Sample records for intelligent control techniques

  1. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  2. Numerical simulation of intelligent compaction technology for construction quality control.

    DOT National Transportation Integrated Search

    2014-12-01

    Intelligent compaction (IC) technique is a fast-developing technology for compaction quality control and acceptance. Proof rolling using the intelligent compaction rollers after completing compaction can eectively identify : the weak spots and sig...

  3. [An object-oriented intelligent engineering design approach for lake pollution control].

    PubMed

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  4. Compact Microscope Imaging System With Intelligent Controls Improved

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.

  5. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.

    PubMed

    Chang, Yeong-Chan

    2005-12-01

    This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.

  6. Space-Related Applications of Intelligent Control: Which Algorithm to Choose? (Theoretical Analysis of the Problem)

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik

    1996-01-01

    For a space mission to be successful it is vitally important to have a good control strategy. For example, with the Space Shuttle it is necessary to guarantee the success and smoothness of docking, the smoothness and fuel efficiency of trajectory control, etc. For an automated planetary mission it is important to control the spacecraft's trajectory, and after that, to control the planetary rover so that it would be operable for the longest possible period of time. In many complicated control situations, traditional methods of control theory are difficult or even impossible to apply. In general, in uncertain situations, where no routine methods are directly applicable, we must rely on the creativity and skill of the human operators. In order to simulate these experts, an intelligent control methodology must be developed. The research objectives of this project were: to analyze existing control techniques; to find out which of these techniques is the best with respect to the basic optimality criteria (stability, smoothness, robustness); and, if for some problems, none of the existing techniques is satisfactory, to design new, better intelligent control techniques.

  7. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement

    NASA Astrophysics Data System (ADS)

    Makahinda, T.

    2018-02-01

    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  8. Intelligent on-line fault tolerant control for unanticipated catastrophic failures.

    PubMed

    Yen, Gary G; Ho, Liang-Wei

    2004-10-01

    As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.

  9. Research Needs for Artificial Intelligence Applications in Support of C3 (Command, Control, and Communication).

    DTIC Science & Technology

    1984-12-01

    system. The reconstruction process is Simply data fusion after allA data are in. After reconstruction, artifcial intelligence (Al) techniques may be...14. CATE OF fhPM~TVW MWtvt Ogv It PAWE COMN Interim __100 -_ TO December 1984 24 MILD ON" s-o Artificial intelligence Command control Data fusion...RD-Ai5O 867 RESEARCH NEEDS FOR ARTIFICIAL INTELLIGENCE APPLICATIONS i/i IN SUPPORT OF C3 (..(U) NAVAL OCEAN SVSTEIIS CENTER SAN DIEGO CA R R DILLARD

  10. Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.

    PubMed

    Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua

    2016-09-01

    This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.

  11. Simulation of intelligent object behavior in a virtual reality system

    NASA Astrophysics Data System (ADS)

    Mironov, Sergey F.

    1998-01-01

    This article presents a technique for computer control of a power boat movement in real-time marine trainers or arcade games. The author developed and successfully implemented a general technique allowing intellectual navigation of computer controlled moving objects that proved to be appropriate for real-time applications. This technique covers significant part of necessary behavioral tasks that appear in such titles. At the same time the technique forms a part of a more general system that involves control of less complicated characters of another nature. The system being an open one can be easily used by an action or arcade programming to improve the overall quality of characters artificial intelligence style.

  12. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  13. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  14. Advanced controls for light sources

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Edelen, A. L.; Milton, S. V.

    2016-09-01

    We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.

  15. Devices development and techniques research for space life sciences

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  16. Voice intelligibility in satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1973-01-01

    An amplitude control technique is reported that equalizes low level phonemes in a satellite narrow band FM voice communication system over channels having low carrier to noise ratios. This method presents at the transmitter equal amplitude phonemes so that the low level phonemes, when they are transmitted over the noisey channel, are above the noise and contribute to output intelligibility. The amplitude control technique provides also for squelching of noise when speech is not being transmitted.

  17. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  18. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  19. Intelligence and cortical thickness in children with complex partial seizures.

    PubMed

    Tosun, Duygu; Caplan, Rochelle; Siddarth, Prabha; Seidenberg, Michael; Gurbani, Suresh; Toga, Arthur W; Hermann, Bruce

    2011-07-15

    Prior studies on healthy children have demonstrated regional variations and a complex and dynamic relationship between intelligence and cerebral tissue. Yet, there is little information regarding the neuroanatomical correlates of general intelligence in children with epilepsy compared to healthy controls. In vivo imaging techniques, combined with methods for advanced image processing and analysis, offer the potential to examine quantitative mapping of brain development and its abnormalities in childhood epilepsy. A surface-based, computational high resolution 3-D magnetic resonance image analytic technique was used to compare the relationship of cortical thickness with age and intelligence quotient (IQ) in 65 children and adolescents with complex partial seizures (CPS) and 58 healthy controls, aged 6-18 years. Children were grouped according to health status (epilepsy; controls) and IQ level (average and above; below average) and compared on age-related patterns of cortical thickness. Our cross-sectional findings suggest that disruption in normal age-related cortical thickness expression is associated with intelligence in pediatric CPS patients both with average and below average IQ scores. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Intelligent control based on fuzzy logic and neural net theory

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  1. Power Grid Maintenance Scheduling Intelligence Arrangement Supporting System Based on Power Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming

    With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.

  2. An application of artificial intelligence theory to reconfigurable flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.

    1987-01-01

    Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.

  3. Rice-obot 1: An intelligent autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R.; Ciscon, L.; Berberian, D.

    1989-01-01

    The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.

  4. Intelligent Control Approaches for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; KrishnaKumar, K.; Soloway, Don; Kaneshige, John; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This paper presents an overview of various intelligent control technologies currently being developed and studied under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2) Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various simulated failure conditions.

  5. Intelligent Traffic Quantification System

    NASA Astrophysics Data System (ADS)

    Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta

    2017-08-01

    Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.

  6. Embedded electronics for intelligent structures

    NASA Astrophysics Data System (ADS)

    Warkentin, David J.; Crawley, Edward F.

    The signal, power, and communications provisions for the distributed control processing, sensing, and actuation of an intelligent structure could benefit from a method of physically embedding some electronic components. The preliminary feasibility of embedding electronic components in load-bearing intelligent composite structures is addressed. A technique for embedding integrated circuits on silicon chips within graphite/epoxy composite structures is presented which addresses the problems of electrical, mechanical, and chemical isolation. The mechanical and chemical isolation of test articles manufactured by this technique are tested by subjecting them to static and cyclic mechanical loads and a temperature/humidity/bias environment. The likely failure modes under these conditions are identified, and suggestions for further improvements in the technique are discussed.

  7. Improvement of Base and Soil Construction Quality by Using Intelligent Compaction Technology : Final Report.

    DOT National Transportation Integrated Search

    2017-08-01

    Intelligent Compaction (IC) technique is a fast-developing technology for base and soil compaction quality control. Proof-rolling subgrades and bases using IC rollers upon completion of compaction can identify the less stiff spots and significantly i...

  8. Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers

    NASA Astrophysics Data System (ADS)

    Kapoor, Neha; Ohri, Jyoti

    2017-02-01

    Inspite of so much research, key technical problem, naming chattering of conventional, simple and robust SMC is still a challenge to the researchers and hence limits its practical application. However, newly developed soft computing based techniques can provide solution. In order to have advantages of conventional and heuristic soft computing based control techniques, in this paper various commonly used intelligent techniques, neural network, fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) have been combined with sliding mode controller (SMC). For validation, proposed hybrid control schemes have been implemented for tracking a predefined trajectory by robotic manipulator, incorporating structured and unstructured uncertainties in the system. After reviewing numerous papers, all the commonly occurring uncertainties like continuous disturbance, uniform random white noise, static friction like coulomb friction and viscous friction, dynamic friction like Dhal friction and LuGre friction have been inserted in the system. Various performance indices like norm of tracking error, chattering in control input, norm of input torque, disturbance rejection, chattering rejection have been used. Comparative results show that with almost eliminated chattering the intelligent SMC controllers are found to be more efficient over simple SMC. It has also been observed from results that ANFIS based controller has the best tracking performance with the reduced burden on the system. No paper in the literature has found to have all these structured and unstructured uncertainties together for motion control of robotic manipulator.

  9. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  10. Development of an evolutionary simulator and an overall control system for intelligent wheelchair

    NASA Astrophysics Data System (ADS)

    Imai, Makoto; Kawato, Koji; Hamagami, Tomoki; Hirata, Hironori

    The goal of this research is to develop an intelligent wheelchair (IWC) system which aids an indoor safe mobility for elderly and disabled people with a new conceptual architecture which realizes autonomy, cooperativeness, and a collaboration behavior. In order to develop the IWC system in real environment, we need design-tools and flexible architecture. In particular, as more significant ones, this paper describes two key techniques which are an evolutionary simulation and an overall control mechanism. The evolutionary simulation technique corrects the error between the virtual environment in a simulator and real one in during the learning of an IWC agent, and coevolves with the agent. The overall control mechanism is implemented with subsumption architecture which is employed in an autonomous robot controller. By using these techniques in both simulations and experiments, we confirm that our IWC system acquires autonomy, cooperativeness, and a collaboration behavior efficiently.

  11. Development of an interface for an ultrareliable fault-tolerant control system and an electronic servo-control unit

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1986-01-01

    The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.

  12. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Chaitin, L. J.; Duda, R. O.; Johanson, P. A.; Raphael, B.; Rosen, C. A.; Yates, R. A.

    1970-01-01

    The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness.

  13. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.

  14. Managing Documents in the Wider Area: Intelligent Document Management.

    ERIC Educational Resources Information Center

    Bittleston, Richard

    1995-01-01

    Discusses techniques for managing documents in wide area networks, reviews technique limitations, and offers recommendations to database designers. Presented techniques include: increasing bandwidth, reducing data traffic, synchronizing documentation, partial synchronization, audit trials, navigation, and distribution control and security. Two…

  15. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  16. Arranging computer architectures to create higher-performance controllers

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1988-01-01

    Techniques for integrating microprocessors, array processors, and other intelligent devices in control systems are reviewed, with an emphasis on the (re)arrangement of components to form distributed or parallel processing systems. Consideration is given to the selection of the host microprocessor, increasing the power and/or memory capacity of the host, multitasking software for the host, array processors to reduce computation time, the allocation of real-time and non-real-time events to different computer subsystems, intelligent devices to share the computational burden for real-time events, and intelligent interfaces to increase communication speeds. The case of a helicopter vibration-suppression and stabilization controller is analyzed as an example, and significant improvements in computation and throughput rates are demonstrated.

  17. Birth order has no effect on intelligence: a reply and extension of previous findings.

    PubMed

    Wichman, Aaron L; Rodgers, Joseph Lee; Maccallum, Robert C

    2007-09-01

    We address points raised by Zajonc and Sulloway, who reject findings showing that birth order has no effect on intelligence. Many objections to findings of null birth-order results seem to stem from a misunderstanding of the difference between study designs where birth order is confounded with true causal influences on intelligence across families and designs that control for some of these influences. We discuss some of the consequences of not appreciating the nature of this difference. When between-family confounds are controlled using appropriate study designs and techniques such as multilevel modeling, birth order is shown not to influence intelligence. We conclude with an empirical investigation of the replicability and generalizability of this approach.

  18. Intelligent and integrated techniques for coalbed methane (CBM) recovery and reduction of greenhouse gas emission.

    PubMed

    Qianting, Hu; Yunpei, Liang; Han, Wang; Quanle, Zou; Haitao, Sun

    2017-07-01

    Coalbed methane (CBM) recovery is a crucial approach to realize the exploitation of a clean energy and the reduction of the greenhouse gas emission. In the past 10 years, remarkable achievements on CBM recovery have been obtained in China. However, some key difficulties still exist such as long borehole drilling in complicated geological condition, and poor gas drainage effect due to low permeability. In this study, intelligent and integrated techniques for CBM recovery are introduced. These integrated techniques mainly include underground CBM recovery techniques and ground well CBM recovery techniques. The underground CBM recovery techniques consist of the borehole formation technique, gas concentration improvement technique, and permeability enhancement technique. According to the division of mining-induced disturbance area, the ground well arrangement area and well structure type in mining-induced disturbance developing area and mining-induced disturbance stable area are optimized to significantly improve the ground well CBM recovery. Besides, automatic devices such as drilling pipe installation device are also developed to achieve remote control of data recording, which makes the integrated techniques intelligent. These techniques can provide key solutions to some long-term difficulties in CBM recovery.

  19. Multipath/RFI/modulation study for DRSS-RFI problem: Voice coding and intelligibility testing for a satellite-based air traffic control system

    NASA Technical Reports Server (NTRS)

    Birch, J. N.; Getzin, N.

    1971-01-01

    Analog and digital voice coding techniques for application to an L-band satellite-basedair traffic control (ATC) system for over ocean deployment are examined. In addition to performance, the techniques are compared on the basis of cost, size, weight, power consumption, availability, reliability, and multiplexing features. Candidate systems are chosen on the bases of minimum required RF bandwidth and received carrier-to-noise density ratios. A detailed survey of automated and nonautomated intelligibility testing methods and devices is presented and comparisons given. Subjective evaluation of speech system by preference tests is considered. Conclusion and recommendations are developed regarding the selection of the voice system. Likewise, conclusions and recommendations are developed for the appropriate use of intelligibility tests, speech quality measurements, and preference tests with the framework of the proposed ATC system.

  20. Functional requirements for an intelligent RPC. [remote power controller for spaceborne electrical distribution system

    NASA Technical Reports Server (NTRS)

    Aucoin, B. M.; Heller, R. P.

    1990-01-01

    An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.

  1. Execution environment for intelligent real-time control systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, Janos

    1987-01-01

    Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.

  2. A Survey on Optimal Signal Processing Techniques Applied to Improve the Performance of Mechanical Sensors in Automotive Applications

    PubMed Central

    Hernandez, Wilmar

    2007-01-01

    In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.

  3. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  4. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    NASA Astrophysics Data System (ADS)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  5. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1989-01-01

    In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved to converge to the minimum of a cost function. Finally, simulations will show the effectiveness of a variety of search techniques for the intelligent machine.

  6. Applications of artificial intelligence V; Proceedings of the Meeting, Orlando, FL, May 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Gilmore, John F. (Editor)

    1987-01-01

    The papers contained in this volume focus on current trends in applications of artificial intelligence. Topics discussed include expert systems, image understanding, artificial intelligence tools, knowledge-based systems, heuristic systems, manufacturing applications, and image analysis. Papers are presented on expert system issues in automated, autonomous space vehicle rendezvous; traditional versus rule-based programming techniques; applications to the control of optional flight information; methodology for evaluating knowledge-based systems; and real-time advisory system for airborne early warning.

  7. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  8. Design Of An Intelligent Robotic System Organizer Via Expert System Tecniques

    NASA Astrophysics Data System (ADS)

    Yuan, Peter H.; Valavanis, Kimon P.

    1989-02-01

    Intelligent Robotic Systems are a special type of Intelligent Machines. When modeled based on Vle theory of Intelligent Controls, they are composed of three interactive levels, namely: organization, coordination, and execution, ordered according, to the ,Principle of Increasing, Intelligence with Decreasing Precl.sion. Expert System techniques, are used to design an Intelligent Robotic System Organizer with a dynamic Knowledge Base and an interactive Inference Engine. Task plans are formulated using, either or both of a Probabilistic Approach and Forward Chapling Methodology, depending on pertinent information associated with a spec;fic requested job. The Intelligent Robotic System, Organizer is implemented and tested on a prototype system operating in an uncertain environment. An evaluation of-the performance, of the prototype system is conducted based upon the probability of generating a successful task sequence versus the number of trials taken by the organizer.

  9. Autonomous Power System intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  10. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  11. Artificial intelligence in a mission operations and satellite test environment

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  12. Simultaneous Planning and Control for Autonomous Ground Vehicles

    DTIC Science & Technology

    2009-02-01

    these applications is called A * ( A -star), and it was originally developed by Hart, Nilsson, and Raphael [HAR68]. Their research presented the formal...sequence, rather than a dynamic programming approach. A * search is a technique originally developed for Artificial Intelligence 43 applications ... developed at the Center for Intelligent Machines and Robotics, serves as a platform for the implementation and testing discussed. autonomous

  13. Artificial Intelligence: An Analysis of the Technology for Training. Training and Development Research Center Project Number Fourteen.

    ERIC Educational Resources Information Center

    Sayre, Scott Alan

    The ultimate goal of the science of artificial intelligence (AI) is to establish programs that will use algorithmic computer techniques to imitate the heuristic thought processes of humans. Most AI programs, especially expert systems, organize their knowledge into three specific areas: data storage, a rule set, and a control structure. Limitations…

  14. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  15. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  16. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  17. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  18. Launch vehicle operations cost reduction through artificial intelligence techniques

    NASA Technical Reports Server (NTRS)

    Davis, Tom C., Jr.

    1988-01-01

    NASA's Kennedy Space Center has attempted to develop AI methods in order to reduce the cost of launch vehicle ground operations as well as to improve the reliability and safety of such operations. Attention is presently given to cost savings estimates for systems involving launch vehicle firing-room software and hardware real-time diagnostics, as well as the nature of configuration control and the real-time autonomous diagnostics of launch-processing systems by these means. Intelligent launch decisions and intelligent weather forecasting are additional applications of AI being considered.

  19. Intelligent robot trends and predictions for the new millennium

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.; Mundhenk, Terrell N.

    1999-08-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor but little funding. In factory automation such robotics machines can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. In honor of the new millennium, this paper will present a discussion of futuristic trends and predictions. However, in keeping with technical tradition, a new technique for 'Follow the Leader' will also be presented in the hope of it becoming a new, useful and non-obvious technique.

  20. Validating a UAV artificial intelligence control system using an autonomous test case generator

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Huber, Justin

    2013-05-01

    The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.

  1. Control Automation in Undersea Search and Manipulation

    NASA Technical Reports Server (NTRS)

    Weltman, Gershon; Freedy, Amos

    1974-01-01

    Automatic decision making and control mechanisms of the type termed "adaptive" or "intelligent" offer unique advantages for exploration and manipulation of the undersea environment, particularly at great depths. Because they are able to carry out human-like functions autonomously, such mechanisms can aid and extend the capabilities of the human operator. This paper reviews past and present work in the areas of adaptive control and robotics with the purpose of establishing logical guidelines for the application of automatic techniques underwater. Experimental research data are used to illustrate the importance of information feedback, personnel training, and methods of control allocation in the interaction between operator and intelligent machine.

  2. A survey of fuzzy logic monitoring and control utilisation in medicine.

    PubMed

    Mahfouf, M; Abbod, M F; Linkens, D A

    2001-01-01

    Intelligent systems have appeared in many technical areas, such as consumer electronics, robotics and industrial control systems. Many of these intelligent systems are based on fuzzy control strategies which describe complex systems mathematical models in terms of linguistic rules. Since the 1980s new techniques have appeared from which fuzzy logic has been applied extensively in medical systems. The justification for such intelligent systems driven solutions is that biological systems are so complex that the development of computerised systems within such environments is not always a straightforward exercise. In practice, a precise model may not exist for biological systems or it may be too difficult to model. In most cases fuzzy logic is considered to be an ideal tool as human minds work from approximate data, extract meaningful information and produce crisp solutions. This paper surveys the utilisation of fuzzy logic control and monitoring in medical sciences with an analysis of its possible future penetration.

  3. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  4. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  5. Artificial intelligence in medicine.

    PubMed

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  6. Guidance and control for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Bateman, Peter J.

    1994-06-01

    Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.

  7. Intelligent Control Wheelchair Using a New Visual Joystick.

    PubMed

    Rabhi, Yassine; Mrabet, Makrem; Fnaiech, Farhat

    2018-01-01

    A new control system of a hand gesture-controlled wheelchair (EWC) is proposed. This smart control device is suitable for a large number of patients who cannot manipulate a standard joystick wheelchair. The movement control system uses a camera fixed on the wheelchair. The patient's hand movements are recognized using a visual recognition algorithm and artificial intelligence software; the derived corresponding signals are thus used to control the EWC in real time. One of the main features of this control technique is that it allows the patient to drive the wheelchair with a variable speed similar to that of a standard joystick. The designed device "hand gesture-controlled wheelchair" is performed at low cost and has been tested on real patients and exhibits good results. Before testing the proposed control device, we have created a three-dimensional environment simulator to test its performances with extreme security. These tests were performed on real patients with diverse hand pathologies in Mohamed Kassab National Institute of Orthopedics, Physical and Functional Rehabilitation Hospital of Tunis, and the validity of this intelligent control system had been proved.

  8. Intelligent Control Wheelchair Using a New Visual Joystick

    PubMed Central

    Mrabet, Makrem; Fnaiech, Farhat

    2018-01-01

    A new control system of a hand gesture-controlled wheelchair (EWC) is proposed. This smart control device is suitable for a large number of patients who cannot manipulate a standard joystick wheelchair. The movement control system uses a camera fixed on the wheelchair. The patient's hand movements are recognized using a visual recognition algorithm and artificial intelligence software; the derived corresponding signals are thus used to control the EWC in real time. One of the main features of this control technique is that it allows the patient to drive the wheelchair with a variable speed similar to that of a standard joystick. The designed device “hand gesture-controlled wheelchair” is performed at low cost and has been tested on real patients and exhibits good results. Before testing the proposed control device, we have created a three-dimensional environment simulator to test its performances with extreme security. These tests were performed on real patients with diverse hand pathologies in Mohamed Kassab National Institute of Orthopedics, Physical and Functional Rehabilitation Hospital of Tunis, and the validity of this intelligent control system had been proved. PMID:29599953

  9. Airport Surface Traffic Automation Study.

    DTIC Science & Technology

    1988-05-09

    the use of Artificial Intellignece * technology in enroute ATC can be applied directly to the surface control problem. 7.6 Development Approach The next...problems in airport surface control. If artificial intelligance provides useful results for airborne automation, the same techniques should prove useful

  10. Low cost composite manufacturing utilizing intelligent pultrusion and resin transfer molding (IPRTM)

    NASA Astrophysics Data System (ADS)

    Bradley, James E.; Wysocki, Tadeusz S., Jr.

    1993-02-01

    This article describes an innovative method for the economical manufacturing of large, intricately-shaped tubular composite parts. Proprietary intelligent process control techniques are combined with standard pultrusion and RTM methodologies to provide high part throughput, performance, and quality while substantially reducing scrap, rework costs, and labor requirements. On-line process monitoring and control is achieved through a smart tooling interface consisting of modular zone tiles installed on part-specific die assemblies. Real-time archiving of process run parameters provides enhanced SPC and SQC capabilities.

  11. The Need for Intelligent Control of Space Power Systems

    NASA Technical Reports Server (NTRS)

    May, Ryan David; Soeder, James F.; Beach, Raymond F.; McNelis, Nancy B.

    2013-01-01

    As manned spacecraft venture farther from Earth, the need for reliable, autonomous control of vehicle subsystems becomes critical. This is particularly true for the electrical power system which is critical to every other system. Autonomy can not be achieved by simple scripting techniques due to the communication latency times and the difficulty associated with failures (or combinations of failures) that need to be handled in as graceful a manner as possible to ensure system availability. Therefore an intelligent control system must be developed that can respond to disturbances and failures in a robust manner and ensure that critical system loads are served and all system constraints are respected.

  12. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  13. Similarities and differences between mind-wandering and external distraction: a latent variable analysis of lapses of attention and their relation to cognitive abilities.

    PubMed

    Unsworth, Nash; McMillan, Brittany D

    2014-07-01

    The current study examined the extent to which task-unrelated thoughts represent both vulnerability to mind-wandering and susceptibility to external distraction from an individual difference perspective. Participants performed multiple measures of attention control, working memory capacity, and fluid intelligence. Task-unrelated thoughts were assessed using thought probes during the attention control tasks. Using latent variable techniques, the results suggested that mind-wandering and external distraction reflect distinct, yet correlated constructs, both of which are related to working memory capacity and fluid intelligence. Furthermore, the results suggest that the common variance shared by mind-wandering, external distraction, and attention control is what primarily accounts for their relation with working memory capacity and fluid intelligence. These results support the notion that lapses of attention are strongly related to cognitive abilities. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of an intelligent diagnostic system for reusable rocket engine control

    NASA Technical Reports Server (NTRS)

    Anex, R. P.; Russell, J. R.; Guo, T.-H.

    1991-01-01

    A description of an intelligent diagnostic system for the Space Shuttle Main Engines (SSME) is presented. This system is suitable for incorporation in an intelligent controller which implements accommodating closed-loop control to extend engine life and maximize available performance. The diagnostic system architecture is a modular, hierarchical, blackboard system which is particularly well suited for real-time implementation of a system which must be repeatedly updated and extended. The diagnostic problem is formulated as a hierarchical classification problem in which the failure hypotheses are represented in terms of predefined data patterns. The diagnostic expert system incorporates techniques for priority-based diagnostics, the combination of analytical and heuristic knowledge for diagnosis, integration of different AI systems, and the implementation of hierarchical distributed systems. A prototype reusable rocket engine diagnostic system (ReREDS) has been implemented. The prototype user interface and diagnostic performance using SSME test data are described.

  15. Telerobotic Surgery: An Intelligent Systems Approach to Mitigate the Adverse Effects of Communication Delay. Chapter 4

    NASA Technical Reports Server (NTRS)

    Cardullo, Frank M.; Lewis, Harold W., III; Panfilov, Peter B.

    2007-01-01

    An extremely innovative approach has been presented, which is to have the surgeon operate through a simulator running in real-time enhanced with an intelligent controller component to enhance the safety and efficiency of a remotely conducted operation. The use of a simulator enables the surgeon to operate in a virtual environment free from the impediments of telecommunication delay. The simulator functions as a predictor and periodically the simulator state is corrected with truth data. Three major research areas must be explored in order to ensure achieving the objectives. They are: simulator as predictor, image processing, and intelligent control. Each is equally necessary for success of the project and each of these involves a significant intelligent component in it. These are diverse, interdisciplinary areas of investigation, thereby requiring a highly coordinated effort by all the members of our team, to ensure an integrated system. The following is a brief discussion of those areas. Simulator as a predictor: The delays encountered in remote robotic surgery will be greater than any encountered in human-machine systems analysis, with the possible exception of remote operations in space. Therefore, novel compensation techniques will be developed. Included will be the development of the real-time simulator, which is at the heart of our approach. The simulator will present real-time, stereoscopic images and artificial haptic stimuli to the surgeon. Image processing: Because of the delay and the possibility of insufficient bandwidth a high level of novel image processing is necessary. This image processing will include several innovative aspects, including image interpretation, video to graphical conversion, texture extraction, geometric processing, image compression and image generation at the surgeon station. Intelligent control: Since the approach we propose is in a sense predictor based, albeit a very sophisticated predictor, a controller, which not only optimizes end effector trajectory but also avoids error, is essential. We propose to investigate two different approaches to the controller design. One approach employs an optimal controller based on modern control theory; the other one involves soft computing techniques, i.e. fuzzy logic, neural networks, genetic algorithms and hybrids of these.

  16. Hybrid soft computing systems for electromyographic signals analysis: a review.

    PubMed

    Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates

    2014-02-03

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.

  17. Hybrid soft computing systems for electromyographic signals analysis: a review

    PubMed Central

    2014-01-01

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979

  18. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  19. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  20. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  1. Progress on Intelligent Guidance and Control for Wind Shear Encounter

    NASA Technical Reports Server (NTRS)

    Stratton, D. Alexander

    1990-01-01

    Low altitude wind shear poses a serious threat to air safety. Avoiding severe wind shear challenges the ability of flight crews, as it involves assessing risk from uncertain evidence. A computerized intelligent cockpit aid can increase flight crew awareness of wind shear, improving avoidance decisions. The primary functions of a cockpit advisory expert system for wind shear avoidance are discussed. Also introduced are computational techniques being implemented to enable these primary functions.

  2. An Artificially Intelligent Physical Model-Checking Approach to Detect Switching-Related Attacks on Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Hariri, Mohamad; Faddel, Samy; Mohammed, Osama

    Decentralized and hierarchical microgrid control strategies have lain the groundwork for shaping the future smart grid. Such control approaches require the cooperation between microgrid operators in control centers, intelligent microcontrollers, and remote terminal units via secure and reliable communication networks. In order to enhance the security and complement the work of network intrusion detection systems, this paper presents an artificially intelligent physical model-checking that detects tampered-with circuit breaker switching control commands whether, due to a cyber-attack or human error. In this technique, distributed agents, which are monitoring sectionalized areas of a given microgrid, will be trained and continuously adapted tomore » verify that incoming control commands do not violate the physical system operational standards and do not put the microgrid in an insecure state. The potential of this approach has been tested by deploying agents that monitor circuit breakers status commands on a 14-bus IEEE benchmark system. The results showed the accuracy of the proposed framework in characterizing the power system and successfully detecting malicious and/or erroneous control commands.« less

  3. Air traffic management as principled negotiation between intelligent agents

    NASA Technical Reports Server (NTRS)

    Wangermann, J. P.

    1994-01-01

    The major challenge facing the world's aircraft/airspace system (AAS) today is the need to provide increased capacity, while reducing delays, increasing the efficiency of flight operations, and improving safety. Technologies are emerging that should improve the performance of the system, but which could also introduce uncertainty, disputes, and inefficiency if not properly implemented. The aim of our research is to apply techniques from intelligent control theory and decision-making theory to define an Intelligent Aircraft/Airspace System (IAAS) for the year 2025. The IAAS would make effective use of the technical capabilities of all parts of the system to meet the demand for increased capacity with improved performance.

  4. Mission Profiles and Evidential Reasoning for Estimating Information Relevancy in Multi-Agent Supervisory Control Applications

    DTIC Science & Technology

    2010-06-01

    artificial agents, their limited scope and singular purpose lead us to believe that human-machine trust will be very portable. That is, if one operator... Artificial Intelligence Review 2(2), 1988. [E88] M.R. Endsley. Situation awareness global assessment technique (SAGAT). In Proceedings of the National...1995. [F98] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison- Wesley, 1998. [NP01] I. Niles and A

  5. The role of soft computing in intelligent machines.

    PubMed

    de Silva, Clarence W

    2003-08-15

    An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.

  6. Expert system decision support for low-cost launch vehicle operations

    NASA Technical Reports Server (NTRS)

    Szatkowski, G. P.; Levin, Barry E.

    1991-01-01

    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.

  7. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  8. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  9. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging Laser Weapon System (LWS), these UCAVs can navigate a mission space, counter enemy threats, cope with losses in communications, and destroy mission-critical targets. Monte Carlo simulations of the resulting controllers were tested in mission scenarios that are distinct from the training scenarios to determine the training effectiveness in new environments and the presence of deep learning. Despite an incredibly large solution space, LETHA has demonstrated remarkable effectiveness in training intelligent controllers for the UCAV squadron and shown robustness to drastically changing states, uncertainty, and limited information while maintaining extreme levels of computational efficiency.

  10. An Approach to V&V of Embedded Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Liu, Yan; Yerramalla, Sampath; Fuller, Edgar; Cukic, Bojan; Gururajan, Srikaruth

    2004-01-01

    Rigorous Verification and Validation (V&V) techniques are essential for high assurance systems. Lately, the performance of some of these systems is enhanced by embedded adaptive components in order to cope with environmental changes. Although the ability of adapting is appealing, it actually poses a problem in terms of V&V. Since uncertainties induced by environmental changes have a significant impact on system behavior, the applicability of conventional V&V techniques is limited. In safety-critical applications such as flight control system, the mechanisms of change must be observed, diagnosed, accommodated and well understood prior to deployment. In this paper, we propose a non-conventional V&V approach suitable for online adaptive systems. We apply our approach to an intelligent flight control system that employs a particular type of Neural Networks (NN) as the adaptive learning paradigm. Presented methodology consists of a novelty detection technique and online stability monitoring tools. The novelty detection technique is based on Support Vector Data Description that detects novel (abnormal) data patterns. The Online Stability Monitoring tools based on Lyapunov's Stability Theory detect unstable learning behavior in neural networks. Cases studies based on a high fidelity simulator of NASA's Intelligent Flight Control System demonstrate a successful application of the presented V&V methodology. ,

  11. Intelligence, previous convictions and interrogative suggestibility: a path analysis of alleged false-confession cases.

    PubMed

    Sharrock, R; Gudjonsson, G H

    1993-05-01

    The main purpose of this study was to investigate the relationship between interrogative suggestibility and previous convictions among 108 defendants in criminal trials, using a path analysis technique. It was hypothesized that previous convictions, which may provide defendants with interrogative experiences, would correlate negatively with 'shift' as measured by the Gudjonsson Suggestibility Scale (Gudjonsson, 1984a), after intelligence and memory had been controlled for. The hypothesis was partially confirmed and the theoretical and practical implications of the findings are discussed.

  12. Connectivity-enhanced route selection and adaptive control for the Chevrolet Volt

    DOE PAGES

    Gonder, Jeffrey; Wood, Eric; Rajagopalan, Sai

    2016-01-01

    The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3%, respectively. Furthermore, these represent substantial opportunities considering that they only require software adjustments to implement.

  13. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  14. Robust algebraic image enhancement for intelligent control systems

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morrelli, Michael

    1993-01-01

    Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

  15. Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval.

    PubMed

    Woźniak, Marcin; Połap, Dawid

    2017-09-01

    Simulation and positioning are very important aspects of computer aided engineering. To process these two, we can apply traditional methods or intelligent techniques. The difference between them is in the way they process information. In the first case, to simulate an object in a particular state of action, we need to perform an entire process to read values of parameters. It is not very convenient for objects for which simulation takes a long time, i.e. when mathematical calculations are complicated. In the second case, an intelligent solution can efficiently help on devoted way of simulation, which enables us to simulate the object only in a situation that is necessary for a development process. We would like to present research results on developed intelligent simulation and control model of electric drive engine vehicle. For a dedicated simulation method based on intelligent computation, where evolutionary strategy is simulating the states of the dynamic model, an intelligent system based on devoted neural network is introduced to control co-working modules while motion is in time interval. Presented experimental results show implemented solution in situation when a vehicle transports things over area with many obstacles, what provokes sudden changes in stability that may lead to destruction of load. Therefore, applied neural network controller prevents the load from destruction by positioning characteristics like pressure, acceleration, and stiffness voltage to absorb the adverse changes of the ground. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Deploying an Intelligent Pairing Assistant for Air Operation Centers

    DTIC Science & Technology

    2016-06-23

    primary contributions of this case study are applying artificial intelligence techniques to a novel domain and discussing the software evaluation...their standard workflows. The primary contributions of this case study are applying artificial intelligence techniques to a novel domain and...users for more efficient and accurate pairing? Participants Participants in the evaluation consisted of three SMEs employed at Intelligent Software

  17. An intelligent system with EMG-based joint angle estimation for telemanipulation.

    PubMed

    Suryanarayanan, S; Reddy, N P; Gupta, V

    1996-01-01

    Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.

  18. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1990-01-01

    A three-tier structure consisting of organization, coordination, and execution levels forms the architecture of an intelligent machine using the principle of increasing precision with decreasing intelligence from a hierarchically intelligent control. This system has been formulated as a probabilistic model, where uncertainty and imprecision can be expressed in terms of entropies. The optimal strategy for decision planning and task execution can be found by minimizing the total entropy in the system. The focus is on the design of the organization level as a Boltzmann machine. Since this level is responsible for planning the actions of the machine, the Boltzmann machine is reformulated to use entropy as the cost function to be minimized. Simulated annealing, expanding subinterval random search, and the genetic algorithm are presented as search techniques to efficiently find the desired action sequence and illustrated with numerical examples.

  19. Novel associative-memory-based self-learning neurocontrol model

    NASA Astrophysics Data System (ADS)

    Chen, Ke

    1992-09-01

    Intelligent control is an important field of AI application, which is closely related to machine learning, and the neurocontrol is a kind of intelligent control that controls actions of a physical system or a plant. Linear associative memory model is a good analytic tool for artificial neural networks. In this paper, we present a novel self-learning neurocontrol on the basis of the linear associative memory model to support intelligent control. Using our self-learning neurocontrol model, the learning process is viewed as an extension of one of J. Piaget's developmental stages. After a particular linear associative model developed by us is presented, a brief introduction to J. Piaget's cognitive theory is described as the basis of our self-learning style control. It follows that the neurocontrol model is presented, which usually includes two learning stages, viz. primary learning and high-level learning. As a demonstration of our neurocontrol model, an example is also presented with simulation techniques, called that `bird' catches an aim. The tentative experimental results show that the learning and controlling performance of this approach is surprisingly good. In conclusion, future research is pointed out to improve our self-learning neurocontrol model and explore other areas of application.

  20. Lies and coercion: why psychiatrists should not participate in police and intelligence interrogations.

    PubMed

    Janofsky, Jeffrey S

    2006-01-01

    Police interrogators routinely use deceptive techniques to obtain confessions from criminal suspects. The United States Executive Branch has attempted to justify coercive interrogation techniques in which physical or mental pain and suffering may be used during intelligence interrogations of persons labeled unlawful combatants. It may be appropriate for law enforcement, military, or intelligence personnel who are not physicians to use such techniques. However, forensic psychiatry ethical practice requires honesty, striving for objectivity, and respect for persons. Deceptive and coercive interrogation techniques violate these moral values. When a psychiatrist directly uses, works with others who use, or trains others to use deceptive or coercive techniques to obtain information in police, military, or intelligence interrogations, the psychiatrist breaches basic principles of ethics.

  1. Intelligence Fusion Modeling. A Proposed Approach.

    DTIC Science & Technology

    1983-09-16

    based techniques developed by artificial intelligence researchers. This paper describes the application of these techniques in the modeling of an... intelligence requirements, although the methods presented are applicable . We treat PIR/IR as given. -7- -- -W V"W v* 1.- . :71.,v It k*~ ~-- Movement...items from the PIR/IR/HVT decomposition are received from the CMDS. Formatted tactical intelligence reports are received from sensors of like types

  2. A software architecture for hard real-time execution of automatically synthesized plans or control laws

    NASA Technical Reports Server (NTRS)

    Schoppers, Marcel

    1994-01-01

    The design of a flexible, real-time software architecture for trajectory planning and automatic control of redundant manipulators is described. Emphasis is placed on a technique of designing control systems that are both flexible and robust yet have good real-time performance. The solution presented involves an artificial intelligence algorithm that dynamically reprograms the real-time control system while planning system behavior.

  3. Intelligence in Scientific Computing.

    DTIC Science & Technology

    1993-12-31

    simulation) a high-performance controller for a magnetic levitation system - the German Transrapid system. The new control system can stabilize maglev ...techniques. A paper by Feng Zhao and Richard Thornton about the maglev controller designed by his program was presented at the 31st IEEE conference on...Massachusetts Insti- tute of Technology, 1991. Also availible as MIT AITR 1385. Zhao, F. and Thornton, R. "Automatic Design of a Maglev Controller in

  4. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  5. Application of the intelligent techniques in transplantation databases: a review of articles published in 2009 and 2010.

    PubMed

    Sousa, F S; Hummel, A D; Maciel, R F; Cohrs, F M; Falcão, A E J; Teixeira, F; Baptista, R; Mancini, F; da Costa, T M; Alves, D; Pisa, I T

    2011-05-01

    The replacement of defective organs with healthy ones is an old problem, but only a few years ago was this issue put into practice. Improvements in the whole transplantation process have been increasingly important in clinical practice. In this context are clinical decision support systems (CDSSs), which have reflected a significant amount of work to use mathematical and intelligent techniques. The aim of this article was to present consideration of intelligent techniques used in recent years (2009 and 2010) to analyze organ transplant databases. To this end, we performed a search of the PubMed and Institute for Scientific Information (ISI) Web of Knowledge databases to find articles published in 2009 and 2010 about intelligent techniques applied to transplantation databases. Among 69 retrieved articles, we chose according to inclusion and exclusion criteria. The main techniques were: Artificial Neural Networks (ANN), Logistic Regression (LR), Decision Trees (DT), Markov Models (MM), and Bayesian Networks (BN). Most articles used ANN. Some publications described comparisons between techniques or the use of various techniques together. The use of intelligent techniques to extract knowledge from databases of healthcare is increasingly common. Although authors preferred to use ANN, statistical techniques were equally effective for this enterprise. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik

    2015-06-01

    Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.

  7. Cooperative analysis expert situation assessment research

    NASA Technical Reports Server (NTRS)

    Mccown, Michael G.

    1987-01-01

    For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.

  8. [Development of the automatic dental X-ray film processor].

    PubMed

    Bai, J; Chen, H

    1999-07-01

    This paper introduces a multiple-point detecting technique of the density of dental X-ray films. With the infrared ray multiple-point detecting technique, a single-chip microcomputer control system is used to analyze the effectiveness of the film-developing in real time in order to achieve a good image. Based on the new technology, We designed the intelligent automatic dental X-ray film processing.

  9. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  10. On the integration of reinforcement learning and approximate reasoning for control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    The author discusses the importance of strengthening the knowledge representation characteristic of reinforcement learning techniques using methods such as approximate reasoning. The ARIC (approximate reasoning-based intelligent control) architecture is an example of such a hybrid approach in which the fuzzy control rules are modified (fine-tuned) using reinforcement learning. ARIC also demonstrates that it is possible to start with an approximately correct control knowledge base and learn to refine this knowledge through further experience. On the other hand, techniques such as the TD (temporal difference) algorithm and Q-learning establish stronger theoretical foundations for their use in adaptive control and also in stability analysis of hybrid reinforcement learning and approximate reasoning-based controllers.

  11. What Does Neuroscience and Cognitive Psychology Tell Us about Multiple Intelligence

    ERIC Educational Resources Information Center

    Bauer, Richard H.

    2009-01-01

    Studies that have used noninvasive brain imaging techniques to record neocortical activity while individuals were performing cognitive intelligence tests (traditional intelligence) and social intelligence tests were reviewed. In cognitive intelligence tests 16 neocortical areas were active, whereas in social intelligence 10 areas were active.…

  12. IMIS: An intelligence microscope imaging system

    NASA Technical Reports Server (NTRS)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  13. MESA: An Interactive Modeling and Simulation Environment for Intelligent Systems Automation

    NASA Technical Reports Server (NTRS)

    Charest, Leonard

    1994-01-01

    This report describes MESA, a software environment for creating applications that automate NASA mission opterations. MESA enables intelligent automation by utilizing model-based reasoning techniques developed in the field of Artificial Intelligence. Model-based reasoning techniques are realized in Mesa through native support of causal modeling and discrete event simulation.

  14. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  15. Artificial Intelligence Techniques: Applications for Courseware Development.

    ERIC Educational Resources Information Center

    Dear, Brian L.

    1986-01-01

    Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…

  16. Competitive Intelligence.

    ERIC Educational Resources Information Center

    Bergeron, Pierrette; Hiller, Christine A.

    2002-01-01

    Reviews the evolution of competitive intelligence since 1994, including terminology and definitions and analytical techniques. Addresses the issue of ethics; explores how information technology supports the competitive intelligence process; and discusses education and training opportunities for competitive intelligence, including core competencies…

  17. Smart Collections: Can Artificial Intelligence Tools and Techniques Assist with Discovering, Evaluating and Tagging Digital Learning Resources?

    ERIC Educational Resources Information Center

    Leibbrandt, Richard; Yang, Dongqiang; Pfitzner, Darius; Powers, David; Mitchell, Pru; Hayman, Sarah; Eddy, Helen

    2010-01-01

    This paper reports on a joint proof of concept project undertaken by researchers from the Flinders University Artificial Intelligence Laboratory in partnership with information managers from the Education Network Australia (edna) team at Education Services Australia to address the question of whether artificial intelligence techniques could be…

  18. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  19. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process.

    PubMed

    Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.

  20. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process

    PubMed Central

    Mohamed, Amr E.; Dorrah, Hassen T.

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444

  1. Techniques and potential capabilities of multi-resolutional information (knowledge) processing

    NASA Technical Reports Server (NTRS)

    Meystel, A.

    1989-01-01

    A concept of nested hierarchical (multi-resolutional, pyramidal) information (knowledge) processing is introduced for a variety of systems including data and/or knowledge bases, vision, control, and manufacturing systems, industrial automated robots, and (self-programmed) autonomous intelligent machines. A set of practical recommendations is presented using a case study of a multiresolutional object representation. It is demonstrated here that any intelligent module transforms (sometimes, irreversibly) the knowledge it deals with, and this tranformation affects the subsequent computation processes, e.g., those of decision and control. Several types of knowledge transformation are reviewed. Definite conditions are analyzed, satisfaction of which is required for organization and processing of redundant information (knowledge) in the multi-resolutional systems. Providing a definite degree of redundancy is one of these conditions.

  2. The Scharff-technique: eliciting intelligence from human sources.

    PubMed

    Oleszkiewicz, Simon; Granhag, Pär Anders; Montecinos, Sebastian Cancino

    2014-10-01

    This study is on how to elicit intelligence from human sources. We compared the efficacy of two human intelligence gathering techniques: the Scharff-technique (conceptualized as four different tactics) and the Direct Approach (a combination of open and direct questions). Participants (N = 60) were asked to take on the role of "sources" and were given information about a planned terrorist attack. They were to reveal part of this information in an upcoming interview. Critically, the participants were instructed to strike a balance between not revealing too much or too little information. As predicted, the participants revealed significantly more, and more precise, new information when interviewed with the Scharff-technique (vs. the Direct Approach). Furthermore, and as predicted, the participants in the Scharff condition underestimated how much new information they revealed whereas the participants in the Direct Approach overestimated how much new information they revealed. The study provides rather strong support for the Scharff-technique as an effective human intelligence gathering technique. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    NASA Astrophysics Data System (ADS)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  4. An evaluation plan of bus architectures and protocols using the NASA Ames intelligent redundant actuation system

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Chen, M.

    1987-01-01

    Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.

  5. TDAS: The Thermal Expert System (TEXSYS) data acquisition system

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Healey, Kathleen J.

    1987-01-01

    As part of the NASA Systems Autonomy Demonstration Project, a thermal expert system (TEXSYS) is being developed. TEXSYS combines a fast real time control system, a sophisticated human interface for the user and several distinct artificial intelligence techniques in one system. TEXSYS is to provide real time control, operations advice and fault detection, isolation and recovery capabilities for the space station Thermal Test Bed (TTB). TEXSYS will be integrated with the TTB and act as an intelligent assistant to thermal engineers conducting TTB tests and experiments. The results are presented from connecting the real time controller to the knowledge based system thereby creating an integrated system. Special attention will be paid to the problem of filtering and interpreting the raw, real time data and placing the important values into the knowledge base of the expert system.

  6. Intelligent web agents for a 3D virtual community

    NASA Astrophysics Data System (ADS)

    Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar

    2003-08-01

    In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.

  7. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  8. Intelligent transportation systems data compression using wavelet decomposition technique.

    DOT National Transportation Integrated Search

    2009-12-01

    Intelligent Transportation Systems (ITS) generates massive amounts of traffic data, which posts : challenges for data storage, transmission and retrieval. Data compression and reconstruction technique plays an : important role in ITS data procession....

  9. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  10. Autonomous control systems - Architecture and fundamental issues

    NASA Technical Reports Server (NTRS)

    Antsaklis, P. J.; Passino, K. M.; Wang, S. J.

    1988-01-01

    A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).

  11. Detection and Length Estimation of Linear Scratch on Solid Surfaces Using an Angle Constrained Ant Colony Technique

    NASA Astrophysics Data System (ADS)

    Pal, Siddharth; Basak, Aniruddha; Das, Swagatam

    In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.

  12. Integrated Artificial Intelligence Approaches for Disease Diagnostics.

    PubMed

    Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh

    2018-06-01

    Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.

  13. Robust Control Analysis of Hydraulic Turbine Speed

    NASA Astrophysics Data System (ADS)

    Jekan, P.; Subramani, C.

    2018-04-01

    An effective control strategy for the hydro-turbine governor in time scenario is adjective for this paper. Considering the complex dynamic characteristic and the uncertainty of the hydro-turbine governor model and taking the static and dynamic performance of the governing system as the ultimate goal, the designed logic combined the classical PID control theory with artificial intelligence used to obtain the desired output. The used controller will be a variable control techniques, therefore, its parameters can be adaptively adjusted according to the information about the control error signal.

  14. Conflict control of children with different intellectual levels: an ERP study.

    PubMed

    Liu, Tongran; Xiao, Tong; Shi, Jiannong; Zhao, Daheng; Liu, Jizhong

    2011-02-25

    Conflict control is an important cognitive ability in human behavioral regulation. The Eriksen flanker task was employed to explore the neural correlation between conflict control and intelligence with the aid of event-related potential (ERP) techniques. Two groups of early adolescents with different intellectual levels participated in the current study (an intellectually gifted group of 20 children vs. an intellectually average group of 21 children, with mean scores of 43 vs. 35.7 in Cattell's Culture Fair Test, respectively). Behavioral results indicate that the gifted children had better conflict control performances, with increased accuracy and faster response speeds than the intellectually average children. Electrophysiological results further show that the gifted children had more efficient N2 activations during conflict monitoring processing, faster P3 responses over frontal regions, and stronger P3 activations over central-parietal regions during attentional control processing. The difference waveform analysis showed that the gifted children had the weakest N2d activations when elicited by multiple conflicts. N2d amplitudes can be used to distinguish a stimulus conflict from a response conflict, and P3d amplitudes can be used to separate multiple conflicts from a single conflict. The results support the neural efficiency hypothesis of intelligence and shed light on the close relationship between conflict control ability and human intelligence. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Next generation control system for reflexive aerostructures

    NASA Astrophysics Data System (ADS)

    Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.

  16. Defense Information Systems Program Automated CORDIVEM Design Requirements,

    DTIC Science & Technology

    1984-02-28

    for the Soviet military organization and equipment. Dr. John Spagnuolo incorporated artificial intelligence techniques in the discussion of functional...4-44 4.1.2.18.2 Artificial Intelligence ...... ........ 4-49 4.1.2.18.3 Types of A.I ................. 4-51 4.1.2.19 General Planning Requirements...described later. Further, some subprocesses may need one of the various techniques associated with the broad field of Artificial Intelligence (A.I.) in

  17. Cerebellar neurocontroller project, for aerospace applications, in a civilian neurocomputing initiative in the 'decade of the brain'

    NASA Technical Reports Server (NTRS)

    Pellionisz, Andras J.; Jorgensen, Charles C.; Werbos, Paul J.

    1992-01-01

    A key question is how to utilize civilian government agencies along with an industrial consortium to successfully complement the so far primarily defense-oriented neural network research. Civilian artificial neural system projects, such as artificial cerebellar neurocontrollers aimed at duplicating nature's existing neural network solutions for adaptive sensorimotor coordination, are proposed by such a synthesis. The cerebellum provides an intelligent interface between higher possibly symbolic levels of human intelligence and repetitious demands of real world conventional controllers. The generation of such intelligent interfaces could be crucial to the economic feasibility of the human settlement of space and an improvement in telerobotics techniques to permit the cost-effective exploitation of nonterrestrial materials and planetary exploration and monitoring. The authors propose a scientific framework within which such interagency activities could effectively cooperate.

  18. Robotic control and inspection verification

    NASA Technical Reports Server (NTRS)

    Davis, Virgil Leon

    1991-01-01

    Three areas of possible commercialization involving robots at the Kennedy Space Center (KSC) are discussed: a six degree-of-freedom target tracking system for remote umbilical operations; an intelligent torque sensing end effector for operating hand valves in hazardous locations; and an automatic radiator inspection device, a 13 by 65 foot robotic mechanism involving completely redundant motors, drives, and controls. Aspects concerning the first two innovations can be integrated to enable robots or teleoperators to perform tasks involving orientation and panal actuation operations that can be done with existing technology rather than waiting for telerobots to incorporate artificial intelligence (AI) to perform 'smart' autonomous operations. The third robot involves the application of complete control hardware redundancy to enable performance of work over and near expensive Space Shuttle hardware. The consumer marketplace may wish to explore commercialization of similiar component redundancy techniques for applications when a robot would not normally be used because of reliability concerns.

  19. ERPs evidence for the relationship between fluid intelligence and cognitive control.

    PubMed

    Lu, Di; Zhang, Haoyun; Kang, Chunyan; Guo, Taomei

    2016-04-13

    The relationship between two components of cognitive control, that is, proactive control and reactive control, and fluid intelligence was investigated by measuring 75 participants' event-related potentials in the AX version of the continuous performance test. The results showed that the mean amplitudes of N2 associated with the two components of cognitive control are highly correlated with fluid intelligence. Specifically, a larger N2 was shown in participants with higher fluid intelligence scores. No significant correlation was found in the peak latencies of the N2 and fluid intelligence. These results enrich our understanding of the relationship between cognitive control and fluid intelligence by using the N2 component as an index and also indicate that cognitive control may be a component of intelligence.

  20. Qualitative Reasoning methods for CELSS modeling.

    PubMed

    Guerrin, F; Bousson, K; Steyer JPh; Trave-Massuyes, L

    1994-11-01

    Qualitative Reasoning (QR) is a branch of Artificial Intelligence that arose from research on engineering problem solving. This paper describes the major QR methods and techniques, which, we believe, are capable of addressing some of the problems that are emphasized in the literature and posed by CELSS modeling, simulation, and control at the supervisory level.

  1. The Successive Contributions of Computers to Education: A Survey.

    ERIC Educational Resources Information Center

    Lelouche, Ruddy

    1998-01-01

    Shows how education has successively benefited from traditional information processing through programmed instruction and computer-assisted instruction (CAI), artificial intelligence, intelligent CAI, intelligent tutoring systems, and hypermedia techniques. Contains 29 references. (DDR)

  2. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System

    PubMed Central

    Adelson, David; Brown, Fred; Chaudhri, Naeem

    2017-01-01

    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013

  3. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System.

    PubMed

    Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem

    2017-01-01

    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.

  4. Intelligent manipulation technique for multi-branch robotic systems

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  5. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  6. A human performance modelling approach to intelligent decision support systems

    NASA Technical Reports Server (NTRS)

    Mccoy, Michael S.; Boys, Randy M.

    1987-01-01

    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs.

  7. An intelligent control system for rocket engines - Need, vision, and issues

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    Several components of intelligence are defined. Within the context of these definitions an intelligent control system for rocket engines is described. The description includes a framework for development of an intelligent control system, including diagnostics, coordination, and direct control. Some current results and issues are presented.

  8. A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    PubMed Central

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956

  9. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    PubMed

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  10. NASA/ARC proposed training in intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1990-01-01

    Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.

  11. Methods to Control EMI Noises Produced in Power Converter Systems

    NASA Astrophysics Data System (ADS)

    Mutoh, Nobuyoshi; Ogata, Mitukatu

    A new method to control EMI noises produced in power converters (rectifier and inverter) composed of IPMs (Intelligent Power Modules) is studied especially focusing on differential mode noises. The differential mode noises are occurred due to switching operations of the PWM control. As they are diffused into the ground through stray capacitors distributed between the ground and the power transmission lines and machine frames, differential mode noises should be confined and suppressed within the smallest area where power converters are laid out. It is impossible to control differential mode noises easily occurring diffusion by the conventional methods like filtering techniques. So, a new EMI noise control method using a multi-power circuit technique is proposed. The proposed method of the effectiveness has been verified through simulations and experiments.

  12. Intelligent controller of novel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Qi Jian; Bai Jian Kuo

    1983-01-01

    This paper presents the authors attempt to combine the control engineering principle with human intelligence to form a new control algorithm. The hybrid system thus formed is both analogous and logical in actions and is called the intelligent controller (IC). With the help of cybernetics princple, the operator's intelligent action of control is programmed into the controller and the system is thus taught to act like an intelligent being within the prescribed range. Remarkable results were obtained from experiments conducted on an electronic model simulating the above mentioned system. Stability studies and system analysis are presented. 12 references.

  13. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    ERIC Educational Resources Information Center

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  14. A Computer-Aided Instruction Program for Teaching the TOPS20-MM Facility on the DDN (Defense Data Network)

    DTIC Science & Technology

    1988-06-01

    Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Computer Assisted Instruction; Artificial Intelligence 194...while he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been...he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been used

  15. A Survey on Ambient Intelligence in Health Care

    PubMed Central

    Acampora, Giovanni; Cook, Diane J.; Rashidi, Parisa; Vasilakos, Athanasios V.

    2013-01-01

    Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people’s capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users’ goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths. PMID:24431472

  16. A Survey on Ambient Intelligence in Health Care.

    PubMed

    Acampora, Giovanni; Cook, Diane J; Rashidi, Parisa; Vasilakos, Athanasios V

    2013-12-01

    Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people's capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users' goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths.

  17. An intelligent robotic aid system for human services

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Bagchi, S.; Iskarous, M.; Pack, R. T.; Saad, A.

    1994-01-01

    The long term goal of our research at the Intelligent Robotic Laboratory at Vanderbilt University is to develop advanced intelligent robotic aid systems for human services. As a first step toward our goal, the current thrusts of our R&D are centered on the development of an intelligent robotic aid called the ISAC (Intelligent Soft Arm Control). In this paper, we describe the overall system architecture and current activities in intelligent control, adaptive/interactive control and task learning.

  18. Guidelines for Effective Selective Listening.

    ERIC Educational Resources Information Center

    Schendel, Joel D.; Shields, Joyce L.

    Defining selective listening as an intelligence gathering technique that depends on an individual's ability to access, monitor, and report oral messages accurately and to give processing priority to messages of possible intelligence value, this report describes one important application of the technique: overhearing the conversations of others…

  19. A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics.

    PubMed

    Gomaa Haroun, A H; Li, Yin-Ya

    2017-11-01

    In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A Computational Intelligence (CI) Approach to the Precision Mars Lander Problem

    NASA Technical Reports Server (NTRS)

    Birge, Brian; Walberg, Gerald

    2002-01-01

    A Mars precision landing requires a landed footprint of no more than 100 meters. Obstacles to reducing the landed footprint include trajectory dispersions due to initial atmospheric entry conditions such as entry angle, parachute deployment height, environment parameters such as wind, atmospheric density, parachute deployment dynamics, unavoidable injection error or propagated error from launch, etc. Computational Intelligence (CI) techniques such as Artificial Neural Nets and Particle Swarm Optimization have been shown to have great success with other control problems. The research period extended previous work on investigating applicability of the computational intelligent approaches. The focus of this investigation was on Particle Swarm Optimization and basic Neural Net architectures. The research investigating these issues was performed for the grant cycle from 5/15/01 to 5/15/02. Matlab 5.1 and 6.0 along with NASA's POST were the primary computational tools.

  1. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  2. Artificial neural networks and approximate reasoning for intelligent control in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.

  3. 2014 Summer Series - Kristin Yvonne Rozier - No More Helicopter Parenting: Intelligent Autonomous Unmanned Aerial Vehicle

    NASA Image and Video Library

    2014-06-10

    Safety is NASA's top priority! The search for innovative new ways to validate and verify is vital for the development of safety-critical systems. Such techniques have been successfully used to assure systems for air traffic control, airplane separation assurance, autopilots, logic designs, medical devices, and other functions that ensure human safety.

  4. Application of AI techniques to blast furnace operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination ofmore » fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.« less

  5. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  6. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  7. Color regeneration from reflective color sensor using an artificial intelligent technique.

    PubMed

    Saracoglu, Ömer Galip; Altural, Hayriye

    2010-01-01

    A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages.

  8. Artificial-intelligence-based optimization of the management of snow removal assets and resources.

    DOT National Transportation Integrated Search

    2002-10-01

    Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...

  9. Artificial intelligence in astronomy - a forecast.

    NASA Astrophysics Data System (ADS)

    Adorf, H. M.

    Since several years artificial intelligence techniques are being actively used in astronomy, particularly within the Hubble Space Telescope project. This contribution reviews achievements, analyses some problems of using artificial intelligence in an astronomical environment, and projects current AI programming trends into the future.

  10. Practical applications of nondestructive materials characterization

    NASA Astrophysics Data System (ADS)

    Green, Robert E., Jr.

    1992-10-01

    Nondestructive evaluation (NDE) techniques are reviewed for applications to the industrial production of materials including microstructural, physical, and chemical analyses. NDE techniques addressed include: (1) double-pulse holographic interferometry for sealed-package leak testing; (2) process controls for noncontact metals fabrication; (3) ultrasonic detections of oxygen contamination in titanium welds; and (4) scanning acoustic microscopy for the evaluation of solder bonds. The use of embedded sensors and emerging NDE concepts provides the means for controlling the manufacturing and quality of quartz crystal resonators, nickel single-crystal turbine blades, and integrated circuits. Advances in sensor technology and artificial intelligence algorithms and the use of embedded sensors combine to make NDE technology highly effective in controlling industrial materials manufacturing and the quality of the products.

  11. Evaluation Methods for Intelligent Tutoring Systems Revisited

    ERIC Educational Resources Information Center

    Greer, Jim; Mark, Mary

    2016-01-01

    The 1993 paper in "IJAIED" on evaluation methods for Intelligent Tutoring Systems (ITS) still holds up well today. Basic evaluation techniques described in that paper remain in use. Approaches such as kappa scores, simulated learners and learning curves are refinements on past evaluation techniques. New approaches have also arisen, in…

  12. Adaptive Educational Software by Applying Reinforcement Learning

    ERIC Educational Resources Information Center

    Bennane, Abdellah

    2013-01-01

    The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…

  13. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  14. Mission planning for autonomous systems

    NASA Technical Reports Server (NTRS)

    Pearson, G.

    1987-01-01

    Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.

  15. Application of plausible reasoning to AI-based control systems

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid; Lum, Henry, Jr.

    1987-01-01

    Some current approaches to plausible reasoning in artificial intelligence are reviewed and discussed. Some of the most significant recent advances in plausible and approximate reasoning are examined. A synergism among the techniques of uncertainty management is advocated, and brief discussions on the certainty factor approach, probabilistic approach, Dempster-Shafer theory of evidence, possibility theory, linguistic variables, and fuzzy control are presented. Some extensions to these methods are described, and the applications of the methods are considered.

  16. Knowledge structure representation and automated updates in intelligent information management systems

    NASA Technical Reports Server (NTRS)

    Corey, Stephen; Carnahan, Richard S., Jr.

    1990-01-01

    A continuing effort to apply rapid prototyping and Artificial Intelligence techniques to problems associated with projected Space Station-era information management systems is examined. In particular, timely updating of the various databases and knowledge structures within the proposed intelligent information management system (IIMS) is critical to support decision making processes. Because of the significantly large amounts of data entering the IIMS on a daily basis, information updates will need to be automatically performed with some systems requiring that data be incorporated and made available to users within a few hours. Meeting these demands depends first, on the design and implementation of information structures that are easily modified and expanded, and second, on the incorporation of intelligent automated update techniques that will allow meaningful information relationships to be established. Potential techniques are studied for developing such an automated update capability and IIMS update requirements are examined in light of results obtained from the IIMS prototyping effort.

  17. Biometrics: Multi-Service Tactics, Techniques, and Procedures for Tactical Employment of Biometrics in Support of Operations

    DTIC Science & Technology

    2016-05-01

    Biometrics in Support of Operations Biometrics -at-Sea: Business Rules for South Florida United States...Intelligence Activities Biometrics -Enabled Intelligence USCG Biometrics -at-Sea: Business Rules for...Defense Biometrics United States Intelligence Activities Active Army,

  18. An Intelligent Actuator Fault Reconstruction Scheme for Robotic Manipulators.

    PubMed

    Xiao, Bing; Yin, Shen

    2018-02-01

    This paper investigates a difficult problem of reconstructing actuator faults for robotic manipulators. An intelligent approach with fast reconstruction property is developed. This is achieved by using observer technique. This scheme is capable of precisely reconstructing the actual actuator fault. It is shown by Lyapunov stability analysis that the reconstruction error can converge to zero after finite time. A perfect reconstruction performance including precise and fast properties can be provided for actuator fault. The most important feature of the scheme is that, it does not depend on control law, dynamic model of actuator, faults' type, and also their time-profile. This super reconstruction performance and capability of the proposed approach are further validated by simulation and experimental results.

  19. Smart Prosthetic Hand Technology - Phase 2

    DTIC Science & Technology

    2011-05-01

    identification and estimation, hand motion estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The...Smart Prosthetics, Bio- Robotics , Intelligent EMG Signal Processing, Embedded Systems and Intelligent Control, Inflammatory Responses of Cells, Toxicity...estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The developed identification algorithm using a new

  20. Machine intelligence and robotics: Report of the NASA study group

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.

  1. Self Estimates of General, Crystallized, and Fluid Intelligences in an Ethnically Diverse Population

    ERIC Educational Resources Information Center

    Kaufman, James C.

    2012-01-01

    Self-estimated intelligence is a quick way to assess people's conceptions of their own abilities. Furnham (2001) and colleagues have used this technique to make comparisons across culture and gender and different approaches to intelligence (such as "g" or Multiple Intelligences). This study seeks to build on past work in two ways. First, a large,…

  2. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  3. Neural robust stabilization via event-triggering mechanism and adaptive learning technique.

    PubMed

    Wang, Ding; Liu, Derong

    2018-06-01

    The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Assessing the Value of Structured Analytic Techniques in the U.S. Intelligence Community

    DTIC Science & Technology

    2016-01-01

    Analytic Techniques, and Why Do Analysts Use Them? SATs are methods of organizing and stimulating thinking about intelligence problems. These methods... thinking ; and imaginative thinking techniques encourage new perspectives, insights, and alternative scenarios. Among the many SATs in use today, the...more transparent, so that other analysts and customers can bet - ter understand how the judgments were reached. SATs also facilitate group involvement

  5. Architecture for Business Intelligence in the Healthcare Sector

    NASA Astrophysics Data System (ADS)

    Lee, Sang Young

    2018-03-01

    Healthcare environment is growing to include not only the traditional information systems, but also a business intelligence platform. For executive leaders, consultants, and analysts, there is no longer a need to spend hours in design and develop of typical reports or charts, the entire solution can be completed through using Business Intelligence software. The current paper highlights the advantages of big data analytics and business intelligence in the healthcare industry. In this paper, In this paper we focus our discussion around intelligent techniques and methodologies which are recently used for business intelligence in healthcare.

  6. Primary nocturnal enuresis is associated with lower intelligence quotient scores in boys from poorer socioeconomic status families.

    PubMed

    Basiri, Abbas; Bahrainian, Seyed Abdolmajid; Khoshdel, Alireza; Jalaly, Niloofar; Golshan, Shabnam; Pakmanesh, Hamid

    2017-03-01

    To explore intelligence quotient in boys with primary nocturnal enuresis compared with normal boys considering their socioeconomic status. A total of 152 school-aged boys (including 55 boys with primary nocturnal enuresis and 97 matched normal controls) were assessed. Boys with a history of any neurological or urological disease were excluded. Two different districts of Tehran: Khani-Abad (a poor district) and Pirouzi (a middle class district) districts were enrolled according to socioeconomic status data reported by the World Health Organization. Intelligence tests were carried out using a validated Iranian translation of the Wechsler Intelligence Scale for Children Revised. Total, as well as performance intelligence quotient and verbal intelligence quotient scores and verbal-performance discrepancy (the difference between verbal and performance intelligence quotient scores for each individual) were compared using a t-test between boys with primary nocturnal enuresis in each district and their matched controls. Considering each district separately, the total intelligence quotient score was lower in primary nocturnal enuresis cases than controls only in the lower income district (90.7 ± 23.3 vs 104.8 ± 14.7, P = 0.002). Similarly, boys with primary nocturnal enuresis ranked lower in verbal intelligence quotient (P = 0.002) and performance intelligence quotient (P = 0.004) compared with their matched normal controls only in lower income district, whereas in the higher income district, boys with primary nocturnal enuresis ranked similar in total intelligence quotient to their matched controls. Boys with primary nocturnal enuresis had a lower intelligence quotient compared with the control participants only in low-income district. It seems important to adjust the results of the intelligence quotient assessment in these children according to their socioeconomic status. © 2017 The Japanese Urological Association.

  7. A formal approach to validation and verification for knowledge-based control systems

    NASA Technical Reports Server (NTRS)

    Castore, Glen

    1987-01-01

    As control systems become more complex in response to desires for greater system flexibility, performance and reliability, the promise is held out that artificial intelligence might provide the means for building such systems. An obstacle to the use of symbolic processing constructs in this domain is the need for verification and validation (V and V) of the systems. Techniques currently in use do not seem appropriate for knowledge-based software. An outline of a formal approach to V and V for knowledge-based control systems is presented.

  8. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  9. Appearing smart: the impression management of intelligence, person perception accuracy, and behavior in social interaction.

    PubMed

    Murphy, Nora A

    2007-03-01

    Intelligence is an important trait that affects everyday social interaction. The present research utilized the ecological perspective of social perception to investigate the impression management of intelligence and strangers' evaluations of targets' intelligence levels. The ability to effectively portray an impression of intelligence to outside judges as well as interaction partners was appraised and the effect of impression management on the accurate judgment of intelligence was assessed. In addition, targets' behavior was studied in relation to impression management, perceived intelligence, and actual measured intelligence. Impression-managing targets appeared more intelligent to video judges but not to their interaction partner as compared to controls. The intelligence quotient (IQ) of impression-managing targets was more accurately judged than controls' IQ. Impression-managing targets displayed distinct nonverbal behavioral patterns that differed from controls. Looking while speaking was a key behavior: It significantly correlated with IQ, was successfully manipulated by impression-managing targets, and contributed to higher perceived intelligence ratings.

  10. Condition Monitoring Techniques for Electromechanical Equipment Used in Air Force Ground C3I (Command, Control, Communications and Intelligence) Systems.

    DTIC Science & Technology

    1983-08-01

    Proc. 2nd Congress National de flabilite, Perros -Guirec, Sept. 17-20, 1974, pp. 639-653. Published by CNET, Lannion (France). 53. Love, A. E. H., A...96. C. Rosiaux, Fiabilite des allumeurs determinee a partir des ventes-echanges, Proc. 2nd Congres National de fiabilite, Perros Guirec, Sept. 17-20

  11. Active Detection for Exposing Intelligent Attacks in Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weerakkody, Sean; Ozel, Omur; Griffioen, Paul

    In this paper, we consider approaches for detecting integrity attacks carried out by intelligent and resourceful adversaries in control systems. Passive detection techniques are often incorporated to identify malicious behavior. Here, the defender utilizes finely-tuned algorithms to process information and make a binary decision, whether the system is healthy or under attack. We demonstrate that passive detection can be ineffective against adversaries with model knowledge and access to a set of input/output channels. We then propose active detection as a tool to detect attacks. In active detection, the defender leverages degrees of freedom he has in the system to detectmore » the adversary. Specifically, the defender will introduce a physical secret kept hidden from the adversary, which can be utilized to authenticate the dynamics. In this regard, we carefully review two approaches for active detection: physical watermarking at the control input, and a moving target approach for generating system dynamics. We examine practical considerations for implementing these technologies and discuss future research directions.« less

  12. Intelligent computer-aided training and tutoring

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Savely, Robert T.

    1991-01-01

    Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed.

  13. Intelligent user interface concept for space station

    NASA Technical Reports Server (NTRS)

    Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen

    1986-01-01

    The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.

  14. Intelligent Signal Processing for Active Control

    DTIC Science & Technology

    1992-06-17

    FUNDING NUMSI Intelligent Signal Processing for Active Control C-NO001489-J-1633 G. AUTHOR(S) P.A. Ramamoorthy 7. P2RFORMING ORGANIZATION NAME(S) AND...unclassified .unclassified unclassified L . I mu-. W UNIVERSITY OF CINCINNATI COLLEGE OF ENGINEERING Intelligent Signal Processing For Rctiue Control...NAURI RESEARCH Conkact No: NO1489-J-1633 P.L: P.A.imoodh Intelligent Signal Processing For Active Control 1 Executive Summary The thrust of this

  15. Flight Investigation of Prescribed Simultaneous Independent Surface Excitations for Real-Time Parameter Identification

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Smith, Mark S.; Morelli, Eugene A.

    2003-01-01

    Near real-time stability and control derivative extraction is required to support flight demonstration of Intelligent Flight Control System (IFCS) concepts being developed by NASA, academia, and industry. Traditionally, flight maneuvers would be designed and flown to obtain stability and control derivative estimates using a postflight analysis technique. The goal of the IFCS concept is to be able to modify the control laws in real time for an aircraft that has been damaged in flight. In some IFCS implementations, real-time parameter identification (PID) of the stability and control derivatives of the damaged aircraft is necessary for successfully reconfiguring the control system. This report investigates the usefulness of Prescribed Simultaneous Independent Surface Excitations (PreSISE) to provide data for rapidly obtaining estimates of the stability and control derivatives. Flight test data were analyzed using both equation-error and output-error PID techniques. The equation-error PID technique is known as Fourier Transform Regression (FTR) and is a frequency-domain real-time implementation. Selected results were compared with a time-domain output-error technique. The real-time equation-error technique combined with the PreSISE maneuvers provided excellent derivative estimation in the longitudinal axis. However, the PreSISE maneuvers as presently defined were not adequate for accurate estimation of the lateral-directional derivatives.

  16. The implementation of intelligent home controller

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2018-04-01

    This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.

  17. ARM-based control system for terry rapier loom

    NASA Astrophysics Data System (ADS)

    Shi, Weimin; Gu, Yeqing; Wu, Zhenyu; Wang, Fan

    2007-12-01

    In this paper, a novel ARM-based mechatronics control technique applied in terry rapier loom was presented. Electronic weft selection, electronic fluff, electronic let-off and take-up motions system, which consists of position and speedcontrolled servomechanisms, were studied. The control system configuration, operation principle, and mathematical models of electronic drives system were analyzed. The synchronism among all mechanical motions and an improved intelligent control algorithm for the warp let-off tension control was discussed. The result indict that, by applying electronic and embedded control techniques and the individual servomechanisms, the electronic weft selection, electronic let-off device and electronic take-up device in HGA732T terry rapier loom have greatly simplified the initial complicated mechanism, kept the warp tension constant from full to empty beam, set the variable weft density, eliminated the start mark effectively, promoted its flexibility, reliability and properties, and improved the fabric quality.

  18. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  19. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  20. The Synthesis of Intelligent Real-Time Systems

    DTIC Science & Technology

    1990-11-09

    Synthesis of Intelligent Real - Time Systems . The purpose of the effort was to develop and extend theories and techniques that facilitate the design and...implementation of intelligent real - time systems . In particular, Teleos has extended situated-automata theory to apply to situations in which the system has

  1. Antecedent Knowledge and Intelligent Computer Assisted Instruction.

    ERIC Educational Resources Information Center

    Woodward, John P.; Carnine, Douglas W.

    1988-01-01

    The article reviews Intelligent Computer Assisted Instruction (ICAI), an area of artificial intelligence and notes its shortcomings for learning disabled students. It is suggested that emphasis on antecedent knowledge (important facts, concepts, rules, and/or strategies for the content area) and content analysis and design techniques would make…

  2. Intelligent model-based diagnostics for vehicle health management

    NASA Astrophysics Data System (ADS)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  3. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  4. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    ERIC Educational Resources Information Center

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  5. On Family Size and Intelligence.

    ERIC Educational Resources Information Center

    Armor, David J.

    2001-01-01

    Critiques research by Rodgers, et al. (June 2000) on the impact of family size on intelligence, explaining that it applied very simple analytic techniques to a very complex question, leading to unwarranted conclusions about family size and intelligence. Loss of cases, omission of an important ability test, and failure to apply multivariate…

  6. F-15 Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brown, Nelson A.

    2009-01-01

    This viewgraph presentation reviews the F-15 Intelligent Flight Control System and Aeronautics including Autonomous Aerial Refueling Demonstrations, X-48B Blended Wing Body, F-15 Quiet Spike, and NF-15 Intelligent Flight Controls.

  7. A fault-tolerant intelligent robotic control system

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam Sing

    1993-01-01

    This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.

  8. Telerobotic research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1987-01-01

    An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

  9. Naval Computer-Based Instruction: Cost, Implementation and Effectiveness Issues.

    DTIC Science & Technology

    1988-03-01

    logical follow on to MITIPAC and are an attempt to use some artificial intelligence (AI) techniques with computer-based training. A good intelligent ...principles of steam plant operation and maintenance. Steamer was written in LISP on a LISP machine in an attempt to use artificial intelligence . "What... Artificial Intelligence and Speech Technology", Electronic Learning, September 1987. Montague, William. E., code 5, Navy Personnel Research and

  10. Development of intelligent model for personalized guidance on wheelchair tilt and recline usage for people with spinal cord injury: methodology and preliminary report.

    PubMed

    Fu, Jicheng; Jones, Maria; Jan, Yih-Kuen

    2014-01-01

    Wheelchair tilt and recline functions are two of the most desirable features for relieving seating pressure to decrease the risk of pressure ulcers. The effective guidance on wheelchair tilt and recline usage is therefore critical to pressure ulcer prevention. The aim of this study was to demonstrate the feasibility of using machine learning techniques to construct an intelligent model to provide personalized guidance to individuals with spinal cord injury (SCI). The motivation stems from the clinical evidence that the requirements of individuals vary greatly and that no universal guidance on tilt and recline usage could possibly satisfy all individuals with SCI. We explored all aspects involved in constructing the intelligent model and proposed approaches tailored to suit the characteristics of this preliminary study, such as the way of modeling research participants, using machine learning techniques to construct the intelligent model, and evaluating the performance of the intelligent model. We further improved the intelligent model's prediction accuracy by developing a two-phase feature selection algorithm to identify important attributes. Experimental results demonstrated that our approaches held the promise: they could effectively construct the intelligent model, evaluate its performance, and refine the participant model so that the intelligent model's prediction accuracy was significantly improved.

  11. The Application of Hardware in the Loop Testing for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  12. "Can you see me now?" An objective metric for predicting intelligibility of compressed American Sign Language video

    NASA Astrophysics Data System (ADS)

    Ciaramello, Francis M.; Hemami, Sheila S.

    2007-02-01

    For members of the Deaf Community in the United States, current communication tools include TTY/TTD services, video relay services, and text-based communication. With the growth of cellular technology, mobile sign language conversations are becoming a possibility. Proper coding techniques must be employed to compress American Sign Language (ASL) video for low-rate transmission while maintaining the quality of the conversation. In order to evaluate these techniques, an appropriate quality metric is needed. This paper demonstrates that traditional video quality metrics, such as PSNR, fail to predict subjective intelligibility scores. By considering the unique structure of ASL video, an appropriate objective metric is developed. Face and hand segmentation is performed using skin-color detection techniques. The distortions in the face and hand regions are optimally weighted and pooled across all frames to create an objective intelligibility score for a distorted sequence. The objective intelligibility metric performs significantly better than PSNR in terms of correlation with subjective responses.

  13. Integrated intelligent systems in advanced reactor control rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs.,more » 5 figs.« less

  14. Training and Personnel Systems Technology R and D Program Description FY 93

    DTIC Science & Technology

    1992-07-24

    instructional strategies provide the best training in ICAT applications, and (c) demonstration of microcomputer authoring techniques for rapid development...learning strategies for language training, (b) develop a behavioral taxonomy to evaluate Military Intelligence (MI) performance and to characterize the...training requirements for collective tasks. In FY93, plans are to: (a) develop training strategies for sustaining command and control skills, and (b

  15. Fast Computation and Assessment Methods in Power System Analysis

    NASA Astrophysics Data System (ADS)

    Nagata, Masaki

    Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.

  16. Analytical design of intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.; Valavanis, Kimon P.

    1987-01-01

    The problem of designing 'intelligent machines' to operate in uncertain environments with minimum supervision or interaction with a human operator is examined. The structure of an 'intelligent machine' is defined to be the structure of a Hierarchically Intelligent Control System, composed of three levels hierarchically ordered according to the principle of 'increasing precision with decreasing intelligence', namely: the organizational level, performing general information processing tasks in association with a long-term memory; the coordination level, dealing with specific information processing tasks with a short-term memory; and the control level, which performs the execution of various tasks through hardware using feedback control methods. The behavior of such a machine may be managed by controls with special considerations and its 'intelligence' is directly related to the derivation of a compatible measure that associates the intelligence of the higher levels with the concept of entropy, which is a sufficient analytic measure that unifies the treatment of all the levels of an 'intelligent machine' as the mathematical problem of finding the right sequence of internal decisions and controls for a system structured in the order of intelligence and inverse order of precision such that it minimizes its total entropy. A case study on the automatic maintenance of a nuclear plant illustrates the proposed approach.

  17. Living and working in space; IAA Man in Space Symposium, 9th, Cologne, Federal Republic of Germany, June 17-21, 1991, Selection of Papers

    NASA Technical Reports Server (NTRS)

    Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)

    1992-01-01

    The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.

  18. Integrating deliberative planning in a robot architecture

    NASA Technical Reports Server (NTRS)

    Elsaesser, Chris; Slack, Marc G.

    1994-01-01

    The role of planning and reactive control in an architecture for autonomous agents is discussed. The postulated architecture seperates the general robot intelligence problem into three interacting pieces: (1) robot reactive skills, i.e., grasping, object tracking, etc.; (2) a sequencing capability to differentially ativate the reactive skills; and (3) a delibrative planning capability to reason in depth about goals, preconditions, resources, and timing constraints. Within the sequencing module, caching techniques are used for handling routine activities. The planning system then builds on these cached solutions to routine tasks to build larger grain sized primitives. This eliminates large numbers of essentially linear planning problems. The architecture will be used in the future to incorporate in robots cognitive capabilites normally associated with intelligent behavior.

  19. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  20. Recent developments of artificial intelligence in drying of fresh food: A review.

    PubMed

    Sun, Qing; Zhang, Min; Mujumdar, Arun S

    2018-03-01

    Intellectualization is an important direction of drying development and artificial intelligence (AI) technologies have been widely used to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in different food drying technologies due to the advantages of self-learning ability, adaptive ability, strong fault tolerance and high degree robustness to map the nonlinear structures of arbitrarily complex and dynamic phenomena. This article presents a comprehensive review on intelligent drying technologies and their applications. The paper starts with the introduction of basic theoretical knowledge of ANN, fuzzy logic and expert system. Then, we summarize the AI application of modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products in artificial biomimetic technology (electronic nose, computer vision) and different conventional drying technologies. Furthermore, opportunities and limitations of AI technique in drying are also outlined to provide more ideas for researchers in this area.

  1. Virtual reality for intelligent and interactive operating, training, and visualization systems

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.

  2. Evidence of Multiple Intelligences in FLES Classrooms

    ERIC Educational Resources Information Center

    Glick, Beatriz Garcia; Armstrong, Joyce; Marchese, Marc

    2010-01-01

    According to the Theory of Multiple Intelligences of Howard Gardner, there are eight intelligences. In the present study with two FLES classes, 35 students were asked to present Spanish vocabulary to their class to link their preferences of techniques used to introduce the vocabulary to their classmates with a spectrum of their multiple…

  3. Cross-Cultural Bias Analysis of Cattell Culture-Fair Intelligence Test.

    ERIC Educational Resources Information Center

    Nenty, H. Johnson

    The Cattell Culture Fair Intelligence Test (CCFIT) was administered to a large sample of American, Nigerian, and Indian adolescents, and item data were examined for cultural bias. The CCFIT was designed to measure fluid intelligence, which is not influenced by cultural differences. Four different item analysis techniques were used to determine…

  4. Ubiquitous and Ambient Intelligence Assisted Learning Environment Infrastructures Development--A Review

    ERIC Educational Resources Information Center

    Kanagarajan, Sujith; Ramakrishnan, Sivakumar

    2018-01-01

    Ubiquitous Learning Environment (ULE) has been becoming a mobile and sensor based technology equipped environment that suits the modern world education discipline requirements for the past few years. Ambient Intelligence (AmI) makes much smarter the ULE by the support of optimization and intelligent techniques. Various efforts have been so far…

  5. Nature vs. Nurture: Which Is More Important to Intelligence: Genes or Environment?

    ERIC Educational Resources Information Center

    Baldwin, Alexinia

    2000-01-01

    This brief article reviews the literature on the relative importance of genetic or environmental influences on intelligence. It concludes that: (1) giftedness has various expressions; (2) intelligence encompasses a wide range of human abilities; (3) both subjective and objective assessment techniques should be used; and (4) all ethnicities have…

  6. Emotional intelligence in patients with posttraumatic stress disorder, borderline personality disorder and healthy controls.

    PubMed

    Janke, Katrin; Driessen, Martin; Behnia, Behnoush; Wingenfeld, Katja; Roepke, Stefan

    2018-06-01

    Emotional intelligence as a part of social cognition has, to our knowledge, never been investigated in patients with Posttraumatic Stress Disorder (PTSD), though the disorder is characterized by aspects of emotional dysfunctioning. PTSD often occurs with Borderline Personality Disorder (BPD) as a common comorbidity. Studies about social cognition and emotional intelligence in patients with BPD propose aberrant social cognition, but produced inconsistent results regarding emotional intelligence. The present study aims to assess emotional intelligence in patients with PTSD without comorbid BPD, PTSD with comorbid BPD, and BPD patients without comorbid PTSD, as well as in healthy controls. 71 patients with PTSD (41 patients with PTSD without comorbid BPD, 30 patients with PTSD with comorbid BPD), 56 patients with BPD without PTSD, and 63 healthy controls filled in the Test of Emotional Intelligence (TEMINT). Patients with PTSD without comorbid BPD showed impairments in emotional intelligence compared to patients with BPD without PTSD, and compared to healthy controls. These impairments were not restricted to specific emotions. Patients with BPD did not differ significantly from healthy controls. This study provides evidence for an impaired emotional intelligence in PTSD without comorbid BPD compared to BPD and healthy controls, affecting a wide range of emotions. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Direct magnitude estimates of speech intelligibility in dysarthria: effects of a chosen standard.

    PubMed

    Weismer, Gary; Laures, Jacqueline S

    2002-06-01

    Direct magnitude estimation (DME) has been used frequently as a perceptual scaling technique in studies of the speech intelligibility of persons with speech disorders. The technique is typically used with a standard, or reference stimulus, chosen as a good exemplar of "midrange" intelligibility. In several published studies, the standard has been chosen subjectively, usually on the basis of the expertise of the investigators. The current experiment demonstrates that a fixed set of sentence-level utterances, obtained from 4 individuals with dysarthria (2 with Parkinson disease, 2 with traumatic brain injury) as well as 3 neurologically normal speakers, is scaled differently depending on the identity of the standard. Four different standards were used in the main experiment, three of which were judged qualitatively in two independent evaluations to be good exemplars of midrange intelligibility. Acoustic analyses did not reveal obvious differences between these four standards but suggested that the standard with the worst-scaled intelligibility had much poorer voice source characteristics compared to the other three standards. Results are discussed in terms of possible standardization of midrange intelligibility exemplars for DME experiments.

  8. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare

    PubMed Central

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-01

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals. PMID:29464026

  9. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare.

    PubMed

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-19

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals.

  10. Northeast Artificial Intelligence Consortium Annual Report. 1988 Interference Techniques for Knowledge Base Maintenance Using Logic Programming Methodologies. Volume 11

    DTIC Science & Technology

    1989-10-01

    Northeast Aritificial Intelligence Consortium (NAIC). i Table of Contents Execu tive Sum m ary...o g~nIl ’vLr COPY o~ T- RADC-TR-89-259, Vol XI (of twelve) N Interim Report SOctober 1989 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT...ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Northeast Artificial (If applicable) Intelligence Consortium (NAIC) . Rome Air Development

  11. Tool path strategy and cutting process monitoring in intelligent machining

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  12. White matter tract integrity and intelligence in patients with mental retardation and healthy adults.

    PubMed

    Yu, Chunshui; Li, Jun; Liu, Yong; Qin, Wen; Li, Yonghui; Shu, Ni; Jiang, Tianzi; Li, Kuncheng

    2008-05-01

    It is well known that brain structures correlate with intelligence but the association between the integrity of brain white matter tracts and intelligence in patients with mental retardation (MR) and healthy adults remains unknown. The aims of this study are to investigate whether the integrity of corpus callosum (CC), cingulum, uncinate fasciculus (UF), optic radiation (OR) and corticospinal tract (CST) are damaged in patients with MR, and to determine the correlations between the integrity of these tracts and full scale intelligence quotient (FSIQ) in both patients and controls. Fifteen MR patients and 79 healthy controls underwent intelligence tests and diffusion tensor imaging examinations. According to the FSIQ, all healthy controls were divided into general intelligence (GI: FSIQ<120; n=42) and high intelligence (HI: FSIQ> or =120; n=37) groups. Intelligence was assessed by Chinese Revised Wechsler Adult Intelligence Scale, and white matter tract integrity was assessed by fractional anisotropy (FA). MR patients showed significantly lower FA than healthy controls in the CC, UF, OR and CST. However, GI subjects only demonstrated lower FA than HI subjects in the right UF. Partial correlation analysis controlling for age and sex showed that FSIQ scores were significantly correlated with the FA of the bilateral UF, genu and truncus of CC, bilateral OR and left CST. While FSIQ scores were only significantly correlated with the FA of the right UF when further controlling for group. This study indicate that MR patients show extensive damage in the integrity of the brain white matter tracts, and the right UF is an important neural basis of human intelligence.

  13. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  14. Speech and communication in Parkinson’s disease: a cross-sectional exploratory study in the UK

    PubMed Central

    Barnish, Maxwell S; Horton, Simon M C; Butterfint, Zoe R; Clark, Allan B; Atkinson, Rachel A; Deane, Katherine H O

    2017-01-01

    Objective To assess associations between cognitive status, intelligibility, acoustics and functional communication in PD. Design Cross-sectional exploratory study of functional communication, including a within-participants experimental design for listener assessment. Setting A major academic medical centre in the East of England, UK. Participants Questionnaire data were assessed for 45 people with Parkinson’s disease (PD), who had self-reported speech or communication difficulties and did not have clinical dementia. Acoustic and listener analyses were conducted on read and conversational speech for 20 people with PD and 20 familiar conversation partner controls without speech, language or cognitive difficulties. Main outcome measures Functional communication assessed by the Communicative Participation Item Bank (CPIB) and Communicative Effectiveness Survey (CES). Results People with PD had lower intelligibility than controls for both the read (mean difference 13.7%, p=0.009) and conversational (mean difference 16.2%, p=0.04) sentences. Intensity and pause were statistically significant predictors of intelligibility in read sentences. Listeners were less accurate identifying the intended emotion in the speech of people with PD (14.8% point difference across conditions, p=0.02) and this was associated with worse speaker cognitive status (16.7% point difference, p=0.04). Cognitive status was a significant predictor of functional communication using CPIB (F=8.99, p=0.005, η2 = 0.15) but not CES. Intelligibility in conversation sentences was a statistically significant predictor of CPIB (F=4.96, p=0.04, η2 = 0.19) and CES (F=13.65, p=0.002, η2 = 0.43). Read sentence intelligibility was not a significant predictor of either outcome. Conclusions Cognitive status was an important predictor of functional communication—the role of intelligibility was modest and limited to conversational and not read speech. Our results highlight the importance of focusing on functional communication as well as physical speech impairment in speech and language therapy (SLT) for PD. Our results could inform future trials of SLT techniques for PD. PMID:28554918

  15. Intelligent Traffic Light Based on PLC Control

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Zhang, Lijian; Wang, Lingling

    2017-11-01

    The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.

  16. Dream controller

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  17. PSECMAC intelligent insulin schedule for diabetic blood glucose management under nonmeal announcement.

    PubMed

    Teddy, S D; Quek, C; Lai, E M-K; Cinar, A

    2010-03-01

    Therapeutically, the closed-loop blood glucose-insulin regulation paradigm via a controllable insulin pump offers a potential solution to the management of diabetes. However, the development of such a closed-loop regulatory system to date has been hampered by two main issues: 1) the limited knowledge on the complex human physiological process of glucose-insulin metabolism that prevents a precise modeling of the biological blood glucose control loop; and 2) the vast metabolic biodiversity of the diabetic population due to varying exogneous and endogenous disturbances such as food intake, exercise, stress, and hormonal factors, etc. In addition, current attempts of closed-loop glucose regulatory techniques generally require some form of prior meal announcement and this constitutes a severe limitation to the applicability of such systems. In this paper, we present a novel intelligent insulin schedule based on the pseudo self-evolving cerebellar model articulation controller (PSECMAC) associative learning memory model that emulates the healthy human insulin response to food ingestion. The proposed PSECMAC intelligent insulin schedule requires no prior meal announcement and delivers the necessary insulin dosage based only on the observed blood glucose fluctuations. Using a simulated healthy subject, the proposed PSECMAC insulin schedule is demonstrated to be able to accurately capture the complex human glucose-insulin dynamics and robustly addresses the intraperson metabolic variability. Subsequently, the PSECMAC intelligent insulin schedule is employed on a group of type-1 diabetic patients to regulate their impaired blood glucose levels. Preliminary simulation results are highly encouraging. The work reported in this paper represents a major paradigm shift in the management of diabetes where patient compliance is poor and the need for prior meal announcement under current treatment regimes poses a significant challenge to an active lifestyle.

  18. Adaptive neuro-fuzzy and expert systems for power quality analysis and prediction of abnormal operation

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wael Refaat Anis

    The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an alarm is instigated predicting the advent of system abnormal operation. The incoming data could be compared to previous trends as well as matched to trends developed through computer simulations and stored using fuzzy learning.

  19. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  20. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    NASA Technical Reports Server (NTRS)

    Klarer, P.

    1994-01-01

    An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.

  1. TOWARDS MEASURES OF INTELLIGENCE BASED ON SEMIOTIC CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. JOSLYN

    2000-08-01

    We address the question of how to identify and measure the degree of intelligence in systems. We define the presence of intelligence as equivalent to the presence of a control relation. We contrast the distinct atomic semioic definitions of models and controls, and discuss hierarchical and anticipatory control. We conclude with a suggestion about moving towards quantitative measures of the degree of such control in systems.

  2. Intelligent agent-based intrusion detection system using enhanced multiclass SVM.

    PubMed

    Ganapathy, S; Yogesh, P; Kannan, A

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set.

  3. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    PubMed Central

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  4. The application of intelligent process control to space based systems

    NASA Technical Reports Server (NTRS)

    Wakefield, G. Steve

    1990-01-01

    The application of Artificial Intelligence to electronic and process control can help attain the autonomy and safety requirements of manned space systems. An overview of documented applications within various industries is presented. The development process is discussed along with associated issues for implementing an intelligence process control system.

  5. Planning and Scheduling of Software Manufacturing Projects

    DTIC Science & Technology

    1991-03-01

    based on the previous results in social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing...planning and scheduling, and the traditional approaches to planning in artificial intelligence, and extends the techniques that have been developed by them...social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing planning and scheduling, and the

  6. Artificial intelligence in robot control systems

    NASA Astrophysics Data System (ADS)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  7. Quality assurance paradigms for artificial intelligence in modelling and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oren, T.I.

    1987-04-01

    New classes of quality assurance concepts and techniques are required for the advanced knowledge-processing paradigms (such as artificial intelligence, expert systems, or knowledge-based systems) and the complex problems that only simulative systems can cope with. A systematization of quality assurance problems as well as examples are given to traditional and cognizant quality assurance techniques in traditional and cognizant modelling and simulation.

  8. Using Game Theory Techniques and Concepts to Develop Proprietary Models for Use in Intelligent Games

    ERIC Educational Resources Information Center

    Christopher, Timothy Van

    2011-01-01

    This work is about analyzing games as models of systems. The goal is to understand the techniques that have been used by game designers in the past, and to compare them to the study of mathematical game theory. Through the study of a system or concept a model often emerges that can effectively educate students about making intelligent decisions…

  9. Distribution of Intelligence in Airborne Air-Defense Mission Systems

    DTIC Science & Technology

    2001-03-01

    their ,,creator" has given them a structure - not only a program - allowing them to organize themselves, to learn and to adapt themselves to changing...self- organization capability. They are modelled on the structures of the unconscious mind. "• By contrast, fuzzy logic/fuzzy control has developed an...of these techniques as indicated in Fig. 3 is of particular importance for achieving unprecedented levels of self- organization capability and

  10. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  11. The experimentation of LC7E learning model on the linear program material in terms of interpersonal intelligence on Wonogiri vocational school students

    NASA Astrophysics Data System (ADS)

    Antinah; Kusmayadi, T. A.; Husodo, B.

    2018-05-01

    This study aims to determine the effect of learning model on student achievement in terms of interpersonal intelligence. The compared learning models are LC7E and Direct learning model. This type of research is a quasi-experimental with 2x3 factorial design. The population in this study is a Grade XI student of Wonogiri Vocational Schools. The sample selection had done by stratified cluster random sampling. Data collection technique used questionnaires, documentation and tests. The data analysis technique used two different unequal cell variance analysis which previously conducted prerequisite analysis for balance test, normality test and homogeneity test. he conclusions of this research are: 1) student learning achievement of mathematics given by LC7E learning model is better when compared with direct learning; 2) Mathematics learning achievement of students who have a high level of interpersonal intelligence is better than students with interpersonal intelligence in medium and low level. Students' mathematics learning achievement with interpersonal level of intelligence is better than those with low interpersonal intelligence on linear programming; 3) LC7E learning model resulted better on mathematics learning achievement compared with direct learning model for each category of students’ interpersonal intelligence level on linear program material.

  12. The experimentation of LC7E learning model on the linear program material in terms of interpersonal intelligence on Wonogiri Vocational School students

    NASA Astrophysics Data System (ADS)

    Antinah; Kusmayadi, T. A.; Husodo, B.

    2018-03-01

    This study aimed to determine the effect of learning model on student achievement in terms of interpersonal intelligence. The compared learning models are LC7E and Direct learning model. This type of research is a quasi-experimental with 2x3 factorial design. The population in this study is a Grade XI student of Wonogiri Vocational Schools. The sample selection had done by stratified cluster random sampling. Data collection technique used questionnaires, documentation and tests. The data analysis technique used two different unequal cell variance analysis which previously conducted prerequisite analysis for balance test, normality test and homogeneity test. he conclusions of this research are: 1) student learning achievement of mathematics given by LC7E learning model is better when compared with direct learning; 2) Mathematics learning achievement of students who have a high level of interpersonal intelligence is better than students with interpersonal intelligence in medium and low level. Students’ mathematics learning achievement with interpersonal level of intelligence is better than those with low interpersonal intelligence on linear programming; 3) LC7E learning model resulted better on mathematics learning achievement compared with direct learning model for each category of students’ interpersonal intelligence level on linear program material.

  13. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  14. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-01-01

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817

  15. Incipient fault detection and power system protection for spaceborne systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  16. Rule-based statistical data mining agents for an e-commerce application

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Zhang, Yan-Qing; King, K. N.; Sunderraman, Rajshekhar

    2003-03-01

    Intelligent data mining techniques have useful e-Business applications. Because an e-Commerce application is related to multiple domains such as statistical analysis, market competition, price comparison, profit improvement and personal preferences, this paper presents a hybrid knowledge-based e-Commerce system fusing intelligent techniques, statistical data mining, and personal information to enhance QoS (Quality of Service) of e-Commerce. A Web-based e-Commerce application software system, eDVD Web Shopping Center, is successfully implemented uisng Java servlets and an Oracle81 database server. Simulation results have shown that the hybrid intelligent e-Commerce system is able to make smart decisions for different customers.

  17. Relationship between speech motor control and speech intelligibility in children with speech sound disorders.

    PubMed

    Namasivayam, Aravind Kumar; Pukonen, Margit; Goshulak, Debra; Yu, Vickie Y; Kadis, Darren S; Kroll, Robert; Pang, Elizabeth W; De Nil, Luc F

    2013-01-01

    The current study was undertaken to investigate the impact of speech motor issues on the speech intelligibility of children with moderate to severe speech sound disorders (SSD) within the context of the PROMPT intervention approach. The word-level Children's Speech Intelligibility Measure (CSIM), the sentence-level Beginner's Intelligibility Test (BIT) and tests of speech motor control and articulation proficiency were administered to 12 children (3:11 to 6:7 years) before and after PROMPT therapy. PROMPT treatment was provided for 45 min twice a week for 8 weeks. Twenty-four naïve adult listeners aged 22-46 years judged the intelligibility of the words and sentences. For CSIM, each time a recorded word was played to the listeners they were asked to look at a list of 12 words (multiple-choice format) and circle the word while for BIT sentences, the listeners were asked to write down everything they heard. Words correctly circled (CSIM) or transcribed (BIT) were averaged across three naïve judges to calculate percentage speech intelligibility. Speech intelligibility at both the word and sentence level was significantly correlated with speech motor control, but not articulatory proficiency. Further, the severity of speech motor planning and sequencing issues may potentially be a limiting factor in connected speech intelligibility and highlights the need to target these issues early and directly in treatment. The reader will be able to: (1) outline the advantages and disadvantages of using word- and sentence-level speech intelligibility tests; (2) describe the impact of speech motor control and articulatory proficiency on speech intelligibility; and (3) describe how speech motor control and speech intelligibility data may provide critical information to aid treatment planning. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. System diagnostic builder: a rule-generation tool for expert systems that do intelligent data evaluation

    NASA Astrophysics Data System (ADS)

    Nieten, Joseph L.; Burke, Roger

    1993-03-01

    The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.

  19. [Intelligence level and intelligence structure of children with primary nocturnal enuresis].

    PubMed

    Dai, Xiao-Mei; Ma, Hong-Wei; Pan, Xue-Xia

    2007-10-01

    Some research has shown that there may be memory/caution (M/C) defects in children with primary nocturnal enuresis (PNE). This study aimed to investigate whether the defects affect the intelligence level and the intelligence structure in PNE children. Intelligence tests were performed by means of Wechsler Young Children Scales of Intelligence (C-WISC) in 40 children with PNE and 40 age-matched normal children. The full intelligence quotient (FIQ), verbal IQ (VIQ) and performances IQ (PIQ) in the PNE group were in a normal range and did not different from the control group. There were significant differences in the scores for digit extent, decipher, knowledge and arithmetics between the PNE and the control groups (P < 0.05). M/C factor in the PNE group was statistically lower than in the control group (93.44 +/-11.27 vs 100.03 +/-11.79; P < 0.05). The total intelligence level of children with PNE was normal, but the M/C factor in the intelligence structure had some defects, suggesting that PNE may be related to the abnormity of executive function in the frontal lobe.

  20. Intelligent open-architecture controller using knowledge server

    NASA Astrophysics Data System (ADS)

    Nacsa, Janos; Kovacs, George L.; Haidegger, Geza

    2001-12-01

    In an ideal scenario of intelligent machine tools [22] the human mechanist was almost replaced by the controller. During the last decade many efforts have been made to get closer to this ideal scenario, but the way of information processing within the CNC did not change too much. The paper summarizes the requirements of an intelligent CNC evaluating the different research efforts done in this field using different artificial intelligence (AI) methods. The need for open CNC architecture was emerging at many places around the world. The second part of the paper introduces and shortly compares these efforts. In the third part a low cost concept for intelligent and open systems named Knowledge Server for Controllers (KSC) is introduced. It allows more devices to solve their intelligent processing needs using the same server that is capable to process intelligent data. In the final part the KSC concept is used in an open CNC environment to build up some elements of an intelligent CNC. The preliminary results of the implementation are also introduced.

  1. Implementation of Integrated System Fault Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John; Morris, Jon; Smith, Harvey; Turowski, Mark

    2008-01-01

    Fault Management to support rocket engine test mission with highly reliable and accurate measurements; while improving availability and lifecycle costs. CORE ELEMENTS: Architecture, taxonomy, and ontology (ATO) for DIaK management. Intelligent Sensor Processes; Intelligent Element Processes; Intelligent Controllers; Intelligent Subsystem Processes; Intelligent System Processes; Intelligent Component Processes.

  2. Overview of error-tolerant cockpit research

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objectives of research in intelligent cockpit aids and intelligent error-tolerant systems are stated. In intelligent cockpit aids research, the objective is to provide increased aid and support to the flight crew of civil transport aircraft through the use of artificial intelligence techniques combined with traditional automation. In intelligent error-tolerant systems, the objective is to develop and evaluate cockpit systems that provide flight crews with safe and effective ways and means to manage aircraft systems, plan and replan flights, and respond to contingencies. A subsystems fault management functional diagram is given. All information is in viewgraph form.

  3. Social media for intelligence: practical examples of analysis for understanding

    NASA Astrophysics Data System (ADS)

    Juhlin, Jonas A.; Richardson, John

    2016-05-01

    Social media has become a dominating feature in modern life. Platforms like Facebook, Twitter, and Google have users all over the world. People from all walks of life use social media. For the intelligence services, social media is an element that cannot be ignored. It holds immense amount of information, and the potential to extract useful intelligence cannot be ignored. Social media has been around for sufficient time that most intelligence services recognize the fact that social media needs some form of attention. However, for the intelligence collector and analyst several aspects must be uncovered in order to fully exploit social media for intelligence purposes. This paper will present Project Avatar, an experiment in obtaining effective intelligence from social media sources, and several emerging analytic techniques to expand the intelligence gathered from these sources.

  4. Intelligent editor/printer enhancements

    NASA Technical Reports Server (NTRS)

    Woodfill, M. C.; Pheanis, D. C.

    1983-01-01

    Microprocessor support hardware, software, and cross assemblers relating to the Motorola 6800 and 6809 process systems were developed. Pinter controller and intelligent CRT development are discussed. The user's manual, design specifications for the MC6809 version of the intelligent printer controller card, and a 132-character by 64-line intelligent CRT display system using a Motorola 6809 MPU, and a one-line assembler and disassembler are provided.

  5. Charting a Path to Location Intelligence for STD Control.

    PubMed

    Gerber, Todd M; Du, Ping; Armstrong-Brown, Janelle; McNutt, Louise-Anne; Coles, F Bruce

    2009-01-01

    This article describes the New York State Department of Health's GeoDatabase project, which developed new methods and techniques for designing and building a geocoding and mapping data repository for sexually transmitted disease (STD) control. The GeoDatabase development was supported through the Centers for Disease Control and Prevention's Outcome Assessment through Systems of Integrated Surveillance workgroup. The design and operation of the GeoDatabase relied upon commercial-off-the-shelf tools that other public health programs may also use for disease-control systems. This article provides a blueprint of the structure and software used to build the GeoDatabase and integrate location data from multiple data sources into the everyday activities of STD control programs.

  6. Testing the applicability of artificial intelligence techniques to the subject of erythemal ultraviolet solar radiation. Part two: an intelligent system based on multi-classifier technique.

    PubMed

    Elminir, Hamdy K; Own, Hala S; Azzam, Yosry A; Riad, A M

    2008-03-28

    The problem we address here describes the on-going research effort that takes place to shed light on the applicability of using artificial intelligence techniques to predict the local noon erythemal UV irradiance in the plain areas of Egypt. In light of this fact, we use the bootstrap aggregating (bagging) algorithm to improve the prediction accuracy reported by a multi-layer perceptron (MLP) network. The results showed that, the overall prediction accuracy for the MLP network was only 80.9%. When bagging algorithm is used, the accuracy reached 94.8%; an improvement of about 13.9% was achieved. These improvements demonstrate the efficiency of the bagging procedure, and may be used as a promising tool at least for the plain areas of Egypt.

  7. Multi-Intelligence Analytics for Next Generation Analysts (MIAGA)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Waltz, Ed

    2016-05-01

    Current analysts are inundated with large volumes of data from which extraction, exploitation, and indexing are required. A future need for next-generation analysts is an appropriate balance between machine analytics from raw data and the ability of the user to interact with information through automation. Many quantitative intelligence tools and techniques have been developed which are examined towards matching analyst opportunities with recent technical trends such as big data, access to information, and visualization. The concepts and techniques summarized are derived from discussions with real analysts, documented trends of technical developments, and methods to engage future analysts with multiintelligence services. For example, qualitative techniques should be matched against physical, cognitive, and contextual quantitative analytics for intelligence reporting. Future trends include enabling knowledge search, collaborative situational sharing, and agile support for empirical decision-making and analytical reasoning.

  8. Assessing Mission Impact of Cyberattacks: Report of the NATO IST-128 Workshop

    DTIC Science & Technology

    2015-12-01

    simulation) perspective. This would be natural, considering that the cybersecurity problem is highly adversarial in nature. Because it involves intelligent ...be formulated as a partial information game; artificial intelligence techniques might help here. Yet another style of problem formulation that...computational information processing for weapons, intelligence , communication, and logistics systems continues to increase the vulnerability of

  9. Operations Monitoring Assistant System Design

    DTIC Science & Technology

    1986-07-01

    Logic. Artificial Inteligence 25(1)::75-94. January.18. 41 -Nils J. Nilsson. Problem-Solving Methods In Artificli Intelligence. .klcG raw-Hill B3ook...operations monitoring assistant (OMA) system is designed that combines operations research, artificial intelligence, and human reasoning techniques and...KnowledgeCraft (from Carnegie Group), and 5.1 (from Teknowledze). These tools incorporate the best methods of applied artificial intelligence, and

  10. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1

    DTIC Science & Technology

    1989-03-01

    American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to

  11. Intelligent transportation systems : incorporating the consumer

    DOT National Transportation Integrated Search

    1999-05-01

    Intelligent Transportation Systems (ITS) techniques are improving mobility for travelers throughout the nation and world. To date, ITS has largely been the focus of professionals who are applying innovative methods to complicated traffic and travel i...

  12. Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization

    NASA Astrophysics Data System (ADS)

    Zarchi, Milad; Attaran, Behrooz

    2017-11-01

    This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.

  13. The application of artificial intelligent techniques to accelerator operations at McMaster University

    NASA Astrophysics Data System (ADS)

    Poehlman, W. F. S.; Garland, Wm. J.; Stark, J. W.

    1993-06-01

    In an era of downsizing and a limited pool of skilled accelerator personnel from which to draw replacements for an aging workforce, the impetus to integrate intelligent computer automation into the accelerator operator's repertoire is strong. However, successful deployment of an "Operator's Companion" is not trivial. Both graphical and human factors need to be recognized as critical areas that require extra care when formulating the Companion. They include interactive graphical user's interface that mimics, for the operator, familiar accelerator controls; knowledge of acquisition phases during development must acknowledge the expert's mental model of machine operation; and automated operations must be seen as improvements to the operator's environment rather than threats of ultimate replacement. Experiences with the PACES Accelerator Operator Companion developed at two sites over the past three years are related and graphical examples are given. The scale of the work involves multi-computer control of various start-up/shutdown and tuning procedures for Model FN and KN Van de Graaff accelerators. The response from licensing agencies has been encouraging.

  14. Facts and fiction of learning systems. [decision making intelligent control

    NASA Technical Reports Server (NTRS)

    Saridis, G. N.

    1975-01-01

    The methodology that will provide the updated precision for the hardware control and the advanced decision making and planning in the software control is called learning systems and intelligent control. It was developed theoretically as an alternative for the nonsystematic heuristic approaches of artificial intelligence experiments and the inflexible formulation of modern optimal control methods. Its basic concepts are discussed and some feasibility studies of some practical applications are presented.

  15. Development and Experimental Application of International Affairs Indicators. Volume A

    DTIC Science & Technology

    1974-06-01

    DEVELOPMENT ’^EXPERIMENTAL APPttcATION OF INTERNATIONAL AFFAIRS INDICATORS Volume A Final Report e June 1974 US I Sponsored by: Defense Advanced...intelligence communities were designed, techniques for estimating the future were developed and tested, and the techniques and indicators were applied to the...past year’s effort is that the intelligence community has become increasingly aware of the potential use- fulness of quantitative indicators. The

  16. An intelligent traffic controller

    DOT National Transportation Integrated Search

    1995-11-01

    Advances in computing sciences have not been applied to traffic control. This paper describes the development of an intelligent controller. A controller with advanced control logic can significantly improve traffic flows at intersections. In this vei...

  17. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    NASA Astrophysics Data System (ADS)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

  18. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  19. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  20. Neuro-fuzzy control of structures using acceleration feedback

    NASA Astrophysics Data System (ADS)

    Schurter, Kyle C.; Roschke, Paul N.

    2001-08-01

    This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.

  1. The relationship between executive functions and fluid intelligence in Parkinson's disease

    PubMed Central

    Roca, M.; Manes, F.; Chade, A.; Gleichgerrcht, E.; Gershanik, O.; Arévalo, G. G.; Torralva, T.; Duncan, J.

    2012-01-01

    Background We recently demonstrated that decline in fluid intelligence is a substantial contributor to frontal deficits. For some classical ‘executive’ tasks, such as the Wisconsin Card Sorting Test (WCST) and Verbal Fluency, frontal deficits were entirely explained by fluid intelligence. However, on a second set of frontal tasks, deficits remained even after statistically controlling for this factor. These tasks included tests of theory of mind and multitasking. As frontal dysfunction is the most frequent cognitive deficit observed in early Parkinson's disease (PD), the present study aimed to determine the role of fluid intelligence in such deficits. Method We assessed patients with PD (n=32) and control subjects (n=22) with the aforementioned frontal tests and with a test of fluid intelligence. Group performance was compared and fluid intelligence was introduced as a covariate to determine its role in frontal deficits shown by PD patients. Results In line with our previous results, scores on the WCST and Verbal Fluency were closely linked to fluid intelligence. Significant patient–control differences were eliminated or at least substantially reduced once fluid intelligence was introduced as a covariate. However, for tasks of theory of mind and multitasking, deficits remained even after fluid intelligence was statistically controlled. Conclusions The present results suggest that clinical assessment of neuropsychological deficits in PD should include tests of fluid intelligence, together with one or more specific tasks that allow for the assessment of residual frontal deficits associated with theory of mind and multitasking. PMID:22440401

  2. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  3. Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering

    DOE PAGES

    David, Stan A.; Chen, Jian; Feng, Zhili; ...

    2017-12-02

    A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less

  4. Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Stan A.; Chen, Jian; Feng, Zhili

    A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less

  5. Intelligent software for laboratory automation.

    PubMed

    Whelan, Ken E; King, Ross D

    2004-09-01

    The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.

  6. Fixed Point Learning Based Intelligent Traffic Control System

    NASA Astrophysics Data System (ADS)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  7. An Intelligent Control for the Distributed Flexible Network Photovoltaic System using Autonomous Control and Agent

    NASA Astrophysics Data System (ADS)

    Park, Sangsoo; Miura, Yushi; Ise, Toshifumi

    This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.

  8. Automated Decision Making and Problem Solving. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1981-01-01

    The May 1980 conference is summarized. Related topics in artificial intelligence, operations research, and control theory were explored. Existing techniques were assessed, trends of development determined, and potential for application in NASA automation technology programs were identified. Formal presentations were made by experts in the three disciplines nd a workshop was held in which current technology in automation and possible NASA interfaces with the academic community to advance this technology were discussed.

  9. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  10. AI in manufacturing

    NASA Astrophysics Data System (ADS)

    Gross, John E.; Minato, Rick; Smith, David M.; Loftin, R. B.; Savely, Robert T.

    1991-10-01

    AI techniques are shown to have been useful in such aerospace industry tasks as vehicle configuration layouts, process planning, tool design, numerically-controlled programming of tools, production scheduling, and equipment testing and diagnosis. Accounts are given of illustrative experiences at the production facilities of three major aerospace defense contractors. Also discussed is NASA's autonomous Intelligent Computer-Aided Training System, for such ambitious manned programs as Space Station Freedom, which employs five different modules to constitute its job-independent training architecture.

  11. Team formation and breakup in multiagent systems

    NASA Astrophysics Data System (ADS)

    Rao, Venkatesh Guru

    The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.

  12. Knowledge Based Consultation for Finite Element Structural Analysis.

    DTIC Science & Technology

    1980-05-01

    Intelligence Finite Element Program Tutorial 20 ABSTRACT (Continue. on rees side If necessary and ide.n’ty b,’ bit,, k nionh.) In recent years, techniques of...involved in Artificial Intelligence at Stanford University developed the program MYCIN F2], for clinical consultation of diseases that require...and Rules The basic backward chaining logic, characteristic to Artificial Intelligence . approaching 1he problem of knowledge representation was

  13. Distribution Planning: An Integration of Constraint Satisfaction & Heuristic Search Techniques

    DTIC Science & Technology

    1990-01-01

    Proceedings of the Symposium on Aritificial Intelligence in ~~litary Logistics, Arlington, VA: American Defense Preparedness Assoc. pp. 177-182...dynamic changes, too many variables, and lack pf planning time. The Human Engineeri n ~ Laboratory (HEL) is developing artificial intelligence (AI...first attempt. The field of artificial intelligence includes a variety of knowledge-based approaches. Most widely known are Expert Systems, that are

  14. Artificial Intelligence-Based Student Learning Evaluation: A Concept Map-Based Approach for Analyzing a Student's Understanding of a Topic

    ERIC Educational Resources Information Center

    Jain, G. Panka; Gurupur, Varadraj P.; Schroeder, Jennifer L.; Faulkenberry, Eileen D.

    2014-01-01

    In this paper, we describe a tool coined as artificial intelligence-based student learning evaluation tool (AISLE). The main purpose of this tool is to improve the use of artificial intelligence techniques in evaluating a student's understanding of a particular topic of study using concept maps. Here, we calculate the probability distribution of…

  15. Parallel Logic Programming and Parallel Systems Software and Hardware

    DTIC Science & Technology

    1989-07-29

    Conference, Dallas TX. January 1985. (55) [Rous75] Roussel, P., "PROLOG: Manuel de Reference et d’Uilisation", Group d’ Intelligence Artificielle , Universite d...completed. Tools were provided for software development using artificial intelligence techniques. Al software for massively parallel architectures was...using artificial intelligence tech- niques. Al software for massively parallel architectures was started. 1. Introduction We describe research conducted

  16. Computer-Controlled System for Plasma Ion Energy Auto-Analyzer

    NASA Astrophysics Data System (ADS)

    Wu, Xian-qiu; Chen, Jun-fang; Jiang, Zhen-mei; Zhong, Qing-hua; Xiong, Yu-ying; Wu, Kai-hua

    2003-02-01

    A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by Lab VIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provides important parameters of plasma process techniques based on semiconductor devices and microelectronics.

  17. A Risk Management Architecture for Emergency Integrated Aircraft Control

    NASA Technical Reports Server (NTRS)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  18. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  19. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    PubMed Central

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  20. The Brain as a Distributed Intelligent Processing System: An EEG Study

    PubMed Central

    da Rocha, Armando Freitas; Rocha, Fábio Theoto; Massad, Eduardo

    2011-01-01

    Background Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion The present results support these claims and the neural efficiency hypothesis. PMID:21423657

  1. National Water Model: Providing the Nation with Actionable Water Intelligence

    NASA Astrophysics Data System (ADS)

    Aggett, G. R.; Bates, B.

    2017-12-01

    The National Water Model (NWM) provides national, street-level detail of water movement through time and space. Operating hourly, this flood of information offers enormous benefits in the form of water resource management, natural disaster preparedness, and the protection of life and property. The Geo-Intelligence Division at the NOAA National Water Center supplies forecasters and decision-makers with timely, actionable water intelligence through the processing of billions of NWM data points every hour. These datasets include current streamflow estimates, short and medium range streamflow forecasts, and many other ancillary datasets. The sheer amount of NWM data produced yields a dataset too large to allow for direct human comprehension. As such, it is necessary to undergo model data post-processing, filtering, and data ingestion by visualization web apps that make use of cartographic techniques to bring attention to the areas of highest urgency. This poster illustrates NWM output post-processing and cartographic visualization techniques being developed and employed by the Geo-Intelligence Division at the NOAA National Water Center to provide national actionable water intelligence.

  2. Computer Simulated Visual and Tactile Feedback as an Aid to Manipulator and Vehicle Control,

    DTIC Science & Technology

    1981-05-08

    STATEMENT ........................ 8 Artificial Intellegence Versus Supervisory Control ....... 8 Computer Generation of Operator Feedback...operator. Artificial Intelligence Versus Supervisory Control The use of computers to aid human operators can be divided into two catagories: artificial ...operator. Artificial intelligence ( A. I. ) attempts to give the computer maximum intelligence and to replace all operator functions by the computer

  3. Sensor Needs for Control and Health Management of Intelligent Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.

    2004-01-01

    NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.

  4. Knowledge-based geographic information systems (KBGIS): New analytic and data management tools

    USGS Publications Warehouse

    Albert, T.M.

    1988-01-01

    In its simplest form, a geographic information system (GIS) may be viewed as a data base management system in which most of the data are spatially indexed, and upon which sets of procedures operate to answer queries about spatial entities represented in the data base. Utilization of artificial intelligence (AI) techniques can enhance greatly the capabilities of a GIS, particularly in handling very large, diverse data bases involved in the earth sciences. A KBGIS has been developed by the U.S. Geological Survey which incorporates AI techniques such as learning, expert systems, new data representation, and more. The system, which will be developed further and applied, is a prototype of the next generation of GIS's, an intelligent GIS, as well as an example of a general-purpose intelligent data handling system. The paper provides a description of KBGIS and its application, as well as the AI techniques involved. ?? 1988 International Association for Mathematical Geology.

  5. Sequence-based protein superfamily classification using computational intelligence techniques: a review.

    PubMed

    Vipsita, Swati; Rath, Santanu Kumar

    2015-01-01

    Protein superfamily classification deals with the problem of predicting the family membership of newly discovered amino acid sequence. Although many trivial alignment methods are already developed by previous researchers, but the present trend demands the application of computational intelligent techniques. As there is an exponential growth in size of biological database, retrieval and inference of essential knowledge in the biological domain become a very cumbersome task. This problem can be easily handled using intelligent techniques due to their ability of tolerance for imprecision, uncertainty, approximate reasoning, and partial truth. This paper discusses the various global and local features extracted from full length protein sequence which are used for the approximation and generalisation of the classifier. The various parameters used for evaluating the performance of the classifiers are also discussed. Therefore, this review article can show right directions to the present researchers to make an improvement over the existing methods.

  6. Data-Mining-Based Intelligent Differential Relaying for Transmission Lines Including UPFC and Wind Farms.

    PubMed

    Jena, Manas Kumar; Samantaray, Subhransu Ranjan

    2016-01-01

    This paper presents a data-mining-based intelligent differential relaying scheme for transmission lines, including flexible ac transmission system device, such as unified power flow controller (UPFC) and wind farms. Initially, the current and voltage signals are processed through extended Kalman filter phasor measurement unit for phasor estimation, and 21 potential features are computed at both ends of the line. Once the features are extracted at both ends, the corresponding differential features are derived. These differential features are fed to a data-mining model known as decision tree (DT) to provide the final relaying decision. The proposed technique has been extensively tested for single-circuit transmission line, including UPFC and wind farms with in-feed, double-circuit line with UPFC on one line and wind farm as one of the substations with wide variations in operating parameters. The test results obtained from simulation as well as in real-time digital simulator testing indicate that the DT-based intelligent differential relaying scheme is highly reliable and accurate with a response time of 2.25 cycles from the fault inception.

  7. Evaluation of performance of asphalt pavements constructed using intelligent compaction techniques.

    DOT National Transportation Integrated Search

    2014-10-01

    The long-term performance of asphalt pavements depends on the quality of the subgrade and : asphalt layers. Intelligent compaction methods continuously monitor the modulus/stiffness of : subgrade and asphalt layers during compaction process and have ...

  8. Constructive thinking, rational intelligence and irritable bowel syndrome.

    PubMed

    Rey, Enrique; Moreno Ortega, Marta; Garcia Alonso, Monica-Olga; Diaz-Rubio, Manuel

    2009-07-07

    To evaluate rational and experiential intelligence in irritable bowel syndrome (IBS) sufferers. We recruited 100 subjects with IBS as per Rome II criteria (50 consulters and 50 non-consulters) and 100 healthy controls, matched by age, sex and educational level. Cases and controls completed a clinical questionnaire (including symptom characteristics and medical consultation) and the following tests: rational-intelligence (Wechsler Adult Intelligence Scale, 3rd edition); experiential-intelligence (Constructive Thinking Inventory); personality (NEO personality inventory); psychopathology (MMPI-2), anxiety (state-trait anxiety inventory) and life events (social readjustment rating scale). Analysis of variance was used to compare the test results of IBS-sufferers and controls, and a logistic regression model was then constructed and adjusted for age, sex and educational level to evaluate any possible association with IBS. No differences were found between IBS cases and controls in terms of IQ (102.0 +/- 10.8 vs 102.8 +/- 12.6), but IBS sufferers scored significantly lower in global constructive thinking (43.7 +/- 9.4 vs 49.6 +/- 9.7). In the logistic regression model, global constructive thinking score was independently linked to suffering from IBS [OR 0.92 (0.87-0.97)], without significant OR for total IQ. IBS subjects do not show lower rational intelligence than controls, but lower experiential intelligence is nevertheless associated with IBS.

  9. Intelligent Home Control System Based on ARM10

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Jiang, J.; Zhong, L. H.

    2017-10-01

    Intelligent home is becoming the hot spot of social attention in the 21st century. When it is in China, it is a really new industry. However, there is no doubt that Intelligent home will become a new economic growth point of social development; it will change the life-style of human being. To develop the intelligent home, we should keep up with the development trend of technology. This is the reason why I talk about the intelligent home control system here. In this paper, intelligent home control system is designed for alarm and remote control on gas- leaking, fire disaster, earthquake prediction, etc., by examining environmental changes around house. When the Intelligent home control system has detected an accident occurs, the processor will communicate with the GSM module, informing the house keeper the occurrence of accident. User can receive and send the message to the system to cut the power by mobile phone. The system can get access to DCCthrough ARM10 JTAG interface, using DCC to send and receive messages. At the same time, the debugger on the host is mainly used to receive the user’s command and send it to the debug component in the target system. The data that returned from the target system is received and displayed to the user in a certain format.

  10. Human factors issues in the use of artificial intelligence in air traffic control. October 1990 Workshop

    NASA Technical Reports Server (NTRS)

    Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)

    1991-01-01

    The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.

  11. Antecedents of Emotional Intelligence: An Empirical Study

    ERIC Educational Resources Information Center

    Barbuto, John E., Jr.; Story, Joana S.

    2010-01-01

    This study examined the relationships between emotional intelligence, locus of control, and mental boundaries. Three hundred and eighty-two county employees were sampled using a cross-sectional survey design. The results indicated internal locus of control and thin mental boundaries are positively related to emotional intelligence. A hierarchical…

  12. Real-Time Smart Grids Control for Preventing Cascading Failures and Blackout using Neural Networks: Experimental Approach for N-1-1 Contingency

    NASA Astrophysics Data System (ADS)

    Zarrabian, Sina; Belkacemi, Rabie; Babalola, Adeniyi A.

    2016-12-01

    In this paper, a novel intelligent control is proposed based on Artificial Neural Networks (ANN) to mitigate cascading failure (CF) and prevent blackout in smart grid systems after N-1-1 contingency condition in real-time. The fundamental contribution of this research is to deploy the machine learning concept for preventing blackout at early stages of its occurrence and to make smart grids more resilient, reliable, and robust. The proposed method provides the best action selection strategy for adaptive adjustment of generators' output power through frequency control. This method is able to relieve congestion of transmission lines and prevent consecutive transmission line outage after N-1-1 contingency condition. The proposed ANN-based control approach is tested on an experimental 100 kW test system developed by the authors to test intelligent systems. Additionally, the proposed approach is validated on the large-scale IEEE 118-bus power system by simulation studies. Experimental results show that the ANN approach is very promising and provides accurate and robust control by preventing blackout. The technique is compared to a heuristic multi-agent system (MAS) approach based on communication interchanges. The ANN approach showed more accurate and robust response than the MAS algorithm.

  13. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    PubMed Central

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  14. Emotional Intelligence Components in Alcohol Dependent and Mentally Healthy Individuals

    PubMed Central

    Mohagheghi, Arash; Amiri, Shahrokh; Mousavi Rizi, Seyedreza; Safikhanlou, Salman

    2015-01-01

    Objective. Emotional intelligence might play an important role in the onset and persistence of different psychopathologies. This study investigated the relationship between emotional intelligence and alcohol dependence. Methods. In this case-control study, participants included alcohol dependent individuals and mentally healthy inpatients. Each group consisted of 40 individuals (male/female: 1). The diagnosis was based on the criteria of the DSM-IV-TR using the Structured Clinical Interview for DSM-IV (SCID-IV). All the participants completed Bar-On emotional intelligence test. Results. 20 males and 20 females were included in each group. Mean age of alcohol dependent participants and controls was 31.28 ± 7.82 and 34.93 ± 9.83 years in that order. The analyses showed that the alcohol dependent individuals had a significant difference compared with the control group and received lower scores in empathy, responsibility, impulse control, self-esteem, optimism, emotional consciousness, stress tolerance, autonomy, problem-solving, and total score of emotional intelligence components. Conclusion. Patients with alcohol dependence have deficits in components of emotional intelligence. Identifying and targeted training of the individuals with lower scores in components of emotional intelligence may be effective in prevention of alcohol dependence. PMID:25893214

  15. Emotional intelligence components in alcohol dependent and mentally healthy individuals.

    PubMed

    Mohagheghi, Arash; Amiri, Shahrokh; Mousavi Rizi, Seyedreza; Safikhanlou, Salman

    2015-01-01

    Emotional intelligence might play an important role in the onset and persistence of different psychopathologies. This study investigated the relationship between emotional intelligence and alcohol dependence. In this case-control study, participants included alcohol dependent individuals and mentally healthy inpatients. Each group consisted of 40 individuals (male/female: 1). The diagnosis was based on the criteria of the DSM-IV-TR using the Structured Clinical Interview for DSM-IV (SCID-IV). All the participants completed Bar-On emotional intelligence test. 20 males and 20 females were included in each group. Mean age of alcohol dependent participants and controls was 31.28±7.82 and 34.93±9.83 years in that order. The analyses showed that the alcohol dependent individuals had a significant difference compared with the control group and received lower scores in empathy, responsibility, impulse control, self-esteem, optimism, emotional consciousness, stress tolerance, autonomy, problem-solving, and total score of emotional intelligence components. Patients with alcohol dependence have deficits in components of emotional intelligence. Identifying and targeted training of the individuals with lower scores in components of emotional intelligence may be effective in prevention of alcohol dependence.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysismore » and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms« less

  17. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  18. Composite Intelligent Learning Control of Strict-Feedback Systems With Disturbance.

    PubMed

    Xu, Bin; Sun, Fuchun

    2018-02-01

    This paper addresses the dynamic surface control of uncertain nonlinear systems on the basis of composite intelligent learning and disturbance observer in presence of unknown system nonlinearity and time-varying disturbance. The serial-parallel estimation model with intelligent approximation and disturbance estimation is built to obtain the prediction error and in this way the composite law for weights updating is constructed. The nonlinear disturbance observer is developed using intelligent approximation information while the disturbance estimation is guaranteed to converge to a bounded compact set. The highlight is that different from previous work directly toward asymptotic stability, the transparency of the intelligent approximation and disturbance estimation is included in the control scheme. The uniformly ultimate boundedness stability is analyzed via Lyapunov method. Through simulation verification, the composite intelligent learning with disturbance observer can efficiently estimate the effect caused by system nonlinearity and disturbance while the proposed approach obtains better performance with higher accuracy.

  19. Texas Department of Transportation, intelligent transportation systems (ITS) deployment strategy

    DOT National Transportation Integrated Search

    1996-05-01

    The purpose of this document is to present an initial TxDOT-wide framework for the deployment : of Intelligent Transportation Systems (ITS) technologies, techniques and practices in support of the : principal agency mission of moving people and goods...

  20. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    PubMed

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Combating Terrorism: A Conceptual Framework for Targeting at the Operational Level

    DTIC Science & Technology

    2004-06-17

    for Joint Intelligence Preparation of the Battlespace. The key process is the JIPB which is tried and tested , offering a very logical and clear...Intelligence Preparation of the Battlespace (JIPB) process, as published in Joint Publication 2-01.3, Joint Tactics, Techniques, and Procedures for Joint...Intelligence Preparation of the Battlespace, 24 May 2000, for its application to targeting terrorism at the operational level. The

  2. The Analysis of Nominal Compounds,

    DTIC Science & Technology

    1985-12-01

    34Phenomenologically plausible parsing" in Proceedings of the 1984 American Association for Aritificial Intelligence Conference, pp. 335-339. 27 Wilensky, R...34December, 1985 - CPTM #8 LJ _DTIC -5ELECTE’ DEC 1 6 198M This series of internal memos describes research in E artificial intelligence conducted under...representational techniques for natural language that have evolved in linguistics and artificial intelligence , it is difficult to find much uniformity in the

  3. The Role of Intelligence Quotient and Emotional Intelligence in Cognitive Control Processes

    PubMed Central

    Checa, Purificación; Fernández-Berrocal, Pablo

    2015-01-01

    The relationship between intelligence quotient (IQ) and cognitive control processes has been extensively established. Several studies have shown that IQ correlates with cognitive control abilities, such as interference suppression, as measured with experimental tasks like the Stroop and Flanker tasks. By contrast, there is a debate about the role of Emotional Intelligence (EI) in individuals' cognitive control abilities. The aim of this study is to examine the relation between IQ and EI, and cognitive control abilities evaluated by a typical laboratory control cognitive task, the Stroop task. Results show a negative correlation between IQ and the interference suppression index, the ability to inhibit processing of irrelevant information. However, the Managing Emotions dimension of EI measured by the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), but not self-reported of EI, negatively correlates with the impulsivity index, the premature execution of the response. These results suggest that not only is IQ crucial, but also competences related to EI are essential to human cognitive control processes. Limitations and implications of these results are also discussed. PMID:26648901

  4. Psychobehavioral Effects of Meditation.

    PubMed

    Pokorski, Mieczyslaw; Suchorzynska, Anna

    2018-01-01

    Meditation is an increasingly popular psychobehavioral therapy. Various meditation techniques in use make it hard to objectively scrutinize the psychological benefits. Therefore, in this study we set out to examine the effects of two fundamentally different meditative techniques, Zazen, 'seated meditation', in which the body and mind are calmed, and Tai Chi, 'meditation in motion', based on energetic martial art performance. The aim was to compare the effects of both techniques on personality structure, emotional intelligence, mood, and coping with stress. The study was conducted in 48 healthy volunteers, aged 39-50, divided into those practicing Zazen, Tai Chi, and the non-meditating controls, each group consisting of 16 persons. The psychometric tools consisted of Coping Inventory for Stressful Situations (CISS), the University of Wales Institute of Science and Technology Mood Adjective Checklist (UMACL), Emotional Intelligence Inventory (INTE), and the NEO Five-Factor Inventory (NEO-FFI). We found that both Zazen and Tai Chi meditations significantly enhanced openness to experience, one of the personality dimensions of the Big Five Model. The enhanced openness was associated with improved strategies for coping with stress. The meditators had less avoidance-oriented approaches to perceived stress. They also had improved mood compared with non-meditating controls. The findings suggest that enhanced openness to experience could shape one's desire to hold onto the meditation regimen. We conclude that both, diametrically different types of meditation, are conducive to mental health by improving the general well-being, counteracting stress, and leading to a better vigor of spirit. Meditation may thus be considered a complimentary, albeit rather modestly acting, adjunct to psychotherapy.

  5. Optimizing acoustical conditions for speech intelligibility in classrooms

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung

    High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with SNS = 4 dB and increased to 0.8 and 1.2 s with decreased SNS = 0 dB, for both normal and hearing-impaired listeners. Hearing-impaired listeners required more early energy than normal-hearing listeners. Reflective ceiling barriers and ceiling reflectors---in particular, parallel front-back rows of semi-circular reflectors---achieved the goal of decreasing reverberation with the least speech-level reduction.

  6. An intelligent automated command and control system for spacecraft mission operations

    NASA Technical Reports Server (NTRS)

    Stoffel, A. William

    1994-01-01

    The Intelligent Command and Control (ICC) System research project is intended to provide the technology base necessary for producing an intelligent automated command and control (C&C) system capable of performing all the ground control C&C functions currently performed by Mission Operations Center (MOC) project Flight Operations Team (FOT). The ICC research accomplishments to date, details of the ICC, and the planned outcome of the ICC research, mentioned above, are discussed in detail.

  7. Gold rush - A swarm dynamics in games

    NASA Astrophysics Data System (ADS)

    Zelinka, Ivan; Bukacek, Michal

    2017-07-01

    This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.

  8. Robot-aided electrospinning toward intelligent biomedical engineering.

    PubMed

    Tan, Rong; Yang, Xiong; Shen, Yajing

    2017-01-01

    The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.

  9. System Diagnostic Builder - A rule generation tool for expert systems that do intelligent data evaluation. [applied to Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph; Burke, Roger

    1993-01-01

    Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.

  10. Autonomous mission management for UAVs using soar intelligent agents

    NASA Astrophysics Data System (ADS)

    Gunetti, Paolo; Thompson, Haydn; Dodd, Tony

    2013-05-01

    State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.

  11. Modeling Smart Structure of Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping

    2012-06-01

    With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.

  12. Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment

    NASA Astrophysics Data System (ADS)

    Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro

    The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.

  13. The use of artificial intelligence techniques to improve the multiple payload integration process

    NASA Technical Reports Server (NTRS)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  14. A distributed and intelligent system approach for the automatic inspection of steam-generator tubes in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kang, Soon Ju; Moon, Jae Chul; Choi, Doo-Hyun; Choi, Sung Su; Woo, Hee Gon

    1998-06-01

    The inspection of steam-generator (SG) tubes in a nuclear power plant (NPP) is a time-consuming, laborious, and hazardous task because of several hard constraints such as a highly radiated working environment, a tight task schedule, and the need for many experienced human inspectors. This paper presents a new distributed intelligent system architecture for automating traditional inspection methods. The proposed architecture adopts three basic technical strategies in order to reduce the complexity of system implementation. The first is the distributed task allocation into four stages: inspection planning (IF), signal acquisition (SA), signal evaluation (SE), and inspection data management (IDM). Consequently, dedicated subsystems for automation of each stage can be designed and implemented separately. The second strategy is the inclusion of several useful artificial intelligence techniques for implementing the subsystems of each stage, such as an expert system for IP and SE and machine vision and remote robot control techniques for SA. The third strategy is the integration of the subsystems using client/server-based distributed computing architecture and a centralized database management concept. Through the use of the proposed architecture, human errors, which can occur during inspection, can be minimized because the element of human intervention has been almost eliminated; however, the productivity of the human inspector can be increased equally. A prototype of the proposed system has been developed and successfully tested over the last six years in domestic NPP's.

  15. Maternal factors predicting cognitive and behavioral characteristics of children with fetal alcohol spectrum disorders.

    PubMed

    May, Philip A; Tabachnick, Barbara G; Gossage, J Phillip; Kalberg, Wendy O; Marais, Anna-Susan; Robinson, Luther K; Manning, Melanie A; Blankenship, Jason; Buckley, David; Hoyme, H Eugene; Adnams, Colleen M

    2013-06-01

    To provide an analysis of multiple predictors of cognitive and behavioral traits for children with fetal alcohol spectrum disorders (FASDs). Multivariate correlation techniques were used with maternal and child data from epidemiologic studies in a community in South Africa. Data on 561 first-grade children with fetal alcohol syndrome (FAS), partial FAS (PFAS), and not FASD and their mothers were analyzed by grouping 19 maternal variables into categories (physical, demographic, childbearing, and drinking) and used in structural equation models (SEMs) to assess correlates of child intelligence (verbal and nonverbal) and behavior. A first SEM using only 7 maternal alcohol use variables to predict cognitive/behavioral traits was statistically significant (B = 3.10, p < .05) but explained only 17.3% of the variance. The second model incorporated multiple maternal variables and was statistically significant explaining 55.3% of the variance. Significantly correlated with low intelligence and problem behavior were demographic (B = 3.83, p < .05) (low maternal education, low socioeconomic status [SES], and rural residence) and maternal physical characteristics (B = 2.70, p < .05) (short stature, small head circumference, and low weight). Childbearing history and alcohol use composites were not statistically significant in the final complex model and were overpowered by SES and maternal physical traits. Although other analytic techniques have amply demonstrated the negative effects of maternal drinking on intelligence and behavior, this highly controlled analysis of multiple maternal influences reveals that maternal demographics and physical traits make a significant enabling or disabling contribution to child functioning in FASD.

  16. Planning representation for automated exploratory data analysis

    NASA Astrophysics Data System (ADS)

    St. Amant, Robert; Cohen, Paul R.

    1994-03-01

    Igor is a knowledge-based system for exploratory statistical analysis of complex systems and environments. Igor has two related goals: to help automate the search for interesting patterns in data sets, and to help develop models that capture significant relationships in the data. We outline a language for Igor, based on techniques of opportunistic planning, which balances control and opportunism. We describe the application of Igor to the analysis of the behavior of Phoenix, an artificial intelligence planning system.

  17. ASSESSMENT OF A WIND TURBINE INTELLIGENT CONTROLLER FOR ENHANCED ENERGY PRODUCTION AND POLLUTION REDUCTION

    EPA Science Inventory

    This study assessed the enhanced energy production which is possible when variable-speed wind turbines are electronically controlled by an intelligent controller for efficiency optimization and performance improvement. The control system consists of three fuzzy- logic controllers...

  18. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  19. Time estimation predicts mathematical intelligence.

    PubMed

    Kramer, Peter; Bressan, Paola; Grassi, Massimo

    2011-01-01

    Performing mental subtractions affects time (duration) estimates, and making time estimates disrupts mental subtractions. This interaction has been attributed to the concurrent involvement of time estimation and arithmetic with general intelligence and working memory. Given the extant evidence of a relationship between time and number, here we test the stronger hypothesis that time estimation correlates specifically with mathematical intelligence, and not with general intelligence or working-memory capacity. Participants performed a (prospective) time estimation experiment, completed several subtests of the WAIS intelligence test, and self-rated their mathematical skill. For five different durations, we found that time estimation correlated with both arithmetic ability and self-rated mathematical skill. Controlling for non-mathematical intelligence (including working memory capacity) did not change the results. Conversely, correlations between time estimation and non-mathematical intelligence either were nonsignificant, or disappeared after controlling for mathematical intelligence. We conclude that time estimation specifically predicts mathematical intelligence. On the basis of the relevant literature, we furthermore conclude that the relationship between time estimation and mathematical intelligence is likely due to a common reliance on spatial ability.

  20. Artificial Intelligence in Speech Understanding: Two Applications at C.R.I.N.

    ERIC Educational Resources Information Center

    Carbonell, N.; And Others

    1986-01-01

    This article explains how techniques of artificial intelligence are applied to expert systems for acoustic-phonetic decoding, phonological interpretation, and multi-knowledge sources for man-machine dialogue implementation. The basic ideas are illustrated with short examples. (Author/JDH)

  1. Counseling, Artificial Intelligence, and Expert Systems.

    ERIC Educational Resources Information Center

    Illovsky, Michael E.

    1994-01-01

    Considers the use of artificial intelligence and expert systems in counseling. Limitations are explored; candidates for counseling versus those for expert systems are discussed; programming considerations are reviewed; and techniques for dealing with rational, nonrational, and irrational thoughts and feelings are described. (Contains 46…

  2. Tele-autonomous systems: New methods for projecting and coordinating intelligent action at a distance

    NASA Technical Reports Server (NTRS)

    Conway, Lynn; Volz, Richard; Walker, Michael W.

    1989-01-01

    There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems.

  3. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control.

    PubMed

    Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John

    2016-09-01

    This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Rethinking Intelligence: The Role of Mindset in Promoting Success for Academically High-Risk Students

    ERIC Educational Resources Information Center

    Sriram, Rishi

    2014-01-01

    This study utilized an experimental pretest-posttest control group design to determine if changing the way academically high-risk college students view intelligence affected their academic effort and achievement when compared to students in a control intervention. Results indicated that students taught to view intelligence as malleable reported…

  5. Comparison of Intelligibility Measures for Adults with Parkinson's Disease, Adults with Multiple Sclerosis, and Healthy Controls

    ERIC Educational Resources Information Center

    Stipancic, Kaila L.; Tjaden, Kris; Wilding, Gregory

    2016-01-01

    Purpose: This study obtained judgments of sentence intelligibility using orthographic transcription for comparison with previously reported intelligibility judgments obtained using a visual analog scale (VAS) for individuals with Parkinson's disease and multiple sclerosis and healthy controls (K. Tjaden, J. E. Sussman, & G. E. Wilding, 2014).…

  6. Constructive thinking, rational intelligence and irritable bowel syndrome

    PubMed Central

    Rey, Enrique; Ortega, Marta Moreno; Alonso, Monica Olga Garcia; Diaz-Rubio, Manuel

    2009-01-01

    AIM: To evaluate rational and experiential intelligence in irritable bowel syndrome (IBS) sufferers. METHODS: We recruited 100 subjects with IBS as per Rome II criteria (50 consulters and 50 non-consulters) and 100 healthy controls, matched by age, sex and educational level. Cases and controls completed a clinical questionnaire (including symptom characteristics and medical consultation) and the following tests: rational-intelligence (Wechsler Adult Intelligence Scale, 3rd edition); experiential-intelligence (Constructive Thinking Inventory); personality (NEO personality inventory); psychopathology (MMPI-2), anxiety (state-trait anxiety inventory) and life events (social readjustment rating scale). Analysis of variance was used to compare the test results of IBS-sufferers and controls, and a logistic regression model was then constructed and adjusted for age, sex and educational level to evaluate any possible association with IBS. RESULTS: No differences were found between IBS cases and controls in terms of IQ (102.0 ± 10.8 vs 102.8 ± 12.6), but IBS sufferers scored significantly lower in global constructive thinking (43.7 ± 9.4 vs 49.6 ± 9.7). In the logistic regression model, global constructive thinking score was independently linked to suffering from IBS [OR 0.92 (0.87-0.97)], without significant OR for total IQ. CONCLUSION: IBS subjects do not show lower rational intelligence than controls, but lower experiential intelligence is nevertheless associated with IBS. PMID:19575489

  7. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  8. Distributed intelligence for supervisory control

    NASA Technical Reports Server (NTRS)

    Wolfe, W. J.; Raney, S. D.

    1987-01-01

    Supervisory control systems must deal with various types of intelligence distributed throughout the layers of control. Typical layers are real-time servo control, off-line planning and reasoning subsystems and finally, the human operator. Design methodologies must account for the fact that the majority of the intelligence will reside with the human operator. Hierarchical decompositions and feedback loops as conceptual building blocks that provide a common ground for man-machine interaction are discussed. Examples of types of parallelism and parallel implementation on several classes of computer architecture are also discussed.

  9. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  10. Capturing and Modeling Domain Knowledge Using Natural Language Processing Techniques

    DTIC Science & Technology

    2005-06-01

    Intelligence Artificielle , France, May 2001, p. 109- 118 [Barrière, 2001] -----. “Investigating the Causal Relation in Informative Texts”. Terminology, 7:2...out of the flood of information, military have to create new ways of processing sensor and intelligence information, and of providing the results to...have to create new ways of processing sensor and intelligence information, and of providing the results to commanders who must take timely operational

  11. Investigation of a Neural Network Implementation of a TCP Packet Anomaly Detection System

    DTIC Science & Technology

    2004-05-01

    reconnatre les nouvelles variantes d’attaque. Les réseaux de neurones artificiels (ANN) ont les capacités d’apprendre à partir de schémas et de...Computational Intelligence Techniques in Intrusion Detection Systems. In IASTED International Conference on Neural Networks and Computational Intelligence , pp...Neural Network Training: Overfitting May be Harder than Expected. In Proceedings of the Fourteenth National Conference on Artificial Intelligence , AAAI-97

  12. Report on Ada (Trademark) Program Libraries Workshop Held at Monterey, California on November 1-3, 1983,

    DTIC Science & Technology

    1983-11-03

    capability. An intelligent library management system will be supported by knowledge-based techniques. In fact, until a formal specification of library...from artificial intelligence and information science 2 might also be useful, for example automatic indexing and cataloging schemes, methods for fast...Artificial Intelligence 5:1045-1058, 1977. [Burstall & Goguen 801 Burstall, R. M., and Goguen, J. A. The Semantics of Clear, a Specification Language. In

  13. An Automatic Phase-Change Detection Technique for Colloidal Hard Sphere Suspensions

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth; Rogers, Richard B.

    2005-01-01

    Colloidal suspensions of monodisperse spheres are used as physical models of thermodynamic phase transitions and as precursors to photonic band gap materials. However, current image analysis techniques are not able to distinguish between densely packed phases within conventional microscope images, which are mainly characterized by degrees of randomness or order with similar grayscale value properties. Current techniques for identifying the phase boundaries involve manually identifying the phase transitions, which is very tedious and time consuming. We have developed an intelligent machine vision technique that automatically identifies colloidal phase boundaries. The algorithm utilizes intelligent image processing techniques that accurately identify and track phase changes vertically or horizontally for a sequence of colloidal hard sphere suspension images. This technique is readily adaptable to any imaging application where regions of interest are distinguished from the background by differing patterns of motion over time.

  14. The Intelligent Control System and Experiments for an Unmanned Wave Glider.

    PubMed

    Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan

    2016-01-01

    The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.

  15. The Intelligent Control System and Experiments for an Unmanned Wave Glider

    PubMed Central

    Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan

    2016-01-01

    The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956

  16. Overview of Intelligent Systems and Operations Development

    NASA Technical Reports Server (NTRS)

    Pallix, Joan; Dorais, Greg; Penix, John

    2004-01-01

    To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.

  17. Autonomous intelligent cruise control system

    NASA Astrophysics Data System (ADS)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  18. Systems and WBANs for Controlling Obesity

    PubMed Central

    Mohammed, Maali Said; Sendra, Sandra

    2018-01-01

    According to World Health Organization (WHO) estimations, one out of five adults worldwide will be obese by 2025. Worldwide obesity has doubled since 1980. In fact, more than 1.9 billion adults (39%) of 18 years and older were overweight and over 600 million (13%) of these were obese in 2014. 42 million children under the age of five were overweight or obese in 2014. Obesity is a top public health problem due to its associated morbidity and mortality. This paper reviews the main techniques to measure the level of obesity and body fat percentage, and explains the complications that can carry to the individual's quality of life, longevity and the significant cost of healthcare systems. Researchers and developers are adapting the existing technology, as intelligent phones or some wearable gadgets to be used for controlling obesity. They include the promoting of healthy eating culture and adopting the physical activity lifestyle. The paper also shows a comprehensive study of the most used mobile applications and Wireless Body Area Networks focused on controlling the obesity and overweight. Finally, this paper proposes an intelligent architecture that takes into account both, physiological and cognitive aspects to reduce the degree of obesity and overweight. PMID:29599941

  19. Systems and WBANs for Controlling Obesity.

    PubMed

    Mohammed, Maali Said; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2018-01-01

    According to World Health Organization (WHO) estimations, one out of five adults worldwide will be obese by 2025. Worldwide obesity has doubled since 1980. In fact, more than 1.9 billion adults (39%) of 18 years and older were overweight and over 600 million (13%) of these were obese in 2014. 42 million children under the age of five were overweight or obese in 2014. Obesity is a top public health problem due to its associated morbidity and mortality. This paper reviews the main techniques to measure the level of obesity and body fat percentage, and explains the complications that can carry to the individual's quality of life, longevity and the significant cost of healthcare systems. Researchers and developers are adapting the existing technology, as intelligent phones or some wearable gadgets to be used for controlling obesity. They include the promoting of healthy eating culture and adopting the physical activity lifestyle. The paper also shows a comprehensive study of the most used mobile applications and Wireless Body Area Networks focused on controlling the obesity and overweight. Finally, this paper proposes an intelligent architecture that takes into account both, physiological and cognitive aspects to reduce the degree of obesity and overweight.

  20. The use of organic and inorganic impurities found in MDMA police seizures in a drug intelligence perspective.

    PubMed

    Morelato, Marie; Beavis, Alison; Tahtouh, Mark; Ribaux, Olivier; Kirkbride, Paul; Roux, Claude

    2014-01-01

    Traditional forensic drug profiling involves numerous analytical techniques, and the whole process is typically costly and may be time consuming. The aim of this study was to investigate the possibility of prioritising techniques utilised at the Australian Federal Police (AFP) for the chemical profiling of 3,4-methylenedioxymethylamphetamine (MDMA). The outcome would provide the AFP with the ability to obtain more timely and valuable results that could be used in an intelligence perspective. Correlation coefficients were used to obtain a similarity degree between a population of linked samples (within seizures) and a population of unlinked samples (between different seizures) and discrimination between the two populations was ultimately achieved. The results showed that gas chromatography-mass spectrometry (GC-MS) was well suited as a single technique to detect links between seizures and could be used in priority for operational intelligence purposes. Furthermore, the method was applied to seizures known or suspected (through their case information) to be linked to each other to assess the chemical similarity between samples. It was found that half of the seizures previously linked by the case number were also linked by the chemical profile. This procedure was also able to highlight links between cases that were previously unsuspected and retrospectively confirmed by circumstantial information. The findings are finally discussed in the broader forensic intelligence context, with a focus on how they could be successfully incorporated into investigations and in an intelligence-led policing perspective in order to understand trafficking markets. © 2014.

  1. Prediction of Scour below Flip Bucket using Soft Computing Techniques

    NASA Astrophysics Data System (ADS)

    Azamathulla, H. Md.; Ab Ghani, Aminuddin; Azazi Zakaria, Nor

    2010-05-01

    The accurate prediction of the depth of scour around hydraulic structure (trajectory spillways) has been based on the experimental studies and the equations developed are mainly empirical in nature. This paper evaluates the performance of the soft computing (intelligence) techiques, Adaptive Neuro-Fuzzy System (ANFIS) and Genetic expression Programming (GEP) approach, in prediction of scour below a flip bucket spillway. The results are very promising, which support the use of these intelligent techniques in prediction of highly non-linear scour parameters.

  2. A Three Pronged Approach for Improved Data Understanding: 3-D Visualization, Use of Gaming Techniques, and Intelligent Advisory Agents

    DTIC Science & Technology

    2006-10-01

    Pronged Approach for Improved Data Understanding: 3-D Visualization, Use of Gaming Techniques, and Intelligent Advisory Agents. In Visualising Network...University at the start of each fall semester, when numerous new students arrive on campus and begin downloading extensive amounts of audio and...SIGGRAPH ’92 • C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V. Kenyon and J.C. Hart, "The CAVE: Audio Visual Experience Automatic Virtual Environment

  3. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOEpatents

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  4. Processing Techniques for Intelligibility Improvement to Speech with Co-Channel Interference.

    DTIC Science & Technology

    1983-09-01

    processing was found to be always less than in the original unprocessed co-channel sig- nali also as the length of the comb filter increased, the...7 D- i35 702 PROCESSING TECHNIQUES FOR INTELLIGIBILITY IMPRO EMENT 1𔃼.TO SPEECH WITH CO-C..(U) SIGNAL TECHNOLOGY INC GOLETACA B A HANSON ET AL SEP...11111111122 11111.25 1111 .4 111.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU Of STANDARDS- 1963-A RA R.83-225 Set ,’ember 1983 PROCESSING

  5. Modern Hardware Technologies and Software Techniques for On-Line Database Storage and Access.

    DTIC Science & Technology

    1985-12-01

    of the information in a message narrative. This method employs artificial intelligence techniques to extract information, In simalest terms, an...disf ribif ion (tape replacemenf) systemns Database distribution On-fine mass storage Videogame ROM (luke-box I Media Cost Mt $2-10/438 $10-SO/G38...trajninq ot tne great intelligence for the analyst would be required. If, on’ the other hand, a sentence analysis scneme siTole enouq,. for the low-level

  6. Artificial Intelligence for VHSIC Systems Design (AIVD) User Reference Manual

    DTIC Science & Technology

    1988-12-01

    The goal of this program was to develop prototype tools which would use artificial intelligence techniques to extend the Architecture Design and Assessment (ADAS) software capabilities. These techniques were applied in a number of ways to increase the productivity of ADAS users. AIM will reduce the amount of time spent on tedious, negative, and error-prone steps. It will also provide f documentation that will assist users in varifying that the models they build are correct Finally, AIVD will help make ADAS models more reusable.

  7. Artificial intelligence techniques for scheduling Space Shuttle missions

    NASA Technical Reports Server (NTRS)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  8. Communications for intelligent transportation systems, successful practices : a cross-cutting study : reaching cost-effective solutions through better decision-making techniques

    DOT National Transportation Integrated Search

    2000-11-01

    In many intelligent transportation systems (ITS) implementations, the telecommunications solution was arrived at without the kind of rigorous examination that would have accompanied similarly significant and complex technical/business choices. The pu...

  9. Competitive Intelligence on the Internet-Going for the Gold.

    ERIC Educational Resources Information Center

    Kassler, Helene

    2000-01-01

    Discussion of competitive intelligence (CI) focuses on recent Web sties and several search techniques that provide valuable CI information. Highlights include links that display business relationships; information from vendors; general business sites; search engine strategies; local business newspapers; job postings; patent and trademark…

  10. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.

  11. Artificial intelligence within the chemical laboratory.

    PubMed

    Winkel, P

    1994-01-01

    Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Adaptive method with intercessory feedback control for an intelligent agent

    DOEpatents

    Goldsmith, Steven Y.

    2004-06-22

    An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.

  13. Intelligent Propulsion System Foundation Technology: Summary of Research

    NASA Technical Reports Server (NTRS)

    Williams, James C.

    2004-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, and smart materials and structures. Furthermore this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. The program consisted of three primary research areas (and associated work elements at Ohio universities): 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, and 3.0 Active Structural Controls.

  14. Research and development of intelligent controller for high-grade sanitary ware

    NASA Astrophysics Data System (ADS)

    Bao, Kongjun; Shen, Qingping

    2013-03-01

    With the social and economic development and people's living standards improve, more and more emphasis on modern society, people improve the quality of family life, the use of intelligent controller applications in high-grade sanitary ware physiotherapy students. Analysis of high-grade sanitary ware physiotherapy common functions pointed out in the production and use of the possible risks, proposed implementation of the system hardware and matching, given the system software implementation process. High-grade sanitary ware physiotherapy intelligent controller not only to achieve elegant and beautiful, simple, physical therapy, water power, deodorant, multi-function, intelligent control, to meet the consumers, the high-end sanitary ware market, strong demand, Accelerate the enterprise product Upgrade and improve the competitiveness of enterprises.

  15. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    PubMed

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.

  16. A framework for the design of a voice-activated, intelligent, and hypermedia-based aircraft maintenance manual

    NASA Astrophysics Data System (ADS)

    Patankar, Manoj Shashikant

    Federal Aviation Regulations require Aviation Maintenance Technicians (AMTs) to refer to approved maintenance manuals when performing maintenance on airworthy aircraft. Because these manuals are paper-based, larger the size of the aircraft, more cumbersome are the manuals. Federal Aviation Administration (FAA) recognized the difficulties associated with the use of large manuals and conducted studies on the use of electronic media as an alternative to the traditional paper format. However, these techniques do not employ any artificial intelligence technologies and the user interface is limited to either a keyboard or a stylus pen. The primary emphasis of this research was to design a generic framework that would allow future development of voice-activated, intelligent, and hypermedia-based aircraft maintenance manuals. A prototype (VIHAMS-Voice-activated, Intelligent, and Hypermedia-based Aircraft Maintenance System) was developed, as a secondary emphasis, using the design and development techniques that evolved from this research. An evolutionary software design approach was used to design the proposed framework and the structured rapid prototyping technique was used to produce the VIHAMS prototype. VoiceAssist by Creative Labs was used to provide the voice interface so that the users (AMTs) could keep their hands free to work on the aircraft while maintaining complete control over the computer through discrete voice commands. KnowledgePro for Windows sp{TM}, an expert system shell, provided "intelligence" to the prototype. As a result of this intelligence, the system provided expert guidance to the user. The core information contained in conventional manuals was available in a hypermedia format. The prototype's operating hardware included a notebook computer with a fully functional audio system. An external microphone and the built-in speaker served as the input and output devices (along with the color monitor), respectively. Federal Aviation Administration estimates the United States air carriers to operate 3,991 large jet aircraft in the year 1996 (FAA Aviation Forecasts, 1987-1998). With an estimate of seventy manuals per such aircraft, the development of intelligent manuals is expected to impact 279,370 manuals in this country. Soon, over 55 thousand maintenance technicians will be able to carry the seven pound system to an aircraft, use voice commands to access the aircraft's files on the system, seek assistance from the expert system to diagnose the fault, and obtain instructions on how to rectify the fault. The evolutionary design approach and the rapid prototyping techniques were very well suited for the spiral testing strategy. Therefore, this strategy was used to test the structural and functional validity of this research. Professors Darrell Anderson and Brian Stout (Aviation faculty at San Jose State University) and Mr. Gregory Shea (a United Airlines mechanic and SJSU student) are representatives of the real-world users of the final product. Therefore, they conducted the alpha test of this prototype. Mr. Daniel Neal and Mr. Stephen Harms have been actively involved in light aircraft maintenance for more than ten years. They evaluated the prototype's usability. All the above evaluators used standard testing tools and evaluated the prototype under field conditions. The evaluators concluded that the VIHAMS prototype used a valid fault diagnosis strategy, the system architecture could be used to develop similar systems using off-the-shelf tools, and the voice input system could be refined to improve its usability.

  17. Collaborating Fuzzy Reinforcement Learning Agents

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.

  18. Trait Emotional Intelligence and Academic Performance: Controlling for the Effects of IQ, Personality, and Self-Concept

    ERIC Educational Resources Information Center

    Ferrando, Mercedes; Prieto, Maria Dolores; Almeida, Leandro S.; Ferrandiz, Carmen; Bermejo, Rosario; Lopez-Pina, Jose Antonio; Hernandez, Daniel; Sainz, Marta; Fernandez, Mari-Carmen

    2011-01-01

    This article analyses the relationship between trait emotional intelligence and academic performance, controlling for the effects of IQ, personality, and self-concept dimensions. A sample of 290 preadolescents (11-12 years old) took part in the study. The instruments used were (a) Trait Emotional Intelligence Questionnaire-Adolescents Short Form…

  19. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  20. 32 CFR 154.76 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Defense for Command, Control, Communications, and Intelligence (ASD(C31)) shall have primary... Secretary of Defense for Command, Control, Communications, and Intelligence (ASD(C31)) and the General...

  1. 32 CFR 154.76 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Defense for Command, Control, Communications, and Intelligence (ASD(C31)) shall have primary... Secretary of Defense for Command, Control, Communications, and Intelligence (ASD(C31)) and the General...

  2. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  3. Different types of maximum power point tracking techniques for renewable energy systems: A survey

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini

    2016-03-01

    Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.

  4. Photo-irradiation paradigm: Mapping a remarkable facile technique used for advanced drug, gene and cell delivery.

    PubMed

    Shaker, Mohamed A; Younes, Husam M

    2015-11-10

    Undoubtedly, the progression of photo-irradiation technique has provided a smart engineering tool for the state-of-the-art biomaterials that guide the biomedical and therapeutic domains for promoting the modern pharmaceutical industry. Many investigators had exploited such a potential technique to create/ameliorate numerous pharmaceutical carriers. These carriers show promising applications that vary from small drug to therapeutic protein delivery and from gene to living cell encapsulation design. Harmony between the properties of precisely engineered precursors and the formed network structure broadens the investigator's intellect for both brilliant creations and effective applications. As well, controlling photo-curing at the formulation level, through manipulating the absorption of light stimuli, photoinitiator system and photo-responsive precursor, facilitates the exploration of novel distinctive biomaterials. Discussion of utilizing different photo-curing procedures in designing/formulation of different pharmaceutical carriers is the main emphasis of this review. In addition, recent applications of these intelligent techniques in targeted, controlled, and sustained drug delivery with understanding of photo-irradiation concept and mechanism are illustrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  6. Prototype space station automation system delivered and demonstrated at NASA

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.

  7. The role of height in the sex difference in intelligence.

    PubMed

    Kanazawa, Satoshi; Reyniers, Diane J

    2009-01-01

    Recent studies conclude that men on average have higher intelligence than women by 3-5 IQ points. However, the ultimate evolutionary question of why men should have evolved to have higher intelligence than women remains. We suggest that men may have slightly higher intelligence than women through 4 mechanisms: (1) assortative mating of intelligent men and beautiful women, (2) assortative mating of tall men and beautiful women, (3) an extrinsic correlation between height and intelligence produced by Mechanisms 1 and 2, and (4) a higher-than-expected offspring sex ratio (more sons) among tall (and hence intelligent) parents. Consistent with our suggestion, we show that men may have higher IQs than women because they are taller, and once we control for height women have slightly higher IQs than men.The correlation between height and IQ and the female advantage in intelligence persist even after we control for health as a measure of genetic quality, as well as physical attractiveness, age, race, education, and earnings. Height is also strongly associated with intelligence within each sex.

  8. Artificial Intelligence Applications to Videodisc Technology

    PubMed Central

    Vries, John K.; Banks, Gordon; McLinden, Sean; Moossy, John; Brown, Melanie

    1985-01-01

    Much of medical information is visual in nature. Since it is not easy to describe pictorial information in linguistic terms, it has been difficult to store and retrieve this type of information. Coupling videodisc technology with artificial intelligence programming techniques may provide a means for solving this problem.

  9. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  10. Artificial Intelligence: Applications in Education.

    ERIC Educational Resources Information Center

    Thorkildsen, Ron J.; And Others

    1986-01-01

    Artificial intelligence techniques are used in computer programs to search out rapidly and retrieve information from very large databases. Programing advances have also led to the development of systems that provide expert consultation (expert systems). These systems, as applied to education, are the primary emphasis of this article. (LMO)

  11. Designing a holistic end-to-end intelligent network analysis and security platform

    NASA Astrophysics Data System (ADS)

    Alzahrani, M.

    2018-03-01

    Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.

  12. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  13. Galen-In-Use: using artificial intelligence terminology tools to improve the linguistic coherence of a national coding system for surgical procedures.

    PubMed

    Rodrigues, J M; Trombert-Paviot, B; Baud, R; Wagner, J; Meusnier-Carriot, F

    1998-01-01

    GALEN has developed a language independent common reference model based on a medically oriented ontology and practical tools and techniques for managing healthcare terminology including natural language processing. GALEN-IN-USE is the current phase which applied the modelling and the tools to the development or the updating of coding systems for surgical procedures in different national coding centers co-operating within the European Federation of Coding Centre (EFCC) to create a language independent knowledge repository for multicultural Europe. We used an integrated set of artificial intelligence terminology tools named CLAssification Manager workbench to process French professional medical language rubrics into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation we generate controlled French natural language. The French national coding centre is then able to retrieve the initial professional rubrics with different categories of concepts, to compare the professional language proposed by expert clinicians to the French generated controlled vocabulary and to finalize the linguistic labels of the coding system in relation with the meanings of the conceptual system structure.

  14. How Computers Are Used in the Teaching of Music and Speculations about How Artificial Intelligence Could Be Applied to Radically Improve the Learning of Compositional Skills. CITE Report No. 6.

    ERIC Educational Resources Information Center

    Holland, Simon

    This paper forms part of a preliminary survey for work on the application of artificial intelligence theories and techniques to the learning of music composition skills. The paper deals with present day applications of computers to the teaching of music and speculations about how artificial intelligence might be used to foster music composition in…

  15. Intelligence and arms control - a marriage of convenience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschfeld, T.J.

    1987-01-01

    This book offers the first comprehensive look at how the vast US intelligence network enables negotiators to forge viable arms control agreements. The intelligence role in all three phases of the arms control process is discussed - from the design phase when reliable information is needed, to the execution phase when proposals are modified, to the maintenance phase when agreed-upon obligations begin to constrain adversary behavior and compliance becomes the key political issue. Contributors include: former CIA Director William E. Colby; Douglas George, Chief of the CIA's Control Intelligence Staff, Admiral Bobby R. Inman, former NSA Director; Hans Mark, formermore » Air Force Secretary and NSA administrator; Walt W. Rostow, National Security Adviser to President Johnson; and Paul Warnke, former Director of the Arms Control and Disarmament Agency and Chief Negotiator for SALT II.« less

  16. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  17. Person centered prediction of survival in population based screening program by an intelligent clinical decision support system.

    PubMed

    Safdari, Reza; Maserat, Elham; Asadzadeh Aghdaei, Hamid; Javan Amoli, Amir Hossein; Mohaghegh Shalmani, Hamid

    2017-01-01

    To survey person centered survival rate in population based screening program by an intelligent clinical decision support system. Colorectal cancer is the most common malignancy and major cause of morbidity and mortality throughout the world. Colorectal cancer is the sixth leading cause of cancer death in Iran. In this survey, we used cosine similarity as data mining technique and intelligent system for estimating survival of at risk groups in the screening plan. In the first step, we determined minimum data set (MDS). MDS was approved by experts and reviewing literatures. In the second step, MDS were coded by python language and matched with cosine similarity formula. Finally, survival rate by percent was illustrated in the user interface of national intelligent system. The national intelligent system was designed in PyCharm environment. Main data elements of intelligent system consist demographic information, age, referral type, risk group, recommendation and survival rate. Minimum data set related to survival comprise of clinical status, past medical history and socio-demographic information. Information of the covered population as a comprehensive database was connected to intelligent system and survival rate estimated for each patient. Mean range of survival of HNPCC patients and FAP patients were respectively 77.7% and 75.1%. Also, the mean range of the survival rate and other calculations have changed with the entry of new patients in the CRC registry by real-time. National intelligent system monitors the entire of risk group and reports survival rates by electronic guidelines and data mining technique and also operates according to the clinical process. This web base software has a critical role in the estimation survival rate in order to health care planning.

  18. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

    1994-01-01

    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  19. Scope of Attention, Control of Attention, and Intelligence in Children and Adults

    PubMed Central

    Cowan, Nelson; Fristoe, Nathanael M.; Elliott, Emily M.; Brunner, Ryan P.; Saults, J. Scott

    2006-01-01

    Recent experimentation has shown that cognitive aptitude measures are predicted by tests of the scope of an individual’s attention or capacity in simple working-memory tasks, and also by the ability to control attention. However, these experiments do not indicate how separate or related the scope and control of attention are. An experiment with 52 children 10 to 11 years old and 52 college students included measures of the scope and control of attention as well as verbal and nonverbal aptitude measures. The children showed little evidence of using sophisticated attentional control, but the scope of attention predicted intelligence in that group. In adults, the scope and control of attention both varied among individuals, and they accounted for considerable individual variance in intelligence. About 1/3 that variance was shared between scope and control, the rest being unique to one or the other. Scope and control of attention appear to be related but distinct contributors to intelligence. PMID:17489300

  20. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  1. Human Factors in Intelligence, Surveillance, and Reconnaissance: Gaps for Soldiers and Technology Recommendations

    DTIC Science & Technology

    2014-07-01

    technology work seeks to address gaps in the management, processing, and fusion of heterogeneous (i.e., soft and hard ) information to aid human decision...and bandwidth) to exploit the vast and growing amounts of data [16], [17]. There is also a broad research program on techniques for soft and hard ...Mott, G. de Mel, and T. Pham, “Integrating hard and soft information sources for D2D using controlled natural language,” in Proc. Information Fusion

  2. Deep into the Brain: Artificial Intelligence in Stroke Imaging

    PubMed Central

    Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha

    2017-01-01

    Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives. PMID:29037014

  3. Deep into the Brain: Artificial Intelligence in Stroke Imaging.

    PubMed

    Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha

    2017-09-01

    Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.

  4. Dorsolateral Prefrontal Contributions to Human Intelligence

    PubMed Central

    Barbey, Aron K.; Colom, Roberto; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control functions for human intelligence, the necessity of the dorsolateral prefrontal cortex (dlPFC) for key competencies of general intelligence and executive function remains to be well established. Here we studied human brain lesion patients with dlPFC lesions to investigate whether this region is computationally necessary for performance on neuropsychological tests of general intelligence and executive function, administering the Wechsler Adult Intelligence Scale (WAIS) and subtests of the Delis Kaplan Executive Function System (D-KEFS) to three groups: dlPFC lesions (n = 19), non-dlPFC lesions (n = 152), and no brain lesions (n = 55). The key results indicate that: (1) patients with focal dlPFC damage exhibit lower scores, at the latent variable level, than controls in general intelligence (g) and executive function; (2) dlPFC patients demonstrate lower scores than controls in several executive measures; and (3) these latter differences are no longer significant when the pervasive influence of the general factor of intelligence (g) is statistically removed. The observed findings support a central role for the dlPFC in general intelligence and make specific recommendations for the interpretation and application of the WAIS and D-KEFS to the study of high-level cognition in health and disease. PMID:22634247

  5. Cognitive Profile of Children and Adolescents with Anorexia Nervosa

    PubMed Central

    Kjaersdam Telléus, Gry; Jepsen, Jens Richardt; Bentz, Mette; Christiansen, Eva; Jensen, Signe O W; Fagerlund, Birgitte; Thomsen, Per Hove

    2015-01-01

    Objective Few studies of cognitive functioning in children and adolescents with anorexia nervosa (AN) have been conducted. The aim of this study was to examine the neurocognitive and intelligence profile of this clinical group. Method The study was a matched case–control (N = 188), multi-centre study including children and adolescents with AN (N = 94) and healthy control participants (N = 94). Results The results suggest that Full Scale Intelligence Quotient (Wechsler Intelligence Scale for Children-III/Wechsler Adult Intelligence Scale-III) in this patient group is close to the normal population mean of 100. Individuals with AN exhibited significantly worse performance in nonverbal intelligence functions (i.e. Wechsler Intelligence Scale for Children-III/Wechsler Adult Intelligence Scale-III, Perceptual Organization Index) and in verbal memory (Test of Memory and Learning—Second Edition, Memory for Stories) and motor speed (Cambridge Neuropsychological Test Automated Battery, Simple and Choice Reaction Time) compared with healthy control participants. No significant difference in set-shifting ability (Cambridge Neuropsychological Test Automated Battery, Intra-Extra Dimensional Set Shift and Trail Making Test B) was found. Conclusions Inefficiency in nonverbal intelligence functions and in specific cognitive functions was found in this study of children and adolescents with AN. © 2014 The Authors. European Eating Disorders Review published by John Wiley & Sons, Ltd. PMID:25504443

  6. Cognitive profile of children and adolescents with anorexia nervosa.

    PubMed

    Kjaersdam Telléus, Gry; Jepsen, Jens Richardt; Bentz, Mette; Christiansen, Eva; Jensen, Signe O W; Fagerlund, Birgitte; Thomsen, Per Hove

    2015-01-01

    Few studies of cognitive functioning in children and adolescents with anorexia nervosa (AN) have been conducted. The aim of this study was to examine the neurocognitive and intelligence profile of this clinical group. The study was a matched case-control (N = 188), multi-centre study including children and adolescents with AN (N = 94) and healthy control participants (N = 94). The results suggest that Full Scale Intelligence Quotient (Wechsler Intelligence Scale for Children-III/Wechsler Adult Intelligence Scale-III) in this patient group is close to the normal population mean of 100. Individuals with AN exhibited significantly worse performance in nonverbal intelligence functions (i.e. Wechsler Intelligence Scale for Children-III/Wechsler Adult Intelligence Scale-III, Perceptual Organization Index) and in verbal memory (Test of Memory and Learning-Second Edition, Memory for Stories) and motor speed (Cambridge Neuropsychological Test Automated Battery, Simple and Choice Reaction Time) compared with healthy control participants. No significant difference in set-shifting ability (Cambridge Neuropsychological Test Automated Battery, Intra-Extra Dimensional Set Shift and Trail Making Test B) was found. Inefficiency in nonverbal intelligence functions and in specific cognitive functions was found in this study of children and adolescents with AN. © 2014 The Authors. European Eating Disorders Review published by John Wiley & Sons, Ltd.

  7. Gender, g, Gender Identity Concepts, and Self-Constructs as Predictors of the Self-Estimated IQ

    PubMed Central

    Storek, Josephine

    2013-01-01

    In all 102 participants completed 2 intelligence tests, a self-estimated domain-masculine (DMIQ) intelligence rating (which is a composite of self-rated mathematical–logical and spatial intelligence), a measure of self-esteem, and of self-control. The aim was to confirm and extend previous findings about the role of general intelligence and gender identity in self-assessed intelligence. It aimed to examine further correlates of the Hubris–Humility Effect that shows men believe they are more intelligent than women. The DMIQ scores were correlated significantly with gender, psychometrically assessed IQ, and masculinity but not self-esteem or self-control. Stepwise regressions indicated that gender and gender role were the strongest predictors of DMIQ accounting for a third of the variance. PMID:24303578

  8. Gender, g, gender identity concepts, and self-constructs as predictors of the self-estimated IQ.

    PubMed

    Storek, Josephine; Furnham, Adrian

    2013-01-01

    In all 102 participants completed 2 intelligence tests, a self-estimated domain-masculine (DMIQ) intelligence rating (which is a composite of self-rated mathematical-logical and spatial intelligence), a measure of self-esteem, and of self-control. The aim was to confirm and extend previous findings about the role of general intelligence and gender identity in self-assessed intelligence. It aimed to examine further correlates of the Hubris-Humility Effect that shows men believe they are more intelligent than women. The DMIQ scores were correlated significantly with gender, psychometrically assessed IQ, and masculinity but not self-esteem or self-control. Stepwise regressions indicated that gender and gender role were the strongest predictors of DMIQ accounting for a third of the variance.

  9. Methamphetamine

    MedlinePlus

    ... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...

  10. Narcotics

    MedlinePlus

    ... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...

  11. Hydrocodone

    MedlinePlus

    ... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...

  12. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model.

    PubMed

    Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei

    2017-06-01

    We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers.

  13. Computational intelligence techniques in bioinformatics.

    PubMed

    Hassanien, Aboul Ella; Al-Shammari, Eiman Tamah; Ghali, Neveen I

    2013-12-01

    Computational intelligence (CI) is a well-established paradigm with current systems having many of the characteristics of biological computers and capable of performing a variety of tasks that are difficult to do using conventional techniques. It is a methodology involving adaptive mechanisms and/or an ability to learn that facilitate intelligent behavior in complex and changing environments, such that the system is perceived to possess one or more attributes of reason, such as generalization, discovery, association and abstraction. The objective of this article is to present to the CI and bioinformatics research communities some of the state-of-the-art in CI applications to bioinformatics and motivate research in new trend-setting directions. In this article, we present an overview of the CI techniques in bioinformatics. We will show how CI techniques including neural networks, restricted Boltzmann machine, deep belief network, fuzzy logic, rough sets, evolutionary algorithms (EA), genetic algorithms (GA), swarm intelligence, artificial immune systems and support vector machines, could be successfully employed to tackle various problems such as gene expression clustering and classification, protein sequence classification, gene selection, DNA fragment assembly, multiple sequence alignment, and protein function prediction and its structure. We discuss some representative methods to provide inspiring examples to illustrate how CI can be utilized to address these problems and how bioinformatics data can be characterized by CI. Challenges to be addressed and future directions of research are also presented and an extensive bibliography is included. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Team Emotional Intelligence, Team Interactions, and Gender in Medical Students During a Psychiatry Clerkship.

    PubMed

    Borges, Nicole J; Thompson, Britta M; Roman, Brenda J; Townsend, Mark H; Carchedi, Lisa R; Cluver, Jeff S; Frank, Julia B; Haidet, Paul M; Levine, Ruth E

    2015-12-01

    This study examined the relationship between team emotional intelligence, quality of team interactions, and gender. Psychiatry clerkship students participating in Team-Based Learning (TBL, n = 484) or no TBL (control, n = 265) completed the Workgroup Emotional Intelligence Profile (WEIP-S) and the Team Performance Scale (TPS). Significant correlations (p < 0.01) existed between quality of team interactions (i.e., TPS) and team emotional intelligence (i.e., WEIP-S) subscales, but not gender. Control and TBL groups experienced significant increases in WEIP-S subscales pre to post (p < 0.01, η (2) = .08), with the TBL group experiencing significantly higher gains in three of four subscales. Control group scored higher on TPS. A significant relationship exists between team emotional intelligence and quality of team interactions. Gender was unrelated to TPS or WEIP-S subscales. TBL group experienced higher gains in WEIP-S subscales while the control group experienced slightly higher TPS scores. Results suggest implications for medical educators who use TBL.

  15. Using generic tool kits to build intelligent systems

    NASA Technical Reports Server (NTRS)

    Miller, David J.

    1994-01-01

    The Intelligent Systems and Robots Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effect prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.

  16. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  17. Millimeter-wave technology advances since 1985 and future trends

    NASA Astrophysics Data System (ADS)

    Meinel, Holger H.

    1991-05-01

    The author focuses on finline or E-plane technology. Several examples, including AVES, a 61.5-GHz radar sensor for traffic data acquisition, are included. Monolithic integrated 60- and 94-GHz receiver circuits composed of a mixer and IF amplifier in compatible FET technology on GaAs are presented to show the state of the art in this area. A promising approach to the use of silicon technology for monolithic millimeter-wave integrated circuits, called SIMMWIC, is described as well. As millimeter-wave technology has matured, increased interest has been generated for very specific applications: (1) commercial automotive applications such as intelligent cruise control and enhanced vision have attracted great interest, calling for a low-cost design approach; and (2) an almost classical application of millimeter-wave techniques is the field of radar seekers, e.g., for intelligent ammunitions, calling for high performance under extreme environmental conditions. Two examples fulfilling these requirements are described.

  18. [Thoughts on optimizing the breast cancer screening strategies and implementation effects].

    PubMed

    Wu, K J

    2018-02-01

    Reasonable and effective breast cancer screening can make early diagnosis of breast cancer, improve the cure rate, prolong survival and improve the patients' quality of life. China has made preliminary exploration and attempt in breast cancer screening, however, there are still some problems that have not been solved in terms of the proportion of opportunistic screening, the selection of screening targets, methods and frequency, and the judgment of screening results. Therefore, this article analyzes the above problems in details, and presents some thoughts and recommendations on how to optimize the breast cancer screening strategies and implementation effects in China, from the experience of clinical practice, under the background of constantly emerging new research results and techniques and the rapid development of artificial intelligence, that is, to adjust measures to local conditions, provide personalized strategies, achieve precise screening, preach and educate, ensure health insurance coverage, improve quality control, offer technical support and employ artificial intelligence.

  19. A Trajectory Generation Approach for Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.; Yeh, Yoo-Hsiu

    2009-01-01

    Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.

  20. Fire Play: ICCARUS--Intelligent Command and Control, Acquisition and Review Using Simulation

    ERIC Educational Resources Information Center

    Powell, James; Wright, Theo; Newland, Paul; Creed, Chris; Logan, Brian

    2008-01-01

    Is it possible to educate a fire officer to deal intelligently with the command and control of a major fire event he will never have experienced? The authors of this paper believe there is, and present here just one solution to this training challenge. It involves the development of an intelligent simulation based upon computer managed interactive…

  1. Heroin Photos

    MedlinePlus

    ... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...

  2. AI in CALL--Artificially Inflated or Almost Imminent?

    ERIC Educational Resources Information Center

    Schulze, Mathias

    2008-01-01

    The application of techniques from artificial intelligence (AI) to CALL has commonly been referred to as intelligent CALL (ICALL). ICALL is only slightly older than the "CALICO Journal", and this paper looks back at a quarter century of published research mainly in North America and by North American scholars. This "inventory…

  3. Towards an Intelligent Planning Knowledge Base Development Environment

    NASA Technical Reports Server (NTRS)

    Chien, S.

    1994-01-01

    ract describes work in developing knowledge base editing and debugging tools for the Multimission VICAR Planner (MVP) system. MVP uses artificial intelligence planning techniques to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing requests made to the JPL Multimission Image Processing Laboratory.

  4. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  5. Multisensory Public Access Catalogs on CD-ROM.

    ERIC Educational Resources Information Center

    Harrison, Nancy; Murphy, Brower

    1987-01-01

    BiblioFile Intelligent Catalog is a CD-ROM-based public access catalog system which incorporates graphics and sound to provide a multisensory interface and artificial intelligence techniques to increase search precision. The system can be updated frequently and inexpensively by linking hard disk drives to CD-ROM optical drives. (MES)

  6. A Model for Intelligent Computer-Aided Education Systems.

    ERIC Educational Resources Information Center

    Du Plessis, Johan P.; And Others

    1995-01-01

    Proposes a model for intelligent computer-aided education systems that is based on cooperative learning, constructive problem-solving, object-oriented programming, interactive user interfaces, and expert system techniques. Future research is discussed, and a prototype for teaching mathematics to 10- to 12-year-old students is appended. (LRW)

  7. 41 CFR 105-60.501 - Categories of records exempt from disclosure under the FOIA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to be withheld; (4) Trade secrets and commercial or financial information obtained from a person and... intelligence investigation, information furnished by a confidential source; (v) Would disclose techniques and... foreign intelligence or counterintelligence, or international terrorism, and the existence of the records...

  8. Artificial Neural Identification and LMI Transformation for Model Reduction-Based Control of the Buck Switch-Mode Regulator

    NASA Astrophysics Data System (ADS)

    Al-Rabadi, Anas N.

    2009-10-01

    This research introduces a new method of intelligent control for the control of the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses supervised neural network to estimate certain parameters of the transformed system matrix [Ã]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[B˜], [C˜], [Ẽ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement.

  9. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  10. Large Efficient Intelligent Heating Relay Station System

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Wei, X. G.; Wu, M. Q.

    2017-12-01

    The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.

  11. An intelligent training system for payload-assist module deploys

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Wang, Lui; Baffes, Paul; Rua, Monica

    1987-01-01

    An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The Payload-Assist Module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system has, so far, proven to be a potentially valuable addition to the training tools available for training Flight Dynamics Officers in shuttle ground control. The authors are convinced that the basic structure of PD/ICAT can be extended to form a general architecture for intelligent training systems for training flight controllers and crew members in the performance of complex, mission-critical tasks.

  12. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Translational controller results

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.

  13. Lane changing trajectory planning and tracking control for intelligent vehicle on curved road.

    PubMed

    Wang, Lukun; Zhao, Xiaoying; Su, Hao; Tang, Gongyou

    2016-01-01

    This paper explores lane changing trajectory planning and tracking control for intelligent vehicle on curved road. A novel arcs trajectory is planned for the desired lane changing trajectory. A kinematic controller and a dynamics controller are designed to implement the trajectory tracking control. Firstly, the kinematic model and dynamics model of intelligent vehicle with non-holonomic constraint are established. Secondly, two constraints of lane changing on curved road in practice (LCCP) are proposed. Thirdly, two arcs with same curvature are constructed for the desired lane changing trajectory. According to the geometrical characteristics of arcs trajectory, equations of desired state can be calculated. Finally, the backstepping method is employed to design a kinematic trajectory tracking controller. Then the sliding-mode dynamics controller is designed to ensure that the motion of the intelligent vehicle can follow the desired velocity generated by kinematic controller. The stability of control system is proved by Lyapunov theory. Computer simulation demonstrates that the desired arcs trajectory and state curves with B-spline optimization can meet the requirements of LCCP constraints and the proposed control schemes can make tracking errors to converge uniformly.

  14. An Intelligent Decision System for Intraoperative Somatosensory Evoked Potential Monitoring.

    PubMed

    Fan, Bi; Li, Han-Xiong; Hu, Yong

    2016-02-01

    Somatosensory evoked potential (SEP) is a useful, noninvasive technique widely used for spinal cord monitoring during surgery. One of the main indicators of a spinal cord injury is the drop in amplitude of the SEP signal in comparison to the nominal baseline that is assumed to be constant during the surgery. However, in practice, the real-time baseline is not constant and may vary during the operation due to nonsurgical factors, such as blood pressure, anaesthesia, etc. Thus, a false warning is often generated if the nominal baseline is used for SEP monitoring. In current practice, human experts must be used to prevent this false warning. However, these well-trained human experts are expensive and may not be reliable and consistent due to various reasons like fatigue and emotion. In this paper, an intelligent decision system is proposed to improve SEP monitoring. First, the least squares support vector regression and multi-support vector regression models are trained to construct the dynamic baseline from historical data. Then a control chart is applied to detect abnormalities during surgery. The effectiveness of the intelligent decision system is evaluated by comparing its performance against the nominal baseline model by using the real experimental datasets derived from clinical conditions.

  15. Ambient agents: embedded agents for remote control and monitoring using the PANGEA platform.

    PubMed

    Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier; Corchado, Juan M

    2014-07-31

    Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation.

  16. Ambient Agents: Embedded Agents for Remote Control and Monitoring Using the PANGEA Platform

    PubMed Central

    Villarrubia, Gabriel; De Paz, Juan F.; Bajo, Javier; Corchado, Juan M.

    2014-01-01

    Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation. PMID:25090416

  17. An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.

    2018-01-01

    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.

  18. Intelligent failure-tolerant control

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods.

  19. An intelligent clinical decision support system for patient-specific predictions to improve cervical intraepithelial neoplasia detection.

    PubMed

    Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Margari, Niki; Kyrgiou, Maria; Spathis, Aris; Pappas, Asimakis; Panayiotides, Ioannis; Paraskevaidis, Evangelos A; Karakitsos, Petros; Koutsouris, Dimitrios-Dionyssios

    2014-01-01

    Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions.

  20. An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection

    PubMed Central

    Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Margari, Niki; Kyrgiou, Maria; Spathis, Aris; Pappas, Asimakis; Panayiotides, Ioannis; Paraskevaidis, Evangelos A.; Karakitsos, Petros; Koutsouris, Dimitrios-Dionyssios

    2014-01-01

    Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions. PMID:24812614

  1. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  2. Intelligent Computer-Aided Instruction for Medical Diagnosis

    PubMed Central

    Clancey, William J.; Shortliffe, Edward H.; Buchanan, Bruce G.

    1979-01-01

    An intelligent computer-aided instruction (ICAI) program, named GUIDON, has been developed for teaching infectious disease diagnosis.* ICAI programs use artificial intelligence techniques for representing both subject material and teaching strategies. This paper briefly outlines the difference between traditional instructional programs and ICAI. We then illustrate how GUIDON makes contributions in areas important to medical CAI: interacting with the student in a mixed-initiative dialogue (including the problems of feedback and realism), teaching problem-solving strategies, and assembling a computer-based curriculum.

  3. Convergence in full motion video processing, exploitation, and dissemination and activity based intelligence

    NASA Astrophysics Data System (ADS)

    Phipps, Marja; Lewis, Gina

    2012-06-01

    Over the last decade, intelligence capabilities within the Department of Defense/Intelligence Community (DoD/IC) have evolved from ad hoc, single source, just-in-time, analog processing; to multi source, digitally integrated, real-time analytics; to multi-INT, predictive Processing, Exploitation and Dissemination (PED). Full Motion Video (FMV) technology and motion imagery tradecraft advancements have greatly contributed to Intelligence, Surveillance and Reconnaissance (ISR) capabilities during this timeframe. Imagery analysts have exploited events, missions and high value targets, generating and disseminating critical intelligence reports within seconds of occurrence across operationally significant PED cells. Now, we go beyond FMV, enabling All-Source Analysts to effectively deliver ISR information in a multi-INT sensor rich environment. In this paper, we explore the operational benefits and technical challenges of an Activity Based Intelligence (ABI) approach to FMV PED. Existing and emerging ABI features within FMV PED frameworks are discussed, to include refined motion imagery tools, additional intelligence sources, activity relevant content management techniques and automated analytics.

  4. F-15 IFCS: Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  5. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners

    PubMed Central

    Gard, Tim; Taquet, Maxime; Dixit, Rohan; Hölzel, Britta K.; de Montjoye, Yves-Alexandre; Brach, Narayan; Salat, David H.; Dickerson, Bradford C.; Gray, Jeremy R.; Lazar, Sara W.

    2014-01-01

    Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation. PMID:24795629

  6. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  7. Artificial intelligence in sports on the example of weight training.

    PubMed

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements.Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates.

  8. Artificial Intelligence in Sports on the Example of Weight Training

    PubMed Central

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements. Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates. PMID:24149722

  9. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  10. Are executive functions related to emotional intelligence? A correlational study in schizophrenia and borderline personality disorder.

    PubMed

    Hurtado, M M; Triviño, M; Arnedo, M; Roldán, G; Tudela, P

    2016-12-30

    This research explored the relationship between executive functions (working memory and reasoning subtests of the Wechsler Adult Intelligence Scale, Trail Making and Stroop tests, fluency and planning tasks, and Wisconsin Card Sorting Test) and emotional intelligence measured by the Mayer-Salovey-Caruso Emotional Intelligence Test in patients with schizophrenia or borderline personality disorder compared to a control group. As expected, both clinical groups performed worse than the control group in executive functions and emotional intelligence, although the impairment was greater in the borderline personality disorder group. Executive functions significantly correlated with social functioning. Results are discussed in relation to the brain circuits that mediate executive functions and emotional intelligence and the findings obtained with other models of social cognition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Maternal Factors Predicting Cognitive and Behavioral Characteristics of Children with Fetal Alcohol Spectrum Disorders

    PubMed Central

    May, Philip A.; Tabachnick, Barbara G.; Gossage, J. Phillip; Kalberg, Wendy O.; Marais, Anna-Susan; Robinson, Luther K.; Manning, Melanie A.; Blankenship, Jason; Buckley, David; Hoyme, H. Eugene; Adnams, Colleen M.

    2013-01-01

    Objective To provide an analysis of multiple predictors of cognitive and behavioral traits for children with fetal alcohol spectrum disorders (FASD). Method Multivariate correlation techniques were employed with maternal and child data from epidemiologic studies in a community in South Africa. Data on 561 first grade children with fetal alcohol syndrome (FAS), partial FAS (PFAS), and not FASD and their mothers were analyzed by grouping 19 maternal variables into categories (physical, demographic, childbearing, and drinking) and employed in structural equation models (SEM) to assess correlates of child intelligence (verbal and non-verbal) and behavior. Results A first SEM utilizing only seven maternal alcohol use variables to predict cognitive/behavioral traits was statistically significant (B = 3.10, p < .05), but explained only 17.3% of the variance. The second model incorporated multiple maternal variables and was statistically significant explaining 55.3% of the variance. Significantly correlated with low intelligence and problem behavior were demographic (B = 3.83, p < .05) (low maternal education, low socioeconomic status (SES), and rural residence) and maternal physical characteristics (B = 2.70, p < .05) (short stature, small head circumference, and low weight). Childbearing history and alcohol use composites were not statistically significant in the final complex model, and were overpowered by SES and maternal physical traits. Conclusions While other analytic techniques have amply demonstrated the negative effects of maternal drinking on intelligence and behavior, this highly-controlled analysis of multiple maternal influences reveals that maternal demographics and physical traits make a significant enabling or disabling contribution to child functioning in FASD. PMID:23751886

  12. Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation

    NASA Astrophysics Data System (ADS)

    Capo-Lugo, Pedro A.

    Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous control system to a digital control system which will simplify the implementation into the computer onboard the satellite. In addition, this research will show an introductory chapter on attitude dynamics that can be used to maintain the orientation of the satellites, and an adaptive intelligent control scheme will be proposed to maintain the desired orientation of the spacecraft. In conclusion, a solution for the dynamics of the NASA Benchmark Tetrahedron Constellation will be presented in this research work. The main contribution of this work is the use of discrete control schemes, impulsive maneuvers, and intelligent control schemes that can be used to reduce the computational time in which these control schemes can be easily implemented in the computer onboard the satellite. These contributions are explained through the deployment, reconfiguration, and station-keeping process of the proposed NASA Benchmark Tetrahedron Constellation.

  13. Development of an Intelligent Videogrammetric Wind Tunnel Measurement System

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.

    2004-01-01

    A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models. These include high-speed research and transport models tested over a wide range of aerodynamic conditions including subsonic, transonic, and supersonic regimes. The technique, based on digital photogrammetry, has been used to measure model attitude, deformation, and sting bending. In addition, the technique has been used to study model injection rate effects and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models. An effort is currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in large production wind tunnels while providing accurate data in a robust and timely manner. Designed to encode a higher degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that was used in a recent test at a large transonic wind tunnel.

  14. Intelligent building system for airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancevic, M.

    1997-11-01

    The Munich airport uses a state-of-the-art intelligent building management system to control systems such as HVAC, runway lights, baggage handling, etc. Planning the new Munich II international airport provided a unique opportunity to use the latest state-of-the-art technical systems, while integrating their control through a single intelligent building management system. Opened in 1992, the airport is Germany`s second-largest airport after Frankfurt. The airport is staffed by 16,000 employees and can handle 17 million passengers a year. The sprawling site encompasses more than 120 buildings. The airport`s distributed control system is specifically designed to optimize the complex`s unique range of functions,more » while providing a high degree of comfort, convenience and safety for airport visitors. With the capacity to control 200,000 points, this system controls more than 112,000 points and integrates 13 major subsystems from nine different vendors. It provides convenient, accessible control of everything including the complex`s power plant, HVAC Control, the terminal`s people-moving functions, interior lighting controls, runway lights, baggage forwarding systems, elevators, and boarding bridges. The airport was named 1993 intelligent building of the year by the Intelligent Buildings Institute Foundation. Its building management system is a striking example of the degree to which a building complex`s functions can be integrated for greater operational control and efficiency.« less

  15. [Control of intelligent car based on electroencephalogram and neurofeedback].

    PubMed

    Li, Song; Xiong, Xin; Fu, Yunfa

    2018-02-01

    To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.

  16. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  17. Advanced, Adaptive, Modular, Distributed, Generic Universal FADEC Framework for Intelligent Propulsion Control Systems (Preprint)

    DTIC Science & Technology

    2007-09-01

    AFRL-RZ-WP-TP-2008-2044 ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION CONTROL...GRANT NUMBER 4. TITLE AND SUBTITLE ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION... FADEC is unique and expensive to develop, produce, maintain, and upgrade for its particular application. Each FADEC is a centralized system, with a

  18. Intelligent lead: a novel HRI sensor for guide robots.

    PubMed

    Cho, Keum-Bae; Lee, Beom-Hee

    2012-01-01

    This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.

  19. Methamphetamine Lab Incidents, 2004-2014

    MedlinePlus

    ... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...

  20. The effect of paternal age on offspring intelligence and personality when controlling for paternal trait level.

    PubMed

    Arslan, Ruben C; Penke, Lars; Johnson, Wendy; Iacono, William G; McGue, Matt

    2014-01-01

    Paternal age at conception has been found to predict the number of new genetic mutations. We examined the effect of father's age at birth on offspring intelligence, head circumference and personality traits. Using the Minnesota Twin Family Study sample we tested paternal age effects while controlling for parents' trait levels measured with the same precision as offspring's. From evolutionary genetic considerations we predicted a negative effect of paternal age on offspring intelligence, but not on other traits. Controlling for parental intelligence (IQ) had the effect of turning an initially positive association non-significantly negative. We found paternal age effects on offspring IQ and Multidimensional Personality Questionnaire Absorption, but they were not robustly significant, nor replicable with additional covariates. No other noteworthy effects were found. Parents' intelligence and personality correlated with their ages at twin birth, which may have obscured a small negative effect of advanced paternal age (<1% of variance explained) on intelligence. We discuss future avenues for studies of paternal age effects and suggest that stronger research designs are needed to rule out confounding factors involving birth order and the Flynn effect.

  1. The effect of long chain polyunsaturated fatty acid supplementation on intelligence in low birth weight infant during lactation: A meta-analysis

    PubMed Central

    Song, Yuan; Liu, Ya; Pan, Yun; Yuan, Xiaofeng; Chang, Pengyu; Tian, Yuan; Cui, Weiwei

    2018-01-01

    Background Low birth weight infant (LBWIs) are prone to mental and behavioural problems. As an important constituent of the brain and retina, long chain polyunsaturated fatty acids are essential for foetal infant mental and visual development. The effect of lactation supplemented with long chain polyunsaturated fatty acids (LCPUFA) on the improvement of intelligence in low birth weight children requires further validation. Methods In this study, a comprehensive search of multiple databases was performed to identify studies focused the association between intelligence and long chain polyunsaturated fatty acid supplementation in LBWIs. Studies that compared the Bayley Scales of Infant Development (BSID) or the Wechsler Abbreviated Scale of Intelligence for Children (WISC) scores between LBWIs who were supplemented and controls that were not supplemented with LCPUFA during lactation were selected for inclusion in the meta-analysis. Results The main outcome was the mean difference in the mental development index (MDI) and psychomotor development index (PDI) of the BSID and the full scale intelligence quotient (FSIQ), verbal intelligence quotient (VIQ) and performance intelligence quotient (PIQ) of the WISC between LBWIs and controls. Our findings indicated that the mean BSID or WISC scores in LBWIs did not differ between the supplemented groups and controls. Conclusion This meta-analysis does not reveal that LCPUFA supplementation has a significant impact on the level of intelligence in LBWIs. PMID:29634752

  2. Self-Learning Intelligent Agents for Dynamic Traffic Routing on Transportation Networks

    NASA Astrophysics Data System (ADS)

    Sadek, Add; Basha, Nagi

    Intelligent Transportation Systems (ITS) are designed to take advantage of recent advances in communications, electronics, and Information Technology in improving the efficiency and safety of transportation systems. Among the several ITS applications is the notion of Dynamic Traffic Routing (DTR), which involves generating "optimal" routing recommendations to drivers with the aim of maximizing network utilizing. In this paper, we demonstrate the feasibility of using a self-learning intelligent agent to solve the DTR problem to achieve traffic user equilibrium in a transportation network. The core idea is to deploy an agent to a simulation model of a highway. The agent then learns by itself by interacting with the simulation model. Once the agent reaches a satisfactory level of performance, it can then be deployed to the real-world, where it would continue to learn how to refine its control policies over time. To test this concept in this paper, the Cell Transmission Model (CTM) developed by Carlos Daganzo of the University of California at Berkeley is used to simulate a simple highway with two main alternative routes. With the model developed, a Reinforcement Learning Agent (RLA) is developed to learn how to best dynamically route traffic, so as to maximize the utilization of existing capacity. Preliminary results obtained from our experiments are promising. RL, being an adaptive online learning technique, appears to have a great potential for controlling a stochastic dynamic systems such as a transportation system. Furthermore, the approach is highly scalable and applicable to a variety of networks and roadways.

  3. AMFESYS: Modelling and diagnosis functions for operations support

    NASA Technical Reports Server (NTRS)

    Wheadon, J.

    1993-01-01

    Packetized telemetry, combined with low station coverage for close-earth satellites, may introduce new problems in presenting to the operator a clear picture of what the spacecraft is doing. A recent ESOC study has gone some way to show, by means of a practical demonstration, how the use of subsystem models combined with artificial intelligence techniques, within a real-time spacecraft control system (SCS), can help to overcome these problems. A spin-off from using these techniques can be an improvement in the reliability of the telemetry (TM) limit-checking function, as well as the telecommand verification function, of the Spacecraft Control systems (SCS). The problem and how it was addressed, including an overview of the 'AMF Expert System' prototype are described, and proposes further work which needs to be done to prove the concept. The Automatic Mirror Furnace is part of the payload of the European Retrievable Carrier (EURECA) spacecraft, which was launched in July 1992.

  4. The Multidimensional Integrated Intelligent Imaging project (MI-3)

    NASA Astrophysics Data System (ADS)

    Allinson, N.; Anaxagoras, T.; Aveyard, J.; Arvanitis, C.; Bates, R.; Blue, A.; Bohndiek, S.; Cabello, J.; Chen, L.; Chen, S.; Clark, A.; Clayton, C.; Cook, E.; Cossins, A.; Crooks, J.; El-Gomati, M.; Evans, P. M.; Faruqi, W.; French, M.; Gow, J.; Greenshaw, T.; Greig, T.; Guerrini, N.; Harris, E. J.; Henderson, R.; Holland, A.; Jeyasundra, G.; Karadaglic, D.; Konstantinidis, A.; Liang, H. X.; Maini, K. M. S.; McMullen, G.; Olivo, A.; O'Shea, V.; Osmond, J.; Ott, R. J.; Prydderch, M.; Qiang, L.; Riley, G.; Royle, G.; Segneri, G.; Speller, R.; Symonds-Tayler, J. R. N.; Triger, S.; Turchetta, R.; Venanzi, C.; Wells, K.; Zha, X.; Zin, H.

    2009-06-01

    MI-3 is a consortium of 11 universities and research laboratories whose mission is to develop complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) and to apply these sensors to a range of imaging challenges. A range of sensors has been developed: On-Pixel Intelligent CMOS (OPIC)—designed for in-pixel intelligence; FPN—designed to develop novel techniques for reducing fixed pattern noise; HDR—designed to develop novel techniques for increasing dynamic range; Vanilla/PEAPS—with digital and analogue modes and regions of interest, which has also been back-thinned; Large Area Sensor (LAS)—a novel, stitched LAS; and eLeNA—which develops a range of low noise pixels. Applications being developed include autoradiography, a gamma camera system, radiotherapy verification, tissue diffraction imaging, X-ray phase-contrast imaging, DNA sequencing and electron microscopy.

  5. Intelligent Transportation Systems (ITS) plan for Canada : en route to intelligent mobility

    DOT National Transportation Integrated Search

    1999-11-01

    Intelligent Transportation Systems (ITS) include the application of advanced information processing, communications, sensor and control technologies and management strategies in an integrated manner to improve the functioning of the transportation sy...

  6. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    NASA Astrophysics Data System (ADS)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  7. Intelligent Intersection Traffic Control Laboratory Fact Sheet

    DOT National Transportation Integrated Search

    2006-07-27

    The Intelligent Intersection 11:affic Control Laboratory (IITCL) is an outdoor facility that supports the Federal Highway Administration's (FHWA) various research programs and research activities conducted by other U.S. Department of 11:ansportation ...

  8. Self-organizing control strategy for asteroid intelligent detection swarm based on attraction and repulsion

    NASA Astrophysics Data System (ADS)

    An, Meiyan; Wang, Zhaokui; Zhang, Yulin

    2017-01-01

    The self-organizing control strategy for asteroid intelligent detection swarm, which is considered as a space application instance of intelligent swarm, is developed. The leader-follower model for the asteroid intelligent detection swarm is established, and the further analysis is conducted for massive asteroid and small asteroid. For a massive asteroid, the leader spacecraft flies under the gravity field of the asteroid. For a small asteroid, the asteroid gravity is negligible, and a trajectory planning method is proposed based on elliptic cavity virtual potential field. The self-organizing control strategy for the follower spacecraft is developed based on a mechanism of velocity planning and velocity tracking. The simulation results show that the self-organizing control strategy is valid for both massive asteroid and small asteroid, and the exploration swarm forms a stable configuration.

  9. Intelligent Systems Approach for Automated Identification of Individual Control Behavior of a Human Operator

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill B.; Cardullo, Frank M.

    2012-01-01

    Results have been obtained using conventional techniques to model the generic human operator?s control behavior, however little research has been done to identify an individual based on control behavior. The hypothesis investigated is that different operators exhibit different control behavior when performing a given control task. Two enhancements to existing human operator models, which allow personalization of the modeled control behavior, are presented. One enhancement accounts for the testing control signals, which are introduced by an operator for more accurate control of the system and/or to adjust the control strategy. This uses the Artificial Neural Network which can be fine-tuned to model the testing control. Another enhancement takes the form of an equiripple filter which conditions the control system power spectrum. A novel automated parameter identification technique was developed to facilitate the identification process of the parameters of the selected models. This utilizes a Genetic Algorithm based optimization engine called the Bit-Climbing Algorithm. Enhancements were validated using experimental data obtained from three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. This manuscript also addresses applying human operator models to evaluate the effectiveness of motion feedback when simulating actual pilot control behavior in a flight simulator.

  10. Exploring the neural substrates of attentional control and human intelligence: Diffusion tensor imaging of prefrontal white matter tractography in healthy cognition.

    PubMed

    Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Newell, Dominick; Melonakos, Eric D; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek

    2017-01-26

    We combined diffusion tension imaging (DTI) of prefrontal white matter integrity and neuropsychological measures to examine the functional neuroanatomy of human intelligence. Healthy participants completed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) along with neuropsychological tests of attention and executive control, as measured by Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). Stochastic tractography, considered the most effective DTI method, quantified white matter integrity of the medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) circuitry. Based on prior studies, we hypothesized that posterior mOFC-rACC connections may play a key structural role linking attentional control processes and intelligence. Behavioral results provided strong support for this hypothesis, specifically linking attentional control processes, measured by Trails B and WCST perseverative errors, to intelligent quotient (IQ). Hierarchical regression results indicated left posterior mOFC-rACC fractional anisotropy (FA) and Trails B performance time, but not WCST perseverative errors, each contributed significantly to IQ, accounting for approximately 33.95-51.60% of the variance in IQ scores. These findings suggested that left posterior mOFC-rACC white matter connections may play a key role in supporting the relationship of executive functions of attentional control and general intelligence in healthy cognition. Copyright © 2016. Published by Elsevier Ltd.

  11. The Measurement of Cross-Language Communication.

    ERIC Educational Resources Information Center

    Ladefoged, Peter; And Others

    Of the approximately 40 languages in Uganda, some are very similar to one another and may be to some extent mutually intelligible. Because no one knows how to measure degrees of mutual intelligibility, the authors are attempting to establish reliable techniques which would be not only of practical value for the study of language problems in…

  12. Improving Strategic Planning and Implementation in Universities through Competitive Intelligence Tools: A Means to Gaining Relevance

    ERIC Educational Resources Information Center

    Hughes, Stephanie; White, Rebecca J.

    2005-01-01

    Institutions of higher education can use competitive intelligence (CI) techniques to become more relevant to their communities. In Stepping Forward as Stewards of Place the American Association of State Colleges and Universities (AASCU) provides a model for public engagement that emphasizes internal strategic planning, implementation, and…

  13. Implications of Artificial Intelligence for End User Use of Online Systems.

    ERIC Educational Resources Information Center

    Smith, Linda C.

    1980-01-01

    Reviewed are several studies which demonstrate how artificial intelligence techniques can be applied in the design of end user-oriented interfaces (which would eliminate the need for an intermediary) to existing online systems, as well as in the development of future generations of online systems intended for the end user. (Author/SW)

  14. Emotional Intelligence in Everyday Life. Second Edition

    ERIC Educational Resources Information Center

    Beck, John H., Ed.

    2006-01-01

    Since the release of the very successful first edition in 2001, the field of emotional intelligence has grown in sophistication and importance. Many new and talented researchers have come into the field and techniques in EI measurement have dramatically increased so that we now know much more about the distinctiveness and utility of the different…

  15. An Artificial Intelligence Approach to the Symbolic Factorization of Multivariable Polynomials. Technical Report No. CS74019-R.

    ERIC Educational Resources Information Center

    Claybrook, Billy G.

    A new heuristic factorization scheme uses learning to improve the efficiency of determining the symbolic factorization of multivariable polynomials with interger coefficients and an arbitrary number of variables and terms. The factorization scheme makes extensive use of artificial intelligence techniques (e.g., model-building, learning, and…

  16. AI Based Personal Learning Environments: Directions for Long Term Research. AI Memo 384.

    ERIC Educational Resources Information Center

    Goldstein, Ira P.; Miller, Mark L.

    The application of artificial intelligence (AI) techniques to the design of personal learning environments is an enterprise of both theoretical and practical interest. In the short term, the process of developing and testing intelligent tutoring programs serves as a new experimental vehicle for exploring alternative cognitive and pedagogical…

  17. Distributed intelligent scheduling of FMS

    NASA Astrophysics Data System (ADS)

    Wu, Zuobao; Cheng, Yaodong; Pan, Xiaohong

    1995-08-01

    In this paper, a distributed scheduling approach of a flexible manufacturing system (FMS) is presented. A new class of Petri nets called networked time Petri nets (NTPN) for system modeling of networking environment is proposed. The distributed intelligent scheduling is implemented by three schedulers which combine NTPN models with expert system techniques. The simulation results are shown.

  18. Emerging Network Storage Management Standards for Intelligent Data Storage Subsystems

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    This paper discusses the need for intelligent storage devices and subsystems that can provide data integrity metadata, the content of the existing data integrity standard for optical disks and techniques and metadata to verify stored data on optical tapes developed by the Association for Information and Image Management (AIIM) Optical Tape Committee.

  19. Using Construct Validity Techniques To Evaluate an Automated Cognitive Model of Geometric Proof Writing.

    ERIC Educational Resources Information Center

    Shotsberger, Paul G.

    The National Council of Teachers of Mathematics (1991) has identified the use of computers as a necessary teaching tool for enhancing mathematical discourse in schools. One possible vehicle of technological change in mathematics classrooms is the Intelligent Tutoring System (ITS), an artificially intelligent computer-based tutor. This paper…

  20. An Intelligent Computer Assisted Language Learning System for Arabic Learners

    ERIC Educational Resources Information Center

    Shaalan, Khaled F.

    2005-01-01

    This paper describes the development of an intelligent computer-assisted language learning (ICALL) system for learning Arabic. This system could be used for learning Arabic by students at primary schools or by learners of Arabic as a second or foreign language. It explores the use of Natural Language Processing (NLP) techniques for learning…

  1. An Application of Fuzzy Analytic Hierarchy Process (FAHP) for Evaluating Students' Project

    ERIC Educational Resources Information Center

    Çebi, Ayça; Karal, Hasan

    2017-01-01

    In recent years, artificial intelligence applications for understanding the human thinking process and transferring it to virtual environments come into prominence. The fuzzy logic which paves the way for modeling human behaviors and expressing even vague concepts mathematically, and is also regarded as an artificial intelligence technique has…

  2. A computer architecture for intelligent machines

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Saridis, G. N.

    1992-01-01

    The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  3. A collision model for safety evaluation of autonomous intelligent cruise control.

    PubMed

    Touran, A; Brackstone, M A; McDonald, M

    1999-09-01

    This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.

  4. The impact of emotional intelligent leadership on staff nurse empowerment: the moderating effect of span of control.

    PubMed

    Lucas, Victoria; Laschinger, Heather K Spence; Wong, Carol A

    2008-11-01

    To test a model linking nurses' perceptions of their nurse manager's emotionally intelligent leadership style and nurses' structural empowerment, and the impact of nurse manager span of control (number of direct reports) on the emotional intelligence/empowerment relationship. Hospital restructuring in the 1990s resulted in a dramatic reduction in nurse manager positions, yet nurse managers are critical to empowering nurses for professional practice. A descriptive correlational survey design was used to test the hypothesized model in two community hospitals in Ontario. Two hundred and three nurses from two hospitals returned useable questionnaires (68% response rate). Span of control was a significant moderator of the relationship between nurses perceptions of their managers' emotionally intelligent behaviour and feelings of workplace empowerment. The results suggest that even managers with strong emotional intelligence may not be able to empower their staff if their span of control is large. Every effort must be made to ensure that managers have reasonable spans of control that allow them to develop and use the leadership skill necessary for empowering their staff to practice to the full scope of their professional role.

  5. Multiple Intelligences Profiles of Children with Attention Deficit and Hyperactivity Disorder in Comparison with Nonattention Deficit and Hyperactivity Disorder.

    PubMed

    Najafi, Mostafa; Akouchekian, Shahla; Ghaderi, Alireza; Mahaki, Behzad; Rezaei, Mariam

    2017-01-01

    Attention deficit and hyperactivity disorder (ADHD) is a common psychological problem during childhood. This study aimed to evaluate multiple intelligences profiles of children with ADHD in comparison with non-ADHD. This cross-sectional descriptive analytical study was done on 50 children of 6-13 years old in two groups of with and without ADHD. Children with ADHD were referred to Clinics of Child and Adolescent Psychiatry, Isfahan University of Medical Sciences, in 2014. Samples were selected based on clinical interview (based on Diagnostic and Statistical Manual of Mental Disorders IV and parent-teacher strengths and difficulties questionnaire), which was done by psychiatrist and psychologist. Raven intelligence quotient (IQ) test was used, and the findings were compared to the results of multiple intelligences test. Data analysis was done using a multivariate analysis of covariance using SPSS20 software. Comparing the profiles of multiple intelligence among two groups, there are more kinds of multiple intelligences in control group than ADHD group, a difference which has been more significant in logical, interpersonal, and intrapersonal intelligence ( P < 0.05). There was no significant difference with the other kinds of multiple intelligences in two groups ( P > 0.05). The IQ average score in the control group and ADHD group was 102.42 ± 16.26 and 96.72 ± 16.06, respectively, that reveals the negative effect of ADHD on IQ average value. There was an insignificance relationship between linguistic and naturalist intelligence ( P > 0.05). However, in other kinds of multiple intelligences, direct and significant relationships were observed ( P < 0.05). Since the levels of IQ (Raven test) and MI in control group were more significant than ADHD group, ADHD is likely to be associated with logical-mathematical, interpersonal, and intrapersonal profiles.

  6. The relationship between emotional intelligence and task-switching in temporal lobe epilepsy.

    PubMed

    Gul, Amara; Hussain, Imtiaz

    2016-01-01

    To examine the role of emotional intelligence (EI) in task-switching performance of patients with temporal lobe epilepsy (TLE). An experimental research design conducted at Sheikh Zayed Hospital, Rahim Yar Khan, Mayo and Services Hospital, Lahore, Pakistan from March 2013 to October 2014. Twenty-five patients with TLE and 25 healthy individuals from local community participated in the study. Participants completed measures of intelligence, EI, depression, anxiety, stress, and task-switching experiment. Patients and controls showed an average intelligence quotient, and normal levels of depression, anxiety, and stress. In contrast to controls, patients showed lower EI and impaired task-switching abilities. This result can be seen in the context of disintegrated white matter and cerebral connectivity in patients with TLE. Emotional intelligence was found to be a significant predictor of task-switching performance. Emotional intelligence is a potential marker of higher order cognitive functioning in patients with TLE.

  7. 77 FR 27202 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... includes: Electronic Warfare Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and Identifications (C4I/CNI), Autonomic Logistics Global Support System (ALGS... Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and...

  8. An intelligent FFR with a self-adjustable ventilation fan.

    PubMed

    Zhou, Song; Li, Hui; Shen, Shengnan; Li, Siyu; Wang, Wei; Zhang, Xiaotie; Yang, James

    2017-11-01

    This article presents an intelligent Filtering Facepiece Respirator (FFR) with a self-adjustable ventilation fan for improved comfort. The ventilation fan with an intelligent control aims to reduce temperature, relative humidity, and CO 2 concentrations inside the facepiece. Compared with a previous version of the FFR, the advantage of this new FFR is the intelligent control of the fan's rotation speed based on the change in temperature and relative humidity in the FFR dead space. The design of the control system utilizes an 8-bit, ultra-low power STC15W404AS microcontroller (HongJin technology, Shenzhen, China), and adopts a high-precision AM2320 device (AoSong electronic, Guangzhou, China) as temperature and relative humidity sensor so that control of temperature and relative humidity is realized in real time within the FFR dead space. The ventilation fan is intelligently driven and runs on a rechargeable lithium battery with a power-save mode that provides a correspondingly longer operational time. Meanwhile, the design is simplistic. Two experiments were performed to determine the best location to place the fan.

  9. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model

    PubMed Central

    LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei

    2017-01-01

    Background: We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. Methods: We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. Results: For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Conclusion: Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers. PMID:28828316

  10. Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery.

    PubMed

    Fu, Szu-Wei; Li, Pei-Chun; Lai, Ying-Hui; Yang, Cheng-Chien; Hsieh, Li-Chun; Tsao, Yu

    2017-11-01

    Objective: This paper focuses on machine learning based voice conversion (VC) techniques for improving the speech intelligibility of surgical patients who have had parts of their articulators removed. Because of the removal of parts of the articulator, a patient's speech may be distorted and difficult to understand. To overcome this problem, VC methods can be applied to convert the distorted speech such that it is clear and more intelligible. To design an effective VC method, two key points must be considered: 1) the amount of training data may be limited (because speaking for a long time is usually difficult for postoperative patients); 2) rapid conversion is desirable (for better communication). Methods: We propose a novel joint dictionary learning based non-negative matrix factorization (JD-NMF) algorithm. Compared to conventional VC techniques, JD-NMF can perform VC efficiently and effectively with only a small amount of training data. Results: The experimental results demonstrate that the proposed JD-NMF method not only achieves notably higher short-time objective intelligibility (STOI) scores (a standardized objective intelligibility evaluation metric) than those obtained using the original unconverted speech but is also significantly more efficient and effective than a conventional exemplar-based NMF VC method. Conclusion: The proposed JD-NMF method may outperform the state-of-the-art exemplar-based NMF VC method in terms of STOI scores under the desired scenario. Significance: We confirmed the advantages of the proposed joint training criterion for the NMF-based VC. Moreover, we verified that the proposed JD-NMF can effectively improve the speech intelligibility scores of oral surgery patients. Objective: This paper focuses on machine learning based voice conversion (VC) techniques for improving the speech intelligibility of surgical patients who have had parts of their articulators removed. Because of the removal of parts of the articulator, a patient's speech may be distorted and difficult to understand. To overcome this problem, VC methods can be applied to convert the distorted speech such that it is clear and more intelligible. To design an effective VC method, two key points must be considered: 1) the amount of training data may be limited (because speaking for a long time is usually difficult for postoperative patients); 2) rapid conversion is desirable (for better communication). Methods: We propose a novel joint dictionary learning based non-negative matrix factorization (JD-NMF) algorithm. Compared to conventional VC techniques, JD-NMF can perform VC efficiently and effectively with only a small amount of training data. Results: The experimental results demonstrate that the proposed JD-NMF method not only achieves notably higher short-time objective intelligibility (STOI) scores (a standardized objective intelligibility evaluation metric) than those obtained using the original unconverted speech but is also significantly more efficient and effective than a conventional exemplar-based NMF VC method. Conclusion: The proposed JD-NMF method may outperform the state-of-the-art exemplar-based NMF VC method in terms of STOI scores under the desired scenario. Significance: We confirmed the advantages of the proposed joint training criterion for the NMF-based VC. Moreover, we verified that the proposed JD-NMF can effectively improve the speech intelligibility scores of oral surgery patients.

  11. [Intelligence level and structure in school age children with fetal growth restriction].

    PubMed

    Ma, Jian; Ma, Hong-Wei; Tian, Xiao-Bo; Liu, Fang

    2009-10-01

    To study the intelligence level and structure in school age children with fetal growth restriction (FGR). The intelligence levels were tested by the Wechsler Children Scales of Intelligence (C-WISC) in 54 children with FGR and in 84 normal children. The full intelligence quotient (FIQ), verbal IQ (VIQ) and performance IQ (PIQ) in the FGR group were 105.9+/-10.3, 112.4+/-11.2 and 97.1+/-10.6 respectively, and they all were in a normal range. But the PIQ was significantly lower than that in the control group (104.8+/-10.5; p<0.001), and the picture arrangement and the decipher subtest scores were significantly lower than those in the control group (p<0.01). The scores of perception/organization and memory/attention factors in the FGR group were 99.8+/-11.1 and 116.3+/-14.4, respectively, which were inferior to those in the control group (104.6+/-11.5 and 113.4+/-14.5 respectively; p<0.05). The total intelligence level of children with FGR is normal, but there are imbalances in the intelligence structure and dysfunctions in performance ability related to right cerebral hemisphere. Performance trainings should be done from the infancy in children with FGR.

  12. The effect of group-based exercise on cognitive performance and mood in seniors residing in intermediate care and self-care retirement facilities: a randomised controlled trial.

    PubMed

    Brown, A K; Liu-Ambrose, T; Tate, R; Lord, S R

    2009-08-01

    To determine the effect of a general group-based exercise programme on cognitive performance and mood among seniors without dementia living in retirement villages. Randomised controlled trial. Four intermediate care and four self-care retirement village sites in Sydney, Australia. 154 seniors (19 men, 135 women; age range 62 to 95 years), who were residents of intermediate care and self-care retirement facilities. Participants were randomised to one of three experimental groups: (1) a general group-based exercise (GE) programme composed of resistance training and balance training exercises; (2) a flexibility exercise and relaxation technique (FR) programme; or (3) no-exercise control (NEC). The intervention groups (GE and FR) participated in 1-hour exercise classes twice a week for a total period of 6 months. Using standard neuropsychological tests, we assessed cognitive performance at baseline and at 6-month re-test in three domains: (1) fluid intelligence; (2) visual, verbal and working memory; and (3) executive functioning. We also assessed mood using the Geriatric Depression Scale (GDS) and the Positive and Negative Affect Schedule (PANAS). The GE programme significantly improved cognitive performance of fluid intelligence compared with FR or NEC. There were also significant improvements in the positive PANAS scale within both the GE and FR groups and an indication that the two exercise programmes reduced depression in those with initially high GDS scores. Our GE programme significantly improved cognitive performance of fluid intelligence in seniors residing in retirement villages compared with our FR programme and the NEC group. Furthermore, both group-based exercise programmes were beneficial for certain aspects of mood within the 6-month intervention period.

  13. Speech Prosody Across Stimulus Types for Individuals with Parkinson's Disease.

    PubMed

    K-Y Ma, Joan; Schneider, Christine B; Hoffmann, Rüdiger; Storch, Alexander

    2015-01-01

    Up to 89% of the individuals with Parkinson's disease (PD) experience speech problem over the course of the disease. Speech prosody and intelligibility are two of the most affected areas in hypokinetic dysarthria. However, assessment of these areas could potentially be problematic as speech prosody and intelligibility could be affected by the type of speech materials employed. To comparatively explore the effects of different types of speech stimulus on speech prosody and intelligibility in PD speakers. Speech prosody and intelligibility of two groups of individuals with varying degree of dysarthria resulting from PD was compared to that of a group of control speakers using sentence reading, passage reading and monologue. Acoustic analysis including measures on fundamental frequency (F0), intensity and speech rate was used to form a prosodic profile for each individual. Speech intelligibility was measured for the speakers with dysarthria using direct magnitude estimation. Difference in F0 variability between the speakers with dysarthria and control speakers was only observed in sentence reading task. Difference in the average intensity level was observed for speakers with mild dysarthria to that of the control speakers. Additionally, there were stimulus effect on both intelligibility and prosodic profile. The prosodic profile of PD speakers was different from that of the control speakers in the more structured task, and lower intelligibility was found in less structured task. This highlighted the value of both structured and natural stimulus to evaluate speech production in PD speakers.

  14. Design of a robotic vehicle with self-contained intelligent wheels

    NASA Astrophysics Data System (ADS)

    Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.

    1998-08-01

    The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.

  15. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    PubMed

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments.

  16. Applications of artificial intelligence to scientific research

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  17. An efficient representation of spatial information for expert reasoning in robotic vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Steven; Interrante, Mark

    1987-01-01

    The previous generation of robotic vehicles and drones was designed for a specific task, with limited flexibility in executing their mission. This limited flexibility arises because the robotic vehicles do not possess the intelligence and knowledge upon which to make significant tactical decisions. Current development of robotic vehicles is toward increased intelligence and capabilities, adapting to a changing environment and altering mission objectives. The latest techniques in artificial intelligence (AI) are being employed to increase the robotic vehicle's intelligent decision-making capabilities. This document describes the design of the SARA spatial database tool, which is composed of request parser, reasoning, computations, and database modules that collectively manage and derive information useful for robotic vehicles.

  18. The Effectiveness of Yoga on Spiritual Intelligence in Air Traffic Controllers of Tehran Flight Control Center

    ERIC Educational Resources Information Center

    Safara, Maryam; Ghasemi, Pejman

    2017-01-01

    The aim of this study was to evaluate the efficacy of yoga on spiritual intelligence in air traffic controllers in Tehran flight control center. This was a quasi-experimental research and the study population includes all air traffic controllers in Tehran flight control center. The sample consisted of 40 people of the study population that were…

  19. Estimation of urban runoff and water quality using remote sensing and artificial intelligence.

    PubMed

    Ha, S R; Park, S Y; Park, D H

    2003-01-01

    Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.

  20. Intelligent system of coordination and control for manufacturing

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2016-08-01

    This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.

Top