ERIC Educational Resources Information Center
Tennyson, Robert
1984-01-01
Reviews educational applications of artificial intelligence and presents empirically-based design variables for developing a computer-based instruction management system. Taken from a programmatic research effort based on the Minnesota Adaptive Instructional System, variables include amount and sequence of instruction, display time, advisement,…
Rule-based mechanisms of learning for intelligent adaptive flight control
NASA Technical Reports Server (NTRS)
Handelman, David A.; Stengel, Robert F.
1990-01-01
How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.
OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support
NASA Astrophysics Data System (ADS)
Pedrazzoli, Attilio
2010-06-01
AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.
The highly intelligent virtual agents for modeling financial markets
NASA Astrophysics Data System (ADS)
Yang, G.; Chen, Y.; Huang, J. P.
2016-02-01
Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
2007-09-01
behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic
ELM-ART--An Interactive and Intelligent Web-Based Electronic Textbook
ERIC Educational Resources Information Center
Weber, Gerhard; Brusilovsky, Peter
2016-01-01
This paper present provides a broader view on ELM-ART, one of the first Web-based Intelligent Educational systems that offered a creative combination of two different paradigms--Intelligent Tutoring and Adaptive Hypermedia technologies. The unique dual nature of ELM-ART contributed to its long life and research impact and was a result of…
Improved Modeling of Intelligent Tutoring Systems Using Ant Colony Optimization
ERIC Educational Resources Information Center
Rastegarmoghadam, Mahin; Ziarati, Koorush
2017-01-01
Swarm intelligence approaches, such as ant colony optimization (ACO), are used in adaptive e-learning systems and provide an effective method for finding optimal learning paths based on self-organization. The aim of this paper is to develop an improved modeling of adaptive tutoring systems using ACO. In this model, the learning object is…
An Adaptive Critic Approach to Reference Model Adaptation
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.
2003-01-01
Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.
A new modelling approach for zooplankton behaviour
NASA Astrophysics Data System (ADS)
Keiyu, A. Y.; Yamazaki, H.; Strickler, J. R.
We have developed a new simulation technique to model zooplankton behaviour. The approach utilizes neither the conventional artificial intelligence nor neural network methods. We have designed an adaptive behaviour network, which is similar to BEER [(1990) Intelligence as an adaptive behaviour: an experiment in computational neuroethology, Academic Press], based on observational studies of zooplankton behaviour. The proposed method is compared with non- "intelligent" models—random walk and correlated walk models—as well as observed behaviour in a laboratory tank. Although the network is simple, the model exhibits rich behavioural patterns similar to live copepods.
Computational Intelligence in Web-Based Education: A Tutorial
ERIC Educational Resources Information Center
Vasilakos, Thanos; Devedzic, Vladan; Kinshuk; Pedrycz, Witold
2004-01-01
This article discusses some important aspects of Web Intelligence (WI) in the context of educational applications. Some of the key components of WI have already attracted developers of web-based educational systems for quite some time- ontologies, adaptivity and personalization, and agents. The paper focuses on the application of Computational…
Adaptive Critic Nonlinear Robust Control: A Survey.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.
Adaptive quantum computation in changing environments using projective simulation
NASA Astrophysics Data System (ADS)
Tiersch, M.; Ganahl, E. J.; Briegel, H. J.
2015-08-01
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.
Adaptive quantum computation in changing environments using projective simulation
Tiersch, M.; Ganahl, E. J.; Briegel, H. J.
2015-01-01
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks. PMID:26260263
Problem-Based Learning Pedagogies: Psychological Processes and Enhancement of Intelligences
ERIC Educational Resources Information Center
Tan, Oon-Seng
2007-01-01
Education in this 21st century is concerned with developing intelligences. Problem solving in real-world contexts involves multiple ways of knowing and learning. Intelligence in the real world involves not only learning how to do things effectively but also more importantly the ability to deal with novelty and growing our capacity to adapt, select…
NASA Astrophysics Data System (ADS)
Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain
2016-03-01
Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.
Certification Considerations for Adaptive Systems
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric
2015-01-01
Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.
NASA Astrophysics Data System (ADS)
Ibrahim, Wael Refaat Anis
The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an alarm is instigated predicting the advent of system abnormal operation. The incoming data could be compared to previous trends as well as matched to trends developed through computer simulations and stored using fuzzy learning.
Does Artificial Tutoring Foster Inquiry Based Learning?
ERIC Educational Resources Information Center
Schmoelz, Alexander; Swertz, Christian; Forstner, Alexandra; Barberi, Alessandro
2014-01-01
This contribution looks at the Intelligent Tutoring Interface for Technology Enhanced Learning, which integrates multistage-learning and inquiry-based learning in an adaptive e-learning system. Based on a common pedagogical ontology, adaptive e-learning systems can be enabled to recommend learning objects and activities, which follow inquiry-based…
2013-01-01
intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram
Prado, Manuel; Roa, Laura M
2007-01-01
Despite first written references to permanent developmental stuttering occurred more than 2500 years ago, the mechanisms underlying this disorder are still unknown. This paper briefly reviews stuttering causal hypothesis and treatments, and presents the requirements that a new stuttering therapeutic device should verify. As a result of the analysis, an adaptive altered auditory feedback device based on a multimodal intelligent monitor, within the framework of a knowledge-based telehealthcare system, is presented. The subsequent discussion, based partly on the successful outcomes of a similar intelligent monitor, suggests that this novel device is feasible and could help to fill the gap between research and clinic.
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
ERIC Educational Resources Information Center
McNamee, Paul; Madden, Dave; McNamee, Frank; Wall, John; Hurst, Alan; Vrasidas, Charalambos; Chanquoy, Lucile; Baccino, Thierry; Acar, Emrah; Onwy-Yazici, Ela; Jordan, Ann
2009-01-01
This paper describes an ongoing EU project concerned with developing an instructional design framework for virtual classes (VC) that is based on the theory of Multiple Intelligences (MI) (1983). The psychological theory of Multiple Intelligences (Gardner 1983) has received much credence within instructional design since its inception and has been…
Fluid intelligence and psychosocial outcome: from logical problem solving to social adaptation.
Huepe, David; Roca, María; Salas, Natalia; Canales-Johnson, Andrés; Rivera-Rei, Álvaro A; Zamorano, Leandro; Concepción, Aimée; Manes, Facundo; Ibañez, Agustín
2011-01-01
While fluid intelligence has proved to be central to executive functioning, logical reasoning and other frontal functions, the role of this ability in psychosocial adaptation has not been well characterized. A random-probabilistic sample of 2370 secondary school students completed measures of fluid intelligence (Raven's Progressive Matrices, RPM) and several measures of psychological adaptation: bullying (Delaware Bullying Questionnaire), domestic abuse of adolescents (Conflict Tactic Scale), drug intake (ONUDD), self-esteem (Rosenberg's Self Esteem Scale) and the Perceived Mental Health Scale (Spanish adaptation). Lower fluid intelligence scores were associated with physical violence, both in the role of victim and victimizer. Drug intake, especially cannabis, cocaine and inhalants and lower self-esteem were also associated with lower fluid intelligence. Finally, scores on the perceived mental health assessment were better when fluid intelligence scores were higher. Our results show evidence of a strong association between psychosocial adaptation and fluid intelligence, suggesting that the latter is not only central to executive functioning but also forms part of a more general capacity for adaptation to social contexts.
Fluid Intelligence and Psychosocial Outcome: From Logical Problem Solving to Social Adaptation
Huepe, David; Roca, María; Salas, Natalia; Canales-Johnson, Andrés; Rivera-Rei, Álvaro A.; Zamorano, Leandro; Concepción, Aimée; Manes, Facundo; Ibañez, Agustín
2011-01-01
Background While fluid intelligence has proved to be central to executive functioning, logical reasoning and other frontal functions, the role of this ability in psychosocial adaptation has not been well characterized. Methodology/Principal Findings A random-probabilistic sample of 2370 secondary school students completed measures of fluid intelligence (Raven's Progressive Matrices, RPM) and several measures of psychological adaptation: bullying (Delaware Bullying Questionnaire), domestic abuse of adolescents (Conflict Tactic Scale), drug intake (ONUDD), self-esteem (Rosenberg's Self Esteem Scale) and the Perceived Mental Health Scale (Spanish adaptation). Lower fluid intelligence scores were associated with physical violence, both in the role of victim and victimizer. Drug intake, especially cannabis, cocaine and inhalants and lower self-esteem were also associated with lower fluid intelligence. Finally, scores on the perceived mental health assessment were better when fluid intelligence scores were higher. Conclusions/Significance Our results show evidence of a strong association between psychosocial adaptation and fluid intelligence, suggesting that the latter is not only central to executive functioning but also forms part of a more general capacity for adaptation to social contexts. PMID:21957464
Uribe, Gustavo A; Blobel, Bernd; López, Diego M; Schulz, Stefan
2015-01-01
Chronic diseases such as Type 2 Diabetes Mellitus (T2DM) constitute a big burden to the global health economy. T2DM Care Management requires a multi-disciplinary and multi-organizational approach. Because of different languages and terminologies, education, experiences, skills, etc., such an approach establishes a special interoperability challenge. The solution is a flexible, scalable, business-controlled, adaptive, knowledge-based, intelligent system following a systems-oriented, architecture-centric, ontology-based and policy-driven approach. The architecture of real systems is described, using the basics and principles of the Generic Component Model (GCM). For representing the functional aspects of a system the Business Process Modeling Notation (BPMN) is used. The system architecture obtained is presented using a GCM graphical notation, class diagrams and BPMN diagrams. The architecture-centric approach considers the compositional nature of the real world system and its functionalities, guarantees coherence, and provides right inferences. The level of generality provided in this paper facilitates use case specific adaptations of the system. By that way, intelligent, adaptive and interoperable T2DM care systems can be derived from the presented model as presented in another publication.
"Group Intelligence": An Active Learning Exploration of Diversity in Evolution
ERIC Educational Resources Information Center
Parsons, Christopher J.; Salaita, Meisa K.; Hughes, Catherine H.; Lynn, David G.; Fristoe, Adam; Fristoe, Ariel; Grover, Martha A.
2017-01-01
"Group Intelligence" is an active learning, inquiry-based activity that introduces prebiotic chemistry, emergent complexity, and diversity's importance to adaptability across scales. Students explore the molecular emergence of order and function through theatrical exercises and games. Through 20 min of audio instruction and a discussion…
Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP)
NASA Astrophysics Data System (ADS)
Mislan; Gaffar, A. F. O.; Haviluddin; Puspitasari, N.
2018-04-01
A natural hazard information and flood events are indispensable as a form of prevention and improvement. One of the causes is flooding in the areas around the lake. Therefore, forecasting the surface of Lake water level to anticipate flooding is required. The purpose of this paper is implemented computational intelligence method namely Adaptive Neural Network Backpropagation (ANNBP) to forecasting the Lake Cascade Mahakam. Based on experiment, performance of ANNBP indicated that Lake water level prediction have been accurate by using mean square error (MSE) and mean absolute percentage error (MAPE). In other words, computational intelligence method can produce good accuracy. A hybrid and optimization of computational intelligence are focus in the future work.
Morrison, Leanne G; Hargood, Charlie; Pejovic, Veljko; Geraghty, Adam W A; Lloyd, Scott; Goodman, Natalie; Michaelides, Danius T; Weston, Anna; Musolesi, Mirco; Weal, Mark J; Yardley, Lucy
2017-01-01
Push notifications offer a promising strategy for enhancing engagement with smartphone-based health interventions. Intelligent sensor-driven machine learning models may improve the timeliness of notifications by adapting delivery to a user's current context (e.g. location). This exploratory mixed-methods study examined the potential impact of timing and frequency on notification response and usage of Healthy Mind, a smartphone-based stress management intervention. 77 participants were randomised to use one of three versions of Healthy Mind that provided: intelligent notifications; daily notifications within pre-defined time frames; or occasional notifications within pre-defined time frames. Notification response and Healthy Mind usage were automatically recorded. Telephone interviews explored participants' experiences of using Healthy Mind. Participants in the intelligent and daily conditions viewed (d = .47, .44 respectively) and actioned (d = .50, .43 respectively) more notifications compared to the occasional group. Notification group had no meaningful effects on percentage of notifications viewed or usage of Healthy Mind. No meaningful differences were indicated between the intelligent and non-intelligent groups. Our findings suggest that frequent notifications may encourage greater exposure to intervention content without deterring engagement, but adaptive tailoring of notification timing does not always enhance their use. Hypotheses generated from this study require testing in future work. ISRCTN67177737.
Adaptive Technologies for Training and Education
ERIC Educational Resources Information Center
Durlach, Paula J., Ed; Lesgold, Alan M., Ed.
2012-01-01
This edited volume provides an overview of the latest advancements in adaptive training technology. Intelligent tutoring has been deployed for well-defined and relatively static educational domains such as algebra and geometry. However, this adaptive approach to computer-based training has yet to come into wider usage for domains that are less…
ERIC Educational Resources Information Center
May, Donald M.; And Others
The minicomputer-based Computerized Diagnostic and Decision Training (CDDT) system described combines the principles of artificial intelligence, decision theory, and adaptive computer assisted instruction for training in electronic troubleshooting. The system incorporates an adaptive computer program which learns the student's diagnostic and…
Designing Adaptive Instruction for Teams: A Meta-Analysis
ERIC Educational Resources Information Center
Sottilare, Robert A.; Shawn Burke, C.; Salas, Eduardo; Sinatra, Anne M.; Johnston, Joan H.; Gilbert, Stephen B.
2018-01-01
The goal of this research was the development of a practical architecture for the computer-based tutoring of teams. This article examines the relationship of team behaviors as antecedents to successful team performance and learning during adaptive instruction guided by Intelligent Tutoring Systems (ITSs). Adaptive instruction is a training or…
An adaptive signal-processing approach to online adaptive tutoring.
Bergeron, Bryan; Cline, Andrew
2011-01-01
Conventional intelligent or adaptive tutoring online systems rely on domain-specific models of learner behavior based on rules, deep domain knowledge, and other resource-intensive methods. We have developed and studied a domain-independent methodology of adaptive tutoring based on domain-independent signal-processing approaches that obviate the need for the construction of explicit expert and student models. A key advantage of our method over conventional approaches is a lower barrier to entry for educators who want to develop adaptive online learning materials.
Knowledge-based control of an adaptive interface
NASA Technical Reports Server (NTRS)
Lachman, Roy
1989-01-01
The analysis, development strategy, and preliminary design for an intelligent, adaptive interface is reported. The design philosophy couples knowledge-based system technology with standard human factors approaches to interface development for computer workstations. An expert system has been designed to drive the interface for application software. The intelligent interface will be linked to application packages, one at a time, that are planned for multiple-application workstations aboard Space Station Freedom. Current requirements call for most Space Station activities to be conducted at the workstation consoles. One set of activities will consist of standard data management services (DMS). DMS software includes text processing, spreadsheets, data base management, etc. Text processing was selected for the first intelligent interface prototype because text-processing software can be developed initially as fully functional but limited with a small set of commands. The program's complexity then can be increased incrementally. The intelligent interface includes the operator's behavior and three types of instructions to the underlying application software are included in the rule base. A conventional expert-system inference engine searches the data base for antecedents to rules and sends the consequents of fired rules as commands to the underlying software. Plans for putting the expert system on top of a second application, a database management system, will be carried out following behavioral research on the first application. The intelligent interface design is suitable for use with ground-based workstations now common in government, industrial, and educational organizations.
Reasoning about Users' Actions in a Graphical User Interface.
ERIC Educational Resources Information Center
Virvou, Maria; Kabassi, Katerina
2002-01-01
Describes a graphical user interface called IFM (Intelligent File Manipulator) that provides intelligent help to users. Explains two underlying reasoning mechanisms, one an adaptation of human plausible reasoning and one that performs goal recognition based on the effects of users' commands; and presents results of an empirical study that…
Lei, Zhouyue; Wang, Quankang; Sun, Shengtong; Zhu, Wencheng; Wu, Peiyi
2017-06-01
In the past two decades, artificial skin-like materials have received increasing research interests for their broad applications in artificial intelligence, wearable devices, and soft robotics. However, profound challenges remain in terms of imitating human skin because of its unique combination of mechanical and sensory properties. In this work, a bioinspired mineral hydrogel is developed to fabricate a novel type of mechanically adaptable ionic skin sensor. Due to its unique viscoelastic properties, the hydrogel-based capacitive sensor is compliant, self-healable, and can sense subtle pressure changes, such as a gentle finger touch, human motion, or even small water droplets. It might not only show great potential in applications such as artificial intelligence, human/machine interactions, personal healthcare, and wearable devices, but also promote the development of next-generation mechanically adaptable intelligent skin-like devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-03-27
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.
Intelligence-based anti-doping from an equine biological passport.
Cawley, Adam T; Keledjian, John
2017-09-01
The move towards personalized medicine derived from individually focused clinical chemistry measurements has been translated by the human anti-doping movement over the past decade into developing the athlete biological passport. There is considerable potential for animal sports to adapt this model to facilitate an intelligence-based anti-doping system. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Adaptive neural network/expert system that learns fault diagnosis for different structures
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
1991-06-01
Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Intelligent judgements over health risks in a spatial agent-based model.
Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana
2018-03-20
Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of several macro metrics of interest: an epidemic curve, a risk perception curve, and a distribution of different types of coping strategies over time. Our results emphasize the importance of integrating behavioral aspects of decision making under risk into spatial disease ABMs using machine learning algorithms. This is especially relevant when studying cumulative impacts of behavioral changes and possible intervention strategies.
The NASA F-15 Intelligent Flight Control Systems: Generation II
NASA Technical Reports Server (NTRS)
Buschbacher, Mark; Bosworth, John
2006-01-01
The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.
KORIAKIN, TAYLOR A; MCCURDY, MARK D; PAPAZOGLOU, AIMILIA; PRITCHARD, ALISON E; ZABEL, T ANDREW; MAHONE, E MARK; JACOBSON, LISA A
2013-01-01
Aim We examined the implications of using the Full Scale Intelligence Quotient (FSIQ) versus the General Abilities Index (GAI) for determination of intellectual disability using the Wechsler Intelligence Scales for Children, fourth edition (WISC-IV). Method Children referred for neuropsychological assessment (543 males, 290 females; mean age 10y 5mo, SD 2y 9mo, range 6–16y) were administered the WISC-IV and the Adaptive Behavior Assessment System, Second Edition (ABAS-II). Results GAI and FSIQ were highly correlated; however, fewer children were identified as having intellectual disability using GAI (n=159) than when using FSIQ (n=196). Although the 44 children classified as having intellectual disability based upon FSIQ (but not GAI) had significantly higher adaptive functioning scores than those meeting intellectual disability criteria based upon both FSIQ and GAI, mean adaptive scores still fell within the impaired range. FSIQ and GAI were comparable in predicting impairments in adaptive functioning. Interpretation Using GAI rather than FSIQ in intellectual disability diagnostic decision making resulted in fewer individuals being diagnosed with intellectual disability; however, the mean GAI of the disqualified individuals was at the upper end of criteria for intellectual impairment (standard score 75), and these individuals remained adaptively impaired. As GAI and FSIQ were similarly predictive of overall adaptive functioning, the use of GAI for intellectual disability diagnostic decision making may be of limited value. PMID:23859669
2008-08-01
version of NCAPS, participants higher in cognitive ability and reading ability were able to produce higher fakability scores. Higher intelligence ... intelligence and reading ability. Therefore, the adaptive paired- comparison NCAPS is very likely to provide scores close to the true trait scores for...regardless of the intelligence or reading levels associated with those taking the adaptive NCAPS; it will be difficult to fake the adaptive paired
Architecture of cognitive flexibility revealed by lesion mapping
Barbey, Aron K.; Colom, Roberto; Grafman, Jordan
2013-01-01
Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism–Extraversion–Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R2 = 0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. PMID:23721727
Hargood, Charlie; Pejovic, Veljko; Geraghty, Adam W. A.; Lloyd, Scott; Goodman, Natalie; Michaelides, Danius T.; Weston, Anna; Musolesi, Mirco; Weal, Mark J.; Yardley, Lucy
2017-01-01
Push notifications offer a promising strategy for enhancing engagement with smartphone-based health interventions. Intelligent sensor-driven machine learning models may improve the timeliness of notifications by adapting delivery to a user’s current context (e.g. location). This exploratory mixed-methods study examined the potential impact of timing and frequency on notification response and usage of Healthy Mind, a smartphone-based stress management intervention. 77 participants were randomised to use one of three versions of Healthy Mind that provided: intelligent notifications; daily notifications within pre-defined time frames; or occasional notifications within pre-defined time frames. Notification response and Healthy Mind usage were automatically recorded. Telephone interviews explored participants’ experiences of using Healthy Mind. Participants in the intelligent and daily conditions viewed (d = .47, .44 respectively) and actioned (d = .50, .43 respectively) more notifications compared to the occasional group. Notification group had no meaningful effects on percentage of notifications viewed or usage of Healthy Mind. No meaningful differences were indicated between the intelligent and non-intelligent groups. Our findings suggest that frequent notifications may encourage greater exposure to intervention content without deterring engagement, but adaptive tailoring of notification timing does not always enhance their use. Hypotheses generated from this study require testing in future work. Trial registration number: ISRCTN67177737 PMID:28046034
An Intelligent E-Learning System Based on Learner Profiling and Learning Resources Adaptation
ERIC Educational Resources Information Center
Tzouveli, Paraskevi; Mylonas, Phivos; Kollias, Stefanos
2008-01-01
Taking advantage of the continuously improving, web-based learning systems plays an important role for self-learning, especially in the case of working people. Nevertheless, learning systems do not generally adapt to learners' profiles. Learners have to spend a lot of time before reaching the learning goal that is compatible with their knowledge…
ERIC Educational Resources Information Center
Walkington, Candace A.
2013-01-01
Adaptive learning technologies are emerging in educational settings as a means to customize instruction to learners' background, experiences, and prior knowledge. Here, a technology-based personalization intervention within an intelligent tutoring system (ITS) for secondary mathematics was used to adapt instruction to students' personal interests.…
A phone-assistive device based on Bluetooth technology for cochlear implant users.
Qian, Haifeng; Loizou, Philipos C; Dorman, Michael F
2003-09-01
Hearing-impaired people, and particularly hearing-aid and cochlear-implant users, often have difficulty communicating over the telephone. The intelligibility of telephone speech is considerably lower than the intelligibility of face-to-face speech. This is partly because of lack of visual cues, limited telephone bandwidth, and background noise. In addition, cellphones may cause interference with the hearing aid or cochlear implant. To address these problems that hearing-impaired people experience with telephones, this paper proposes a wireless phone adapter that can be used to route the audio signal directly to the hearing aid or cochlear implant processor. This adapter is based on Bluetooth technology. The favorable features of this new wireless technology make the adapter superior to traditional assistive listening devices. A hardware prototype was built and software programs were written to implement the headset profile in the Bluetooth specification. Three cochlear implant users were tested with the proposed phone-adapter and reported good speech quality.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-01-01
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385
Digging deeper on "deep" learning: A computational ecology approach.
Buscema, Massimo; Sacco, Pier Luigi
2017-01-01
We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.
Diversity of Emotional Intelligence among Nursing and Medical Students.
Chun, Kyung Hee; Park, Euna
2016-08-01
The purpose of this study is to identify the types of perception of emotional intelligence among nursing and medical students and their characteristics using Q methodology, and to build the basic data for the development of a program for the would-be medical professionals to effectively adapt to various clinical settings in which their emotions are involved. Data were collected from 35 nursing and medical students by allowing them to classify 40 Q statements related to emotional intelligence and processed using the PC QUANL program. The perceptions of emotional intelligence by nursing and medical students were categorized into three types: "sensitivity-control type", "sympathy-motivation type", and "concern-sympathy type". The perceptions of emotional intelligence by nursing and medical students can represent an effective coping strategy in a situation where emotion is involved. In the medical profession, an occupation with a high level of emotional labor, it is important to identify the types of emotional intelligence for an effective coping strategy, which may have a positive effect on the performance of an organization. Based on the findings of this study, it is necessary to plan an education program for vocational adaptability for nursing and medical students by their types.
2007-09-01
AFRL-RZ-WP-TP-2008-2044 ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION CONTROL...GRANT NUMBER 4. TITLE AND SUBTITLE ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION... FADEC is unique and expensive to develop, produce, maintain, and upgrade for its particular application. Each FADEC is a centralized system, with a
Cellular neural network-based hybrid approach toward automatic image registration
NASA Astrophysics Data System (ADS)
Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar
2013-01-01
Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
Intelligent Control Approaches for Aircraft Applications
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen; KrishnaKumar, K.; Soloway, Don; Kaneshige, John; Clancy, Daniel (Technical Monitor)
2001-01-01
This paper presents an overview of various intelligent control technologies currently being developed and studied under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2) Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various simulated failure conditions.
Industry Cluster's Adaptive Co-competition Behavior Modeling Inspired by Swarm Intelligence
NASA Astrophysics Data System (ADS)
Xiang, Wei; Ye, Feifan
Adaptation helps the individual enterprise to adjust its behavior to uncertainties in environment and hence determines a healthy growth of both the individuals and the whole industry cluster as well. This paper is focused on the study on co-competition adaptation behavior of industry cluster, which is inspired by swarm intelligence mechanisms. By referencing to ant cooperative transportation and ant foraging behavior and their related swarm intelligence approaches, the cooperative adaptation and competitive adaptation behavior are studied and relevant models are proposed. Those adaptive co-competition behaviors model can be integrated to the multi-agent system of industry cluster to make the industry cluster model more realistic.
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
Adaptation of the Wechsler Intelligence Scale for Children-IV (WISC-IV) for Vietnam.
Dang, Hoang-Minh; Weiss, Bahr; Pollack, Amie; Nguyen, Minh Cao
2012-12-01
Intelligence testing is used for many purposes including identification of children for proper educational placement (e.g., children with learning disabilities, or intellectually gifted students), and to guide education by identifying cognitive strengths and weaknesses so that teachers can adapt their instructional style to students' specific learning styles. Most of the research involving intelligence tests has been conducted in highly developed Western countries, yet the need for intelligence testing is as or even more important in developing countries. The present study, conducted through the Vietnam National University Clinical Psychology CRISP Center , focused on the cultural adaptation of the WISC-IV intelligence test for Vietnam. We report on (a) the adaptation process including the translation, cultural analysis and modifications involved in adaptation, (b) present results of two pilot studies, and (c) describe collection of the standardization sample and results of analyses with the standardization sample, with the goal of sharing our experience with other researchers who may be involved in or interested in adapting or developing IQ tests for non-Western, non-English speaking cultures.
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
ERIC Educational Resources Information Center
Vassileva, Julita
1990-01-01
Discusses the structure of intelligent tutoring systems (ITSs) and describes the development of a new structure for ITSs that is not domain dependent and is more readily adaptable by individual teachers. Pedagogical rules that help decide how much student control versus how much teacher control is present in the system are discussed. (14…
Dynamic User Modeling within a Game-Based ITS
ERIC Educational Resources Information Center
Snow, Erica L.
2015-01-01
Intelligent tutoring systems are adaptive learning environments designed to support individualized instruction. The adaptation embedded within these systems is often guided by user models that represent one or more aspects of students' domain knowledge, actions, or performance. The proposed project focuses on the development and testing of user…
Intelligent control based on fuzzy logic and neural net theory
NASA Technical Reports Server (NTRS)
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
ERIC Educational Resources Information Center
Hafidi, Mohamed; Bensebaa, Tahar
2014-01-01
Several adaptive and intelligent tutoring systems (AITS) have been developed with different variables. These variables were the cognitive traits, cognitive styles, and learning behavior. However, these systems neglect the importance of the learner's multiple intelligences, the learner's skill level and the learner's feedback when implementing…
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
Adaptive Intelligent Support to Improve Peer Tutoring in Algebra
ERIC Educational Resources Information Center
Walker, Erin; Rummel, Nikol; Koedinger, Kenneth R.
2014-01-01
Adaptive collaborative learning support (ACLS) involves collaborative learning environments that adapt their characteristics, and sometimes provide intelligent hints and feedback, to improve individual students' collaborative interactions. ACLS often involves a system that can automatically assess student dialogue, model effective and…
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2007-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2010-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
An Approach to V&V of Embedded Adaptive Systems
NASA Technical Reports Server (NTRS)
Liu, Yan; Yerramalla, Sampath; Fuller, Edgar; Cukic, Bojan; Gururajan, Srikaruth
2004-01-01
Rigorous Verification and Validation (V&V) techniques are essential for high assurance systems. Lately, the performance of some of these systems is enhanced by embedded adaptive components in order to cope with environmental changes. Although the ability of adapting is appealing, it actually poses a problem in terms of V&V. Since uncertainties induced by environmental changes have a significant impact on system behavior, the applicability of conventional V&V techniques is limited. In safety-critical applications such as flight control system, the mechanisms of change must be observed, diagnosed, accommodated and well understood prior to deployment. In this paper, we propose a non-conventional V&V approach suitable for online adaptive systems. We apply our approach to an intelligent flight control system that employs a particular type of Neural Networks (NN) as the adaptive learning paradigm. Presented methodology consists of a novelty detection technique and online stability monitoring tools. The novelty detection technique is based on Support Vector Data Description that detects novel (abnormal) data patterns. The Online Stability Monitoring tools based on Lyapunov's Stability Theory detect unstable learning behavior in neural networks. Cases studies based on a high fidelity simulator of NASA's Intelligent Flight Control System demonstrate a successful application of the presented V&V methodology. ,
Intelligence with representation.
Steels, Luc
2003-10-15
Behaviour-based robotics has always been inspired by earlier cybernetics work such as that of W. Grey Walter. It emphasizes that intelligence can be achieved without the kinds of representations common in symbolic AI systems. The paper argues that such representations might indeed not be needed for many aspects of sensory-motor intelligence but become a crucial issue when bootstrapping to higher levels of cognition. It proposes a scenario in the form of evolutionary language games by which embodied agents develop situated grounded representations adapted to their needs and the conventions emerging in the population.
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Defense Logistics Standard Systems Functional Requirements.
1987-03-01
Artificial Intelligence - the development of a machine capability to perform functions normally concerned with human intelligence, such as learning , adapting...Basic Data Base Machine Configurations .... ......... D- 18 xx ~ ?f~~~vX PART I: MODELS - DEFENSE LOGISTICS STANDARD SYSTEMS FUNCTIONAL REQUIREMENTS...On-line, Interactive Access. Integrating user input and machine output in a dynamic, real-time, give-and- take process is considered the optimum mode
Programming model for distributed intelligent systems
NASA Technical Reports Server (NTRS)
Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.
1988-01-01
A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.
Architecture of fluid intelligence and working memory revealed by lesion mapping.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Grafman, Jordan
2014-03-01
Although cognitive neuroscience has made valuable progress in understanding the role of the prefrontal cortex in human intelligence, the functional networks that support adaptive behavior and novel problem solving remain to be well characterized. Here, we studied 158 human brain lesion patients to investigate the cognitive and neural foundations of key competencies for fluid intelligence and working memory. We administered a battery of neuropsychological tests, including the Wechsler Adult Intelligence Scale (WAIS) and the N-Back task. Latent variable modeling was applied to obtain error-free scores of fluid intelligence and working memory, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. The observed latent variable modeling and lesion results support an integrative framework for understanding the architecture of fluid intelligence and working memory and make specific recommendations for the interpretation and application of the WAIS and N-Back task to the study of fluid intelligence in health and disease.
The Theory about CD-CAT Based on FCA and Its Application
ERIC Educational Resources Information Center
Shuqun, Yang; Shuliang, Ding; Zhiqiang, Yao
2009-01-01
Cognitive diagnosis (CD) plays an important role in intelligent tutoring system. Computerized adaptive testing (CAT) is adaptive, fair, and efficient, which is suitable to large-scale examination. Traditional cognitive diagnostic test needs quite large number of items, the efficient and tailored CAT could be a remedy for it, so the CAT with…
Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
Chang, Yeong-Chan
2009-02-01
This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.
2007-01-01
Mariana Fruit Bat Pup Recruitment at Pati Point Colony; • Brown Tree Snake Interdiction and Control; and • Adaptive Management and Ground Track...establishment of a mitigation monitoring plan and adaptive management program. FUTURE ACTIONS As discussed in the Final EIS, the Air Force recognizes that...would initiate modifications to aircraft ground tracks and profiles over sensitive areas through an adaptive management strategy. This adaptive
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.; Baker, Noel C.
2015-01-01
Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.
ERIC Educational Resources Information Center
Nye, Benjamin D.; Pavlik, Philip I., Jr.; Windsor, Alistair; Olney, Andrew M.; Hajeer, Mustafa; Hu, Xiangen
2018-01-01
Background: This study investigated learning outcomes and user perceptions from interactions with a hybrid intelligent tutoring system created by combining the AutoTutor conversational tutoring system with the Assessment and Learning in Knowledge Spaces (ALEKS) adaptive learning system for mathematics. This hybrid intelligent tutoring system (ITS)…
Failure of Working Memory Training to Enhance Cognition or Intelligence
Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.
2013-01-01
Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453
Research on intelligent monitoring technology of machining process
NASA Astrophysics Data System (ADS)
Wang, Taiyong; Meng, Changhong; Zhao, Guoli
1995-08-01
Based upon research on sound and vibration characteristics of tool condition, we explore the multigrade monitoring system which takes single-chip microcomputers as the core hardware. By using the specially designed pickup true signal devices, we can more effectively do the intelligent multigrade monitoring and forecasting, and furthermore, we can build the tool condition models adaptively. This is the key problem in FMS, CIMS, and even the IMS.
Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Karandeev, D.
2015-10-01
The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.
Driscoll, R.; Page, Y.; Lassarre, S.; Ehrlich, J.
2007-01-01
This paper presents the potential safety benefits of the experimental French LAVIA Intelligent Speed Adaptation system, according to road network and system mode, based on observed driving speeds, distributions of crash severity and crash injury risk. Results are given for car frontal and side impacts that together, represent 80% of all serious and fatal injuries in France. Of the three system modes tested (advisory, driver select, mandatory), our results suggest that driver select would most significantly reduce serious injuries and death. We estimate this 100% utilization of cars equipped with this type of speed adaptation system would decrease injury rates by 6% to 16% over existing conditions depending on the type of crash (frontal or side) and road environment considered. Some limitations associated with the analysis are also identified. PMID:18184509
ERIC Educational Resources Information Center
Pradhan, Rabindra Kumar; Jena, Lalatendu Kesari; Singh, Sanjay Kumar
2017-01-01
Purpose: The purpose of this study is to examine the relationship between organisational learning and adaptive performance. Furthermore, the study investigates the moderating role of emotional intelligence in the perspective of organisational learning for addressing adaptive performance of executives employed in manufacturing organisations.…
Wolters, Maria Klara; Kelly, Fiona; Kilgour, Jonathan
2016-12-01
Intelligent cognitive assistants support people who need help performing everyday tasks by detecting when problems occur and providing tailored and context-sensitive assistance. Spoken dialogue interfaces allow users to interact with intelligent cognitive assistants while focusing on the task at hand. In order to establish requirements for voice interfaces to intelligent cognitive assistants, we conducted three focus groups with people with dementia, carers, and older people without a diagnosis of dementia. Analysis of the focus group data showed that voice and interaction style should be chosen based on the preferences of the user, not those of the carer. For people with dementia, the intelligent cognitive assistant should act like a patient, encouraging guide, while for older people without dementia, assistance should be to the point and not patronising. The intelligent cognitive assistant should be able to adapt to cognitive decline. © The Author(s) 2015.
Characterizing Speech Intelligibility in Noise After Wide Dynamic Range Compression.
Rhebergen, Koenraad S; Maalderink, Thijs H; Dreschler, Wouter A
The effects of nonlinear signal processing on speech intelligibility in noise are difficult to evaluate. Often, the effects are examined by comparing speech intelligibility scores with and without processing measured at fixed signal to noise ratios (SNRs) or by comparing the adaptive measured speech reception thresholds corresponding to 50% intelligibility (SRT50) with and without processing. These outcome measures might not be optimal. Measuring at fixed SNRs can be affected by ceiling or floor effects, because the range of relevant SNRs is not know in advance. The SRT50 is less time consuming, has a fixed performance level (i.e., 50% correct), but the SRT50 could give a limited view, because we hypothesize that the effect of most nonlinear signal processing algorithms at the SRT50 cannot be generalized to other points of the psychometric function. In this article, we tested the value of estimating the entire psychometric function. We studied the effect of wide dynamic range compression (WDRC) on speech intelligibility in stationary, and interrupted speech-shaped noise in normal-hearing subjects, using a fast method-based local linear fitting approach and by two adaptive procedures. The measured performance differences for conditions with and without WDRC for the psychometric functions in stationary noise and interrupted speech-shaped noise show that the effects of WDRC on speech intelligibility are SNR dependent. We conclude that favorable and unfavorable effects of WDRC on speech intelligibility can be missed if the results are presented in terms of SRT50 values only.
NASA Astrophysics Data System (ADS)
Ono, Chihiro; Mita, Akira
2012-04-01
Due to an increase in an elderly-people household, and global warming, the design of building spaces requires delicate consideration of the needs of elderly-people. Studies of intelligent spaces that can control suitable devices for residents may provide some of functions needed. However, these intelligent spaces are based on predefined scenarios so that it is difficult to handle unexpected circumstances and adapt to the needs of people. This study aims to suggest a Genetic adaption algorithm for building spaces. The feasibility of the algorithm is tested by simulation. The algorithm extend the existing design methodology by reflecting ongoing living information quickly in the variety of patterns.
NASA Astrophysics Data System (ADS)
Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei
2017-11-01
Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.
Evolutionary psychology and intelligence research.
Kanazawa, Satoshi
2010-01-01
This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative variation on a monomorphic design allows us to incorporate heritable individual differences in evolved adaptations. The Savanna-IQ Interaction Hypothesis, which is one consequence of the integration of evolutionary psychology and intelligence research, can potentially explain why less intelligent individuals enjoy TV more, why liberals are more intelligent than conservatives, and why night owls are more intelligent than morning larks, among many other findings. The general approach proposed here will allow us to integrate evolutionary psychology with any other aspect of differential psychology. Copyright 2010 APA, all rights reserved.
Duff, Armin; Fibla, Marti Sanchez; Verschure, Paul F M J
2011-06-30
Intelligence depends on the ability of the brain to acquire and apply rules and representations. At the neuronal level these properties have been shown to critically depend on the prefrontal cortex. Here we present, in the context of the Distributed Adaptive Control architecture (DAC), a biologically based model for flexible control and planning based on key physiological properties of the prefrontal cortex, i.e. reward modulated sustained activity and plasticity of lateral connectivity. We test the model in a series of pertinent tasks, including multiple T-mazes and the Tower of London that are standard experimental tasks to assess flexible control and planning. We show that the model is both able to acquire and express rules that capture the properties of the task and to quickly adapt to changes. Further, we demonstrate that this biomimetic self-contained cognitive architecture generalizes to planning. In addition, we analyze the extended DAC architecture, called DAC 6, as a model that can be applied for the creation of intelligent and psychologically believable synthetic agents. Copyright © 2010 Elsevier Inc. All rights reserved.
Building an adaptive agent to monitor and repair the electrical power system of an orbital satellite
NASA Technical Reports Server (NTRS)
Tecuci, Gheorghe; Hieb, Michael R.; Dybala, Tomasz
1995-01-01
Over several years we have developed a multistrategy apprenticeship learning methodology for building knowledge-based systems. Recently we have developed and applied our methodology to building intelligent agents. This methodology allows a subject matter expert to build an agent in the same way in which the expert would teach a human apprentice. The expert will give the agent specific examples of problems and solutions, explanations of these solutions, or supervise the agent as it solves new problems. During such interactions, the agent learns general rules and concepts, continuously extending and improving its knowledge base. In this paper we present initial results on applying this methodology to build an intelligent adaptive agent for monitoring and repair of the electrical power system of an orbital satellite, stressing the interaction with the expert during apprenticeship learning.
Intelligent Web-Based Learning System with Personalized Learning Path Guidance
ERIC Educational Resources Information Center
Chen, C. M.
2008-01-01
Personalized curriculum sequencing is an important research issue for web-based learning systems because no fixed learning paths will be appropriate for all learners. Therefore, many researchers focused on developing e-learning systems with personalized learning mechanisms to assist on-line web-based learning and adaptively provide learning paths…
Intelligent fault-tolerant controllers
NASA Technical Reports Server (NTRS)
Huang, Chien Y.
1987-01-01
A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.
Ex-ante assessment of the safety effects of intelligent transport systems.
Kulmala, Risto
2010-07-01
There is a need to develop a comprehensive framework for the safety assessment of Intelligent Transport Systems (ITS). This framework should: (1) cover all three dimensions of road safety-exposure, crash risk and consequence, (2) cover, in addition to the engineering effect, also the effects due to behavioural adaptation and (3) be compatible with the other aspects of state of the art road safety theories. A framework based on nine ITS safety mechanisms is proposed and discussed with regard to the requirements set to the framework. In order to illustrate the application of the framework in practice, the paper presents a method based on the framework and the results from applying that method for twelve intelligent vehicle systems in Europe. The framework is also compared to two recent frameworks applied in the safety assessment of intelligent vehicle safety systems. Copyright 2010 Elsevier Ltd. All rights reserved.
2010-05-01
Multimodal Interfaces Literature Review of Ecological Interface Design , Multimodal Perception and Attention, and Intelligent... Design , Multimodal Perception and Attention, and Intelligent Adaptive Multimodal Interfaces Wayne Giang, Sathya Santhakumaran, Ehsan Masnavi, Doug...Advanced Interface Design Laboratory, E2-1303N 200 University Avenue West Waterloo, Ontario Canada N2L 3G1 Contract Project Manager: Dr. Catherine
The Challenges of Human-Autonomy Teaming
NASA Technical Reports Server (NTRS)
Vera, Alonso
2017-01-01
Machine intelligence is improving rapidly based on advances in big data analytics, deep learning algorithms, networked operations, and continuing exponential growth in computing power (Moores Law). This growth in the power and applicability of increasingly intelligent systems will change the roles humans, shifting them to tasks where adaptive problem solving, reasoning and decision-making is required. This talk will address the challenges involved in engineering autonomous systems that function effectively with humans in aeronautics domains.
Advanced controls for light sources
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Edelen, A. L.; Milton, S. V.
2016-09-01
We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.
[Effects of acaoustic adaptation of classrooms on the quality of verbal communication].
Mikulski, Witold
2013-01-01
Voice organ disorders among teachers are caused by excessive voice strain. One of the measures to reduce this strain is to decrease background noise when teaching. Increasing the acoustic absorption of the room is a technical measure for achieving this aim. The absorption level also improves speech intelligibility rated by the following parameters: room reverberation time and speech transmission index (STI). This article presents the effects of acoustic adaptation of classrooms on the quality of verbal communication, aimed at getting the speech intelligibility at the good or excellent level. The article lists the criteria for evaluating classrooms in terms of the quality of verbal communication. The parameters were defined, using the measurement methods according to PN-EN ISO 3382-2:2010 and PN-EN 60268-16:2011. Acoustic adaptations were completed in two classrooms. After completing acoustic adaptations the reverberation time for the frequency of 1 kHz was reduced: in room no. 1 from 1.45 s to 0.44 s and in room no. 2 from 1.03 s to 0.37 s (maximum 0.65 s). At the same time, the speech transmission index increased: in room no. 1 from 0.55 (satisfactory speech intelligibility) to 0.75 (speech intelligibility close to excellent); in room no. 2 from 0.63 (good speech intelligibility) to 0.80 (excellent speech intelligibility). Therefore, it can be stated that prior to completing acoustic adaptations room no. 1 did not comply and room no. 2 barely complied with the criterion (speech transmission index of 0.62). After completing acoustic adaptations both rooms meet the requirements.
Puccioni, Olga; Vallesi, Antonino
2012-12-01
The present study investigated effects of cognitive aging on conflict resolution (the ability to suppress prepotent and distracting, irrelevant information) and conflict adaptation (the adjustment of conflict resolution based on previously experienced conflict level). In addition, it aimed at investigating whether Cognitive Reserve (CR) and intelligence play a compensatory role against age-related deficits in both factors. A color-word Stroop task with no feature repetitions (i.e., neither the word nor the color was repeated in two subsequent trials) was administered to 23 older adults with no dimentia (65-79 years old) and 22 younger controls (18-34 years old), in addition to measures of intelligence and CR. Older adults' performance was characterized by general slowing. However, response slowing inversely correlated with intelligence, education, and a cognitive-reserve index. The Stroop effect (i.e., response-time (RT) difference between incongruent and congruent conditions) was larger in older adults than in younger controls, and in the older group only, it negatively correlated with verbal IQ. With this feature-repetitions-free Stroop task, we confirmed the presence of some conflict adaptation effects, which, however, were spared by aging. Altogether, these findings show that older adults can cope better with age-related impairment in verbal interference resolution, if they have enough intelligence resources in a related (verbal) domain, whereas CR plays a role in general performance speed only. We therefore suggest that general and specific accounts of cognitive aging may apply to different processing stages, which are influenced by partially different compensatory factors. 2013 APA, all rights reserved
Research on intelligent machine self-perception method based on LSTM
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cheng, Tao
2018-05-01
In this paper, we use the advantages of LSTM in feature extraction and processing high-dimensional and complex nonlinear data, and apply it to the autonomous perception of intelligent machines. Compared with the traditional multi-layer neural network, this model has memory, can handle time series information of any length. Since the multi-physical domain signals of processing machines have a certain timing relationship, and there is a contextual relationship between states and states, using this deep learning method to realize the self-perception of intelligent processing machines has strong versatility and adaptability. The experiment results show that the method proposed in this paper can obviously improve the sensing accuracy under various working conditions of the intelligent machine, and also shows that the algorithm can well support the intelligent processing machine to realize self-perception.
Koriakin, Taylor A; McCurdy, Mark D; Papazoglou, Aimilia; Pritchard, Alison E; Zabel, T Andrew; Mahone, E Mark; Jacobson, Lisa A
2013-09-01
We examined the implications of using the Full Scale IQ (FSIQ) versus the General Abilities Index (GAI) for determination of intellectual disability using the Wechsler Intelligence Scales for Children, fourth edition (WISC-IV). Children referred for neuropsychological assessment (543 males, 290 females; mean age 10y 5mo, SD 2y 9mo, range 6-16y) were administered the WISC-IV and the Adaptive Behavior Assessment System, second edition (ABAS-II). GAI and FSIQ were highly correlated; however, fewer children were identified as having intellectual disability using GAI (n=159) than when using FSIQ (n=196). Although the 44 children classified as having intellectual disability based upon FSIQ (but not GAI) had significantly higher adaptive functioning scores than those meeting intellectual disability criteria based upon both FSIQ and GAI, mean adaptive scores still fell within the impaired range. FSIQ and GAI were comparable in predicting impairments in adaptive functioning. Using GAI rather than FSIQ in intellectual disability diagnostic decision-making resulted in fewer individuals being diagnosed with intellectual disability; however, the mean GAI of the disqualified individuals was at the upper end of criteria for intellectual impairment (standard score 75), and these individuals remained adaptively impaired. As GAI and FSIQ were similarly predictive of overall adaptive functioning, the use of GAI for intellectual disability diagnostic decision-making may be of limited value. © 2013 Mac Keith Press.
Introduction to Fuzzy Set Theory
NASA Technical Reports Server (NTRS)
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Open-Source Intelligence in the Czech Military: Knowledge System and Process Design
2002-06-01
in Open-Source Intelligence OSINT, as one of the intelligence disciplines, bears some of the general problems of intelligence " business " OSINT...ADAPTING KNOWLEDGE MANAGEMENT THEORY TO THE CZECH MILITARY INTELLIGENCE Knowledge work is the core business of the military intelligence . As...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS Approved for public release; distribution is unlimited OPEN-SOURCE INTELLIGENCE IN THE
ERIC Educational Resources Information Center
Huang, Yueh-Min; Liu, Chien-Hung
2009-01-01
One of the key challenges in the promotion of web-based learning is the development of effective collaborative learning environments. We posit that the structuration process strongly influences the effectiveness of technology used in web-based collaborative learning activities. In this paper, we propose an ant swarm collaborative learning (ASCL)…
Ginis, Pieter; Heremans, Elke; Ferrari, Alberto; Dockx, Kim; Canning, Colleen G; Nieuwboer, Alice
2017-01-01
Rhythmic auditory cueing is a well-accepted tool for gait rehabilitation in Parkinson's disease (PD), which can now be applied in a performance-adapted fashion due to technological advance. This study investigated the immediate differences on gait during a prolonged, 30 min, walk with performance-adapted (intelligent) auditory cueing and verbal feedback provided by a wearable sensor-based system as alternatives for traditional cueing. Additionally, potential effects on self-perceived fatigue were assessed. Twenty-eight people with PD and 13 age-matched healthy elderly (HE) performed four 30 min walks with a wearable cue and feedback system. In randomized order, participants received: (1) continuous auditory cueing; (2) intelligent cueing (10 metronome beats triggered by a deviating walking rhythm); (3) intelligent feedback (verbal instructions triggered by a deviating walking rhythm); and (4) no external input. Fatigue was self-scored at rest and after walking during each session. The results showed that while HE were able to maintain cadence for 30 min during all conditions, cadence in PD significantly declined without input. With continuous cueing and intelligent feedback people with PD were able to maintain cadence ( p = 0.04), although they were more physically fatigued than HE. Furthermore, cadence deviated significantly more in people with PD than in HE without input and particularly with intelligent feedback (both: p = 0.04). In PD, continuous and intelligent cueing induced significantly less deviations of cadence ( p = 0.006). Altogether, this suggests that intelligent cueing is a suitable alternative for the continuous mode during prolonged walking in PD, as it induced similar effects on gait without generating levels of fatigue beyond that of HE.
Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control
NASA Technical Reports Server (NTRS)
Pahle, Joe W.
2008-01-01
This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.
Behavioral personal digital assistants: The seventh generation of computing
Stephens, Kenneth R.; Hutchison, William R.
1992-01-01
Skinner (1985) described two divergent approaches to developing computer systems that would behave with some approximation to intelligence. The first approach, which corresponds to the mainstream of artificial intelligence and expert systems, models intelligence as a set of production rules that incorporate knowledge and a set of heuristics for inference and symbol manipulation. The alternative is a system that models the behavioral repertoire as a network of associations between antecedent stimuli and operants, and adapts when supplied with reinforcement. The latter approach is consistent with developments in the field of “neural networks.” The authors describe how an existing adaptive network software system, based on behavior analysis and developed since 1983, can be extended to provide a new generation of software systems capable of acquiring verbal behavior. This effort will require the collaboration of the academic and commercial sectors of the behavioral community, but the end result will enable a generational change in computer systems and support for behavior analytic concepts. PMID:22477053
A performance analysis of advanced I/O architectures for PC-based network file servers
NASA Astrophysics Data System (ADS)
Huynh, K. D.; Khoshgoftaar, T. M.
1994-12-01
In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.
A Proposed Intelligent Policy-Based Interface for a Mobile eHealth Environment
NASA Astrophysics Data System (ADS)
Tavasoli, Amir; Archer, Norm
Users of mobile eHealth systems are often novices, and the learning process for them may be very time consuming. In order for systems to be attractive to potential adopters, it is important that the interface should be very convenient and easy to learn. However, the community of potential users of a mobile eHealth system may be quite varied in their requirements, so the system must be able to adapt easily to suit user preferences. One way to accomplish this is to have the interface driven by intelligent policies. These policies can be refined gradually, using inputs from potential users, through intelligent agents. This paper develops a framework for policy refinement for eHealth mobile interfaces, based on dynamic learning from user interactions.
Brave New World of Intelligence Testing.
ERIC Educational Resources Information Center
Rice, Berkeley
1979-01-01
New approaches to assessing intelligence are discussed, as well as new intelligence tests. Among the developments are investigating neurometrics, adapting testing to the effects of technology on children, countering cultural bias, assessing social intelligence, focusing on aspects of cognitive styles, measuring learning potential, and using…
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
Intelligent flight control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1993-01-01
The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.
Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training
ERIC Educational Resources Information Center
Baschera, Gian-Marco; Gross, Markus
2010-01-01
We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…
Tutoring electronic troubleshooting in a simulated maintenance work environment
NASA Technical Reports Server (NTRS)
Gott, Sherrie P.
1987-01-01
A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.
Adaptation of a Knowledge-Based Decision-Support System in the Tactical Environment.
1981-12-01
002-04-6411S1CURITY CL All PICATION OF 1,416 PAGE (00HIR Onto ea0aOW .L10 *GU9WVC 4bGSI.CAYON S. Voss 10466lVka t... OftesoE ’ making decisons . The...noe..aaw Ad tdlalttt’ IV 680011 MMib) Artificial Intelligence; Decision-Support Systems; Tactical Decision- making ; Knowledge-based Decision-support...tactical information to assist tactical commanders in making decisions. The system, TAC*, for "Tactical Adaptable Consultant," incorporates a database
Study of simple land battles using agent-based modeling: Strategy and emergent phenomena
NASA Astrophysics Data System (ADS)
Westley, Alexandra; de Meglio, Nicholas; Hager, Rebecca; Mok, Jorge Wu; Shanahan, Linda; Sen, Surajit
2017-04-01
In this paper, we expand upon our recent studies of an agent-based model of a battle between an intelligent army and an insurgent army to explore the role of modifying strategy according to the state of the battle (adaptive strategy) on battle outcomes. This model leads to surprising complexity and rich possibilities in battle outcomes, especially in battles between two well-matched sides. We contend that the use of adaptive strategies may be effective in winning battles.
NASA Astrophysics Data System (ADS)
Gimazov, R.; Shidlovskiy, S.
2018-05-01
In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.
Spörrle, Matthias; Welpe, Isabell M; Försterling, Friedrich
2006-01-01
This study applies the theoretical concepts of Rational Emotive Behavior Therapy (REBT; Ellis, 1962, 1994) to the analysis of functional and dysfunctional behaviour and emotions in the workplace and tests central assumptions of REBT in an organizational setting. We argue that Ellis' appraisal theory of emotion sheds light on some of the cognitive and emotional antecedents of emotional intelligence and emotionally intelligent behaviour. In an extension of REBT, we posit that adaptive emotions resulting from rational cognitions reflect more emotional intelligence than maladaptive emotions which result from irrational cognitions, because the former lead to functional behaviour. We hypothesize that semantically similar emotions (e.g. annoyance and rage) lead to different behavioural reactions and have a different functionality in an organizational context. The results of scenario experiments using organizational vignettes confirm the central assumptions of Ellis' appraisal theory and support our hypotheses of a correspondence between adaptive emotions and emotionally intelligent behaviour. Additionally, we find evidence that irrational job-related attitudes result in reduced work (but not life) satisfaction.
Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation.
Santarnecchi, Emiliano; Rossi, Simone
2016-12-06
Our view is that intelligence, as expression of the complexity of the human brain and of its evolutionary path, represents an intriguing example of "system level brain plasticity": tangible proofs of this assertion lie in the strong links intelligence has with vital brain capacities as information processing (i.e., pure, rough capacity to transfer information in an efficient way), resilience (i.e., the ability to cope with loss of efficiency and/or loss of physical elements in a network) and adaptability (i.e., being able to efficiently rearrange its dynamics in response to environmental demands). Current evidence supporting this view move from theoretical models correlating intelligence and individual response to systematic "lesions" of brain connectivity, as well as from the field of Noninvasive Brain Stimulation (NiBS). Perturbation-based approaches based on techniques as transcranial magnetic stimulation (TMS) and transcranial alternating current stimulation (tACS), are opening new in vivo scenarios which could allow to disclose more causal relationship between intelligence and brain plasticity, overcoming the limitations of brain-behavior correlational evidence.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-05-30
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-01-01
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2008-01-01
Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.
Soltani, Batoul; Keyvanara, Mahmoud
2013-01-01
Introduction: At the modern age, to acquire knowledge and experience, the individuals with their own specific culture have to enter contexts with cultural diversity, adapt to different cultures and have social interactions to be able to have effective inter-cultural relationships.To have such intercultural associations and satisfy individual needs in the society, cultural intelligence and social adaptability are deemed as inevitable requirements, in particular for those who enter a quite different culture. Hence, the present study tries to compare the cultural intelligence and its aspects and social adaptability in Iranian and non-Iranian dormitory students of Isfahan University of Medical Sciences in 2012. Methodology: The study was of descriptiveanalytical nature. The research population consisted of Iranian and non-Iranian students resided in the dormitories of Isfahan University of Medical Sciences which are 2500, totally. For Iranian students, two-stage sampling method was adopted. At the first stage, classified sampling and at the second stage, systematic random sampling was conducted. In this way, 441 students were selected. To form non-Iranian students’ sample, consensus sampling method was applied and a sample of 37 students were obtained. The research data was collected by using Earley & Ang’s Cultural Intelligence Questionnaire with the Cronbach’s coefficient α of 76% and California Social Adaptability Standard Questionnaire with the Cronbach’s coefficient α of over 70%. Then, the data were put into SPSS software to be analyzed. Finally, the results were presented by descriptive and inferential statistics methods. Results: The study findings revealed that there was no statistically significant difference between cultural intelligence and cognitive aspect of cultural intelligence in Iranian and non-Iranian students (P≥0/05). However, Iranian and non-Iranian students statistically differed in terms of the following aspects of cultural intelligence: meta-cognitive aspect (61.8% for Iranian students vs. 47.6% for non-Iranians), motivational aspect (59.0% vs. 42.6%), behavioral aspect (31.8% vs. 41.2%) as well as social adaptability as the other variable in question ( 68.9% vs. 56.2%) (p<0.001). Conclusion: The comparison of the mean scores gained for meta-cognitive and motivational aspects of cultural intelligence as well as social adaptability in Iranian and non-Iranian students resided in the dormitories of Isfahan University of Medical Sciences revealed that the Iranian students had the higher rank. On the other hand, the mean score acquired for the behavioral aspect in Iranian and non-Iranian students were comparable, with non-Iranian students having the higher mean scores. Therefore, it can be said that the meta-cognitive and motivational aspects of cultural intelligence and social adaptability of non-Iranian students and the behavioral aspect of Iranian students’ cultural intelligence may be promoted by educational planning, thereby, taking effective steps towards their achievement in contexts with inter-cultural interaction . In this way, their mental health will be enhanced, as well. PMID:23678339
Soltani, Batoul; Keyvanara, Mahmoud
2013-01-01
At the modern age, to acquire knowledge and experience, the individuals with their own specific culture have to enter contexts with cultural diversity, adapt to different cultures and have social interactions to be able to have effective inter-cultural relationships.To have such intercultural associations and satisfy individual needs in the society, cultural intelligence and social adaptability are deemed as inevitable requirements, in particular for those who enter a quite different culture. Hence, the present study tries to compare the cultural intelligence and its aspects and social adaptability in Iranian and non-Iranian dormitory students of Isfahan University of Medical Sciences in 2012. The study was of descriptiveanalytical nature. The research population consisted of Iranian and non-Iranian students resided in the dormitories of Isfahan University of Medical Sciences which are 2500, totally. For Iranian students, two-stage sampling method was adopted. At the first stage, classified sampling and at the second stage, systematic random sampling was conducted. In this way, 441 students were selected. To form non-Iranian students' sample, consensus sampling method was applied and a sample of 37 students were obtained. The research data was collected by using Earley & Ang's Cultural Intelligence Questionnaire with the Cronbach's coefficient α of 76% and California Social Adaptability Standard Questionnaire with the Cronbach's coefficient α of over 70%. Then, the data were put into SPSS software to be analyzed. Finally, the results were presented by descriptive and inferential statistics methods. The study findings revealed that there was no statistically significant difference between cultural intelligence and cognitive aspect of cultural intelligence in Iranian and non-Iranian students (P≥0/05). However, Iranian and non-Iranian students statistically differed in terms of the following aspects of cultural intelligence: meta-cognitive aspect (61.8% for Iranian students vs. 47.6% for non-Iranians), motivational aspect (59.0% vs. 42.6%), behavioral aspect (31.8% vs. 41.2%) as well as social adaptability as the other variable in question ( 68.9% vs. 56.2%) (p<0.001). The comparison of the mean scores gained for meta-cognitive and motivational aspects of cultural intelligence as well as social adaptability in Iranian and non-Iranian students resided in the dormitories of Isfahan University of Medical Sciences revealed that the Iranian students had the higher rank. On the other hand, the mean score acquired for the behavioral aspect in Iranian and non-Iranian students were comparable, with non-Iranian students having the higher mean scores. Therefore, it can be said that the meta-cognitive and motivational aspects of cultural intelligence and social adaptability of non-Iranian students and the behavioral aspect of Iranian students' cultural intelligence may be promoted by educational planning, thereby, taking effective steps towards their achievement in contexts with inter-cultural interaction . In this way, their mental health will be enhanced, as well.
Swarm Intelligence for Urban Dynamics Modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.
2009-04-16
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Prediction of Scour below Flip Bucket using Soft Computing Techniques
NASA Astrophysics Data System (ADS)
Azamathulla, H. Md.; Ab Ghani, Aminuddin; Azazi Zakaria, Nor
2010-05-01
The accurate prediction of the depth of scour around hydraulic structure (trajectory spillways) has been based on the experimental studies and the equations developed are mainly empirical in nature. This paper evaluates the performance of the soft computing (intelligence) techiques, Adaptive Neuro-Fuzzy System (ANFIS) and Genetic expression Programming (GEP) approach, in prediction of scour below a flip bucket spillway. The results are very promising, which support the use of these intelligent techniques in prediction of highly non-linear scour parameters.
Swarm Intelligence for Urban Dynamics Modelling
NASA Astrophysics Data System (ADS)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.
2009-04-01
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
The influence of active vision on the exoskeleton of intelligent agents
NASA Astrophysics Data System (ADS)
Smith, Patrice; Terry, Theodore B.
2016-04-01
Chameleonization occurs when a self-learning autonomous mobile system's (SLAMR) active vision scans the surface of which it is perched causing the exoskeleton to changes colors exhibiting a chameleon effect. Intelligent agents having the ability to adapt to their environment and exhibit key survivability characteristics of its environments would largely be due in part to the use of active vision. Active vision would allow the intelligent agent to scan its environment and adapt as needed in order to avoid detection. The SLAMR system would have an exoskeleton, which would change, based on the surface it was perched on; this is known as the "chameleon effect." Not in the common sense of the term, but from the techno-bio inspired meaning as addressed in our previous paper. Active vision, utilizing stereoscopic color sensing functionality would enable the intelligent agent to scan an object within its close proximity, determine the color scheme, and match it; allowing the agent to blend with its environment. Through the use of its' optical capabilities, the SLAMR system would be able to further determine its position, taking into account spatial and temporal correlation and spatial frequency content of neighboring structures further ensuring successful background blending. The complex visual tasks of identifying objects, using edge detection, image filtering, and feature extraction are essential for an intelligent agent to gain additional knowledge about its environmental surroundings.
ERIC Educational Resources Information Center
Alahdadi, Shadi; Ghanizadeh, Afsaneh
2017-01-01
A key objective of education is to prepare individuals to be fully-functioning learners. This entails developing the cognitive, metacognitive, motivational, cultural, and emotional competencies. The present study aimed to examine the interrelationships among adaptability, tolerance of ambiguity, cultural intelligence, learning approach, and…
The Relation between Intelligence and Adaptive Behavior: A Meta-Analysis
ERIC Educational Resources Information Center
Alexander, Ryan M.
2017-01-01
Intelligence tests and adaptive behavior scales measure vital aspects of the multidimensional nature of human functioning. Assessment of each is a required component in the diagnosis or identification of intellectual disability, and both are frequently used conjointly in the assessment and identification of other developmental disabilities. The…
Adaptive Educational Software by Applying Reinforcement Learning
ERIC Educational Resources Information Center
Bennane, Abdellah
2013-01-01
The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…
Poonamallee, Latha; Harrington, Alex M.; Nagpal, Manisha; Musial, Alec
2018-01-01
Emotional intelligence is established to predict success in leadership effectiveness in various contexts and has been linked to personality factors. This paper introduces Dharma Life Program, a novel approach to improving emotional intelligence by targeting maladaptive personality traits and triggering neuroplasticity through the use of a smart-phone application and mentoring. The program uses neuroplasticity to enable users to create a more adaptive application of their maladaptive traits, thus improving their emotional intelligence. In this study 26 participants underwent the Dharma Life Program in a leadership development setting. We assessed their emotional and social intelligence before and after the Dharma Life Program intervention using the Emotional and Social Competency Inventory (ESCI). The study found a significant improvement in the lowest three competencies and a significant improvement in almost all domains for the entire sample. Our findings suggest that the completion of the Dharma Life Program has a significant positive effect on Emotional and Social Competency scores and offers a new avenue for improving emotional intelligence competencies. PMID:29527182
Poonamallee, Latha; Harrington, Alex M; Nagpal, Manisha; Musial, Alec
2018-01-01
Emotional intelligence is established to predict success in leadership effectiveness in various contexts and has been linked to personality factors. This paper introduces Dharma Life Program, a novel approach to improving emotional intelligence by targeting maladaptive personality traits and triggering neuroplasticity through the use of a smart-phone application and mentoring. The program uses neuroplasticity to enable users to create a more adaptive application of their maladaptive traits, thus improving their emotional intelligence. In this study 26 participants underwent the Dharma Life Program in a leadership development setting. We assessed their emotional and social intelligence before and after the Dharma Life Program intervention using the Emotional and Social Competency Inventory (ESCI). The study found a significant improvement in the lowest three competencies and a significant improvement in almost all domains for the entire sample. Our findings suggest that the completion of the Dharma Life Program has a significant positive effect on Emotional and Social Competency scores and offers a new avenue for improving emotional intelligence competencies.
Revisiting the Psychology of Intelligence Analysis: From Rational Actors to Adaptive Thinkers
ERIC Educational Resources Information Center
Puvathingal, Bess J.; Hantula, Donald A.
2012-01-01
Intelligence analysis is a decision-making process rife with ambiguous, conflicting, irrelevant, important, and excessive information. The U.S. Intelligence Community is primed for psychology to lend its voice to the "analytic transformation" movement aimed at improving the quality of intelligence analysis. Traditional judgment and decision making…
Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants.
Sanchez, Justin C; Mahmoudi, Babak; DiGiovanna, Jack; Principe, Jose C
2009-04-01
The success of brain-machine interfaces (BMI) is enabled by the remarkable ability of the brain to incorporate the artificial neuroprosthetic 'tool' into its own cognitive space and use it as an extension of the user's body. Unlike other tools, neuroprosthetics create a shared space that seamlessly spans the user's internal goal representation of the world and the external physical environment enabling a much deeper human-tool symbiosis. A key factor in the transformation of 'simple tools' into 'intelligent tools' is the concept of co-adaptation where the tool becomes functionally involved in the extraction and definition of the user's goals. Recent advancements in the neuroscience and engineering of neuroprosthetics are providing a blueprint for how new co-adaptive designs based on reinforcement learning change the nature of a user's ability to accomplish tasks that were not possible using conventional methodologies. By designing adaptive controls and artificial intelligence into the neural interface, tools can become active assistants in goal-directed behavior and further enhance human performance in particular for the disabled population. This paper presents recent advances in computational and neural systems supporting the development of symbiotic neuroprosthetic assistants.
Blindness in designing intelligent systems
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1988-01-01
New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.
Intelligent failure-tolerant control
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1991-01-01
An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods.
FPGA implementation of advanced FEC schemes for intelligent aggregation networks
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.
Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors.
Villaverde, Monica; Perez, David; Moreno, Felix
2015-11-17
The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor's infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.
An intelligent interface for satellite operations: Your Orbit Determination Assistant (YODA)
NASA Technical Reports Server (NTRS)
Schur, Anne
1988-01-01
An intelligent interface is often characterized by the ability to adapt evaluation criteria as the environment and user goals change. Some factors that impact these adaptations are redefinition of task goals and, hence, user requirements; time criticality; and system status. To implement adaptations affected by these factors, a new set of capabilities must be incorporated into the human-computer interface design. These capabilities include: (1) dynamic update and removal of control states based on user inputs, (2) generation and removal of logical dependencies as change occurs, (3) uniform and smooth interfacing to numerous processes, databases, and expert systems, and (4) unobtrusive on-line assistance to users of concepts were applied and incorporated into a human-computer interface using artificial intelligence techniques to create a prototype expert system, Your Orbit Determination Assistant (YODA). YODA is a smart interface that supports, in real teime, orbit analysts who must determine the location of a satellite during the station acquisition phase of a mission. Also described is the integration of four knowledge sources required to support the orbit determination assistant: orbital mechanics, spacecraft specifications, characteristics of the mission support software, and orbit analyst experience. This initial effort is continuing with expansion of YODA's capabilities, including evaluation of results of the orbit determination task.
Inverting the Army Intelligence Pyramid
2011-05-19
Intelligence for Counterinsurgency," Military Review 86, no. 5 (2006): 25. U.S. Army forces adapted well over the past nine years of the conflict and have...David H. Petraeus, "COMISAF’s Counterinsurgency Guidance,"(2010); Brian Burton and John Nagl, "Learning as We Go: The US Army Adapts to... adaptive and evolving enemies it faced by introducing the concept of “Every Soldier a Sensor.” With this concept, the Army sought to inculcate
Neural efficiency as a function of task demands☆
Dunst, Beate; Benedek, Mathias; Jauk, Emanuel; Bergner, Sabine; Koschutnig, Karl; Sommer, Markus; Ischebeck, Anja; Spinath, Birgit; Arendasy, Martin; Bühner, Markus; Freudenthaler, Heribert; Neubauer, Aljoscha C.
2014-01-01
The neural efficiency hypothesis describes the phenomenon that brighter individuals show lower brain activation than less bright individuals when working on the same cognitive tasks. The present study investigated whether the brain activation–intelligence relationship still applies when more versus less intelligent individuals perform tasks with a comparable person-specific task difficulty. In an fMRI-study, 58 persons with lower (n = 28) or respectively higher (n = 30) intelligence worked on simple and difficult inductive reasoning tasks having the same person-specific task difficulty. Consequently, less bright individuals received sample-based easy and medium tasks, whereas bright subjects received sample-based medium and difficult tasks. This design also allowed a comparison of lower versus higher intelligent individuals when working on the same tasks (i.e. sample-based medium task difficulty). In line with expectations, differences in task performance and in brain activation were only found for the subset of tasks with the same sample-based task difficulty, but not when comparing tasks with the same person-specific task difficulty. These results suggest that neural efficiency reflects an (ability-dependent) adaption of brain activation to the respective task demands. PMID:24489416
ERIC Educational Resources Information Center
Di Fabio, Annamaria; Kenny, Maureen E.
2015-01-01
Drawing from career construction and positive youth development perspectives, this study explores, among 254 Italian high school students, the relationship between emotional intelligence (EI) and support from friends and teachers with indices of adaptive career development. Results from the full canonical correlational model revealed that…
Adaptive and Intelligent Systems for Collaborative Learning Support: A Review of the Field
ERIC Educational Resources Information Center
Magnisalis, I.; Demetriadis, S.; Karakostas, A.
2011-01-01
This study critically reviews the recently published scientific literature on the design and impact of adaptive and intelligent systems for collaborative learning support (AICLS) systems. The focus is threefold: 1) analyze critical design issues of AICLS systems and organize them under a unifying classification scheme, 2) present research evidence…
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica
Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
2004-10-01
The human eye is a good model for the engineering of optical correlators. Three prominent intelligent functionalities in human vision could in the near future become realized by a new diffractive-optical hardware design of optical imaging sensors: (1) Illuminant-adaptive RGB-based color Vision, (2) Monocular 3D Vision based on RGB data processing, (3) Patchwise fourier-optical Object-Classification and Identification. The hardware design of the human eye has specific diffractive-optical elements (DOE's) in aperture and in image space and seems to execute the three jobs at -- or not far behind -- the loci of the images of objects.
Position-adaptive explosive detection concepts for swarming micro-UAVs
NASA Astrophysics Data System (ADS)
Selmic, Rastko R.; Mitra, Atindra
2008-04-01
We have formulated a series of position-adaptive sensor concepts for explosive detection applications using swarms of micro-UAV's. These concepts are a generalization of position-adaptive radar concepts developed for challenging conditions such as urban environments. For radar applications, this concept is developed with platforms within a UAV swarm that spatially-adapt to signal leakage points on the perimeter of complex clutter environments to collect information on embedded objects-of-interest. The concept is generalized for additional sensors applications by, for example, considering a wooden cart that contains explosives. We can formulate system-of-systems concepts for a swarm of micro-UAV's in an effort to detect whether or not a given cart contains explosives. Under this new concept, some of the members of the UAV swarm can serve as position-adaptive "transmitters" by blowing air over the cart and some of the members of the UAV swarm can serve as position-adaptive "receivers" that are equipped with chem./bio sensors that function as "electronic noses". The final objective can be defined as improving the particle count for the explosives in the air that surrounds a cart via development of intelligent position-adaptive control algorithms in order to improve the detection and false-alarm statistics. We report on recent simulation results with regard to designing optimal sensor placement for explosive or other chemical agent detection. This type of information enables the development of intelligent control algorithms for UAV swarm applications and is intended for the design of future system-of-systems with adaptive intelligence for advanced surveillance of unknown regions. Results are reported as part of a parametric investigation where it is found that the probability of contaminant detection depends on the air flow that carries contaminant particles, geometry of the surrounding space, leakage areas, and other factors. We present a concept of position-adaptive detection (i.e. based on the example in the previous paragraph) consisting of position-adaptive fluid actuators (fans) and position-adaptive sensors. Based on these results, a preliminary analysis of sensor requirements for these fluid actuators and sensors is presented for small-UAVs in a field-enabled explosive detection environment. The computational fluid dynamics (CFD) simulation software Fluent is used to simulate the air flow in the corridor model containing a box with explosive particles. It is found that such flow is turbulent with Reynolds number greater than 106. Simulation methods and results are presented which show particle velocity and concentration distribution throughout the closed box. The results indicate that the CFD-based method can be used for other sensor placement and deployment optimization problems. These techniques and results can be applied towards the development of future system-of-system UAV swarms for defense, homeland defense, and security applications.
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Monitoring the health of power transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, J.L. Jr.; Hagman, W.H.; Lesieutre, B.C.
This article reviews MIT`s model-based system which offers adaptive, intelligent surveillance of transformers, and summons attention to anomalous operation through paging devices. Failures of large power transformers are problematic for four reasons. Generally, large transformers are situated so that failures present operational problems to the system. In addition, large power transformers are encased in tanks of flammable and environmentally hazardous fluid. Failures are often accompanied by fire and/or spillage of this fluid. This presents hazards to people, other equipment and property, and the local environment. Finally, large power transformers are costly devices. There is a clear incentive for utilities tomore » keep track of the health of their power transformers. Massachusetts Institute of Technology (MIT) has developed an adaptive, intelligent, monitoring system for large power transformers. Four large transformers on the Boston Edison system are under continuous surveillance by this system, which can summon attention to anomalous operation through paging devices. The monitoring system offers two advantages over more traditional (not adaptive) methods of tracking transformer operation.« less
A chaos wolf optimization algorithm with self-adaptive variable step-size
NASA Astrophysics Data System (ADS)
Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun
2017-10-01
To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.
Knowledge Flow Mesh and Its Dynamics: A Decision Support Environment
2008-06-01
paper was the ability of the United States military to achieve dominance through information superiority. The use of intelligent sensors and... Intelligence Agency, National Security Agency, Defense Intelligence Agency, and individual Service intelligence agencies). In fact, these edge entities would... intelligence , design, choice, and implementation. 6. Support variety of decision processes and styles. 7. DSS should be adaptable and flexible. 8. DSS
NASA Astrophysics Data System (ADS)
ul Amin, Rooh; Aijun, Li; Khan, Muhammad Umer; Shamshirband, Shahaboddin; Kamsin, Amirrudin
2017-01-01
In this paper, an adaptive trajectory tracking controller based on extended normalized radial basis function network (ENRBFN) is proposed for 3-degree-of-freedom four rotor hover vehicle subjected to external disturbance i.e. wind turbulence. Mathematical model of four rotor hover system is developed using equations of motions and a new computational intelligence based technique ENRBFN is introduced to approximate the unmodeled dynamics of the hover vehicle. The adaptive controller based on the Lyapunov stability approach is designed to achieve tracking of the desired attitude angles of four rotor hover vehicle in the presence of wind turbulence. The adaptive weight update based on the Levenberg-Marquardt algorithm is used to avoid weight drift in case the system is exposed to external disturbances. The closed-loop system stability is also analyzed using Lyapunov stability theory. Simulations and experimental results are included to validate the effectiveness of the proposed control scheme.
An intelligent robotic aid system for human services
NASA Technical Reports Server (NTRS)
Kawamura, K.; Bagchi, S.; Iskarous, M.; Pack, R. T.; Saad, A.
1994-01-01
The long term goal of our research at the Intelligent Robotic Laboratory at Vanderbilt University is to develop advanced intelligent robotic aid systems for human services. As a first step toward our goal, the current thrusts of our R&D are centered on the development of an intelligent robotic aid called the ISAC (Intelligent Soft Arm Control). In this paper, we describe the overall system architecture and current activities in intelligent control, adaptive/interactive control and task learning.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Masri Husam Fayiz, Al
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.
Towards a Self-Configuring Optimization System for Spacecraft Design
NASA Technical Reports Server (NTRS)
Chien, Steve
1997-01-01
In this paper, we propose the use of a set of generic, metaheuristic optimization algorithms, which is configured for a particular optimization problem by an adaptive problem solver based on artificial intelligence and machine learning techniques. We describe work in progress on these principles.
Personalization of Reading Passages Improves Vocabulary Acquisition
ERIC Educational Resources Information Center
Heilman, Michael; Collins-Thompson, Kevyn; Callan, Jamie; Eskenazi, Maxine; Juffs, Alan; Wilson, Lois
2010-01-01
The REAP tutoring system provides individualized and adaptive English as a Second Language vocabulary practice. REAP can automatically personalize instruction by providing practice readings about topics that match interests as well as domain-based, cognitive objectives. While most previous research on motivation in intelligent tutoring…
ERIC Educational Resources Information Center
Gerits, Linda; Derksen, Jan J. L.; Verbruggen, Antoine B.
2004-01-01
The emotional intelligence profiles, gender differences, and adaptive success of 380 Dutch nurses caring for people with mental retardation and accompanying severe behavior problems are reported. Data were collected with the Bar-On Emotional Quotient Inventory, Utrecht-Coping List, Utrecht-Burnout Scale, MMPI-2, and GAMA. Absence due to illness…
Three-camera stereo vision for intelligent transportation systems
NASA Astrophysics Data System (ADS)
Bergendahl, Jason; Masaki, Ichiro; Horn, Berthold K. P.
1997-02-01
A major obstacle in the application of stereo vision to intelligent transportation system is high computational cost. In this paper, a PC based three-camera stereo vision system constructed with off-the-shelf components is described. The system serves as a tool for developing and testing robust algorithms which approach real-time performance. We present an edge based, subpixel stereo algorithm which is adapted to permit accurate distance measurements to objects in the field of view using a compact camera assembly. Once computed, the 3D scene information may be directly applied to a number of in-vehicle applications, such as adaptive cruise control, obstacle detection, and lane tracking. Moreover, since the largest computational costs is incurred in generating the 3D scene information, multiple applications that leverage this information can be implemented in a single system with minimal cost. On-road applications, such as vehicle counting and incident detection, are also possible. Preliminary in-vehicle road trial results are presented.
Rosser, Benjamin A; McCullagh, Paul; Davies, Richard; Mountain, Gail A; McCracken, Lance; Eccleston, Christopher
2011-04-01
Adapting therapeutic practice from traditional face-to-face exchange to remote technology-based delivery presents challenges for the therapist, patient, and technical writer. This article documents the process of therapy adaptation and the resultant specification for the SMART2 project-a technology-based self-management system for assisting long-term health conditions, including chronic pain. Focus group discussions with healthcare professionals and patients were conducted to inform selection of therapeutic objectives and appropriate technology. Pertinent challenges are identified, relating to (1) reduction and definition of therapeutic objectives, and (2) how to approach adaptation of therapy to a form suited to technology delivery. The requirement of the system to provide dynamic and intelligent responses to patient experience and behavior is also emphasized. Solutions to these challenges are described in the context of the SMART2 technology-based intervention. More explicit discussion and documentation of therapy adaptation to technology-based delivery within the literature is encouraged.
Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua
2016-09-01
This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.
Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor
NASA Technical Reports Server (NTRS)
Szu, Harold H.
1990-01-01
In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously.
Mickley, Manfred; Renner, Gerolf
2015-01-01
Do Current German-Language Intelligence Tests Take into Consideration the Special Needs of Children with Disabilities? A review of 23 German intelligence test manuals shows that test-authors do not exclude the use of their tests for children with disabilities. However, these special groups play a minor role in the construction, standardization, and validation of intelligence tests. There is no sufficient discussion and reflection concerning the issue which construct-irrelevant requirements may reduce the validity of the test or which individual test-adaptations are allowed or recommended. Intelligence testing of children with disabilities needs more empirical evidence on objectivity, reliability, and validity of the assessment-procedures employed. Future test construction and validation should systematically analyze construct-irrelevant variance in item format, the special needs of handicapped children, and should give hints for useful test-adaptations.
Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.
Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar
2006-04-01
This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.
NASA Technical Reports Server (NTRS)
Aucoin, B. M.; Heller, R. P.
1990-01-01
An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.
Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results
NASA Technical Reports Server (NTRS)
Burken, John J.; Larson, Richard R.
2009-01-01
F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei
2015-10-01
In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.
Evolutionary Psychology and Intelligence Research
ERIC Educational Resources Information Center
Kanazawa, Satoshi
2010-01-01
This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…
MIXI: Mobile Intelligent X-Ray Inspection System
NASA Astrophysics Data System (ADS)
Arodzero, Anatoli; Boucher, Salime; Kutsaev, Sergey V.; Ziskin, Vitaliy
2017-07-01
A novel, low-dose Mobile Intelligent X-ray Inspection (MIXI) concept is being developed at RadiaBeam Technologies. The MIXI concept relies on a linac-based, adaptive, ramped energy source of short X-ray packets of pulses, a new type of fast X-ray detector, rapid processing of detector signals for intelligent control of the linac, and advanced radiography image processing. The key parameters for this system include: better than 3 mm line pair resolution; penetration greater than 320 mm of steel equivalent; scan speed with 100% image sampling rate of up to 15 km/h; and material discrimination over a range of thicknesses up to 200 mm of steel equivalent. Its minimal radiation dose, size and weight allow MIXI to be placed on a lightweight truck chassis.
The Technological Dimension of Educational Technology in Europe
ERIC Educational Resources Information Center
Dimitriadis, Yannis
2012-01-01
This article describes some of the main technological trends and issues of the European landscape of research and innovation in educational technology. Although several innovative technologies (tools, architectures, platforms, or approaches) emerge, such as intelligent support to personalization, collaboration or adaptation in mobile, game-based,…
Overview of Intelligent Systems and Operations Development
NASA Technical Reports Server (NTRS)
Pallix, Joan; Dorais, Greg; Penix, John
2004-01-01
To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.
Developing Rational-Empirical Views of Intelligent Adaptive Behavior
2004-08-01
biological frame to the information processing model and outline our understanding of intentions and beliefs that co-exist with rational and...notion that the evolution of cognition has produced memory/ knowledge systems that specialize in the processing of particular types of information ...1 PERMIS 2004 Developing Rational-Empirical Views of Intelligent Adaptive Behavior Gary Berg-Cross, Knowledge Strategies Potomac, Maryland
E-learning environment as intelligent tutoring system
NASA Astrophysics Data System (ADS)
Nagyová, Ingrid
2017-07-01
The development of computers and artificial intelligence theory allow their application in the field of education. Intelligent tutoring systems reflect student learning styles and adapt the curriculum according to their individual needs. The building of intelligent tutoring systems requires not only the creation of suitable software, but especially the search and application of the rules enabling ICT to individually adapt the curriculum. The main idea of this paper is to attempt to specify the rules for dividing the students to systematically working students and more practically or pragmatically inclined students. The paper shows that monitoring the work of students in e-learning environment, analysis of various approaches to educational materials and correspondence assignments show different results for the defined groups of students.
Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Li, Jin; Wei, Xiaodong
2018-01-01
Prosthetic knee is the most important component of lower limb prosthesis. Speed adaptive for prosthetic knee during swing flexion is the key method to realize physiological gait. This study aims to discuss the target of physiological gait, propose a speed adaptive control method during swing flexion and research the damping adjustment law of intelligent hydraulic prosthetic knee. According to the physiological gait trials of healthy people, the control target during swing flexion is defined. A new prosthetic knee with fuzzy logical control during swing flexion is designed to realize the damping adjustment automatically. The function simulation and evaluation system of intelligent knee prosthesis is provided. Speed adaptive control test of the intelligent prosthetic knee in different velocities are researched. The maximum swing flexion of the knee angle is set between sixty degree and seventy degree as the target of physiological gait. Preliminary experimental results demonstrate that the prosthetic knee with fuzzy logical control is able to realize physiological gait under different speeds. The faster the walking, the bigger the valve closure percentage of the hydraulic prosthetic knee. The proposed fuzzy logical control strategy and intelligent hydraulic prosthetic knee are effective for the amputee to achieve physiological gait.
ERIC Educational Resources Information Center
Gunderson, Elizabeth A.; Hamdan, Noora; Sorhagen, Nicole S.; D'Esterre, Alexander P.
2017-01-01
Individuals' implicit theories of intelligence exist on a spectrum, from believing intelligence is fixed and unchangeable, to believing it is malleable and can be improved with effort. A belief in malleable intelligence leads to adaptive responses to challenge and higher achievement. However, surprisingly little is known about the development of…
Dix, Annika; Wartenburger, Isabell; van der Meer, Elke
2016-10-01
This study on analogical reasoning evaluates the impact of fluid intelligence on adaptive changes in neural efficiency over the course of an experiment and specifies the underlying cognitive processes. Grade 10 students (N=80) solved unfamiliar geometric analogy tasks of varying difficulty. Neural efficiency was measured by the event-related desynchronization (ERD) in the alpha band, an indicator of cortical activity. Neural efficiency was defined as a low amount of cortical activity accompanying high performance during problem-solving. Students solved the tasks faster and more accurately the higher their FI was. Moreover, while high FI led to greater cortical activity in the first half of the experiment, high FI was associated with a neurally more efficient processing (i.e., better performance but same amount of cortical activity) in the second half of the experiment. Performance in difficult tasks improved over the course of the experiment for all students while neural efficiency increased for students with higher but decreased for students with lower fluid intelligence. Based on analyses of the alpha sub-bands, we argue that high fluid intelligence was associated with a stronger investment of attentional resource in the integration of information and the encoding of relations in this unfamiliar task in the first half of the experiment (lower-2 alpha band). Students with lower fluid intelligence seem to adapt their applied strategies over the course of the experiment (i.e., focusing on task-relevant information; lower-1 alpha band). Thus, the initially lower cortical activity and its increase in students with lower fluid intelligence might reflect the overcoming of mental overload that was present in the first half of the experiment. Copyright © 2016 Elsevier Inc. All rights reserved.
Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.
Mahmoudi, Babak; Principe, Jose C; Sanchez, Justin C
2010-01-01
The design of Brain-Machine Interface (BMI) neural decoders that have robust performance in changing environments encountered in daily life activity is a challenging problem. One solution to this problem is the design of neural decoders that are able to assist and adapt to the user by participating in their perception-action-reward cycle (PARC). Using inspiration both from artificial intelligence and neurobiology reinforcement learning theories, we have designed a novel decoding architecture that enables a symbiotic relationship between the user and an Intelligent Assistant (IA). By tapping into the motor and reward centers in the brain, the IA adapts the process of decoding neural motor commands into prosthetic actions based on the user's goals. The focus of this paper is on extraction of goal information directly from the brain and making it accessible to the IA as an evaluative feedback for adaptation. We have recorded the neural activity of the Nucleus Accumbens in behaving rats during a reaching task. The peri-event time histograms demonstrate a rich representation of the reward prediction in this subcortical structure that can be modeled on a single trial basis as a scalar evaluative feedback with high precision.
TEx-Sys Model for Building Intelligent Tutoring Systems
ERIC Educational Resources Information Center
Stankov, Slavomir; Rosic, Marko; Zitko, Branko; Grubisic, Ani
2008-01-01
Special classes of asynchronous e-learning systems are the intelligent tutoring systems which represent an advanced learning and teaching environment adaptable to individual student's characteristics. Authoring shells have an environment that enables development of the intelligent tutoring systems. In this paper we present, in entirety, for the…
ERIC Educational Resources Information Center
Serdarevic, Fadila; van Batenburg-Eddes, Tamara; Mous, Sabine E.; White, Tonya; Hofman, Albert; Jaddoe, Vincent W. V.; Verhulst, Frank C.; Ghassabian, Akhgar; Tiemeier, Henning
2016-01-01
Within a population-based study of 3356 children, we investigated whether infant neuromotor development was associated with cognition in early childhood. Neuromotor development was examined with an adapted version of Touwen's Neurodevelopmental Examination between 9 and 20 weeks. Parents rated their children's executive functioning at 4 years. At…
Adaptive Practice: Next Generation Evidence-Based Practice in Digital Environments.
Kennedy, Margaret Ann
2016-01-01
Evidence-based practice in nursing is considered foundational to safe, competent care. To date, rigid traditional perceptions of what constitutes 'evidence' have constrained the recognition and use of practice-based evidence and the exploitation of novel forms of evidence from data rich environments. Advancements such as the conceptualization of clinical intelligence, the prevalence of increasingly sophisticated digital health information systems, and the advancement of the Big Data phenomenon have converged to generate a new contemporary context. In today's dynamic data-rich environments, clinicians have new sources of valid evidence, and need a new paradigm supporting clinical practice that is adaptive to information generated by diverse electronic sources. This opinion paper presents adaptive practice as the next generation of evidence-based practice in contemporary evidence-rich environments and provides recommendations for the next phase of evolution.
Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique
ERIC Educational Resources Information Center
Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao
2014-01-01
During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…
Pragmatic User Model Implementation in an Intelligent Help System.
ERIC Educational Resources Information Center
Fernandez-Manjon, Baltasar; Fernandez-Valmayor, Alfredo; Fernandez-Chamizo, Carmen
1998-01-01
Describes Aran, a knowledge-based system designed to help users deal with problems related to Unix operation. Highlights include adaptation to the individual user; user modeling knowledge; stereotypes; content of the individual user model; instantiation, acquisition, and maintenance of the individual model; dynamic acquisition of objective and…
Teaching Social Skills: An Effective Online Program
ERIC Educational Resources Information Center
Sanchez, Rebecca P.; Brown, Emily; DeRosier, Melissa E.
2015-01-01
Educators, policymakers, and the general public agree that social skills should be taught to children. In an effort to bridge this gap between evidence-based social skills training and populations in need, the authors have developed an Intelligent Social Tutoring System (ISTS) that fosters learning through adaptive interaction between the student…
Public Relations Roles and Systems Theory: Functional and Historicist Causal Models.
ERIC Educational Resources Information Center
Broom, Glen M.
The effectiveness of an organizations's adaptive behavior depends on the extent to which public relations concerns are considered in goal setting and program planning. The following five open systems propositions, based on a "functional" paradigm, address the complex relationship between public relations and organizational intelligence and do not…
The Intelligent Control System and Experiments for an Unmanned Wave Glider.
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.
The Intelligent Control System and Experiments for an Unmanned Wave Glider
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956
The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth.
Nunn, Alistair V W; Guy, Geoffrey W; Bell, Jimmy D
2014-01-01
Mankind is facing an unprecedented health challenge in the current pandemic of obesity and diabetes. We propose that this is the inevitable (and predictable) consequence of the evolution of intelligence, which itself could be an expression of life being an information system driven by entropy. Because of its ability to make life more adaptable and robust, intelligence evolved as an efficient adaptive response to the stresses arising from an ever-changing environment. These adaptive responses are encapsulated by the epiphenomena of "hormesis", a phenomenon we believe to be central to the evolution of intelligence and essential for the maintenance of optimal physiological function and health. Thus, as intelligence evolved, it would eventually reach a cognitive level with the ability to control its environment through technology and have the ability remove all stressors. In effect, it would act to remove the very hormetic factors that had driven its evolution. Mankind may have reached this point, creating an environmental utopia that has reduced the very stimuli necessary for optimal health and the evolution of intelligence - "the intelligence paradox". One of the hallmarks of this paradox is of course the rising incidence in obesity, diabetes and the metabolic syndrome. This leads to the conclusion that wherever life evolves, here on earth or in another part of the galaxy, the "intelligence paradox" would be the inevitable side-effect of the evolution of intelligence. ET may not need to just "phone home" but may also need to "phone the local gym". This suggests another possible reason to explain Fermi's paradox; Enrico Fermi, the famous physicist, suggested in the 1950s that if extra-terrestrial intelligence was so prevalent, which was a common belief at the time, then where was it? Our suggestion is that if advanced life has got going elsewhere in our galaxy, it can't afford to explore the galaxy because it has to pay its healthcare costs.
The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth
2014-01-01
Mankind is facing an unprecedented health challenge in the current pandemic of obesity and diabetes. We propose that this is the inevitable (and predictable) consequence of the evolution of intelligence, which itself could be an expression of life being an information system driven by entropy. Because of its ability to make life more adaptable and robust, intelligence evolved as an efficient adaptive response to the stresses arising from an ever-changing environment. These adaptive responses are encapsulated by the epiphenomena of “hormesis”, a phenomenon we believe to be central to the evolution of intelligence and essential for the maintenance of optimal physiological function and health. Thus, as intelligence evolved, it would eventually reach a cognitive level with the ability to control its environment through technology and have the ability remove all stressors. In effect, it would act to remove the very hormetic factors that had driven its evolution. Mankind may have reached this point, creating an environmental utopia that has reduced the very stimuli necessary for optimal health and the evolution of intelligence – “the intelligence paradox”. One of the hallmarks of this paradox is of course the rising incidence in obesity, diabetes and the metabolic syndrome. This leads to the conclusion that wherever life evolves, here on earth or in another part of the galaxy, the “intelligence paradox” would be the inevitable side-effect of the evolution of intelligence. ET may not need to just “phone home” but may also need to “phone the local gym”. This suggests another possible reason to explain Fermi’s paradox; Enrico Fermi, the famous physicist, suggested in the 1950s that if extra-terrestrial intelligence was so prevalent, which was a common belief at the time, then where was it? Our suggestion is that if advanced life has got going elsewhere in our galaxy, it can’t afford to explore the galaxy because it has to pay its healthcare costs. PMID:25089149
Teaching the Perpendicular Bisector: A Kinesthetic Approach
ERIC Educational Resources Information Center
Touval, Ayana
2011-01-01
Kinesthetic intelligence is one of the seven kinds of intelligence identified by Gardner's multiple intelligence theory (1983). The kinesthetic approach to teaching has numerous pedagogical advantages and can be adapted to the teaching of mathematics. This article describes a series of kinesthetic activities designed to explore the properties of…
Mathematical Intelligence and Mathematical Creativity: A Causal Relationship
ERIC Educational Resources Information Center
Tyagi, Tarun Kumar
2017-01-01
This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…
Intelligent Augmented Reality Training for Motherboard Assembly
ERIC Educational Resources Information Center
Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark
2015-01-01
We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…
Leadership Institute: Building Leadership Capacity through Emotional Intelligence
ERIC Educational Resources Information Center
Argabright, Karen J.; King, Jeff; Cochran, Graham R.; Chen, Claire Yueh-Ti
2013-01-01
Given the changing dynamics of society and the pressures on Extension organizations to adapt, leadership effectiveness has become a crucial element of success. The program presented here is designed to enhance individual emotional intelligence. Through in-depth engagement of the participants, they learn to apply dynamics of emotional intelligence,…
Bridging the Gap: Enhancing SNA Within the Marine Corps Intelligence Community
2015-06-01
ENHANCING SNA WITHIN THE MARINE CORPS INTELLIGENCE COMMUNITY by Robert C. Schotter June 2015 Thesis Advisor: Raymond Buettner Co-Advisor...INTELLIGENCE COMMUNITY 5. FUNDING NUMBERS 6. AUTHOR(S) Robert C. Schotter 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate...United States Marine Corps and the Marine Corps’ intelligence community recognize that future adversaries are likely to be adaptive and complex. Both
[Methods of artificial intelligence: a new trend in pharmacy].
Dohnal, V; Kuca, K; Jun, D
2005-07-01
Artificial neural networks (ANN) and genetic algorithms are one group of methods called artificial intelligence. The application of ANN on pharmaceutical data can lead to an understanding of the inner structure of data and a possibility to build a model (adaptation). In addition, for certain cases it is possible to extract rules from data. The adapted ANN is prepared for the prediction of properties of compounds which were not used in the adaptation phase. The applications of ANN have great potential in pharmaceutical industry and in the interpretation of analytical, pharmacokinetic or toxicological data.
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Guenther, Kurt; Hodgkinson, John; Jacklin, Stephen; Richard, Michael; Schumann, Johann; Soares, Fola
2005-01-01
Modern exploration missions require modern control systems-control systems that can handle catastrophic changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and simulation result within NASA's Intelligent Flight Control Systems (IFCS).
Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor
NASA Astrophysics Data System (ADS)
Wang, Yannian; Wu, Peizhi; Liu, Chengtao
2017-09-01
To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.
Elaziz, Mohamed Abd; Hemdan, Ahmed Monem; Hassanien, AboulElla; Oliva, Diego; Xiong, Shengwu
2017-09-07
The current economics of the fish protein industry demand rapid, accurate and expressive prediction algorithms at every step of protein production especially with the challenge of global climate change. This help to predict and analyze functional and nutritional quality then consequently control food allergies in hyper allergic patients. As, it is quite expensive and time-consuming to know these concentrations by the lab experimental tests, especially to conduct large-scale projects. Therefore, this paper introduced a new intelligent algorithm using adaptive neuro-fuzzy inference system based on whale optimization algorithm. This algorithm is used to predict the concentration levels of bioactive amino acids in fish protein hydrolysates at different times during the year. The whale optimization algorithm is used to determine the optimal parameters in adaptive neuro-fuzzy inference system. The results of proposed algorithm are compared with others and it is indicated the higher performance of the proposed algorithm.
Identification and control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.; Singh, N. B.
1992-01-01
This paper presents an intelligent adaptive control system for the control of a solid-liquid interface of a crystal while it is growing via directional solidification inside a multizone transparent furnace. The task of the process controller is to establish a user-specified axial temperature profile and to maintain a desirable interface shape. Both single-input-single-output and multi-input-multi-output adaptive pole placement algorithms have been used to control the temperature. Also described is an intelligent measurement system to assess the shape of the crystal while it is growing. A color video imaging system observes the crystal in real time and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.
INITIATE: An Intelligent Adaptive Alert Environment.
Jafarpour, Borna; Abidi, Samina Raza; Ahmad, Ahmad Marwan; Abidi, Syed Sibte Raza
2015-01-01
Exposure to a large volume of alerts generated by medical Alert Generating Systems (AGS) such as drug-drug interaction softwares or clinical decision support systems over-whelms users and causes alert fatigue in them. Some of alert fatigue effects are ignoring crucial alerts and longer response times. A common approach to avoid alert fatigue is to devise mechanisms in AGS to stop them from generating alerts that are deemed irrelevant. In this paper, we present a novel framework called INITIATE: an INtellIgent adapTIve AlerT Environment to avoid alert fatigue by managing alerts generated by one or more AGS. We have identified and categories the lifecycle of different alerts and have developed alert management logic as per the alerts' lifecycle. Our framework incorporates an ontology that represents the alert management strategy and an alert management engine that executes this strategy. Our alert management framework offers the following features: (1) Adaptability based on users' feedback; (2) Personalization and aggregation of messages; and (3) Connection to Electronic Medical Records by implementing a HL7 Clinical Document Architecture parser.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
NASA Astrophysics Data System (ADS)
Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal
2014-06-01
This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2016-08-01
In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.
Sensor Needs for Control and Health Management of Intelligent Aircraft Engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.
2004-01-01
NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.
Overby, Megan; Carrell, Thomas; Bernthal, John
2007-10-01
This study examined 2nd-grade teachers' perceptions of the academic, social, and behavioral competence of students with speech sound disorders (SSDs). Forty-eight 2nd-grade teachers listened to 2 groups of sentences differing by intelligibility and pitch but spoken by a single 2nd grader. For each sentence group, teachers rated the speaker's academic, social, and behavioral competence using an adapted version of the Teacher Rating Scale of the Self-Perception Profile for Children (S. Harter, 1985) and completed 3 open-ended questions. The matched-guise design controlled for confounding speaker and stimuli variables that were inherent in prior studies. Statistically significant differences in teachers' expectations of children's academic, social, and behavioral performances were found between moderately intelligible and normal intelligibility speech. Teachers associated moderately intelligible low-pitched speech with more behavior problems than moderately intelligible high-pitched speech or either pitch with normal intelligibility. One third of the teachers reported that they could not accurately predict a child's school performance based on the child's speech skills, one third of the teachers causally related school difficulty to SSD, and one third of the teachers made no comment. Intelligibility and speaker pitch appear to be speech variables that influence teachers' perceptions of children's school performance.
ERIC Educational Resources Information Center
Floryan, Mark
2013-01-01
This dissertation presents a novel effort to develop ITS technologies that adapt by observing student behavior. In particular, we define an evolving expert knowledge base (EEKB) that structures a domain's information as a set of nodes and the relationships that exist between those nodes. The structure of this model is not the particularly novel…
Systems Intelligence Inventory
ERIC Educational Resources Information Center
Törmänen, Juha; Hämäläinen, Raimo P.; Saarinen, Esa
2016-01-01
Purpose: Systems intelligence (SI) (Saarinen and Hämäläinen, 2004) is a construct defined as a person's ability to act intelligently within complex systems involving interaction and feedback. SI relates to our ability to act in systems and reason about systems to adaptively carry out productive actions within and with respect to systems such as…
Present Status and Challenges of Intellectual Assessment in India
ERIC Educational Resources Information Center
Basu, Jayanti
2016-01-01
Intelligence testing was one of the earliest interests of psychologists in India. Adaptation of Western intelligence tests has been a focus of psychologists in the first half of the last century. Indigenous development of intelligence tests has been attempted, but diversity of language and culture, complexity of school systems, and infrastructural…
Emotions and trait emotional intelligence among ultra-endurance runners.
Lane, Andrew M; Wilson, Mathew
2011-07-01
The aim of this study was to investigate relationships between trait emotional intelligence and emotional state changes over the course of an ultra-endurance foot race covering a route of approximately 175 miles (282 km) and held in set stages over six days. A repeated measures field design that sought to maintain ecological validity was used. Trait emotional intelligence was defined as a relatively stable concept that should predict adaptive emotional states experienced over the duration of the race and therefore associate with pleasant emotions during a 6-stage endurance event. Thirty-four runners completed a self-report measure of trait emotional intelligence before the event started. Participants reported emotional states before and after each of the six races. Repeated measures ANOVA results showed significant variations in emotions over time and a main effect for trait emotional intelligence. Runners high in self-report trait emotional intelligence also reported higher pleasant and lower unpleasant emotions than runners low in trait emotional intelligence. Findings lend support to the notion that trait emotional intelligence associates with adaptive psychological states, suggesting that it may be a key individual difference that explains why some athletes respond to repeated bouts of hard exercise better than others. Future research should test the effectiveness of interventions designed to enhance trait emotional intelligence and examine the attendant impact on emotional responses to intense exercise during multi-stage events. Copyright © 2011. Published by Elsevier Ltd.
Learning Qualitative and Quantitative Reasoning in a Microworld for Elastic Impacts.
ERIC Educational Resources Information Center
Ploetzner, Rolf; And Others
1990-01-01
Discusses the artificial-intelligence-based microworld DiBi and MULEDS, a multilevel diagnosis system. Developed to adapt tutoring style to the individual learner. Explains that DiBi sets up a learning environment, and simulates elastic impacts as a subtopic of classical mechanics, and supporting reasoning on different levels of mental domain…
Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John
2006-01-01
A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions
Space communications scheduler: A rule-based approach to adaptive deadline scheduling
NASA Technical Reports Server (NTRS)
Straguzzi, Nicholas
1990-01-01
Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.
Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study
Román, Francisco J.; Lewis, Lindsay B.; Chen, Chi-Hua; Karama, Sherif; Burgaleta, Miguel; Martínez, Kenia; Lepage, Claude; Jaeggi, Susanne M.; Evans, Alan C.; Kremen, William S.
2016-01-01
Here we analyze gray matter indices before and after completing a challenging adaptive cognitive training program based on the n-back task. The considered gray matter indices were cortical thickness (CT) and cortical surface area (CSA). Twenty-eight young women (age range 17–22 years) completed 24 training sessions over the course of 3 months (12 weeks, 24 sessions), showing expected performance improvements. CT and CSA values for the training group were compared with those of a matched control group. Statistical analyses were computed using a ROI framework defined by brain areas distinguished by their genetic underpinning. The interaction between group and time was analyzed. Middle temporal, ventral frontal, inferior parietal cortices, and pars opercularis were the regions where the training group showed conservation of gray matter with respect to the control group. These regions support working memory, resistance to interference, and inhibition. Furthermore, an interaction with baseline intelligence differences showed that the expected decreasing trend at the biological level for individuals showing relatively low intelligence levels at baseline was attenuated by the completed training. PMID:26701168
Intelligent robotics can boost America's economic growth
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1994-01-01
A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.
Intelligent Systems For Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.
2003-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
Intelligent Systems for Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje
2002-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
Towards an intelligent wheelchair system for users with cerebral palsy.
Montesano, Luis; Díaz, Marta; Bhaskar, Sonu; Minguez, Javier
2010-04-01
This paper describes and evaluates an intelligent wheelchair, adapted for users with cognitive disabilities and mobility impairment. The study focuses on patients with cerebral palsy, one of the most common disorders affecting muscle control and coordination, thereby impairing movement. The wheelchair concept is an assistive device that allows the user to select arbitrary local destinations through a tactile screen interface. The device incorporates an automatic navigation system that drives the vehicle, avoiding obstacles even in unknown and dynamic scenarios. It provides the user with a high degree of autonomy, independent from a particular environment, i.e., not restricted to predefined conditions. To evaluate the rehabilitation device, a study was carried out with four subjects with cognitive impairments, between 11 and 16 years of age. They were first trained so as to get acquainted with the tactile interface and then were recruited to drive the wheelchair. Based on the experience with the subjects, an extensive evaluation of the intelligent wheelchair was provided from two perspectives: 1) based on the technical performance of the entire system and its components and 2) based on the behavior of the user (execution analysis, activity analysis, and competence analysis). The results indicated that the intelligent wheelchair effectively provided mobility and autonomy to the target population.
Intelligent Membranes: Dream or Reality?
Gugliuzza, Annarosa
2013-07-15
Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of "sense to act", stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.
micROS: a morphable, intelligent and collective robot operating system.
Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng
2016-01-01
Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.
Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn
2015-06-01
This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics. © The Author(s) 2013.
Artificial intelligence: Learning to see and act
NASA Astrophysics Data System (ADS)
Schölkopf, Bernhard
2015-02-01
An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529
Vision Guided Intelligent Robot Design And Experiments
NASA Astrophysics Data System (ADS)
Slutzky, G. D.; Hall, E. L.
1988-02-01
The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.
Healthons: errorless healthcare with bionic hugs and no need for quality control.
Bushko, Renata G
2005-01-01
Errorless, invisible, continuous and infrastructure-free healthcare should become our goal. In order to achieve that goal, we need to rapidly move from current episodic and emergency-driven "healthcare delivery system" to an intelligent and extelligent health environment. That requires introduction of distributed affective Intelligent Caring Creatures (ICCs) consisting of healthons. Healthons are tools combining prevention with diagnosis and treatment based on continuous monitoring and analyzing of vital signs and biochemistry. Unlike humans, who posses only two or three dimensions of thinking, healthons can assure errorless health because of their adaptability, flexibility, and multidimensional reasoning capability. ICCs can do "the right thing" based on (1) state-of-art medical knowledge, (2) data about emotional, physiological, and genetic state of a consumer and (3) moral values of a consumer. The transition to the intelligent health environment based on ICCs requires the solutions to many currently unsolved healthcare problems. This paper lists the unsolved problems (by analogy to mathematical unsolved problems list) and explains why errorless healthcare with bionic hugs and no need for quality control is possible.
NASA Astrophysics Data System (ADS)
Yerizon, Y.; Putra, A. A.; Subhan, M.
2018-04-01
Students have a low mathematical ability because they are used to learning to hear the teacher's explanation. For that students are given activities to sharpen his ability in math. One way to do that is to create discovery learning based work sheet. The development of this worksheet took into account specific student learning styles including in schools that have classified students based on multiple intelligences. The dominant learning styles in the classroom were intrapersonal and interpersonal. The purpose of this study was to discover students’ responses to the mathematics work sheets of the junior high school with a discovery learning approach suitable for students with Intrapersonal and Interpersonal Intelligence. This tool was developed using a development model adapted from the Plomp model. The development process of this tools consists of 3 phases: front-end analysis/preliminary research, development/prototype phase and assessment phase. From the results of the research, it is found that students have good response to the resulting work sheet. The worksheet was understood well by students and its helps student in understanding the concept learned.
Lessons learned in the development of the STOL intelligent tutoring system
NASA Technical Reports Server (NTRS)
Seamster, Thomas; Baker, Clifford; Ames, Troy
1991-01-01
Lessons learned during the development of the NASA Systems Test and Operations Language (STOL) Intelligent Tutoring System (ITS), being developed at NASA Goddard Space Flight Center are presented. The purpose of the intelligent tutor is to train STOL users by adapting tutoring based on inferred student strengths and weaknesses. This system has been under development for over one year and numerous lessons learned have emerged. These observations are presented in three sections, as follows. The first section addresses the methodology employed in the development of the STOL ITS and briefly presents the ITS architecture. The second presents lessons learned, in the areas of: intelligent tutor development; documentation and reporting; cost and schedule control; and tools and shells effectiveness. The third section presents recommendations which may be considered by other ITS developers, addressing: access, use and selection of subject matter experts; steps involved in ITS development; use of ITS interface design prototypes as part of knowledge engineering; and tools and shells effectiveness.
Brain entropy and human intelligence: A resting-state fMRI study
Calderone, Daniel; Morales, Leah J.
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427
Brain entropy and human intelligence: A resting-state fMRI study.
Saxe, Glenn N; Calderone, Daniel; Morales, Leah J
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.
Intelligent multi-sensor integrations
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Jain, Ramesh; Weymouth, Terry
1989-01-01
Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration.
Intelligent robot trends and predictions for the .net future
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
2001-10-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent and future technical and economic trends. During the past twenty years the use of industrial robots that are equipped not only with precise motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. Intelligent robot products have been developed in many cases for factory automation and for some hospital and home applications. To reach an even higher degree of applications, the addition of learning may be required. Recently, learning theories such as the adaptive critic have been proposed. In this type of learning, a critic provides a grade to the controller of an action module such as a robot. The adaptive critic is a good model for human learning. In general, the critic may be considered to be the human with the teach pendant, plant manager, line supervisor, quality inspector or the consumer. If the ultimate critic is the consumer, then the quality inspector must model the consumer's decision-making process and use this model in the design and manufacturing operations. Can the adaptive critic be used to advance intelligent robots? Intelligent robots have historically taken decades to be developed and reduced to practice. Methods for speeding this development include technology such as rapid prototyping and product development and government, industry and university cooperation.
Intelligibility of Noise-Adapted and Clear Speech in Child, Young Adult, and Older Adult Talkers
ERIC Educational Resources Information Center
Smiljanic, Rajka; Gilbert, Rachael C.
2017-01-01
Purpose: This study examined intelligibility of conversational and clear speech sentences produced in quiet and in noise by children, young adults, and older adults. Relative talker intelligibility was assessed across speaking styles. Method: Sixty-one young adult participants listened to sentences mixed with speech-shaped noise at -5 dB…
NASA Astrophysics Data System (ADS)
Kelley, Troy D.; Avery, Eric
2010-04-01
This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.
Intelligence in the brain: a theory of how it works and how to build it.
Werbos, Paul J
2009-04-01
This paper presents a theory of how general-purpose learning-based intelligence is achieved in the mammal brain, and how we can replicate it. It reviews four generations of ever more powerful general-purpose learning designs in Adaptive, Approximate Dynamic Programming (ADP), which includes reinforcement learning as a special case. It reviews empirical results which fit the theory, and suggests important new directions for research, within the scope of NSF's recent initiative on Cognitive Optimization and Prediction. The appendices suggest possible connections to the realms of human subjective experience, comparative cognitive neuroscience, and new challenges in electric power. The major challenge before us today in mathematical neural networks is to replicate the "mouse level", but the paper does contain a few thoughts about building, understanding and nourishing levels of general intelligence beyond the mouse.
Conceptual Design of a Robotic Loader System for Remote Missile Launchers.
1985-09-01
artifcial intelligence were sur- veyed in order to assess their space applicability and to identify areas which can be developed/adapted to European...such data bases as NTIS and COMPENDEX. The second computer aided search was done through the U. S. Army information services at Redstone Arsenal...Lockheed Corporation. The first DIALOG data base explored was NTIS (National Technical Information Services, U.S. Dept. of Commerce), which contains
An intelligent CNC machine control system architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.J.; Loucks, C.S.
1996-10-01
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less
Connectivity-enhanced route selection and adaptive control for the Chevrolet Volt
Gonder, Jeffrey; Wood, Eric; Rajagopalan, Sai
2016-01-01
The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3%, respectively. Furthermore, these represent substantial opportunities considering that they only require software adjustments to implement.
Learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.
2003-10-01
Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A mathematical model of the creative control process is presented that illustrates the use for mobile robots. Examples from a variety of intelligent mobile robot applications are also presented. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots that could lead to many applications.
Family functioning and trait emotional intelligence among youth.
Alavi, Masoumeh; Mehrinezhad, Seyed Abolghasem; Amini, Mansour; Parthaman Singh, Minder Kaur A/P
2017-01-01
This study explored the relationship between family functioning and trait emotional intelligence among 547 respondents, between the age of 16 and 24 years from Malaysia, Iran, China, Sudan, Somalia, Morocco, the United Kingdom, Germany and the Netherlands. The questionnaires were Family Adaptability and Cohesion Evaluation Scale III and Trait Emotional Intelligence Questionnaire Short Form. Pearson correlation analysis revealed a significant relationship between family functioning and trait emotional intelligence. The higher the family functioning, the higher the trait emotional intelligence among youths. The findings provide a deeper understanding in the field of family functioning and trait emotional intelligence and have implications for parents, administrators and child relationships dealing with trait emotional intelligence.
An RFID-based intelligent vehicle speed controller using active traffic signals.
Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C; de Pedro, Teresa
2010-01-01
These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver's attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.
An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals
Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa
2010-01-01
These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692
Baumgärtel, Regina M; Hu, Hongmei; Krawczyk-Becker, Martin; Marquardt, Daniel; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Bomke, Katrin; Plotz, Karsten; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-12-30
Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT50) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT50 improvements measured in bilaterally implanted CI users. © The Author(s) 2015.
Intelligence as the plasticity of instinct: George J. Romanes and Darwin's earthworms.
Morganti, Federico
2011-01-01
In the following article I provide a brief analysis of George J. Romanes' conception of intelligence and its relationship with instincts. Through a careful reading of some key-passages from Mental Evolution in Animals (1883)--Romanes' chief work on the subject--I endeavour to show how the very notion of intelligence was related, in Romanes' thought, to individual adaptation to the environmental novelty. Also, I attempt to clarify in what sense, according to Romanes, this capacity was to be included among the factors of organic evolution. Lastly, I compare Romanes' view with that expressed in Darwin's last book, i.e. The Formation of Vegetable Mould through the Action of Worms (1881). I contend that the two scientists basically shared the same conception of the relationship between instincts and intelligence, which accounted not only for the need of phylogenetic continuity, but also for that of discontinuity due to adaptive divergence.
Development and Evaluation of an Adaptive Computerized Training System (ACTS). R&D Report 78-1.
ERIC Educational Resources Information Center
Knerr, Bruce W.; Nawrocki, Leon H.
This report describes the development of a computer based system designed to train electronic troubleshooting procedures. The ACTS uses artificial intelligence techniques to develop models of student and expert troubleshooting behavior as they solve a series of troubleshooting problems on the system. Comparisons of the student and expert models…
Web Delivery of Adaptive and Interactive Language Tutoring: Revisited
ERIC Educational Resources Information Center
Heift, Trude
2016-01-01
This commentary reconsiders the description and assessment of the design and implementation of "German Tutor," an Intelligent Language Tutoring System (ILTS) for learners of German as a foreign language, published in 2001. Based on our experience over the past 15 years with the design and real classroom use of an ILTS, we address a…
Passively Classifying Student Mood and Performance within Intelligent Tutors
ERIC Educational Resources Information Center
Sottilare, Robert A.; Proctor, Michael
2012-01-01
It has been long recognized that successful human tutors are capable of adapting instruction to mitigate barriers (e.g., withdrawal or frustration) to learning during the one-to-one tutoring process. A significant part of the success of human tutors is based on their perception of student affect (e.g., mood or emotions). To at least match the…
The Teachers Level of Emotional Intelligence Some of the Demographic Variables for Investigation
ERIC Educational Resources Information Center
Adilogullari, Ilhan
2011-01-01
The study aims to examine the level of emotional intelligence of some of the demographic variables of the teachers working in the province of Gaziantep. Acar (2002) adapted to Turkish by Bar-On Emotional Intelligence Ability Scale 5-item scale used in grading and answered 87. The study evaluated data; descriptive statistical methods (frequency,…
Smiljanić, Rajka; Bradlow, Ann R.
2011-01-01
This study investigated how native language background interacts with speaking style adaptations in determining levels of speech intelligibility. The aim was to explore whether native and high proficiency non-native listeners benefit similarly from native and non-native clear speech adjustments. The sentence-in-noise perception results revealed that fluent non-native listeners gained a large clear speech benefit from native clear speech modifications. Furthermore, proficient non-native talkers in this study implemented conversational-to-clear speaking style modifications in their second language (L2) that resulted in significant intelligibility gain for both native and non-native listeners. The results of the accentedness ratings obtained for native and non-native conversational and clear speech sentences showed that while intelligibility was improved, the presence of foreign accent remained constant in both speaking styles. This suggests that objective intelligibility and subjective accentedness are two independent dimensions of non-native speech. Overall, these results provide strong evidence that greater experience in L2 processing leads to improved intelligibility in both production and perception domains. These results also demonstrated that speaking style adaptations along with less signal distortion can contribute significantly towards successful native and non-native interactions. PMID:22225056
Intelligent fault recognition strategy based on adaptive optimized multiple centers
NASA Astrophysics Data System (ADS)
Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong
2018-06-01
For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.
Adaptive routing in wireless communication networks using swarm intelligence
NASA Technical Reports Server (NTRS)
Arabshahi, P.; Gray, A.; Kassabalidis, I.; Das, A.; Narayanan, S.; Sharkawi, M. El; Marks, R. J.
2001-01-01
In this paper we focus on the network routing problem, and survey swarm intelligent approaches for its efficient solution, after a brief overview of power-aware routing schemes, which are important in the network examples outlined above.
Intelligence: Real or artificial?
Schlinger, Henry D.
1992-01-01
Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051
Cognitive Tutoring based on Intelligent Decision Support in the PENTHA Instructional Design Model
NASA Astrophysics Data System (ADS)
dall'Acqua, Luisa
2010-06-01
The research finality of this paper is how to support Authors to develop rule driven—subject oriented, adaptable course content, meta-rules—representing the disciplinary epistemology, model of teaching, Learning Path structure, and assessment parameters—for intelligent Tutoring actions in a personalized, adaptive e-Learning environment. The focus is to instruct the student to be a decision manager for himself, able to recognize the elements of a problem, select the necessary information with the perspective of factual choices. In particular, our research intends to provide some fundamental guidelines for the definition of didactical rules and logical relations, that Authors should provide to a cognitive Tutoring system through the use of an Instructional Design method (PENTHA Model) which proposes an educational environment, able to: increase productivity and operability, create conditions for a cooperative dialogue, developing participatory research activities of knowledge, observations and discoveries, customizing the learning design in a complex and holistic vision of the learning / teaching processes.
NASA Technical Reports Server (NTRS)
Parnell, Gregory S.; Rowell, William F.; Valusek, John R.
1987-01-01
In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.
I-CAN: the classification and prediction of support needs.
Arnold, Samuel R C; Riches, Vivienne C; Stancliffe, Roger J
2014-03-01
Since 1992, the diagnosis and classification of intellectual disability has been dependent upon three constructs: intelligence, adaptive behaviour and support needs (Luckasson et al. 1992. Mental Retardation: Definition, Classification and Systems of Support. American Association on Intellectual and Developmental Disability, Washington, DC). While the methods and instruments to measure intelligence and adaptive behaviour are well established and generally accepted, the measurement and classification of support needs is still in its infancy. This article explores the measurement and classification of support needs. A study is presented comparing scores on the ICF (WHO, 2001) based I-CAN v4.2 support needs assessment and planning tool with expert clinical judgment using a proposed classification of support needs. A logical classification algorithm was developed and validated on a separate sample. Good internal consistency (range 0.73-0.91, N = 186) and criterion validity (κ = 0.94, n = 49) were found. Further advances in our understanding and measurement of support needs could change the way we assess, describe and classify disability. © 2013 John Wiley & Sons Ltd.
Emotional intelligence and attentional bias for threat-related emotion under stress.
Davis, Sarah K
2018-06-01
Emotional intelligence (EI) can buffer potentially harmful effects of situational and chronic stressors to safeguard psychological wellbeing (e.g., Mikolajczak, Petrides, Coumans & Luminet, ), yet understanding how and when EI operates to promote adaptation remains a research priority. We explored whether EI (both trait and ability) modulated early attentional processing of threat-related emotion under conditions of stress. Using a dot probe paradigm, eye movement (fixation to emotive facial stimuli, relative to neutral) and manual reaction time data were collected from 161 adults aged 18-57 years (mean age = 25.24; SD = 8.81) exposed to either a stressful (failure task) or non-stressful (control) situation. Whilst emotion management ability and trait wellbeing corresponded to avoidance of negative emotion (angry and sad respectively), high trait sociability and emotionality related to a bias for negative emotions. With most effects not restricted to stressful conditions, it is unclear whether EI underscores 'adaptive' processing, which carries implications for school-based social and emotional learning programs. © 2018 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1991-01-01
The hardware and the software architecture of the TurboLAN Intelligent Network Adapter Card (TINAC) are described. A high level as well as detailed treatment of the workings of various components of the TINAC are presented. The TINAC is divided into the following four major functional units: (1) the network access unit (NAU); (2) the buffer management unit; (3) the host interface unit; and (4) the node processor unit.
2018-01-30
algorithms. Due to this, Fusion was built with the goal of extensibility throughout the architecture. The Fusion infrastructure enables software...DISTRIBUTION STATEMENT A: Approved for public release. Cleared, 88PA, Case# 2018-0820. b. Trigger a Highly Mobile ...modes were developed in IMPACT (i.e., normal full coverage patrol (NFCP) and highly mobile (HM)). In both NFCP and HM, all UxVs patrol their assigned
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
Growing up with Down syndrome: Development from 6 months to 10.7 years.
Marchal, Jan Pieter; Maurice-Stam, Heleen; Houtzager, Bregje A; Rutgers van Rozenburg-Marres, Susanne L; Oostrom, Kim J; Grootenhuis, Martha A; van Trotsenburg, A S Paul
2016-12-01
We analysed developmental outcomes from a clinical trial early in life and its follow-up at 10.7 years in 123 children with Down syndrome. To determine 1) strengths and weaknesses in adaptive functioning and motor skills at 10.7 years, and 2) prognostic value of early-life characteristics (early developmental outcomes, parental and child characteristics, and comorbidity) for later intelligence, adaptive functioning and motor skills. We used standardized assessments of mental and motor development at ages 6, 12 and 24 months, and of intelligence, adaptive functioning and motor skills at 10.7 years. We compared strengths and weaknesses in adaptive functioning and motor skills by repeated-measures ANOVAs in the total group and in children scoring above-average versus below-average. The prognostic value of demographics, comorbidity and developmental outcomes was analysed by two-step regression. Socialisation was a stronger adaptive skill than Communication followed by Daily Living. Aiming and catching was a stronger motor skill than Manual dexterity, followed by Balance. Above-average and below-average scoring children showed different profiles of strengths and weaknesses. Gender, (the absence or presence of) infantile spasms and particularly 24-month mental functioning predicted later intelligence and adaptive functioning. Motor skills, however, appeared to be less well predicted by early life characteristics. These findings provide a reference for expected developmental levels and strengths and weaknesses in Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptive Sniping for Volatile and Stable Continuous Double Auction Markets
NASA Astrophysics Data System (ADS)
Toft, I. E.; Bagnall, A. J.
This paper introduces a new adaptive sniping agent for the Continuous Double Auction. We begin by analysing the performance of the well known Kaplan sniper in two extremes of market conditions. We generate volatile and stable market conditions using the well known Zero Intelligence-Constrained agent and a new zero-intelligence agent Small Increment (SI). ZI-C agents submit random but profitable bids/offers and cause high volatility in prices and individual trader performance. Our new zero-intelligence agent, SI, makes small random adjustments to the outstanding bid/offer and hence is more cautious than ZI-C. We present results for SI in self-play and then analyse Kaplan in volatile and stable markets. We demonstrate that the non-adaptive Kaplan sniper can be configured to suit either market conditions, but no single configuration is performs well across both market types. We believe that in a dynamic auction environment where current or future market conditions cannot be predicted a viable sniping strategy should adapt its behaviour to suit prevailing market conditions. To this end, we propose the Adaptive Sniper (AS) agent for the CDA. AS traders classify sniping opportunities using a statistical model of market activity and adjust their classification thresholds using a Widrow-Hoff adapted search. Our AS agent requires little configuration, and outperforms the original Kaplan sniper in volatile and stable markets, and in a mixed trader type scenario that includes adaptive strategies from the literature.
Defining Adaptive Leadership in the Context of Mission Command
2011-06-10
their best ( Goleman et al. 2002). The authors explain the connections between outstanding leaders and their emotional intelligence . 16 The...state,‖ having quick set intimacy and attaining personal elevation. The book Primal Leadership describes the importance of emotional intelligence in...their organizations succeed by using their emotional intelligence to create an atmosphere in which the organizations‘ members will want to do and be
Wireless powering and data telemetry for biomedical implants.
Young, Darrin J
2009-01-01
Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.
Garrido, D; Garcia-Fernandez, M; Garcia-Retamero, R; Carballo, G
2017-07-16
Following the adoption of the new international diagnosis classification from the Diagnostic and Statistical Manual (DSM-5), autism spectrum disorder (ASD) has been established as a dimensional category that includes other disorders that were previously considered as separate entities. Previous research has shown that some people with this disorder exhibit different communicative and linguistic profiles. Therefore, contradictory results could be found among people who receive the same diagnosis. To distinguish structural language aspects (expression and comprehension), interactive aspects (pragmatics), and social adaptation between children with an ASD-level 1 of support and children with typical development. Seventeen children with Asperger syndrome (according to the DSM-IV-TR), and 20 children with typical development between 7 and 12 years old. We have equated diagnosis of Asperger syndrome with ASD-level 1 of support. We have evaluated intelligence quotient, communication, and social adaptation with direct and indirect standardized parental scales. We have found significant differences in comprehension (p = 0.025), interaction (p = 0.001), and social adaptation (p = 0.001) between the two groups. Subjects with ASD-level 1 of support demonstrate an average intelligence quotient, and good expressive structure (syntax and semantic level), which may be different from other children who receive the same diagnosis, due to the wide heterogeneity of the disorder. Nevertheless, our subjects have problems related to comprehension of grammar structure, pragmatics, and social adaptation. These difficulties could be related to emotional and social problems.
Levy Erez, Daniella; Levy, Jacov; Friger, Michael; Aharoni-Mayer, Yael; Cohen-Iluz, Moran; Goldstein, Esther
2010-06-01
Individuals with congenital insensitivity to pain with anhidrosis (CIPA) are reported to have mental retardation* but to our knowledge no detailed study on the subject has ever been published. The present study assessed and documented cognitive and adaptive behaviour among Arab Bedouin children with CIPA. Twenty-three Arab Bedouin children (12 females, 11 males) with CIPA aged between 3 and 17 years (mean 9 y 7 mo, SD 4 y 2 mo) were assessed. They were compared with 19 healthy siblings of the affected children aged between 5 and 13 years (mean 8 y 11 mo, SD 2 y 10 m). All of the children in the comparison group, but only half of the CIPA group, were attending school. The children were evaluated using a standardized, non-verbal intelligence test, the Leiter International Performance Scale--Revised, and an adaptive behaviour questionnaire, the Vineland Adaptive Behaviour Scales, 2nd edition. Based on scores on the intelligence test and the adaptive behaviour scale, children with CIPA functioned in the mental retardation range (mean IQ scores: CIPA group 53.8, comparison group 83.32 [p<0.001]; adaptive behaviour: CIPA group 68.1, comparison group 104.88 [p<0.001]). IQ was significantly higher among the children with CIPA aged up to 7 years 11 months than among the older children 73.83 vs 45.21 (p<0.001). As a group, the younger children with CIPA may be functioning above the mental retardation range. We propose that early intervention addressing these children's needs and developing an appropriate educational system, might improve their outcome.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
Knowledge-based load leveling and task allocation in human-machine systems
NASA Technical Reports Server (NTRS)
Chignell, M. H.; Hancock, P. A.
1986-01-01
Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.
Intelligent Context-Aware and Adaptive Interface for Mobile LBS
Liu, Yanhong
2015-01-01
Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077
ERIC Educational Resources Information Center
Mohamed, Hafidi; Lamia, Mahnane
2015-01-01
Learners usually meet cognitive overload and disorientation problems when using e-learning system. At present, most of the studies in e-learning either concentrate on the technological aspect or focus on adapting learner's interests or browsing behaviors, while, learner's skill level and learners' success rate is usually neglected. In this paper,…
ERIC Educational Resources Information Center
Project Tomorrow, 2012
2012-01-01
Each year, Project Tomorrow, a national education nonprofit organization, facilitates the Speak Up National Research Project and, as part of this initiative, tracks the growing student, educator and parent interest in digital learning, and how the nation's schools and districts are addressing that interest with innovative ways to use technology in…
Ziegler, Matthias; Cengia, Anja; Mussel, Patrick; Gerstorf, Denis
2015-09-01
Explaining cognitive decline in late adulthood is a major research area. Models using personality traits as possible influential variables are rare. This study tested assumptions based on an adapted version of the Openness-Fluid-Crystallized-Intelligence (OFCI) model. The OFCI model adapted to late adulthood predicts that openness is related to the decline in fluid reasoning (Gf) through environmental enrichment. Gf should be related to the development of comprehension knowledge (Gc; investment theory). It was also assumed that Gf predicts changes in openness as suggested by the environmental success hypothesis. Finally, the OFCI model proposes that openness has an indirect influence on the decline in Gc through its effect on Gf (mediation hypothesis). Using data from the Berlin Aging Study (N = 516, 70-103 years at T1), these predictions were tested using latent change score and latent growth curve models with indicators of each trait. The current findings and prior research support environmental enrichment and success, investment theory, and partially the mediation hypotheses. Based on a summary of all findings, the OFCI model for late adulthood is suggested. (c) 2015 APA, all rights reserved).
Mind the gap... in intelligence: re-examining the relationship between inequality and health.
Kanazawa, Satoshi
2006-11-01
Wilkinson contends that economic inequality reduces the health and life expectancy of the whole population but his argument does not make sense within its own evolutionary framework. Recent evolutionary psychological theory suggests that the human brain, adapted to the ancestral environment, has difficulty comprehending and dealing with entities and situations that did not exist in the ancestral environment and that general intelligence evolved as a domain-specific adaptation to solve evolutionarily novel problems. Since most dangers to health in the contemporary society are evolutionarily novel, it follows that more intelligent individuals are better able to recognize and deal with such dangers and live longer. Consistent with the theory, the macro-level analyses show that income inequality and economic development have no effect on life expectancy at birth, infant mortality and age-specific mortality net of average intelligence quotient (IQ) in 126 countries. They also show that an average IQ has a very large and significant effect on population health but not in the evolutionarily familiar sub-Saharan Africa. At the micro level, the General Social Survey data show that, while both income and intelligence have independent positive effects on self-reported health, intelligence has a stronger effect than income. The data collectively suggest that individuals in wealthier and more egalitarian societies live longer and stay healthier, not because they are wealthier or more egalitarian but because they are more intelligent.
Sexual selection for indicators of intelligence.
Miller, G
2000-01-01
Many traits in many species have evolved through sexual selection specifically to function as 'fitness indicators' that reveal good genes and good health. Sexually selected fitness indicators typically show (1) higher coefficients of phenotypic and genetic variation than survival traits, (2) at least moderate genetic heritabilities and (3) positive correlations with many aspects of an animal's general condition, including body size, body symmetry, parasite resistance, longevity and freedom from deleterious mutations. These diagnostic criteria also appear to describe human intelligence (the g factor). This paper argues that during human evolution, mate choice by both sexes focused increasingly on intelligence as a major heritable component of biological fitness. Many human-specific behaviours (such as conversation, music production, artistic ability and humour) may have evolved principally to advertise intelligence during courtship. Though these mental adaptations may be modular at the level of psychological functioning, their efficiencies may be tightly intercorrelated because they still tap into common genetic and neurophysiological variables associated with fitness itself. Although the g factor (like the superordinate factor of fitness itself) probably exists in all animal species, humans evolved an unusually high degree of interest in assessing each other's intelligence during courtship and other social interactions--and, consequently, a unique suite of highly g-loaded mental adaptations for advertising their intelligence to one another through linguistic and cultural interaction. This paper includes nine novel, testable predictions about human intelligence derived from sexual selection theory.
An Artificial Intelligence Approach for Gears Diagnostics in AUVs
Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano
2016-01-01
In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868
An Artificial Intelligence Approach for Gears Diagnostics in AUVs.
Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano
2016-04-12
In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
Intelligent Instructional Systems in Military Training.
ERIC Educational Resources Information Center
Fletcher, J.D.; Zdybel, Frank
Intelligent instructional systems can be distinguished from more conventional approaches by the automation of instructional interaction and choice of strategy. This approach promises to reduce the costs of instructional materials preparation and to increase the adaptability and individualization of the instruction delivered. Tutorial simulation…
Three Billy Goats and Gardner.
ERIC Educational Resources Information Center
Merrefield, Gayle Emery
1997-01-01
Describes a Jewish Community Center's efforts to adapt Gardner's multiple-intelligences theory to a preschool special-education program. Since most students had moderate speech disorders, teachers decided to deemphasize linguistic expression in favor of the other seven intelligences. They created successful units exploring patterns and size…
NASA Astrophysics Data System (ADS)
Samigulina, Galina A.; Shayakhmetova, Assem S.
2016-11-01
Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.
An Examination of Application of Artificial Neural Network in Cognitive Radios
NASA Astrophysics Data System (ADS)
Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.
2013-12-01
Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.
Concepts of mental deficiency among the Tamang of Nepal.
Peters, L G
1980-01-01
The Tamang of the Kathmandu Valley have an agrarian society with little demand for literacy and schooling, yet they recognize and label mental retardation. The criteria for labeling are based partially upon insufficiency of intelligence and behavioral adaptation but primarily upon speech incompetence. There is stigma attached to the label, and it has a limiting effect upon social status and role. While the Western conception of mental deficiency is not primarily contingent upon verbal ability, speech function is a consideration in the evaluation of intelligence, as is the case in other parts of the world. In fact, verbal skill is one useful referent for future cross-cultural research on mental deficiency.
Artificial Intelligence In Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
Using protistan examples to dispel the myths of intelligent design.
Farmer, Mark A; Habura, Andrea
2010-01-01
In recent years the teaching of the religiously based philosophy of intelligent design (ID) has been proposed as an alternative to modern evolutionary theory. Advocates of ID are largely motivated by their opposition to naturalistic explanations of biological diversity, in accordance with their goal of challenging the philosophy of scientific materialism. Intelligent design has been embraced by a wide variety of creationists who promote highly questionable claims that purport to show the inadequacy of evolutionary theory, which they consider to be a threat to a theistic worldview. We find that examples from protistan biology are well suited for providing evidence of many key evolutionary concepts, and have often been misrepresented or roundly ignored by ID advocates. These include examples of adaptations and radiations that are said to be statistically impossible, as well as examples of speciation both in the laboratory and as documented in the fossil record. Because many biologists may not be familiar with the richness of the protist evolution dataset or with ID-based criticisms of evolution, we provide examples of current ID arguments and specific protistan counter-examples.
An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.
Tian, Hao; Yan, Zhaoli; Yang, Jun
2018-04-09
Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.
Intelligent Sensors for Integrated Systems Health Management (ISHM)
NASA Technical Reports Server (NTRS)
Schmalzel, John L.
2008-01-01
IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.
2018-01-01
His research designs adaptive systems for online content, by integrating research in psychology and education, human- ANNEX A − INTELLIGENT TUTORING...related scientific activities that include systems engineering, operational research and analysis, synthesis, integration and validation of knowledge...System Analysis and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group
1986-06-30
approach to the application of theorem proving to problem solving, Aritificial Intelligence 2 (1Q71), 18Q- 208. 4. Fikes, R., Hart, P. and Nilsson, N...by emphasizing the structure of knowledge. 1.2. Planning Literature The earliest work in planning in Artificial Intelligence grew out of the work on...References 1. Newell, A., Artificial Intelligence and the concept of mind, in Computer models of thought and language, Schank, R. and Colby, K. (editor
Adaptive Behavior of Young Urban Children with Developmental Disabilities.
ERIC Educational Resources Information Center
Vig, Susan; Jedrysek, Eleonora
1995-01-01
Assessment of 497 urban preschool children with developmental disabilities using the Vineland Adaptive Behavior Scales indicated a strong positive relationship between adaptive behavior and intelligence if measured globally. When Vineland domains were assessed separately, this relationship varied across domains and disability groups. With…
On the Effectiveness of a Neural Network for Adaptive External Pacing.
ERIC Educational Resources Information Center
Montazemi, Ali R.; Wang, Feng
1995-01-01
Proposes a neural network model for an intelligent tutoring system featuring adaptive external control of student pacing. An experiment was conducted, and students using adaptive external pacing experienced improved mastery learning and increased motivation for time management. Contains 66 references. (JKP)
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-01-01
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-03-14
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1987-01-01
An approach to analyzing CFD knowledge-based systems is proposed which is based, in part, on the concept of knowledge-level analysis. Consideration is given to the expert cooling fan design system, the PAN AIR knowledge system, grid adaptation, and expert zonal grid generation. These AI/CFD systems demonstrate that current AI technology can be successfully applied to well-formulated problems that are solved by means of classification or selection of preenumerated solutions.
Relation of intelligence to ego functioning in an adult psychiatric population.
Allen, J G; Coyne, L; David, E
1986-01-01
Wechsler Adult Intelligence Scale-Revised (WAIS-R) IQs and clinical ratings of 10 ego functions in a diagnostically heterogeneous sample of 60 adult psychiatric inpatients were correlated. With severity of pathology statistically controlled, higher intelligence was associated with more adequate ego functioning in several spheres: primary autonomous functions, thought processes, object relations, and mastery-competence. There were also some clinically meaningful differences between the Verbal and Performance IQs in the pattern of correlations. Extending Hartmann's original views, the authors employ an ethological framework to conceptualize intelligence in relation to the ego's role in adaptation, emphasizing that intelligence is an important-albeit neglected-aspect of ego functioning.
Case-based synthesis in automatic advertising creation system
NASA Astrophysics Data System (ADS)
Zhuang, Yueting; Pan, Yunhe
1995-08-01
Advertising (ads) is an important design area. Though many interactive ad-design softwares have come into commercial use, none of them ever support the intelligent work -- automatic ad creation. The potential for this is enormous. This paper gives a description of our current work in research of an automatic advertising creation system (AACS). After careful analysis of the mental behavior of a human ad designer, we conclude that case-based approach is appropriate to its intelligent modeling. A model for AACS is given in the paper. A case in ads is described as two parts: the creation process and the configuration of the ads picture, with detailed data structures given in the paper. Along with the case representation, we put forward an algorithm. Some issues such as similarity measure computing, and case adaptation have also been discussed.
Prediction on carbon dioxide emissions based on fuzzy rules
NASA Astrophysics Data System (ADS)
Pauzi, Herrini; Abdullah, Lazim
2014-06-01
There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.
NASA Technical Reports Server (NTRS)
Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.
2009-01-01
This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.
NASA Astrophysics Data System (ADS)
Takács, Ondřej; Kostolányová, Kateřina
2016-06-01
This paper describes the Virtual Teacher that uses a set of rules to automatically adapt the way of teaching. These rules compose of two parts: conditions on various students' properties or learning situation; conclusions that specify different adaptation parameters. The rules can be used for general adaptation of each subject or they can be specific to some subject. The rule based system of Virtual Teacher is dedicated to be used in pedagogical experiments in adaptive e-learning and is therefore designed for users without education in computer science. The Virtual Teacher was used in dissertation theses of two students, who executed two pedagogical experiments. This paper also describes the phase of simulating and modeling of the theoretically prepared adaptive process in the modeling tool, which has all the required parameters and has been created especially for the occasion. The experiments are being conducted on groups of virtual students and by using a virtual study material.
A Probabilistic System Analysis of Intelligent Propulsion System Technologies
NASA Technical Reports Server (NTRS)
Tong, Michael T.
2007-01-01
NASA s Intelligent Propulsion System Technology (Propulsion 21) project focuses on developing adaptive technologies that will enable commercial gas turbine engines to produce fewer emissions and less noise while increasing reliability. It features adaptive technologies that have included active tip-clearance control for turbine and compressor, active combustion control, turbine aero-thermal and flow control, and enabling technologies such as sensors which are reliable at high operating temperatures and are minimally intrusive. A probabilistic system analysis is performed to evaluate the impact of these technologies on aircraft CO2 (directly proportional to fuel burn) and LTO (landing and takeoff) NO(x) reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that NASA s Intelligent Propulsion System technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decisionmaking on the development of the intelligent propulsion system technology portfolio for CO2 and NO(x) reductions.
Flood AI: An Intelligent Systems for Discovery and Communication of Disaster Knowledge
NASA Astrophysics Data System (ADS)
Demir, I.; Sermet, M. Y.
2017-12-01
Communities are not immune from extreme events or natural disasters that can lead to large-scale consequences for the nation and public. Improving resilience to better prepare, plan, recover, and adapt to disasters is critical to reduce the impacts of extreme events. The National Research Council (NRC) report discusses the topic of how to increase resilience to extreme events through a vision of resilient nation in the year 2030. The report highlights the importance of data, information, gaps and knowledge challenges that needs to be addressed, and suggests every individual to access the risk and vulnerability information to make their communities more resilient. This project presents an intelligent system, Flood AI, for flooding to improve societal preparedness by providing a knowledge engine using voice recognition, artificial intelligence, and natural language processing based on a generalized ontology for disasters with a primary focus on flooding. The knowledge engine utilizes the flood ontology and concepts to connect user input to relevant knowledge discovery channels on flooding by developing a data acquisition and processing framework utilizing environmental observations, forecast models, and knowledge bases. Communication channels of the framework includes web-based systems, agent-based chat bots, smartphone applications, automated web workflows, and smart home devices, opening the knowledge discovery for flooding to many unique use cases.
Is Intelligent Speed Adaptation ready for deployment?
Carsten, Oliver
2012-09-01
There have been 30 years of research on Intelligent Speed Adaptation (ISA), the in-vehicle system that is designed to promote compliance with speed limits. Extensive trials of ISA in real-world driving have shown that ISA can significantly reduce speeding, users have been found to have generally positive attitudes and at least some sections of the public have been shown to be willing to purchase ISA systems. Yet large-scale deployment of a system that could deliver huge accident reductions is still by no means guaranteed. Copyright © 2012. Published by Elsevier Ltd.
Soar: A Unified Theory of Cognition?
ERIC Educational Resources Information Center
Waldrop, M. Mitchell
1988-01-01
Describes an artificial intelligence system known as SOAR that approximates a theory of human cognition. Discusses cognition as problem solving, working memory, long term memory, autonomy and adaptability, and learning from experience as they relate to artificial intelligence generally and to SOAR specifically. Highlights the status of the…
Intelligent Tutoring Systems for Literacy: Existing Technologies and Continuing Challenges
ERIC Educational Resources Information Center
Jacovina, Matthew E.; McNamara, Danielle S.
2017-01-01
In this chapter, we describe several intelligent tutoring systems (ITSs) designed to support student literacy through reading comprehension and writing instruction and practice. Although adaptive instruction can be a powerful tool in the literacy domain, developing these technologies poses significant challenges. For example, evaluating the…
Some Principles of Intelligent Tutoring.
ERIC Educational Resources Information Center
Ohlsson, Stellan
1986-01-01
Research on intelligent tutoring systems is discussed from the point of view of providing moment-by-moment adaptation of content and form of instruction to the changing cognitive needs of individual learners. Implications of this goal for cognitive diagnosis, subject matter analysis, teaching tactics, and teaching strategies are analyzed. (Author)
Design of a home-based adaptive mixed reality rehabilitation system for stroke survivors.
Baran, Michael; Lehrer, Nicole; Siwiak, Diana; Chen, Yinpeng; Duff, Margaret; Ingalls, Todd; Rikakis, Thanassis
2011-01-01
This paper presents the design of a home-based adaptive mixed reality system (HAMRR) for upper extremity stroke rehabilitation. The goal of HAMRR is to help restore motor function to chronic stroke survivors by providing an engaging long-term reaching task therapy at home. The system uses an intelligent adaptation scheme to create a continuously challenging and unique multi-year therapy experience. The therapy is overseen by a physical therapist, but day-to-day use of the system can be independently set up and completed by a stroke survivor. The HAMMR system tracks movement of the wrist and torso and provides real-time, post-trial, and post-set feedback to encourage the stroke survivor to self-assess his or her movement and engage in active learning of new movement strategies. The HAMRR system consists of a custom table, chair, and media center, and is designed to easily integrate into any home.
Schlagenhauf, Florian; Rapp, Michael A.; Huys, Quentin J. M.; Beck, Anne; Wüstenberg, Torsten; Deserno, Lorenz; Buchholz, Hans-Georg; Kalbitzer, Jan; Buchert, Ralph; Kienast, Thorsten; Cumming, Paul; Plotkin, Michail; Kumakura, Yoshitaka; Grace, Anthony A.; Dolan, Raymond J.; Heinz, Andreas
2013-01-01
Fluid intelligence represents the capacity for flexible problem solving and rapid behavioral adaptation. Rewards drive flexible behavioral adaptation, in part via a teaching signal expressed as reward prediction errors in the ventral striatum, which has been associated with phasic dopamine release in animal studies. We examined a sample of 28 healthy male adults using multimodal imaging and biological parametric mapping with 1) functional magnetic resonance imaging during a reversal learning task and 2) in a subsample of 17 subjects also with positron emission tomography using 6-[18F]fluoro-L-DOPA to assess dopamine synthesis capacity. Fluid intelligence was measured using a battery of nine standard neuropsychological tests. Ventral striatal BOLD correlates of reward prediction errors were positively correlated with fluid intelligence and, in the right ventral striatum, also inversely correlated with dopamine synthesis capacity (FDOPA Kinapp). When exploring aspects of fluid intelligence, we observed that prediction error signaling correlates with complex attention and reasoning. These findings indicate that individual differences in the capacity for flexible problem solving may be driven by ventral striatal activation during reward-related learning, which in turn proved to be inversely associated with ventral striatal dopamine synthesis capacity. PMID:22344813
Linguistic Model for Engine Power Loss
2011-11-27
Intelligent Vehicle Health Management System (IVHMS) for light trucks. In particular, this paper is focused on the system architecture for monitoring...developed for the cooling system of a diesel engine, integrating a priori, ‘expert’ knowledge , sensor data, and the adaptive network-based fuzzy...domain knowledge . However, in a nonlinear system in which not all possible causes to engine power loss are considered and measured, merely relying
Cloud based intelligent system for delivering health care as a service.
Kaur, Pankaj Deep; Chana, Inderveer
2014-01-01
The promising potential of cloud computing and its convergence with technologies such as mobile computing, wireless networks, sensor technologies allows for creation and delivery of newer type of cloud services. In this paper, we advocate the use of cloud computing for the creation and management of cloud based health care services. As a representative case study, we design a Cloud Based Intelligent Health Care Service (CBIHCS) that performs real time monitoring of user health data for diagnosis of chronic illness such as diabetes. Advance body sensor components are utilized to gather user specific health data and store in cloud based storage repositories for subsequent analysis and classification. In addition, infrastructure level mechanisms are proposed to provide dynamic resource elasticity for CBIHCS. Experimental results demonstrate that classification accuracy of 92.59% is achieved with our prototype system and the predicted patterns of CPU usage offer better opportunities for adaptive resource elasticity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Adaptive Inner-Loop Rover Control
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.
2006-01-01
Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.
Adaptive Profiles in Autism and Other Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Mouga, Susana; Almeida, Joana; Café, Cátia; Duque, Frederico; Oliveira, Guiomar
2015-01-01
We investigated the influence of specific autism spectrum disorder (ASD) deficits in learning adaptive behaviour, besides intelligence quotient (IQ). Participated 217 school-aged: ASD (N = 115), and other neurodevelopmental disorders (OND) groups (N = 102) matched by Full-Scale IQ. We compared standard scores of Vineland Adaptive Behaviour Scale…
NASA Astrophysics Data System (ADS)
Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na
2016-05-01
Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.
Tera-OP Reliable Intelligently Adaptive Processing System (TRIPS) Implementation
2008-09-01
38 6.8 Instruction Scheduling ...39 6.8.1 Spatial Path Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.8.2...oblivious scheduling for rapid application prototyping and deployment, environmental adaptivity for resilience in hostile environments, and dynamic
Quality based approach for adaptive face recognition
NASA Astrophysics Data System (ADS)
Abboud, Ali J.; Sellahewa, Harin; Jassim, Sabah A.
2009-05-01
Recent advances in biometric technology have pushed towards more robust and reliable systems. We aim to build systems that have low recognition errors and are less affected by variation in recording conditions. Recognition errors are often attributed to the usage of low quality biometric samples. Hence, there is a need to develop new intelligent techniques and strategies to automatically measure/quantify the quality of biometric image samples and if necessary restore image quality according to the need of the intended application. In this paper, we present no-reference image quality measures in the spatial domain that have impact on face recognition. The first is called symmetrical adaptive local quality index (SALQI) and the second is called middle halve (MH). Also, an adaptive strategy has been developed to select the best way to restore the image quality, called symmetrical adaptive histogram equalization (SAHE). The main benefits of using quality measures for adaptive strategy are: (1) avoidance of excessive unnecessary enhancement procedures that may cause undesired artifacts, and (2) reduced computational complexity which is essential for real time applications. We test the success of the proposed measures and adaptive approach for a wavelet-based face recognition system that uses the nearest neighborhood classifier. We shall demonstrate noticeable improvements in the performance of adaptive face recognition system over the corresponding non-adaptive scheme.
Watson, Richard A; Szathmáry, Eörs
2016-02-01
The theory of evolution links random variation and selection to incremental adaptation. In a different intellectual domain, learning theory links incremental adaptation (e.g., from positive and/or negative reinforcement) to intelligent behaviour. Specifically, learning theory explains how incremental adaptation can acquire knowledge from past experience and use it to direct future behaviours toward favourable outcomes. Until recently such cognitive learning seemed irrelevant to the 'uninformed' process of evolution. In our opinion, however, new results formally linking evolutionary processes to the principles of learning might provide solutions to several evolutionary puzzles - the evolution of evolvability, the evolution of ecological organisation, and evolutionary transitions in individuality. If so, the ability for evolution to learn might explain how it produces such apparently intelligent designs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adaptive learning and control for MIMO system based on adaptive dynamic programming.
Fu, Jian; He, Haibo; Zhou, Xinmin
2011-07-01
Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.
Multi-Armed Bandits for Intelligent Tutoring Systems
ERIC Educational Resources Information Center
Clement, Benjamin; Roy, Didier; Oudeyer, Pierre-Yves; Lopes, Manuel
2015-01-01
We present an approach to Intelligent Tutoring Systems which adaptively personalizes sequences of learning activities to maximize skills acquired by students, taking into account the limited time and motivational resources. At a given point in time, the system proposes to the students the activity which makes them progress faster. We introduce two…
Emotional Intelligence Abilities and Traits in Different Career Paths
ERIC Educational Resources Information Center
Kafetsios, Konstantinos; Maridaki-Kassotaki, Aikaterini; Zammuner, Vanda L.; Zampetakis, Leonidas A.; Vouzas, Fotios
2009-01-01
Two studies tested hypotheses about differences in emotional intelligence (EI) abilities and traits between followers of different career paths. Compared to their social science peers, science students had higher scores in adaptability and general mood traits measured with the Emotion Quotient Inventory, but lower scores in strategic EI abilities…
Rainbows of Intelligence. Exploring How Students Learn.
ERIC Educational Resources Information Center
Teele, Sue
This book offers practical applications for exploring multiple intelligences in the classroom to help each student express his or her own personal learning rainbow. Special features of the book include seven complete lesson plans ready to be adapted to any grade level; objectives, activities, and applications that meet U.S. and California…
Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances
2009-10-01
and customizable. Thus, an intelligent interface should tailor its parameters to certain prescribed specifications or convert itself and adjust to...Computer Interaction 3(2): 87-122. [51] Schereiber, G., Akkermans, H., Anjewierden, A., de Hoog , R., Shadbolt, N., Van de Velde, W., & Wielinga, W
How Can Intelligent CAL Better Adapt to Learners?
ERIC Educational Resources Information Center
Boyd, Gary McI.; Mitchell, P. David
1992-01-01
Discusses intelligent computer-aided learning (ICAL) support systems and considers learner characteristics as elements of ICAL student models. Cybernetic theory and attribute-treatment results are discussed, six components of a student model for tutoring are described, and methods for determining the student's model of the tutor are examined. (22…
A Multi-Agent System Approach for Distance Learning Architecture
ERIC Educational Resources Information Center
Turgay, Safiye
2005-01-01
The goal of this study is to suggest the agent systems by intelligence and adaptability properties in distance learning environment. The suggested system has flexible, agile, intelligence and cooperation features. System components are teachers, students (learners), and resources. Inter component relations are modeled and reviewed by using the…
Developing Emotion-Aware, Advanced Learning Technologies: A Taxonomy of Approaches and Features
ERIC Educational Resources Information Center
Harley, Jason M.; Lajoie, Susanne P.; Frasson, Claude; Hall, Nathan C.
2017-01-01
A growing body of work on intelligent tutoring systems, affective computing, and artificial intelligence in education is exploring creative, technology-driven approaches to enhance learners' experience of adaptive, positively-valenced emotions while interacting with advanced learning technologies. Despite this, there has been no published work to…
An Artificial Intelligence Tutor: A Supplementary Tool for Teaching and Practicing Braille
ERIC Educational Resources Information Center
McCarthy, Tessa; Rosenblum, L. Penny; Johnson, Benny G.; Dittel, Jeffrey; Kearns, Devin M.
2016-01-01
Introduction: This study evaluated the usability and effectiveness of an artificial intelligence Braille Tutor designed to supplement the instruction of students with visual impairments as they learned to write braille contractions. Methods: A mixed-methods design was used, which incorporated a single-subject, adapted alternating treatments design…
Vision-based algorithms for near-host object detection and multilane sensing
NASA Astrophysics Data System (ADS)
Kenue, Surender K.
1995-01-01
Vision-based sensing can be used for lane sensing, adaptive cruise control, collision warning, and driver performance monitoring functions of intelligent vehicles. Current computer vision algorithms are not robust for handling multiple vehicles in highway scenarios. Several new algorithms are proposed for multi-lane sensing, near-host object detection, vehicle cut-in situations, and specifying regions of interest for object tracking. These algorithms were tested successfully on more than 6000 images taken from real-highway scenes under different daytime lighting conditions.
Emergence of trend trading and its effects in minority game
NASA Astrophysics Data System (ADS)
Liu, Xing-Hua; Liang, Xiao-Bei; Wang, Nai-Jing
2006-09-01
In this paper, we extended Minority Game (MG) by equipping agents with both value and trend strategies. In the new model, agents (we call them strong-adaptation agents) can autonomically select to act as trend trader or value trader when they game and learn in system. So the new model not only can reproduce stylized factors but also has the potential to investigate into the process of some problems of securities market. We investigated the dynamics of trend trading and its impacts on securities market based on the new model. Our research found that trend trading is inevitable when strong-adaptation agents make decisions by inductive reasoning. Trend trading (of strong-adaptation agents) is not irrational behavior but shows agent's strong-adaptation intelligence, because strong-adaptation agents can take advantage of the pure value agents when they game together in hybrid system. We also found that strong-adaptation agents do better in real environment. The results of our research are different with those of behavior finance researches.
[Keeping company in an emotional trip. Emotional intelligence applied to the help relationship].
Conangla Marín, M Mercè
2004-03-01
In order to be a good professional and caretaker, it is essential to work on one's capacity to manage one's own feelings and emotions in an adaptable, intelligent manner. This set of abilities form part of the concept known as Emotional Intelligence. One can only give to another what one is and one knows how to give to oneself. The five ability groups which make up affective or emotional intelligence are: self-knowledge, self-control, self-motivation, empathy and relationship abilities. All are necessary in order to carry out good management of our feelings and emotions.
Human/autonomy collaboration for the automated generation of intelligence products
NASA Astrophysics Data System (ADS)
DiBona, Phil; Schlachter, Jason; Kuter, Ugur; Goldman, Robert
2017-05-01
Intelligence Analysis remains a manual process despite trends toward autonomy in information processing. Analysts need agile decision--support tools that can adapt to the evolving information needs of the mission, allowing the analyst to pose novel analytic questions. Our research enables the analysts to only provide a constrained English specification of what the intelligence product should be. Using HTN planning, the autonomy discovers, decides, and generates a workflow of algorithms to create the intelligence product. Therefore, the analyst can quickly and naturally communicate to the autonomy what information product is needed, rather than how to create it.
Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J
2013-11-26
A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.
Adaptive Urban Signal Control and Integration (AUSCI) : evaluation final report
DOT National Transportation Integrated Search
2000-10-01
This report presents an evaluation of the Adaptive Urban Signal Control and Integration (AUSCI) Intelligent Transportation System (ITS) Field Operational Test in Minneapolis, Minnesota. The project involved a 56-intersection portion of Minneapolis, e...
Architecture for Adaptive Intelligent Systems
NASA Technical Reports Server (NTRS)
Hayes-Roth, Barbara
1993-01-01
We identify a class of niches to be occupied by 'adaptive intelligent systems (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches present situations that vary dynamically along several key dimensions: different combinations of required tasks, different configurations of available resources, contextual conditions ranging from benign to stressful, and different performance criteria. We present a small class hierarchy of AIS niches that exhibit these dimensions of variability and describe a particular AIS niche, ICU (intensive care unit) patient monitoring, which we use for illustration throughout the paper. We have designed and implemented an agent architecture that supports all of different kinds of adaptation by exploiting a single underlying theoretical concept: An agent dynamically constructs explicit control plans to guide its choices among situation-triggered behaviors. We illustrate the architecture and its support for adaptation with examples from Guardian, an experimental agent for ICU monitoring.
Lai, Frank; Carsten, Oliver
2012-09-01
Intelligent Speed Adaptation (ISA) is a driver support system which brings the speed limit information into the vehicle. This paper describes the UK ISA field trials taken place between 2004 and 2006 and presents evidence on how drivers' choice of speed is altered. The ISA system was observed to have a distinctive effect in transforming the speed distribution from a conventional bell shape to an asymmetric distribution biased towards the high speed end. ISA not only diminished excessive speeding, but also led to a reduction in speed variation, prompting a positive implication to accident reduction. The use of an overridable ISA system also provided an opportunity to investigate where drivers would choose to have ISA based on observed behaviour instead of opinion. Evidence shows that ISA tends to be overridden on roads where it was perhaps needed most. Behavioural difference among driver groups also suggests that ISA tends to be overridden by those drivers who in safety terms stand to benefit most from using it, as with other safety systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Extended time-to-collision measures for road traffic safety assessment.
Minderhoud, M M; Bovy, P H
2001-01-01
This article describes two new safety indicators based on the time-to-collision notion suitable for comparative road traffic safety analyses. Such safety indicators can be applied in the comparison of a do-nothing case with an adapted situation, e.g. the introduction of intelligent driver support systems. In contrast to the classical time-to-collision value, measured at a cross section, the improved safety indicators use vehicle trajectories collected over a specific time horizon for a certain roadway segment to calculate the overall safety indicator value. Vehicle-specific indicator values as well as safety-critical probabilities can easily be determined from the developed safety measures. Application of the derived safety indicators is demonstrated for the assessment of the potential safety impacts of driver support systems from which it appears that some Autonomous Intelligent Cruise Control (AICC) designs are more safety-critical than the reference case without these systems. It is suggested that the indicator threshold value to be applied in the safety assessment has to be adapted when advanced AICC-systems with safe characteristics are introduced.
Zhang, Wei; Peng, Gaoliang; Li, Chuanhao; Chen, Yuanhang; Zhang, Zhujun
2017-01-01
Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions. PMID:28241451
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
Baseline estimation in flame's spectra by using neural networks and robust statistics
NASA Astrophysics Data System (ADS)
Garces, Hugo; Arias, Luis; Rojas, Alejandro
2014-09-01
This work presents a baseline estimation method in flame spectra based on artificial intelligence structure as a neural network, combining robust statistics with multivariate analysis to automatically discriminate measured wavelengths belonging to continuous feature for model adaptation, surpassing restriction of measuring target baseline for training. The main contributions of this paper are: to analyze a flame spectra database computing Jolliffe statistics from Principal Components Analysis detecting wavelengths not correlated with most of the measured data corresponding to baseline; to systematically determine the optimal number of neurons in hidden layers based on Akaike's Final Prediction Error; to estimate baseline in full wavelength range sampling measured spectra; and to train an artificial intelligence structure as a Neural Network which allows to generalize the relation between measured and baseline spectra. The main application of our research is to compute total radiation with baseline information, allowing to diagnose combustion process state for optimization in early stages.
Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.
2015-01-01
Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.
Towards an intelligent hospital environment: OR of the future.
Sutherland, Jeffrey V; van den Heuvel, Willem-Jan; Ganous, Tim; Burton, Matthew M; Kumar, Animesh
2005-01-01
Patients, providers, payers, and government demand more effective and efficient healthcare services, and the healthcare industry needs innovative ways to re-invent core processes. Business process reengineering (BPR) showed adopting new hospital information systems can leverage this transformation and workflow management technologies can automate process management. Our research indicates workflow technologies in healthcare require real time patient monitoring, detection of adverse events, and adaptive responses to breakdown in normal processes. Adaptive workflow systems are rarely implemented making current workflow implementations inappropriate for healthcare. The advent of evidence based medicine, guideline based practice, and better understanding of cognitive workflow combined with novel technologies including Radio Frequency Identification (RFID), mobile/wireless technologies, internet workflow, intelligent agents, and Service Oriented Architectures (SOA) opens up new and exciting ways of automating business processes. Total situational awareness of events, timing, and location of healthcare activities can generate self-organizing change in behaviors of humans and machines. A test bed of a novel approach towards continuous process management was designed for the new Weinburg Surgery Building at the University of Maryland Medical. Early results based on clinical process mapping and analysis of patient flow bottlenecks demonstrated 100% improvement in delivery of supplies and instruments at surgery start time. This work has been directly applied to the design of the DARPA Trauma Pod research program where robotic surgery will be performed on wounded soldiers on the battlefield.
Towards Contextualized Learning Services
NASA Astrophysics Data System (ADS)
Specht, Marcus
Personalization of feedback and instruction has often been considered as a key feature in learning support. The adaptations of the instructional process to the individual and its different aspects have been investigated from different research perspectives as learner modelling, intelligent tutoring systems, adaptive hypermedia, adaptive instruction and others. Already in the 1950s first commercial systems for adaptive instruction for trainings of keyboard skills have been developed utilizing adaptive configuration of feedback based on user performance and interaction footprints (Pask 1964). Around adaptive instruction there is a variety of research issues bringing together interdisciplinary research from computer science, engineering, psychology, psychotherapy, cybernetics, system dynamics, instructional design, and empirical research on technology enhanced learning. When classifying best practices of adaptive instruction different parameters of the instructional process have been identified which are adapted to the learner, as: sequence and size of task difficulty, time of feedback, pace of learning speed, reinforcement plan and others these are often referred to the adaptation target. Furthermore Aptitude Treatment Interaction studies explored the effect of adapting instructional parameters to different characteristics of the learner (Tennyson and Christensen 1988) as task performance, personality characteristics, or cognitive abilities, this is information is referred to as adaptation mean.
Affect-Aware Adaptive Tutoring Based on Human-Automation Etiquette Strategies.
Yang, Euijung; Dorneich, Michael C
2018-06-01
We investigated adapting the interaction style of intelligent tutoring system (ITS) feedback based on human-automation etiquette strategies. Most ITSs adapt the content difficulty level, adapt the feedback timing, or provide extra content when they detect cognitive or affective decrements. Our previous work demonstrated that changing the interaction style via different feedback etiquette strategies has differential effects on students' motivation, confidence, satisfaction, and performance. The best etiquette strategy was also determined by user frustration. Based on these findings, a rule set was developed that systemically selected the proper etiquette strategy to address one of four learning factors (motivation, confidence, satisfaction, and performance) under two different levels of user frustration. We explored whether etiquette strategy selection based on this rule set (systematic) or random changes in etiquette strategy for a given level of frustration affected the four learning factors. Participants solved mathematics problems under different frustration conditions with feedback that adapted dynamic changes in etiquette strategies either systematically or randomly. The results demonstrated that feedback with etiquette strategies chosen systematically via the rule set could selectively target and improve motivation, confidence, satisfaction, and performance more than changing etiquette strategies randomly. The systematic adaptation was effective no matter the level of frustration for the participant. If computer tutors can vary the interaction style to effectively mitigate negative emotions, then ITS designers would have one more mechanism in which to design affect-aware adaptations that provide the proper responses in situations where human emotions affect the ability to learn.
Schrauf, Robert W; Weintraub, Sandra; Navarro, Ellen
2006-05-01
Adaptations of the National Adult Reading Test (NART) for assessing premorbid intelligence in languages other than English requires (a) generating word-items that are rare and do not follow grapheme-to-phoneme mappings common in that language, and (b) subsequent validation against a cognitive battery normed on the population of interest. Such tests exist for Italy, France, Spain, and Argentina, all normed against national versions of the Wechsler Adult Intelligence Scale. Given the varieties of Spanish spoken in the United States, the adaptation of the Spanish Word Accentuation Test (WAT) requires re-validating the original word list, plus possible new items, against a cognitive battery that has been normed on Spanish-speakers from many countries. This study reports the generation of 55 additional words and revalidation in a sample of 80 older, Spanish-dominant immigrants. The Batería Woodcock-Muñoz Revisada (BWM-R), normed on Spanish speakers from six countries and five U.S. states, was used to establish criterion validity. The original WAT word list accounted for 77% of the variance in the BWM-R and 58% of the variance in Ravens Colored Progressive Matrices, suggesting that the unmodified list possesses adequate predictive validity as an indicator of intelligence. Regression equations are provided for estimating BWM-R and Ravens scores from WAT scores.
Flight Test Implementation of a Second Generation Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2005-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.
Ambient intelligence in health care.
Riva, Giuseppe
2003-06-01
Ambient Intelligence (AmI) is a new paradigm in information technology, in which people are empowered through a digital environment that is aware of their presence and context, and is sensitive, adaptive, and responsive to their needs, habits, gestures and emotions. The most ambitious expression of AmI is Intelligent Mixed Reality (IMR), an evolution of traditional virtual reality environments. Using IMR, it is possible to integrate computer interfaces into the real environment, so that the user can interact with other individuals and with the environment itself in the most natural and intuitive way. How does the emergence of the AmI paradigm influence the future of health care? Using a scenario-based approach, this paper outlines the possible role of AmI in health care by focusing on both its technological and relational nature. In this sense, clinicians and health care providers that want to exploit AmI potential need a significant attention to technology, ergonomics, project management, human factors and organizational changes in the structure of the relevant health service.
Trewavas, Anthony
2005-09-01
Intelligent behavior is a complex adaptive phenomenon that has evolved to enable organisms to deal with variable environmental circumstances. Maximizing fitness requires skill in foraging for necessary resources (food) in competitive circumstances and is probably the activity in which intelligent behavior is most easily seen. Biologists suggest that intelligence encompasses the characteristics of detailed sensory perception, information processing, learning, memory, choice, optimisation of resource sequestration with minimal outlay, self-recognition, and foresight by predictive modeling. All these properties are concerned with a capacity for problem solving in recurrent and novel situations. Here I review the evidence that individual plant species exhibit all of these intelligent behavioral capabilities but do so through phenotypic plasticity, not movement. Furthermore it is in the competitive foraging for resources that most of these intelligent attributes have been detected. Plants should therefore be regarded as prototypical intelligent organisms, a concept that has considerable consequences for investigations of whole plant communication, computation and signal transduction.
Guseh, Stephanie H; Chen, Xiaodong P; Johnson, Natasha R
2015-12-26
The purpose of this pilot study was to examine our hypothesis that enriching workplace emotional intelligence through resident coaches could improve third-year medical students' adaptability and proactivity on the Obstetrics and Gynecology clerkship. An observational pilot study was conducted in a teaching hospital. Fourteen 3rd year medical students from two cohorts of clerkships were randomly divided into two groups, and equally assigned to trained resident coaches and untrained resident coaches. Data was collected through onsite naturalistic observation of students' adaptability and proactivity in clinical settings using a checklist with a 4-point Likert scale (1=poor to 4=excellent). Wilcoxon rank-sum test was used to compare the differences between these two groups. A total of 280 data points were collected through onsite observations conducted by investigators. All (n=14) students' adaptability and proactivity performance significantly improved from an average of 3.04 to 3.45 (p=0.014) over 6-week clerkship. Overall, students with trained resident coaches adapted significantly faster and were more proactive in the obstetrics and gynecology clinical setting than the students with untrained coaches (3.31 vs. 3.24, p=0.019). Findings from our pilot study supported our hypothesis that enriching workplace emotional intelligence knowledge through resident coaches was able to help medical students adapt into obstetrics and gynecology clinical settings faster and become more proactive in learning. Clerkship programs can incorporate the concept of a resident coach in their curriculum to help bridge medical students into clinical settings and to help them engage in self-directed learning throughout the rotation.
Guseh, Stephanie H.; Chen, Xiaodong P.
2015-01-01
Objectives The purpose of this pilot study was to examine our hypothesis that enriching workplace emotional intelligence through resident coaches could improve third-year medical students’ adaptability and proactivity on the Obstetrics and Gynecology clerkship. Methods An observational pilot study was conducted in a teaching hospital. Fourteen 3rd year medical students from two cohorts of clerkships were randomly divided into two groups, and equally assigned to trained resident coaches and untrained resident coaches. Data was collected through onsite naturalistic observation of students’ adaptability and proactivity in clinical settings using a checklist with a 4-point Likert scale (1=poor to 4=excellent). Wilcoxon rank-sum test was used to compare the differences between these two groups. Results A total of 280 data points were collected through onsite observations conducted by investigators. All (n=14) students’ adaptability and proactivity performance significantly improved from an average of 3.04 to 3.45 (p=0.014) over 6-week clerkship. Overall, students with trained resident coaches adapted significantly faster and were more proactive in the obstetrics and gynecology clinical setting than the students with untrained coaches (3.31 vs. 3.24, p=0.019). Conclusions Findings from our pilot study supported our hypothesis that enriching workplace emotional intelligence knowledge through resident coaches was able to help medical students adapt into obstetrics and gynecology clinical settings faster and become more proactive in learning. Clerkship programs can incorporate the concept of a resident coach in their curriculum to help bridge medical students into clinical settings and to help them engage in self-directed learning throughout the rotation. PMID:26708233
Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P
2018-01-01
The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.
Meeting People's Needs in a Fully Interoperable Domotic Environment
Miori, Vittorio; Russo, Dario; Concordia, Cesare
2012-01-01
The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes ‘invisible’, as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space. PMID:22969322
NASA Astrophysics Data System (ADS)
Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John
2005-04-01
To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.
Meeting people's needs in a fully interoperable domotic environment.
Miori, Vittorio; Russo, Dario; Concordia, Cesare
2012-01-01
The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes 'invisible', as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space.
The Role of Intelligence in Social Learning.
Vostroknutov, Alexander; Polonio, Luca; Coricelli, Giorgio
2018-05-02
Studies in cultural evolution have uncovered many types of social learning strategies that are adaptive in certain environments. The efficiency of these strategies also depends on the individual characteristics of both the observer and the demonstrator. We investigate the relationship between intelligence and the ways social and individual information is utilised to make decisions in an uncertain environment. We measure fluid intelligence and study experimentally how individuals learn from observing the choices of a demonstrator in a 2-armed bandit problem with changing probabilities of a reward. Participants observe a demonstrator with high or low fluid intelligence. In some treatments they are aware of the intelligence score of the demonstrator and in others they are not. Low fluid intelligence individuals imitate the demonstrator more when her fluid intelligence is known than when it is not. Conversely, individuals with high fluid intelligence adjust their use of social information, as the observed behaviour changes, independently of the knowledge of the intelligence of the demonstrator. We provide evidence that intelligence determines how social and individual information is integrated in order to make choices in a changing uncertain environment.
Intelligent agents for adaptive security market surveillance
NASA Astrophysics Data System (ADS)
Chen, Kun; Li, Xin; Xu, Baoxun; Yan, Jiaqi; Wang, Huaiqing
2017-05-01
Market surveillance systems have increasingly gained in usage for monitoring trading activities in stock markets to maintain market integrity. Existing systems primarily focus on the numerical analysis of market activity data and generally ignore textual information. To fulfil the requirements of information-based surveillance, a multi-agent-based architecture that uses agent intercommunication and incremental learning mechanisms is proposed to provide a flexible and adaptive inspection process. A prototype system is implemented using the techniques of text mining and rule-based reasoning, among others. Based on experiments in the scalping surveillance scenario, the system can identify target information evidence up to 87.50% of the time and automatically identify 70.59% of cases depending on the constraints on the available information sources. The results of this study indicate that the proposed information surveillance system is effective. This study thus contributes to the market surveillance literature and has significant practical implications.
ERIC Educational Resources Information Center
Jordan, Julie-Ann; McRorie, Margaret; Ewing, Cathy
2010-01-01
The relationship between components of emotional intelligence (EI) (interpersonal ability, intrapersonal ability, adaptability and stress management) and academic performance in English, maths and science was examined in a sample of 86 children (49 males and 37 females) aged 11-12 years during the primary-secondary school transition period.…
Adapting Collaboration Dialogue in Response to Intelligent Tutoring System Feedback
ERIC Educational Resources Information Center
Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol
2015-01-01
To be able to provide better support for collaborative learning in Intelligent Tutoring Systems, it is important to understand how collaboration patterns change. Prior work has looked at the interdependencies between utterances and the change of dialogue over time, but it has not addressed how dialogue changes during a lesson, an analysis that…
A Conversational Intelligent Tutoring System to Automatically Predict Learning Styles
ERIC Educational Resources Information Center
Latham, Annabel; Crockett, Keeley; McLean, David; Edmonds, Bruce
2012-01-01
This paper proposes a generic methodology and architecture for developing a novel conversational intelligent tutoring system (CITS) called Oscar that leads a tutoring conversation and dynamically predicts and adapts to a student's learning style. Oscar aims to mimic a human tutor by implicitly modelling the learning style during tutoring, and…
Prospective EFL Teachers' Emotional Intelligence and Tablet Computer Use and Literacy
ERIC Educational Resources Information Center
Herguner, Sinem
2017-01-01
The aim of this study was to investigate whether there is a relationship between tablet computer use and literacy, and emotional intelligence of prospective English language teachers. The study used a survey approach. In the study, "Prospective Teachers Tablet Computer Use and Literacy Scale" and an adapted and translated version into…
ERIC Educational Resources Information Center
Bouchet, Francois; Azevedo, Roger; Kinnebrew, John S.; Biswas, Gautam
2012-01-01
Identification of student learning behaviors, especially those that characterize or distinguish students, can yield important insights for the design of adaptation and feedback mechanisms in Intelligent Tutoring Systems (ITS). In this paper, we analyze trace data to identify distinguishing patterns of behavior in a study of 51 college students…
Intelligent bandwith compression
NASA Astrophysics Data System (ADS)
Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.
1980-02-01
The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 band width-compressed images are presented. A video tape simulation of the Intelligent Bandwidth Compression system has been produced using a sequence of video input from the data base.
Sternberg, Robert J
2012-03-01
Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex-and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret.
Sternberg, Robert J.
2012-01-01
Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain—especially with regard to the functioning in the prefrontal cortex—and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret. PMID:22577301
Developing an Intelligent Computer-Aided Trainer
NASA Technical Reports Server (NTRS)
Hua, Grace
1990-01-01
The Payload-assist module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system was developed as a prototype for intelligent tutoring systems with the intention of seeing PD/ICAT evolve and produce a general ICAT architecture and development environment that can be adapted by a wide variety of training tasks. The proposed architecture is composed of a user interface, a domain expert, a training session manager, a trainee model and a training scenario generator. The PD/ICAT prototype was developed in the LISP environment. Although it has been well received by its peers and users, it could not be delivered toe its end users for practical use because of specific hardware and software constraints. To facilitate delivery of PD/ICAT to its users and to prepare for a more widely accepted development and delivery environment for future ICAT applications, we have ported this training system to a UNIX workstation and adopted use of a conventional language, C, and a C-based rule-based language, CLIPS. A rapid conversion of the PD/ICAT expert system to CLIPS was possible because the knowledge was basically represented as a forward chaining rule base. The resulting CLIPS rule base has been tested successfully in other ICATs as well. Therefore, the porting effort has proven to be a positive step toward our ultimate goal of building a general purpose ICAT development environment.
Adaptive Systems in Education: A Review and Conceptual Unification
ERIC Educational Resources Information Center
Wilson, Chunyu; Scott, Bernard
2017-01-01
Purpose: The purpose of this paper is to review the use of adaptive systems in education. It is intended to be a useful introduction for the non-specialist reader. Design/methodology/approach: A distinction is made between intelligent tutoring systems (ITSs) and adaptive hypermedia systems (AHSs). The two kinds of system are defined, compared and…
Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support
ERIC Educational Resources Information Center
Wong, Lung-Hsiang; Looi, Chee-Kit
2012-01-01
The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…
Comparison of adaptive critic-based and classical wide-area controllers for power systems.
Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat
2008-08-01
An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).
Bekele, Esubalew T; Lahiri, Uttama; Swanson, Amy R.; Crittendon, Julie A.; Warren, Zachary E.; Sarkar, Nilanjan
2013-01-01
Emerging technology, especially robotic technology, has been shown to be appealing to children with autism spectrum disorders (ASD). Such interest may be leveraged to provide repeatable, accurate and individualized intervention services to young children with ASD based on quantitative metrics. However, existing robot-mediated systems tend to have limited adaptive capability that may impact individualization. Our current work seeks to bridge this gap by developing an adaptive and individualized robot-mediated technology for children with ASD. The system is composed of a humanoid robot with its vision augmented by a network of cameras for real-time head tracking using a distributed architecture. Based on the cues from the child’s head movement, the robot intelligently adapts itself in an individualized manner to generate prompts and reinforcements with potential to promote skills in the ASD core deficit area of early social orienting. The system was validated for feasibility, accuracy, and performance. Results from a pilot usability study involving six children with ASD and a control group of six typically developing (TD) children are presented. PMID:23221831
Analyzing User Interaction to Design an Intelligent e-Learning Environment
ERIC Educational Resources Information Center
Sharma, Richa
2011-01-01
Building intelligent course designing systems adaptable to the learners' needs is one of the key goals of research in e-learning. This goal is all the more crucial as gaining knowledge in an e-learning environment depends solely on computer mediated interaction within the learner group and among the learners and instructors. The patterns generated…
Cross-Cultural Adaptation of the Intelligibility in Context Scale for South Africa
ERIC Educational Resources Information Center
Pascoe, Michelle; McLeod, Sharynne
2016-01-01
The Intelligibility in Context Scale (ICS) is a screening questionnaire that focuses on parents' perceptions of children's speech in different contexts. Originally developed in English, it has been translated into 60 languages and the validity and clinical utility of the scale has been documented in a range of countries. In South Africa, there are…
ERIC Educational Resources Information Center
Goldberg, Benjamin; Amburn, Charles; Ragusa, Charlie; Chen, Dar-Wei
2018-01-01
The U.S. Army is interested in extending the application of intelligent tutoring systems (ITS) beyond cognitive problem spaces and into psychomotor skill domains. In this paper, we present a methodology and validation procedure for creating expert model representations in the domain of rifle marksmanship. GIFT (Generalized Intelligent Framework…
Comparing Binaural Pre-processing Strategies II
Hu, Hongmei; Krawczyk-Becker, Martin; Marquardt, Daniel; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Bomke, Katrin; Plotz, Karsten; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-01-01
Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT50) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT50 improvements measured in bilaterally implanted CI users. PMID:26721921
Control Automation in Undersea Search and Manipulation
NASA Technical Reports Server (NTRS)
Weltman, Gershon; Freedy, Amos
1974-01-01
Automatic decision making and control mechanisms of the type termed "adaptive" or "intelligent" offer unique advantages for exploration and manipulation of the undersea environment, particularly at great depths. Because they are able to carry out human-like functions autonomously, such mechanisms can aid and extend the capabilities of the human operator. This paper reviews past and present work in the areas of adaptive control and robotics with the purpose of establishing logical guidelines for the application of automatic techniques underwater. Experimental research data are used to illustrate the importance of information feedback, personnel training, and methods of control allocation in the interaction between operator and intelligent machine.
Soundscape elaboration from anthrophonic adaptation of community noise
NASA Astrophysics Data System (ADS)
Teddy Badai Samodra, FX
2018-03-01
Under the situation of an urban environment, noise has been a critical issue in affecting the indoor environment. A reliable approach is required for evaluation of the community noise as one factor of anthrophonic in the urban environment. This research investigates the level of noise exposure from different community noise sources and elaborates the advantage of the noise disadvantages for soundscape innovation. Integrated building element design as a protector for noise control and speech intelligibility compliance using field experiment and MATLAB programming and modeling are also carried out. Meanwhile, for simulation analysis and building acoustic optimization, Sound Reduction-Speech Intelligibility and Reverberation Time are the main parameters for identifying tropical building model as case study object. The results show that the noise control should consider its integration with the other critical issue, thermal control, in an urban environment. The 1.1 second of reverberation time for speech activities and noise reduction more than 28.66 dBA for critical frequency (20 Hz), the speech intelligibility index could be reached more than fair assessment, 0.45. Furthermore, the environmental psychology adaptation result “Close The Opening” as the best method in high noise condition and personal adjustment as the easiest and the most adaptable way.
Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities.
Yang, Yun; Yu, Dandan; Wang, Hua; Guo, Lin
2017-12-01
Currently, with booming development and worldwide usage of rechargeable electrochemical energy storage devices, their safety issues, operation stability, service life, and user experience are garnering special attention. Smart and intelligent energy storage devices with self-protection and self-adaptation abilities aiming to address these challenges are being developed with great urgency. In this Progress Report, we highlight recent achievements in the field of smart energy storage systems that could early-detect incoming internal short circuits and self-protect against thermal runaway. Moreover, intelligent devices that are able to take actions and self-adapt in response to external mechanical disruption or deformation, i.e., exhibiting self-healing or shape-memory behaviors, are discussed. Finally, insights into the future development of smart rechargeable energy storage devices are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Agent-based user-adaptive service provision in ubiquitous systems
NASA Astrophysics Data System (ADS)
Saddiki, H.; Harroud, H.; Karmouch, A.
2012-11-01
With the increasing availability of smartphones, tablets and other computing devices, technology consumers have grown accustomed to performing all of their computing tasks anytime, anywhere and on any device. There is a greater need to support ubiquitous connectivity and accommodate users by providing software as network-accessible services. In this paper, we propose a MAS-based approach to adaptive service composition and provision that automates the selection and execution of a suitable composition plan for a given service. With agents capable of autonomous and intelligent behavior, the composition plan is selected in a dynamic negotiation driven by a utility-based decision-making mechanism; and the composite service is built by a coalition of agents each providing a component necessary to the target service. The same service can be built in variations for catering to dynamic user contexts and further personalizing the user experience. Also multiple services can be grouped to satisfy new user needs.
Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources
NASA Astrophysics Data System (ADS)
Hortos, William S.
2006-05-01
A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the algorithms from flat topologies to two-tier hierarchies of sensor nodes are presented. Results from a few simulations of the proposed algorithms are compared to the published results of other approaches to sensor network self-organization in common scenarios. The estimated network lifetime and extent under static resource allocations are computed.
ERIC Educational Resources Information Center
Kraper, Catherine K.; Kenworthy, Lauren; Popal, Haroon; Martin, Alex; Wallace, Gregory L.
2017-01-01
For individuals with autism spectrum disorder (ASD), long-term outcomes have been troubling, and intact IQ has not been shown to be protective. Nevertheless, relatively little research into adaptive functioning among adults with ASD has been completed to date. Therefore, both adaptive functioning and comorbid psychopathology were assessed among 52…
Individualized Special Education with Cognitive Skill Assessment.
ERIC Educational Resources Information Center
Kurhila, Jaakko; Laine, Tei
2000-01-01
Describes AHMED (Adaptive and Assistive Hypermedia in Education), a computer learning environment which supports the evaluation of disabled children's cognitive skills in addition to supporting openness in learning materials and adaptivity in learning events. Discusses cognitive modeling and compares it to previous intelligent tutoring systems.…
Termination Criteria for Computerized Classification Testing
ERIC Educational Resources Information Center
Thompson, Nathan A.
2011-01-01
Computerized classification testing (CCT) is an approach to designing tests with intelligent algorithms, similar to adaptive testing, but specifically designed for the purpose of classifying examinees into categories such as "pass" and "fail." Like adaptive testing for point estimation of ability, the key component is the…
Adaptive Computerized Instruction.
ERIC Educational Resources Information Center
Ray, Roger D.; And Others
1995-01-01
Describes an artificially intelligent multimedia computerized instruction system capable of developing a conceptual image of what a student is learning while the student is learning it. It focuses on principles of learning and adaptive behavioral control systems theory upon which the system is designed and demonstrates multiple user modes.…
Development of intelligent robots - Achievements and issues
NASA Astrophysics Data System (ADS)
Nitzan, D.
1985-03-01
A flexible, intelligent robot is regarded as a general purpose machine system that may include effectors, sensors, computers, and auxiliary equipment and, like a human, can perform a variety of tasks under unpredictable conditions. Development of intelligent robots is essential for increasing the growth rate of today's robot population in industry and elsewhere. Robotics research and development topics include manipulation, end effectors, mobility, sensing (noncontact and contact), adaptive control, robot programming languages, and manufacturing process planning. Past achievements and current issues related to each of these topics are described briefly.
An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.
Ranganayaki, V; Deepa, S N
2016-01-01
Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.
An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems
Ranganayaki, V.; Deepa, S. N.
2016-01-01
Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973
Intelligent robot control using an adaptive critic with a task control center and dynamic database
NASA Astrophysics Data System (ADS)
Hall, E. L.; Ghaffari, M.; Liao, X.; Alhaj Ali, S. M.
2006-10-01
The purpose of this paper is to describe the design, development and simulation of a real time controller for an intelligent, vision guided robot. The use of a creative controller that can select its own tasks is demonstrated. This creative controller uses a task control center and dynamic database. The dynamic database stores both global environmental information and local information including the kinematic and dynamic models of the intelligent robot. The kinematic model is very useful for position control and simulations. However, models of the dynamics of the manipulators are needed for tracking control of the robot's motions. Such models are also necessary for sizing the actuators, tuning the controller, and achieving superior performance. Simulations of various control designs are shown. Also, much of the model has also been used for the actual prototype Bearcat Cub mobile robot. This vision guided robot was designed for the Intelligent Ground Vehicle Contest. A novel feature of the proposed approach is that the method is applicable to both robot arm manipulators and robot bases such as wheeled mobile robots. This generality should encourage the development of more mobile robots with manipulator capability since both models can be easily stored in the dynamic database. The multi task controller also permits wide applications. The use of manipulators and mobile bases with a high-level control are potentially useful for space exploration, certain rescue robots, defense robots, and medical robotics aids.
Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology
Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga
2015-01-01
In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416
Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system
NASA Astrophysics Data System (ADS)
Nourmohammadi, Hossein; Keighobadi, Jafar
2018-01-01
Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.
Combined Final Report for Colony II Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kale, Laxmikant; Jones, Terry; Moreira, Jose
2013-10-23
(This report was originally submmited by the lead PI (Terry Jones, ORNL) on October 22, 2013 to the program manager, Lucy Nowell. It is being submitted from University of Illinois in accordance with instructions). HPC Colony II seeks to provide portable performance for leadership class machines. Our strategy is based on adaptive system software that aims to make the intelligent decisions necessary to allow domain scientists to safely focus on their task at hand and allow the system software stack to adapt their application to the underlying architecture. This report describes the research undertaken towards these objectives and the resultsmore » obtained over the performance period of the project.« less
An efficient representation of spatial information for expert reasoning in robotic vehicles
NASA Technical Reports Server (NTRS)
Scott, Steven; Interrante, Mark
1987-01-01
The previous generation of robotic vehicles and drones was designed for a specific task, with limited flexibility in executing their mission. This limited flexibility arises because the robotic vehicles do not possess the intelligence and knowledge upon which to make significant tactical decisions. Current development of robotic vehicles is toward increased intelligence and capabilities, adapting to a changing environment and altering mission objectives. The latest techniques in artificial intelligence (AI) are being employed to increase the robotic vehicle's intelligent decision-making capabilities. This document describes the design of the SARA spatial database tool, which is composed of request parser, reasoning, computations, and database modules that collectively manage and derive information useful for robotic vehicles.
An Anticipatory Model of Cavitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, G.O.; Dress, W.B., Jr.; Hylton, J.O.
1999-04-05
The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the modelmore » execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.« less
Artificial intelligent techniques for optimizing water allocation in a reservoir watershed
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung
2014-05-01
This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.
The Role of Emotional Intelligence in the Decision to Persist with Academic Studies in HE
ERIC Educational Resources Information Center
Qualter, Pamela; Whiteley, Helen; Morley, Andy; Dudiak, Helen
2009-01-01
Failure to adapt to the demands of higher education (HE) is often cited as a cause of withdrawal from the course. Parker and others (Parker, J.D.A., L.J. Summerfeldt, M.J. Hogan, and S.A. Majeski. 2004. "Emotional intelligence and academic success: Examining the transition from high school to university." "Personality and Individual…
The Intelligent e-Therapy System: A New Paradigm for Telepsychology and Cybertherapy
ERIC Educational Resources Information Center
Alcaniz, M.; Botella, C.; Banos, R. M.; Zaragoza, I.; Guixeres, J.
2009-01-01
One of the main drawbacks of computer-assisted psychology tools developed up to now is related to the real time customisation and adaptation of the content to each patient depending on his/her activity. In this paper we propose a new approach for mental e-health treatments named Intelligent e-Therapy (eIT) with capabilities for ambient…
ERIC Educational Resources Information Center
Duncan, Amie W.; Bishop, Somer L.
2015-01-01
Daily living skills standard scores on the Vineland Adaptive Behavior Scales-2nd edition were examined in 417 adolescents from the Simons Simplex Collection. All participants had at least average intelligence and a diagnosis of autism spectrum disorder. Descriptive statistics and binary logistic regressions were used to examine the prevalence and…
ERIC Educational Resources Information Center
Davis, Sarah K.; Humphrey, Neil
2012-01-01
Theoretically, trait and ability emotional intelligence (EI) should mobilise coping processes to promote adaptation, plausibly operating as personal resources determining choice and/or implementation of coping style. However, there is a dearth of research deconstructing if/how EI impacts mental health via multiple coping strategies in adolescence.…
Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)
2007-04-01
weight will be reduced by replacing heavy harness assemblies and FADECs , with distributed processing elements interconnected. This paper reviews...Digital Electronic Controls ( FADECs ), with distributed processing elements interconnected through a serial bus. Efficient data flow throughout the...because intelligence is embedded in components while overall control is maintained in the FADEC . The need for Distributed Control Systems in
Virtual Neurorobotics (VNR) to Accelerate Development of Plausible Neuromorphic Brain Architectures.
Goodman, Philip H; Buntha, Sermsak; Zou, Quan; Dascalu, Sergiu-Mihai
2007-01-01
Traditional research in artificial intelligence and machine learning has viewed the brain as a specially adapted information-processing system. More recently the field of social robotics has been advanced to capture the important dynamics of human cognition and interaction. An overarching societal goal of this research is to incorporate the resultant knowledge about intelligence into technology for prosthetic, assistive, security, and decision support applications. However, despite many decades of investment in learning and classification systems, this paradigm has yet to yield truly "intelligent" systems. For this reason, many investigators are now attempting to incorporate more realistic neuromorphic properties into machine learning systems, encouraged by over two decades of neuroscience research that has provided parameters that characterize the brain's interdependent genomic, proteomic, metabolomic, anatomic, and electrophysiological networks. Given the complexity of neural systems, developing tenable models to capture the essence of natural intelligence for real-time application requires that we discriminate features underlying information processing and intrinsic motivation from those reflecting biological constraints (such as maintaining structural integrity and transporting metabolic products). We propose herein a conceptual framework and an iterative method of virtual neurorobotics (VNR) intended to rapidly forward-engineer and test progressively more complex putative neuromorphic brain prototypes for their ability to support intrinsically intelligent, intentional interaction with humans. The VNR system is based on the viewpoint that a truly intelligent system must be driven by emotion rather than programmed tasking, incorporating intrinsic motivation and intentionality. We report pilot results of a closed-loop, real-time interactive VNR system with a spiking neural brain, and provide a video demonstration as online supplemental material.
The role of intelligence and feedback in children's strategy competence.
Luwel, Koen; Foustana, Ageliki; Papadatos, Yiannis; Verschaffel, Lieven
2011-01-01
A test-intervention-test study was conducted investigating the role of intelligence on four parameters of strategy competence in the context of a numerosity judgment task. Moreover, the effectiveness of two feedback types on these four parameters was tested. In the two test sessions, the choice/no-choice method was used to assess the strategy repertoire, frequency, efficiency, and adaptivity of a group of low-, average-, and high-intelligence children. During the intervention, half of the participants from each intelligence group were given outcome feedback (OFB), whereas the other half received strategy feedback (SFB). The pretest data showed large differences among the three intelligence groups on all four strategy parameters. These differences had disappeared at the posttest due to a particularly strong improvement on all strategy parameters in the low-intelligence group. Furthermore, it was found that SFB was more beneficial than OFB for all parameters involving strategy selection. These results indicate that intelligence plays an important role in children's strategy use and suggest that strategy feedback can be a powerful instructional tool, especially for low-intelligence children. Copyright © 2010 Elsevier Inc. All rights reserved.
Gaussian process based intelligent sampling for measuring nano-structure surfaces
NASA Astrophysics Data System (ADS)
Sun, L. J.; Ren, M. J.; Yin, Y. H.
2016-09-01
Nanotechnology is the science and engineering that manipulate matters at nano scale, which can be used to create many new materials and devices with a vast range of applications. As the nanotech product increasingly enters the commercial marketplace, nanometrology becomes a stringent and enabling technology for the manipulation and the quality control of the nanotechnology. However, many measuring instruments, for instance scanning probe microscopy, are limited to relatively small area of hundreds of micrometers with very low efficiency. Therefore some intelligent sampling strategies should be required to improve the scanning efficiency for measuring large area. This paper presents a Gaussian process based intelligent sampling method to address this problem. The method makes use of Gaussian process based Bayesian regression as a mathematical foundation to represent the surface geometry, and the posterior estimation of Gaussian process is computed by combining the prior probability distribution with the maximum likelihood function. Then each sampling point is adaptively selected by determining the position which is the most likely outside of the required tolerance zone among the candidates and then inserted to update the model iteratively. Both simulationson the nominal surface and manufactured surface have been conducted on nano-structure surfaces to verify the validity of the proposed method. The results imply that the proposed method significantly improves the measurement efficiency in measuring large area structured surfaces.
Multi-objects recognition for distributed intelligent sensor networks
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.
2008-04-01
This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.
Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers
NASA Astrophysics Data System (ADS)
Kapoor, Neha; Ohri, Jyoti
2017-02-01
Inspite of so much research, key technical problem, naming chattering of conventional, simple and robust SMC is still a challenge to the researchers and hence limits its practical application. However, newly developed soft computing based techniques can provide solution. In order to have advantages of conventional and heuristic soft computing based control techniques, in this paper various commonly used intelligent techniques, neural network, fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) have been combined with sliding mode controller (SMC). For validation, proposed hybrid control schemes have been implemented for tracking a predefined trajectory by robotic manipulator, incorporating structured and unstructured uncertainties in the system. After reviewing numerous papers, all the commonly occurring uncertainties like continuous disturbance, uniform random white noise, static friction like coulomb friction and viscous friction, dynamic friction like Dhal friction and LuGre friction have been inserted in the system. Various performance indices like norm of tracking error, chattering in control input, norm of input torque, disturbance rejection, chattering rejection have been used. Comparative results show that with almost eliminated chattering the intelligent SMC controllers are found to be more efficient over simple SMC. It has also been observed from results that ANFIS based controller has the best tracking performance with the reduced burden on the system. No paper in the literature has found to have all these structured and unstructured uncertainties together for motion control of robotic manipulator.
Automated Intelligent Training with a Tactical Decision Making Serious Game
2014-01-01
tactical skills, but only if experiential events are accompanied with guided feedback. Practice alone is not sufficient for learning; it must be...micro-adaptation occurs within events (Shute, 1993). Micro-adaptation is a major component of InGEAR’s pedagogical strategy, with feedback tailored
Adolescent Depression: Relationships of Self-Report to Intellectual and Adaptive Functioning.
ERIC Educational Resources Information Center
Manikam, Ramasamy; And Others
1995-01-01
Self-report measures of depression, general psychopathology, and social skills were administered to 100 adolescents ranging from moderate mental retardation to above normal intelligence. Adolescents with mental retardation reported more depression and general psychopathology symptoms. Adaptive behavior functioned as a moderator variable, mediating…
Situated Agents and Humans in Social Interaction for Elderly Healthcare: From Coaalas to AVICENA.
Gómez-Sebastià, Ignasi; Moreno, Jonathan; Álvarez-Napagao, Sergio; Garcia-Gasulla, Dario; Barrué, Cristian; Cortés, Ulises
2016-02-01
Assistive Technologies (AT) are an application area where several Artificial Intelligence techniques and tools have been successfully applied to support elderly or impeded people on their daily activities. However, approaches to AT tend to center in the user-tool interaction, neglecting the user's connection with its social environment (such as caretakers, relatives and health professionals) and the possibility to monitor undesired behaviour providing both adaptation to a dynamic environment and early response to potentially dangerous situations. In previous work we have presented COAALAS, an intelligent social and norm-aware device for elderly people that is able to autonomously organize, reorganize and interact with the different actors involved in elderly-care, either human actors or other devices. In this paper we put our work into context, by first examining what are the desirable properties of such a system, analysing the state-of-the-art on the relevant topics, and verifying the validity of our proposal in a larger context that we call AVICENA. AVICENA's aim is develop a semi-autonomous (collaborative) tool to promote monitored, intensive, extended and personalized therapeutic regime adherence at home based on adaptation techniques.
Catalogue Creation for Space Situational Awareness with Optical Sensors
NASA Astrophysics Data System (ADS)
Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.
2016-09-01
In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to generate a plausible estimate of the unknown RSO's state probability density function and disambiguate measurements using a particle-based joint probability data association (JPDA) method. Additionally, the use of alternative CAR generation methods, incorporating catalogue-based priors, is explored and tested. We also present the findings of two field trials of an experimental system that incorporates these techniques. The results demonstrate that such a system is capable of autonomously searching for an RSO that was briefly observed days prior in a GEO-survey and discriminating it from the measurements of other previously catalogued RSOs.
A new culture of leadership: service over self.
Kumar, Kamalini
2010-01-01
Servant Leadership, a 30-year-old leadership and management concept, is slowly gaining popularity, especially in faith-based healthcare institutions. However, although theory is present, actually putting the concepts into everyday practice lags far behind. This article discusses how a person's worldview influences leadership; specific servant leader characteristics adapted from a biblical worldview; the need for emotional intelligence; and Jesus Christ as the ideal Servant Leader. The author includes a Workplace Questionnaire on Servant Leadership Qualities.
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
Psychological Gender and Emotional Intelligence in Youth Female Soccer Players.
Rutkowska, Katarzyna; Bergier, Józef
2015-09-29
Many sports (for instance soccer) are stereotypically perceived as a male activity. Even so, more and more women decide to become competitive athletes. Since the theory of sport requires comprehensive explanations and the practice of sport needs clear guidelines, interdisciplinary studies into the nature of sport, including its psychological aspects, are necessary. Analysing the psychological profile of female soccer players, particularly those who are about to become professional athletes, can provide many interesting insights into the specific character of female youth sport and show where improvements can be made in athletic training programmes (especially in mental training). It is therefore important to study psychological gender that determines social behaviours and to analyse female athletes' emotional intelligence. Emotional intelligence is defined as a set of emotional competencies that determine the effectiveness of human behaviours. Psychological gender and emotional intelligence have a significant effect on human adaptability and the efficiency of psychosocial functioning. This research was undertaken with the dual purpose of identifying the psychological gender and emotional intelligence of female soccer players. It involved 54 secondary-school girls, some of whom attended a sports class and others played on the Polish national team. The following tools were used to carry out the research: the Gender Assessment Inventory (IPP [This and the other acronyms derive from the Polish language]-developed by Kuczyńska) and the Emotional Intelligence Questionnaire (INTE; created by Jaworowska and Matczak). As shown by the analysis of the results, most female soccer players in the study were androgynous and the level of their emotional intelligence was significantly higher than in other participants. This also seems to point to their significantly greater adaptability. At the same time, the level of emotional intelligence in many players was average or low, which seems insufficient and calls for adequate intervention measures to be taken.
Psychological Gender and Emotional Intelligence in Youth Female Soccer Players
Rutkowska, Katarzyna; Bergier, Józef
2015-01-01
Many sports (for instance soccer) are stereotypically perceived as a male activity. Even so, more and more women decide to become competitive athletes. Since the theory of sport requires comprehensive explanations and the practice of sport needs clear guidelines, interdisciplinary studies into the nature of sport, including its psychological aspects, are necessary. Analysing the psychological profile of female soccer players, particularly those who are about to become professional athletes, can provide many interesting insights into the specific character of female youth sport and show where improvements can be made in athletic training programmes (especially in mental training). It is therefore important to study psychological gender that determines social behaviours and to analyse female athletes’ emotional intelligence. Emotional intelligence is defined as a set of emotional competencies that determine the effectiveness of human behaviours. Psychological gender and emotional intelligence have a significant effect on human adaptability and the efficiency of psychosocial functioning. This research was undertaken with the dual purpose of identifying the psychological gender and emotional intelligence of female soccer players. It involved 54 secondary-school girls, some of whom attended a sports class and others played on the Polish national team. The following tools were used to carry out the research: the Gender Assessment Inventory (IPP [This and the other acronyms derive from the Polish language]-developed by Kuczyńska) and the Emotional Intelligence Questionnaire (INTE; created by Jaworowska and Matczak). As shown by the analysis of the results, most female soccer players in the study were androgynous and the level of their emotional intelligence was significantly higher than in other participants. This also seems to point to their significantly greater adaptability. At the same time, the level of emotional intelligence in many players was average or low, which seems insufficient and calls for adequate intervention measures to be taken. PMID:26673062
ERIC Educational Resources Information Center
Chang, Chen-Lin; Lung, For-Wey; Yen, Cheng-Fang; Yang, Pinchen
2013-01-01
We investigated the relationship among cognitive level, autistic severity and adaptive function in a Taiwanese sample of 94 high-functioning children with autism spectrum disorders (ASD) (mean full scale intelligent quotients FSIQ = 84.8). Parents and teachers both completed the Adaptive Behavior Assessment System-II and the Social Responsiveness…
NASA Astrophysics Data System (ADS)
Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli
2013-03-01
Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.
NASA Astrophysics Data System (ADS)
Zarchi, Milad; Attaran, Behrooz
2017-11-01
This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.
NASA Technical Reports Server (NTRS)
McManus, John W.; Goodrich, Kenneth H.
1989-01-01
A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.
Multichannel spatial auditory display for speech communications
NASA Technical Reports Server (NTRS)
Begault, D. R.; Erbe, T.; Wenzel, E. M. (Principal Investigator)
1994-01-01
A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degrees azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degrees azimuth positions.
Multi-channel spatial auditory display for speech communications
NASA Astrophysics Data System (ADS)
Begault, Durand; Erbe, Tom
1993-10-01
A spatial auditory display for multiple speech communications was developed at NASA-Ames Research Center. Input is spatialized by use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four letter call signs used by launch personnel at NASA, against diotic speech babble. Spatial positions at 30 deg azimuth increments were evaluated. The results from eight subjects showed a maximal intelligibility improvement of about 6 to 7 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.
Multichannel spatial auditory display for speech communications.
Begault, D R; Erbe, T
1994-10-01
A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degrees azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degrees azimuth positions.
Multichannel Spatial Auditory Display for Speed Communications
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Erbe, Tom
1994-01-01
A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplifiedhead-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degree azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degree azimuth positions.
Intelligent Optical Systems Using Adaptive Optics
NASA Technical Reports Server (NTRS)
Clark, Natalie
2012-01-01
Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.
Multi-channel spatial auditory display for speech communications
NASA Technical Reports Server (NTRS)
Begault, Durand; Erbe, Tom
1993-01-01
A spatial auditory display for multiple speech communications was developed at NASA-Ames Research Center. Input is spatialized by use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four letter call signs used by launch personnel at NASA, against diotic speech babble. Spatial positions at 30 deg azimuth increments were evaluated. The results from eight subjects showed a maximal intelligibility improvement of about 6 to 7 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.
2006-12-01
gestion de la masse d’informations nécessaires pour appuyer la prise de décision efficace. De l’avis des opérateurs d’engins télépilotés...opérateurs d’engins télépilotés risque de croître exponentiellement, de sorte que de fortes contraintes seront imposées au personnel exécutant les missions...commande réelle des engins télépilotés que la gestion des données, y compris la conversion de ces données en information et l’acheminement
ERIC Educational Resources Information Center
Beale, Ivan L.
2005-01-01
Computer assisted learning (CAL) can involve a computerised intelligent learning environment, defined as an environment capable of automatically, dynamically and continuously adapting to the learning context. One aspect of this adaptive capability involves automatic adjustment of instructional procedures in response to each learner's performance,…
DOT National Transportation Integrated Search
2015-05-01
The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...
Adaptive Dialogue Systems for Assistive Living Environments
ERIC Educational Resources Information Center
Papangelis, Alexandros
2013-01-01
Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…
Using Intelligent Tutor Technology to Implement Adaptive Support for Student Collaboration
ERIC Educational Resources Information Center
Diziol, Dejana; Walker, Erin; Rummel, Nikol; Koedinger, Kenneth R.
2010-01-01
Research on computer-supported collaborative learning has shown that students need support to benefit from collaborative activities. While classical collaboration scripts have been effective in providing such support, they have also been criticized for being coercive and not allowing students to self-regulate their learning. Adaptive collaboration…
A Survey of School Psychologists' Practices for Identifying Mentally Retarded Students.
ERIC Educational Resources Information Center
Wodrich, David L.; Barry, Christine T.
1991-01-01
Surveyed school psychologists regarding identification of mentally retarded students. The Wechsler scales were the most frequently used tests for deriving intelligence quotient scores, which together with adaptive behavior scale scores were rated as most influential in identification-placement decisions. The Vineland Adaptive Behavior Scales were…
Preschooler Sleep Patterns Related to Cognitive and Adaptive Functioning
ERIC Educational Resources Information Center
Keefe-Cooperman, Kathleen; Brady-Amoon, Peggy
2014-01-01
Research Findings: Preschoolers' sleep patterns were examined related to cognitive and adaptive functioning. The sample consisted of 874 typically developing preschool children with a mean age of 40.01 months. Parent/caregiver reports of children's sleep pattern factors, Stanford-Binet 5 intelligence scale scores, and Behavior Assessment System…
Adaptive versus Learner Control in a Multiple Intelligence Learning Environment
ERIC Educational Resources Information Center
Kelly, Declan
2008-01-01
Within the field of technology enhanced learning, adaptive educational systems offer an advanced form of learning environment that attempts to meet the needs of different students. Such systems capture and represent, for each student, various characteristics such as knowledge and traits in an individual learner model. Subsequently, using the…
StairStepper: An Adaptive Remedial iSTART Module
ERIC Educational Resources Information Center
Perret, Cecile A.; Johnson, Amy M.; McCarthy, Kathryn S.; Guerrero, Tricia A.; Dai, Jianmin; McNamara, Danielle S.
2017-01-01
This paper introduces StairStepper, a new addition to Interactive Strategy Training for Active Reading and Thinking (iSTART), an intelligent tutoring system (ITS) that provides adaptive self-explanation training and practice. Whereas iSTART focuses on improving comprehension at levels geared toward answering challenging questions associated with…
Novel Propulsion and Power Concepts for 21st Century Aviation
NASA Technical Reports Server (NTRS)
Sehra, Arun K.
2003-01-01
The air transportation for the new millennium will require revolutionary solutions to meeting public demand for improving safety, reliability, environmental compatibility, and affordability. NASA s vision for 21st Century Aircraft is to develop propulsion systems that are intelligent, virtually inaudible (outside the airport boundaries), and have near zero harmful emissions (CO2 and NO(x)). This vision includes intelligent engines that will be capable of adapting to changing internal and external conditions to optimally accomplish the mission with minimal human intervention. The distributed vectored propulsion will replace two to four wing mounted or fuselage mounted engines by a large number of small, mini, or micro engines. And the electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. Such a system will completely eliminate the harmful emissions.
Intelligent control of an IPMC actuated manipulator using emotional learning-based controller
NASA Astrophysics Data System (ADS)
Shariati, Azadeh; Meghdari, Ali; Shariati, Parham
2008-08-01
In this research an intelligent emotional learning controller, Takagi- Sugeno- Kang (TSK) is applied to govern the dynamics of a novel Ionic-Polymer Metal Composite (IPMC) actuated manipulator. Ionic-Polymer Metal Composites are active actuators that show very large deformation in existence of low applied voltage. In this research, a new IPMC actuator is considered and applied to a 2-dof miniature manipulator. This manipulator is designed for miniature tasks. The control system consists of a set of neurofuzzy controller whose parameters are adapted according to the emotional learning rules, and a critic with task to assess the present situation resulted from the applied control action in terms of satisfactory achievement of the control goals and provides the emotional signal (the stress). The controller modifies its characteristics so that the critic's stress decreased.
Intelligent systems for the autonomous exploration of Titan and Enceladus
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Kargel, Jeffrey S.; Fink, Wolfgang
2008-04-01
Future planetary exploration of the outer satellites of the Solar System will require higher levels of onboard automation, including autonomous determination of sites where the probability of significant scientific findings is highest. Generally, the level of needed automation is heavily influenced by the distance between Earth and the robotic explorer(s) (e.g. spacecraft(s), rover(s), and balloon(s)). Therefore, planning missions to the outer satellites mandates the analysis, design and integration within the mission architecture of semi- and/or completely autonomous intelligence systems. Such systems should (1) include software packages that enable fully automated and comprehensive identification, characterization, and quantification of feature information within an operational region with subsequent target prioritization and selection for close-up reexamination; and (2) integrate existing information with acquired, "in transit" spatial and temporal sensor data to automatically perform intelligent planetary reconnaissance, which includes identification of sites with the highest potential to yield significant geological and astrobiological information. In this paper we review and compare some of the available Artificial Intelligence (AI) schemes and their adaptation to the problem of designing expert systems for onboard-based, autonomous science to be performed in the course of outer satellites exploration. More specifically, the fuzzy-logic framework proposed is analyzed in some details to show the effectiveness of such a scheme when applied to the problem of designing expert systems capable of identifying and further exploring regions on Titan and/or Enceladus that have the highest potential to yield evidence for past or present life. Based on available information (e.g., Cassini data), the current knowledge and understanding of Titan and Enceladus environments is evaluated to define a path for the design of a fuzzy-based system capable of reasoning over collected data and capable of providing the inference required to autonomously optimize future outer satellites explorations.
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
ERIC Educational Resources Information Center
Janning, Ruth; Schatten, Carlotta; Schmidt-Thieme, Lars
2016-01-01
Recognising students' emotion, affect or cognition is a relatively young field and still a challenging task in the area of intelligent tutoring systems. There are several ways to use the output of these recognition tasks within the system. The approach most often mentioned in the literature is using it for giving feedback to the students. The…
Adaptive Modeling and Real-Time Simulation
1984-01-01
34 Artificial Inteligence , Vol. 13, pp. 27-39 (1980). Describes circumscription which is just the assumption that everything that is known to have a particular... Artificial Intelligence Truth Maintenance Planning Resolution Modeling Wcrld Models ~ .. ~2.. ASSTR AT (Coninue n evrse sieIf necesaran Identfy by...represents a marriage of (1) the procedural-network st, planning technology developed in artificial intelligence with (2) the PERT/CPM technology developed in
ERIC Educational Resources Information Center
Braden, Jeffery P.; Iribarren, Jacqueline A.
2007-01-01
In this article, the authors review the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish), a Spanish translation and adaptation of the WISC-IV. The test was developed to measure the intellectual ability of Spanish-speaking children in the United States ages 6 years, 0 months, through 16 years, 11 months. These…
Improving the Performance of AI Algorithms.
1987-09-01
favorably -6 influenced by s uch progranmning practices as the intellige +nt selt,(-rion .%V ’%. ot’ data formats; to) minimize th~e n,,-ed for...GROUP SUB-GROUP Artifcial Intelgence (Al) Algorithms, Improving Software .’ u- 12 05 Performance, Program Behavior, Predicting Performance, % 12 07...tions in communications, threat assessment, res(orce availability, and so forth. This need for intelligent and adaptable behavior indicates that the
Blackboard architecture for medical image interpretation
NASA Astrophysics Data System (ADS)
Davis, Darryl N.; Taylor, Christopher J.
1991-06-01
There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.
Swarm intelligence. A whole new way to think about business.
Bonabeau, E; Meyer, C
2001-05-01
What do ants and bees have to do with business? A great deal, it turns out. Individually, social insects are only minimally intelligent, and their work together is largely self-organized and unsupervised. Yet collectively they're capable of finding highly efficient solutions to difficult problems and can adapt automatically to changing environments. Over the past 20 years, the authors and other researchers have developed rigorous mathematical models to describe this phenomenon, which has been dubbed "swarm intelligence," and they are now applying them to business. Their research has already helped several companies develop more efficient ways to schedule factory equipment, divide tasks among workers, organize people, and even plot strategy. Emulating the way ants find the shortest path to a new food supply, for example, has led researchers at Hewlett-Packard to develop software programs that can find the most efficient way to route phone traffic over a telecommunications network. South-west Airlines has used a similar model to efficiently route cargo. To allocate labor, honeybees appear to follow one simple but powerful rule--they seem to specialize in a particular activity unless they perceive an important need to perform another function. Using that model, researchers at Northwestern University have devised a system for painting trucks that can automatically adapt to changing conditions. In the future, the authors speculate, a company might structure its entire business using the principles of swarm intelligence. The result, they believe, would be the ultimate self-organizing enterprise--one that could adapt quickly and instinctively to fast-changing markets.
Towards Self-adaptation for Dependable Service-Oriented Systems
NASA Astrophysics Data System (ADS)
Cardellini, Valeria; Casalicchio, Emiliano; Grassi, Vincenzo; Lo Presti, Francesco; Mirandola, Raffaela
Increasingly complex information systems operating in dynamic environments ask for management policies able to deal intelligently and autonomously with problems and tasks. An attempt to deal with these aspects can be found in the Service-Oriented Architecture (SOA) paradigm that foresees the creation of business applications from independently developed services, where services and applications build up complex dependencies. Therefore the dependability of SOA systems strongly depends on their ability to self-manage and adapt themselves to cope with changes in the operating conditions and to meet the required dependability with a minimum of resources. In this paper we propose a model-based approach to the realization of self-adaptable SOA systems, aimed at the fulfillment of dependability requirements. Specifically, we provide a methodology driving the system adaptation and we discuss the architectural issues related to its implementation. To bring this approach to fruition, we developed a prototype tool and we show the results that can be achieved with a simple example.
Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network
NASA Astrophysics Data System (ADS)
Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke
2018-06-01
Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.
Compact Microscope Imaging System With Intelligent Controls Improved
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.
A meta-learning system based on genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.
Call sign intelligibility improvement using a spatial auditory display
NASA Technical Reports Server (NTRS)
Begault, Durand R.
1993-01-01
A spatial auditory display was used to convolve speech stimuli, consisting of 130 different call signs used in the communications protocol of NASA's John F. Kennedy Space Center, to different virtual auditory positions. An adaptive staircase method was used to determine intelligibility levels of the signal against diotic speech babble, with spatial positions at 30 deg azimuth increments. Non-individualized, minimum-phase approximations of head-related transfer functions were used. The results showed a maximal intelligibility improvement of about 6 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.
Computing Nash equilibria through computational intelligence methods
NASA Astrophysics Data System (ADS)
Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.
2005-03-01
Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.
Biomimetic molecular design tools that learn, evolve, and adapt.
Winkler, David A
2017-01-01
A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.
Biomimetic molecular design tools that learn, evolve, and adapt
2017-01-01
A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872
Intelligent Control and Health Monitoring. Chapter 3
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.
2009-01-01
Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.
2011-01-01
Worrying is the central feature of generalized anxiety disorder (GAD). Many people worry from time to time, but in GAD the worrying is prolonged and difficult to control. Worrying is a specific way of coping with perceived threats and feared situations. Meanwhile, it is not considered to be a helpful coping strategy, and the phenomenological account developed in this paper aims to show why. It builds on several phenomenological notions and in particular on Michael Wheeler's application of these notions to artificial intelligence and the cognitive sciences. Wheeler emphasizes the value of 'online intelligence' as contrasted to 'offline intelligence'. I discuss and apply these concepts with respect to worrying as it occurs in GAD, suggesting that GAD patients overrate the value of detached contemplation (offline intelligence), while underrating their embodied-embedded adaptive skills (online intelligence). I argue that this phenomenological account does not only help explaining why worrying is used as a coping strategy, but also why cognitive behavioral therapy is successful in treating GAD. PMID:21539727
Schmithorst, Vincent J; Holland, Scott K
2007-03-01
A Bayesian method for functional connectivity analysis was adapted to investigate between-group differences. This method was applied in a large cohort of almost 300 children to investigate differences in boys and girls in the relationship between intelligence and functional connectivity for the task of narrative comprehension. For boys, a greater association was shown between intelligence and the functional connectivity linking Broca's area to auditory processing areas, including Wernicke's areas and the right posterior superior temporal gyrus. For girls, a greater association was shown between intelligence and the functional connectivity linking the left posterior superior temporal gyrus to Wernicke's areas bilaterally. A developmental effect was also seen, with girls displaying a positive correlation with age in the association between intelligence and the functional connectivity linking the right posterior superior temporal gyrus to Wernicke's areas bilaterally. Our results demonstrate a sexual dimorphism in the relationship of functional connectivity to intelligence in children and an increasing reliance on inter-hemispheric connectivity in girls with age.
Meynen, Gerben
2011-05-03
Worrying is the central feature of generalized anxiety disorder (GAD). Many people worry from time to time, but in GAD the worrying is prolonged and difficult to control. Worrying is a specific way of coping with perceived threats and feared situations. Meanwhile, it is not considered to be a helpful coping strategy, and the phenomenological account developed in this paper aims to show why. It builds on several phenomenological notions and in particular on Michael Wheeler's application of these notions to artificial intelligence and the cognitive sciences. Wheeler emphasizes the value of 'online intelligence' as contrasted to 'offline intelligence'. I discuss and apply these concepts with respect to worrying as it occurs in GAD, suggesting that GAD patients overrate the value of detached contemplation (offline intelligence), while underrating their embodied-embedded adaptive skills (online intelligence). I argue that this phenomenological account does not only help explaining why worrying is used as a coping strategy, but also why cognitive behavioral therapy is successful in treating GAD.
Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform
NASA Astrophysics Data System (ADS)
Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut
2016-04-01
The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development of some Earth Observation oriented applications based on flexible description of processing, and adaptive and portable execution over Cloud infrastructure. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Gorgan, D., "Flexible and Adaptive Processing of Earth Observation Data over High Performance Computation Architectures", International Conference and Exhibition Satellite 2015, August 17-19, Houston, Texas, USA. [3] Mihon, D., Bacu, V., Colceriu, V., Gorgan, D., "Modeling of Earth Observation Use Cases through the KEOPS System", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 455-460, (2015). [4] Nandra, C., Gorgan, D., "Workflow Description Language for Defining Big Earth Data Processing Tasks", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 461-468, (2015). [5] Bacu, V., Stefan, T., Gorgan, D., "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).
Lateral Prefrontal Cortex Contributes to Fluid Intelligence Through Multinetwork Connectivity.
Cole, Michael W; Ito, Takuya; Braver, Todd S
2015-10-01
Our ability to effectively adapt to novel circumstances--as measured by general fluid intelligence--has recently been tied to the global connectivity of lateral prefrontal cortex (LPFC). Global connectivity is a broad measure that summarizes both within-network connectivity and across-network connectivity. We used additional graph theoretical measures to better characterize the nature of LPFC connectivity and its relationship with fluid intelligence. We specifically hypothesized that LPFC is a connector hub with an across-network connectivity that contributes to fluid intelligence independent of within-network connectivity. We verified that LPFC was in the top 10% of brain regions in terms of across-network connectivity, suggesting it is a strong connector hub. Importantly, we found that the LPFC across-network connectivity predicted individuals' fluid intelligence and this correlation remained statistically significant when controlling for global connectivity (which includes within-network connectivity). This supports the conclusion that across-network connectivity independently contributes to the relationship between LPFC connectivity and intelligence. These results suggest that LPFC contributes to fluid intelligence by being a connector hub with a truly global multisystem connectivity throughout the brain.
Processing on weak electric signals by the autoregressive model
NASA Astrophysics Data System (ADS)
Ding, Jinli; Zhao, Jiayin; Wang, Lanzhou; Li, Qiao
2008-10-01
A model of the autoregressive model of weak electric signals in two plants was set up for the first time. The result of the AR model to forecast 10 values of the weak electric signals is well. It will construct a standard set of the AR model coefficient of the plant electric signal and the environmental factor, and can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on agricultural productions.
Intelligent tutoring using HyperCLIPS
NASA Technical Reports Server (NTRS)
Hill, Randall W., Jr.; Pickering, Brad
1990-01-01
HyperCard is a popular hypertext-like system used for building user interfaces to databases and other applications, and CLIPS is a highly portable government-owned expert system shell. We developed HyperCLIPS in order to fill a gap in the U.S. Army's computer-based instruction tool set; it was conceived as a development environment for building adaptive practical exercises for subject-matter problem-solving, though it is not limited to this approach to tutoring. Once HyperCLIPS was developed, we set out to implement a practical exercise prototype using HyperCLIPS in order to demonstrate the following concepts: learning can be facilitated by doing; student performance evaluation can be done in real-time; and the problems in a practical exercise can be adapted to the individual student's knowledge.
In-Q-Tel, the strategic investment firm for the U.S. Intelligence Community
NASA Astrophysics Data System (ADS)
Ulvick, S. J.; Tighe, D. W.
2008-04-01
In-Q-Tel is a strategic investment firm that works to identify, adapt, and deliver innovative technology solutions to support the missions of the Central Intelligence Agency and the broader U.S. Intelligence Community (IC). Launched by the CIA in 1999 as a private, independent, not-for-profit organization, IQT's mission is to identify and partner with companies developing cutting-edge technologies that serve the national security interests of the United States. Working from an evolving strategic blueprint defining the Intelligence Community's critical technology needs, IQT engages with entrepreneurs, growth companies, researchers, and venture capitalists to deliver technologies that provide superior capabilities for the CIA and the broader IC. To date, IQT has reviewed more than 6,300 business proposals, invested in more than 100 companies, and delivered more than 140 technology solutions to the U.S. Intelligence Community.
The emotionally competent leader.
Goleman, D
1998-01-01
Aristotle once challenged man "to be angry with the right person, to the right degree, at the right time, for the right purpose, and in the right way" (The Nicomachean Ethics). Daniel Goleman, Ph.D., a journalist for the New York Times, expands on this statement in his new book, "Emotional Intelligence." He defines emotional intelligence as the ability to rein in emotional impulses, to read another's innermost feelings and to handle relationships and conflict smoothly. This new model of intelligence puts emotions at the center of our aptitudes for living. Goleman asserts that these emotional aptitudes can preserve relationships, protect our health and improve our success at work. The following adaptation from "Emotional Intelligence" (Bantam Books, 1995) offers suggestions to managers and supervisors on how they can create a more cost-effective and healthier workplace for their employees by becoming more aware of their own emotional. intelligence.
Duncan, Amie W; Bishop, Somer L
2015-01-01
Daily living skills standard scores on the Vineland Adaptive Behavior Scales-2nd edition were examined in 417 adolescents from the Simons Simplex Collection. All participants had at least average intelligence and a diagnosis of autism spectrum disorder. Descriptive statistics and binary logistic regressions were used to examine the prevalence and predictors of a "daily living skills deficit," defined as below average daily living skills in the context of average intelligence quotient. Approximately half of the adolescents were identified as having a daily living skills deficit. Autism symptomatology, intelligence quotient, maternal education, age, and sex accounted for only 10% of the variance in predicting a daily living skills deficit. Identifying factors associated with better or worse daily living skills may help shed light on the variability in adult outcome in individuals with autism spectrum disorder with average intelligence. © The Author(s) 2013.
Srinivasan, Nirmal Kumar; Tobey, Emily A; Loizou, Philipos C
2016-01-01
The goal of this study is to investigate whether prior exposure to reverberant listening environment improves speech intelligibility of adult cochlear implant (CI) users. Six adult CI users participated in this study. Speech intelligibility was measured in five different simulated reverberant listening environments with two different speech corpuses. Within each listening environment, prior exposure was varied by either having the same environment across all trials (blocked presentation) or having different environment from trial to trial (unblocked). Speech intelligibility decreased as reverberation time increased. Although substantial individual variability was observed, all CI listeners showed an increase in the blocked presentation condition as compared to the unblocked presentation condition for both speech corpuses. Prior listening exposure to a reverberant listening environment improves speech intelligibility in adult CI listeners. Further research is required to understand the underlying mechanism of adaptation to listening environment.
A possible correlation between performance IQ, visuomotor adaptation ability and mu suppression.
Anwar, Muhammad Nabeel; Navid, Muhammad Samran; Khan, Mushtaq; Kitajo, Keiichi
2015-04-07
Psychometric, anatomical and functional brain studies suggest that individuals differ in the way that they perceive and analyze information and strategically control and execute movements. Inter-individual differences are also observed in neural correlates of specific and general cognitive ability. As a result, some individuals perceive and adapt to environmental conditions and perform motor activities better than others. The aim of this study was to identify a common factor that predicts adaptation of a reaching movement to a visual perturbation and suppression of movement-related brain activity (mu rhythms). Twenty-eight participants participated in two different experiments designed to evaluate visuomotor adaptation and mu suppression ability. Performance intelligence quotient (IQ) was assessed using the revised Wechsler Adult Intelligence Scale. Performance IQ predicted adaptation index of visuomotor performance (r=0.43, p=0.02) and suppression of mu rhythms (r=-0.59; p<0.001). Participants with high performance IQ were faster at adapting to a visuomotor perturbation and better at suppressing mu activity than participants with low performance IQ. We found a possible link between performance IQ and mu suppression, and performance IQ and the initial rate of adaptation. Individuals with high performance IQ were better in suppressing mu rhythms and were quicker at associating motor command and required movement than individuals with low performance IQ. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Kushalnagar, Poorna; Krull, Kevin; Hannay, Julia; Mehta, Paras; Caudle, Susan; Oghalai, John
2007-01-01
Cognitive ability and behavioral adaptability are distinct, yet related, constructs that can impact childhood development. Both are often reduced in deaf children of hearing parents who do not provide sufficient language and communication access. Additionally, parental depression is commonly observed due to parent-child communication difficulties…
Adapting Total Quality Doesn't Mean "Turning Learning into a Business."
ERIC Educational Resources Information Center
Schmoker, Mike; Wilson, Richard B.
1993-01-01
Although Alfie Kohn is a first-rate thinker, his article in the same "Educational Leadership" issue confuses adopting Total Quality Management methods with intelligently adapting them. Kohn wrestles too hard with the "worker/student" metaphor and wrongly disparages Deming's emphasis on data and performance. Schools can definitely benefit from…
Features: Real-Time Adaptive Feature and Document Learning for Web Search.
ERIC Educational Resources Information Center
Chen, Zhixiang; Meng, Xiannong; Fowler, Richard H.; Zhu, Binhai
2001-01-01
Describes Features, an intelligent Web search engine that is able to perform real-time adaptive feature (i.e., keyword) and document learning. Explains how Features learns from users' document relevance feedback and automatically extracts and suggests indexing keywords relevant to a search query, and learns from users' keyword relevance feedback…
A Hybrid Approach for Supporting Adaptivity in E-Learning Environments
ERIC Educational Resources Information Center
Al-Omari, Mohammad; Carter, Jenny; Chiclana, Francisco
2016-01-01
Purpose: The purpose of this paper is to identify a framework to support adaptivity in e-learning environments. The framework reflects a novel hybrid approach incorporating the concept of the event-condition-action (ECA) model and intelligent agents. Moreover, a system prototype is developed reflecting the hybrid approach to supporting adaptivity…
Adaptivity in Educational Systems for Language Learning: A Review
ERIC Educational Resources Information Center
Slavuj, Vanja; Meštrovic, Ana; Kovacic, Božidar
2017-01-01
Adaptive and intelligent instructional systems are used to deal with the issue of learning personalisation in contexts where human instructors are not immediately available, so their role is transferred entirely or in part onto the computer. Even though such systems are mostly developed for well-defined domains that have a rather straightforward…
Human Facial Expressions as Adaptations:Evolutionary Questions in Facial Expression Research
SCHMIDT, KAREN L.; COHN, JEFFREY F.
2007-01-01
The importance of the face in social interaction and social intelligence is widely recognized in anthropology. Yet the adaptive functions of human facial expression remain largely unknown. An evolutionary model of human facial expression as behavioral adaptation can be constructed, given the current knowledge of the phenotypic variation, ecological contexts, and fitness consequences of facial behavior. Studies of facial expression are available, but results are not typically framed in an evolutionary perspective. This review identifies the relevant physical phenomena of facial expression and integrates the study of this behavior with the anthropological study of communication and sociality in general. Anthropological issues with relevance to the evolutionary study of facial expression include: facial expressions as coordinated, stereotyped behavioral phenotypes, the unique contexts and functions of different facial expressions, the relationship of facial expression to speech, the value of facial expressions as signals, and the relationship of facial expression to social intelligence in humans and in nonhuman primates. Human smiling is used as an example of adaptation, and testable hypotheses concerning the human smile, as well as other expressions, are proposed. PMID:11786989
What is wrong with intelligent design?
Sober, Elliott
2007-03-01
This article reviews two standard criticisms of creationism/intelligent design (ID)): it is unfalsifiable, and it is refuted by the many imperfect adaptations found in nature. Problems with both criticisms are discussed. A conception of testability is described that avoids the defects in Karl Popper's falsifiability criterion. Although ID comes in multiple forms, which call for different criticisms, it emerges that ID fails to constitute a serious alternative to evolutionary theory.
2008-10-20
embedded intelligence and cultural adaptations to the onslaught of robots in society. This volume constitutes a key contribution to the body of... Robotics , CNRS/Toulouse University, France Nathalie COLINEAU, Language & Multi-modality, CSIRO, Australia Roberto CORDESCHI, Computation & Communication...Intelligence, SONY CSL Paris Nik KASABOV, Computer and Information Sciences, Auckland University, New Zealand Oussama KHATIB, Robotics & Artificial
Event detection for car park entries by video-surveillance
NASA Astrophysics Data System (ADS)
Coquin, Didier; Tailland, Johan; Cintract, Michel
2007-10-01
Intelligent surveillance has become an important research issue due to the high cost and low efficiency of human supervisors, and machine intelligence is required to provide a solution for automated event detection. In this paper we describe a real-time system that has been used for detecting car park entries, using an adaptive background learning algorithm and two indicators representing activity and identity to overcome the difficulty of tracking objects.
Better informed in clinical practice - a brief overview of dental informatics.
Reynolds, P A; Harper, J; Dunne, S
2008-03-22
Uptake of dental informatics has been hampered by technical and user issues. Innovative systems have been developed, but usability issues have affected many. Advances in technology and artificial intelligence are now producing clinically useful systems, although issues still remain with adapting computer interfaces to the dental practice working environment. A dental electronic health record has become a priority in many countries, including the UK. However, experience shows that any dental electronic health record (EHR) system cannot be subordinate to, or a subset of, a medical record. Such a future dental EHR is likely to incorporate integrated care pathways. Future best dental practice will increasingly depend on computer-based support tools, although disagreement remains about the effectiveness of current support tools. Over the longer term, future dental informatics tools will incorporate dynamic, online evidence-based medicine (EBM) tools, and promise more adaptive, patient-focused and efficient dental care with educational advantages in training.
The adaptive safety analysis and monitoring system
NASA Astrophysics Data System (ADS)
Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter
2004-09-01
The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.
Pilarski, Patrick M; Dawson, Michael R; Degris, Thomas; Fahimi, Farbod; Carey, Jason P; Sutton, Richard S
2011-01-01
As a contribution toward the goal of adaptable, intelligent artificial limbs, this work introduces a continuous actor-critic reinforcement learning method for optimizing the control of multi-function myoelectric devices. Using a simulated upper-arm robotic prosthesis, we demonstrate how it is possible to derive successful limb controllers from myoelectric data using only a sparse human-delivered training signal, without requiring detailed knowledge about the task domain. This reinforcement-based machine learning framework is well suited for use by both patients and clinical staff, and may be easily adapted to different application domains and the needs of individual amputees. To our knowledge, this is the first my-oelectric control approach that facilitates the online learning of new amputee-specific motions based only on a one-dimensional (scalar) feedback signal provided by the user of the prosthesis. © 2011 IEEE
Security-Enhanced Autonomous Network Management
NASA Technical Reports Server (NTRS)
Zeng, Hui
2015-01-01
Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.
Lightweight Adaptation of Classifiers to Users and Contexts: Trends of the Emerging Domain
Vildjiounaite, Elena; Gimel'farb, Georgy; Kyllönen, Vesa; Peltola, Johannes
2015-01-01
Intelligent computer applications need to adapt their behaviour to contexts and users, but conventional classifier adaptation methods require long data collection and/or training times. Therefore classifier adaptation is often performed as follows: at design time application developers define typical usage contexts and provide reasoning models for each of these contexts, and then at runtime an appropriate model is selected from available ones. Typically, definition of usage contexts and reasoning models heavily relies on domain knowledge. However, in practice many applications are used in so diverse situations that no developer can predict them all and collect for each situation adequate training and test databases. Such applications have to adapt to a new user or unknown context at runtime just from interaction with the user, preferably in fairly lightweight ways, that is, requiring limited user effort to collect training data and limited time of performing the adaptation. This paper analyses adaptation trends in several emerging domains and outlines promising ideas, proposed for making multimodal classifiers user-specific and context-specific without significant user efforts, detailed domain knowledge, and/or complete retraining of the classifiers. Based on this analysis, this paper identifies important application characteristics and presents guidelines to consider these characteristics in adaptation design. PMID:26473165
Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.
Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191
Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach
NASA Astrophysics Data System (ADS)
Ngoduy, D.
2013-10-01
This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.
Secure steganography designed for mobile platforms
NASA Astrophysics Data System (ADS)
Agaian, Sos S.; Cherukuri, Ravindranath; Sifuentes, Ronnie R.
2006-05-01
Adaptive steganography, an intelligent approach to message hiding, integrated with matrix encoding and pn-sequences serves as a promising resolution to recent security assurance concerns. Incorporating the above data hiding concepts with established cryptographic protocols in wireless communication would greatly increase the security and privacy of transmitting sensitive information. We present an algorithm which will address the following problems: 1) low embedding capacity in mobile devices due to fixed image dimensions and memory constraints, 2) compatibility between mobile and land based desktop computers, and 3) detection of stego images by widely available steganalysis software [1-3]. Consistent with the smaller available memory, processor capabilities, and limited resolution associated with mobile devices, we propose a more magnified approach to steganography by focusing adaptive efforts at the pixel level. This deeper method, in comparison to the block processing techniques commonly found in existing adaptive methods, allows an increase in capacity while still offering a desired level of security. Based on computer simulations using high resolution, natural imagery and mobile device captured images, comparisons show that the proposed method securely allows an increased amount of embedding capacity but still avoids detection by varying steganalysis techniques.
Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks
Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada
2015-01-01
Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093
Soft Thermal Sensor with Mechanical Adaptability.
Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong
2016-11-01
A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.
Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd
2017-09-01
The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance Analysis of Cluster Formation in Wireless Sensor Networks.
Montiel, Edgar Romo; Rivero-Angeles, Mario E; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo
2017-12-13
Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.
Performance Analysis of Cluster Formation in Wireless Sensor Networks
Montiel, Edgar Romo; Rivero-Angeles, Mario E.; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo
2017-01-01
Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes. PMID:29236065
NASA Technical Reports Server (NTRS)
Mcmanus, John W.; Goodrich, Kenneth H.
1989-01-01
A research program investigating the use of Artificial Intelligence (AI) programming techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined and example rules are presented. The results of tests to evaluate the performance of the TDG against a version of AML and against human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements.
Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving
Vanacker, Gerolf; Millán, José del R.; Lew, Eileen; Ferrez, Pierre W.; Moles, Ferran Galán; Philips, Johan; Van Brussel, Hendrik; Nuttin, Marnix
2007-01-01
Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair. PMID:18354739
Work process and task-based design of intelligent assistance systems in German textile industry
NASA Astrophysics Data System (ADS)
Löhrer, M.; Ziesen, N.; Altepost, A.; Saggiomo, M.; Gloy, Y. S.
2017-10-01
The mid-sized embossed German textile industry must face social challenges e.g. demographic change or technical changing processes. Interaction with intelligent systems (on machines) and increasing automation changes processes, working structures and employees’ tasks on all levels. Work contents are getting more complex, resulting in the necessity for diversified and enhanced competencies. Mobile devices like tablets or smartphones are increasingly finding their way into the workplace. Employees who grew up with new forms of media have certain advantages regarding the usage of modern technologies compared to older employees. Therefore, it is necessary to design new systems which help to adapt the competencies of both younger and older employees to new automated production processes in the digital work environment. The key to successful integration of technical assistance systems is user-orientated design and development that includes concepts for competency development under consideration of, e.g., ethical and legal aspects.
Revolutionary Propulsion Systems for 21st Century Aviation
NASA Technical Reports Server (NTRS)
Sehra, Arun K.; Shin, Jaiwon
2003-01-01
The air transportation for the new millennium will require revolutionary solutions to meeting public demand for improving safety, reliability, environmental compatibility, and affordability. NASA's vision for 21st Century Aircraft is to develop propulsion systems that are intelligent, virtually inaudible (outside the airport boundaries), and have near zero harmful emissions (CO2 and Knox). This vision includes intelligent engines that will be capable of adapting to changing internal and external conditions to optimally accomplish the mission with minimal human intervention. The distributed vectored propulsion will replace two to four wing mounted or fuselage mounted engines by a large number of small, mini, or micro engines, and the electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. Such a system will completely eliminate the harmful emissions. This paper reviews future propulsion and power concepts that are currently under development at NASA Glenn Research Center.
Complete diagnostics of pyroactive structures for smart systems of optoelectronics
NASA Astrophysics Data System (ADS)
Bravina, Svetlana L.; Morozovsky, Nicholas V.
1998-04-01
The results of study of pyroelectric phenomena in ferroelectric materials for evidence of the possibility to embody the functions promising for creation of smart systems for optoelectronic applications are presented. Designing such systems requires the development of methods for non- destructive complete diagnostics preferably by developing the self-diagnostic ability inherent in materials with the features of smart/intelligent ones. The complex method of complete non-destructive qualification of pyroactive materials based on the method of dynamic photopyroelectric effect allows the determination of pyroelectric, piezoelectric, ferroelectric, dielectric and thermophysical characteristics. The measuring system which allows the study of these characteristics and also memory effects, switching effects, fatigue and degradation process, self-repair process and others is presented. Sample pyroactive system with increased intelligence, such as systems with built-in adaptive controllable domain structure promising for functional optics are developed and peculiarities of their characterization are discussed.
NASA Astrophysics Data System (ADS)
Zacharaki, V.; Papanikolaou, S.; Voulgaraki, Ch; Karantinos, A.; Sioumpouras, D.; Tsiamitros, D.; Stimoniaris, D.; Maropoulos, S.; Stephanedes, Y.
2016-11-01
The objective of the present study is threefold: To highlight how electro-mobility can: (a) Contribute to the promotion of the environmental conservation of the rural areas (through an integrated solution for reducing the carbon footprint of road facilities and transport), (b) Enhance tourism-based economical development, (c) facilitate students in their daily transport and residents (elderly, disabled, distant-residents) in their daily on-demand transport. The overall goal is to design an energy-efficient, regional intelligent transportation system with innovative solar-energy charging-stations for e-vehicles in municipalities with many geographically scattered small villages and small cities. The innovative character of the study is that it tries to tackle all three specific objectives simultaneously and with the same means, since it utilizes Intelligent Transportation Systems (ITS). The study is adapted and applied to an area with the above characteristics, in order to demonstrate the proof of concept.
NASA Astrophysics Data System (ADS)
Li, Decang; Meng, Jianjun; Bai, Huan; Xu, Ruxun
2018-07-01
This paper focuses on the safety of high-speed trains under strong crosswind conditions. A new active control strategy is proposed based on the adaptive predictive control theory. The new control strategy aims at adjusting the attitudes of a train by controlling the new-type intelligent giant magnetostrictive actuator (GMA). It combined adaptive control with dynamic matrix control; parameters of predictive controller was real-time adjusted by online distinguishing to enhance the robustness of the control algorithm. On this basis, a correction control algorithm is also designed to regulate the parameters of predictive controller based on the step response of a controlled objective. Finally, the simulation results show that the proposed control strategy can adjust the running attitudes of high-speed trains under strong crosswind conditions; they also indicate that the new active control strategy is effective and applicable in improving the safety performance of a train based on a host-target computer technology provided by Matlab/Simulink.
Granular Flow Graph, Adaptive Rule Generation and Tracking.
Pal, Sankar Kumar; Chakraborty, Debarati Bhunia
2017-12-01
A new method of adaptive rule generation in granular computing framework is described based on rough rule base and granular flow graph, and applied for video tracking. In the process, several new concepts and operations are introduced, and methodologies formulated with superior performance. The flow graph enables in defining an intelligent technique for rule base adaptation where its characteristics in mapping the relevance of attributes and rules in decision-making system are exploited. Two new features, namely, expected flow graph and mutual dependency between flow graphs are defined to make the flow graph applicable in the tasks of both training and validation. All these techniques are performed in neighborhood granular level. A way of forming spatio-temporal 3-D granules of arbitrary shape and size is introduced. The rough flow graph-based adaptive granular rule-based system, thus produced for unsupervised video tracking, is capable of handling the uncertainties and incompleteness in frames, able to overcome the incompleteness in information that arises without initial manual interactions and in providing superior performance and gaining in computation time. The cases of partial overlapping and detecting the unpredictable changes are handled efficiently. It is shown that the neighborhood granulation provides a balanced tradeoff between speed and accuracy as compared to pixel level computation. The quantitative indices used for evaluating the performance of tracking do not require any information on ground truth as in the other methods. Superiority of the algorithm to nonadaptive and other recent ones is demonstrated extensively.
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kaber, David B.
2006-01-01
This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.
2010-09-01
the non-police public. Additionally, inclusion will have positive returns by generating political support in the best- case scenario. Conversely, an...is challenged to adapt its practices, policies and strategic objectives if it is to maintain the highest state of operational readiness. Inclusion of...readiness. Inclusion of firefighters into the information and intelligence- sharing framework will require a systemic transformation by both the fire
Adaptive Control of Visually Guided Grasping in Neural Networks
1990-03-12
D.P. Shankweiler, M. Studdert-Kennedy (1967) Perception of the speech code, Psychol. Rev. 74, 43 1. J. Piaget ( 1952 ), The Origins of Intelligence in...Coordination, IEEE Control Systems Magazine.V9:3 p.25-30 Piaget , J. ( 1952 ), The Origins of Intelligence in Children, translated by M.Cook, (International...University Press, New York. Piaget , J. (1954) The Construction of Reality in the Child, Translated by M. Cook , Ballentine Books, New York - 24-
Automated observation scheduling for the VLT
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1988-01-01
It is becoming increasingly evident that, in order to optimize the observing efficiency of large telescopes, some changes will be required in the way observations are planned and executed. Not all observing programs require the presence of the astronomer at the telescope: for those programs which permit service observing it is possible to better match planned observations to conditions at the telescope. This concept of flexible scheduling has been proposed for the VLT: based on current and predicted environmental and instrumental observations which make the most efficient possible use of valuable time. A similar kind of observation scheduling is already necessary for some space observatories, such as Hubble Space Telescope (HST). Space Telescope Science Institute is presently developing scheduling tools for HST, based on the use of artificial intelligence software development techniques. These tools could be readily adapted for ground-based telescope scheduling since they address many of the same issues. The concept are described on which the HST tools are based, their implementation, and what would be required to adapt them for use with the VLT and other ground-based observatories.
Tera-Op Reliable Intelligently Adaptive Processing System (TRIPS)
2004-04-01
flop creates a loadable FIFO queue, fifo pload. A prototype of the HML simulator is implemented using a functional language OCaml . The language type...Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7.1.2 Hardware Meta Language ...operates on the TRIPS Intermediate Language (TIL) produced by the Scale compiler. We also adapted the gnu binary utilities to implement an assembler and
ERIC Educational Resources Information Center
Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C.
2017-01-01
In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…
Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)
2013-05-01
combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh
ERIC Educational Resources Information Center
Yokotani, Kenji
2011-01-01
The aim of the present study was to investigate whether or not the avoidant attachment style indicates job adaptation of people with High Functional Autistic Spectrum Disorders (HFASD). HFASD are groups of developmental disorders characterized by impairment of social interaction and normal level of intelligence. Twenty-two people with HFASD…
Learner Differences in Hint Processing
ERIC Educational Resources Information Center
Goldin, Ilya M.; Koedinger, Kenneth R.; Aleven, Vincent
2012-01-01
Although ITSs are supposed to adapt to differences among learners, so far, little attention has been paid to how they might adapt to differences in how students learn from help. When students study with an Intelligent Tutoring System, they may receive multiple types of help, but may not comprehend and make use of this help in the same way. To…
ERIC Educational Resources Information Center
Matthews, Nicole L.; Pollard, Elena; Ober-Reynolds, Sharman; Kirwan, Janet; Malligo, Amanda; Smith, Christopher J.
2015-01-01
Profiles of performance on the Stanford Binet Intelligence Scales (SB5) and Vineland Adaptive Behavior Scales (VABS) were examined in 73 children and adolescents with autism spectrum disorder. SB5 cognitive profiles were observed to be similar between participants with and without early language delay, but different between participants with and…
Use of Vineland Adaptive Behavior Scales-II in Children with Autism--An Indian Experience
ERIC Educational Resources Information Center
Manohari, S. M.; Raman, Vijaya; Ashok, M. V.
2013-01-01
The Vineland Adaptive Behavior Scales-II Edition 2005 (Vineland-II) is useful in assessing abilities in autism spectrum disorder, where an accurate assessment of intelligence using standardized tools is difficult both due to the unique social and communication difficulties that these children present with and the behavioral issues that occur as…
ERIC Educational Resources Information Center
Yeargan, Dollye R.
The factorial structure of intellectual functioning and adaptive behavior was examined in 160 learning disabled students (6 to 16 years old). Ss were administered the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Coping Inventory (CI). Factor analysis of WISC-R scores revealed three factors: verbal comprehenson, perceptual…
NASA Astrophysics Data System (ADS)
Gilman, Charles R.; Aparicio, Manuel; Barry, J.; Durniak, Timothy; Lam, Herman; Ramnath, Rajiv
1997-12-01
An enterprise's ability to deliver new products quickly and efficiently to market is critical for competitive success. While manufactureres recognize the need for speed and flexibility to compete in this market place, companies do not have the time or capital to move to new automation technologies. The National Industrial Information Infrastructure Protocols Consortium's Solutions for MES Adaptable Replicable Technology (NIIIP SMART) subgroup is developing an information infrastructure to enable the integration and interoperation among Manufacturing Execution Systems (MES) and Enterprise Information Systems within an enterprise or among enterprises. The goal of these developments is an adaptable, affordable, reconfigurable, integratable manufacturing system. Key innovative aspects of NIIIP SMART are: (1) Design of an industry standard object model that represents the diverse aspects of MES. (2) Design of a distributed object network to support real-time information sharing. (3) Product data exchange based on STEP and EXPRESS (ISO 10303). (4) Application of workflow and knowledge management technologies to enact manufacturing and business procedures and policy. (5) Application of intelligent agents to support emergent factories. This paper illustrates how these technologies have been incorporated into the NIIIP SMART system architecture to enable the integration and interoperation of existing tools and future MES applications in a 'plug and play' environment.
Towards Machine Learning of Motor Skills
NASA Astrophysics Data System (ADS)
Peters, Jan; Schaal, Stefan; Schölkopf, Bernhard
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.