breadboard version of the flight design (if available from IR&D and Space Station work) for additional evaluation of results. Unfortunately, the phase-over to the flight design breadboard did not take place, since the IBM Data Management System (DMS) for the Space Station Freedom was terminated by NASA before the referenced capital funded EDP breadboard could be completed. The baseline performance analyses and measurements, however, were successfully completed, as planned, on the commercial Pentium hardware. The results of those analyses, evaluations, and measurements are presented in this final report.

  1. Early Experiences Writing Performance Portable OpenMP 4 Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joubert, Wayne; Hernandez, Oscar R

    In this paper, we evaluate the recently available directives in OpenMP 4 to parallelize a computational kernel using both the traditional shared memory approach and the newer accelerator targeting capabilities. In addition, we explore various transformations that attempt to increase application performance portability, and examine the expressiveness and performance implications of using these approaches. For example, we want to understand if the target map directives in OpenMP 4 improve data locality when mapped to a shared memory system, as opposed to the traditional first touch policy approach in traditional OpenMP. To that end, we use recent Cray and Intel compilersmore » to measure the performance variations of a simple application kernel when executed on the OLCF s Titan supercomputer with NVIDIA GPUs and the Beacon system with Intel Xeon Phi accelerators attached. To better understand these trade-offs, we compare our results from traditional OpenMP shared memory implementations to the newer accelerator programming model when it is used to target both the CPU and an attached heterogeneous device. We believe the results and lessons learned as presented in this paper will be useful to the larger user community by providing guidelines that can assist programmers in the development of performance portable code.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allada, Veerendra, Benjegerdes, Troy; Bode, Brett

    Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less

  3. TH-A-19A-08: Intel Xeon Phi Implementation of a Fast Multi-Purpose Monte Carlo Simulation for Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souris, K; Lee, J; Sterpin, E

    2014-06-15

    Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed andmore » accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.« less

  4. Towards Highly Scalable Ab Initio Molecular Dynamics (AIMD) Simulations on the Intel Knights Landing Manycore Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacquelin, Mathias; De Jong, Wibe A.; Bylaska, Eric J.

    2017-07-03

    The Ab Initio Molecular Dynamics (AIMD) method allows scientists to treat the dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. This extremely important method has tremendous computational requirements, because the electronic Schr¨odinger equation, approximated using Kohn-Sham Density Functional Theory (DFT), is solved at every time step. With the advent of manycore architectures, application developers have a significant amount of processing power within each compute node that can only be exploited through massive parallelism. A compute intensive application such as AIMD forms a good candidate to leverage this processing power. In this paper, wemore » focus on adding thread level parallelism to the plane wave DFT methodology implemented in NWChem. Through a careful optimization of tall-skinny matrix products, which are at the heart of the Lagrange multiplier and nonlocal pseudopotential kernels, as well as 3D FFTs, our OpenMP implementation delivers excellent strong scaling on the latest Intel Knights Landing (KNL) processor. We assess the efficiency of our Lagrange multiplier kernels by building a Roofline model of the platform, and verify that our implementation is close to the roofline for various problem sizes. Finally, we present strong scaling results on the complete AIMD simulation for a 64 water molecules test case, that scales up to all 68 cores of the Knights Landing processor.« less

  5. A sweep algorithm for massively parallel simulation of circuit-switched networks

    NASA Technical Reports Server (NTRS)

    Gaujal, Bruno; Greenberg, Albert G.; Nicol, David M.

    1992-01-01

    A new massively parallel algorithm is presented for simulating large asymmetric circuit-switched networks, controlled by a randomized-routing policy that includes trunk-reservation. A single instruction multiple data (SIMD) implementation is described, and corresponding experiments on a 16384 processor MasPar parallel computer are reported. A multiple instruction multiple data (MIMD) implementation is also described, and corresponding experiments on an Intel IPSC/860 parallel computer, using 16 processors, are reported. By exploiting parallelism, our algorithm increases the possible execution rate of such complex simulations by as much as an order of magnitude.

  6. A high-speed digital signal processor for atmospheric radar, part 7.3A

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.; Woodard, D. M.

    1984-01-01

    The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s.

  7. Web interfaces to relational databases

    NASA Technical Reports Server (NTRS)

    Carlisle, W. H.

    1996-01-01

    This reports on a project to extend the capabilities of a Virtual Research Center (VRC) for NASA's Advanced Concepts Office. The work was performed as part of NASA's 1995 Summer Faculty Fellowship program and involved the development of a prototype component of the VRC - a database system that provides data creation and access services within a room of the VRC. In support of VRC development, NASA has assembled a laboratory containing the variety of equipment expected to be used by scientists within the VRC. This laboratory consists of the major hardware platforms, SUN, Intel, and Motorola processors and their most common operating systems UNIX, Windows NT, Windows for Workgroups, and Macintosh. The SPARC 20 runs SUN Solaris 2.4, an Intel Pentium runs Windows NT and is installed on a different network from the other machines in the laboratory, a Pentium PC runs Windows for Workgroups, two Intel 386 machines run Windows 3.1, and finally, a PowerMacintosh and a Macintosh IIsi run MacOS.

  8. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  9. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    NASA Astrophysics Data System (ADS)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  10. A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2 Supercomputer.

    PubMed

    Peng, Shaoliang; Yang, Shunyun; Su, Wenhe; Zhang, Xiaoyu; Zhang, Tenglilang; Liu, Weiguo; Zhao, Xingming

    2017-06-16

    Molecular Dynamics (MD) is the simulation of the dynamic behavior of atoms and molecules. As the most popular software for molecular dynamics, GROMACS cannot work on large-scale data because of limit computing resources. In this paper, we propose a CPU and Intel® Xeon Phi Many Integrated Core (MIC) collaborated parallel framework to accelerate GROMACS using the offload mode on a MIC coprocessor, with which the performance of GROMACS is improved significantly, especially with the utility of Tianhe-2 supercomputer. Furthermore, we optimize GROMACS so that it can run on both the CPU and MIC at the same time. In addition, we accelerate multi-node GROMACS so that it can be used in practice. Benchmarking on real data, our accelerated GROMACS performs very well and reduces computation time significantly. Source code: https://github.com/tianhe2/gromacs-mic.

  11. Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison for GPU and MIC Parallel Computing Devices

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Liu, Tianyu; Su, Lin; Bednarz, Bryan; Caracappa, Peter; Xu, X. George

    2017-09-01

    Monte Carlo (MC) simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi) and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.

  12. Fast 2D FWI on a multi and many-cores workstation.

    NASA Astrophysics Data System (ADS)

    Thierry, Philippe; Donno, Daniela; Noble, Mark

    2014-05-01

    Following the introduction of x86 co-processors (Xeon Phi) and the performance increase of standard 2-socket workstations using the latest 12 cores E5-v2 x86-64 CPU, we present here a MPI + OpenMP implementation of an acoustic 2D FWI (full waveform inversion) code which simultaneously runs on the CPUs and on the co-processors installed in a workstation. The main advantage of running a 2D FWI on a workstation is to be able to quickly evaluate new features such as more complicated wave equations, new cost functions, finite-difference stencils or boundary conditions. Since the co-processor is made of 61 in-order x86 cores, each of them having up to 4 threads, this many-core can be seen as a shared memory SMP (symmetric multiprocessing) machine with its own IP address. Depending on the vendor, a single workstation can handle several co-processors making the workstation as a personal cluster under the desk. The original Fortran 90 CPU version of the 2D FWI code is just recompiled to get a Xeon Phi x86 binary. This multi and many-core configuration uses standard compilers and associated MPI as well as math libraries under Linux; therefore, the cost of code development remains constant, while improving computation time. We choose to implement the code with the so-called symmetric mode to fully use the capacity of the workstation, but we also evaluate the scalability of the code in native mode (i.e running only on the co-processor) thanks to the Linux ssh and NFS capabilities. Usual care of optimization and SIMD vectorization is used to ensure optimal performances, and to analyze the application performances and bottlenecks on both platforms. The 2D FWI implementation uses finite-difference time-domain forward modeling and a quasi-Newton (with L-BFGS algorithm) optimization scheme for the model parameters update. Parallelization is achieved through standard MPI shot gathers distribution and OpenMP for domain decomposition within the co-processor. Taking advantage of the 16 GB of memory available on the co-processor we are able to keep wavefields in memory to achieve the gradient computation by cross-correlation of forward and back-propagated wavefields needed by our time-domain FWI scheme, without heavy traffic on the i/o subsystem and PCIe bus. In this presentation we will also review some simple methodologies to determine performance expectation compared to real performances in order to get optimization effort estimation before starting any huge modification or rewriting of research codes. The key message is the ease of use and development of this hybrid configuration to reach not the absolute peak performance value but the optimal one that ensures the best balance between geophysical and computer developments.

  13. Applications and development of communication models for the touchstone GAMMA and DELTA prototypes

    NASA Technical Reports Server (NTRS)

    Seidel, Steven R.

    1993-01-01

    The goal of this project was to develop models of the interconnection networks of the Intel iPSC/860 and DELTA multicomputers to guide the design of efficient algorithms for interprocessor communication in problems that commonly occur in CFD codes and other applications. Interprocessor communication costs of codes for message-passing architectures such as the iPSC/860 and DELTA significantly affect the level of performance that can be obtained from those machines. This project addressed several specific problems in the achievement of efficient communication on the Intel iPSC/860 hypercube and DELTA mesh. In particular, an efficient global processor synchronization algorithm was developed for the iPSC/860 and numerous broadcast algorithms were designed for the DELTA.

  14. Computational algorithms for simulations in atmospheric optics.

    PubMed

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  15. Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.

    PubMed

    Bhandarkar, S M; Chirravuri, S; Arnold, J

    1996-01-01

    Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.

  16. Parallel spatial direct numerical simulations on the Intel iPSC/860 hypercube

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Zubair, Mohammad

    1993-01-01

    The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors nearly ideal linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine dependent library) routines. This slower than linear speedup results because the Fast Fourier Transform (FFT) routine dominates the computational cost and because the routine indicates less than ideal speedups. However with the machine-dependent routines the total computational cost decreases by a factor of 4 to 5 compared with standard FORTRAN routines. The computational cost increases linearly with spanwise wall-normal and streamwise grid refinements. The hypercube with 32 processors was estimated to require approximately twice the amount of Cray supercomputer single processor time to complete a comparable simulation; however it is estimated that a subgrid-scale model which reduces the required number of grid points and becomes a large-eddy simulation (PSLES) would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

  17. Architectural Specialization for Inter-Iteration Loop Dependence Patterns

    DTIC Science & Technology

    2015-10-01

    Architectural Specialization for Inter-Iteration Loop Dependence Patterns Christopher Batten Computer Systems Laboratory School of Electrical and...Trends in Computer Architecture Transistors (Thousands) Frequency (MHz) Typical Power (W) MIPS R2K Intel P4 DEC Alpha 21264 Data collected by M...T as ks p er Jo ule ) Simple Processor Design Power Constraint High-Performance Architectures Embedded Architectures Design Performance

  18. Equation solvers for distributed-memory computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    A large number of scientific and engineering problems require the rapid solution of large systems of simultaneous equations. The performance of parallel computers in this area now dwarfs traditional vector computers by nearly an order of magnitude. This talk describes the major issues involved in parallel equation solvers with particular emphasis on the Intel Paragon, IBM SP-1 and SP-2 processors.

  19. JPRS Report Science & Technology Europe.

    DTIC Science & Technology

    1992-09-17

    9 Jul 92] 48 HERA Project Gets Green Light for Quark Structure Analysis [DuesseldorfVDI NACHRICHTEN, 12 Jul 92] .... 48 TELECOMMUNICATIONS...communicating with the control station. The demonstrator is the product of research performed at the Robot and Artificial Intel - ligence Unit of...from the microphones, speedometers, or tachometers. Each board is linked to a Motorola DSP [digital signal processor ]. Although the system has been

  20. Big Data, Deep Learning and Tianhe-2 at Sun Yat-Sen University, Guangzhou

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Dzwinel, W.; Liu, J.; Zhang, K.

    2014-12-01

    In this decade the big data revolution has permeated in many fields, ranging from financial transactions, medical surveys and scientific endeavors, because of the big opportunities people see ahead. What to do with all this data remains an intriguing question. This is where computer scientists together with applied mathematicians have made some significant inroads in developing deep learning techniques for unraveling new relationships among the different variables by means of correlation analysis and data-assimilation methods. Deep-learning and big data taken together is a grand challenge task in High-performance computing which demand both ultrafast speed and large memory. The Tianhe-2 recently installed at Sun Yat-Sen University in Guangzhou is well positioned to take up this challenge because it is currently the world's fastest computer at 34 Petaflops. Each compute node of Tianhe-2 has two CPUs of Intel Xeon E5-2600 and three Xeon Phi accelerators. The Tianhe-2 has a very large fast memory RAM of 88 Gigabytes on each node. The system has a total memory of 1,375 Terabytes. All of these technical features will allow very high dimensional (more than 10) problem in deep learning to be explored carefully on the Tianhe-2. Problems in seismology which can be solved include three-dimensional seismic wave simulations of the whole Earth with a few km resolution and the recognition of new phases in seismic wave form from assemblage of large data sets.

  1. Closeout Report ARRA supplement to DE-FG02-08ER41546, 03/15/2010 to 03/14/2011 - Advanced Transfer Map Methods for the Description of Particle Beam Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berz, Martin; Makino, Kyoko

    The ARRA funds were utilized to acquire a cluster of high performance computers, consisting of one Altus 2804 Server based on a Quad AMD Opteron 6174 12C with 4 2.2 GHz nodes of 12 cores each, resulting in 48 directly usable cores; as well as a Relion 1751 Server using an Intel Xeon X5677 consisting of 4 3.46 GHz cores supporting 8 threads. Both systems run the Unix flavor CentOS, which is designed for use without need of updates, which greatly enhances their reliability. The systems are used to operate our COSY INFINITY environment which supports MPI parallelization. The unitsmore » arrived at MSU in September 2010, and were taken into operation shortly thereafter.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipman, Galen M.

    These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematicmore » approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.« less

  3. FPGA Online Tracking Algorithm for the PANDA Straw Tube Tracker

    NASA Astrophysics Data System (ADS)

    Liang, Yutie; Ye, Hua; Galuska, Martin J.; Gessler, Thomas; Kuhn, Wolfgang; Lange, Jens Soren; Wagner, Milan N.; Liu, Zhen'an; Zhao, Jingzhou

    2017-06-01

    A novel FPGA based online tracking algorithm for helix track reconstruction in a solenoidal field, developed for the PANDA spectrometer, is described. Employing the Straw Tube Tracker detector with 4636 straw tubes, the algorithm includes a complex track finder, and a track fitter. Implemented in VHDL, the algorithm is tested on a Xilinx Virtex-4 FX60 FPGA chip with different types of events, at different event rates. A processing time of 7 $\\mu$s per event for an average of 6 charged tracks is obtained. The momentum resolution is about 3\\% (4\\%) for $p_t$ ($p_z$) at 1 GeV/c. Comparing to the algorithm running on a CPU chip (single core Intel Xeon E5520 at 2.26 GHz), an improvement of 3 orders of magnitude in processing time is obtained. The algorithm can handle severe overlapping of events which are typical for interaction rates above 10 MHz.

  4. Kernel optimization for short-range molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He

    2017-02-01

    To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.

  5. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  6. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  7. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW methodmore » is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.« less

  8. A Locality-Based Threading Algorithm for the Configuration-Interaction Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Hongzhang; Williams, Samuel; Johnson, Calvin

    The Configuration Interaction (CI) method has been widely used to solve the non-relativistic many-body Schrodinger equation. One great challenge to implementing it efficiently on manycore architectures is its immense memory and data movement requirements. To address this issue, within each node, we exploit a hybrid MPI+OpenMP programming model in lieu of the traditional flat MPI programming model. Here in this paper, we develop optimizations that partition the workloads among OpenMP threads based on data locality,-which is essential in ensuring applications with complex data access patterns scale well on manycore architectures. The new algorithm scales to 256 threadson the 64-core Intelmore » Knights Landing (KNL) manycore processor and 24 threads on dual-socket Ivy Bridge (Xeon) nodes. Compared with the original implementation, the performance has been improved by up to 7× on theKnights Landing processor and 3× on the dual-socket Ivy Bridge node.« less

  9. A Locality-Based Threading Algorithm for the Configuration-Interaction Method

    DOE PAGES

    Shan, Hongzhang; Williams, Samuel; Johnson, Calvin; ...

    2017-07-03

    The Configuration Interaction (CI) method has been widely used to solve the non-relativistic many-body Schrodinger equation. One great challenge to implementing it efficiently on manycore architectures is its immense memory and data movement requirements. To address this issue, within each node, we exploit a hybrid MPI+OpenMP programming model in lieu of the traditional flat MPI programming model. Here in this paper, we develop optimizations that partition the workloads among OpenMP threads based on data locality,-which is essential in ensuring applications with complex data access patterns scale well on manycore architectures. The new algorithm scales to 256 threadson the 64-core Intelmore » Knights Landing (KNL) manycore processor and 24 threads on dual-socket Ivy Bridge (Xeon) nodes. Compared with the original implementation, the performance has been improved by up to 7× on theKnights Landing processor and 3× on the dual-socket Ivy Bridge node.« less

  10. Efficacy of Code Optimization on Cache-Based Processors

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Saphir, William C.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    In this paper a number of techniques for improving the cache performance of a representative piece of numerical software is presented. Target machines are popular processors from several vendors: MIPS R5000 (SGI Indy), MIPS R8000 (SGI PowerChallenge), MIPS R10000 (SGI Origin), DEC Alpha EV4 + EV5 (Cray T3D & T3E), IBM RS6000 (SP Wide-node), Intel PentiumPro (Ames' Whitney), Sun UltraSparc (NERSC's NOW). The optimizations all attempt to increase the locality of memory accesses. But they meet with rather varied and often counterintuitive success on the different computing platforms. We conclude that it may be genuinely impossible to obtain portable performance on the current generation of cache-based machines. At the least, it appears that the performance of modern commodity processors cannot be described with parameters defining the cache alone.

  11. The Fluke Security Project

    DTIC Science & Technology

    2000-04-01

    be an extension of Utah’s nascent Quarks system, oriented to closely coupled cluster environments. However, the grant did not actually begin until... Intel x86, implemented ten virtual machine monitors and servers, including a virtual memory manager, a checkpointer, a process manager, a file server...Fluke, we developed a novel hierarchical processor scheduling frame- work called CPU inheritance scheduling [5]. This is a framework for scheduling

  12. Adaptive Command and Control of Theater Air Power

    DTIC Science & Technology

    1997-06-01

    Industries, Citicorp, Coca-Cola, Honda, and Intel corporations practice similar techniques 19 Notes as cited in Thomas Petzinger, Jr., “The Front Lines...before the leap to personal computers and word processors occurred. Finally, anticipation takes place as the stock market adjusts current prices...Leading Marines. January 1995. Fleet Marine Force Manual 1-1. Campaigning. January 1990. Gell-Mann, Murray, The Quark and the Jaguar: Adventures

  13. Hydraulic Universal Display Processor System (HUDPS).

    DTIC Science & Technology

    1981-11-21

    emphasis on smart alphanumeric devices in Task II. Volatile and non-volatile memory components were utilized along with the Intel 8748 microprocessor...system. 1.2 TASK 11 Fault display methods for ground support personnel were investigated during Phase II with emphasis on smart alphanumeric devices...CONSIDERATIONS Methods of display fault indication for ground support personnel have been investigated with emphasis on " smart " alphanumeric devices

  14. A performance study of sparse Cholesky factorization on INTEL iPSC/860

    NASA Technical Reports Server (NTRS)

    Zubair, M.; Ghose, M.

    1992-01-01

    The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.

  15. Numerical performance and throughput benchmark for electronic structure calculations in PC-Linux systems with new architectures, updated compilers, and libraries.

    PubMed

    Yu, Jen-Shiang K; Hwang, Jenn-Kang; Tang, Chuan Yi; Yu, Chin-Hui

    2004-01-01

    A number of recently released numerical libraries including Automatically Tuned Linear Algebra Subroutines (ATLAS) library, Intel Math Kernel Library (MKL), GOTO numerical library, and AMD Core Math Library (ACML) for AMD Opteron processors, are linked against the executables of the Gaussian 98 electronic structure calculation package, which is compiled by updated versions of Fortran compilers such as Intel Fortran compiler (ifc/efc) 7.1 and PGI Fortran compiler (pgf77/pgf90) 5.0. The ifc 7.1 delivers about 3% of improvement on 32-bit machines compared to the former version 6.0. Performance improved from pgf77 3.3 to 5.0 is also around 3% when utilizing the original unmodified optimization options of the compiler enclosed in the software. Nevertheless, if extensive compiler tuning options are used, the speed can be further accelerated to about 25%. The performances of these fully optimized numerical libraries are similar. The double-precision floating-point (FP) instruction sets (SSE2) are also functional on AMD Opteron processors operated in 32-bit compilation, and Intel Fortran compiler has performed better optimization. Hardware-level tuning is able to improve memory bandwidth by adjusting the DRAM timing, and the efficiency in the CL2 mode is further accelerated by 2.6% compared to that of the CL2.5 mode. The FP throughput is measured by simultaneous execution of two identical copies of each of the test jobs. Resultant performance impact suggests that IA64 and AMD64 architectures are able to fulfill significantly higher throughput than the IA32, which is consistent with the SpecFPrate2000 benchmarks.

  16. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.

    PubMed

    Han, Bing; Taha, Tarek M

    2010-04-01

    There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.

  17. Rapid insights from remote sensing in the geosciences

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio

    2015-03-01

    The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Admin. under Contract DE-AC04-94AL85000.

  18. Beyond core count: a look at new mainstream computing platforms for HEP workloads

    NASA Astrophysics Data System (ADS)

    Szostek, P.; Nowak, A.; Bitzes, G.; Valsan, L.; Jarp, S.; Dotti, A.

    2014-06-01

    As Moore's Law continues to deliver more and more transistors, the mainstream processor industry is preparing to expand its investments in areas other than simple core count. These new interests include deep integration of on-chip components, advanced vector units, memory, cache and interconnect technologies. We examine these moving trends with parallelized and vectorized High Energy Physics workloads in mind. In particular, we report on practical experience resulting from experiments with scalable HEP benchmarks on the Intel "Ivy Bridge-EP" and "Haswell" processor families. In addition, we examine the benefits of the new "Haswell" microarchitecture and its impact on multiple facets of HEP software. Finally, we report on the power efficiency of new systems.

  19. Applications Performance on NAS Intel Paragon XP/S - 15#

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Simon, Horst D.; Copper, D. M. (Technical Monitor)

    1994-01-01

    The Numerical Aerodynamic Simulation (NAS) Systems Division received an Intel Touchstone Sigma prototype model Paragon XP/S- 15 in February, 1993. The i860 XP microprocessor with an integrated floating point unit and operating in dual -instruction mode gives peak performance of 75 million floating point operations (NIFLOPS) per second for 64 bit floating point arithmetic. It is used in the Paragon XP/S-15 which has been installed at NAS, NASA Ames Research Center. The NAS Paragon has 208 nodes and its peak performance is 15.6 GFLOPS. Here, we will report on early experience using the Paragon XP/S- 15. We have tested its performance using both kernels and applications of interest to NAS. We have measured the performance of BLAS 1, 2 and 3 both assembly-coded and Fortran coded on NAS Paragon XP/S- 15. Furthermore, we have investigated the performance of a single node one-dimensional FFT, a distributed two-dimensional FFT and a distributed three-dimensional FFT Finally, we measured the performance of NAS Parallel Benchmarks (NPB) on the Paragon and compare it with the performance obtained on other highly parallel machines, such as CM-5, CRAY T3D, IBM SP I, etc. In particular, we investigated the following issues, which can strongly affect the performance of the Paragon: a. Impact of the operating system: Intel currently uses as a default an operating system OSF/1 AD from the Open Software Foundation. The paging of Open Software Foundation (OSF) server at 22 MB to make more memory available for the application degrades the performance. We found that when the limit of 26 NIB per node out of 32 MB available is reached, the application is paged out of main memory using virtual memory. When the application starts paging, the performance is considerably reduced. We found that dynamic memory allocation can help applications performance under certain circumstances. b. Impact of data cache on the i860/XP: We measured the performance of the BLAS both assembly coded and Fortran coded. We found that the measured performance of assembly-coded BLAS is much less than what memory bandwidth limitation would predict. The influence of data cache on different sizes of vectors is also investigated using one-dimensional FFTs. c. Impact of processor layout: There are several different ways processors can be laid out within the two-dimensional grid of processors on the Paragon. We have used the FFT example to investigate performance differences based on processors layout.

  20. Dense and Sparse Matrix Operations on the Cell Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid

    2005-05-01

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, usingmore » a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.« less

  1. Transient Solid Dynamics Simulations on the Sandia/Intel Teraflop Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaway, S.; Brown, K.; Gardner, D.

    1997-12-31

    Transient solid dynamics simulations are among the most widely used engineering calculations. Industrial applications include vehicle crashworthiness studies, metal forging, and powder compaction prior to sintering. These calculations are also critical to defense applications including safety studies and weapons simulations. The practical importance of these calculations and their computational intensiveness make them natural candidates for parallelization. This has proved to be difficult, and existing implementations fail to scale to more than a few dozen processors. In this paper we describe our parallelization of PRONTO, Sandia`s transient solid dynamics code, via a novel algorithmic approach that utilizes multiple decompositions for differentmore » key segments of the computations, including the material contact calculation. This latter calculation is notoriously difficult to perform well in parallel, because it involves dynamically changing geometry, global searches for elements in contact, and unstructured communications among the compute nodes. Our approach scales to at least 3600 compute nodes of the Sandia/Intel Teraflop computer (the largest set of nodes to which we have had access to date) on problems involving millions of finite elements. On this machine we can simulate models using more than ten- million elements in a few tenths of a second per timestep, and solve problems more than 3000 times faster than a single processor Cray Jedi.« less

  2. A simple integrative method for presenting head-contingent motion parallax and disparity cues on intel x86 processor-based machines.

    PubMed

    Szatmary, J; Hadani, I; Julesz, B

    1997-01-01

    Rogers and Graham (1979) developed a system to show that head-movement-contingent motion parallax produces monocular depth perception in random dot patterns. Their display system comprised an oscilloscope driven by function generators or a special graphics board that triggered the X and Y deflection of the raster scan signal. Replication of this system required costly hardware that is no longer on the market. In this paper the Rogers-Graham method is reproduced with an Intel processor based IBM PC compatible machine with no additional hardware cost. An adapted joystick sampled through the standard game-port can serve as a provisional head-movement sensor. Monitor resolution for displaying motion is effectively enhanced 16 times by the use of anti-aliasing, enabling the display of thousands of random dots in real-time with a refresh rate of 60 Hz or above. A color monitor enables the use of the anaglyph method, thus combining stereoscopic and monocular parallax on a single display without the loss of speed. The power of this system is demonstrated by a psychophysical measurement in which subjects nulled head-movement-contingent illusory parallax, evoked by a static stereogram, with real parallax. The amount of real parallax required to null the illusory stereoscopic parallax monotonically increased with disparity.

  3. Portable parallel stochastic optimization for the design of aeropropulsion components

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Rhodes, G. S.

    1994-01-01

    This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, R; Popple, R; Benhabib, S

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}),more » resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.« less

  5. Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Testing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George

    2017-09-01

    This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.

  6. Benchmarking and tuning the MILC code on clusters and supercomputers

    NASA Astrophysics Data System (ADS)

    Gottlieb, Steven

    2002-03-01

    Recently, we have benchmarked and tuned the MILC code on a number of architectures including Intel Itanium and Pentium IV (PIV), dual-CPU Athlon, and the latest Compaq Alpha nodes. Results will be presented for many of these, and we shall discuss some simple code changes that can result in a very dramatic speedup of the KS conjugate gradient on processors with more advanced memory systems such as PIV, IBM SP and Alpha.

  7. Benchmarking and tuning the MILC code on clusters and supercomputers

    NASA Astrophysics Data System (ADS)

    Gottlieb, Steven

    Recently, we have benchmarked and tuned the MILC code on a number of architectures including Intel Itanium and Pentium IV (PIV), dual-CPU Athlon, and the latest Compaq Alpha nodes. Results will be presented for many of these, and we shall discuss some simple code changes that can result in a very dramatic speedup of the KS conjugate gradient on processors with more advanced memory systems such as PIV, IBM SP and Alpha.

  8. Turbo Pascal Implementation of a Distributed Processing Network of MS-DOS Microcomputers Connected in a Master-Slave Configuration

    DTIC Science & Technology

    1989-12-01

    Interrupt Procedures ....... 29 13. Support for a Larger Memory Model ................ 29 C. IMPLEMENTATION ........................................ 29...describe the programmer’s model of the hardware utilized in the microcomputers and interrupt driven serial communication considerations. Chapter III...Central Processor Unit The programming model of Table 2.1 is common to the Intel 8088, 8086 and 80x86 series of microprocessors used in the IBM PC/AT

  9. Cell-NPE (Numerical Performance Evaluation): Programming the IBM Cell Broadband Engine -- A General Parallelization Strategy

    DTIC Science & Technology

    2008-04-01

    Space GmbH as follows: B. TECHNICAL PRPOPOSA/DESCRIPTION OF WORK Cell: A Revolutionary High Performance Computing Platform On 29 June 2005 [1...IBM has announced that is has partnered with Mercury Computer Systems, a maker of specialized computers . The Cell chip provides massive floating-point...the computing industry away from the traditional processor technology dominated by Intel. While in the past, the development of computing power has

  10. Integrated 3-D vision system for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Hou, Kun M.; Shawky, Mohamed; Tu, Xiaowei

    1992-03-01

    Nowadays, autonomous vehicles have become a multidiscipline field. Its evolution is taking advantage of the recent technological progress in computer architectures. As the development tools became more sophisticated, the trend is being more specialized, or even dedicated architectures. In this paper, we will focus our interest on a parallel vision subsystem integrated in the overall system architecture. The system modules work in parallel, communicating through a hierarchical blackboard, an extension of the 'tuple space' from LINDA concepts, where they may exchange data or synchronization messages. The general purpose processing elements are of different skills, built around 40 MHz i860 Intel RISC processors for high level processing and pipelined systolic array processors based on PLAs or FPGAs for low-level processing.

  11. High performance in silico virtual drug screening on many-core processors

    PubMed Central

    Price, James; Sessions, Richard B; Ibarra, Amaurys A

    2015-01-01

    Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel’s Xeon Phi and multi-core CPUs with SIMD instruction sets. PMID:25972727

  12. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We describe our ongoing efforts to achieve massive parallelization on a novel hybrid GPU testbed machine currently configured with 12 Intel Westmere Xeon CPU cores (or 24 parallel computational threads) with 96 GB DDR3 system memory, 4 GPU subsystems which in aggregate contain 960 NVidia Tesla GPU cores with 16 GB dedicated DDR3 GPU memory, and a second interleved bank of 4 GPU subsystems containing in aggregate 1792 NVidia Fermi GPU cores with 12 GB dedicated DDR5 GPU memory. We are applying domain decomposition methods to a modified version of Weiss' (2001) 3D frequency domain full physics EM finite difference code, an open source GPL licensed f90 code available for download from www.OpenEM.org. This will be the core of a new hybrid 3D inversion that parallelizes frequencies across CPUs and individual forward solutions across GPUs. We describe progress made in modifying the code to use direct solvers in GPU cores dedicated to each small subdomain, iteratively improving the solution by matching adjacent subdomain boundary solutions, rather than iterative Krylov space sparse solvers as currently applied to the whole domain.

  13. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    NASA Astrophysics Data System (ADS)

    Morrison, R. E.; Robinson, S. H.

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.

  14. Accelerating finite-rate chemical kinetics with coprocessors: Comparing vectorization methods on GPUs, MICs, and CPUs

    NASA Astrophysics Data System (ADS)

    Stone, Christopher P.; Alferman, Andrew T.; Niemeyer, Kyle E.

    2018-05-01

    Accurate and efficient methods for solving stiff ordinary differential equations (ODEs) are a critical component of turbulent combustion simulations with finite-rate chemistry. The ODEs governing the chemical kinetics at each mesh point are decoupled by operator-splitting allowing each to be solved concurrently. An efficient ODE solver must then take into account the available thread and instruction-level parallelism of the underlying hardware, especially on many-core coprocessors, as well as the numerical efficiency. A stiff Rosenbrock and a nonstiff Runge-Kutta ODE solver are both implemented using the single instruction, multiple thread (SIMT) and single instruction, multiple data (SIMD) paradigms within OpenCL. Both methods solve multiple ODEs concurrently within the same instruction stream. The performance of these parallel implementations was measured on three chemical kinetic models of increasing size across several multicore and many-core platforms. Two separate benchmarks were conducted to clearly determine any performance advantage offered by either method. The first benchmark measured the run-time of evaluating the right-hand-side source terms in parallel and the second benchmark integrated a series of constant-pressure, homogeneous reactors using the Rosenbrock and Runge-Kutta solvers. The right-hand-side evaluations with SIMD parallelism on the host multicore Xeon CPU and many-core Xeon Phi co-processor performed approximately three times faster than the baseline multithreaded C++ code. The SIMT parallel model on the host and Phi was 13%-35% slower than the baseline while the SIMT model on the NVIDIA Kepler GPU provided approximately the same performance as the SIMD model on the Phi. The runtimes for both ODE solvers decreased significantly with the SIMD implementations on the host CPU (2.5-2.7 ×) and Xeon Phi coprocessor (4.7-4.9 ×) compared to the baseline parallel code. The SIMT implementations on the GPU ran 1.5-1.6 times faster than the baseline multithreaded CPU code; however, this was significantly slower than the SIMD versions on the host CPU or the Xeon Phi. The performance difference between the three platforms was attributed to thread divergence caused by the adaptive step-sizes within the ODE integrators. Analysis showed that the wider vector width of the GPU incurs a higher level of divergence than the narrower Sandy Bridge or Xeon Phi. The significant performance improvement provided by the SIMD parallel strategy motivates further research into more ODE solver methods that are both SIMD-friendly and computationally efficient.

  15. Evaluation of stochastic algorithms for financial mathematics problems from point of view of energy-efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanassov, E.; Dimitrov, D., E-mail: d.slavov@bas.bg, E-mail: emanouil@parallel.bas.bg, E-mail: gurov@bas.bg; Gurov, T.

    2015-10-28

    The recent developments in the area of high-performance computing are driven not only by the desire for ever higher performance but also by the rising costs of electricity. The use of various types of accelerators like GPUs, Intel Xeon Phi has become mainstream and many algorithms and applications have been ported to make use of them where available. In Financial Mathematics the question of optimal use of computational resources should also take into account the limitations on space, because in many use cases the servers are deployed close to the exchanges. In this work we evaluate various algorithms for optionmore » pricing that we have implemented for different target architectures in terms of their energy and space efficiency. Since it has been established that low-discrepancy sequences may be better than pseudorandom numbers for these types of algorithms, we also test the Sobol and Halton sequences. We present the raw results, the computed metrics and conclusions from our tests.« less

  16. Efficient Calculation of Exact Exchange Within the Quantum Espresso Software Package

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul; Deslippe, Jack

    Accurate simulation of condensed matter at the nanoscale requires careful treatment of the exchange interaction between electrons. In the context of plane-wave DFT, these interactions are typically represented through the use of approximate functionals. Greater accuracy can often be obtained through the use of functionals that incorporate some fraction of exact exchange; however, evaluation of the exact exchange potential is often prohibitively expensive. We present an improved algorithm for the parallel computation of exact exchange in Quantum Espresso, an open-source software package for plane-wave DFT simulation. Through the use of aggressive load balancing and on-the-fly transformation of internal data structures, our code exhibits speedups of approximately an order of magnitude for practical calculations. Additional optimizations are presented targeting the many-core Intel Xeon-Phi ``Knights Landing'' architecture, which largely powers NERSC's new Cori system. We demonstrate the successful application of the code to difficult problems, including simulation of water at a platinum interface and computation of the X-ray absorption spectra of transition metal oxides.

  17. A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method.

    PubMed

    Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie

    2014-01-01

    It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.

  18. Understanding Portability of a High-Level Programming Model on Contemporary Heterogeneous Architectures

    DOE PAGES

    Sabne, Amit J.; Sakdhnagool, Putt; Lee, Seyong; ...

    2015-07-13

    Accelerator-based heterogeneous computing is gaining momentum in the high-performance computing arena. However, the increased complexity of heterogeneous architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle this problem. Although the abstraction provided by OpenACC offers productivity, it raises questions concerning both functional and performance portability. In this article, the authors propose HeteroIR, a high-level, architecture-independent intermediate representation, to map high-level programming models, such as OpenACC, to heterogeneous architectures. They present a compiler approach that translates OpenACC programs into HeteroIR and accelerator kernels to obtain OpenACC functional portability. They then evaluate the performance portability obtained bymore » OpenACC with their approach on 12 OpenACC programs on Nvidia CUDA, AMD GCN, and Intel Xeon Phi architectures. They study the effects of various compiler optimizations and OpenACC program settings on these architectures to provide insights into the achieved performance portability.« less

  19. Accelerating a three-dimensional eco-hydrological cellular automaton on GPGPU with OpenCL

    NASA Astrophysics Data System (ADS)

    Senatore, Alfonso; D'Ambrosio, Donato; De Rango, Alessio; Rongo, Rocco; Spataro, William; Straface, Salvatore; Mendicino, Giuseppe

    2016-10-01

    This work presents an effective implementation of a numerical model for complete eco-hydrological Cellular Automata modeling on Graphical Processing Units (GPU) with OpenCL (Open Computing Language) for heterogeneous computation (i.e., on CPUs and/or GPUs). Different types of parallel implementations were carried out (e.g., use of fast local memory, loop unrolling, etc), showing increasing performance improvements in terms of speedup, adopting also some original optimizations strategies. Moreover, numerical analysis of results (i.e., comparison of CPU and GPU outcomes in terms of rounding errors) have proven to be satisfactory. Experiments were carried out on a workstation with two CPUs (Intel Xeon E5440 at 2.83GHz), one GPU AMD R9 280X and one GPU nVIDIA Tesla K20c. Results have been extremely positive, but further testing should be performed to assess the functionality of the adopted strategies on other complete models and their ability to fruitfully exploit parallel systems resources.

  20. Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis

    PubMed Central

    Teodoro, George; Kurc, Tahsin; Andrade, Guilherme; Kong, Jun; Ferreira, Renato; Saltz, Joel

    2015-01-01

    We carry out a comparative performance study of multi-core CPUs, GPUs and Intel Xeon Phi (Many Integrated Core-MIC) with a microscopy image analysis application. We experimentally evaluate the performance of computing devices on core operations of the application. We correlate the observed performance with the characteristics of computing devices and data access patterns, computation complexities, and parallelization forms of the operations. The results show a significant variability in the performance of operations with respect to the device used. The performances of operations with regular data access are comparable or sometimes better on a MIC than that on a GPU. GPUs are more efficient than MICs for operations that access data irregularly, because of the lower bandwidth of the MIC for random data accesses. We propose new performance-aware scheduling strategies that consider variabilities in operation speedups. Our scheduling strategies significantly improve application performance compared to classic strategies in hybrid configurations. PMID:28239253

  1. CUDA-based acceleration of collateral filtering in brain MR images

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Yuan; Chang, Herng-Hua

    2017-02-01

    Image denoising is one of the fundamental and essential tasks within image processing. In medical imaging, finding an effective algorithm that can remove random noise in MR images is important. This paper proposes an effective noise reduction method for brain magnetic resonance (MR) images. Our approach is based on the collateral filter which is a more powerful method than the bilateral filter in many cases. However, the computation of the collateral filter algorithm is quite time-consuming. To solve this problem, we improved the collateral filter algorithm with parallel computing using GPU. We adopted CUDA, an application programming interface for GPU by NVIDIA, to accelerate the computation. Our experimental evaluation on an Intel Xeon CPU E5-2620 v3 2.40GHz with a NVIDIA Tesla K40c GPU indicated that the proposed implementation runs dramatically faster than the traditional collateral filter. We believe that the proposed framework has established a general blueprint for achieving fast and robust filtering in a wide variety of medical image denoising applications.

  2. Evaluation of stochastic algorithms for financial mathematics problems from point of view of energy-efficiency

    NASA Astrophysics Data System (ADS)

    Atanassov, E.; Dimitrov, D.; Gurov, T.

    2015-10-01

    The recent developments in the area of high-performance computing are driven not only by the desire for ever higher performance but also by the rising costs of electricity. The use of various types of accelerators like GPUs, Intel Xeon Phi has become mainstream and many algorithms and applications have been ported to make use of them where available. In Financial Mathematics the question of optimal use of computational resources should also take into account the limitations on space, because in many use cases the servers are deployed close to the exchanges. In this work we evaluate various algorithms for option pricing that we have implemented for different target architectures in terms of their energy and space efficiency. Since it has been established that low-discrepancy sequences may be better than pseudorandom numbers for these types of algorithms, we also test the Sobol and Halton sequences. We present the raw results, the computed metrics and conclusions from our tests.

  3. QCD thermodynamics with two flavors of quarks[1

    NASA Astrophysics Data System (ADS)

    MIMD lattice Computations (MILC) Collaboration

    We present results of numerical simulations of quantum chromodynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 × 12 3 lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths be reconstructing their correlated quark-antiquark structure.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, G.A.; Commer, M.

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less

  5. Hierarchical algorithms for modeling the ocean on hierarchical architectures

    NASA Astrophysics Data System (ADS)

    Hill, C. N.

    2012-12-01

    This presentation will describe an approach to using accelerator/co-processor technology that maps hierarchical, multi-scale modeling techniques to an underlying hierarchical hardware architecture. The focus of this work is on making effective use of both CPU and accelerator/co-processor parts of a system, for large scale ocean modeling. In the work, a lower resolution basin scale ocean model is locally coupled to multiple, "embedded", limited area higher resolution sub-models. The higher resolution models execute on co-processor/accelerator hardware and do not interact directly with other sub-models. The lower resolution basin scale model executes on the system CPU(s). The result is a multi-scale algorithm that aligns with hardware designs in the co-processor/accelerator space. We demonstrate this approach being used to substitute explicit process models for standard parameterizations. Code for our sub-models is implemented through a generic abstraction layer, so that we can target multiple accelerator architectures with different programming environments. We will present two application and implementation examples. One uses the CUDA programming environment and targets GPU hardware. This example employs a simple non-hydrostatic two dimensional sub-model to represent vertical motion more accurately. The second example uses a highly threaded three-dimensional model at high resolution. This targets a MIC/Xeon Phi like environment and uses sub-models as a way to explicitly compute sub-mesoscale terms. In both cases the accelerator/co-processor capability provides extra compute cycles that allow improved model fidelity for little or no extra wall-clock time cost.

  6. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications

    NASA Astrophysics Data System (ADS)

    Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.

    2015-06-01

    The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.

  7. Computational multicore on two-layer 1D shallow water equations for erodible dambreak

    NASA Astrophysics Data System (ADS)

    Simanjuntak, C. A.; Bagustara, B. A. R. H.; Gunawan, P. H.

    2018-03-01

    The simulation of erodible dambreak using two-layer shallow water equations and SCHR scheme are elaborated in this paper. The results show that the two-layer SWE model in a good agreement with the data experiment which is performed by Louvain-la-Neuve Université Catholique de Louvain. Moreover, the parallel algorithm with multicore architecture are given in the results. The results show that Computer I with processor Intel(R) Core(TM) i5-2500 CPU Quad-Core has the best performance to accelerate the computational time. Moreover, Computer III with processor AMD A6-5200 APU Quad-Core is observed has higher speedup and efficiency. The speedup and efficiency of Computer III with number of grids 3200 are 3.716050530 times and 92.9% respectively.

  8. A Parallel Pipelined Renderer for the Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Chiueh, Tzi-Cker; Ma, Kwan-Liu

    1997-01-01

    This paper presents a strategy for efficiently rendering time-varying volume data sets on a distributed-memory parallel computer. Time-varying volume data take large storage space and visualizing them requires reading large files continuously or periodically throughout the course of the visualization process. Instead of using all the processors to collectively render one volume at a time, a pipelined rendering process is formed by partitioning processors into groups to render multiple volumes concurrently. In this way, the overall rendering time may be greatly reduced because the pipelined rendering tasks are overlapped with the I/O required to load each volume into a group of processors; moreover, parallelization overhead may be reduced as a result of partitioning the processors. We modify an existing parallel volume renderer to exploit various levels of rendering parallelism and to study how the partitioning of processors may lead to optimal rendering performance. Two factors which are important to the overall execution time are re-source utilization efficiency and pipeline startup latency. The optimal partitioning configuration is the one that balances these two factors. Tests on Intel Paragon computers show that in general optimal partitionings do exist for a given rendering task and result in 40-50% saving in overall rendering time.

  9. Real-time trajectory optimization on parallel processors

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  10. Preparing for Exascale: Towards convection-permitting, global atmospheric simulations with the Model for Prediction Across Scales (MPAS)

    NASA Astrophysics Data System (ADS)

    Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald

    2017-04-01

    With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.

  11. Performance Evaluation of Synthetic Benchmarks and Image Processing (IP) Kernels on Intel and PowerPC Processors

    DTIC Science & Technology

    2013-08-01

    2006 Linux Q1 2005 Pentium D (830) 3 2/2 2511 1148 3617 Windows Vista Q2 2005 Pentium D (830) 3 2/2 2938 1155 3556 Windows XP Q2 2005 PowerPC 970MP 2...1 3734 3439 1304 Cell Broadband Engine 3.2 1/1 0.207 2006 239 441 Pentium D (830) 3 2/2 2 3617 2511 1148 Pentium D (830) 3 2/2 2 3556 2938 1155

  12. Multivariate statistical analysis of low-voltage EDS spectrum images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.

    1998-03-01

    Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.

  13. Building Columbia from the SysAdmin View

    NASA Technical Reports Server (NTRS)

    Chan, David

    2005-01-01

    Project Columbia was built at NASA Ames Research Center in partnership with SGI and Intel. Columbia consists of 20 512 processor Altix machines with 440TB of storage and achieved 51.87 TeraPlops to be ranked the second fastest on the top 500 at SuperComputing 2004. Columbia was delivered, installed and put into production in 3 months. On average, a new Columbia node was brought into production in less than a week. Columbia's configuration, installation, and future plans will be discussed.

  14. Investigating the Naval Logistics Role in Humanitarian Assistance Activities

    DTIC Science & Technology

    2015-03-01

    transportation means. E. BASE CASE RESULTS The computations were executed on a MacBook Pro , 3 GHz Intel Core i7-4578U processor with 8 GB. The...MacBook Pro was partitioned to also contain a Windows 7, 64-bit operating system. The computations were run in the Windows 7 operating system using the...it impacts the types of metamodels that can be developed as a result of data farming (Lucas et al., 2015). Using a metamodel, one can closely

  15. Command/response protocols and concurrent software

    NASA Technical Reports Server (NTRS)

    Bynum, W. L.

    1987-01-01

    A version of the program to control the parallel jaw gripper is documented. The parallel jaw end-effector hardware and the Intel 8031 processor that is used to control the end-effector are briefly described. A general overview of the controller program is given and a complete description of the program's structure and design are contained. There are three appendices: a memory map of the on-chip RAM, a cross-reference listing of the self-scheduling routines, and a summary of the top-level and monitor commands.

  16. SC'11 Poster: A Highly Efficient MGPT Implementation for LAMMPS; with Strong Scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oppelstrup, T; Stukowski, A; Marian, J

    2011-12-07

    The MGPT potential has been implemented as a drop in package to the general molecular dynamics code LAMMPS. We implement an improved communication scheme that shrinks the communication layer thickness, and increases the load balancing. This results in unprecedented strong scaling, and speedup continuing beyond 1/8 atom/core. In addition, we have optimized the small matrix linear algebra with generic blocking (for all processors) and specific SIMD intrinsics for vectorization on Intel, AMD, and BlueGene CPUs.

  17. Investigating the Importance of Stereo Displays for Helicopter Landing Simulation

    DTIC Science & Technology

    2016-08-11

    visualization. The two instances of X Plane® were implemented using two separate PCs, each incorporating Intel i7 processors and Nvidia Quadro K4200... Nvidia GeForce GTX 680 graphics card was used to administer the stereo acuity and fusion range tests. The tests were displayed on an Asus VG278HE 3D...monitor with 1920x1080 pixels that was compatible with Nvidia 3D Vision2 and that used active shutter glasses. At a 1-m viewing distance, the

  18. Parallel algorithms for simulating continuous time Markov chains

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Heidelberger, Philip

    1992-01-01

    We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

  19. Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.

    1987-02-15

    For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. Themore » usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation.« less

  20. FLY MPI-2: a parallel tree code for LSS

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Comparato, M.; Antonuccio-Delogu, V.

    2006-04-01

    New version program summaryProgram title: FLY 3.1 Catalogue identifier: ADSC_v2_0 Licensing provisions: yes Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSC_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland No. of lines in distributed program, including test data, etc.: 158 172 No. of bytes in distributed program, including test data, etc.: 4 719 953 Distribution format: tar.gz Programming language: Fortran 90, C Computer: Beowulf cluster, PC, MPP systems Operating system: Linux, Aix RAM: 100M words Catalogue identifier of previous version: ADSC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 155 (2003) 159 Does the new version supersede the previous version?: yes Nature of problem: FLY is a parallel collisionless N-body code for the calculation of the gravitational force Solution method: FLY is based on the hierarchical oct-tree domain decomposition introduced by Barnes and Hut (1986) Reasons for the new version: The new version of FLY is implemented by using the MPI-2 standard: the distributed version 3.1 was developed by using the MPICH2 library on a PC Linux cluster. Today the FLY performance allows us to consider the FLY code among the most powerful parallel codes for tree N-body simulations. Another important new feature regards the availability of an interface with hydrodynamical Paramesh based codes. Simulations must follow a box large enough to accurately represent the power spectrum of fluctuations on very large scales so that we may hope to compare them meaningfully with real data. The number of particles then sets the mass resolution of the simulation, which we would like to make as fine as possible. The idea to build an interface between two codes, that have different and complementary cosmological tasks, allows us to execute complex cosmological simulations with FLY, specialized for DM evolution, and a code specialized for hydrodynamical components that uses a Paramesh block structure. Summary of revisions: The parallel communication schema was totally changed. The new version adopts the MPICH2 library. Now FLY can be executed on all Unix systems having an MPI-2 standard library. The main data structure, is declared in a module procedure of FLY (fly_h.F90 routine). FLY creates the MPI Window object for one-sided communication for all the shared arrays, with a call like the following: CALL MPI_WIN_CREATE(POS, SIZE, REAL8, MPI_INFO_NULL, MPI_COMM_WORLD, WIN_POS, IERR) the following main window objects are created: win_pos, win_vel, win_acc: particles positions velocities and accelerations, win_pos_cell, win_mass_cell, win_quad, win_subp, win_grouping: cells positions, masses, quadrupole momenta, tree structure and grouping cells. Other windows are created for dynamic load balance and global counters. Restrictions: The program uses the leapfrog integrator schema, but could be changed by the user. Unusual features: FLY uses the MPI-2 standard: the MPICH2 library on Linux systems was adopted. To run this version of FLY the working directory must be shared among all the processors that execute FLY. Additional comments: Full documentation for the program is included in the distribution in the form of a README file, a User Guide and a Reference manuscript. Running time: IBM Linux Cluster 1350, 512 nodes with 2 processors for each node and 2 GB RAM for each processor, at Cineca, was adopted to make performance tests. Processor type: Intel Xeon Pentium IV 3.0 GHz and 512 KB cache (128 nodes have Nocona processors). Internal Network: Myricom LAN Card "C" Version and "D" Version. Operating System: Linux SuSE SLES 8. The code was compiled using the mpif90 compiler version 8.1 and with basic optimization options in order to have performances that could be useful compared with other generic clusters Processors

  1. A Parallel Rendering Algorithm for MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.; Orloff, Tobias

    1991-01-01

    Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.

  2. Parallel computing on Unix workstation arrays

    NASA Astrophysics Data System (ADS)

    Reale, F.; Bocchino, F.; Sciortino, S.

    1994-12-01

    We have tested arrays of general-purpose Unix workstations used as MIMD systems for massive parallel computations. In particular we have solved numerically a demanding test problem with a 2D hydrodynamic code, generally developed to study astrophysical flows, by exucuting it on arrays either of DECstations 5000/200 on Ethernet LAN, or of DECstations 3000/400, equipped with powerful Alpha processors, on FDDI LAN. The code is appropriate for data-domain decomposition, and we have used a library for parallelization previously developed in our Institute, and easily extended to work on Unix workstation arrays by using the PVM software toolset. We have compared the parallel efficiencies obtained on arrays of several processors to those obtained on a dedicated MIMD parallel system, namely a Meiko Computing Surface (CS-1), equipped with Intel i860 processors. We discuss the feasibility of using non-dedicated parallel systems and conclude that the convenience depends essentially on the size of the computational domain as compared to the relative processor power and network bandwidth. We point out that for future perspectives a parallel development of processor and network technology is important, and that the software still offers great opportunities of improvement, especially in terms of latency times in the message-passing protocols. In conditions of significant gain in terms of speedup, such workstation arrays represent a cost-effective approach to massive parallel computations.

  3. A multi-satellite orbit determination problem in a parallel processing environment

    NASA Technical Reports Server (NTRS)

    Deakyne, M. S.; Anderle, R. J.

    1988-01-01

    The Engineering Orbit Analysis Unit at GE Valley Forge used an Intel Hypercube Parallel Processor to investigate the performance and gain experience of parallel processors with a multi-satellite orbit determination problem. A general study was selected in which major blocks of computation for the multi-satellite orbit computations were used as units to be assigned to the various processors on the Hypercube. Problems encountered or successes achieved in addressing the orbit determination problem would be more likely to be transferable to other parallel processors. The prime objective was to study the algorithm to allow processing of observations later in time than those employed in the state update. Expertise in ephemeris determination was exploited in addressing these problems and the facility used to bring a realism to the study which would highlight the problems which may not otherwise be anticipated. Secondary objectives were to gain experience of a non-trivial problem in a parallel processor environment, to explore the necessary interplay of serial and parallel sections of the algorithm in terms of timing studies, to explore the granularity (coarse vs. fine grain) to discover the granularity limit above which there would be a risk of starvation where the majority of nodes would be idle or under the limit where the overhead associated with splitting the problem may require more work and communication time than is useful.

  4. Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.; Commer, Michael

    2009-07-01

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.

  5. Multiphase complete exchange on Paragon, SP2 and CS-2

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1995-01-01

    The overhead of interprocessor communication is a major factor in limiting the performance of parallel computer systems. The complete exchange is the severest communication pattern in that it requires each processor to send a distinct message to every other processor. This pattern is at the heart of many important parallel applications. On hypercubes, multiphase complete exchange has been developed and shown to provide optimal performance over varying message sizes. Most commercial multicomputer systems do not have a hypercube interconnect. However, they use special purpose hardware and dedicated communication processors to achieve very high performance communication and can be made to emulate the hypercube quite well. Multiphase complete exchange has been implemented on three contemporary parallel architectures: the Intel Paragon, IBM SP2 and Meiko CS-2. The essential features of these machines are described and their basic interprocessor communication overheads are discussed. The performance of multiphase complete exchange is evaluated on each machine. It is shown that the theoretical ideas developed for hypercubes are also applicable in practice to these machines and that multiphase complete exchange can lead to major savings in execution time over traditional solutions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sancho Pitarch, Jose Carlos; Kerbyson, Darren; Lang, Mike

    Increasing the core-count on current and future processors is posing critical challenges to the memory subsystem to efficiently handle concurrent memory requests. The current trend to cope with this challenge is to increase the number of memory channels available to the processor's memory controller. In this paper we investigate the effectiveness of this approach on the performance of parallel scientific applications. Specifically, we explore the trade-off between employing multiple memory channels per memory controller and the use of multiple memory controllers. Experiments conducted on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-core Intel Nehalem-EP, for amore » wide range of production applications shows that there is a diminishing return when increasing the number of memory channels per memory controller. In addition, we show that this performance degradation can be efficiently addressed by increasing the ratio of memory controllers to channels while keeping the number of memory channels constant. Significant performance improvements can be achieved in this scheme, up to 28%, in the case of using two memory controllers with each with one channel compared with one controller with two memory channels.« less

  7. Noiseless coding for the Gamma Ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rice, R.; Lee, J. J.

    1985-01-01

    The payload of several future unmanned space missions will include a sophisticated gamma ray spectrometer. Severely constrained data rates during certain portions of these missions could limit the possible science return from this instrument. This report investigates the application of universal noiseless coding techniques to represent gamma ray spectrometer data more efficiently without any loss in data integrity. Performance results demonstrate compression factors from 2.5:1 to 20:1 in comparison to a standard representation. Feasibility was also demonstrated by implementing a microprocessor breadboard coder/decoder using an Intel 8086 processor.

  8. Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore and Manycore Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druinsky, Alex; Ghysels, Pieter; Li, Xiaoye S.

    In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism andmore » made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  10. Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)

    NASA Astrophysics Data System (ADS)

    Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik

    2016-09-01

    We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.

  11. Examining Troughs in the Mass Distribution of All Theoretically Possible Tryptic Peptides

    PubMed Central

    Nefedov, Alexey V.; Mitra, Indranil; Brasier, Allan R.; Sadygov, Rovshan G.

    2011-01-01

    This work describes the mass distribution of all theoretically possibly tryptic peptides made of 20 amino acids, up to the mass of 3 kDa, with resolution of 0.001 Da. We characterize regions between the peaks of the distribution, including gaps (forbidden zones) and low-populated areas (quiet zones). We show how the gaps shrink over the mass range, and when they completely disappear. We demonstrate that peptide compositions in quiet zones are less diverse than those in the peaks of the distribution, and that by eliminating certain types of unrealistic compositions the gaps in the distribution may be increased. The mass distribution is generated using a parallel implementation of a recursive procedure that enumerates all amino acid compositions. It allows us to enumerate all compositions of tryptic peptides below 3 kDa in 48 minutes using a computer cluster with 12 Intel Xeon X5650 CPUs (72 cores). The results of this work can be used to facilitate protein identification and mass defect labeling in mass spectrometry-based proteomics experiments. PMID:21780838

  12. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H; Williams, Samuel; Datta, Kaushik

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we developmore » a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.« less

  13. An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling

    DOE PAGES

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...

    2016-10-27

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyakh, Dmitry I.

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  15. Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis

    DOE PAGES

    Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders; ...

    2017-09-01

    Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less

  16. Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders

    Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less

  17. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  18. A heterogeneous computing accelerated SCE-UA global optimization method using OpenMP, OpenCL, CUDA, and OpenACC.

    PubMed

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang

    2017-10-01

    The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.

  19. Evaluation of the OpenCL AES Kernel using the Intel FPGA SDK for OpenCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal

    The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board provides more hardware resources for a larger design exploration space. The kernel performance is measured with the compute kernel throughput, an upper bound to the FPGA throughput. The report presents the experimental results in details. The Appendix lists the kernel source code.« less

  20. Study of Thread Level Parallelism in a Video Encoding Application for Chip Multiprocessor Design

    NASA Astrophysics Data System (ADS)

    Debes, Eric; Kaine, Greg

    2002-11-01

    In media applications there is a high level of available thread level parallelism (TLP). In this paper we study the intra TLP in a video encoder. We show that a well-distributed highly optimized encoder running on a symmetric multiprocessor (SMP) system can run 3.2 faster on a 4-way SMP machine than on a single processor. The multithreaded encoder running on an SMP system is then used to understand the requirements of a chip multiprocessor (CMP) architecture, which is one possible architectural direction to better exploit TLP. In the framework of this study, we use a software approach to evaluate the dataflow between processors for the video encoder running on an SMP system. An estimation of the dataflow is done with L2 cache miss event counters using Intel® VTuneTM performance analyzer. The experimental measurements are compared to theoretical results.

  1. Massively Parallel Simulations of Diffusion in Dense Polymeric Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulon, Jean-Loup, Wilcox, R.T.

    1997-11-01

    An original computational technique to generate close-to-equilibrium dense polymeric structures is proposed. Diffusion of small gases are studied on the equilibrated structures using massively parallel molecular dynamics simulations running on the Intel Teraflops (9216 Pentium Pro processors) and Intel Paragon(1840 processors). Compared to the current state-of-the-art equilibration methods this new technique appears to be faster by some orders of magnitude.The main advantage of the technique is that one can circumvent the bottlenecks in configuration space that inhibit relaxation in molecular dynamics simulations. The technique is based on the fact that tetravalent atoms (such as carbon and silicon) fit in themore » center of a regular tetrahedron and that regular tetrahedrons can be used to mesh the three-dimensional space. Thus, the problem of polymer equilibration described by continuous equations in molecular dynamics is reduced to a discrete problem where solutions are approximated by simple algorithms. Practical modeling applications include the constructing of butyl rubber and ethylene-propylene-dimer-monomer (EPDM) models for oxygen and water diffusion calculations. Butyl and EPDM are used in O-ring systems and serve as sealing joints in many manufactured objects. Diffusion coefficients of small gases have been measured experimentally on both polymeric systems, and in general the diffusion coefficients in EPDM are an order of magnitude larger than in butyl. In order to better understand the diffusion phenomena, 10, 000 atoms models were generated and equilibrated for butyl and EPDM. The models were submitted to a massively parallel molecular dynamics simulation to monitor the trajectories of the diffusing species.« less

  2. Implementations of BLAST for parallel computers.

    PubMed

    Jülich, A

    1995-02-01

    The BLAST sequence comparison programs have been ported to a variety of parallel computers-the shared memory machine Cray Y-MP 8/864 and the distributed memory architectures Intel iPSC/860 and nCUBE. Additionally, the programs were ported to run on workstation clusters. We explain the parallelization techniques and consider the pros and cons of these methods. The BLAST programs are very well suited for parallelization for a moderate number of processors. We illustrate our results using the program blastp as an example. As input data for blastp, a 799 residue protein query sequence and the protein database PIR were used.

  3. CUDA-based real time surgery simulation.

    PubMed

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  4. Real-time operating system for selected Intel processors

    NASA Technical Reports Server (NTRS)

    Pool, W. R.

    1980-01-01

    The rationale for system development is given along with reasons for not using vendor supplied operating systems. Although many system design and performance goals were dictated by problems with vendor supplied systems, other goals surfaced as a result of a design for a custom system able to span multiple projects. System development and management problems and areas that required redesign or major code changes for system implementation are examined as well as the relative successes of the initial projects. A generic description of the actual project is provided and the ongoing support requirements and future plans are discussed.

  5. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  6. Scalability and Portability of Two Parallel Implementations of ADI

    NASA Technical Reports Server (NTRS)

    Phung, Thanh; VanderWijngaart, Rob F.

    1994-01-01

    Two domain decompositions for the implementation of the NAS Scalar Penta-diagonal Parallel Benchmark on MIMD systems are investigated, namely transposition and multi-partitioning. Hardware platforms considered are the Intel iPSC/860 and Paragon XP/S-15, and clusters of SGI workstations on ethernet, communicating through PVM. It is found that the multi-partitioning strategy offers the kind of coarse granularity that allows scaling up to hundreds of processors on a massively parallel machine. Moreover, efficiency is retained when the code is ported verbatim (save message passing syntax) to a PVM environment on a modest size cluster of workstations.

  7. High-performance hardware implementation of a parallel database search engine for real-time peptide mass fingerprinting

    PubMed Central

    Bogdán, István A.; Rivers, Jenny; Beynon, Robert J.; Coca, Daniel

    2008-01-01

    Motivation: Peptide mass fingerprinting (PMF) is a method for protein identification in which a protein is fragmented by a defined cleavage protocol (usually proteolysis with trypsin), and the masses of these products constitute a ‘fingerprint’ that can be searched against theoretical fingerprints of all known proteins. In the first stage of PMF, the raw mass spectrometric data are processed to generate a peptide mass list. In the second stage this protein fingerprint is used to search a database of known proteins for the best protein match. Although current software solutions can typically deliver a match in a relatively short time, a system that can find a match in real time could change the way in which PMF is deployed and presented. In a paper published earlier we presented a hardware design of a raw mass spectra processor that, when implemented in Field Programmable Gate Array (FPGA) hardware, achieves almost 170-fold speed gain relative to a conventional software implementation running on a dual processor server. In this article we present a complementary hardware realization of a parallel database search engine that, when running on a Xilinx Virtex 2 FPGA at 100 MHz, delivers 1800-fold speed-up compared with an equivalent C software routine, running on a 3.06 GHz Xeon workstation. The inherent scalability of the design means that processing speed can be multiplied by deploying the design on multiple FPGAs. The database search processor and the mass spectra processor, running on a reconfigurable computing platform, provide a complete real-time PMF protein identification solution. Contact: d.coca@sheffield.ac.uk PMID:18453553

  8. HeinzelCluster: accelerated reconstruction for FORE and OSEM3D.

    PubMed

    Vollmar, S; Michel, C; Treffert, J T; Newport, D F; Casey, M; Knöss, C; Wienhard, K; Liu, X; Defrise, M; Heiss, W D

    2002-08-07

    Using iterative three-dimensional (3D) reconstruction techniques for reconstruction of positron emission tomography (PET) is not feasible on most single-processor machines due to the excessive computing time needed, especially so for the large sinogram sizes of our high-resolution research tomograph (HRRT). In our first approach to speed up reconstruction time we transform the 3D scan into the format of a two-dimensional (2D) scan with sinograms that can be reconstructed independently using Fourier rebinning (FORE) and a fast 2D reconstruction method. On our dedicated reconstruction cluster (seven four-processor systems, Intel PIII@700 MHz, switched fast ethernet and Myrinet, Windows NT Server), we process these 2D sinograms in parallel. We have achieved a speedup > 23 using 26 processors and also compared results for different communication methods (RPC, Syngo, Myrinet GM). The other approach is to parallelize OSEM3D (implementation of C Michel), which has produced the best results for HRRT data so far and is more suitable for an adequate treatment of the sinogram gaps that result from the detector geometry of the HRRT. We have implemented two levels of parallelization for four dedicated cluster (a shared memory fine-grain level on each node utilizing all four processors and a coarse-grain level allowing for 15 nodes) reducing the time for one core iteration from over 7 h to about 35 min.

  9. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  10. Efficient molecular dynamics simulations with many-body potentials on graphics processing units

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari

    2017-09-01

    Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).

  11. Elastic Cloud Computing Architecture and System for Heterogeneous Spatiotemporal Computing

    NASA Astrophysics Data System (ADS)

    Shi, X.

    2017-10-01

    Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.

  12. Optimization of a Lattice Boltzmann Computation on State-of-the-Art Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid

    2009-04-10

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon E5345 (Clovertown), AMD Opteron 2214 (Santa Rosa), AMD Opteron 2356 (Barcelona), Sun T5140 T2+ (Victoria Falls), as well asmore » a QS20 IBM Cell Blade. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 15x improvement compared with the original code at a given concurrency. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.« less

  13. Python in the NERSC Exascale Science Applications Program for Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronaghi, Zahra; Thomas, Rollin; Deslippe, Jack

    We describe a new effort at the National Energy Re- search Scientific Computing Center (NERSC) in performance analysis and optimization of scientific Python applications targeting the Intel Xeon Phi (Knights Landing, KNL) many- core architecture. The Python-centered work outlined here is part of a larger effort called the NERSC Exascale Science Applications Program (NESAP) for Data. NESAP for Data focuses on applications that process and analyze high-volume, high-velocity data sets from experimental/observational science (EOS) facilities supported by the US Department of Energy Office of Science. We present three case study applications from NESAP for Data that use Python. These codesmore » vary in terms of “Python purity” from applications developed in pure Python to ones that use Python mainly as a convenience layer for scientists without expertise in lower level programming lan- guages like C, C++ or Fortran. The science case, requirements, constraints, algorithms, and initial performance optimizations for each code are discussed. Our goal with this paper is to contribute to the larger conversation around the role of Python in high-performance computing today and tomorrow, highlighting areas for future work and emerging best practices« less

  14. USC orthogonal multiprocessor for image processing with neural networks

    NASA Astrophysics Data System (ADS)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  15. Impacts of the IBM Cell Processor to Support Climate Models

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Duffy, Daniel; Clune, Tom; Suarez, Max; Williams, Samuel; Halem, Milt

    2008-01-01

    NASA is interested in the performance and cost benefits for adapting its applications to the IBM Cell processor. However, its 256KB local memory per SPE and the new communication mechanism, make it very challenging to port an application. We selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics (approximately 50% computational time), (2) has a high computational load relative to transferring data from and to main memory, (3) performs independent calculations across multiple columns. We converted the baseline code (single-precision, Fortran) to C and ported it with manually SIMDizing 4 independent columns and found that a Cell with 8 SPEs can process 2274 columns per second. Compared with the baseline results, the Cell is approximately 5.2X, approximately 8.2X, approximately 15.1X faster than a core on Intel Woodcrest, Dempsey, and Itanium2, respectively. We believe this dramatic performance improvement makes a hybrid cluster with Cell and traditional nodes competitive.

  16. Concurrent and Accurate Short Read Mapping on Multicore Processors.

    PubMed

    Martínez, Héctor; Tárraga, Joaquín; Medina, Ignacio; Barrachina, Sergio; Castillo, Maribel; Dopazo, Joaquín; Quintana-Ortí, Enrique S

    2015-01-01

    We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, HPG Aligner SA (HPG Aligner SA is an open-source application. The software is available at http://www.opencb.org, exploits a suffix array to rapidly map a large fraction of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads. The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for the successful alignment of the complete reads. The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA reads of 100-400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2, MapSplice, and STAR.

  17. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    NASA Astrophysics Data System (ADS)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  18. The cost of conservative synchronization in parallel discrete event simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The performance of a synchronous conservative parallel discrete-event simulation protocol is analyzed. The class of simulation models considered is oriented around a physical domain and possesses a limited ability to predict future behavior. A stochastic model is used to show that as the volume of simulation activity in the model increases relative to a fixed architecture, the complexity of the average per-event overhead due to synchronization, event list manipulation, lookahead calculations, and processor idle time approach the complexity of the average per-event overhead of a serial simulation. The method is therefore within a constant factor of optimal. The analysis demonstrates that on large problems--those for which parallel processing is ideally suited--there is often enough parallel workload so that processors are not usually idle. The viability of the method is also demonstrated empirically, showing how good performance is achieved on large problems using a thirty-two node Intel iPSC/2 distributed memory multiprocessor.

  19. Efficient implementation of a 3-dimensional ADI method on the iPSC/860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Wijngaart, R.F.

    1993-12-31

    A comparison is made between several domain decomposition strategies for the solution of three-dimensional partial differential equations on a MIMD distributed memory parallel computer. The grids used are structured, and the numerical algorithm is ADI. Important implementation issues regarding load balancing, storage requirements, network latency, and overlap of computations and communications are discussed. Results of the solution of the three-dimensional heat equation on the Intel iPSC/860 are presented for the three most viable methods. It is found that the Bruno-Cappello decomposition delivers optimal computational speed through an almost complete elimination of processor idle time, while providing good memory efficiency.

  20. A low-cost vector processor boosting compute-intensive image processing operations

    NASA Technical Reports Server (NTRS)

    Adorf, Hans-Martin

    1992-01-01

    Low-cost vector processing (VP) is within reach of everyone seriously engaged in scientific computing. The advent of affordable add-on VP-boards for standard workstations complemented by mathematical/statistical libraries is beginning to impact compute-intensive tasks such as image processing. A case in point in the restoration of distorted images from the Hubble Space Telescope. A low-cost implementation is presented of the standard Tarasko-Richardson-Lucy restoration algorithm on an Intel i860-based VP-board which is seamlessly interfaced to a commercial, interactive image processing system. First experience is reported (including some benchmarks for standalone FFT's) and some conclusions are drawn.

  1. A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Rao, Hariprasad Nannapaneni

    1989-01-01

    The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.

  2. Particle Identification on an FPGA Accelerated Compute Platform for the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Fäerber, Christian; Schwemmer, Rainer; Machen, Jonathan; Neufeld, Niko

    2017-07-01

    The current LHCb readout system will be upgraded in 2018 to a “triggerless” readout of the entire detector at the Large Hadron Collider collision rate of 40 MHz. The corresponding bandwidth from the detector down to the foreseen dedicated computing farm (event filter farm), which acts as the trigger, has to be increased by a factor of almost 100 from currently 500 Gb/s up to 40 Tb/s. The event filter farm will preanalyze the data and will select the events on an event by event basis. This will reduce the bandwidth down to a manageable size to write the interesting physics data to tape. The design of such a system is a challenging task, and the reason why different new technologies are considered and have to be investigated for the different parts of the system. For the usage in the event building farm or in the event filter farm (trigger), an experimental field programmable gate array (FPGA) accelerated computing platform is considered and, therefore, tested. FPGA compute accelerators are used more and more in standard servers such as for Microsoft Bing search or Baidu search. The platform we use hosts a general Intel CPU and a high-performance FPGA linked via the high-speed Intel QuickPath Interconnect. An accelerator is implemented on the FPGA. It is very likely that these platforms, which are built, in general, for high-performance computing, are also very interesting for the high-energy physics community. First, the performance results of smaller test cases performed at the beginning are presented. Afterward, a part of the existing LHCb RICH particle identification is tested and is ported to the experimental FPGA accelerated platform. We have compared the performance of the LHCb RICH particle identification running on a normal CPU with the performance of the same algorithm, which is running on the Xeon-FPGA compute accelerator platform.

  3. A rapid calculation system for tsunami propagation in Japan by using the AQUA-MT/CMT solutions

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Suzuki, W.; Yamamoto, N.; Kimura, H.; Takahashi, N.

    2017-12-01

    We developed a rapid calculation system of geodetic deformations and tsunami propagation in and around Japan. The system automatically conducts their forward calculations by using point source parameters estimated by the AQUA system (Matsumura et al., 2006), which analyze magnitude, hypocenter, and moment tensors for an event occurring in Japan in 3 minutes of the origin time at the earliest. An optimized calculation code developed by Nakamura and Baba (2016) is employed for the calculations on our computer server with 12 core processors of Intel Xeon 2.60 GHz. Assuming a homogeneous fault slip in the single fault plane as the source fault, the developed system calculates each geodetic deformation and tsunami propagation by numerically solving the 2D linear long-wave equations for the grid interval of 1 arc-min from two fault orientations simultaneously; i.e., one fault and its conjugate fault plane. Because fault models based on moment tensor analyses of event data are used, the system appropriately evaluate tsunami propagation even for unexpected events such as normal faulting in the subduction zone, which differs with the evaluation of tsunami arrivals and heights from a pre-calculated database by using fault models assuming typical types of faulting in anticipated source areas (e.g., Tatehata, 1998; Titov et al., 2005; Yamamoto et al., 2016). By the complete automation from event detection to output graphical figures, the calculation results can be available via e-mail and web site in 4 minutes of the origin time at the earliest. For moderate-sized events such as M5 to 6 events, the system helps us to rapidly investigate whether amplitudes of tsunamis at nearshore and offshore stations exceed a noise level or not, and easily identify actual tsunamis at the stations by comparing with obtained synthetic waveforms. In the case of using source models investigated from GNSS data, such evaluations may be difficult because of the low resolution of sources due to a low signal to noise ratio at land stations. For large to huge events in offshore areas, the developed system may be useful to decide to starting or stopping preparations and precautions against tsunami arrivals, because calculation results including arrival times and heights of initial and maximum waves can be rapidly available before their arrivals at coastal areas.

  4. TU-AB-BRC-08: Egs-brachy, a Fast and Versatile Monte Carlo Code for Brachytherapy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, M; Taylor, R; Rogers, D

    2016-06-15

    Purpose: To introduce egs-brachy, a new, fast, and versatile Monte Carlo code for brachytherapy applications. Methods: egs-brachy is an EGSnrc user-code based on the EGSnrc C++ class library (egs++). Complex phantom, applicator, and source model geometries are built using the egs++ geometry module. egs-brachy uses a tracklength estimator to score collision kerma in voxels. Interaction, spectrum, energy fluence, and phase space scoring are also implemented. Phase space sources and particle recycling may be used to improve simulation efficiency. HDR treatments (e.g. stepping source through dwell positions) can be simulated. Standard brachytherapy seeds, as well as electron and miniature x-ray tubemore » sources are fully modelled. Variance reduction techniques for electron source simulations are implemented (Bremsstrahlung cross section enhancement, uniform Bremsstrahlung splitting, and Russian Roulette). TG-43 parameters of seeds are computed and compared to published values. Example simulations of various treatments are carried out on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core. Results: TG-43 parameters calculated with egs-brachy show excellent agreement with published values. Using a phase space source, 2% average statistical uncertainty in the PTV ((2mm){sup 3} voxels) can be achieved in 10 s for 100 {sup 125}I or {sup 103}Pd seeds in a 36.2 cm{sup 3} prostate PTV, 31 s for 64 {sup 103}Pd seeds in a 64 cm{sup 3} breast PTV, and 56 s for a miniature x-ray tube in a 27 cm{sup 3} breast PTV. Comparable uncertainty is reached in 12 s in a (1 mm){sup 3} water voxel 5 mm away from a COMS 16mm eye plaque with 13 {sup 103}Pd seeds. Conclusion: The accuracy of egs-brachy has been demonstrated through benchmarking calculations. Calculation times are sufficiently fast to allow full MC simulations for routine treatment planning for diverse brachytherapy treatments (LDR, HDR, miniature x-ray tube). egs-brachy will be available as free and open-source software to the medical physics research community. This work is partially funded by the Canada Research Chairs program, the Natural Sciences and Engineering Research Council of Canada, and the Ontario Ministry of Research and Innovation (Ontario Early Researcher Award).« less

  5. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.

    PubMed

    Jiang, Hanyu; Ganesan, Narayan

    2016-02-27

    HMMER software suite is widely used for analysis of homologous protein and nucleotide sequences with high sensitivity. The latest version of hmmsearch in HMMER 3.x, utilizes heuristic-pipeline which consists of MSV/SSV (Multiple/Single ungapped Segment Viterbi) stage, P7Viterbi stage and the Forward scoring stage to accelerate homology detection. Since the latest version is highly optimized for performance on modern multi-core CPUs with SSE capabilities, only a few acceleration attempts report speedup. However, the most compute intensive tasks within the pipeline (viz., MSV/SSV and P7Viterbi stages) still stand to benefit from the computational capabilities of massively parallel processors. A Multi-Tiered Parallel Framework (CUDAMPF) implemented on CUDA-enabled GPUs presented here, offers a finer-grained parallelism for MSV/SSV and Viterbi algorithms. We couple SIMT (Single Instruction Multiple Threads) mechanism with SIMD (Single Instructions Multiple Data) video instructions with warp-synchronism to achieve high-throughput processing and eliminate thread idling. We also propose a hardware-aware optimal allocation scheme of scarce resources like on-chip memory and caches in order to boost performance and scalability of CUDAMPF. In addition, runtime compilation via NVRTC available with CUDA 7.0 is incorporated into the presented framework that not only helps unroll innermost loop to yield upto 2 to 3-fold speedup than static compilation but also enables dynamic loading and switching of kernels depending on the query model size, in order to achieve optimal performance. CUDAMPF is designed as a hardware-aware parallel framework for accelerating computational hotspots within the hmmsearch pipeline as well as other sequence alignment applications. It achieves significant speedup by exploiting hierarchical parallelism on single GPU and takes full advantage of limited resources based on their own performance features. In addition to exceeding performance of other acceleration attempts, comprehensive evaluations against high-end CPUs (Intel i5, i7 and Xeon) shows that CUDAMPF yields upto 440 GCUPS for SSV, 277 GCUPS for MSV and 14.3 GCUPS for P7Viterbi all with 100 % accuracy, which translates to a maximum speedup of 37.5, 23.1 and 11.6-fold for MSV, SSV and P7Viterbi respectively. The source code is available at https://github.com/Super-Hippo/CUDAMPF.

  6. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a display. This paper discusses the impact of simulation on choosing signal processing algorithms and architectures, drawing from the experiences of the Demonstration and Benchmark inter-company teams at Lockhhed Sanders, Motorola, Hughes, and ISX.

  7. A new nonlinear conjugate gradient coefficient under strong Wolfe-Powell line search

    NASA Astrophysics Data System (ADS)

    Mohamed, Nur Syarafina; Mamat, Mustafa; Rivaie, Mohd

    2017-08-01

    A nonlinear conjugate gradient method (CG) plays an important role in solving a large-scale unconstrained optimization problem. This method is widely used due to its simplicity. The method is known to possess sufficient descend condition and global convergence properties. In this paper, a new nonlinear of CG coefficient βk is presented by employing the Strong Wolfe-Powell inexact line search. The new βk performance is tested based on number of iterations and central processing unit (CPU) time by using MATLAB software with Intel Core i7-3470 CPU processor. Numerical experimental results show that the new βk converge rapidly compared to other classical CG method.

  8. A microprocessor based anti-aliasing filter for a PCM system

    NASA Technical Reports Server (NTRS)

    Morrow, D. C.; Sandlin, D. R.

    1984-01-01

    Described is the design and evaluation of a microprocessor based digital filter. The filter was made to investigate the feasibility of a digital replacement for the analog pre-sampling filters used in telemetry systems at the NASA Ames-Dryden Flight Research Facility (DFRF). The digital filter will utilize an Intel 2920 Analog Signal Processor (ASP) chip. Testing includes measurements of: (1) the filter frequency response and, (2) the filter signal resolution. The evaluation of the digital filter was made on the basis of circuit size, projected environmental stability and filter resolution. The 2920 based digital filter was found to meet or exceed the pre-sampling filter specifications for limited signal resolution applications.

  9. Noiseless coding for the magnetometer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Lee, Jun-Ji

    1987-01-01

    Future unmanned space missions will continue to seek a full understanding of magnetic fields throughout the solar system. Severely constrained data rates during certain portions of these missions could limit the possible science return. This publication investigates the application of universal noiseless coding techniques to more efficiently represent magnetometer data without any loss in data integrity. Performance results indicated that compression factors of 2:1 to 6:1 can be expected. Feasibility for general deep space application was demonstrated by implementing a microprocessor breadboard coder/decoder using the Intel 8086 processor. The Comet Rendezvous Asteroid Flyby mission will incorporate these techniques in a buffer feedback, rate-controlled configuration. The characteristics of this system are discussed.

  10. High performance ultrasonic field simulation on complex geometries

    NASA Astrophysics Data System (ADS)

    Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.

    2016-02-01

    Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.

  11. Parallel halftoning technique using dot diffusion optimization

    NASA Astrophysics Data System (ADS)

    Molina-Garcia, Javier; Ponomaryov, Volodymyr I.; Reyes-Reyes, Rogelio; Cruz-Ramos, Clara

    2017-05-01

    In this paper, a novel approach for halftone images is proposed and implemented for images that are obtained by the Dot Diffusion (DD) method. Designed technique is based on an optimization of the so-called class matrix used in DD algorithm and it consists of generation new versions of class matrix, which has no baron and near-baron in order to minimize inconsistencies during the distribution of the error. Proposed class matrix has different properties and each is designed for two different applications: applications where the inverse-halftoning is necessary, and applications where this method is not required. The proposed method has been implemented in GPU (NVIDIA GeForce GTX 750 Ti), multicore processors (AMD FX(tm)-6300 Six-Core Processor and in Intel core i5-4200U), using CUDA and OpenCV over a PC with linux. Experimental results have shown that novel framework generates a good quality of the halftone images and the inverse halftone images obtained. The simulation results using parallel architectures have demonstrated the efficiency of the novel technique when it is implemented in real-time processing.

  12. Pentium Pro inside. 1; A treecode at 430 Gigaflops on ASCI Red

    NASA Technical Reports Server (NTRS)

    Warren, M. S.; Becker, D. J.; Sterling, T.; Salmon, J. K.; Goda, M. P.

    1997-01-01

    As an entry for the 1997 Gordon Bell performance prize, we present results from two methods of solving the gravitational N-body problem on the Intel Teraflops system at Sandia National Laboratory (ASCI Red). The first method, an O(N2) algorithm, obtained 635 Gigaflops for a 1 million particle problem on 6800 Pentium Pro processors. The second solution method, a tree-code which scales as O(N log N), sustained 170 Gigaflops over a continuous 9.4 hour period on 4096 processors, integrating the motion of 322 million mutually interacting particles in a cosmology simulation, while saving over 100 Gigabytes of raw data. Additionally, the tree-code sustained 430 Gigaflops on 6800 processors for the first 5 time-steps of that simulation. This tree-code solution is approximately 105 times more efficient than the O(N2) algorithm for this problem. As an entry for the 1997 Gordon Bell price/performance prize, we present two calculations from the disciplines of astrophysics and fluid dynamics. The simulations were performed on two 16 Pentium Pro processor Beowulf-class computers (Loki and Hyglac) constructed entirely from commodity personal computer technology, at a cost of roughly $50k each in September, 1996. The price of an equivalent system in August 1997 is less than $30. At Los Alamos, Loki performed a gravitational tree-code N-body simulation of galaxy formation using 9.75 million particles, which sustained an average of 879 Mflops over a ten day period, and produced roughly 10 Gbytes of raw data.

  13. Optimizing Approximate Weighted Matching on Nvidia Kepler K40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh

    Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less

  14. GPU-based ultra-fast dose calculation using a finite size pencil beam model.

    PubMed

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B

    2009-10-21

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  15. Chapter 13. Exploring Use of the Reserved Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmen, John; Humphrey, Alan; Berzins, Martin

    2015-07-29

    In this chapter, we illustrate benefits of thinking in terms of thread management techniques when using a centralized scheduler model along with interoperability of MPI and PThread. This is facilitated through an exploration of thread placement strategies for an algorithm modeling radiative heat transfer with special attention to the 61st core. This algorithm plays a key role within the Uintah Computational Framework (UCF) and current efforts taking place at the University of Utah to model next-generation, large-scale clean coal boilers. In such simulations, this algorithm models the dominant form of heat transfer and consumes a large portion of compute time.more » Exemplified by a real-world example, this chapter presents our early efforts in porting a key portion of a scalability-centric codebase to the Intel Xeon Phi coprocessor. Specifically, this chapter presents results from our experiments profiling the native execution of a reverse Monte-Carlo ray tracing-based radiation model on a single coprocessor. These results demonstrate that our fastest run configurations utilized the 61st core and that performance was not profoundly impacted when explicitly oversubscribing the coprocessor operating system thread. Additionally, this chapter presents a portion of radiation model source code, a MIC-centric UCF cross-compilation example, and less conventional thread management technique for developers utilizing the PThreads threading model.« less

  16. Using Coarrays to Parallelize Legacy Fortran Applications: Strategy and Case Study

    DOE PAGES

    Radhakrishnan, Hari; Rouson, Damian W. I.; Morris, Karla; ...

    2015-01-01

    This paper summarizes a strategy for parallelizing a legacy Fortran 77 program using the object-oriented (OO) and coarray features that entered Fortran in the 2003 and 2008 standards, respectively. OO programming (OOP) facilitates the construction of an extensible suite of model-verification and performance tests that drive the development. Coarray parallel programming facilitates a rapid evolution from a serial application to a parallel application capable of running on multicore processors and many-core accelerators in shared and distributed memory. We delineate 17 code modernization steps used to refactor and parallelize the program and study the resulting performance. Our initial studies were donemore » using the Intel Fortran compiler on a 32-core shared memory server. Scaling behavior was very poor, and profile analysis using TAU showed that the bottleneck in the performance was due to our implementation of a collective, sequential summation procedure. We were able to improve the scalability and achieve nearly linear speedup by replacing the sequential summation with a parallel, binary tree algorithm. We also tested the Cray compiler, which provides its own collective summation procedure. Intel provides no collective reductions. With Cray, the program shows linear speedup even in distributed-memory execution. We anticipate similar results with other compilers once they support the new collective procedures proposed for Fortran 2015.« less

  17. Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah

    As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the modelmore » size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.« less

  18. Parallel protein secondary structure prediction based on neural networks.

    PubMed

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  19. Application of a distributed network in computational fluid dynamic simulations

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish

    1994-01-01

    A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.

  20. On extending parallelism to serial simulators

    NASA Technical Reports Server (NTRS)

    Nicol, David; Heidelberger, Philip

    1994-01-01

    This paper describes an approach to discrete event simulation modeling that appears to be effective for developing portable and efficient parallel execution of models of large distributed systems and communication networks. In this approach, the modeler develops submodels using an existing sequential simulation modeling tool, using the full expressive power of the tool. A set of modeling language extensions permit automatically synchronized communication between submodels; however, the automation requires that any such communication must take a nonzero amount off simulation time. Within this modeling paradigm, a variety of conservative synchronization protocols can transparently support conservative execution of submodels on potentially different processors. A specific implementation of this approach, U.P.S. (Utilitarian Parallel Simulator), is described, along with performance results on the Intel Paragon.

  1. Using all of your CPU's in HIPE

    NASA Astrophysics Data System (ADS)

    Jacobson, J. D.; Fadda, D.

    2012-09-01

    Modern computer architectures increasingly feature multi-core CPU's. For example, the MacbookPro features the Intel quad-core i7 processors. Through the use of hyper-threading, where each core can execute two threads simultaneously, the quad-core i7 can support eight simultaneous processing threads. All this on your laptop! This CPU power can now be put into service by scientists to perform data reduction tasks, but only if the software has been designed to take advantage of the multiple processor architectures. Up to now, software written for Herschel data reduction (HIPE), written in Jython and JAVA, is single-threaded and can only utilize a single processor. Users of HIPE do not get any advantage from the additional processors. Why not put all of the CPU resources to work reducing your data? We present a multi-threaded software application that corrects long-term transients in the signal from the PACS unchopped spectroscopy line scan mode. In this poster, we present a multi-threaded software framework to achieve performance improvements from parallel execution. We will show how a task to correct transients in the PACS Spectroscopy Pipeline for the un-chopped line scan mode, has been threaded. This computation-intensive task uses either a one-parameter or a three parameter exponential function, to characterize the transient. The task uses a JAVA implementation of Minpack, translated from the C (Moshier) and IDL (Markwardt) by the authors, to optimize the correction parameters. We also explain how to determine if a task can benefit from threading (Amdahl's Law), and if it is safe to thread. The design and implementation, using the JAVA concurrency package completions service is described. Pitfalls, timing bugs, thread safety, resource control, testing and performance improvements are described and plotted.

  2. Extreme Scale Plasma Turbulence Simulations on Top Supercomputers Worldwide

    DOE PAGES

    Tang, William; Wang, Bei; Ethier, Stephane; ...

    2016-11-01

    The goal of the extreme scale plasma turbulence studies described in this paper is to expedite the delivery of reliable predictions on confinement physics in large magnetic fusion systems by using world-class supercomputers to carry out simulations with unprecedented resolution and temporal duration. This has involved architecture-dependent optimizations of performance scaling and addressing code portability and energy issues, with the metrics for multi-platform comparisons being 'time-to-solution' and 'energy-to-solution'. Realistic results addressing how confinement losses caused by plasma turbulence scale from present-day devices to the much larger $25 billion international ITER fusion facility have been enabled by innovative advances in themore » GTC-P code including (i) implementation of one-sided communication from MPI 3.0 standard; (ii) creative optimization techniques on Xeon Phi processors; and (iii) development of a novel performance model for the key kernels of the PIC code. Our results show that modeling data movement is sufficient to predict performance on modern supercomputer platforms.« less

  3. Effective correlator for RadioAstron project

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  4. Optimization of the coherence function estimation for multi-core central processing unit

    NASA Astrophysics Data System (ADS)

    Cheremnov, A. G.; Faerman, V. A.; Avramchuk, V. S.

    2017-02-01

    The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

  5. GPU accelerated Monte-Carlo simulation of SEM images for metrology

    NASA Astrophysics Data System (ADS)

    Verduin, T.; Lokhorst, S. R.; Hagen, C. W.

    2016-03-01

    In this work we address the computation times of numerical studies in dimensional metrology. In particular, full Monte-Carlo simulation programs for scanning electron microscopy (SEM) image acquisition are known to be notoriously slow. Our quest in reducing the computation time of SEM image simulation has led us to investigate the use of graphics processing units (GPUs) for metrology. We have succeeded in creating a full Monte-Carlo simulation program for SEM images, which runs entirely on a GPU. The physical scattering models of this GPU simulator are identical to a previous CPU-based simulator, which includes the dielectric function model for inelastic scattering and also refinements for low-voltage SEM applications. As a case study for the performance, we considered the simulated exposure of a complex feature: an isolated silicon line with rough sidewalls located on a at silicon substrate. The surface of the rough feature is decomposed into 408 012 triangles. We have used an exposure dose of 6 mC/cm2, which corresponds to 6 553 600 primary electrons on average (Poisson distributed). We repeat the simulation for various primary electron energies, 300 eV, 500 eV, 800 eV, 1 keV, 3 keV and 5 keV. At first we run the simulation on a GeForce GTX480 from NVIDIA. The very same simulation is duplicated on our CPU-based program, for which we have used an Intel Xeon X5650. Apart from statistics in the simulation, no difference is found between the CPU and GPU simulated results. The GTX480 generates the images (depending on the primary electron energy) 350 to 425 times faster than a single threaded Intel X5650 CPU. Although this is a tremendous speedup, we actually have not reached the maximum throughput because of the limited amount of available memory on the GTX480. Nevertheless, the speedup enables the fast acquisition of simulated SEM images for metrology. We now have the potential to investigate case studies in CD-SEM metrology, which otherwise would take unreasonable amounts of computation time.

  6. Using a high-definition stereoscopic video system to teach microscopic surgery

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus; Park, Jonas Jae-Hyun; Labbé, Daniel; Westhofen, Martin

    2007-02-01

    Introduction: While there is an increasing demand for minimally invasive operative techniques in Ear, Nose and Throat surgery, these operations are difficult to learn for junior doctors and demanding to supervise for experienced surgeons. The motivation for this study was to integrate high-definition (HD) stereoscopic video monitoring in microscopic surgery in order to facilitate teaching interaction between senior and junior surgeon. Material and methods: We attached a 1280x1024 HD stereo camera (TrueVisionSystems TM Inc., Santa Barbara, CA, USA) to an operating microscope (Zeiss ProMagis, Zeiss Co., Oberkochen, Germany), whose images were processed online by a PC workstation consisting of a dual Intel® Xeon® CPU (Intel Co., Santa Clara, CA). The live image was displayed by two LCD projectors @ 1280x768 pixels on a 1,25m rear-projection screen by polarized filters. While the junior surgeon performed the surgical procedure based on the displayed stereoscopic image, all other participants (senior surgeon, nurse and medical students) shared the same stereoscopic image from the screen. Results: With the basic setup being performed only once on the day before surgery, fine adjustments required about 10 minutes extra during the operation schedule, which fitted into the time interval between patients and thus did not prolong operation times. As all relevant features of the operative field were demonstrated on one large screen, four major effects were obtained: A) Stereoscopy facilitated orientation for the junior surgeon as well as for medical students. B) The stereoscopic image served as an unequivocal guide for the senior surgeon to demonstrate the next surgical steps to the junior colleague. C) The theatre nurse shared the same image, anticipating the next instruments which were needed. D) Medical students instantly share the information given by all staff and the image, thus avoiding the need for an extra teaching session. Conclusion: High definition stereoscopy bears the potential to compress the learning curve for undergraduate as well as postgraduate medical professionals in minimally invasive surgery. Further studies will focus on the long term effect for operative training as well as on post-processing of HD stereoscopy video content for off-line interactive medical education.

  7. Cache Energy Optimization Techniques For Modern Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    2013-01-01

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In thismore » book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.« less

  8. Users manual for the Chameleon parallel programming tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, W.; Smith, B.

    1993-06-01

    Message passing is a common method for writing programs for distributed-memory parallel computers. Unfortunately, the lack of a standard for message passing has hampered the construction of portable and efficient parallel programs. In an attempt to remedy this problem, a number of groups have developed their own message-passing systems, each with its own strengths and weaknesses. Chameleon is a second-generation system of this type. Rather than replacing these existing systems, Chameleon is meant to supplement them by providing a uniform way to access many of these systems. Chameleon`s goals are to (a) be very lightweight (low over-head), (b) be highlymore » portable, and (c) help standardize program startup and the use of emerging message-passing operations such as collective operations on subsets of processors. Chameleon also provides a way to port programs written using PICL or Intel NX message passing to other systems, including collections of workstations. Chameleon is tracking the Message-Passing Interface (MPI) draft standard and will provide both an MPI implementation and an MPI transport layer. Chameleon provides support for heterogeneous computing by using p4 and PVM. Chameleon`s support for homogeneous computing includes the portable libraries p4, PICL, and PVM and vendor-specific implementation for Intel NX, IBM EUI (SP-1), and Thinking Machines CMMD (CM-5). Support for Ncube and PVM 3.x is also under development.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seyong; Kim, Jungwon; Vetter, Jeffrey S

    This paper presents a directive-based, high-level programming framework for high-performance reconfigurable computing. It takes a standard, portable OpenACC C program as input and generates a hardware configuration file for execution on FPGAs. We implemented this prototype system using our open-source OpenARC compiler; it performs source-to-source translation and optimization of the input OpenACC program into an OpenCL code, which is further compiled into a FPGA program by the backend Altera Offline OpenCL compiler. Internally, the design of OpenARC uses a high- level intermediate representation that separates concerns of program representation from underlying architectures, which facilitates portability of OpenARC. In fact, thismore » design allowed us to create the OpenACC-to-FPGA translation framework with minimal extensions to our existing system. In addition, we show that our proposed FPGA-specific compiler optimizations and novel OpenACC pragma extensions assist the compiler in generating more efficient FPGA hardware configuration files. Our empirical evaluation on an Altera Stratix V FPGA with eight OpenACC benchmarks demonstrate the benefits of our strategy. To demonstrate the portability of OpenARC, we show results for the same benchmarks executing on other heterogeneous platforms, including NVIDIA GPUs, AMD GPUs, and Intel Xeon Phis. This initial evidence helps support the goal of using a directive-based, high-level programming strategy for performance portability across heterogeneous HPC architectures.« less

  10. SeqMule: automated pipeline for analysis of human exome/genome sequencing data.

    PubMed

    Guo, Yunfei; Ding, Xiaolei; Shen, Yufeng; Lyon, Gholson J; Wang, Kai

    2015-09-18

    Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.

  11. QCD thermodynamics with two flavors at Nt=6

    NASA Astrophysics Data System (ADS)

    Bernard, Claude; Ogilvie, Michael C.; Degrand, Thomas A.; Detar, Carleton; Gottlieb, Steven; Krasnitz, Alex; Sugar, R. L.; Toussaint, D.

    1992-05-01

    The first results of numerical simulations of quantum chromodynamics on the Intel iPSC/860 parallel processor are presented. We performed calculations with two flavors of Kogut-Susskind quarks at Nt=6 with masses of 0.15T and 0.075T (0.025 and 0.0125 in lattice units) in order to locate the crossover from the low-temperature regime of ordinary hadronic matter to the high-temperature chirally symmetric regime. As with other recent two-flavor simulations, these calculations are insufficient to distinguish between a rapid crossover and a true phase transition. The phase transition is either absent or feeble at this quark mass. An improved estimate of the crossover temperature in physical units is given and results are presented for the hadronic screening lengths in both the high- and low-temperature regimes.

  12. Best kept secrets ... Source Data Systems, Inc. (SDS).

    PubMed

    Andrew, W F

    1991-03-01

    The SDS/MEDNET system is a cost-effective option for small- to medium-size hospitals (up to 400 beds). The parameter-driven system lets users control operations with only occasional SDS assistance. A full application set, available for modular selection to reduce upfront costs while facilitating steady growth and protecting client investment, is adaptable to multi-facility environments. The industry-standard, Intel-based multi-user processors, network communications and protocols assure high efficiency, low-cost solutions independent of any one hardware vendor. Sustained growth in both client base and product offerings point to a high level of responsiveness and healthcare industry commitment. Corporate emphasis on user involvement and open systems integration assures clients of leading-edge capabilities. SDS/MEDNET will be a strong contender in selected marketing environments.

  13. Compiling global name-space programs for distributed execution

    NASA Technical Reports Server (NTRS)

    Koelbel, Charles; Mehrotra, Piyush

    1990-01-01

    Distributed memory machines do not provide hardware support for a global address space. Thus programmers are forced to partition the data across the memories of the architecture and use explicit message passing to communicate data between processors. The compiler support required to allow programmers to express their algorithms using a global name-space is examined. A general method is presented for analysis of a high level source program and along with its translation to a set of independently executing tasks communicating via messages. If the compiler has enough information, this translation can be carried out at compile-time. Otherwise run-time code is generated to implement the required data movement. The analysis required in both situations is described and the performance of the generated code on the Intel iPSC/2 is presented.

  14. HANSF 1.3 Users Manual FAI/98-40-R2 Hanford Spent Nuclear Fuel (SNF) Safety Analysis Model [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN, D.R.

    The HANSF analysis tool is an integrated model considering phenomena inside a multi-canister overpack (MCO) spent nuclear fuel container such as fuel oxidation, convective and radiative heat transfer, and the potential for fission product release. This manual reflects the HANSF version 1.3.2, a revised version of 1.3.1. HANSF 1.3.2 was written to correct minor errors and to allow modeling of condensate flow on the MCO inner surface. HANSF 1.3.2 is intended for use on personal computers such as IBM-compatible machines with Intel processors running under Lahey TI or digital Visual FORTRAN, Version 6.0, but this does not preclude operation inmore » other environments.« less

  15. Evaluation of CHO Benchmarks on the Arria 10 FPGA using Intel FPGA SDK for OpenCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal

    The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. Benchmarking of OpenCL-based framework is an effective way for analyzing the performance of system by studying the execution of the benchmark applications. CHO is a suite of benchmark applications that provides support for OpenCL [1]. The authors presented CHO as an OpenCL port of the CHStone benchmark. Using Altera OpenCL (AOCL) compiler to synthesize the benchmark applications, they listed the resource usage and performance of each kernel that can be successfully synthesized by the compiler. In this report, we evaluate the resource usage and performance of the CHO benchmark applications using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board that features an Arria 10 FPGA device. The focus of the report is to have a better understanding of the resource usage and performance of the kernel implementations using Arria-10 FPGA devices compared to Stratix-5 FPGA devices. In addition, we also gain knowledge about the limitations of the current compiler when it fails to synthesize a benchmark application.« less

  16. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications

    PubMed Central

    2014-01-01

    Background The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n3) and of O(n5) order, respectively, and so, the algorithm is unaffordable for huge data sets. Results We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to reduce the costs of the communications between different memories (RAM, Cache, Mass, Virtual) and to achieve efficient I/O performance, we design a mass storage structure able to access its data with a high degree of temporal and spatial locality. Then we develop a parallel implementation of the algorithm. We model it as a SPMD system together to a Message-Passing Programming Paradigm. Here, we adopt the high-level message-passing systems MPI (Message Passing Interface) in the version for the Java programming language, MPJ. The parallel processing is organized into four stages: partitioning, communication, agglomeration and mapping. The decomposition of the U-BRAIN algorithm determines the necessity of a communication protocol design among the processors involved. Efficient synchronization design is also discussed. Conclusions In the context of a collaboration between public and private institutions, the parallel model of U-BRAIN has been implemented and tested on the INTEL XEON E7xxx and E5xxx family of the CRESCO structure of Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), developed in the framework of the European Grid Infrastructure (EGI), a series of efforts to provide access to high-throughput computing resources across Europe using grid computing techniques. The implementation is able to minimize both the memory space and the execution time. The test data used in this study are IPDATA (Irvine Primate splice- junction DATA set), a subset of HS3D (Homo Sapiens Splice Sites Dataset) and a subset of COSMIC (the Catalogue of Somatic Mutations in Cancer). The execution time and the speed-up on IPDATA reach the best values within about 90 processors. Then the parallelization advantage is balanced by the greater cost of non-local communications between the processors. A similar behaviour is evident on HS3D, but at a greater number of processors, so evidencing the direct relationship between data size and parallelization gain. This behaviour is confirmed on COSMIC. Overall, the results obtained show that the parallel version is up to 30 times faster than the serial one. PMID:25077818

  17. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications.

    PubMed

    D'Angelo, Gianni; Rampone, Salvatore

    2014-01-01

    The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n(3)) and of O(n(5)) order, respectively, and so, the algorithm is unaffordable for huge data sets. We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to reduce the costs of the communications between different memories (RAM, Cache, Mass, Virtual) and to achieve efficient I/O performance, we design a mass storage structure able to access its data with a high degree of temporal and spatial locality. Then we develop a parallel implementation of the algorithm. We model it as a SPMD system together to a Message-Passing Programming Paradigm. Here, we adopt the high-level message-passing systems MPI (Message Passing Interface) in the version for the Java programming language, MPJ. The parallel processing is organized into four stages: partitioning, communication, agglomeration and mapping. The decomposition of the U-BRAIN algorithm determines the necessity of a communication protocol design among the processors involved. Efficient synchronization design is also discussed. In the context of a collaboration between public and private institutions, the parallel model of U-BRAIN has been implemented and tested on the INTEL XEON E7xxx and E5xxx family of the CRESCO structure of Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), developed in the framework of the European Grid Infrastructure (EGI), a series of efforts to provide access to high-throughput computing resources across Europe using grid computing techniques. The implementation is able to minimize both the memory space and the execution time. The test data used in this study are IPDATA (Irvine Primate splice- junction DATA set), a subset of HS3D (Homo Sapiens Splice Sites Dataset) and a subset of COSMIC (the Catalogue of Somatic Mutations in Cancer). The execution time and the speed-up on IPDATA reach the best values within about 90 processors. Then the parallelization advantage is balanced by the greater cost of non-local communications between the processors. A similar behaviour is evident on HS3D, but at a greater number of processors, so evidencing the direct relationship between data size and parallelization gain. This behaviour is confirmed on COSMIC. Overall, the results obtained show that the parallel version is up to 30 times faster than the serial one.

  18. An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes

    DOE PAGES

    Vincenti, H.; Lobet, M.; Lehe, R.; ...

    2016-09-19

    In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (≈20pJ/word on-die to ≈10,000 pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use many-core processors on each compute nodes that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD registermore » length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering routines, among the most time consuming parts of the PIC algorithm. Our new algorithm uses a particular data structure that takes into account memory alignment constraints and avoids gather/scat;ter instructions that can significantly affect vectorization performances on current CPUs. The new algorithm was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors (AVX2-256 bits wide data registers). Results show a factor of ×2 to ×2.5 speed-up in double precision for particle shape factor of orders 1–3. The new algorithm can be applied as is on future KNL (Knights Landing) architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16 singles). Program summary Program Title: vec_deposition Program Files doi:http://dx.doi.org/10.17632/nh77fv9k8c.1 Licensing provisions: BSD 3-Clause Programming language: Fortran 90 External routines/libraries:  OpenMP > 4.0 Nature of problem: Exascale architectures will have many-core processors per node with long vector data registers capable of performing one single instruction on multiple data during one clock cycle. Data register lengths are expected to double every four years and this pushes for new portable solutions for efficiently vectorizing Particle-In-Cell codes on these future many-core architectures. One of the main hotspot routines of the PIC algorithm is the current/charge deposition for which there is no efficient and portable vector algorithm. Solution method: Here we provide an efficient and portable vector algorithm of current/charge deposition routines that uses a new data structure, which significantly reduces gather/scatter operations. Vectorization is controlled using OpenMP 4.0 compiler directives for vectorization which ensures portability across different architectures. Restrictions: Here we do not provide the full PIC algorithm with an executable but only vector routines for current/charge deposition. These scalar/vector routines can be used as library routines in your 3D Particle-In-Cell code. However, to get the best performances out of vector routines you have to satisfy the two following requirements: (1) Your code should implement particle tiling (as explained in the manuscript) to allow for maximized cache reuse and reduce memory accesses that can hinder vector performances. The routines can be used directly on each particle tile. (2) You should compile your code with a Fortran 90 compiler (e.g Intel, gnu or cray) and provide proper alignment flags and compiler alignment directives (more details in README file).« less

  19. An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, H.; Lobet, M.; Lehe, R.

    In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (≈20pJ/word on-die to ≈10,000 pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use many-core processors on each compute nodes that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD registermore » length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering routines, among the most time consuming parts of the PIC algorithm. Our new algorithm uses a particular data structure that takes into account memory alignment constraints and avoids gather/scat;ter instructions that can significantly affect vectorization performances on current CPUs. The new algorithm was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors (AVX2-256 bits wide data registers). Results show a factor of ×2 to ×2.5 speed-up in double precision for particle shape factor of orders 1–3. The new algorithm can be applied as is on future KNL (Knights Landing) architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16 singles). Program summary Program Title: vec_deposition Program Files doi:http://dx.doi.org/10.17632/nh77fv9k8c.1 Licensing provisions: BSD 3-Clause Programming language: Fortran 90 External routines/libraries:  OpenMP > 4.0 Nature of problem: Exascale architectures will have many-core processors per node with long vector data registers capable of performing one single instruction on multiple data during one clock cycle. Data register lengths are expected to double every four years and this pushes for new portable solutions for efficiently vectorizing Particle-In-Cell codes on these future many-core architectures. One of the main hotspot routines of the PIC algorithm is the current/charge deposition for which there is no efficient and portable vector algorithm. Solution method: Here we provide an efficient and portable vector algorithm of current/charge deposition routines that uses a new data structure, which significantly reduces gather/scatter operations. Vectorization is controlled using OpenMP 4.0 compiler directives for vectorization which ensures portability across different architectures. Restrictions: Here we do not provide the full PIC algorithm with an executable but only vector routines for current/charge deposition. These scalar/vector routines can be used as library routines in your 3D Particle-In-Cell code. However, to get the best performances out of vector routines you have to satisfy the two following requirements: (1) Your code should implement particle tiling (as explained in the manuscript) to allow for maximized cache reuse and reduce memory accesses that can hinder vector performances. The routines can be used directly on each particle tile. (2) You should compile your code with a Fortran 90 compiler (e.g Intel, gnu or cray) and provide proper alignment flags and compiler alignment directives (more details in README file).« less

  20. Global fully kinetic models of planetary magnetospheres with iPic3D

    NASA Astrophysics Data System (ADS)

    Gonzalez, D.; Sanna, L.; Amaya, J.; Zitz, A.; Lembege, B.; Markidis, S.; Schriver, D.; Walker, R. J.; Berchem, J.; Peng, I. B.; Travnicek, P. M.; Lapenta, G.

    2016-12-01

    We report on the latest developments of our approach to model planetary magnetospheres, mini magnetospheres and the Earth's magnetosphere with the fully kinetic, electromagnetic particle in cell code iPic3D. The code treats electrons and multiple species of ions as full kinetic particles. We review: 1) Why a fully kinetic model and in particular why kinetic electrons are needed for capturing some of the most important aspects of the physics processes of planetary magnetospheres. 2) Why the energy conserving implicit method (ECIM) in its newest implementation [1] is the right approach to reach this goal. We consider the different electron scales and study how the new IECIM can be tuned to resolve only the electron scales of interest while averaging over the unresolved scales preserving their contribution to the evolution. 3) How with modern computing planetary magnetospheres, mini magnetosphere and eventually Earth's magnetosphere can be modeled with fully kinetic electrons. The path from petascale to exascale for iPiC3D is outlined based on the DEEP-ER project [2], using dynamic allocation of different processor architectures (Xeon and Xeon Phi) and innovative I/O technologies.Specifically results from models of Mercury are presented and compared with MESSENGER observations and with previous hybrid (fluid electrons and kinetic ions) simulations. The plasma convection around the planets includes the development of hydrodynamic instabilities at the flanks, the presence of the collisionless shocks, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. Given the full kinetic nature of our approach we focus on detailed particle dynamics and distribution at locations that can be used for comparison with satellite data. [1] Lapenta, G. (2016). Exactly Energy Conserving Implicit Moment Particle in Cell Formulation. arXiv preprint arXiv:1602.06326.[2] www.deep-er.eu

  1. A distributed microcomputer-controlled system for data acquisition and power spectral analysis of EEG.

    PubMed

    Vo, T D; Dwyer, G; Szeto, H H

    1986-04-01

    A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.

  2. A comparative study of serial and parallel aeroelastic computations of wings

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.

    1994-01-01

    A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.

  3. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    PubMed

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  4. Instrumentation, performance visualization, and debugging tools for multiprocessors

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.

    1991-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.

  5. High Performance Distributed Computing in a Supercomputer Environment: Computational Services and Applications Issues

    NASA Technical Reports Server (NTRS)

    Kramer, Williams T. C.; Simon, Horst D.

    1994-01-01

    This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.

  6. A customizable system for real-time image processing using the Blackfin DSProcessor and the MicroC/OS-II real-time kernel

    NASA Astrophysics Data System (ADS)

    Coffey, Stephen; Connell, Joseph

    2005-06-01

    This paper presents a development platform for real-time image processing based on the ADSP-BF533 Blackfin processor and the MicroC/OS-II real-time operating system (RTOS). MicroC/OS-II is a completely portable, ROMable, pre-emptive, real-time kernel. The Blackfin Digital Signal Processors (DSPs), incorporating the Analog Devices/Intel Micro Signal Architecture (MSA), are a broad family of 16-bit fixed-point products with a dual Multiply Accumulate (MAC) core. In addition, they have a rich instruction set with variable instruction length and both DSP and MCU functionality thus making them ideal for media based applications. Using the MicroC/OS-II for task scheduling and management, the proposed system can capture and process raw RGB data from any standard 8-bit greyscale image sensor in soft real-time and then display the processed result using a simple PC graphical user interface (GUI). Additionally, the GUI allows configuration of the image capture rate and the system and core DSP clock rates thereby allowing connectivity to a selection of image sensors and memory devices. The GUI also allows selection from a set of image processing algorithms based in the embedded operating system.

  7. A compositional reservoir simulator on distributed memory parallel computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rame, M.; Delshad, M.

    1995-12-31

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. Amore » portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.« less

  8. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  9. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE PAGES

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    2016-03-24

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  10. BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences

    NASA Astrophysics Data System (ADS)

    Kose, Ryoichi; Kose, Katsumi

    2017-08-01

    A magnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was developed to run according to pulse sequences used in experiments. Experiments and simulations were performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences, namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be reproduced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI research and development.

  11. Graphics processing unit accelerated phase field dislocation dynamics: Application to bi-metallic interfaces

    DOE PAGES

    Eghtesad, Adnan; Germaschewski, Kai; Beyerlein, Irene J.; ...

    2017-10-14

    We present the first high-performance computing implementation of the meso-scale phase field dislocation dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes advantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to CUDA functions are replaced with the OPENACC data regions for a host central processingmore » unit (CPU) and device (GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu–Ni) interface. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4 @ 2.20 GHz version of the code.« less

  12. Graphics processing unit accelerated phase field dislocation dynamics: Application to bi-metallic interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eghtesad, Adnan; Germaschewski, Kai; Beyerlein, Irene J.

    We present the first high-performance computing implementation of the meso-scale phase field dislocation dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes advantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to CUDA functions are replaced with the OPENACC data regions for a host central processingmore » unit (CPU) and device (GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu–Ni) interface. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4 @ 2.20 GHz version of the code.« less

  13. Locality Aware Concurrent Start for Stencil Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Sunil; Gao, Guang R.; Manzano Franco, Joseph B.

    Stencil computations are at the heart of many physical simulations used in scientific codes. Thus, there exists a plethora of optimization efforts for this family of computations. Among these techniques, tiling techniques that allow concurrent start have proven to be very efficient in providing better performance for these critical kernels. Nevertheless, with many core designs being the norm, these optimization techniques might not be able to fully exploit locality (both spatial and temporal) on multiple levels of the memory hierarchy without compromising parallelism. It is no longer true that the machine can be seen as a homogeneous collection of nodesmore » with caches, main memory and an interconnect network. New architectural designs exhibit complex grouping of nodes, cores, threads, caches and memory connected by an ever evolving network-on-chip design. These new designs may benefit greatly from carefully crafted schedules and groupings that encourage parallel actors (i.e. threads, cores or nodes) to be aware of the computational history of other actors in close proximity. In this paper, we provide an efficient tiling technique that allows hierarchical concurrent start for memory hierarchy aware tile groups. Each execution schedule and tile shape exploit the available parallelism, load balance and locality present in the given applications. We demonstrate our technique on the Intel Xeon Phi architecture with selected and representative stencil kernels. We show improvement ranging from 5.58% to 31.17% over existing state-of-the-art techniques.« less

  14. 75 FR 21353 - Intel Corporation, Fab 20 Division, Including On-Site Leased Workers From Volt Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,642] Intel Corporation, Fab 20... of Intel Corporation, Fab 20 Division, including on-site leased workers of Volt Technical Resources... Precision, Inc. were employed on-site at the Hillsboro, Oregon location of Intel Corporation, Fab 20...

  15. Using the Intel Math Kernel Library on Peregrine | High-Performance

    Science.gov Websites

    Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier

  16. Enhanced tactical radar correlator (ETRAC): true interoperability of the 1990s

    NASA Astrophysics Data System (ADS)

    Guillen, Frank J.

    1994-10-01

    The enhanced tactical radar correlator (ETRAC) system is under development at Westinghouse Electric Corporation for the Army Space Program Office (ASPO). ETRAC is a real-time synthetic aperture radar (SAR) processing system that provides tactical IMINT to the corps commander. It features an open architecture comprised of ruggedized commercial-off-the-shelf (COTS), UNIX based workstations and processors. The architecture features the DoD common SAR processor (CSP), a multisensor computing platform to accommodate a variety of current and future imaging needs. ETRAC's principal functions include: (1) Mission planning and control -- ETRAC provides mission planning and control for the U-2R and ASARS-2 sensor, including capability for auto replanning, retasking, and immediate spot. (2) Image formation -- the image formation processor (IFP) provides the CPU intensive processing capability to produce real-time imagery for all ASARS imaging modes of operation. (3) Image exploitation -- two exploitation workstations are provided for first-phase image exploitation, manipulation, and annotation. Products include INTEL reports, annotated NITF SID imagery, high resolution hard copy prints and targeting data. ETRAC is transportable via two C-130 aircraft, with autonomous drive on/off capability for high mobility. Other autonomous capabilities include rapid setup/tear down, extended stand-alone support, internal environmental control units (ECUs) and power generation. ETRAC's mission is to provide the Army field commander with accurate, reliable, and timely imagery intelligence derived from collections made by the ASARS-2 sensor, located on-board the U-2R aircraft. To accomplish this mission, ETRAC receives video phase history (VPH) directly from the U-2R aircraft and converts it in real time into soft copy imagery for immediate exploitation and dissemination to the tactical users.

  17. Coding for parallel execution of hardware-in-the-loop millimeter-wave scene generation models on multicore SIMD processor architectures

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2013-05-01

    Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSIX threads built on vector library functions and more portable, highlevel parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.

  18. N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Yoshikawa, Kohji; Okamoto, Takashi; Nitadori, Keigo

    2012-02-01

    We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme ( Makino and Aarseth, 1992), and achieved the performance of ˜20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions ( Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme ( Nitadori et al., 2006a), and achieved ˜90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ˜ 10 5 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs ( Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.

  19. A real-time robot arm collision avoidance system

    NASA Technical Reports Server (NTRS)

    Shaffer, Clifford A.; Herb, Gregory M.

    1992-01-01

    A data structure and update algorithm are presented for a prototype real-time collision avoidance safety system simulating a multirobot workspace. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3D space into eight equal cubic octants until each octant meets some decomposition criteria. The N-objects octree, which indexes a collection of 3D primitive solids is used. These primitives make up the two (seven-degrees-of-freedom) robot arms and workspace modeled by the system. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Cycle time for interpreting current arm joint angles, updating the octree to reflect new positions, and detecting/reporting imminent collisions averages 30 ms on an Intel 80386 processor running at 20 MHz.

  20. Microcomputer control soft tube measuring-testing instrument

    NASA Astrophysics Data System (ADS)

    Zhou, Yanzhou; Jiang, Xiu-Zhen; Wang, Wen-Yi

    1993-09-01

    Soft tube are key and easily spoiled parts used by the vehicles in the transportation with large numbers. Measuring and testing of the tubes were made by hands for a long time. Cooperating with Harbin Railway Bureau recently we have developed a new kind of automatical measuring and testing instrument In the paper the instrument structure property and measuring principle are presented in details. Centre of the system is a singlechip processor INTEL 80C31 . It can collect deal with data and display the results on LED. Furthermore it brings electromagnetic valves and motors under control. Five soft tubes are measured and tested in the same time all the process is finished automatically. On the hardware and software counter-electromagnetic disturbance methods is adopted efficiently so the performance of the instrument is improved significantly. In the long run the instrument is reliable and practical It solves a quite difficult problem in the railway transportation.

  1. Fabrication of Circuit QED Quantum Processors, Part 2: Advanced Semiconductor Manufacturing Perspectives

    NASA Astrophysics Data System (ADS)

    Michalak, D. J.; Bruno, A.; Caudillo, R.; Elsherbini, A. A.; Falcon, J. A.; Nam, Y. S.; Poletto, S.; Roberts, J.; Thomas, N. K.; Yoscovits, Z. R.; Dicarlo, L.; Clarke, J. S.

    Experimental quantum computing is rapidly approaching the integration of sufficient numbers of quantum bits for interesting applications, but many challenges still remain. These challenges include: realization of an extensible design for large array scale up, sufficient material process control, and discovery of integration schemes compatible with industrial 300 mm fabrication. We present recent developments in extensible circuits with vertical delivery. Toward the goal of developing a high-volume manufacturing process, we will present recent results on a new Josephson junction process that is compatible with current tooling. We will then present the improvements in NbTiN material uniformity that typical 300 mm fabrication tooling can provide. While initial results on few-qubit systems are encouraging, advanced processing control is expected to deliver the improvements in qubit uniformity, coherence time, and control required for larger systems. Research funded by Intel Corporation.

  2. Automatic generation of efficient array redistribution routines for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Ramaswamy, Shankar; Banerjee, Prithviraj

    1994-01-01

    Appropriate data distribution has been found to be critical for obtaining good performance on Distributed Memory Multicomputers like the CM-5, Intel Paragon and IBM SP-1. It has also been found that some programs need to change their distributions during execution for better performance (redistribution). This work focuses on automatically generating efficient routines for redistribution. We present a new mathematical representation for regular distributions called PITFALLS and then discuss algorithms for redistribution based on this representation. One of the significant contributions of this work is being able to handle arbitrary source and target processor sets while performing redistribution. Another important contribution is the ability to handle an arbitrary number of dimensions for the array involved in the redistribution in a scalable manner. Our implementation of these techniques is based on an MPI-like communication library. The results presented show the low overheads for our redistribution algorithm as compared to naive runtime methods.

  3. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    NASA Technical Reports Server (NTRS)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  4. Analysis OpenMP performance of AMD and Intel architecture for breaking waves simulation using MPS

    NASA Astrophysics Data System (ADS)

    Alamsyah, M. N. A.; Utomo, A.; Gunawan, P. H.

    2018-03-01

    Simulation of breaking waves by using Navier-Stokes equation via moving particle semi-implicit method (MPS) over close domain is given. The results show the parallel computing on multicore architecture using OpenMP platform can reduce the computational time almost half of the serial time. Here, the comparison using two computer architectures (AMD and Intel) are performed. The results using Intel architecture is shown better than AMD architecture in CPU time. However, in efficiency, the computer with AMD architecture gives slightly higher than the Intel. For the simulation by 1512 number of particles, the CPU time using Intel and AMD are 12662.47 and 28282.30 respectively. Moreover, the efficiency using similar number of particles, AMD obtains 50.09 % and Intel up to 49.42 %.

  5. Requirements for benchmarking personal image retrieval systems

    NASA Astrophysics Data System (ADS)

    Bouguet, Jean-Yves; Dulong, Carole; Kozintsev, Igor; Wu, Yi

    2006-01-01

    It is now common to have accumulated tens of thousands of personal ictures. Efficient access to that many pictures can only be done with a robust image retrieval system. This application is of high interest to Intel processor architects. It is highly compute intensive, and could motivate end users to upgrade their personal computers to the next generations of processors. A key question is how to assess the robustness of a personal image retrieval system. Personal image databases are very different from digital libraries that have been used by many Content Based Image Retrieval Systems.1 For example a personal image database has a lot of pictures of people, but a small set of different people typically family, relatives, and friends. Pictures are taken in a limited set of places like home, work, school, and vacation destination. The most frequent queries are searched for people, and for places. These attributes, and many others affect how a personal image retrieval system should be benchmarked, and benchmarks need to be different from existing ones based on art images, or medical images for examples. The attributes of the data set do not change the list of components needed for the benchmarking of such systems as specified in2: - data sets - query tasks - ground truth - evaluation measures - benchmarking events. This paper proposed a way to build these components to be representative of personal image databases, and of the corresponding usage models.

  6. A communication-avoiding, hybrid-parallel, rank-revealing orthogonalization method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoemmen, Mark

    2010-11-01

    Orthogonalization consumes much of the run time of many iterative methods for solving sparse linear systems and eigenvalue problems. Commonly used algorithms, such as variants of Gram-Schmidt or Householder QR, have performance dominated by communication. Here, 'communication' includes both data movement between the CPU and memory, and messages between processors in parallel. Our Tall Skinny QR (TSQR) family of algorithms requires asymptotically fewer messages between processors and data movement between CPU and memory than typical orthogonalization methods, yet achieves the same accuracy as Householder QR factorization. Furthermore, in block orthogonalizations, TSQR is faster and more accurate than existing approaches formore » orthogonalizing the vectors within each block ('normalization'). TSQR's rank-revealing capability also makes it useful for detecting deflation in block iterative methods, for which existing approaches sacrifice performance, accuracy, or both. We have implemented a version of TSQR that exploits both distributed-memory and shared-memory parallelism, and supports real and complex arithmetic. Our implementation is optimized for the case of orthogonalizing a small number (5-20) of very long vectors. The shared-memory parallel component uses Intel's Threading Building Blocks, though its modular design supports other shared-memory programming models as well, including computation on the GPU. Our implementation achieves speedups of 2 times or more over competing orthogonalizations. It is available now in the development branch of the Trilinos software package, and will be included in the 10.8 release.« less

  7. Balancing Contention and Synchronization on the Intel Paragon

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Nicol, David M.

    1996-01-01

    The Intel Paragon is a mesh-connected distributed memory parallel computer. It uses an oblivious and deterministic message routing algorithm: this permits us to develop highly optimized schedules for frequently needed communication patterns. The complete exchange is one such pattern. Several approaches are available for carrying it out on the mesh. We study an algorithm developed by Scott. This algorithm assumes that a communication link can carry one message at a time and that a node can only transmit one message at a time. It requires global synchronization to enforce a schedule of transmissions. Unfortunately global synchronization has substantial overhead on the Paragon. At the same time the powerful interconnection mechanism of this machine permits 2 or 3 messages to share a communication link with minor overhead. It can also overlap multiple message transmission from the same node to some extent. We develop a generalization of Scott's algorithm that executes complete exchange with a prescribed contention. Schedules that incur greater contention require fewer synchronization steps. This permits us to tradeoff contention against synchronization overhead. We describe the performance of this algorithm and compare it with Scott's original algorithm as well as with a naive algorithm that does not take interconnection structure into account. The Bounded contention algorithm is always better than Scott's algorithm and outperforms the naive algorithm for all but the smallest message sizes. The naive algorithm fails to work on meshes larger than 12 x 12. These results show that due consideration of processor interconnect and machine performance parameters is necessary to obtain peak performance from the Paragon and its successor mesh machines.

  8. Intel NX to PVM 3.2 message passing conversion library

    NASA Technical Reports Server (NTRS)

    Arthur, Trey; Nelson, Michael L.

    1993-01-01

    NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.

  9. Real-time estimation of lesion depth and control of radiofrequency ablation within ex vivo animal tissues using a neural network.

    PubMed

    Wang, Yearnchee Curtis; Chan, Terence Chee-Hung; Sahakian, Alan Varteres

    2018-01-04

    Radiofrequency ablation (RFA), a method of inducing thermal ablation (cell death), is often used to destroy tumours or potentially cancerous tissue. Current techniques for RFA estimation (electrical impedance tomography, Nakagami ultrasound, etc.) require long compute times (≥ 2 s) and measurement devices other than the RFA device. This study aims to determine if a neural network (NN) can estimate ablation lesion depth for control of bipolar RFA using complex electrical impedance - since tissue electrical conductivity varies as a function of tissue temperature - in real time using only the RFA therapy device's electrodes. Three-dimensional, cubic models comprised of beef liver, pork loin or pork belly represented target tissue. Temperature and complex electrical impedance from 72 data generation ablations in pork loin and belly were used for training the NN (403 s on Xeon processor). NN inputs were inquiry depth, starting complex impedance and current complex impedance. Training-validation-test splits were 70%-0%-30% and 80%-10%-10% (overfit test). Once the NN-estimated lesion depth for a margin reached the target lesion depth, RFA was stopped for that margin of tissue. The NN trained to 93% accuracy and an NN-integrated control ablated tissue to within 1.0 mm of the target lesion depth on average. Full 15-mm depth maps were calculated in 0.2 s on a single-core ARMv7 processor. The results show that a NN could make lesion depth estimations in real-time using less in situ devices than current techniques. With the NN-based technique, physicians could deliver quicker and more precise ablation therapy.

  10. An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes

    NASA Astrophysics Data System (ADS)

    Vincenti, H.; Lobet, M.; Lehe, R.; Sasanka, R.; Vay, J.-L.

    2017-01-01

    In current computer architectures, data movement (from die to network) is by far the most energy consuming part of an algorithm (≈ 20 pJ/word on-die to ≈10,000 pJ/word on the network). To increase memory locality at the hardware level and reduce energy consumption related to data movement, future exascale computers tend to use many-core processors on each compute nodes that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. As a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient and portable SIMD vectorization of current/charge deposition routines that are, along with the field gathering routines, among the most time consuming parts of the PIC algorithm. Our new algorithm uses a particular data structure that takes into account memory alignment constraints and avoids gather/scatter instructions that can significantly affect vectorization performances on current CPUs. The new algorithm was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors (AVX2-256 bits wide data registers). Results show a factor of × 2 to × 2.5 speed-up in double precision for particle shape factor of orders 1- 3. The new algorithm can be applied as is on future KNL (Knights Landing) architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16 singles).

  11. Spherical demons: fast diffeomorphic landmark-free surface registration.

    PubMed

    Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2010-03-01

    We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.

  12. Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration

    PubMed Central

    Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2010-01-01

    We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963

  13. Comparison of Monte Carlo simulated and measured performance parameters of miniPET scanner

    NASA Astrophysics Data System (ADS)

    Kis, S. A.; Emri, M.; Opposits, G.; Bükki, T.; Valastyán, I.; Hegyesi, Gy.; Imrek, J.; Kalinka, G.; Molnár, J.; Novák, D.; Végh, J.; Kerek, A.; Trón, L.; Balkay, L.

    2007-02-01

    In vivo imaging of small laboratory animals is a valuable tool in the development of new drugs. For this purpose, miniPET, an easy to scale modular small animal PET camera has been developed at our institutes. The system has four modules, which makes it possible to rotate the whole detector system around the axis of the field of view. Data collection and image reconstruction are performed using a data acquisition (DAQ) module with Ethernet communication facility and a computer cluster of commercial PCs. Performance tests were carried out to determine system parameters, such as energy resolution, sensitivity and noise equivalent count rate. A modified GEANT4-based GATE Monte Carlo software package was used to simulate PET data analogous to those of the performance measurements. GATE was run on a Linux cluster of 10 processors (64 bit, Xeon with 3.0 GHz) and controlled by a SUN grid engine. The application of this special computer cluster reduced the time necessary for the simulations by an order of magnitude. The simulated energy spectra, maximum rate of true coincidences and sensitivity of the camera were in good agreement with the measured parameters.

  14. Heterogeneous computing architecture for fast detection of SNP-SNP interactions.

    PubMed

    Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros

    2014-06-25

    The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.

  15. Heterogeneous computing architecture for fast detection of SNP-SNP interactions

    PubMed Central

    2014-01-01

    Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802

  16. A real-time coherent dedispersion pipeline for the giant metrewave radio telescope

    NASA Astrophysics Data System (ADS)

    De, Kishalay; Gupta, Yashwant

    2016-02-01

    A fully real-time coherent dedispersion system has been developed for the pulsar back-end at the Giant Metrewave Radio Telescope (GMRT). The dedispersion pipeline uses the single phased array voltage beam produced by the existing GMRT software back-end (GSB) to produce coherently dedispersed intensity output in real time, for the currently operational bandwidths of 16 MHz and 32 MHz. Provision has also been made to coherently dedisperse voltage beam data from observations recorded on disk. We discuss the design and implementation of the real-time coherent dedispersion system, describing the steps carried out to optimise the performance of the pipeline. Presently functioning on an Intel Xeon X5550 CPU equipped with a NVIDIA Tesla C2075 GPU, the pipeline allows dispersion free, high time resolution data to be obtained in real-time. We illustrate the significant improvements over the existing incoherent dedispersion system at the GMRT, and present some preliminary results obtained from studies of pulsars using this system, demonstrating its potential as a useful tool for low frequency pulsar observations. We describe the salient features of our implementation, comparing it with other recently developed real-time coherent dedispersion systems. This implementation of a real-time coherent dedispersion pipeline for a large, low frequency array instrument like the GMRT, will enable long-term observing programs using coherent dedispersion to be carried out routinely at the observatory. We also outline the possible improvements for such a pipeline, including prospects for the upgraded GMRT which will have bandwidths about ten times larger than at present.

  17. SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.

    PubMed

    Liu, T; Ding, A; Xu, X

    2012-06-01

    To develop a Graphics Processing Unit (GPU) based Monte Carlo (MC) code that accelerates dose calculations on a dual-GPU system. We simulated a clinical case of prostate cancer treatment. A voxelized abdomen phantom derived from 120 CT slices was used containing 218×126×60 voxels, and a GE LightSpeed 16-MDCT scanner was modeled. A CPU version of the MC code was first developed in C++ and tested on Intel Xeon X5660 2.8GHz CPU, then it was translated into GPU version using CUDA C 4.1 and run on a dual Tesla m 2 090 GPU system. The code was featured with automatic assignment of simulation task to multiple GPUs, as well as accurate calculation of energy- and material- dependent cross-sections. Double-precision floating point format was used for accuracy. Doses to the rectum, prostate, bladder and femoral heads were calculated. When running on a single GPU, the MC GPU code was found to be ×19 times faster than the CPU code and ×42 times faster than MCNPX. These speedup factors were doubled on the dual-GPU system. The dose Result was benchmarked against MCNPX and a maximum difference of 1% was observed when the relative error is kept below 0.1%. A GPU-based MC code was developed for dose calculations using detailed patient and CT scanner models. Efficiency and accuracy were both guaranteed in this code. Scalability of the code was confirmed on the dual-GPU system. © 2012 American Association of Physicists in Medicine.

  18. Comparative Performance Analysis of Intel Xeon Phi, GPU, and CPU: A Case Study from Microscopy Image Analysis

    PubMed Central

    Teodoro, George; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel

    2014-01-01

    We study and characterize the performance of operations in an important class of applications on GPUs and Many Integrated Core (MIC) architectures. Our work is motivated by applications that analyze low-dimensional spatial datasets captured by high resolution sensors, such as image datasets obtained from whole slide tissue specimens using microscopy scanners. Common operations in these applications involve the detection and extraction of objects (object segmentation), the computation of features of each extracted object (feature computation), and characterization of objects based on these features (object classification). In this work, we have identify the data access and computation patterns of operations in the object segmentation and feature computation categories. We systematically implement and evaluate the performance of these operations on modern CPUs, GPUs, and MIC systems for a microscopy image analysis application. Our results show that the performance on a MIC of operations that perform regular data access is comparable or sometimes better than that on a GPU. On the other hand, GPUs are significantly more efficient than MICs for operations that access data irregularly. This is a result of the low performance of MICs when it comes to random data access. We also have examined the coordinated use of MICs and CPUs. Our experiments show that using a performance aware task strategy for scheduling application operations improves performance about 1.29× over a first-come-first-served strategy. This allows applications to obtain high performance efficiency on CPU-MIC systems - the example application attained an efficiency of 84% on 192 nodes (3072 CPU cores and 192 MICs). PMID:25419088

  19. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Benjamin G., E-mail: ben.levine@temple.ed; Stone, John E., E-mail: johns@ks.uiuc.ed; Kohlmeyer, Axel, E-mail: akohlmey@temple.ed

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm aremore » presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.« less

  20. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    PubMed Central

    Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  1. MC-TESTER: a universal tool for comparisons of Monte Carlo predictions for particle decays in high energy physics

    NASA Astrophysics Data System (ADS)

    Golonka, P.; Pierzchała, T.; Waş, Z.

    2004-02-01

    Theoretical predictions in high energy physics are routinely provided in the form of Monte Carlo generators. Comparisons of predictions from different programs and/or different initialization set-ups are often necessary. MC-TESTER can be used for such tests of decays of intermediate states (particles or resonances) in a semi-automated way. Our test consists of two steps. Different Monte Carlo programs are run; events with decays of a chosen particle are searched, decay trees are analyzed and appropriate information is stored. Then, at the analysis step, a list of all found decay modes is defined and branching ratios are calculated for both runs. Histograms of all scalar Lorentz-invariant masses constructed from the decay products are plotted and compared for each decay mode found in both runs. For each plot a measure of the difference of the distributions is calculated and its maximal value over all histograms for each decay channel is printed in a summary table. As an example of MC-TESTER application, we include a test with the τ lepton decay Monte Carlo generators, TAUOLA and PYTHIA. The HEPEVT (or LUJETS) common block is used as exclusive source of information on the generated events. Program summaryTitle of the program:MC-TESTER, version 1.1 Catalogue identifier: ADSM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: PC, two Intel Xeon 2.0 GHz processors, 512MB RAM Operating system: Linux Red Hat 6.1, 7.2, and also 8.0 Programming language used:C++, FORTRAN77: gcc 2.96 or 2.95.2 (also 3.2) compiler suite with g++ and g77 Size of the package: 7.3 MB directory including example programs (2 MB compressed distribution archive), without ROOT libraries (additional 43 MB). No. of bytes in distributed program, including test data, etc.: 2 024 425 Distribution format: tar gzip file Additional disk space required: Depends on the analyzed particle: 40 MB in the case of τ lepton decays (30 decay channels, 594 histograms, 82-pages booklet). Keywords: particle physics, decay simulation, Monte Carlo methods, invariant mass distributions, programs comparison Nature of the physical problem: The decays of individual particles are well defined modules of a typical Monte Carlo program chain in high energy physics. A fast, semi-automatic way of comparing results from different programs is often desirable, for the development of new programs, to check correctness of the installations or for discussion of uncertainties. Method of solution: A typical HEP Monte Carlo program stores the generated events in the event records such as HEPEVT or PYJETS. MC-TESTER scans, event by event, the contents of the record and searches for the decays of the particle under study. The list of the found decay modes is successively incremented and histograms of all invariant masses which can be calculated from the momenta of the particle decay products are defined and filled. The outputs from the two runs of distinct programs can be later compared. A booklet of comparisons is created: for every decay channel, all histograms present in the two outputs are plotted and parameter quantifying shape difference is calculated. Its maximum over every decay channel is printed in the summary table. Restrictions on the complexity of the problem: For a list of limitations see Section 6. Typical running time: Varies substantially with the analyzed decay particle. On a PC/Linux with 2.0 GHz processors MC-TESTER increases the run time of the τ-lepton Monte Carlo program TAUOLA by 4.0 seconds for every 100 000 analyzed events (generation itself takes 26 seconds). The analysis step takes 13 seconds; ? processing takes additionally 10 seconds. Generation step runs may be executed simultaneously on multi-processor machines. Accessibility: web page: http://cern.ch/Piotr.Golonka/MC/MC-TESTER e-mails: Piotr.Golonka@CERN.CH, T.Pierzchala@friend.phys.us.edu.pl, Zbigniew.Was@CERN.CH.

  2. Many-core computing for space-based stereoscopic imaging

    NASA Astrophysics Data System (ADS)

    McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry

    The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.

  3. Real-time SHVC software decoding with multi-threaded parallel processing

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu

    2014-09-01

    This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.

  4. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.; Hammond, Glenn E.; Lu, Chuan

    PFLOTRAN solves a system of generally nonlinear partial differential equations describing multi-phase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Parallelization is achieved through domain decomposition using the PETSc (Portable Extensible Toolkit for Scientific Computation) libraries for the parallelization framework (Balay et al., 1997). PFLOTRAN has been developed from the ground up for parallel scalability and has been run on up to 218 processor cores with problem sizes up to 2 billion degrees of freedom. Writtenmore » in object oriented Fortran 90, the code requires the latest compilers compatible with Fortran 2003. At the time of this writing this requires gcc 4.7.x, Intel 12.1.x and PGC compilers. As a requirement of running problems with a large number of degrees of freedom, PFLOTRAN allows reading input data that is too large to fit into memory allotted to a single processor core. The current limitation to the problem size PFLOTRAN can handle is the limitation of the HDF5 file format used for parallel IO to 32 bit integers. Noting that 2 32 = 4; 294; 967; 296, this gives an estimate of the maximum problem size that can be currently run with PFLOTRAN. Hopefully this limitation will be remedied in the near future.« less

  5. batman: BAsic Transit Model cAlculatioN in Python

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .

  6. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration.

    PubMed

    Sharp, G C; Kandasamy, N; Singh, H; Folkert, M

    2007-10-07

    This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.

  7. SeqBox: RNAseq/ChIPseq reproducible analysis on a consumer game computer.

    PubMed

    Beccuti, Marco; Cordero, Francesca; Arigoni, Maddalena; Panero, Riccardo; Amparore, Elvio G; Donatelli, Susanna; Calogero, Raffaele A

    2018-03-01

    Short reads sequencing technology has been used for more than a decade now. However, the analysis of RNAseq and ChIPseq data is still computational demanding and the simple access to raw data does not guarantee results reproducibility between laboratories. To address these two aspects, we developed SeqBox, a cheap, efficient and reproducible RNAseq/ChIPseq hardware/software solution based on NUC6I7KYK mini-PC (an Intel consumer game computer with a fast processor and a high performance SSD disk), and Docker container platform. In SeqBox the analysis of RNAseq and ChIPseq data is supported by a friendly GUI. This allows access to fast and reproducible analysis also to scientists with/without scripting experience. Docker container images, docker4seq package and the GUI are available at http://www.bioinformatica.unito.it/reproducibile.bioinformatics.html. beccuti@di.unito.it. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  8. MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters.

    PubMed

    Gonzalez-Dominguez, Jorge; Martin, Maria J

    2017-10-10

    In this work we present MPIGeneNet, a parallel tool that applies Pearson's correlation and Random Matrix Theory to construct gene co-expression networks. It is based on the state-of-the-art sequential tool RMTGeneNet, which provides networks with high robustness and sensitivity at the expenses of relatively long runtimes for large scale input datasets. MPIGeneNet returns the same results as RMTGeneNet but improves the memory management, reduces the I/O cost, and accelerates the two most computationally demanding steps of co-expression network construction by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on two different systems using three typical input datasets shows that MPIGeneNet is significantly faster than RMTGeneNet. As an example, our tool is up to 175.41 times faster on a cluster with eight nodes, each one containing two 12-core Intel Haswell processors. Source code of MPIGeneNet, as well as a reference manual, are available at https://sourceforge.net/projects/mpigenenet/.

  9. Fabrication of Circuit QED Quantum Processors, Part 1: Extensible Footprint for a Superconducting Surface Code

    NASA Astrophysics Data System (ADS)

    Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.

    Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.

  10. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  11. Parallelized reliability estimation of reconfigurable computer networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Das, Subhendu; Palumbo, Dan

    1990-01-01

    A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance.

  12. New On-board Microprocessors

    NASA Astrophysics Data System (ADS)

    Weigand, R.

    Two new processor devices have been developed for the use on board of spacecrafts. An 8-bit 8032-microcontroller targets typical controlling applications in instruments and sub-systems, or could be used as a main processor on small satellites, whereas the LEON 32-bit SPARC processor can be used for high performance controlling and data processing tasks. The ADV80S32 is fully compliant to the Intel 80x1 architecture and instruction set, extended by additional peripherals, 512 bytes on-chip RAM and a bootstrap PROM, which allows downloading the application software using the CCSDS PacketWire pro- tocol. The memory controller provides a de-multiplexed address/data bus, and allows to access up to 16 MB data and 8 MB program RAM. The peripherals have been de- signed for the specific needs of a spacecraft, such as serial interfaces compatible to RS232, PacketWire and TTC-B-01, counters/timers for extended duration and a CRC calculation unit accelerating the CCSDS TM/TC protocol. The 0.5 um Atmel manu- facturing technology (MG2RT) provides latch-up and total dose immunity; SEU fault immunity is implemented by using SEU hardened Flip-Flops and EDAC protection of internal and external memories. The maximum clock frequency of 20 MHz allows a processing power of 3 MIPS. Engineering samples are available. For SW develop- ment, various SW packages for the 8051 architecture are on the market. The LEON processor implements a 32-bit SPARC V8 architecture, including all the multiply and divide instructions, complemented by a floating-point unit (FPU). It includes several standard peripherals, such as timers/watchdog, interrupt controller, UARTs, parallel I/Os and a memory controller, allowing to use 8, 16 and 32 bit PROM, SRAM or memory mapped I/O. With on-chip separate instruction and data caches, almost one instruction per clock cycle can be reached in some applications. A 33-MHz 32-bit PCI master/target interface and a PCI arbiter allow operating the device in a plug-in card (for SW development on PC etc.), or to consider using it as a PCI master controller in an on-board system. Advanced SEU fault tolerance is in- troduced by design, using triple modular redundancy (TMR) flip-flops for all registers and EDAC protection for all memories. The device will be manufactured in a radia- tion hard Atmel 0.25 um technology, targeting 100 MHz processor clock frequency. The non fault-tolerant LEON processor VHDL model is available as free source code, and the SPARC architecture is a well-known industry standard. Therefore, know-how, software tools and operating systems are widely available.

  13. Intel Teach to the Future: A Partnership for Professional Development.

    ERIC Educational Resources Information Center

    Metcalf, Teri; Jolly, Deborah

    This paper describes a public/private partnership program designed to provide staff development to help classroom teachers integrate technology in the curriculum by using the train-the-trainer model. The Intel[R] Teach to the Future Project was developed by Intel[R] in collaboration with other public and private sector partners, and has been…

  14. Transformation of two and three-dimensional regions by elliptic systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1994-01-01

    Several reports are attached to this document which contain the results of our research at the end of this contract period. Three of the reports deal with our work on generating surface grids. One is a preprint of a paper which will appear in the journal Applied Mathematics and Computation. Another is the abstract from a dissertation which has been prepared by Ahmed Khamayseh, a graduate student who has been supported by this grant for the last two years. The last report on surface grids is the extended abstract of a paper to be presented at the 14th IMACS World Congress in July. This report contains results on conformal mappings of surfaces, which are closely related to elliptic methods for surface grid generation. A preliminary report is included on new methods for dealing with block interfaces in multiblock grid systems. The development work is complete and the methods will eventually be incorporated into the National Grid Project (NGP) grid generation code. Thus, the attached report contains only a simple grid system which was used to test the algorithms to prove that the concepts are sound. These developments will greatly aid grid control when using elliptic systems and prevent unwanted grid movement. The last report is a brief summary of some timings that were obtained when the multiblock grid generation code was run on the Intel IPSC/860 hypercube. Since most of the data in a grid code is local to a particular block, only a small fraction of the total data must be passed between processors. The data is also distributed among the processors so that the total size of the grid can be increase along with the number of processors. This work is only in a preliminary stage. However, one of the ERC graduate students has taken an interest in the project and is presently extending these results as a part of his master's thesis.

  15. Phantom-GRAPE: Numerical software library to accelerate collisionless N-body simulation with SIMD instruction set on x86 architecture

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Yoshikawa, Kohji; Nitadori, Keigo; Okamoto, Takashi

    2013-02-01

    We have developed a numerical software library for collisionless N-body simulations named "Phantom-GRAPE" which highly accelerates force calculations among particles by use of a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). In our library, not only the Newton's forces, but also central forces with an arbitrary shape f(r), which has a finite cutoff radius rcut (i.e. f(r)=0 at r>rcut), can be quickly computed. In computing such central forces with an arbitrary force shape f(r), we refer to a pre-calculated look-up table. We also present a new scheme to create the look-up table whose binning is optimal to keep good accuracy in computing forces and whose size is small enough to avoid cache misses. Using an Intel Core i7-2600 processor, we measure the performance of our library for both of the Newton's forces and the arbitrarily shaped central forces. In the case of Newton's forces, we achieve 2×109 interactions per second with one processor core (or 75 GFLOPS if we count 38 operations per interaction), which is 20 times higher than the performance of an implementation without any explicit use of SIMD instructions, and 2 times than that with the SSE instructions. With four processor cores, we obtain the performance of 8×109 interactions per second (or 300 GFLOPS). In the case of the arbitrarily shaped central forces, we can calculate 1×109 and 4×109 interactions per second with one and four processor cores, respectively. The performance with one processor core is 6 times and 2 times higher than those of the implementations without any use of SIMD instructions and with the SSE instructions. These performances depend only weakly on the number of particles, irrespective of the force shape. It is good contrast with the fact that the performance of force calculations accelerated by graphics processing units (GPUs) depends strongly on the number of particles. Substantially weak dependence of the performance on the number of particles is suitable to collisionless N-body simulations, since these simulations are usually performed with sophisticated N-body solvers such as Tree- and TreePM-methods combined with an individual timestep scheme. We conclude that collisionless N-body simulations accelerated with our library have significant advantage over those accelerated by GPUs, especially on massively parallel environments.

  16. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    PubMed

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  17. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies.

    PubMed

    Lin, Jonathan S; Hwang, Ken-Pin; Jackson, Edward F; Hazle, John D; Stafford, R Jason; Taylor, Brian A

    2013-10-01

    A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0.980 ± 0.004, and 0.941 ± 0.002 for DSC, sensitivity, and specificity, respectively). Temperature uncertainties, based on PRF uncertainties from a 5 × 5-voxel ROI, were 0.342 and 0.351°C for pure and mixed fat/water regions, respectively. Algorithm speed was tested using 25 × 25-voxel and whole image ROIs containing both fat and water, resulting in average processing times per acquisition of 2.00 ± 0.07 s and 146 ± 1 s, respectively, using uncompiled MATLAB scripts running on a shared CPU server with eight Intel Xeon(TM) E5640 quad-core processors (2.66 GHz, 12 MB cache) and 12 GB RAM. Results from both the mathematical and physical phantom suggest the k-means-based classification algorithm could be useful for rapid, dynamic imaging in an ROI for thermal interventions. Successful separation of fat/water information would aid in reducing errors from the nontemperature sensitive fat PRF, as well as potentially facilitate using fat as an internal reference for PRF shift thermometry when appropriate. Additionally, the T1-W or R2* signals may be used for monitoring temperature in surrounding adipose tissue.

  18. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers.

    PubMed

    Cooper, Christopher D; Bardhan, Jaydeep P; Barba, L A

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known apbs finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the apbs solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is in the order of 1-2% error, when running on one gpu card (nvidia Tesla C2075), compared with apbs running on six Intel Xeon cpu cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using gpus via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  19. An empirical comparison of several recent epistatic interaction detection methods.

    PubMed

    Wang, Yue; Liu, Guimei; Feng, Mengling; Wong, Limsoon

    2011-11-01

    Many new methods have recently been proposed for detecting epistatic interactions in GWAS data. There is, however, no in-depth independent comparison of these methods yet. Five recent methods-TEAM, BOOST, SNPHarvester, SNPRuler and Screen and Clean (SC)-are evaluated here in terms of power, type-1 error rate, scalability and completeness. In terms of power, TEAM performs best on data with main effect and BOOST performs best on data without main effect. In terms of type-1 error rate, TEAM and BOOST have higher type-1 error rates than SNPRuler and SNPHarvester. SC does not control type-1 error rate well. In terms of scalability, we tested the five methods using a dataset with 100 000 SNPs on a 64 bit Ubuntu system, with Intel (R) Xeon(R) CPU 2.66 GHz, 16 GB memory. TEAM takes ~36 days to finish and SNPRuler reports heap allocation problems. BOOST scales up to 100 000 SNPs and the cost is much lower than that of TEAM. SC and SNPHarvester are the most scalable. In terms of completeness, we study how frequently the pruning techniques employed by these methods incorrectly prune away the most significant epistatic interactions. We find that, on average, 20% of datasets without main effect and 60% of datasets with main effect are pruned incorrectly by BOOST, SNPRuler and SNPHarvester. The software for the five methods tested are available from the URLs below. TEAM: http://csbio.unc.edu/epistasis/download.php BOOST: http://ihome.ust.hk/~eeyang/papers.html. SNPHarvester: http://bioinformatics.ust.hk/SNPHarvester.html. SNPRuler: http://bioinformatics.ust.hk/SNPRuler.zip. Screen and Clean: http://wpicr.wpic.pitt.edu/WPICCompGen/. wangyue@nus.edu.sg.

  20. FPGA-based GEM detector signal acquisition for SXR spectroscopy system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Zabolotny, W.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-11-01

    The presented work is related to the Gas Electron Multiplier (GEM) detector soft X-ray spectroscopy system for tokamak applications. The used GEM detector has one-dimensional, 128 channel readout structure. The channels are connected to the radiation-hard electronics with configurable analog stage and fast ADCs, supporting speeds of 125 MSPS for each channel. The digitalized data is sent directly to the FPGAs using fast serial links. The preprocessing algorithms are implemented in the FPGAs, with the data buffering made in the on-board 2Gb DDR3 memory chips. After the algorithmic stage, the data is sent to the Intel Xeon-based PC for further postprocessing using PCI-Express link Gen 2. For connection of multiple FPGAs, PCI-Express switch 8-to-1 was designed. The whole system can support up to 2048 analog channels. The scope of the work is an FPGA-based implementation of the recorder of the raw signal from GEM detector. Since the system will work in a very challenging environment (neutron radiation, intense electro-magnetic fields), the registered signals from the GEM detector can be corrupted. In the case of the very intense hot plasma radiation (e.g. laser generated plasma), the registered signals can overlap. Therefore, it is valuable to register the raw signals from the GEM detector with high number of events during soft X-ray radiation. The signal analysis will have the direct impact on the implementation of photon energy computation algorithms. As the result, the system will produce energy spectra and topological distribution of soft X-ray radiation. The advanced software was developed in order to perform complex system startup and monitoring of hardware units. Using the array of two one-dimensional GEM detectors it will be possible to perform tomographic reconstruction of plasma impurities radiation in the SXR region.

  1. Parallel Density-Based Clustering for Discovery of Ionospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Gowanlock, M.; Blair, D. M.

    2015-12-01

    Ionospheric total electron content maps derived from global networks of dual-frequency GPS receivers can reveal a plethora of ionospheric features in real-time and are key to space weather studies and natural hazard monitoring. However, growing data volumes from expanding sensor networks are making manual exploratory studies challenging. As the community is heading towards Big Data ionospheric science, automation and Computer-Aided Discovery become indispensable tools for scientists. One problem of machine learning methods is that they require domain-specific adaptations in order to be effective and useful for scientists. Addressing this problem, our Computer-Aided Discovery approach allows scientists to express various physical models as well as perturbation ranges for parameters. The search space is explored through an automated system and parallel processing of batched workloads, which finds corresponding matches and similarities in empirical data. We discuss density-based clustering as a particular method we employ in this process. Specifically, we adapt Density-Based Spatial Clustering of Applications with Noise (DBSCAN). This algorithm groups geospatial data points based on density. Clusters of points can be of arbitrary shape, and the number of clusters is not predetermined by the algorithm; only two input parameters need to be specified: (1) a distance threshold, (2) a minimum number of points within that threshold. We discuss an implementation of DBSCAN for batched workloads that is amenable to parallelization on manycore architectures such as Intel's Xeon Phi accelerator with 60+ general-purpose cores. This manycore parallelization can cluster large volumes of ionospheric total electronic content data quickly. Potential applications for cluster detection include the visualization, tracing, and examination of traveling ionospheric disturbances or other propagating phenomena. Acknowledgments. We acknowledge support from NSF ACI-1442997 (PI V. Pankratius).

  2. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Men Chunhua; Romeijn, H. Edwin; Jia Xun

    2010-11-15

    Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less

  3. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).

    PubMed

    Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B

    2010-11-01

    To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.

  4. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Bardhan, Jaydeep P.; Barba, L. A.

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known APBS finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the APBS solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is on the order of 1-2% error, when running on one GPU card (NVIDIA Tesla C2075), compared with APBS running on six Intel Xeon CPU cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using GPUs via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  5. Comparing performance of many-core CPUs and GPUs for static and motion compensated reconstruction of C-arm CT data.

    PubMed

    Hofmann, Hannes G; Keck, Benjamin; Rohkohl, Christopher; Hornegger, Joachim

    2011-01-01

    Interventional reconstruction of 3-D volumetric data from C-arm CT projections is a computationally demanding task. Hardware optimization is not an option but mandatory for interventional image processing and, in particular, for image reconstruction due to the high demands on performance. Several groups have published fast analytical 3-D reconstruction on highly parallel hardware such as GPUs to mitigate this issue. The authors show that the performance of modern CPU-based systems is in the same order as current GPUs for static 3-D reconstruction and outperforms them for a recent motion compensated (3-D+time) image reconstruction algorithm. This work investigates two algorithms: Static 3-D reconstruction as well as a recent motion compensated algorithm. The evaluation was performed using a standardized reconstruction benchmark, RABBITCT, to get comparable results and two additional clinical data sets. The authors demonstrate for a parametric B-spline motion estimation scheme that the derivative computation, which requires many write operations to memory, performs poorly on the GPU and can highly benefit from modern CPU architectures with large caches. Moreover, on a 32-core Intel Xeon server system, the authors achieve linear scaling with the number of cores used and reconstruction times almost in the same range as current GPUs. Algorithmic innovations in the field of motion compensated image reconstruction may lead to a shift back to CPUs in the future. For analytical 3-D reconstruction, the authors show that the gap between GPUs and CPUs became smaller. It can be performed in less than 20 s (on-the-fly) using a 32-core server.

  6. ASC-ATDM Performance Portability Requirements for 2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Harold C.; Trott, Christian Robert

    This report outlines the research, development, and support requirements for the Advanced Simulation and Computing (ASC ) Advanced Technology, Development, and Mitigation (ATDM) Performance Portability (a.k.a., Kokkos) project for 2015 - 2019 . The research and development (R&D) goal for Kokkos (v2) has been to create and demonstrate a thread - parallel programming model a nd standard C++ library - based implementation that enables performance portability across diverse manycore architectures such as multicore CPU, Intel Xeon Phi, and NVIDIA Kepler GPU. This R&D goal has been achieved for algorithms that use data parallel pat terns including parallel - for, parallelmore » - reduce, and parallel - scan. Current R&D is focusing on hierarchical parallel patterns such as a directed acyclic graph (DAG) of asynchronous tasks where each task contain s nested data parallel algorithms. This five y ear plan includes R&D required to f ully and performance portably exploit thread parallelism across current and anticipated next generation platforms (NGP). The Kokkos library is being evaluated by many projects exploring algorithm s and code design for NGP. Some production libraries and applications such as Trilinos and LAMMPS have already committed to Kokkos as their foundation for manycore parallelism an d performance portability. These five year requirements includes support required for current and antic ipated ASC projects to be effective and productive in their use of Kokkos on NGP. The greatest risk to the success of Kokkos and ASC projects relying upon Kokkos is a lack of staffing resources to support Kokkos to the degree needed by these ASC projects. This support includes up - to - date tutorials, documentation, multi - platform (hardware and software stack) testing, minor feature enhancements, thread - scalable algorithm consulting, and managing collaborative R&D.« less

  7. Fast H-DROP: A thirty times accelerated version of H-DROP for interactive SVM-based prediction of helical domain linkers

    NASA Astrophysics Data System (ADS)

    Richa, Tambi; Ide, Soichiro; Suzuki, Ryosuke; Ebina, Teppei; Kuroda, Yutaka

    2017-02-01

    Efficient and rapid prediction of domain regions from amino acid sequence information alone is often required for swift structural and functional characterization of large multi-domain proteins. Here we introduce Fast H-DROP, a thirty times accelerated version of our previously reported H-DROP (Helical Domain linker pRediction using OPtimal features), which is unique in specifically predicting helical domain linkers (boundaries). Fast H-DROP, analogously to H-DROP, uses optimum features selected from a set of 3000 ones by combining a random forest and a stepwise feature selection protocol. We reduced the computational time from 8.5 min per sequence in H-DROP to 14 s per sequence in Fast H-DROP on an 8 Xeon processor Linux server by using SWISS-PROT instead of Genbank non-redundant (nr) database for generating the PSSMs. The sensitivity and precision of Fast H-DROP assessed by cross-validation were 33.7 and 36.2%, which were merely 2% lower than that of H-DROP. The reduced computational time of Fast H-DROP, without affecting prediction performances, makes it more interactive and user-friendly. Fast H-DROP and H-DROP are freely available from http://domserv.lab.tuat.ac.jp/.

  8. A novel image toggle tool for comparison of serial mammograms: automatic density normalization and alignment-development of the tool and initial experience.

    PubMed

    Honda, Satoshi; Tsunoda, Hiroko; Fukuda, Wataru; Saida, Yukihisa

    2014-12-01

    The purpose is to develop a new image toggle tool with automatic density normalization (ADN) and automatic alignment (AA) for comparing serial digital mammograms (DMGs). We developed an ADN and AA process to compare the images of serial DMGs. In image density normalization, a linear interpolation was applied by taking two points of high- and low-brightness areas. The alignment was calculated by determining the point of the greatest correlation while shifting the alignment between the current and prior images. These processes were performed on a PC with a 3.20-GHz Xeon processor and 8 GB of main memory. We selected 12 suspected breast cancer patients who had undergone screening DMGs in the past. Automatic processing was retrospectively performed on these images. Two radiologists subjectively evaluated them. The process of the developed algorithm took approximately 1 s per image. In our preliminary experience, two images could not be aligned approximately. When they were aligned, image toggling allowed detection of differences between examinations easily. We developed a new tool to facilitate comparative reading of DMGs on a mammography viewing system. Using this tool for toggling comparisons might improve the interpretation efficiency of serial DMGs.

  9. Implementation of molecular dynamics and its extensions with the coarse-grained UNRES force field on massively parallel systems; towards millisecond-scale simulations of protein structure, dynamics, and thermodynamics

    PubMed Central

    Liwo, Adam; Ołdziej, Stanisław; Czaplewski, Cezary; Kleinerman, Dana S.; Blood, Philip; Scheraga, Harold A.

    2010-01-01

    We report the implementation of our united-residue UNRES force field for simulations of protein structure and dynamics with massively parallel architectures. In addition to coarse-grained parallelism already implemented in our previous work, in which each conformation was treated by a different task, we introduce a fine-grained level in which energy and gradient evaluation are split between several tasks. The Message Passing Interface (MPI) libraries have been utilized to construct the parallel code. The parallel performance of the code has been tested on a professional Beowulf cluster (Xeon Quad Core), a Cray XT3 supercomputer, and two IBM BlueGene/P supercomputers with canonical and replica-exchange molecular dynamics. With IBM BlueGene/P, about 50 % efficiency and 120-fold speed-up of the fine-grained part was achieved for a single trajectory of a 767-residue protein with use of 256 processors/trajectory. Because of averaging over the fast degrees of freedom, UNRES provides an effective 1000-fold speed-up compared to the experimental time scale and, therefore, enables us to effectively carry out millisecond-scale simulations of proteins with 500 and more amino-acid residues in days of wall-clock time. PMID:20305729

  10. IntellEditS: intelligent learning-based editor of segmentations.

    PubMed

    Harrison, Adam P; Birkbeck, Neil; Sofka, Michal

    2013-01-01

    Automatic segmentation techniques, despite demonstrating excellent overall accuracy, can often produce inaccuracies in local regions. As a result, correcting segmentations remains an important task that is often laborious, especially when done manually for 3D datasets. This work presents a powerful tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that minimizes user effort and further improves segmentation accuracy. The tool partners interactive learning with an energy-minimization approach to editing. Based on interactive user input, a discriminative classifier is trained and applied to the edited 3D region to produce soft voxel labeling. The labels are integrated into a novel energy functional along with the existing segmentation and image data. Unlike the state of the art, IntellEditS is designed to correct segmentation results represented not only as masks but also as meshes. In addition, IntellEditS accepts intuitive boundary-based user interactions. The versatility and performance of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied anatomical structures and resolutions.

  11. A fast CT reconstruction scheme for a general multi-core PC.

    PubMed

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  12. High performance computing environment for multidimensional image analysis

    PubMed Central

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-01-01

    Background The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. Results We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup. Conclusion Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets. PMID:17634099

  13. High performance computing environment for multidimensional image analysis.

    PubMed

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-07-10

    The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.

  14. Analysis of a parallelized nonlinear elliptic boundary value problem solver with application to reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.; Smooke, Mitchell D.

    1987-01-01

    A parallelized finite difference code based on the Newton method for systems of nonlinear elliptic boundary value problems in two dimensions is analyzed in terms of computational complexity and parallel efficiency. An approximate cost function depending on 15 dimensionless parameters is derived for algorithms based on stripwise and boxwise decompositions of the domain and a one-to-one assignment of the strip or box subdomains to processors. The sensitivity of the cost functions to the parameters is explored in regions of parameter space corresponding to model small-order systems with inexpensive function evaluations and also a coupled system of nineteen equations with very expensive function evaluations. The algorithm was implemented on the Intel Hypercube, and some experimental results for the model problems with stripwise decompositions are presented and compared with the theory. In the context of computational combustion problems, multiprocessors of either message-passing or shared-memory type may be employed with stripwise decompositions to realize speedup of O(n), where n is mesh resolution in one direction, for reasonable n.

  15. Demonstration of a full volume 3D pre-stack depth migration in the Garden Banks area using massively parallel processor (MPP) technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano, M.; Chang, H.; VanDyke, J.

    1996-12-31

    This paper describes the implementation and results of portable, production-scale 3D Pre-stack Kirchhoff depth migration software. Full volume pre-stack imaging was applied to a six million trace (46.9 Gigabyte) data set from a subsalt play in the Garden Banks area in the Gulf of Mexico. The velocity model building and updating, were derived using image depth gathers and an image-driven strategy. After three velocity iterations, depth migrated sections revealed drilling targets that were not visible in the conventional 3D post-stack time migrated data set. As expected from the implementation of the migration algorithm, it was found that amplitudes are wellmore » preserved and anomalies associated with known reservoirs, conform to petrophysical predictions. Image gathers for velocity analysis and the final depth migrated volume, were generated on an 1824 node Intel Paragon at Sandia National Laboratories. The code has been successfully ported to a CRAY (T3D) and Unix workstation Parallel Virtual Machine environments (PVM).« less

  16. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    PubMed Central

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors. PMID:18256731

  17. Chronology of DIC technique based on the fundamental mathematical modeling and dehydration impact.

    PubMed

    Alias, Norma; Saipol, Hafizah Farhah Saipan; Ghani, Asnida Che Abd

    2014-12-01

    A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.

  18. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  19. Upset susceptibility study employing circuit analysis and digital simulation

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    This paper describes an approach to predicting the susceptibility of digital systems to signal disturbances. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, Electromagnetic Interference (EMI) and Electromagnetic Pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload will bring the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The Super-Sceptre (system for circuit evaluation of transient radiation effects) Program was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  20. Large calculation of the flow over a hypersonic vehicle using a GPU

    NASA Astrophysics Data System (ADS)

    Elsen, Erich; LeGresley, Patrick; Darve, Eric

    2008-12-01

    Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.

Top