Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools
NASA Astrophysics Data System (ADS)
Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu
2018-03-01
Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.
Artificial Intelligence/Robotics Applications to Navy Aircraft Maintenance.
1984-06-01
other automatic machinery such as presses, molding machines , and numerically-controlled machine tools, just as people do. A-36...Robotics Technologies 3 B. Relevant AI Technologies 4 1. Expert Systems 4 2. Automatic Planning 4 3. Natural Language 5 4. Machine Vision...building machines that imitate human behavior. Artificial intelligence is concerned with the functions of the brain, whereas robotics include, in
Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao
2017-11-01
Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salehi, Mojtaba; Bahreininejad, Ardeshir
2011-08-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.
Salehi, Mojtaba
2010-01-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020
Developing an Intelligent Diagnosis and Assessment E-Learning Tool for Introductory Programming
ERIC Educational Resources Information Center
Huang, Chenn-Jung; Chen, Chun-Hua; Luo, Yun-Cheng; Chen, Hong-Xin; Chuang, Yi-Ta
2008-01-01
Recently, a lot of open source e-learning platforms have been offered for free in the Internet. We thus incorporate the intelligent diagnosis and assessment tool into an open software e-learning platform developed for programming language courses, wherein the proposed learning diagnosis assessment tools based on text mining and machine learning…
Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya
2017-09-01
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa
2012-01-01
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.
Designing a holistic end-to-end intelligent network analysis and security platform
NASA Astrophysics Data System (ADS)
Alzahrani, M.
2018-03-01
Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Toward Intelligent Machine Learning Algorithms
1988-05-01
Machine learning is recognized as a tool for improving the performance of many kinds of systems, yet most machine learning systems themselves are not...directed systems, and with the addition of a knowledge store for organizing and maintaining knowledge to assist learning, a learning machine learning (L...ML) algorithm is possible. The necessary components of L-ML systems are presented along with several case descriptions of existing machine learning systems
Intelligent image processing for machine safety
NASA Astrophysics Data System (ADS)
Harvey, Dennis N.
1994-10-01
This paper describes the use of intelligent image processing as a machine guarding technology. One or more color, linear array cameras are positioned to view the critical region(s) around a machine tool or other piece of manufacturing equipment. The image data is processed to provide indicators of conditions dangerous to the equipment via color content, shape content, and motion content. The data from these analyses is then sent to a threat evaluator. The purpose of the evaluator is to determine if a potentially machine-damaging condition exists based on the analyses of color, shape, and motion, and on `knowledge' of the specific environment of the machine. The threat evaluator employs fuzzy logic as a means of dealing with uncertainty in the vision data.
A machine learning system to improve heart failure patient assistance.
Guidi, Gabriele; Pettenati, Maria Chiara; Melillo, Paolo; Iadanza, Ernesto
2014-11-01
In this paper, we present a clinical decision support system (CDSS) for the analysis of heart failure (HF) patients, providing various outputs such as an HF severity evaluation, HF-type prediction, as well as a management interface that compares the different patients' follow-ups. The whole system is composed of a part of intelligent core and of an HF special-purpose management tool also providing the function to act as interface for the artificial intelligence training and use. To implement the smart intelligent functions, we adopted a machine learning approach. In this paper, we compare the performance of a neural network (NN), a support vector machine, a system with fuzzy rules genetically produced, and a classification and regression tree and its direct evolution, which is the random forest, in analyzing our database. Best performances in both HF severity evaluation and HF-type prediction functions are obtained by using the random forest algorithm. The management tool allows the cardiologist to populate a "supervised database" suitable for machine learning during his or her regular outpatient consultations. The idea comes from the fact that in literature there are a few databases of this type, and they are not scalable to our case.
Knowledge-Based Software Development Tools
1993-09-01
GREEN, C., AND WESTFOLD, S. Knowledge-based programming self-applied. In Machine Intelligence 10, J. E. Hayes, D. Mitchie, and Y. Pao, Eds., Wiley...Technical Report KES.U.84.2, Kestrel Institute, April 1984. [181 KORF, R. E. Toward a model of representation changes. Artificial Intelligence 14, 1...Artificial Intelligence 27, 1 (February 1985), 43-96. Replinted in Readings in Artificial Intelligence and Software Engineering, C. Rich •ad R. Waters
Research on intelligent monitoring technology of machining process
NASA Astrophysics Data System (ADS)
Wang, Taiyong; Meng, Changhong; Zhao, Guoli
1995-08-01
Based upon research on sound and vibration characteristics of tool condition, we explore the multigrade monitoring system which takes single-chip microcomputers as the core hardware. By using the specially designed pickup true signal devices, we can more effectively do the intelligent multigrade monitoring and forecasting, and furthermore, we can build the tool condition models adaptively. This is the key problem in FMS, CIMS, and even the IMS.
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
Role of artificial intelligence in the care of patients with nonsmall cell lung cancer.
Rabbani, Mohamad; Kanevsky, Jonathan; Kafi, Kamran; Chandelier, Florent; Giles, Francis J
2018-04-01
Lung cancer is the leading cause of cancer death worldwide. In up to 57% of patients, it is diagnosed at an advanced stage and the 5-year survival rate ranges between 10%-16%. There has been a significant amount of research using machine learning to generate tools using patient data to improve outcomes. This narrative review is based on research material obtained from PubMed up to Nov 2017. The search terms include "artificial intelligence," "machine learning," "lung cancer," "Nonsmall Cell Lung Cancer (NSCLC)," "diagnosis" and "treatment." Recent studies support the use of computer-aided systems and the use of radiomic features to help diagnose lung cancer earlier. Other studies have looked at machine learning (ML) methods that offer prognostic tools to doctors and help them in choosing personalized treatment options for their patients based on molecular, genetics and histological features. Combining artificial intelligence approaches into health care may serve as a beneficial tool for patients with NSCLC, and this review outlines these benefits and current shortcomings throughout the continuum of care. We present a review of the various applications of ML methods in NSCLC as it relates to improving diagnosis, treatment and outcomes. © 2018 Stichting European Society for Clinical Investigation Journal Foundation.
Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances
2009-10-01
and customizable. Thus, an intelligent interface should tailor its parameters to certain prescribed specifications or convert itself and adjust to...Computer Interaction 3(2): 87-122. [51] Schereiber, G., Akkermans, H., Anjewierden, A., de Hoog , R., Shadbolt, N., Van de Velde, W., & Wielinga, W
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
An overview of the artificial intelligence and expert systems component of RICIS
NASA Technical Reports Server (NTRS)
Feagin, Terry
1987-01-01
Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.
Intelligent fault-tolerant controllers
NASA Technical Reports Server (NTRS)
Huang, Chien Y.
1987-01-01
A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
Integrated piezoelectric actuators in deep drawing tools
NASA Astrophysics Data System (ADS)
Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.
2011-04-01
The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.
The role of soft computing in intelligent machines.
de Silva, Clarence W
2003-08-15
An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.
Applications of Support Vector Machines In Chemo And Bioinformatics
NASA Astrophysics Data System (ADS)
Jayaraman, V. K.; Sundararajan, V.
2010-10-01
Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.
The 1991 Goddard Conference on Space Applications of Artificial Intelligence
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor)
1991-01-01
The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.
A Boltzmann machine for the organization of intelligent machines
NASA Technical Reports Server (NTRS)
Moed, Michael C.; Saridis, George N.
1989-01-01
In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved to converge to the minimum of a cost function. Finally, simulations will show the effectiveness of a variety of search techniques for the intelligent machine.
ERIC Educational Resources Information Center
Chou, Chih-Yueh; Huang, Bau-Hung; Lin, Chi-Jen
2011-01-01
This study proposes a virtual teaching assistant (VTA) to share teacher tutoring tasks in helping students practice program tracing and proposes two mechanisms of complementing machine intelligence and human intelligence to develop the VTA. The first mechanism applies machine intelligence to extend human intelligence (teacher answers) to evaluate…
A Novel Artificial Intelligence System for Endotracheal Intubation.
Carlson, Jestin N; Das, Samarjit; De la Torre, Fernando; Frisch, Adam; Guyette, Francis X; Hodgins, Jessica K; Yealy, Donald M
2016-01-01
Adequate visualization of the glottic opening is a key factor to successful endotracheal intubation (ETI); however, few objective tools exist to help guide providers' ETI attempts toward the glottic opening in real-time. Machine learning/artificial intelligence has helped to automate the detection of other visual structures but its utility with ETI is unknown. We sought to test the accuracy of various computer algorithms in identifying the glottic opening, creating a tool that could aid successful intubation. We collected a convenience sample of providers who each performed ETI 10 times on a mannequin using a video laryngoscope (C-MAC, Karl Storz Corp, Tuttlingen, Germany). We recorded each attempt and reviewed one-second time intervals for the presence or absence of the glottic opening. Four different machine learning/artificial intelligence algorithms analyzed each attempt and time point: k-nearest neighbor (KNN), support vector machine (SVM), decision trees, and neural networks (NN). We used half of the videos to train the algorithms and the second half to test the accuracy, sensitivity, and specificity of each algorithm. We enrolled seven providers, three Emergency Medicine attendings, and four paramedic students. From the 70 total recorded laryngoscopic video attempts, we created 2,465 time intervals. The algorithms had the following sensitivity and specificity for detecting the glottic opening: KNN (70%, 90%), SVM (70%, 90%), decision trees (68%, 80%), and NN (72%, 78%). Initial efforts at computer algorithms using artificial intelligence are able to identify the glottic opening with over 80% accuracy. With further refinements, video laryngoscopy has the potential to provide real-time, direction feedback to the provider to help guide successful ETI.
The 1988 Goddard Conference on Space Applications of Artificial Intelligence
NASA Technical Reports Server (NTRS)
Rash, James (Editor); Hughes, Peter (Editor)
1988-01-01
This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.
Muhsen, Ibrahim N; ElHassan, Tusneem; Hashmi, Shahrukh K
2018-06-08
Currently, the evidence-based literature on healthcare is expanding exponentially. The opportunities provided by the advancement in artificial intelligence (AI) tools i.e. machine learning are appealing in tackling many of the current healthcare challenges. Thus, AI integration is expanding in most fields of healthcare, including the field of hematology. This study aims to review the current applications of AI in the field hematopoietic cell transplant (HCT). Literature search was done involving the following databases: Ovid-Medline including in-Process and Other Non-Indexed Citations and google scholar. The abstracts of the following professional societies: American Society of Haematology (ASH), American Society for Blood and Marrow Transplantation (ASBMT) and European Society for Blood and Marrow Transplantation (EBMT) were also screened. Literature review showed that the integration of AI in the field of HCT has grown remarkably in the last decade and confers promising avenues in diagnosis and prognosis within HCT populations targeting both pre and post-transplant challenges. Studies on AI integration in HCT have many limitations that include poorly tested algorithms, lack of generalizability and limited use of different AI tools. Machine learning techniques in HCT is an intense area of research that needs a lot of development and needs extensive support from hematology and HCT societies / organizations globally since we believe that this would be the future practice paradigm. Key words: Artificial intelligence, machine learning, hematopoietic cell transplant.
A Decision-Making Tools Workshop
1999-08-01
California Polytechnic State University, San Luis Obispo, CA 47 Distributed Intelligent Agents Katia Sycara, Keith Decker, Anandeep Pannu , Mike...Anandeep Pannu and Katia Sycara. Learning text filtering preferences. In 1996 AAAI Symposium on Machine Learning and Information Access, 1996. [19] Anand
Machine intelligence and robotics: Report of the NASA study group
NASA Technical Reports Server (NTRS)
1980-01-01
Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.
Biomimetics in Intelligent Sensor and Actuator Automation Systems
NASA Astrophysics Data System (ADS)
Bruckner, Dietmar; Dietrich, Dietmar; Zucker, Gerhard; Müller, Brit
Intelligent machines are really an old mankind's dream. With increasing technological development, the requirements for intelligent devices also increased. However, up to know, artificial intelligence (AI) lacks solutions to the demands of truly intelligent machines that have no problems to integrate themselves into daily human environments. Current hardware with a processing power of billions of operations per second (but without any model of human-like intelligence) could not substantially contribute to the intelligence of machines when compared with that of the early AI times. There are great results, of course. Machines are able to find the shortest path between far apart cities on the map; algorithms let you find information described only by few key words. But no machine is able to get us a cup of coffee from the kitchen yet.
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor)
1988-01-01
This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools methodologies.
Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro
2015-01-01
The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
Intelligence-Augmented Rat Cyborgs in Maze Solving.
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.
Intelligence-Augmented Rat Cyborgs in Maze Solving
Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui
2016-01-01
Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains. PMID:26859299
[Intelligent systems tools in the diagnosis of acute coronary syndromes: A systemic review].
Sprockel, John; Tejeda, Miguel; Yate, José; Diaztagle, Juan; González, Enrique
2017-03-27
Acute myocardial infarction is the leading cause of non-communicable deaths worldwide. Its diagnosis is a highly complex task, for which modelling through automated methods has been attempted. A systematic review of the literature was performed on diagnostic tests that applied intelligent systems tools in the diagnosis of acute coronary syndromes. A systematic review of the literature is presented using Medline, Embase, Scopus, IEEE/IET Electronic Library, ISI Web of Science, Latindex and LILACS databases for articles that include the diagnostic evaluation of acute coronary syndromes using intelligent systems. The review process was conducted independently by 2 reviewers, and discrepancies were resolved through the participation of a third person. The operational characteristics of the studied tools were extracted. A total of 35 references met the inclusion criteria. In 22 (62.8%) cases, neural networks were used. In five studies, the performances of several intelligent systems tools were compared. Thirteen studies sought to perform diagnoses of all acute coronary syndromes, and in 22, only infarctions were studied. In 21 cases, clinical and electrocardiographic aspects were used as input data, and in 10, only electrocardiographic data were used. Most intelligent systems use the clinical context as a reference standard. High rates of diagnostic accuracy were found with better performance using neural networks and support vector machines, compared with statistical tools of pattern recognition and decision trees. Extensive evidence was found that shows that using intelligent systems tools achieves a greater degree of accuracy than some clinical algorithms or scales and, thus, should be considered appropriate tools for supporting diagnostic decisions of acute coronary syndromes. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.
NASA Astrophysics Data System (ADS)
Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.
2011-07-01
Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.
Human evolution in the age of the intelligent machine
NASA Technical Reports Server (NTRS)
Mclaughlin, W. I.
1983-01-01
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
Human evolution in the age of the intelligent machine
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
Analysis in Motion Initiative – Human Machine Intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie
As computers and machines become more pervasive in our everyday lives, we are looking for ways for humans and machines to work more intelligently together. How can we help machines understand their users so the team can do smarter things together? The Analysis in Motion Initiative is advancing the science of human machine intelligence — creating human-machine teams that work better together to make correct, useful, and timely interpretations of data.
NASA Technical Reports Server (NTRS)
Shewhart, Mark
1991-01-01
Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.
On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process
NASA Astrophysics Data System (ADS)
Hongzhi, Zhao; Jian, Zhang
2018-03-01
The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.
The Machine Intelligence Hex Project
ERIC Educational Resources Information Center
Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran
2005-01-01
Hex is a challenging strategy board game for two players. To enhance students' progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex…
Compact Microscope Imaging System With Intelligent Controls Improved
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.
Research on intelligent machine self-perception method based on LSTM
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cheng, Tao
2018-05-01
In this paper, we use the advantages of LSTM in feature extraction and processing high-dimensional and complex nonlinear data, and apply it to the autonomous perception of intelligent machines. Compared with the traditional multi-layer neural network, this model has memory, can handle time series information of any length. Since the multi-physical domain signals of processing machines have a certain timing relationship, and there is a contextual relationship between states and states, using this deep learning method to realize the self-perception of intelligent processing machines has strong versatility and adaptability. The experiment results show that the method proposed in this paper can obviously improve the sensing accuracy under various working conditions of the intelligent machine, and also shows that the algorithm can well support the intelligent processing machine to realize self-perception.
Sun, Xin; Young, Jennifer; Liu, Jeng-Hung; Newman, David
2018-06-01
The objective of this project was to develop a computer vision system (CVS) for objective measurement of pork loin under industry speed requirement. Color images of pork loin samples were acquired using a CVS. Subjective color and marbling scores were determined according to the National Pork Board standards by a trained evaluator. Instrument color measurement and crude fat percentage were used as control measurements. Image features (18 color features; 1 marbling feature; 88 texture features) were extracted from whole pork loin color images. Artificial intelligence prediction model (support vector machine) was established for pork color and marbling quality grades. The results showed that CVS with support vector machine modeling reached the highest prediction accuracy of 92.5% for measured pork color score and 75.0% for measured pork marbling score. This research shows that the proposed artificial intelligence prediction model with CVS can provide an effective tool for predicting color and marbling in the pork industry at online speeds. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nieten, Joseph L.; Burke, Roger
1993-03-01
The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.
Design consideration in constructing high performance embedded Knowledge-Based Systems (KBS)
NASA Technical Reports Server (NTRS)
Dalton, Shelly D.; Daley, Philip C.
1988-01-01
As the hardware trends for artificial intelligence (AI) involve more and more complexity, the process of optimizing the computer system design for a particular problem will also increase in complexity. Space applications of knowledge based systems (KBS) will often require an ability to perform both numerically intensive vector computations and real time symbolic computations. Although parallel machines can theoretically achieve the speeds necessary for most of these problems, if the application itself is not highly parallel, the machine's power cannot be utilized. A scheme is presented which will provide the computer systems engineer with a tool for analyzing machines with various configurations of array, symbolic, scaler, and multiprocessors. High speed networks and interconnections make customized, distributed, intelligent systems feasible for the application of AI in space. The method presented can be used to optimize such AI system configurations and to make comparisons between existing computer systems. It is an open question whether or not, for a given mission requirement, a suitable computer system design can be constructed for any amount of money.
Intelligent open-architecture controller using knowledge server
NASA Astrophysics Data System (ADS)
Nacsa, Janos; Kovacs, George L.; Haidegger, Geza
2001-12-01
In an ideal scenario of intelligent machine tools [22] the human mechanist was almost replaced by the controller. During the last decade many efforts have been made to get closer to this ideal scenario, but the way of information processing within the CNC did not change too much. The paper summarizes the requirements of an intelligent CNC evaluating the different research efforts done in this field using different artificial intelligence (AI) methods. The need for open CNC architecture was emerging at many places around the world. The second part of the paper introduces and shortly compares these efforts. In the third part a low cost concept for intelligent and open systems named Knowledge Server for Controllers (KSC) is introduced. It allows more devices to solve their intelligent processing needs using the same server that is capable to process intelligent data. In the final part the KSC concept is used in an open CNC environment to build up some elements of an intelligent CNC. The preliminary results of the implementation are also introduced.
Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J
2014-01-01
Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented.
Application of Artificial Intelligence to the DoD Corporate Information Management (CIM) Program
1992-04-01
problem of balancing the investments of the corporation between several possible assets; buildings, machine tools, training, R&D and "information...and quality of worklife /learning/empowerment. For the moment the driving factor for the DoD has been identified as cost reduction, however it is clear
Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne
2002-01-01
Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.
Tajmir, Shahein H; Alkasab, Tarik K
2018-06-01
Radiology practice will be altered by the coming of artificial intelligence, and the process of learning in radiology will be similarly affected. In the short term, radiologists will need to understand the first wave of artificially intelligent tools, how they can help them improve their practice, and be able to effectively supervise their use. Radiology training programs will need to develop curricula to help trainees acquire the knowledge to carry out this new supervisory duty of radiologists. In the longer term, artificially intelligent software assistants could have a transformative effect on the training of residents and fellows, and offer new opportunities to bring learning into the ongoing practice of attending radiologists. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Machine learning for the meta-analyses of microbial pathogens' volatile signatures.
Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A
2018-02-20
Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.
Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems
2016-06-01
research is being done to incorporate the field of machine learning into intrusion detection. Machine learning is a branch of artificial intelligence (AI...adversarial drift." Proceedings of the 2013 ACM workshop on Artificial intelligence and security. ACM. (2013) Kantarcioglu, M., Xi, B., and Clifton, C. "A...34 Proceedings of the 4th ACM workshop on Security and artificial intelligence . ACM. (2011) Dua, S., and Du, X. Data Mining and Machine Learning in
Analytical design of intelligent machines
NASA Technical Reports Server (NTRS)
Saridis, George N.; Valavanis, Kimon P.
1987-01-01
The problem of designing 'intelligent machines' to operate in uncertain environments with minimum supervision or interaction with a human operator is examined. The structure of an 'intelligent machine' is defined to be the structure of a Hierarchically Intelligent Control System, composed of three levels hierarchically ordered according to the principle of 'increasing precision with decreasing intelligence', namely: the organizational level, performing general information processing tasks in association with a long-term memory; the coordination level, dealing with specific information processing tasks with a short-term memory; and the control level, which performs the execution of various tasks through hardware using feedback control methods. The behavior of such a machine may be managed by controls with special considerations and its 'intelligence' is directly related to the derivation of a compatible measure that associates the intelligence of the higher levels with the concept of entropy, which is a sufficient analytic measure that unifies the treatment of all the levels of an 'intelligent machine' as the mathematical problem of finding the right sequence of internal decisions and controls for a system structured in the order of intelligence and inverse order of precision such that it minimizes its total entropy. A case study on the automatic maintenance of a nuclear plant illustrates the proposed approach.
The Society of Brains: How Alan Turing and Marvin Minsky Were Both Right
NASA Astrophysics Data System (ADS)
Struzik, Zbigniew R.
2015-04-01
In his well-known prediction, Alan Turing stated that computer intelligence would surpass human intelligence by the year 2000. Although the Turing Test, as it became known, was devised to be played by one human against one computer, this is not a fair setup. Every human is a part of a social network, and a fairer comparison would be a contest between one human at the console and a network of computers behind the console. Around the year 2000, the number of web pages on the WWW overtook the number of neurons in the human brain. But these websites would be of little use without the ability to search for knowledge. By the year 2000 Google Inc. had become the search engine of choice, and the WWW became an intelligent entity. This was not without good reason. The basis for the search engine was the analysis of the ’network of knowledge’. The PageRank algorithm, linking information on the web according to the hierarchy of ‘link popularity’, continues to provide the basis for all of Google's web search tools. While PageRank was developed by Larry Page and Sergey Brin in 1996 as part of a research project about a new kind of search engine, PageRank is in its essence the key to representing and using static knowledge in an emergent intelligent system. Here I argue that Alan Turing was right, as hybrid human-computer internet machines have already surpassed our individual intelligence - this was done around the year 2000 by the Internet - the socially-minded, human-computer hybrid Homo computabilis-socialis. Ironically, the Internet's intelligence also emerged to a large extent from ‘exploiting’ humans - the key to the emergence of machine intelligence has been discussed by Marvin Minsky in his work on the foundations of intelligence through interacting agents’ knowledge. As a consequence, a decade and a half decade into the 21st century, we appear to be much better equipped to tackle the problem of the social origins of humanity - in particular thanks to the power of the intelligent partner-in-the-quest machine, however, we should not wait too long...
Toward an Improvement of the Analysis of Neural Coding.
Alegre-Cortés, Javier; Soto-Sánchez, Cristina; Albarracín, Ana L; Farfán, Fernando D; Val-Calvo, Mikel; Ferrandez, José M; Fernandez, Eduardo
2017-01-01
Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time-Frequency (T-F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T-F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T-F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain-machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
A Boltzmann machine for the organization of intelligent machines
NASA Technical Reports Server (NTRS)
Moed, Michael C.; Saridis, George N.
1990-01-01
A three-tier structure consisting of organization, coordination, and execution levels forms the architecture of an intelligent machine using the principle of increasing precision with decreasing intelligence from a hierarchically intelligent control. This system has been formulated as a probabilistic model, where uncertainty and imprecision can be expressed in terms of entropies. The optimal strategy for decision planning and task execution can be found by minimizing the total entropy in the system. The focus is on the design of the organization level as a Boltzmann machine. Since this level is responsible for planning the actions of the machine, the Boltzmann machine is reformulated to use entropy as the cost function to be minimized. Simulated annealing, expanding subinterval random search, and the genetic algorithm are presented as search techniques to efficiently find the desired action sequence and illustrated with numerical examples.
Multi-intelligence critical rating assessment of fusion techniques (MiCRAFT)
NASA Astrophysics Data System (ADS)
Blasch, Erik
2015-06-01
Assessment of multi-intelligence fusion techniques includes credibility of algorithm performance, quality of results against mission needs, and usability in a work-domain context. Situation awareness (SAW) brings together low-level information fusion (tracking and identification), high-level information fusion (threat and scenario-based assessment), and information fusion level 5 user refinement (physical, cognitive, and information tasks). To measure SAW, we discuss the SAGAT (Situational Awareness Global Assessment Technique) technique for a multi-intelligence fusion (MIF) system assessment that focuses on the advantages of MIF against single intelligence sources. Building on the NASA TLX (Task Load Index), SAGAT probes, SART (Situational Awareness Rating Technique) questionnaires, and CDM (Critical Decision Method) decision points; we highlight these tools for use in a Multi-Intelligence Critical Rating Assessment of Fusion Techniques (MiCRAFT). The focus is to measure user refinement of a situation over the information fusion quality of service (QoS) metrics: timeliness, accuracy, confidence, workload (cost), and attention (throughput). A key component of any user analysis includes correlation, association, and summarization of data; so we also seek measures of product quality and QuEST of information. Building a notion of product quality from multi-intelligence tools is typically subjective which needs to be aligned with objective machine metrics.
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1998-01-01
Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.
Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants.
Sanchez, Justin C; Mahmoudi, Babak; DiGiovanna, Jack; Principe, Jose C
2009-04-01
The success of brain-machine interfaces (BMI) is enabled by the remarkable ability of the brain to incorporate the artificial neuroprosthetic 'tool' into its own cognitive space and use it as an extension of the user's body. Unlike other tools, neuroprosthetics create a shared space that seamlessly spans the user's internal goal representation of the world and the external physical environment enabling a much deeper human-tool symbiosis. A key factor in the transformation of 'simple tools' into 'intelligent tools' is the concept of co-adaptation where the tool becomes functionally involved in the extraction and definition of the user's goals. Recent advancements in the neuroscience and engineering of neuroprosthetics are providing a blueprint for how new co-adaptive designs based on reinforcement learning change the nature of a user's ability to accomplish tasks that were not possible using conventional methodologies. By designing adaptive controls and artificial intelligence into the neural interface, tools can become active assistants in goal-directed behavior and further enhance human performance in particular for the disabled population. This paper presents recent advances in computational and neural systems supporting the development of symbiotic neuroprosthetic assistants.
Neural networks with fuzzy Petri nets for modeling a machining process
NASA Astrophysics Data System (ADS)
Hanna, Moheb M.
1998-03-01
The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.
Automatic welding detection by an intelligent tool pipe inspection
NASA Astrophysics Data System (ADS)
Arizmendi, C. J.; Garcia, W. L.; Quintero, M. A.
2015-07-01
This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called “smart pig” in Oil and Gas pipelines. The model uses a signal noise reduction phase by means of pre-processing algorithms and attribute-selection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.
Mekid, Samir; Vacharanukul, Ketsaya
2006-01-01
To achieve dynamic error compensation in CNC machine tools, a non-contact laser probe capable of dimensional measurement of a workpiece while it is being machined has been developed and presented in this paper. The measurements are automatically fed back to the machine controller for intelligent error compensations. Based on a well resolved laser Doppler technique and real time data acquisition, the probe delivers a very promising dimensional accuracy at few microns over a range of 100 mm. The developed optical measuring apparatus employs a differential laser Doppler arrangement allowing acquisition of information from the workpiece surface. In addition, the measurements are traceable to standards of frequency allowing higher precision.
Artificial intelligence in healthcare: past, present and future.
Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun
2017-12-01
Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.
A review of intelligent systems for heart sound signal analysis.
Nabih-Ali, Mohammed; El-Dahshan, El-Sayed A; Yahia, Ashraf S
2017-10-01
Intelligent computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. CAD systems could provide physicians with a suggestion about the diagnostic of heart diseases. The objective of this paper is to review the recent published preprocessing, feature extraction and classification techniques and their state of the art of phonocardiogram (PCG) signal analysis. Published literature reviewed in this paper shows the potential of machine learning techniques as a design tool in PCG CAD systems and reveals that the CAD systems for PCG signal analysis are still an open problem. Related studies are compared to their datasets, feature extraction techniques and the classifiers they used. Current achievements and limitations in developing CAD systems for PCG signal analysis using machine learning techniques are presented and discussed. In the light of this review, a number of future research directions for PCG signal analysis are provided.
Artificial intelligence in healthcare: past, present and future
Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun
2017-01-01
Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI. PMID:29507784
Virtual collaborative environments: programming and controlling robotic devices remotely
NASA Astrophysics Data System (ADS)
Davies, Brady R.; McDonald, Michael J., Jr.; Harrigan, Raymond W.
1995-12-01
This paper describes a technology for remote sharing of intelligent electro-mechanical devices. An architecture and actual system have been developed and tested, based on the proposed National Information Infrastructure (NII) or Information Highway, to facilitate programming and control of intelligent programmable machines (like robots, machine tools, etc.). Using appropriate geometric models, integrated sensors, video systems, and computing hardware; computer controlled resources owned and operated by different (in a geographic sense as well as legal sense) entities can be individually or simultaneously programmed and controlled from one or more remote locations. Remote programming and control of intelligent machines will create significant opportunities for sharing of expensive capital equipment. Using the technology described in this paper, university researchers, manufacturing entities, automation consultants, design entities, and others can directly access robotic and machining facilities located across the country. Disparate electro-mechanical resources will be shared in a manner similar to the way supercomputers are accessed by multiple users. Using this technology, it will be possible for researchers developing new robot control algorithms to validate models and algorithms right from their university labs without ever owning a robot. Manufacturers will be able to model, simulate, and measure the performance of prospective robots before selecting robot hardware optimally suited for their intended application. Designers will be able to access CNC machining centers across the country to fabricate prototypic parts during product design validation. An existing prototype architecture and system has been developed and proven. Programming and control of a large gantry robot located at Sandia National Laboratories in Albuquerque, New Mexico, was demonstrated from such remote locations as Washington D.C., Washington State, and Southern California.
Bini, Stefano A
2018-02-27
This article was presented at the 2017 annual meeting of the American Association of Hip and Knee Surgeons to introduce the members gathered as the audience to the concepts behind artificial intelligence (AI) and the applications that AI can have in the world of health care today. We discuss the origin of AI, progress to machine learning, and then discuss how the limits of machine learning lead data scientists to develop artificial neural networks and deep learning algorithms through biomimicry. We will place all these technologies in the context of practical clinical examples and show how AI can act as a tool to support and amplify human cognitive functions for physicians delivering care to increasingly complex patients. The aim of this article is to provide the reader with a basic understanding of the fundamentals of AI. Its purpose is to demystify this technology for practicing surgeons so they can better understand how and where to apply it. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning bayesian expert system; a natural language generation system for a heterogeneous distributed database system; competence-switching'' managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning Bayesian Expert System; a natural language generation system for a heterogeneous distributed database system; ``competence-switching`` managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
Concept Map Value Propagation for Tactical Intelligence
2007-06-01
meaningful diagrams: KMap, SmartDraw , MindGenius, and so on. However, CmapTools is the package we are using for this project. The software , produced by the...Cmap, driven by expected variability in the value of a datum and cost to get a new value. We use the CmapTools software developed with DoD support at... software developed with DoD support at the Institute of Human and Machine Cognition as a structural basis for creating and assessing tactical Cmaps. The
The NASA Program Management Tool: A New Vision in Business Intelligence
NASA Technical Reports Server (NTRS)
Maluf, David A.; Swanson, Keith; Putz, Peter; Bell, David G.; Gawdiak, Yuri
2006-01-01
This paper describes a novel approach to business intelligence and program management for large technology enterprises like the U.S. National Aeronautics and Space Administration (NASA). Two key distinctions of the approach are that 1) standard business documents are the user interface, and 2) a "schema-less" XML database enables flexible integration of technology information for use by both humans and machines in a highly dynamic environment. The implementation utilizes patent-pending NASA software called the NASA Program Management Tool (PMT) and its underlying "schema-less" XML database called Netmark. Initial benefits of PMT include elimination of discrepancies between business documents that use the same information and "paperwork reduction" for program and project management in the form of reducing the effort required to understand standard reporting requirements and to comply with those reporting requirements. We project that the underlying approach to business intelligence will enable significant benefits in the timeliness, integrity and depth of business information available to decision makers on all organizational levels.
Medical Education Must Move from the Information Age to the Age of Artificial Intelligence.
Wartman, Steven A; Combs, C Donald
2017-11-01
Changes to the medical profession require medical education reforms that will enable physicians to more effectively enter contemporary practice. Proposals for such reforms abound. Common themes include renewed emphasis on communication, teamwork, risk-management, and patient safety. These reforms are important but insufficient. They do not adequately address the most fundamental change--the practice of medicine is rapidly transitioning from the information age to the age of artificial intelligence. Employers need physicians who: work at the top of their license, have knowledge spanning the health professions and care continuum, effectively leverage data platforms, focus on analyzing outcomes and improving performance, and communicate the meaning of the probabilities generated by massive amounts of data to patients given their unique human complexities.Future medical practice will have four characteristics that must be addressed in medical education: care will be (1) provided in many locations; (2) provided by newly-constituted health care teams; and (3) based on a growing array of data from multiple sources and artificial intelligence applications; and (4) the interface between medicine and machines will need to be skillfully managed. Thus, medical education must make better use of the findings of cognitive psychology, pay more attention to the alignment of humans and machines in education, and increase the use of simulations. Medical education will need to evolve to include systematic curricular attention to the organization of professional effort among health professionals, the use of intelligence tools like machine learning and robots, and a relentless focus on improving performance and patient outcomes. [end of abstract].
ERIC Educational Resources Information Center
Wash, Darrel Patrick
1989-01-01
Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)
Machine listening intelligence
NASA Astrophysics Data System (ADS)
Cella, C. E.
2017-05-01
This manifesto paper will introduce machine listening intelligence, an integrated research framework for acoustic and musical signals modelling, based on signal processing, deep learning and computational musicology.
A study on the applications of AI in finishing of additive manufacturing parts
NASA Astrophysics Data System (ADS)
Fathima Patham, K.
2017-06-01
Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1991-01-01
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Automatic spin-chain learning to explore the quantum speed limit
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Ming; Cui, Zi-Wei; Wang, Xin; Yung, Man-Hong
2018-05-01
One of the ambitious goals of artificial intelligence is to build a machine that outperforms human intelligence, even if limited knowledge and data are provided. Reinforcement learning (RL) provides one such possibility to reach this goal. In this work, we consider a specific task from quantum physics, i.e., quantum state transfer in a one-dimensional spin chain. The mission for the machine is to find transfer schemes with the fastest speeds while maintaining high transfer fidelities. The first scenario we consider is when the Hamiltonian is time independent. We update the coupling strength by minimizing a loss function dependent on both the fidelity and the speed. Compared with a scheme proven to be at the quantum speed limit for the perfect state transfer, the scheme provided by RL is faster while maintaining the infidelity below 5 ×10-4 . In the second scenario where a time-dependent external field is introduced, we convert the state transfer process into a Markov decision process that can be understood by the machine. We solve it with the deep Q-learning algorithm. After training, the machine successfully finds transfer schemes with high fidelities and speeds, which are faster than previously known ones. These results show that reinforcement learning can be a powerful tool for quantum control problems.
Integrated flexible manufacturing program for manufacturing automation and rapid prototyping
NASA Technical Reports Server (NTRS)
Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.
1993-01-01
The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.
Trust metrics in information fusion
NASA Astrophysics Data System (ADS)
Blasch, Erik
2014-05-01
Trust is an important concept for machine intelligence and is not consistent across many applications. In this paper, we seek to understand trust from a variety of factors: humans, sensors, communications, intelligence processing algorithms and human-machine displays of information. In modeling the various aspects of trust, we provide an example from machine intelligence that supports the various attributes of measuring trust such as sensor accuracy, communication timeliness, machine processing confidence, and display throughput to convey the various attributes that support user acceptance of machine intelligence results. The example used is fusing video and text whereby an analyst needs trust information in the identified imagery track. We use the proportional conflict redistribution rule as an information fusion technique that handles conflicting data from trusted and mistrusted sources. The discussion of the many forms of trust explored in the paper seeks to provide a systems-level design perspective for information fusion trust quantification.
Integrated human-machine intelligence in space systems.
Boy, G A
1992-07-01
This paper presents an artificial intelligence approach to integrated human-machine intelligence in space systems. It discusses the motivations for Intelligent Assistant Systems in both nominal and abnormal situations. The problem of constructing procedures is shown to be a very critical issue. In particular, keeping procedural experience in both design and operation is critical. We suggest what artificial intelligence can offer in this direction. Some crucial problems induced by this approach are discussed in detail. Finally, we analyze the various roles that would be shared by both astronauts, ground operators, and the intelligent assistant system.
Using the network to achieve energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giglio, M.
1995-12-01
Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997.more » Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.« less
NASA Technical Reports Server (NTRS)
Nieten, Joseph; Burke, Roger
1993-01-01
Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.
Integrated human-machine intelligence in space systems
NASA Technical Reports Server (NTRS)
Boy, Guy A.
1992-01-01
The integration of human and machine intelligence in space systems is outlined with respect to the contributions of artificial intelligence. The current state-of-the-art in intelligent assistant systems (IASs) is reviewed, and the requirements of some real-world applications of the technologies are discussed. A concept of integrated human-machine intelligence is examined in the contexts of: (1) interactive systems that tolerate human errors; (2) systems for the relief of workloads; and (3) interactive systems for solving problems in abnormal situations. Key issues in the development of IASs include the compatibility of the systems with astronauts in terms of inputs/outputs, processing, real-time AI, and knowledge-based system validation. Real-world applications are suggested such as the diagnosis, planning, and control of enginnered systems.
Bissert, P T; Carr, J L; DuCarme, J P; Smith, A K
2016-01-01
The continuous mining machine is a key piece of equipment used in underground coal mining operations. Over the past several decades these machines have been involved in a number of mine worker fatalities. Proximity detection systems have been developed to avert hazards associated with operating continuous mining machines. Incorporating intelligent design into proximity detection systems allows workers greater freedom to position themselves to see visual cues or avoid other hazards such as haulage equipment or unsupported roof or ribs. However, intelligent systems must be as safe as conventional proximity detection systems. An evaluation of the 39 fatal accidents for which the Mine Safety and Health Administration has published fatality investigation reports was conducted to determine whether the accident may have been prevented by conventional or intelligent proximity. Multiple zone configurations for the intelligent systems were studied to determine how system performance might be affected by the zone configuration. Researchers found that 32 of the 39 fatalities, or 82 percent, may have been prevented by both conventional and intelligent proximity systems. These results indicate that, by properly configuring the zones of an intelligent proximity detection system, equivalent protection to a conventional system is possible.
Humans and Autonomy: Implications of Shared Decision Making for Military Operations
2017-01-01
and machine learning transparency are identified as future research opportunities. 15. SUBJECT TERMS autonomy, human factors, intelligent agents...network as either the mission changes or an agent becomes disabled (DSB 2012). Fig. 2 Control structures for human agent teams. Robots without tools... learning (ML) algorithms monitor progress. However, operators have final executive authority; they are able to tweak the plan or choose an option
Architectures for intelligent machines
NASA Technical Reports Server (NTRS)
Saridis, George N.
1991-01-01
The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.
Simulation research on the process of large scale ship plane segmentation intelligent workshop
NASA Astrophysics Data System (ADS)
Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei
2017-04-01
Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.
Ramp Technology and Intelligent Processing in Small Manufacturing
NASA Technical Reports Server (NTRS)
Rentz, Richard E.
1992-01-01
To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.
Ramp technology and intelligent processing in small manufacturing
NASA Astrophysics Data System (ADS)
Rentz, Richard E.
1992-04-01
To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.
Machine learning research 1989-90
NASA Technical Reports Server (NTRS)
Porter, Bruce W.; Souther, Arthur
1990-01-01
Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.
Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course
ERIC Educational Resources Information Center
Wallace, Scott A.; McCartney, Robert; Russell, Ingrid
2010-01-01
Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…
Cooperative analysis expert situation assessment research
NASA Technical Reports Server (NTRS)
Mccown, Michael G.
1987-01-01
For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.
Machine learning applications in proteomics research: how the past can boost the future.
Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart
2014-03-01
Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intelligent Manufacturing of Commercial Optics Final Report CRADA No. TC-0313-92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J. S.; Pollicove, H.
The project combined the research and development efforts of LLNL and the University of Rochester Center for Manufacturing Optics (COM), to develop a new generation of flexible computer controlled optics· grinding machines. COM's principal near term development effort is to commercialize the OPTICAM-SM, a new prototype spherical grinding machine. A crucial requirement for commercializing the OPTICAM-SM is the development of a predictable and repeatable material removal process ( deterministic micro-grinding) that yields high quality surfaces that minimize non-deterministic polishing. OPTICAM machine tools and the fabrication process development studies are part of COM' s response to the DOD (ARPA) request tomore » implement a modernization strategy for revitalizing the U.S. optics manufacturing base. This project was entered into in order to develop a new generation of :flexible, computer-controlled optics grinding machines.« less
Multi-Intelligence Analytics for Next Generation Analysts (MIAGA)
NASA Astrophysics Data System (ADS)
Blasch, Erik; Waltz, Ed
2016-05-01
Current analysts are inundated with large volumes of data from which extraction, exploitation, and indexing are required. A future need for next-generation analysts is an appropriate balance between machine analytics from raw data and the ability of the user to interact with information through automation. Many quantitative intelligence tools and techniques have been developed which are examined towards matching analyst opportunities with recent technical trends such as big data, access to information, and visualization. The concepts and techniques summarized are derived from discussions with real analysts, documented trends of technical developments, and methods to engage future analysts with multiintelligence services. For example, qualitative techniques should be matched against physical, cognitive, and contextual quantitative analytics for intelligence reporting. Future trends include enabling knowledge search, collaborative situational sharing, and agile support for empirical decision-making and analytical reasoning.
Automated planning for intelligent machines in energy-related applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbin, C.R.; de Saussure, G.; Barhen, J.
1984-01-01
This paper discusses the current activities of the Center for Engineering Systems Advanced Research (CESAR) program related to plan generation and execution by an intelligent machine. The system architecture for the CESAR mobile robot (named HERMIES-1) is described. The minimal cut-set approach is developed to reduce the tree search time of conventional backward chaining planning techniques. Finally, a real-time concept of an Intelligent Machine Operating System is presented in which planning and reasoning is embedded in a system for resource allocation and process management.
Computational Intelligence in Early Diabetes Diagnosis: A Review
Shankaracharya; Odedra, Devang; Samanta, Subir; Vidyarthi, Ambarish S.
2010-01-01
The development of an effective diabetes diagnosis system by taking advantage of computational intelligence is regarded as a primary goal nowadays. Many approaches based on artificial network and machine learning algorithms have been developed and tested against diabetes datasets, which were mostly related to individuals of Pima Indian origin. Yet, despite high accuracies of up to 99% in predicting the correct diabetes diagnosis, none of these approaches have reached clinical application so far. One reason for this failure may be that diabetologists or clinical investigators are sparsely informed about, or trained in the use of, computational diagnosis tools. Therefore, this article aims at sketching out an outline of the wide range of options, recent developments, and potentials in machine learning algorithms as diabetes diagnosis tools. One focus is on supervised and unsupervised methods, which have made significant impacts in the detection and diagnosis of diabetes at primary and advanced stages. Particular attention is paid to algorithms that show promise in improving diabetes diagnosis. A key advance has been the development of a more in-depth understanding and theoretical analysis of critical issues related to algorithmic construction and learning theory. These include trade-offs for maximizing generalization performance, use of physically realistic constraints, and incorporation of prior knowledge and uncertainty. The review presents and explains the most accurate algorithms, and discusses advantages and pitfalls of methodologies. This should provide a good resource for researchers from all backgrounds interested in computational intelligence-based diabetes diagnosis methods, and allows them to extend their knowledge into this kind of research. PMID:21713313
Computational intelligence in early diabetes diagnosis: a review.
Shankaracharya; Odedra, Devang; Samanta, Subir; Vidyarthi, Ambarish S
2010-01-01
The development of an effective diabetes diagnosis system by taking advantage of computational intelligence is regarded as a primary goal nowadays. Many approaches based on artificial network and machine learning algorithms have been developed and tested against diabetes datasets, which were mostly related to individuals of Pima Indian origin. Yet, despite high accuracies of up to 99% in predicting the correct diabetes diagnosis, none of these approaches have reached clinical application so far. One reason for this failure may be that diabetologists or clinical investigators are sparsely informed about, or trained in the use of, computational diagnosis tools. Therefore, this article aims at sketching out an outline of the wide range of options, recent developments, and potentials in machine learning algorithms as diabetes diagnosis tools. One focus is on supervised and unsupervised methods, which have made significant impacts in the detection and diagnosis of diabetes at primary and advanced stages. Particular attention is paid to algorithms that show promise in improving diabetes diagnosis. A key advance has been the development of a more in-depth understanding and theoretical analysis of critical issues related to algorithmic construction and learning theory. These include trade-offs for maximizing generalization performance, use of physically realistic constraints, and incorporation of prior knowledge and uncertainty. The review presents and explains the most accurate algorithms, and discusses advantages and pitfalls of methodologies. This should provide a good resource for researchers from all backgrounds interested in computational intelligence-based diabetes diagnosis methods, and allows them to extend their knowledge into this kind of research.
Functional specifications for AI software tools for electric power applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faught, W.S.
1985-08-01
The principle barrier to the introduction of artificial intelligence (AI) technology to the electric power industry has not been a lack of interest or appropriate problems, for the industry abounds in both. Like most others, however, the electric power industry lacks the personnel - knowledge engineers - with the special combination of training and skills AI programming demands. Conversely, very few AI specialists are conversant with electric power industry problems and applications. The recent availability of sophisticated AI programming environments is doing much to alleviate this shortage. These products provide a set of powerful and usable software tools that enablemore » even non-AI scientists to rapidly develop AI applications. The purpose of this project was to develop functional specifications for programming tools that, when integrated with existing general-purpose knowledge engineering tools, would expedite the production of AI applications for the electric power industry. Twelve potential applications, representative of major problem domains within the nuclear power industry, were analyzed in order to identify those tools that would be of greatest value in application development. Eight tools were specified, including facilities for power plant modeling, data base inquiry, simulation and machine-machine interface.« less
Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.
Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin
2018-01-01
We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.
Defense Logistics Standard Systems Functional Requirements.
1987-03-01
Artificial Intelligence - the development of a machine capability to perform functions normally concerned with human intelligence, such as learning , adapting...Basic Data Base Machine Configurations .... ......... D- 18 xx ~ ?f~~~vX PART I: MODELS - DEFENSE LOGISTICS STANDARD SYSTEMS FUNCTIONAL REQUIREMENTS...On-line, Interactive Access. Integrating user input and machine output in a dynamic, real-time, give-and- take process is considered the optimum mode
NASA Technical Reports Server (NTRS)
Potter, William J.; Mitchell, Christine M.
1993-01-01
Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard. Preliminary results are given on CMS commonalities and causes of low re-use, and methods are proposed to facilitate increased re-use.
Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology.
Syeda-Mahmood, Tanveer
2018-03-01
The field of diagnostic decision support in radiology is undergoing rapid transformation with the availability of large amounts of patient data and the development of new artificial intelligence methods of machine learning such as deep learning. They hold the promise of providing imaging specialists with tools for improving the accuracy and efficiency of diagnosis and treatment. In this article, we will describe the growth of this field for radiology and outline general trends highlighting progress in the field of diagnostic decision support from the early days of rule-based expert systems to cognitive assistants of the modern era. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
CESAR research in intelligent machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbin, C.R.
1986-01-01
The Center for Engineering Systems Advanced Research (CESAR) was established in 1983 as a national center for multidisciplinary, long-range research and development in machine intelligence and advanced control theory for energy-related applications. Intelligent machines of interest here are artificially created operational systems that are capable of autonomous decision making and action. The initial emphasis for research is remote operations, with specific application to dexterous manipulation in unstructured dangerous environments where explosives, toxic chemicals, or radioactivity may be present, or in other environments with significant risk such as coal mining or oceanographic missions. Potential benefits include reduced risk to man inmore » hazardous situations, machine replication of scarce expertise, minimization of human error due to fear or fatigue, and enhanced capability using high resolution sensors and powerful computers. A CESAR goal is to explore the interface between the advanced teleoperation capability of today, and the autonomous machines of the future.« less
Computational Foundations of Natural Intelligence
van Gerven, Marcel
2017-01-01
New developments in AI and neuroscience are revitalizing the quest to understanding natural intelligence, offering insight about how to equip machines with human-like capabilities. This paper reviews some of the computational principles relevant for understanding natural intelligence and, ultimately, achieving strong AI. After reviewing basic principles, a variety of computational modeling approaches is discussed. Subsequently, I concentrate on the use of artificial neural networks as a framework for modeling cognitive processes. This paper ends by outlining some of the challenges that remain to fulfill the promise of machines that show human-like intelligence. PMID:29375355
Artificial intelligence approaches for rational drug design and discovery.
Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław
2007-01-01
Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.
Sense-making for intelligence analysis on social media data
NASA Astrophysics Data System (ADS)
Pritzkau, Albert
2016-05-01
Social networks, in particular online social networks as a subset, enable the analysis of social relationships which are represented by interaction, collaboration, or other sorts of influence between people. Any set of people and their internal social relationships can be modelled as a general social graph. These relationships are formed by exchanging emails, making phone calls, or carrying out a range of other activities that build up the network. This paper presents an overview of current approaches to utilizing social media as a ubiquitous sensor network in the context of national and global security. Exploitation of social media is usually an interdisciplinary endeavour, in which the relevant technologies and methods are identified and linked in order ultimately demonstrate selected applications. Effective and efficient intelligence is usually accomplished in a combined human and computer effort. Indeed, the intelligence process heavily depends on combining a human's flexibility, creativity, and cognitive ability with the bandwidth and processing power of today's computers. To improve the usability and accuracy of the intelligence analysis we will have to rely on data-processing tools at the level of natural language. Especially the collection and transformation of unstructured data into actionable, structured data requires scalable computational algorithms ranging from Artificial Intelligence, via Machine Learning, to Natural Language Processing (NLP). To support intelligence analysis on social media data, social media analytics is concerned with developing and evaluating computational tools and frameworks to collect, monitor, analyze, summarize, and visualize social media data. Analytics methods are employed to extract of significant patterns that might not be obvious. As a result, different data representations rendering distinct aspects of content and interactions serve as a means to adapt the focus of the intelligence analysis to specific information requests.
Obrzut, Bogdan; Kusy, Maciej; Semczuk, Andrzej; Obrzut, Marzanna; Kluska, Jacek
2017-12-12
Computational intelligence methods, including non-linear classification algorithms, can be used in medical research and practice as a decision making tool. This study aimed to evaluate the usefulness of artificial intelligence models for 5-year overall survival prediction in patients with cervical cancer treated by radical hysterectomy. The data set was collected from 102 patients with cervical cancer FIGO stage IA2-IIB, that underwent primary surgical treatment. Twenty-three demographic, tumor-related parameters and selected perioperative data of each patient were collected. The simulations involved six computational intelligence methods: the probabilistic neural network (PNN), multilayer perceptron network, gene expression programming classifier, support vector machines algorithm, radial basis function neural network and k-Means algorithm. The prediction ability of the models was determined based on the accuracy, sensitivity, specificity, as well as the area under the receiver operating characteristic curve. The results of the computational intelligence methods were compared with the results of linear regression analysis as a reference model. The best results were obtained by the PNN model. This neural network provided very high prediction ability with an accuracy of 0.892 and sensitivity of 0.975. The area under the receiver operating characteristics curve of PNN was also high, 0.818. The outcomes obtained by other classifiers were markedly worse. The PNN model is an effective tool for predicting 5-year overall survival in cervical cancer patients treated with radical hysterectomy.
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya
2015-01-01
The classification of subjects' pathologies enables a rigorousness to be applied to the treatment of certain pathologies, as doctors on occasions play with so many variables that they can end up confusing some illnesses with others. Thanks to Machine Learning techniques applied to a health-record database, it is possible to make using our algorithm. hClass contains a non-linear classification of either a supervised, non-supervised or semi-supervised type. The machine is configured using other techniques such as validation of the set to be classified (cross-validation), reduction in features (PCA) and committees for assessing the various classifiers. The tool is easy to use, and the sample matrix and features that one wishes to classify, the number of iterations and the subjects who are going to be used to train the machine all need to be introduced as inputs. As a result, the success rate is shown either via a classifier or via a committee if one has been formed. A 90% success rate is obtained in the ADABoost classifier and 89.7% in the case of a committee (comprising three classifiers) when PCA is applied. This tool can be expanded to allow the user to totally characterise the classifiers by adjusting them to each classification use.
Miksztai-Réthey, Brigitta; Faragó, Kinga Bettina
2015-01-01
We studied an artificial intelligent assisted interaction between a computer and a human with severe speech and physical impairments (SSPI). In order to speed up AAC, we extended a former study of typing performance optimization using a framework that included head movement controlled assistive technology and an onscreen writing device. Quantitative and qualitative data were collected and analysed with mathematical methods, manual interpretation and semi-supervised machine video annotation. As the result of our research, in contrast to the former experiment's conclusions, we found that our participant had at least two different typing strategies. To maximize his communication efficiency, a more complex assistive tool is suggested, which takes the different methods into consideration.
Hough, Soren H; Ajetunmobi, Ayokunmi; Brody, Leigh; Humphryes-Kirilov, Neil; Perello, Edward
2016-11-01
Desktop Genetics is a bioinformatics company building a gene-editing platform for personalized medicine. The company works with scientists around the world to design and execute state-of-the-art clustered regularly interspaced short palindromic repeats (CRISPR) experiments. Desktop Genetics feeds the lessons learned about experimental intent, single-guide RNA design and data from international genomics projects into a novel CRISPR artificial intelligence system. We believe that machine learning techniques can transform this information into a cognitive therapeutic development tool that will revolutionize medicine.
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
IQ Tests Are Not for Machines, Yet
ERIC Educational Resources Information Center
Dowe, David L.; Hernandez-Orallo, Jose
2012-01-01
Complex, but specific, tasks--such as chess or "Jeopardy!"--are popularly seen as milestones for artificial intelligence (AI). However, they are not appropriate for evaluating the intelligence of machines or measuring the progress in AI. Aware of this delusion, Detterman has recently raised a challenge prompting AI researchers to evaluate their…
An intelligent CNC machine control system architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.J.; Loucks, C.S.
1996-10-01
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less
WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning
Sutphin, George L.; Mahoney, J. Matthew; Sheppard, Keith; Walton, David O.; Korstanje, Ron
2016-01-01
The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species—humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/. PMID:27812085
WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.
Sutphin, George L; Mahoney, J Matthew; Sheppard, Keith; Walton, David O; Korstanje, Ron
2016-11-01
The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.
Support vector machines-based fault diagnosis for turbo-pump rotor
NASA Astrophysics Data System (ADS)
Yuan, Sheng-Fa; Chu, Fu-Lei
2006-05-01
Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.
Yang, Qian; Zimmerman, John; Steinfeld, Aaron; Carey, Lisa; Antaki, James F.
2016-01-01
Clinical decision support tools (DSTs) are computational systems that aid healthcare decision-making. While effective in labs, almost all these systems failed when they moved into clinical practice. Healthcare researchers speculated it is most likely due to a lack of user-centered HCI considerations in the design of these systems. This paper describes a field study investigating how clinicians make a heart pump implant decision with a focus on how to best integrate an intelligent DST into their work process. Our findings reveal a lack of perceived need for and trust of machine intelligence, as well as many barriers to computer use at the point of clinical decision-making. These findings suggest an alternative perspective to the traditional use models, in which clinicians engage with DSTs at the point of making a decision. We identify situations across patients’ healthcare trajectories when decision supports would help, and we discuss new forms it might take in these situations. PMID:27833397
Machine intelligence and robotics: Report of the NASA study group. Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.
Paradox in AI - AI 2.0: The Way to Machine Consciousness
NASA Astrophysics Data System (ADS)
Palensky, Peter; Bruckner, Dietmar; Tmej, Anna; Deutsch, Tobias
Artificial Intelligence, the big promise of the last millennium, has apparently made its way into our daily lives. Cell phones with speech control, evolutionary computing in data mining or power grids, optimized via neural network, show its applicability in industrial environments. The original expectation of true intelligence and thinking machines lies still ahead of us. Researchers are, however, optimistic as never before. This paper tries to compare the views, challenges and approaches of several disciplines: engineering, psychology, neuroscience, philosophy. It gives a short introduction to Psychoanalysis, discusses the term consciousness, social implications of intelligent machines, related theories, and expectations and shall serve as a starting point for first attempts of combining these diverse thoughts.
Experimental Realization of a Quantum Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng
2015-04-01
The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.
ERIC Educational Resources Information Center
Thornburg, David D.
1986-01-01
Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…
What Is Artificial Intelligence Anyway?
ERIC Educational Resources Information Center
Kurzweil, Raymond
1985-01-01
Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)
NASA Technical Reports Server (NTRS)
Heer, E.
1973-01-01
Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.
1978-01-01
A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.
Khomtchouk, Bohdan B; Weitz, Edmund; Karp, Peter D; Wahlestedt, Claes
2018-01-01
Abstract We present a rationale for expanding the presence of the Lisp family of programming languages in bioinformatics and computational biology research. Put simply, Lisp-family languages enable programmers to more quickly write programs that run faster than in other languages. Languages such as Common Lisp, Scheme and Clojure facilitate the creation of powerful and flexible software that is required for complex and rapidly evolving domains like biology. We will point out several important key features that distinguish languages of the Lisp family from other programming languages, and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSLs): languages that are specialized to a particular area, and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the ‘programmable programming language’. We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and artificial intelligence research in bioinformatics and computational biology. PMID:28040748
Khomtchouk, Bohdan B; Weitz, Edmund; Karp, Peter D; Wahlestedt, Claes
2018-05-01
We present a rationale for expanding the presence of the Lisp family of programming languages in bioinformatics and computational biology research. Put simply, Lisp-family languages enable programmers to more quickly write programs that run faster than in other languages. Languages such as Common Lisp, Scheme and Clojure facilitate the creation of powerful and flexible software that is required for complex and rapidly evolving domains like biology. We will point out several important key features that distinguish languages of the Lisp family from other programming languages, and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSLs): languages that are specialized to a particular area, and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the 'programmable programming language'. We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and artificial intelligence research in bioinformatics and computational biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
Artificial Intelligence: Threat or Boon to Radiologists?
Recht, Michael; Bryan, R Nick
2017-11-01
The development and integration of machine learning/artificial intelligence into routine clinical practice will significantly alter the current practice of radiology. Changes in reimbursement and practice patterns will also continue to affect radiology. But rather than being a significant threat to radiologists, we believe these changes, particularly machine learning/artificial intelligence, will be a boon to radiologists by increasing their value, efficiency, accuracy, and personal satisfaction. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Experiments in Schema-Driven Interpretation of a Natural Scene
1980-04-01
Intilliaence, "rbilisi, USSR; 1975, pp. 483-490. EFEL743 JzA. Feldman and Y. Yakimovsky, "Deciesion Theorg and Artificiel Int lligence:, I. A Semantics-Based...lTra. ttern i a Machine Intelligence , Vol. PAMI-., Janua’ry 1980 p’p. 16-27. CRIS743 E.M. Riseman and A.R. Hanson, "I)eign o’f a Semanticall...Machine Intelligence , School of Artificial Intelligence , University of Edinburgh, 1974. tUHR723 L. Uhr, "Layered ’Recognition Cone’ Networks That
Probabilistic machine learning and artificial intelligence.
Ghahramani, Zoubin
2015-05-28
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Probabilistic machine learning and artificial intelligence
NASA Astrophysics Data System (ADS)
Ghahramani, Zoubin
2015-05-01
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Special Issue on Expert Systems for Department of Defense Training.
ERIC Educational Resources Information Center
Ahlers, Robert H., Ed.; And Others
1986-01-01
Features articles on topics related to use of expert systems for training: machine intelligence effectiveness in military systems applications; automated maneuvering board training system; intelligent tutoring system for electronic troubleshooting; technology development for intelligent maintenance advisors; design of intelligent computer assisted…
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR
Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng
2010-01-01
Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894
Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.
Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng
2010-01-01
Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.
STANFORD ARTIFICIAL INTELLIGENCE PROJECT.
ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.
Intelligent man/machine interfaces on the space station
NASA Technical Reports Server (NTRS)
Daughtrey, Rodney S.
1987-01-01
Some important topics in the development of good, intelligent, usable man/machine interfaces for the Space Station are discussed. These computer interfaces should adhere strictly to three concepts or doctrines: generality, simplicity, and elegance. The motivation for natural language interfaces and their use and value on the Space Station, both now and in the future, are discussed.
The machine intelligence Hex project
NASA Astrophysics Data System (ADS)
Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran
2005-12-01
Hex is a challenging strategy board game for two players. To enhance students’ progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex players and evaluating them in an automated tournament of all programs developed by the class. This article surveys educational aspects of the MIHex project. Additionally, fundamental techniques for game programming as well as specific concepts for Hex board evaluation are reviewed. The MIHex game server and possibilities of tournament organisation are described. We summarise and discuss our experiences from running the MIHex project assignment over four consecutive years. The impact on student motivation and learning benefits are evaluated using questionnaires and interviews.
Application of artificial intelligence to the management of urological cancer.
Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C
2007-10-01
Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.
Sniecinski, Irena; Seghatchian, Jerard
2018-05-09
Artificial Intelligence (AI) reflects the intelligence exhibited by machines and software. It is a highly desirable academic field of many current fields of studies. Leading AI researchers describe the field as "the study and design of intelligent agents". McCarthy invented this term in 1955 and defined it as "the science and engineering of making intelligent machines". The central goals of AI research are reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. In fact the multidisplinary AI field is considered to be rather interdisciplinary covering numerous number of sciences and professions, including computer science, psychology, linguistics, philosophy and neurosciences. The field was founded on the claim that a central intellectual property of humans, intelligence-the sapience of Homo Sapiens "can be so precisely described that a machine can be made to simulate it". This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence. Artificial Intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. The goal of this narrative is to review the potential use of AI approaches and their integration into pediatric cellular therapies and regenerative medicine. Emphasis is placed on recognition and application of AI techniques in the development of predictive models for personalized treatments with engineered stem cells, immune cells and regenerated tissues in adults and children. These intelligent machines could dissect the whole genome and isolate the immune particularities of individual patient's disease in a matter of minutes and create the treatment that is customized to patient's genetic specificity and immune system capability. AI techniques could be used for optimization of clinical trials of innovative stem cell and gene therapies in pediatric patients by precise planning of treatments, predicting clinical outcomes, simplifying recruitment and retention of patients, learning from input data and applying to new data, thus lowering their complexity and costs. Complementing human intelligence with machine intelligence could have an exponentially high impact on continual progress in many fields of pediatrics. However how long before we could see the real impact still remains the big question. The most pertinent question that remains to be answered therefore, is can AI effectively and accurately predict properties of newer DDR strategies? The goal of this article is to review the use of AI method for cellular therapy and regenerative medicine and emphasize its potential to further the progress in these fields of medicine. Copyright © 2018. Published by Elsevier Ltd.
Combining human and machine processes (CHAMP)
NASA Astrophysics Data System (ADS)
Sudit, Moises; Sudit, David; Hirsch, Michael
2015-05-01
Machine Reasoning and Intelligence is usually done in a vacuum, without consultation of the ultimate decision-maker. The late consideration of the human cognitive process causes some major problems in the use of automated systems to provide reliable and actionable information that users can trust and depend to make the best Course-of-Action (COA). On the other hand, if automated systems are created exclusively based on human cognition, then there is a danger of developing systems that don't push the barrier of technology and are mainly done for the comfort level of selected subject matter experts (SMEs). Our approach to combining human and machine processes (CHAMP) is based on the notion of developing optimal strategies for where, when, how, and which human intelligence should be injected within a machine reasoning and intelligence process. This combination is based on the criteria of improving the quality of the output of the automated process while maintaining the required computational efficiency for a COA to be actuated in timely fashion. This research addresses the following problem areas: • Providing consistency within a mission: Injection of human reasoning and intelligence within the reliability and temporal needs of a mission to attain situational awareness, impact assessment, and COA development. • Supporting the incorporation of data that is uncertain, incomplete, imprecise and contradictory (UIIC): Development of mathematical models to suggest the insertion of a cognitive process within a machine reasoning and intelligent system so as to minimize UIIC concerns. • Developing systems that include humans in the loop whose performance can be analyzed and understood to provide feedback to the sensors.
An ontological knowledge framework for adaptive medical workflow.
Dang, Jiangbo; Hedayati, Amir; Hampel, Ken; Toklu, Candemir
2008-10-01
As emerging technologies, semantic Web and SOA (Service-Oriented Architecture) allow BPMS (Business Process Management System) to automate business processes that can be described as services, which in turn can be used to wrap existing enterprise applications. BPMS provides tools and methodologies to compose Web services that can be executed as business processes and monitored by BPM (Business Process Management) consoles. Ontologies are a formal declarative knowledge representation model. It provides a foundation upon which machine understandable knowledge can be obtained, and as a result, it makes machine intelligence possible. Healthcare systems can adopt these technologies to make them ubiquitous, adaptive, and intelligent, and then serve patients better. This paper presents an ontological knowledge framework that covers healthcare domains that a hospital encompasses-from the medical or administrative tasks, to hospital assets, medical insurances, patient records, drugs, and regulations. Therefore, our ontology makes our vision of personalized healthcare possible by capturing all necessary knowledge for a complex personalized healthcare scenario involving patient care, insurance policies, and drug prescriptions, and compliances. For example, our ontology facilitates a workflow management system to allow users, from physicians to administrative assistants, to manage, even create context-aware new medical workflows and execute them on-the-fly.
Using microwave Doppler radar in automated manufacturing applications
NASA Astrophysics Data System (ADS)
Smith, Gregory C.
Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help stimulate future growth in industrial productivity, which also promises to fuel economic growth and promote economic stability. The study also benefits the Department of Industrial Technology at Iowa State University and the field of Industrial Technology by contributing to the ongoing "smart" machine research program within the Department of Industrial Technology and by stimulating research into new sensor technologies within the University and within the field of Industrial Technology.
Active learning machine learns to create new quantum experiments.
Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J
2018-02-06
How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.
Integrated intelligent sensor for the textile industry
NASA Astrophysics Data System (ADS)
Peltie, Philippe; David, Dominique
1996-08-01
A new sensor has been developed for pantyhose inspection. Unlike a first complete inspection machine devoted to post- manufacturing control of the whole panty, this sensor will be directly integrated on currently existing manufacturing machines, and will combine advantages of miniaturization is to design an intelligent, compact and very cheap product, which should be integrated without requiring any modifications of host machines. The sensor part was designed to achieve closed acquisition, and various solutions have been explored to maintain adequate depth of field. The illumination source will be integrated in the device. The processing part will include correction facilities and electronic processing. Finally, high-level information will be output in order to interface directly with the manufacturing machine automate.
Automated expert modeling for automated student evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, Robert G.
The 8th International Conference on Intelligent Tutoring Systems provides a leading international forum for the dissemination of original results in the design, implementation, and evaluation of intelligent tutoring systems and related areas. The conference draws researchers from a broad spectrum of disciplines ranging from artificial intelligence and cognitive science to pedagogy and educational psychology. The conference explores intelligent tutoring systems increasing real world impact on an increasingly global scale. Improved authoring tools and learning object standards enable fielding systems and curricula in real world settings on an unprecedented scale. Researchers deploy ITS's in ever larger studies and increasingly use datamore » from real students, tasks, and settings to guide new research. With high volumes of student interaction data, data mining, and machine learning, tutoring systems can learn from experience and improve their teaching performance. The increasing number of realistic evaluation studies also broaden researchers knowledge about the educational contexts for which ITS's are best suited. At the same time, researchers explore how to expand and improve ITS/student communications, for example, how to achieve more flexible and responsive discourse with students, help students integrate Web resources into learning, use mobile technologies and games to enhance student motivation and learning, and address multicultural perspectives.« less
Basics of robotics and manipulators in endoscopic surgery.
Rininsland, H H
1993-06-01
The experience with sophisticated remote handling systems for nuclear operations in inaccessible rooms can to a large extent be transferred to the development of robotics and telemanipulators for endoscopic surgery. A telemanipulator system is described consisting of manipulator, endeffector and tools, 3-D video-endoscope, sensors, intelligent control system, modeling and graphic simulation and man-machine interfaces as the main components or subsystems. Such a telemanipulator seems to be medically worthwhile and technically feasible, but needs a lot of effort from different scientific disciplines to become a safe and reliable instrument for future endoscopic surgery.
An argument for human exploration of the moon and Mars.
Spudis, P D
1992-01-01
A debate of the merits of human space travel as opposed to robots is presented. While robotic space travel would be considerably less expensive, the author takes the position that there are certain skills and research abilities that only humans possess. Human contributions to past lunar exploration are considered, along with a discussion of the interaction of humans with robotics or other artificial intelligence or computer driven technologies. The author concludes that while robots and machines are tools which should be incorporated into space travel, they are not adequate substitutes for people.
Machine Learning-based Intelligent Formal Reasoning and Proving System
NASA Astrophysics Data System (ADS)
Chen, Shengqing; Huang, Xiaojian; Fang, Jiaze; Liang, Jia
2018-03-01
The reasoning system can be used in many fields. How to improve reasoning efficiency is the core of the design of system. Through the formal description of formal proof and the regular matching algorithm, after introducing the machine learning algorithm, the system of intelligent formal reasoning and verification has high efficiency. The experimental results show that the system can verify the correctness of propositional logic reasoning and reuse the propositional logical reasoning results, so as to obtain the implicit knowledge in the knowledge base and provide the basic reasoning model for the construction of intelligent system.
Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress
Fu, Longwen; Liu, Zuoyi
2018-01-01
Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612
Automation and robotics technology for intelligent mining systems
NASA Technical Reports Server (NTRS)
Welsh, Jeffrey H.
1989-01-01
The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.
Knowledge-based load leveling and task allocation in human-machine systems
NASA Technical Reports Server (NTRS)
Chignell, M. H.; Hancock, P. A.
1986-01-01
Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.
Modelling of internal architecture of kinesin nanomotor as a machine language.
Khataee, H R; Ibrahim, M Y
2012-09-01
Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard Angello
2005-09-30
Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performancemore » to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.« less
Distributed communications and control network for robotic mining
NASA Technical Reports Server (NTRS)
Schiffbauer, William H.
1989-01-01
The application of robotics to coal mining machines is one approach pursued to increase productivity while providing enhanced safety for the coal miner. Toward that end, a network composed of microcontrollers, computers, expert systems, real time operating systems, and a variety of program languages are being integrated that will act as the backbone for intelligent machine operation. Actual mining machines, including a few customized ones, have been given telerobotic semiautonomous capabilities by applying the described network. Control devices, intelligent sensors and computers onboard these machines are showing promise of achieving improved mining productivity and safety benefits. Current research using these machines involves navigation, multiple machine interaction, machine diagnostics, mineral detection, and graphical machine representation. Guidance sensors and systems employed include: sonar, laser rangers, gyroscopes, magnetometers, clinometers, and accelerometers. Information on the network of hardware/software and its implementation on mining machines are presented. Anticipated coal production operations using the network are discussed. A parallelism is also drawn between the direction of present day underground coal mining research to how the lunar soil (regolith) may be mined. A conceptual lunar mining operation that employs a distributed communication and control network is detailed.
Are human beings humean robots?
NASA Astrophysics Data System (ADS)
Génova, Gonzalo; Quintanilla Navarro, Ignacio
2018-01-01
David Hume, the Scottish philosopher, conceives reason as the slave of the passions, which implies that human reason has predetermined objectives it cannot question. An essential element of an algorithm running on a computational machine (or Logical Computing Machine, as Alan Turing calls it) is its having a predetermined purpose: an algorithm cannot question its purpose, because it would cease to be an algorithm. Therefore, if self-determination is essential to human intelligence, then human beings are neither Humean beings, nor computational machines. We examine also some objections to the Turing Test as a model to understand human intelligence.
Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco
2018-03-01
This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
e-Addictology: An Overview of New Technologies for Assessing and Intervening in Addictive Behaviors.
Ferreri, Florian; Bourla, Alexis; Mouchabac, Stephane; Karila, Laurent
2018-01-01
New technologies can profoundly change the way we understand psychiatric pathologies and addictive disorders. New concepts are emerging with the development of more accurate means of collecting live data, computerized questionnaires, and the use of passive data. Digital phenotyping , a paradigmatic example, refers to the use of computerized measurement tools to capture the characteristics of different psychiatric disorders. Similarly, machine learning-a form of artificial intelligence-can improve the classification of patients based on patterns that clinicians have not always considered in the past. Remote or automated interventions (web-based or smartphone-based apps), as well as virtual reality and neurofeedback, are already available or under development. These recent changes have the potential to disrupt practices, as well as practitioners' beliefs, ethics and representations, and may even call into question their professional culture. However, the impact of new technologies on health professionals' practice in addictive disorder care has yet to be determined. In the present paper, we therefore present an overview of new technology in the field of addiction medicine. Using the keywords [e-health], [m-health], [computer], [mobile], [smartphone], [wearable], [digital], [machine learning], [ecological momentary assessment], [biofeedback] and [virtual reality], we searched the PubMed database for the most representative articles in the field of assessment and interventions in substance use disorders. We screened 595 abstracts and analyzed 92 articles, dividing them into seven categories: e-health program and web-based interventions, machine learning, computerized adaptive testing, wearable devices and digital phenotyping, ecological momentary assessment, biofeedback, and virtual reality. This overview shows that new technologies can improve assessment and interventions in the field of addictive disorders. The precise role of connected devices, artificial intelligence and remote monitoring remains to be defined. If they are to be used effectively, these tools must be explained and adapted to the different profiles of physicians and patients. The involvement of patients, caregivers and other health professionals is essential to their design and assessment.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities and their related ground support functions are studied, so that informed decisions can be made on which aspects of ARAMIS to develop. The specific tasks which will be required by future space project tasks are identified and the relative merits of these options are evaluated. The ARAMIS options defined and researched span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.
Toward Intelligent Software Defect Detection
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2011-01-01
Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.
Behavior Analysis and the Quest for Machine Intelligence.
ERIC Educational Resources Information Center
Stephens, Kenneth R.; Hutchison, William R.
1993-01-01
Discusses three approaches to building intelligent systems: artificial intelligence, neural networks, and behavior analysis. BANKET, an object-oriented software system, is explained; a commercial application of BANKET is described; and a collaborative effort between the academic and business communities for the use of BANKET is discussed.…
A proposal of an architecture for the coordination level of intelligent machines
NASA Technical Reports Server (NTRS)
Beard, Randall; Farah, Jeff; Lima, Pedro
1993-01-01
The issue of obtaining a practical, structured, and detailed description of an architecture for the Coordination Level of Center for Intelligent Robotic Systems for Sapce Exploration (CIRSSE) Testbed Intelligent Controller is addressed. Previous theoretical and implementation works were the departure point for the discussion. The document is organized as follows: after this introductory section, section 2 summarizes the overall view of the Intelligent Machine (IM) as a control system, proposing a performance measure on which to base its design. Section 3 addresses with some detail implementation issues. An hierarchic petri-net with feedback-based learning capabilities is proposed. Finally, section 4 is an attempt to address the feedback problem. Feedback is used for two functions: error recovery and reinforcement learning of the correct translations for the petri-net transitions.
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices
Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B.
2018-01-01
Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support. PMID:29629431
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices.
Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B
2017-06-01
Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.
Mobile robotics research at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morse, W.D.
Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.
NASA Technical Reports Server (NTRS)
Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward
2016-01-01
In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.
An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.
Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan
2015-01-01
A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.
Study on intelligent processing system of man-machine interactive garment frame model
NASA Astrophysics Data System (ADS)
Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian
2018-05-01
A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.
[Algorithms, machine intelligence, big data : general considerations].
Radermacher, F J
2015-08-01
We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges.
Machine Translation in Post-Contemporary Era
ERIC Educational Resources Information Center
Lin, Grace Hui Chin
2010-01-01
This article focusing on translating techniques via personal computer or laptop reports updated artificial intelligence progresses before 2010. Based on interpretations and information for field of MT [Machine Translation] by Yorick Wilks' book, "Machine Translation, Its scope and limits," this paper displays understandable theoretical frameworks…
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1988-01-01
Information on systems autonomy is given in viewgraph form. Information is given on space systems integration, intelligent autonomous systems, automated systems for in-flight mission operations, the Systems Autonomy Demonstration Project on the Space Station Thermal Control System, the architecture of an autonomous intelligent system, artificial intelligence research issues, machine learning, and real-time image processing.
Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy.
Paldino, M J; Golriz, F; Chapieski, M L; Zhang, W; Chu, Z D
2017-02-01
The biologic basis for intelligence rests to a large degree on the capacity for efficient integration of information across the cerebral network. We aimed to measure the relationship between network architecture and intelligence in the pediatric, epileptic brain. Patients were retrospectively identified with the following: 1) focal epilepsy; 2) brain MR imaging at 3T, including resting-state functional MR imaging; and 3) full-scale intelligence quotient measured by a pediatric neuropsychologist. The cerebral cortex was parcellated into approximately 700 gray matter network "nodes." The strength of a connection between 2 nodes was defined by the correlation between their blood oxygen level-dependent time-series. We calculated the following topologic properties: clustering coefficient, transitivity, modularity, path length, and global efficiency. A machine learning algorithm was used to measure the independent contribution of each metric to the intelligence quotient after adjusting for all other metrics. Thirty patients met the criteria (4-18 years of age); 20 patients required anesthesia during MR imaging. After we accounted for age and sex, clustering coefficient and path length were independently associated with full-scale intelligence quotient. Neither motion parameters nor general anesthesia was an important variable with regard to accurate intelligence quotient prediction by the machine learning algorithm. A longer history of epilepsy was associated with shorter path lengths ( P = .008), consistent with reorganization of the network on the basis of seizures. Considering only patients receiving anesthesia during machine learning did not alter the patterns of network architecture contributing to global intelligence. These findings support the physiologic relevance of imaging-based metrics of network architecture in the pathologic, developing brain. © 2017 by American Journal of Neuroradiology.
Foulquier, Nathan; Redou, Pascal; Le Gal, Christophe; Rouvière, Bénédicte; Pers, Jacques-Olivier; Saraux, Alain
2018-05-17
Big data analysis has become a common way to extract information from complex and large datasets among most scientific domains. This approach is now used to study large cohorts of patients in medicine. This work is a review of publications that have used artificial intelligence and advanced machine learning techniques to study physio pathogenesis-based treatments in pSS. A systematic literature review retrieved all articles reporting on the use of advanced statistical analysis applied to the study of systemic autoimmune diseases (SADs) over the last decade. An automatic bibliography screening method has been developed to perform this task. The program called BIBOT was designed to fetch and analyze articles from the pubmed database using a list of keywords and Natural Language Processing approaches. The evolution of trends in statistical approaches, sizes of cohorts and number of publications over this period were also computed in the process. In all, 44077 abstracts were screened and 1017 publications were analyzed. The mean number of selected articles was 101.0 (S.D. 19.16) by year, but increased significantly over the time (from 74 articles in 2008 to 138 in 2017). Among them only 12 focused on pSS but none of them emphasized on the aspect of pathogenesis-based treatments. To conclude, medicine progressively enters the era of big data analysis and artificial intelligence, but these approaches are not yet used to describe pSS-specific pathogenesis-based treatment. Nevertheless, large multicentre studies are investigating this aspect with advanced algorithmic tools on large cohorts of SADs patients.
NASA Astrophysics Data System (ADS)
Ono, Satoru; Watanabe, Takashi
In recent years, the rapid progress in the development of hardware and software technologies enables tiny and low cost information devices hereinafter referred to as Machine to be widely available. M2M (Machine to Machine) has been of much attention where many tiny machines are connected to each other through networks with minimal human intervention to provide smooth and intelligent management. M2M is a promising core technology providing timely, flexible, efficient and comprehensive service at low cost. M2M has wide variety of applications including energy management system, environmental monitoring system, intelligent transport system, industrial automation system and other applications. M2M consists of terminals and networks that connect them. In this paper, we mainly focus on M2M networking and mention the future direction of the technology.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.
Matrix Multiplication Algorithm Selection with Support Vector Machines
2015-05-01
libraries that could intelligently choose the optimal algorithm for a particular set of inputs. Users would be oblivious to the underlying algorithmic...SAT.” J. Artif . Intell. Res.(JAIR), vol. 32, pp. 565–606, 2008. [9] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using reinforcement...Artificial Intelligence , vol. 21, no. 05, pp. 961–976, 2007. [15] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Artificial intelligence: Learning to see and act
NASA Astrophysics Data System (ADS)
Schölkopf, Bernhard
2015-02-01
An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-01-01
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-12-04
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.
Is it worth changing pattern recognition methods for structural health monitoring?
NASA Astrophysics Data System (ADS)
Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.
2017-05-01
The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.
Generative Models in Deep Learning: Constraints for Galaxy Evolution
NASA Astrophysics Data System (ADS)
Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.
2018-01-01
New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.
A New Look at NASA: Strategic Research In Information Technology
NASA Technical Reports Server (NTRS)
Alfano, David; Tu, Eugene (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on research undertaken by NASA to facilitate the development of information technologies. Specific ideas covered here include: 1) Bio/nano technologies: biomolecular and nanoscale systems and tools for assembly and computing; 2) Evolvable hardware: autonomous self-improving, self-repairing hardware and software for survivable space systems in extreme environments; 3) High Confidence Software Technologies: formal methods, high-assurance software design, and program synthesis; 4) Intelligent Controls and Diagnostics: Next generation machine learning, adaptive control, and health management technologies; 5) Revolutionary computing: New computational models to increase capability and robustness to enable future NASA space missions.
The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations
2017-06-09
Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence
The Potential of Artificial Intelligence in Aids for the Disabled.
ERIC Educational Resources Information Center
Boyer, John J.
The paper explores the possibilities for applying the knowledge of artificial intelligence (AI) research to aids for the disabled. Following a definition of artificial intelligence, the paper reviews areas of basic AI research, such as computer vision, machine learning, and planning and problem solving. Among application areas relevant to the…
Computer science, artificial intelligence, and cybernetics: Applied artificial intelligence in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinger, B.
1988-01-01
This sourcebook provides information on the developments in artificial intelligence originating in Japan. Spanning such innovations as software productivity, natural language processing, CAD, and parallel inference machines, this volume lists leading organizations conducting research or implementing AI systems, describes AI applications being pursued, illustrates current results achieved, and highlights sources reporting progress.
Vision Guided Intelligent Robot Design And Experiments
NASA Astrophysics Data System (ADS)
Slutzky, G. D.; Hall, E. L.
1988-02-01
The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.
Human-like robots as platforms for electroactive polymers (EAP)
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2008-03-01
Human-like robots, which have been a science fiction for many years, are increasingly becoming an engineering reality thanks to many technology advances in recent years. Humans have always sought to imitate the human appearance, functions and intelligence and as the capability progresses they may become our household appliance or even companion. Biomimetic technologies are increasingly becoming common tools to support the development of such robots. As artificial muscles, electroactive polymers (EAP) are offering important actuation capability for making such machines lifelike. The current limitations of EAP are hampering the possibilities that can be adapted in such robots but progress is continually being made. As opposed to other human made machines and devices, this technology raises various questions and concerns that need to be addressed. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper the state-of-the-art and the challenges will be reviewed.
Hathout, Rania M; Metwally, Abdelkader A
2016-11-01
This study represents one of the series applying computer-oriented processes and tools in digging for information, analysing data and finally extracting correlations and meaningful outcomes. In this context, binding energies could be used to model and predict the mass of loaded drugs in solid lipid nanoparticles after molecular docking of literature-gathered drugs using MOE® software package on molecularly simulated tripalmitin matrices using GROMACS®. Consequently, Gaussian processes as a supervised machine learning artificial intelligence technique were used to correlate the drugs' descriptors (e.g. M.W., xLogP, TPSA and fragment complexity) with their molecular docking binding energies. Lower percentage bias was obtained compared to previous studies which allows the accurate estimation of the loaded mass of any drug in the investigated solid lipid nanoparticles by just projecting its chemical structure to its main features (descriptors). Copyright © 2016 Elsevier B.V. All rights reserved.
Multispectral Image Processing for Plants
NASA Technical Reports Server (NTRS)
Miles, Gaines E.
1991-01-01
The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.
Cristianini, Nello
2010-05-01
Statistical approaches to Artificial Intelligence are behind most success stories of the field in the past decade. The idea of generating non-trivial behaviour by analysing vast amounts of data has enabled recommendation systems, search engines, spam filters, optical character recognition, machine translation and speech recognition, among other things. As we celebrate the spectacular achievements of this line of research, we need to assess its full potential and its limitations. What are the next steps to take towards machine intelligence? 2010 Elsevier Ltd. All rights reserved.
Watson and Siri: The Rise of the BI Smart Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy Hiltbrand
Over the past few years, the industry has seen significant evolution in the area of human computer interaction. The era of the smart machines is upon us, with automation taking on a more advanced role than ever before, permeating into areas that have traditionally only been fulfilled by human beings. This movement has the potential of fundamentally altering the way that business intelligence is executed across the industry and the role that business intelligence has in all aspects of decision making.
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
Artificial Intelligence research has come under fire for failing to fulfill its promises. A growing number of AI researchers are reexamining the bases of AI research and are challenging the assumption that intelligent behavior can be fully explained as manipulation of symbols by algorithms. Three recent books -- Mind over Machine (H. Dreyfus and S. Dreyfus), Understanding Computers and Cognition (T. Winograd and F. Flores), and Brains, Behavior, and Robots (J. Albus) -- explore alternatives and open the door to new architectures that may be able to learn skills.
Neural network expert system for X-ray analysis of welded joints
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Lapik, N. V.; Popova, N. V.
2018-03-01
The use of intelligent technologies for the automated analysis of product quality is one of the main trends in modern machine building. At the same time, rapid development in various spheres of human activity is experienced by methods associated with the use of artificial neural networks, as the basis for building automated intelligent diagnostic systems. Technologies of machine vision allow one to effectively detect the presence of certain regularities in the analyzed designation, including defects of welded joints according to radiography data.
Naval Computer-Based Instruction: Cost, Implementation and Effectiveness Issues.
1988-03-01
logical follow on to MITIPAC and are an attempt to use some artificial intelligence (AI) techniques with computer-based training. A good intelligent ...principles of steam plant operation and maintenance. Steamer was written in LISP on a LISP machine in an attempt to use artificial intelligence . "What... Artificial Intelligence and Speech Technology", Electronic Learning, September 1987. Montague, William. E., code 5, Navy Personnel Research and
Fu, Jicheng; Jones, Maria; Jan, Yih-Kuen
2014-01-01
Wheelchair tilt and recline functions are two of the most desirable features for relieving seating pressure to decrease the risk of pressure ulcers. The effective guidance on wheelchair tilt and recline usage is therefore critical to pressure ulcer prevention. The aim of this study was to demonstrate the feasibility of using machine learning techniques to construct an intelligent model to provide personalized guidance to individuals with spinal cord injury (SCI). The motivation stems from the clinical evidence that the requirements of individuals vary greatly and that no universal guidance on tilt and recline usage could possibly satisfy all individuals with SCI. We explored all aspects involved in constructing the intelligent model and proposed approaches tailored to suit the characteristics of this preliminary study, such as the way of modeling research participants, using machine learning techniques to construct the intelligent model, and evaluating the performance of the intelligent model. We further improved the intelligent model's prediction accuracy by developing a two-phase feature selection algorithm to identify important attributes. Experimental results demonstrated that our approaches held the promise: they could effectively construct the intelligent model, evaluate its performance, and refine the participant model so that the intelligent model's prediction accuracy was significantly improved.
Gasparyan, Diana
2016-12-01
There is a problem associated with contemporary studies of philosophy of mind, which focuses on the identification and convergence of human and machine intelligence. This is the problem of machine emulation of sense. In the present study, analysis of this problem is carried out based on concepts from structural and post-structural approaches that have been almost entirely overlooked by contemporary philosophy of mind. If we refer to the basic definitions of "sign" and "meaning" found in structuralism and post-structuralism, we see a fundamental difference between the capabilities of a machine and the human brain engaged in the processing of a sign. This research will exemplify and provide additional evidence to support distinctions between syntactic and semantic aspects of intelligence, an issue widely discussed by adepts of contemporary philosophy of mind. The research will demonstrate that some aspect of a number of ideas proposed in relation to semantics and semiosis in structuralism and post-structuralism are similar to those we find in contemporary analytical studies related to the theory and philosophy of artificial intelligence. The concluding part of the paper offers an interpretation of the problem of formalization of sense, connected to its metaphysical (transcendental) properties.
Human-like machines: Transparency and comprehensibility.
Patrzyk, Piotr M; Link, Daniela; Marewski, Julian N
2017-01-01
Artificial intelligence algorithms seek inspiration from human cognitive systems in areas where humans outperform machines. But on what level should algorithms try to approximate human cognition? We argue that human-like machines should be designed to make decisions in transparent and comprehensible ways, which can be achieved by accurately mirroring human cognitive processes.
NASA Astrophysics Data System (ADS)
Pierce, S. A.
2017-12-01
Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.
Machine vision for digital microfluidics
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun; Lee, Jeong-Bong
2010-01-01
Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.
Intelligent Systems and Its Applications in Robotics
NASA Astrophysics Data System (ADS)
Kaynak, Okyay
The last decade of the last millennium is characterized by what might be called the intelligent systems revolution, as a result of which, it is now possible to have man made systems that exhibit ability to reason, learn from experience and make rational decisions without human intervention. Prof. Zadeh has coined the word MIQ (machine intelligence quotient) to describe a measure of intelligence of man-made systems. In this perspective, an intelligent system can be defined as a system that has a high MIQ.
NASA Astrophysics Data System (ADS)
Radziszewski, Kacper
2017-10-01
The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.
Intelligent excavator control system for lunar mining system
NASA Astrophysics Data System (ADS)
Lever, Paul J. A.; Wang, Fei-Yue
1995-01-01
A major benefit of utilizing local planetary resources is that it reduces the need and cost of lifting materials from the Earth's surface into Earth orbit. The location of the moon makes it an ideal site for harvesting the materials needed to assist space activities. Here, lunar excavation will take place in the dynamic unstructured lunar environment, in which conditions are highly variable and unpredictable. Autonomous mining (excavation) machines are necessary to remove human operators from this hazardous environment. This machine must use a control system structure that can identify, plan, sense, and control real-time dynamic machine movements in the lunar environment. The solution is a vision-based hierarchical control structure. However, excavation tasks require force/torque sensor feedback to control the excavation tool after it has penetrated the surface. A fuzzy logic controller (FLC) is used to interpret the forces and torques gathered from a bucket mounted force/torque sensor during excavation. Experimental results from several excavation tests using the FLC are presented here. These results represent the first step toward an integrated sensing and control system for a lunar mining system.
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
Artificial Intelligence in Cardiology.
Johnson, Kipp W; Torres Soto, Jessica; Glicksberg, Benjamin S; Shameer, Khader; Miotto, Riccardo; Ali, Mohsin; Ashley, Euan; Dudley, Joel T
2018-06-12
Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A State Cyber Hub Operations Framework
2016-06-01
to communicate and sense or interact with their internal states or the external environment. Machine Learning: A type of artificial intelligence that... artificial intelligence , and computational linguistics concerned with the interactions between computers and human (natural) languages. Patching: A piece...formalizing a proof of concept for cyber initiatives and developed frameworks for operationalizing the data and intelligence produced across state
Artificial consciousness and the consciousness-attention dissociation.
Haladjian, Harry Haroutioun; Montemayor, Carlos
2016-10-01
Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to implement sophisticated forms of human intelligence in machines. This research attempts to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable once we overcome short-term engineering challenges. We believe, however, that phenomenal consciousness cannot be implemented in machines. This becomes clear when considering emotions and examining the dissociation between consciousness and attention in humans. While we may be able to program ethical behavior based on rules and machine learning, we will never be able to reproduce emotions or empathy by programming such control systems-these will be merely simulations. Arguments in favor of this claim include considerations about evolution, the neuropsychological aspects of emotions, and the dissociation between attention and consciousness found in humans. Ultimately, we are far from achieving artificial consciousness. Copyright © 2016 Elsevier Inc. All rights reserved.
1990-12-01
data rate to the electronics would be much lower on the average and the data much "richer" in information. Intelligent use of...system bottleneck, a high data rate should be provided by I/O systems. 2. machines with intelligent storage management specially designed for logic...management information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic reliability/maintainability and compatibility.
The 1990 Goddard Conference on Space Applications of Artificial Intelligence
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor)
1990-01-01
The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.
Games and machine learning: a powerful combination in an artificial intelligence course
NASA Astrophysics Data System (ADS)
Wallace, Scott A.; McCartney, Robert; Russell, Ingrid
2010-03-01
Project MLeXAI (Machine Learning eXperiences in Artificial Intelligence (AI)) seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense - a simple real-time strategy game and Checkers - a classic turn-based board game. From the instructors' prospective, we examine aspects of design and implementation as well as the challenges and rewards of using the curricula. We explore students' responses to the projects via the results of a common survey. Finally, we compare the student perceptions from the game-based projects to non-game based projects from the first phase of Project MLeXAI.
Third Conference on Artificial Intelligence for Space Applications, part 1
NASA Technical Reports Server (NTRS)
Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)
1987-01-01
The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.
ERIC Educational Resources Information Center
Edwards, Autumn; Edwards, Chad
2017-01-01
Educational encounters of the future (and increasingly, of the present) will involve a complex collaboration of human and machine intelligences and agents, partnering to enhance learning and growth. Increasingly, "students and instructors are not only talking 'through' machines, but also [talking] 'to them', and 'within them'" (Edwards…
Splendidly blended: a machine learning set up for CDU control
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2017-06-01
As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.
Method and apparatus for characterizing and enhancing the dynamic performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F
2013-12-17
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.
Temporal Reasoning and Default Logics.
1985-10-01
Aritificial Intelligence ", Computer Science Research Report, Yale University, forthcoming (1985). . 74 .-, A Axioms for Describing Persistences and Clipping...34Circumscription - A Form of Non-Monotonic Reasoning", Artificial Intelligence , vol. 13 (1980), pp. 27-39. [13] McCarthy, John, "Applications of...and P. J. Hayes, "Some philosophical problems from the standpoint of artificial intelligence ", in: B. Meltzer and D. Michie (eds.), Machine
Machine learning in updating predictive models of planning and scheduling transportation projects
DOT National Transportation Integrated Search
1997-01-01
A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...
Novel associative-memory-based self-learning neurocontrol model
NASA Astrophysics Data System (ADS)
Chen, Ke
1992-09-01
Intelligent control is an important field of AI application, which is closely related to machine learning, and the neurocontrol is a kind of intelligent control that controls actions of a physical system or a plant. Linear associative memory model is a good analytic tool for artificial neural networks. In this paper, we present a novel self-learning neurocontrol on the basis of the linear associative memory model to support intelligent control. Using our self-learning neurocontrol model, the learning process is viewed as an extension of one of J. Piaget's developmental stages. After a particular linear associative model developed by us is presented, a brief introduction to J. Piaget's cognitive theory is described as the basis of our self-learning style control. It follows that the neurocontrol model is presented, which usually includes two learning stages, viz. primary learning and high-level learning. As a demonstration of our neurocontrol model, an example is also presented with simulation techniques, called that `bird' catches an aim. The tentative experimental results show that the learning and controlling performance of this approach is surprisingly good. In conclusion, future research is pointed out to improve our self-learning neurocontrol model and explore other areas of application.
An intelligent crowdsourcing system for forensic analysis of surveillance video
NASA Astrophysics Data System (ADS)
Tahboub, Khalid; Gadgil, Neeraj; Ribera, Javier; Delgado, Blanca; Delp, Edward J.
2015-03-01
Video surveillance systems are of a great value for public safety. With an exponential increase in the number of cameras, videos obtained from surveillance systems are often archived for forensic purposes. Many automatic methods have been proposed to do video analytics such as anomaly detection and human activity recognition. However, such methods face significant challenges due to object occlusions, shadows and scene illumination changes. In recent years, crowdsourcing has become an effective tool that utilizes human intelligence to perform tasks that are challenging for machines. In this paper, we present an intelligent crowdsourcing system for forensic analysis of surveillance video that includes the video recorded as a part of search and rescue missions and large-scale investigation tasks. We describe a method to enhance crowdsourcing by incorporating human detection, re-identification and tracking. At the core of our system, we use a hierarchal pyramid model to distinguish the crowd members based on their ability, experience and performance record. Our proposed system operates in an autonomous fashion and produces a final output of the crowdsourcing analysis consisting of a set of video segments detailing the events of interest as one storyline.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.
Routine human-competitive machine intelligence by means of genetic programming
NASA Astrophysics Data System (ADS)
Koza, John R.; Streeter, Matthew J.; Keane, Martin
2004-01-01
Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.
NASA Technical Reports Server (NTRS)
Smith, D. B. S.
1982-01-01
The potential applications of Automation, Robotics, and Machine Intelligence Systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are
Personalized keystroke dynamics for self-powered human--machine interfacing.
Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin
2015-01-27
The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.
Compact Microscope Imaging System Developed
NASA Technical Reports Server (NTRS)
McDowell, Mark
2001-01-01
The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Sumit Kumar; Pullum, Laura L; Ramanathan, Arvind
Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studyingmore » the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.« less
Das, Nilakash; Topalovic, Marko; Janssens, Wim
2018-03-01
The application of artificial intelligence in the diagnosis of obstructive lung diseases is an exciting phenomenon. Artificial intelligence algorithms work by finding patterns in data obtained from diagnostic tests, which can be used to predict clinical outcomes or to detect obstructive phenotypes. The purpose of this review is to describe the latest trends and to discuss the future potential of artificial intelligence in the diagnosis of obstructive lung diseases. Machine learning has been successfully used in automated interpretation of pulmonary function tests for differential diagnosis of obstructive lung diseases. Deep learning models such as convolutional neural network are state-of-the art for obstructive pattern recognition in computed tomography. Machine learning has also been applied in other diagnostic approaches such as forced oscillation test, breath analysis, lung sound analysis and telemedicine with promising results in small-scale studies. Overall, the application of artificial intelligence has produced encouraging results in the diagnosis of obstructive lung diseases. However, large-scale studies are still required to validate current findings and to boost its adoption by the medical community.
Parallel Algorithms for Computer Vision
1990-04-01
NA86-1, Thinking Machines Corporation, Cambridge, MA, December 1986. [43] J. Little, G. Blelloch, and T. Cass. How to program the connection machine for... to program the connection machine for computer vision. In Proc. Workshop on Comp. Architecture for Pattern Analysis and Machine Intell., 1987. [92] J...In Proceedings of SPIE Conf. on Advances in Intelligent Robotics Systems, Bellingham, VA, 1987. SPIE. [91] J. Little, G. Blelloch, and T. Cass. How
A Concept for Optimizing Behavioural Effectiveness & Efficiency
NASA Astrophysics Data System (ADS)
Barca, Jan Carlo; Rumantir, Grace; Li, Raymond
Both humans and machines exhibit strengths and weaknesses that can be enhanced by merging the two entities. This research aims to provide a broader understanding of how closer interactions between these two entities can facilitate more optimal goal-directed performance through the use of artificial extensions of the human body. Such extensions may assist us in adapting to and manipulating our environments in a more effective way than any system known today. To demonstrate this concept, we have developed a simulation where a semi interactive virtual spider can be navigated through an environment consisting of several obstacles and a virtual predator capable of killing the spider. The virtual spider can be navigated through the use of three different control systems that can be used to assist in optimising overall goal directed performance. The first two control systems use, an onscreen button interface and a touch sensor, respectively to facilitate human navigation of the spider. The third control system is an autonomous navigation system through the use of machine intelligence embedded in the spider. This system enables the spider to navigate and react to changes in its local environment. The results of this study indicate that machines should be allowed to override human control in order to maximise the benefits of collaboration between man and machine. This research further indicates that the development of strong machine intelligence, sensor systems that engage all human senses, extra sensory input systems, physical remote manipulators, multiple intelligent extensions of the human body, as well as a tighter symbiosis between man and machine, can support an upgrade of the human form.
Using Neural Networks to Classify Digitized Images of Galaxies
NASA Astrophysics Data System (ADS)
Goderya, S. N.; McGuire, P. C.
2000-12-01
Automated classification of Galaxies into Hubble types is of paramount importance to study the large scale structure of the Universe, particularly as survey projects like the Sloan Digital Sky Survey complete their data acquisition of one million galaxies. At present it is not possible to find robust and efficient artificial intelligence based galaxy classifiers. In this study we will summarize progress made in the development of automated galaxy classifiers using neural networks as machine learning tools. We explore the Bayesian linear algorithm, the higher order probabilistic network, the multilayer perceptron neural network and Support Vector Machine Classifier. The performance of any machine classifier is dependant on the quality of the parameters that characterize the different groups of galaxies. Our effort is to develop geometric and invariant moment based parameters as input to the machine classifiers instead of the raw pixel data. Such an approach reduces the dimensionality of the classifier considerably, and removes the effects of scaling and rotation, and makes it easier to solve for the unknown parameters in the galaxy classifier. To judge the quality of training and classification we develop the concept of Mathews coefficients for the galaxy classification community. Mathews coefficients are single numbers that quantify classifier performance even with unequal prior probabilities of the classes.
Using machine learning for improving knowledge on antibacterial effect of bioactive glass.
Echezarreta-López, M M; Landin, M
2013-09-10
The aim of this work was to find relationships between critical bioactive glass characteristics and their antibacterial behaviour using an artificial intelligence tool. A large dataset including ingredients and process variables of the bioactive glasses production, bacterial characteristics and microbiological experimental conditions was generated from literature and analyzed by neurofuzzy logic technology. Our findings allow an explanation on the variability in antibacterial behaviour found by different authors and to obtain general conclusions about critical parameters of bioactive glasses to be considered in order to achieve activity against some of the most common skin and implant surgery pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.
The need for artificial intelligence as an aid in controlling a manufacturing operation
NASA Astrophysics Data System (ADS)
Weyand, J.
AI applications to industrial production and planning are discussed and illustrated with diagrams and drawings. Applications examined include flexible automation of manufacturing processes (robots with open manual control, robots programmable to meet product specifications, self-regulated robots, and robots capable of learning), flexible fault detection and diagnostics, production control, and overall planning and management (product strategies, marketing, determination of development capacity, site selection, project organization, and technology investment strategies). For the case of robots, problems in the design and operation of a state-of-the-art machine-tool cell (for hole boring, milling, and joining) are analyzed in detail.
NASA Astrophysics Data System (ADS)
Prescott, Tony J.
2017-04-01
The EPSRC principles of robotics make a number of commitments about the ontological status of robots such as that robots are "just tools" or can give only "an impression or real intelligence". This commentary proposes that this assumes, all too easily, that we know the boundary conditions of future robotics development, and argues that progress towards a more useful set of principles could begin by thinking carefully about the ontological status of robots. Whilst most robots are currently little more than tools, we are entering an era where there will be new kinds of entities that combine some of the properties of tools with psychological capacities that we had previously thought were reserved for complex biological organisms such as humans. The ontological status of robots might be best described as liminal - neither living nor simply mechanical. There is also evidence that people will treat robots as more than just tools regardless of the extent to which their machine nature is transparent. Ethical principles need to be developed that recognise these ontological and psychological issues around the nature of robots and how they are perceived.
The Convergence of Intelligences
NASA Astrophysics Data System (ADS)
Diederich, Joachim
Minsky (1985) argued an extraterrestrial intelligence may be similar to ours despite very different origins. ``Problem- solving'' offers evolutionary advantages and individuals who are part of a technical civilisation should have this capacity. On earth, the principles of problem-solving are the same for humans, some primates and machines based on Artificial Intelligence (AI) techniques. Intelligent systems use ``goals'' and ``sub-goals'' for problem-solving, with memories and representations of ``objects'' and ``sub-objects'' as well as knowledge of relations such as ``cause'' or ``difference.'' Some of these objects are generic and cannot easily be divided into parts. We must, therefore, assume that these objects and relations are universal, and a general property of intelligence. Minsky's arguments from 1985 are extended here. The last decade has seen the development of a general learning theory (``computational learning theory'' (CLT) or ``statistical learning theory'') which equally applies to humans, animals and machines. It is argued that basic learning laws will also apply to an evolved alien intelligence, and this includes limitations of what can be learned efficiently. An example from CLT is that the general learning problem for neural networks is intractable, i.e. it cannot be solved efficiently for all instances (it is ``NP-complete''). It is the objective of this paper to show that evolved intelligences will be constrained by general learning laws and will use task-decomposition for problem-solving. Since learning and problem-solving are core features of intelligence, it can be said that intelligences converge despite very different origins.
Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications.
Babitsky, V I; Astashev, V K; Kalashnikov, A N
2004-04-01
Experiments conducted in several countries have shown that the improvement of machining quality can be promoted through conversion of the cutting process into one involving controllable high-frequency vibration at the cutting zone. This is achieved through the generation and maintenance of ultrasonic vibration of the cutting tool to alter the fracture process of work-piece material cutting to one in which loading of the materials at the tool tip is incremental, repetitive and controlled. It was shown that excitation of the high-frequency vibro-impact mode of the tool-workpiece interaction is the most effective way of ultrasonic influence on the dynamic characteristics of machining. The exploitation of this nonlinear mode needs a new method of adaptive control for excitation and stabilisation of ultrasonic vibration known as autoresonance. An approach has been developed to design an autoresonant ultrasonic cutting unit as an oscillating system with an intelligent electronic feedback controlling self-excitation in the entire mechatronic system. The feedback produces the exciting force by means of transformation and amplification of the motion signal. This allows realisation for robust control of fine resonant tuning to bring the nonlinear high Q-factor systems into technological application. The autoresonant control provides the possibility of self-tuning and self-adaptation mechanisms for the system to keep the nonlinear resonant mode of oscillation under unpredictable variation of load, structure and parameters. This allows simple regulation of intensity of the process whilst keeping maximum efficiency at all times. An autoresonant system with supervisory computer control was developed, tested and used for the control of the piezoelectric transducer during ultrasonically assisted cutting. The system has been developed as combined analog-digital, where analog devices process the control signal, and parameters of the devices are controlled digitally by computer. The system was applied for advanced machining of aviation materials.
Robotic Technology: An Assessment and Forecast,
1984-07-01
Research Associates# Inc. Dr. Roger Nagel# Lehigh University Dr. Charles Rosen# Machine Intelligence Corporations and Mr. Jack Thornton# Robot Insider...amr (Subcontractors: systems for assembly and Adopt Technology# inspection Stanford University. SRI) AFSC MANTECH o McDonnell Douglas o Machine ...supervisory controls man- machine interaction and system integration. - .. _ - Foreign R& The U.S. faces a strong technological challenge in robotics from
NASA Astrophysics Data System (ADS)
Ramalingam, V. V.; Pandian, A.; Jaiswal, Abhijeet; Bhatia, Nikhar
2018-04-01
This paper presents a novel method based on concept of Machine Learning for Emotion Detection using various algorithms of Support Vector Machine and major emotions described are linked to the Word-Net for enhanced accuracy. The approach proposed plays a promising role to augment the Artificial Intelligence in the near future and could be vital in optimization of Human-Machine Interface.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... Utilities System, Lafayette, LA; Machine-to- Machine Intelligence Corporation (M2Mi), Moffett Field, CA; Inman Technology, Cambridge, MA; Kkrish Energy LLC, Colorado Springs, CO; Smarthome Laboratories, Ltd...
Artificial Intelligence in Speech Understanding: Two Applications at C.R.I.N.
ERIC Educational Resources Information Center
Carbonell, N.; And Others
1986-01-01
This article explains how techniques of artificial intelligence are applied to expert systems for acoustic-phonetic decoding, phonological interpretation, and multi-knowledge sources for man-machine dialogue implementation. The basic ideas are illustrated with short examples. (Author/JDH)
Artificial Intelligence and Expert Systems.
ERIC Educational Resources Information Center
Lawlor, Joseph
Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…
Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Intelligent robot trends and predictions for the new millennium
NASA Astrophysics Data System (ADS)
Hall, Ernest L.; Mundhenk, Terrell N.
1999-08-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor but little funding. In factory automation such robotics machines can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. In honor of the new millennium, this paper will present a discussion of futuristic trends and predictions. However, in keeping with technical tradition, a new technique for 'Follow the Leader' will also be presented in the hope of it becoming a new, useful and non-obvious technique.
Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously
Tracking of cells with a compact microscope imaging system with intelligent controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.
Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar
2017-01-01
Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Intelligent judgements over health risks in a spatial agent-based model.
Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana
2018-03-20
Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of several macro metrics of interest: an epidemic curve, a risk perception curve, and a distribution of different types of coping strategies over time. Our results emphasize the importance of integrating behavioral aspects of decision making under risk into spatial disease ABMs using machine learning algorithms. This is especially relevant when studying cumulative impacts of behavioral changes and possible intervention strategies.
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor)
1990-01-01
The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.
A First-Order Formalization of Knowledge and Action for a Multiagent Planning System.
1980-12-01
1979), pp. 176-181. Doyle, J., "Truth Maintenance Systems for Problem Solvinn,’ Memo AI-TR-419, MIT Artifcial Intelligence Laboratory, Cambridge (1978...the Standpoint of Artifcial Intelligence ," in Machine Intelligence 4, B. Meltzer and D. Michie (Edo.), Edinburgh University Press, Edinburgh (1969...A -A1R 603 SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGE --ETC FIG 9I2 A FIRST-ORDER FORMALIZATION OF KNOWLEDGE AND ACTION FOR A MULTI--ETC(U
Advanced automation for space missions: Technical summary
NASA Technical Reports Server (NTRS)
1980-01-01
Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.
An investigation of chatter and tool wear when machining titanium
NASA Technical Reports Server (NTRS)
Sutherland, I. A.
1974-01-01
The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.
NASA Astrophysics Data System (ADS)
Hu, Yao; Quinn, Christopher J.; Cai, Ximing; Garfinkle, Noah W.
2017-11-01
For agent-based modeling, the major challenges in deriving agents' behavioral rules arise from agents' bounded rationality and data scarcity. This study proposes a "gray box" approach to address the challenge by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques (i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted regression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from data. A case study is conducted to investigate farmers' pumping behavior in the Midwest, U.S.A. Results show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, monthly mean temperature and precipitation- have main causal influences on agents' decisions on monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater model to investigate the impacts of agents' pumping behavior on the underlying groundwater system in the context of coupled human and environmental systems.
1990-02-01
human-to- human communication patterns during situation assessment and cooperative problem solving tasks. The research proposed for the second URRP year...Hardware development. In order to create an environment within which to study multi-channeled human-to- human communication , a multi-media observation...that machine-to- human communication can be used to increase cohesion between humans and intelligent machines and to promote human-machine team
A Starter's Guide to Artificial Intelligence.
ERIC Educational Resources Information Center
McConnell, Barry A.; McConnell, Nancy J.
1988-01-01
Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)
Conception et mise au point d'un emulateur de machine Synchrone trapezoidale a aimants permanents
NASA Astrophysics Data System (ADS)
Lessard, Francois
The development of technology leads inevitably to higher systems' complexity faced by engineers. Over time, tools are often developed in parallel with the main systems to ensure their sustainability. The work presented in this document provides a new tool for testing motor drives. In general, this project refers to active loads, which are complex dynamic loads emulated electronically with a static converter. Specifically, this document proposes and implements a system whose purpose is to recreate the behaviour of a trapezoidal permanent magnets synchronous machine. The ultimate goal is to connect a motor drive to the three terminal of the motor emulator, as it would with a real motor. The emulator's response then obtained, when subjected to disturbances of the motor drive, is ideally identical to the one of a real motor. The motor emulator led to a significant versatility of a test bench because the electrical and mechanical parameters of the application can be easily modified. The work is divided into two main parts: the static converter and real-rime. Overall, these two entities form a PHIL (Power Hardware-in-the-loop) real-time simulation. The static converter enables the exchange of real power between the drive motor and the real-time simulation. The latter gives the application the intelligence needed to interact with the motor drive in a way which the desired behaviour is recreated. The main partner of this project, Opal-RT, ensures this development. Keywords: virtual machine, PHIL, real-time simulation, electronic load
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
Intelligent robot trends for factory automation
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
1997-09-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent economic and technical trends. The robotics industry now has a billion-dollar market in the U.S. and is growing. Feasibility studies are presented which also show unaudited healthy rates of return for a variety of robotic applications. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. However, the road from inspiration to successful application is still long and difficult, often taking decades to achieve a new product. More cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit both industry and society.
[INVITED] Computational intelligence for smart laser materials processing
NASA Astrophysics Data System (ADS)
Casalino, Giuseppe
2018-03-01
Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.
Syndrome Diagnosis: Human Intuition or Machine Intelligence?
Braaten, Øivind; Friestad, Johannes
2008-01-01
The aim of this study was to investigate whether artificial intelligence methods can represent objective methods that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated patients - a ‘vector method’ and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a naive Bayes’ calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic methods. PMID:19415142
Syndrome diagnosis: human intuition or machine intelligence?
Braaten, Oivind; Friestad, Johannes
2008-01-01
The aim of this study was to investigate whether artificial intelligence methods can represent objective methods that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated patients - a 'vector method' and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a naive Bayes' calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic methods.
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Douglas; Greitzer, Frank L.
In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being publishedmore » as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.« less
2017-12-21
rank , and computer vision. Machine learning is closely related to (and often overlaps with) computational statistics, which also focuses on...Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.[1] Arthur Samuel...an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning " in 1959 while at IBM[2]. Evolved
Hueso, Miguel; Vellido, Alfredo; Montero, Nuria; Barbieri, Carlo; Ramos, Rosa; Angoso, Manuel; Cruzado, Josep Maria; Jonsson, Anders
2018-02-01
Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve the patient's quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters, and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for the assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of "big data" and will require real-time predictive models. These may come from the fields of machine learning and computational intelligence, both included in artificial intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of artificial intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in artificial intelligence and machine learning, a scientific meeting was organized in the Hospital Universitari Bellvitge (L'Hospitalet, Barcelona). As an outcome of that meeting, the aim of this review is to investigate artificial intel ligence experiences on dialysis, with a focus on potential barriers, challenges, and prospects for future applications of these technologies. Artificial intelligence research on dialysis is still in an early stage, and the main challenge relies on interpretability and/or comprehensibility of data models when applied to decision making. Artificial neural networks and medical decision support systems have been used to make predictions about anemia, total body water, or intradialysis hypotension and are promising approaches for the prescription and monitoring of hemodialysis therapy. Current dialysis machines are continuously improving due to innovative technological developments, but patient safety is still a key challenge. Real-time monitoring systems, coupled with automatic instantaneous biofeedback, will allow changing dialysis prescriptions continuously. The integration of vital sign monitoring with dialysis parameters will produce large data sets that will require the use of data analysis techniques, possibly from the area of machine learning, in order to make better decisions and increase the safety of patients.
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
Hands-free human-machine interaction with voice
NASA Astrophysics Data System (ADS)
Juang, B. H.
2004-05-01
Voice is natural communication interface between a human and a machine. The machine, when placed in today's communication networks, may be configured to provide automation to save substantial operating cost, as demonstrated in AT&T's VRCP (Voice Recognition Call Processing), or to facilitate intelligent services, such as virtual personal assistants, to enhance individual productivity. These intelligent services often need to be accessible anytime, anywhere (e.g., in cars when the user is in a hands-busy-eyes-busy situation or during meetings where constantly talking to a microphone is either undersirable or impossible), and thus call for advanced signal processing and automatic speech recognition techniques which support what we call ``hands-free'' human-machine communication. These techniques entail a broad spectrum of technical ideas, ranging from use of directional microphones and acoustic echo cancellatiion to robust speech recognition. In this talk, we highlight a number of key techniques that were developed for hands-free human-machine communication in the mid-1990s after Bell Labs became a unit of Lucent Technologies. A video clip will be played to demonstrate the accomplishement.
Technologies for developing an advanced intelligent ATM with self-defence capabilities
NASA Astrophysics Data System (ADS)
Sako, Hiroshi
2010-01-01
We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.
Solar prediction and intelligent machines
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
1987-01-01
The solar prediction program is aimed at reducing or eliminating the need to throughly understand the process previously developed and to still be able to produce a prediction. Substantial progress was made in identifying the procedures to be coded as well as testing some of the presently coded work. Another project involves work on developing ideas and software that should result in a machine capable of learning as well as carrying on an intelligent conversation over a wide range of topics. The underlying idea is to use primitive ideas and construct higher order ideas from these, which can then be easily related one to another.
Intelligent robots for planetary exploration and construction
NASA Technical Reports Server (NTRS)
Albus, James S.
1992-01-01
Robots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.
Computers Simulate Human Experts.
ERIC Educational Resources Information Center
Roberts, Steven K.
1983-01-01
Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)
The dynamic analysis of drum roll lathe for machining of rollers
NASA Astrophysics Data System (ADS)
Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei
2014-08-01
An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.
Substructure Discovery of Macro-Operators
1988-05-01
Aspects of Scientific Discovery," in Machine Learning: An Artifcial Intelligence Approach, Vol. II. R. S. Michalski, J. G. Carbonell and T. M. Mitchell (ed... intelligent robot using this system could learn how to perform new tasks by watching tasks being performed by someone else. even if the robot does not possess...Substructure Discovery of Macro-Operators* Bradley L. Whitehall Artificial Intelligence Research Group Coordinated Science Laboratory ’University of Illinois at
VisualUrText: A Text Analytics Tool for Unstructured Textual Data
NASA Astrophysics Data System (ADS)
Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.
2018-05-01
The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.
A hybrid prognostic model for multistep ahead prediction of machine condition
NASA Astrophysics Data System (ADS)
Roulias, D.; Loutas, T. H.; Kostopoulos, V.
2012-05-01
Prognostics are the future trend in condition based maintenance. In the current framework a data driven prognostic model is developed. The typical procedure of developing such a model comprises a) the selection of features which correlate well with the gradual degradation of the machine and b) the training of a mathematical tool. In this work the data are taken from a laboratory scale single stage gearbox under multi-sensor monitoring. Tests monitoring the condition of the gear pair from healthy state until total brake down following several days of continuous operation were conducted. After basic pre-processing of the derived data, an indicator that correlated well with the gearbox condition was obtained. Consecutively the time series is split in few distinguishable time regions via an intelligent data clustering scheme. Each operating region is modelled with a feed-forward artificial neural network (FFANN) scheme. The performance of the proposed model is tested by applying the system to predict the machine degradation level on unseen data. The results show the plausibility and effectiveness of the model in following the trend of the timeseries even in the case that a sudden change occurs. Moreover the model shows ability to generalise for application in similar mechanical assets.
Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.
The sixth generation robot in space
NASA Technical Reports Server (NTRS)
Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.
1990-01-01
The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.
Support vector machine firefly algorithm based optimization of lens system.
Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah
2015-01-01
Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.
NASA Astrophysics Data System (ADS)
Endah, S. N.; Nugraheni, D. M. K.; Adhy, S.; Sutikno
2017-04-01
According to Law No. 32 of 2002 and the Indonesian Broadcasting Commission Regulation No. 02/P/KPI/12/2009 & No. 03/P/KPI/12/2009, stated that broadcast programs should not scold with harsh words, not harass, insult or demean minorities and marginalized groups. However, there are no suitable tools to censor those words automatically. Therefore, researches to develop a system of intelligent software to censor the words automatically are needed. To conduct censor, the system must be able to recognize the words in question. This research proposes the classification of speech divide into two classes using Support Vector Machine (SVM), first class is set of rude words and the second class is set of properly words. The speech pitch values as an input in SVM, it used for the development of the system for the Indonesian rude swear word. The results of the experiment show that SVM is good for this system.
Physical intelligence does matter to cumulative technological culture.
Osiurak, François; De Oliveira, Emmanuel; Navarro, Jordan; Lesourd, Mathieu; Claidière, Nicolas; Reynaud, Emanuelle
2016-08-01
Tool-based culture is not unique to humans, but cumulative technological culture is. The social intelligence hypothesis suggests that this phenomenon is fundamentally based on uniquely human sociocognitive skills (e.g., shared intentionality). An alternative hypothesis is that cumulative technological culture also crucially depends on physical intelligence, which may reflect fluid and crystallized aspects of intelligence and enables people to understand and improve the tools made by predecessors. By using a tool-making-based microsociety paradigm, we demonstrate that physical intelligence is a stronger predictor of cumulative technological performance than social intelligence. Moreover, learners' physical intelligence is critical not only in observational learning but also when learners interact verbally with teachers. Finally, we show that cumulative performance is only slightly influenced by teachers' physical and social intelligence. In sum, human technological culture needs "great engineers" to evolve regardless of the proportion of "great pedagogues." Social intelligence might play a more limited role than commonly assumed, perhaps in tool-use/making situations in which teachers and learners have to share symbolic representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Sagan, Carl
1975-01-01
The author of this article believes that human survival depends upon the ability to develop and work with machines of high artificial intelligence. He lists uses of such machines, including terrestrial mining, outer space exploration, and other tasks too dangerous, too expensive, or too boring for human beings. (MA)
NASA Technical Reports Server (NTRS)
Hays, Dan
1987-01-01
Applications of linguistic principles to potential problems of human and machine communication in space settings are discussed. Variations in language among speakers of different backgrounds and change in language forms resulting from new experiences or reduced contact with other groups need to be considered in the design of intelligent machine systems.
"The Intimate Machine"--30 Years On
ERIC Educational Resources Information Center
Frude, Neil; Jandric, Petar
2015-01-01
This conversation focuses on a book published in 1983 that examined "animism," the tendency to regard non-living entities as living and sentient. "The Intimate Machine" suggested that animism will be fully exploited by artificial intelligence (AI) and robotics, generating artefacts that will engage the user in…
Artificial Intelligence and the High School Computer Curriculum.
ERIC Educational Resources Information Center
Dillon, Richard W.
1993-01-01
Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…
A Rather Intelligent Language Teacher.
ERIC Educational Resources Information Center
Cerri, Stefano; Breuker, Joost
1981-01-01
Characteristics of DART (Didactic Augmented Recursive Transition), an ATN-based system for writing intelligent computer assisted instruction (ICAI) programs that is available on the PLATO system are described. DART allows writing programs in an ATN dialect, compiling them in machine code for the PLATO system, and executing them as if the original…
Intelligence: Real or artificial?
Schlinger, Henry D.
1992-01-01
Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051
Machine Learning and Data Mining Methods in Diabetes Research.
Kavakiotis, Ioannis; Tsave, Olga; Salifoglou, Athanasios; Maglaveras, Nicos; Vlahavas, Ioannis; Chouvarda, Ioanna
2017-01-01
The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.
Artificial intelligence in sports on the example of weight training.
Novatchkov, Hristo; Baca, Arnold
2013-01-01
The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements.Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates.
Artificial Intelligence in Sports on the Example of Weight Training
Novatchkov, Hristo; Baca, Arnold
2013-01-01
The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements. Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates. PMID:24149722
[Research on infrared safety protection system for machine tool].
Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De
2008-04-01
In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.
Intelligent platforms for disease assessment: novel approaches in functional echocardiography.
Sengupta, Partho P
2013-11-01
Accelerating trends in the dynamic digital era (from 2004 onward) has resulted in the emergence of novel parametric imaging tools that allow easy and accurate extraction of quantitative information from cardiac images. This review principally attempts to heighten the awareness of newer emerging paradigms that may advance acquisition, visualization and interpretation of the large functional data sets obtained during cardiac ultrasound imaging. Incorporation of innovative cognitive software that allow advanced pattern recognition and disease forecasting will likely transform the human-machine interface and interpretation process to achieve a more efficient and effective work environment. Novel technologies for automation and big data analytics that are already active in other fields need to be rapidly adapted to the health care environment with new academic-industry collaborations to enrich and accelerate the delivery of newer decision making tools for enhancing patient care. Copyright © 2013. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-22
The Machine Tool Task Force (MTTF) is a multidisciplined team of international experts, whose mission was to investigate the state of the art of machine tool technology, to identify promising future directions of that technology for both the US government and private industry, and to disseminate the findings of its research in a conference and through the publication of a final report. MTTF was a two and one-half year effort that involved the participation of 122 experts in the specialized technologies of machine tools and in the management of machine tool operations. The scope of the MTTF was limited tomore » cutting-type or material-removal-type machine tools, because they represent the major share and value of all machine tools now installed or being built. The activities of the MTTF and the technical, commercial and economic signifiance of recommended activities for improving machine tool technology are discussed. (LCL)« less
NASA Astrophysics Data System (ADS)
Cherkasov, Kirill V.; Gavrilova, Irina V.; Chernova, Elena V.; Dokolin, Andrey S.
2018-05-01
The article is devoted to reflection of separate aspects of intellectual system gesture recognition development. The peculiarity of the system is its intellectual block which completely based on open technologies: OpenCV library and Microsoft Cognitive Toolkit (CNTK) platform. The article presents the rationale for the choice of such set of tools, as well as the functional scheme of the system and the hierarchy of its modules. Experiments have shown that the system correctly recognizes about 85% of images received from sensors. The authors assume that the improvement of the algorithmic block of the system will increase the accuracy of gesture recognition up to 95%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A
Interactive data visualization leverages human visual perception and cognition to improve the accuracy and effectiveness of data analysis. When combined with automated data analytics, data visualization systems orchestrate the strengths of humans with the computational power of machines to solve problems neither approach can manage in isolation. In the intelligent transportation system domain, such systems are necessary to support decision making in large and complex data streams. In this chapter, we provide an introduction to several key topics related to the design of data visualization systems. In addition to an overview of key techniques and strategies, we will describe practicalmore » design principles. The chapter is concluded with a detailed case study involving the design of a multivariate visualization tool.« less
Towards a generalized energy prediction model for machine tools
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan
2017-01-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687
Towards a generalized energy prediction model for machine tools.
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan
2017-04-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.
2014-05-22
attempted to respond to the advances in technology and the growing power of geographical information system (GIS) tools. However, the doctrine...Geospatial intelligence (GEOINT), Geographical information systems (GIS) tools, Humanitarian Assistance/Disaster Relief (HA/DR), 2010 Haiti Earthquake...Humanitarian Assistance/Disaster Relief (HA/DR) Decisions Through Geospatial Intelligence (GEOINT) and Geographical Information Systems (GIS) Tools
Multiprocessor Z-Buffer Architecture for High-Speed, High Complexity Computer Image Generation.
1983-12-01
Oversampling 50 17. "Poking Through" Effects 51 18. Sampling Paths 52 19. Triangle Variables 54 20. Intelligent Tiling Algorithm 61 21. Tiler Functional Blocks...64 * 22. HSD Interface 65 23. Tiling Machine Setup 67 24. Tiling Machine 68 25. Tile Accumulate 69 26. A lx$ Sorting Machine 77 27. A 2x8 Sorting...Delay 227 87. Effect of Triangle Size on Tiler Throughput Rates 229 88. Tiling Machine Setup Stage Performance for Oversample Mode 234 89. Tiling
Machine Learning. Part 1. A Historical and Methodological Analysis.
1983-05-31
Machine learning has always been an integral part of artificial intelligence, and its methodology has evolved in concert with the major concerns of the field. In response to the difficulties of encoding ever-increasing volumes of knowledge in modern Al systems, many researchers have recently turned their attention to machine learning as a means to overcome the knowledge acquisition bottleneck. Part 1 of this paper presents a taxonomic analysis of machine learning organized primarily by learning strategies and secondarily by
Intelligible machine learning with malibu.
Langlois, Robert E; Lu, Hui
2008-01-01
malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the machine tool operation/machine tool and tool and die making technology programs cluster. Presented in the introductory section are a framework of courses and programs, description of the…
Chip breaking system for automated machine tool
Arehart, Theodore A.; Carey, Donald O.
1987-01-01
The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.
NASA Astrophysics Data System (ADS)
Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah
2018-03-01
The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.
Developing a new intelligent system for the diagnosis of tuberculous pleural effusion.
Li, Chengye; Hou, Lingxian; Sharma, Bishundat Yanesh; Li, Huaizhong; Chen, ChengShui; Li, Yuping; Zhao, Xuehua; Huang, Hui; Cai, Zhennao; Chen, Huiling
2018-01-01
In countries with high prevalence of tuberculosis (TB), clinicians often diagnose tuberculous pleural effusion (TPE) by using diagnostic tests, which have not only poor sensitivity, but poor availability as well. The aim of our study is to develop a new artificial intelligence based diagnostic model that is accurate, fast, non-invasive and cost effective to diagnose TPE. It is expected that a tool derived based on the model be installed on simple computer devices (such as smart phones and tablets) and be used by clinicians widely. For this study, data of 140 patients whose clinical signs, routine blood test results, blood biochemistry markers, pleural fluid cell type and count, and pleural fluid biochemical tests' results were prospectively collected into a database. An Artificial intelligence based diagnostic model, which employs moth flame optimization based support vector machine with feature selection (FS-MFO-SVM), is constructed to predict the diagnosis of TPE. The optimal model results in an average of 95% accuracy (ACC), 0.9564 the area under the receiver operating characteristic curve (AUC), 93.35% sensitivity, and 97.57% specificity for FS-MFO-SVM. The proposed artificial intelligence based diagnostic model is found to be highly reliable for diagnosing TPE based on simple clinical signs, blood samples and pleural effusion samples. Therefore, the proposed model can be widely used in clinical practice and further evaluated for use as a substitute of invasive pleural biopsies. Copyright © 2017 Elsevier B.V. All rights reserved.
Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM).
Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Sadeghfam, Sina; Moghaddam, Asghar Asghari
2017-01-01
This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
Cao, Hongliang; Xin, Ya; Yuan, Qiaoxia
2016-02-01
To predict conveniently the biochar yield from cattle manure pyrolysis, intelligent modeling approach was introduced in this research. A traditional artificial neural networks (ANN) model and a novel least squares support vector machine (LS-SVM) model were developed. For the identification and prediction evaluation of the models, a data set with 33 experimental data was used, which were obtained using a laboratory-scale fixed bed reaction system. The results demonstrated that the intelligent modeling approach is greatly convenient and effective for the prediction of the biochar yield. In particular, the novel LS-SVM model has a more satisfying predicting performance and its robustness is better than the traditional ANN model. The introduction and application of the LS-SVM modeling method gives a successful example, which is a good reference for the modeling study of cattle manure pyrolysis process, even other similar processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research on the tool holder mode in high speed machining
NASA Astrophysics Data System (ADS)
Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao
2018-03-01
High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.
Real Time Network Monitoring and Reporting System
ERIC Educational Resources Information Center
Massengale, Ricky L., Sr.
2009-01-01
With the ability of modern system developers to develop intelligent programs that allows machines to learn, modify and evolve themselves, current trends of reactionary methods to detect and eradicate malicious software code from infected machines is proving to be too costly. Addressing malicious software after an attack is the current methodology…
Takada, Kenji
2016-09-01
New approach for the diagnosis of extractions with neural network machine learning. Seok-Ki Jung and Tae-Woo Kim. Am J Orthod Dentofacial Orthop 2016;149:127-33. Not reported. Mathematical modeling. Copyright © 2016 Elsevier Inc. All rights reserved.
Fantastic Journey through Minds and Machines.
ERIC Educational Resources Information Center
Muir, Michael
Intended for learners with a basic familiarity with the Logo programming language, this manual is designed to introduce them to artificial intelligence and enhance their programming capabilities. Nine chapters discuss the following features of Logo: (1) MAZE.MASTER, a look at robots and how sensors make machines aware of their environment; (2)…
Hanlon, John A.; Gill, Timothy J.
2001-01-01
Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent
Micro electrical discharge milling using deionized water as a dielectric fluid
NASA Astrophysics Data System (ADS)
Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam
2007-05-01
In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.
Machine Methods for Acquiring, Learning, and Applying Knowledge.
ERIC Educational Resources Information Center
Hayes-Roth, Frederick; And Others
A research plan for identifying and acting upon constraints that impede the development of knowledge-based intelligent systems is described. The two primary problems identified are knowledge programming, the task of which is to create an intelligent system that does what an expert says it should, and learning, the problem requiring the criticizing…
Social Studies and Emerging Paradigms: Artificial Intelligence and Consciousness Education.
ERIC Educational Resources Information Center
Braun, Joseph A., Jr.
1987-01-01
Asks three questions: (1) Are machines capable of thinking as people do? (2) How is the thinking of computers similar and different from human thinking? and (3) What exactly is thinking? Examines research in artificial intelligence. Describes the theory and research of consciousness education and discusses an emerging paradigm for human thinking…
Intelligent robot trends for 1998
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
1998-10-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent technical and economic trends. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has a 1.1 billion-dollar market in the U.S. and is growing. Feasibility studies results are presented which also show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society.
Machine Perception (La Perception de l’Environment par Senseurs Automatiques).
1992-08-01
France, January 25-27, 1984, Lectures. Volumes 1 & 2 Reconnaissance des formes et intelligence artificielle ; Congres Francais, 4th, Paris, France, January...capteurs intelligents intkgris - traitement cellulaire et neuronal - operateurs visuels de base -implantation analogique vs digitale A smart retina is a...I’I riscc Li li mttlL’ dliitrlt ITTIC dies % eiicule it dsitisitl Ct Lie"IIN10%Ct ,v,,temcs intelligents dfaidc a [a perception de lai situatiotn. O
Artificial intelligence (AI) systems for interpreting complex medical datasets.
Altman, R B
2017-05-01
Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.
Shape Matching and Image Segmentation Using Stochastic Labeling
1981-08-01
hierarchique d’Etiquetage Probabiliste," To be presented at AFCET, 3 eme Congres, Reconnaissance Des Formes et Intelligence Artificielle , Sept. 16-18...Tenenbaum, "MSYS: A System for Reasoning About Scenes," Tech. Note 121, Artificial Intelligence Center, SRI Intl., Menlo Park, CA, 1976. [1-6] D. Marr, T...Analysis and Machine Intelligence . [1-10] O.D. Faugeras and M. Berthod, "Using Context in the Global Recognition of a Set of Objects: An Optimization
Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang
2014-04-01
In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.
Intelligent Machine Learning Approaches for Aerospace Applications
NASA Astrophysics Data System (ADS)
Sathyan, Anoop
Machine Learning is a type of artificial intelligence that provides machines or networks the ability to learn from data without the need to explicitly program them. There are different kinds of machine learning techniques. This thesis discusses the applications of two of these approaches: Genetic Fuzzy Logic and Convolutional Neural Networks (CNN). Fuzzy Logic System (FLS) is a powerful tool that can be used for a wide variety of applications. FLS is a universal approximator that reduces the need for complex mathematics and replaces it with expert knowledge of the system to produce an input-output mapping using If-Then rules. The expert knowledge of a system can help in obtaining the parameters for small-scale FLSs, but for larger networks we will need to use sophisticated approaches that can automatically train the network to meet the design requirements. This is where Genetic Algorithms (GA) and EVE come into the picture. Both GA and EVE can tune the FLS parameters to minimize a cost function that is designed to meet the requirements of the specific problem. EVE is an artificial intelligence developed by Psibernetix that is trained to tune large scale FLSs. The parameters of an FLS can include the membership functions and rulebase of the inherent Fuzzy Inference Systems (FISs). The main issue with using the GFS is that the number of parameters in a FIS increase exponentially with the number of inputs thus making it increasingly harder to tune them. To reduce this issue, the FLSs discussed in this thesis consist of 2-input-1-output FISs in cascade (Chapter 4) or as a layer of parallel FISs (Chapter 7). We have obtained extremely good results using GFS for different applications at a reduced computational cost compared to other algorithms that are commonly used to solve the corresponding problems. In this thesis, GFSs have been designed for controlling an inverted double pendulum, a task allocation problem of clustering targets amongst a set of UAVs, a fire detection problem and the aircraft conflict resolution problem. During the last decade, CNNs have become increasingly popular in the domain of image and speech processing. CNNs have a lot more parameters compared to GFSs that are tuned using the back-propagation algorithm. CNNs typically have hundreds of thousands or maybe millions of parameters that are tuned using common cost functions such as integral squared error, softmax loss etc. Chapter 5 discusses a classification problem to classify images as humans or not and Chapter 6 discusses a regression task using CNN for producing an approximate near-optimal route for the Traveling Salesman Problem (TSP) which is regarded as one of the most complicated decision making problem. Both the GFS and CNN are used to develop intelligent systems specific to the application providing them computational efficiency, robustness in the face of uncertainties and scalability.
Leveraging business intelligence to make better decisions: Part I.
Reimers, Mona
2014-01-01
Data is the new currency. Business intelligence tools will provide better performing practices with a competitive intelligence advantage that will separate the high performers from the rest of the pack. Given the investments of time and money into our data systems, practice leaders must work to take every advantage and look at the datasets as a potential goldmine of business intelligence decision tools. A fresh look at decision tools created from practice data will create efficiencies and improve effectiveness for end-users and managers.
Intelligent hearing aids: the next revolution.
Tao Zhang; Mustiere, Fred; Micheyl, Christophe
2016-08-01
The first revolution in hearing aids came from nonlinear amplification, which allows better compensation for both soft and loud sounds. The second revolution stemmed from the introduction of digital signal processing, which allows better programmability and more sophisticated algorithms. The third revolution in hearing aids is wireless, which allows seamless connectivity between a pair of hearing aids and with more and more external devices. Each revolution has fundamentally transformed hearing aids and pushed the entire industry forward significantly. Machine learning has received significant attention in recent years and has been applied in many other industries, e.g., robotics, speech recognition, genetics, and crowdsourcing. We argue that the next revolution in hearing aids is machine intelligence. In fact, this revolution is already quietly happening. We will review the development in at least three major areas: applications of machine learning in speech enhancement; applications of machine learning in individualization and customization of signal processing algorithms; applications of machine learning in improving the efficiency and effectiveness of clinical tests. With the advent of the internet of things, the above developments will accelerate. This revolution will bring patient satisfactions to a new level that has never been seen before.
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Method and apparatus for characterizing and enhancing the functional performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David
2013-04-30
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.
Nanocomposites for Machining Tools
Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny
2017-01-01
Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, Lisa M.; Chatterjee, Samrat; Holmes, Aimee E.
Business intelligence problems are particularly challenging due to the use of large volume and high velocity data in attempts to model and explain complex underlying phenomena. Incremental machine learning based approaches for summarizing trends and identifying anomalous behavior are often desirable in such conditions to assist domain experts in characterizing their data. The overall goal of this research is to develop a machine learning algorithm that enables predictive analysis on streaming data, detects changes and anomalies in the data, and can evolve based on the dynamic behavior of the data. Commercial shipping transaction data for the U.S. is used tomore » develop and test a Naïve Bayes model that classifies several companies into lines of businesses and demonstrates an ability to predict when the behavior of these companies changes by venturing into other lines of businesses.« less
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
NASA Technical Reports Server (NTRS)
Shearrow, Charles A.
1999-01-01
One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.
Further Structural Intelligence for Sensors Cluster Technology in Manufacturing
Mekid, Samir
2006-01-01
With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.
Machine learning in autistic spectrum disorder behavioral research: A review and ways forward.
Thabtah, Fadi
2018-02-13
Autistic Spectrum Disorder (ASD) is a mental disorder that retards acquisition of linguistic, communication, cognitive, and social skills and abilities. Despite being diagnosed with ASD, some individuals exhibit outstanding scholastic, non-academic, and artistic capabilities, in such cases posing a challenging task for scientists to provide answers. In the last few years, ASD has been investigated by social and computational intelligence scientists utilizing advanced technologies such as machine learning to improve diagnostic timing, precision, and quality. Machine learning is a multidisciplinary research topic that employs intelligent techniques to discover useful concealed patterns, which are utilized in prediction to improve decision making. Machine learning techniques such as support vector machines, decision trees, logistic regressions, and others, have been applied to datasets related to autism in order to construct predictive models. These models claim to enhance the ability of clinicians to provide robust diagnoses and prognoses of ASD. However, studies concerning the use of machine learning in ASD diagnosis and treatment suffer from conceptual, implementation, and data issues such as the way diagnostic codes are used, the type of feature selection employed, the evaluation measures chosen, and class imbalances in data among others. A more serious claim in recent studies is the development of a new method for ASD diagnoses based on machine learning. This article critically analyses these recent investigative studies on autism, not only articulating the aforementioned issues in these studies but also recommending paths forward that enhance machine learning use in ASD with respect to conceptualization, implementation, and data. Future studies concerning machine learning in autism research are greatly benefitted by such proposals.
Machine tools and fixtures: A compilation
NASA Technical Reports Server (NTRS)
1971-01-01
As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.; Lane, Gerald R.
2003-10-01
The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990's. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both the U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligtent driving capabilities. Over the past 11 years, the competition has challenged both undergraduates and graduates, including Ph.D. students with real world applications in intelligent transportation systems, the military, and manufacturing automation. To date, teams from over 40 universities and colleges have participated. In this paper, we describe some of the applications of the technologies required by this competition, and discuss the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.
Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013
Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
Curricular Design for Intelligent Systems in Geosciences Using Urban Groundwater Studies.
NASA Astrophysics Data System (ADS)
Cabral-Cano, E.; Pierce, S. A.; Fuentes-Pineda, G.; Arora, R.
2016-12-01
Geosciences research frequently focuses on process-centered phenomena, studying combinations of physical, geological, chemical, biological, ecological, and anthropogenic factors. These interconnected Earth systems can be best understood through the use of digital tools that should be documented as workflows. To develop intelligent systems, it is important that geoscientists and computing and information sciences experts collaborate to: (1) develop a basic understanding of the geosciences and computing and information sciences disciplines so that the problem and solution approach are clear to all stakeholders, and (2) implement the desired intelligent system with a short turnaround time. However, these interactions and techniques are seldom covered in traditional Earth Sciences curricula. We have developed an exchange course on Intelligent Systems for Geosciences to support workforce development and build capacity to facilitate skill-development at the undergraduate student-level. The first version of this course was offered jointly by the University of Texas at Austin and the Universidad Nacional Autónoma de México as an intensive, study-abroad summer course. Content included: basic Linux introduction, shell scripting and high performance computing, data management, experts systems, field data collection exercises and basics of machine learning. Additionally, student teams were tasked to develop a term projects that centered on applications of Intelligent Systems applied to urban and karst groundwater systems. Projects included expert system and reusable workflow development for subsidence hazard analysis in Celaya, Mexico, a classification model to analyze land use change over a 30 Year Period in Austin, Texas, big data processing and decision support for central Texas groundwater case studies and 3D mapping with point cloud processing at three Texas field sites. We will share experiences and pedagogical insights to improve future versions of this course.
[Artificial intelligence in psychiatry-an overview].
Meyer-Lindenberg, A
2018-06-18
Artificial intelligence and the underlying methods of machine learning and neuronal networks (NN) have made dramatic progress in recent years and have allowed computers to reach superhuman performance in domains that used to be thought of as uniquely human. In this overview, the underlying methodological developments that made this possible are briefly delineated and then the applications to psychiatry in three domains are discussed: precision medicine and biomarkers, natural language processing and artificial intelligence-based psychotherapeutic interventions. In conclusion, some of the risks of this new technology are mentioned.
Distributed intelligence for supervisory control
NASA Technical Reports Server (NTRS)
Wolfe, W. J.; Raney, S. D.
1987-01-01
Supervisory control systems must deal with various types of intelligence distributed throughout the layers of control. Typical layers are real-time servo control, off-line planning and reasoning subsystems and finally, the human operator. Design methodologies must account for the fact that the majority of the intelligence will reside with the human operator. Hierarchical decompositions and feedback loops as conceptual building blocks that provide a common ground for man-machine interaction are discussed. Examples of types of parallelism and parallel implementation on several classes of computer architecture are also discussed.
1990-04-01
REFERENCES Carbonell, J.R. (1970). A] in CAI: An artifcial intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems...of intelligent systems use outcome data of any sort (Anderson, in press, is an exception). Other designers describe system goals for learners and then...5601 90 o9 3007 NOTICE When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely
Tethered Forth system for FPGA applications
NASA Astrophysics Data System (ADS)
Goździkowski, Paweł; Zabołotny, Wojciech M.
2013-10-01
This paper presents the tethered Forth system dedicated for testing and debugging of FPGA based electronic systems. Use of the Forth language allows to interactively develop and run complex testing or debugging routines. The solution is based on a small, 16-bit soft core CPU, used to implement the Forth Virtual Machine. Thanks to the use of the tethered Forth model it is possible to minimize usage of the internal RAM memory in the FPGA. The function of the intelligent terminal, which is an essential part of the tethered Forth system, may be fulfilled by the standard PC computer or by the smartphone. System is implemented in Python (the software for intelligent terminal), and in VHDL (the IP core for FPGA), so it can be easily ported to different hardware platforms. The connection between the terminal and FPGA may be established and disconnected many times without disturbing the state of the FPGA based system. The presented system has been verified in the hardware, and may be used as a tool for debugging, testing and even implementing of control algorithms for FPGA based systems.
Vogeley, Kai; Bente, Gary
2010-01-01
"Artificial humans", so-called "Embodied Conversational Agents" and humanoid robots, are assumed to facilitate human-technology interaction referring to the unique human capacities of interpersonal communication and social information processing. While early research and development in artificial intelligence (AI) focused on processing and production of natural language, the "new AI" has also taken into account the emotional and relational aspects of communication with an emphasis both on understanding and production of nonverbal behavior. This shift in attention in computer science and engineering is reflected in recent developments in psychology and social cognitive neuroscience. This article addresses key challenges which emerge from the goal to equip machines with socio-emotional intelligence and to enable them to interpret subtle nonverbal cues and to respond to social affordances with naturally appearing behavior from both perspectives. In particular, we propose that the creation of credible artificial humans not only defines the ultimate test for our understanding of human communication and social cognition but also provides a unique research tool to improve our knowledge about the underlying psychological processes and neural mechanisms. Copyright © 2010. Published by Elsevier Ltd.
Configurable software for satellite graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzman, P D
An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The levelmore » of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.« less
A method to identify the main mode of machine tool under operating conditions
NASA Astrophysics Data System (ADS)
Wang, Daming; Pan, Yabing
2017-04-01
The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.
Linear positioning laser calibration setup of CNC machine tools
NASA Astrophysics Data System (ADS)
Sui, Xiulin; Yang, Congjing
2002-10-01
The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.
Visible Machine Learning for Biomedicine.
Yu, Michael K; Ma, Jianzhu; Fisher, Jasmin; Kreisberg, Jason F; Raphael, Benjamin J; Ideker, Trey
2018-06-14
A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology. Copyright © 2018. Published by Elsevier Inc.
Design Of An Intelligent Robotic System Organizer Via Expert System Tecniques
NASA Astrophysics Data System (ADS)
Yuan, Peter H.; Valavanis, Kimon P.
1989-02-01
Intelligent Robotic Systems are a special type of Intelligent Machines. When modeled based on Vle theory of Intelligent Controls, they are composed of three interactive levels, namely: organization, coordination, and execution, ordered according, to the ,Principle of Increasing, Intelligence with Decreasing Precl.sion. Expert System techniques, are used to design an Intelligent Robotic System Organizer with a dynamic Knowledge Base and an interactive Inference Engine. Task plans are formulated using, either or both of a Probabilistic Approach and Forward Chapling Methodology, depending on pertinent information associated with a spec;fic requested job. The Intelligent Robotic System, Organizer is implemented and tested on a prototype system operating in an uncertain environment. An evaluation of-the performance, of the prototype system is conducted based upon the probability of generating a successful task sequence versus the number of trials taken by the organizer.
1988-06-27
de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the
ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining
NASA Astrophysics Data System (ADS)
Chandrasekaran, Muthumari; Tamang, Santosh
2017-08-01
Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.
Standardized Curriculum for Machine Tool Operation/Machine Shop.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…
m-Health 2.0: New perspectives on mobile health, machine learning and big data analytics.
Istepanian, Robert S H; Al-Anzi, Turki
2018-06-08
Mobile health (m-Health) has been repeatedly called the biggest technological breakthrough of our modern times. Similarly, the concept of big data in the context of healthcare is considered one of the transformative drivers for intelligent healthcare delivery systems. In recent years, big data has become increasingly synonymous with mobile health, however key challenges of 'Big Data and mobile health', remain largely untackled. This is becoming particularly important with the continued deluge of the structured and unstructured data sets generated on daily basis from the proliferation of mobile health applications within different healthcare systems and products globally. The aim of this paper is of twofold. First we present the relevant big data issues from the mobile health (m-Health) perspective. In particular we discuss these issues from the technological areas and building blocks (communications, sensors and computing) of mobile health and the newly defined (m-Health 2.0) concept. The second objective is to present the relevant rapprochement issues of big m-Health data analytics with m-Health. Further, we also present the current and future roles of machine and deep learning within the current smart phone centric m-health model. The critical balance between these two important areas will depend on how different stakeholder from patients, clinicians, healthcare providers, medical and m-health market businesses and regulators will perceive these developments. These new perspectives are essential for better understanding the fine balance between the new insights of how intelligent and connected the future mobile health systems will look like and the inherent risks and clinical complexities associated with the big data sets and analytical tools used in these systems. These topics will be subject for extensive work and investigations in the foreseeable future for the areas of data analytics, computational and artificial intelligence methods applied for mobile health. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alagha, Jawad S.; Seyam, Mohammed; Md Said, Md Azlin; Mogheir, Yunes
2017-12-01
Artificial intelligence (AI) techniques have increasingly become efficient alternative modeling tools in the water resources field, particularly when the modeled process is influenced by complex and interrelated variables. In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salinity sources. Both models were trained using 11 years of groundwater quality data from 22 municipal wells in Khan Younis Governorate, Gaza, Palestine. Both techniques showed satisfactory prediction performance, where the mean absolute percentage error (MAPE) and correlation coefficient ( R) for the test data set were, respectively, about 4.5 and 99.8% for the ANNs model, and 4.6 and 99.7% for SVM model. The performances of the developed models were further noticeably improved through preprocessing the wells data set using a k-means clustering method, then conducting AI techniques separately for each cluster. The developed models with clustered data were associated with higher performance, easiness and simplicity. They can be employed as an analytical tool to investigate the influence of input variables on coastal aquifer salinity, which is of great importance for understanding salinization processes, leading to more effective water-resources-related planning and decision making.
NASA Technical Reports Server (NTRS)
Wellens, A. Rodney
1991-01-01
Both NASA and DoD have had a long standing interest in teamwork, distributed decision making, and automation. While research on these topics has been pursued independently, it is becoming increasingly clear that the integration of social, cognitive, and human factors engineering principles will be necessary to meet the challenges of highly sophisticated scientific and military programs of the future. Images of human/intelligent-machine electronic collaboration were drawn from NASA and Air Force reports as well as from other sources. Here, areas of common concern are highlighted. A description of the author's research program testing a 'psychological distancing' model of electronic media effects and human/expert system collaboration is given.
From pilot's associate to satellite controller's associate
NASA Technical Reports Server (NTRS)
Neyland, David L.; Lizza, Carl; Merkel, Philip A.
1992-01-01
Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.
Behavioral Modeling for Mental Health using Machine Learning Algorithms.
Srividya, M; Mohanavalli, S; Bhalaji, N
2018-04-03
Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.
ERIC Educational Resources Information Center
Jain, G. Panka; Gurupur, Varadraj P.; Schroeder, Jennifer L.; Faulkenberry, Eileen D.
2014-01-01
In this paper, we describe a tool coined as artificial intelligence-based student learning evaluation tool (AISLE). The main purpose of this tool is to improve the use of artificial intelligence techniques in evaluating a student's understanding of a particular topic of study using concept maps. Here, we calculate the probability distribution of…
Intelligent machines in the twenty-first century: foundations of inference and inquiry.
Knuth, Kevin H
2003-12-15
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
Intelligent machines in the twenty-first century: foundations of inference and inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have learned and what they are designed to understand.
Sparse Bayesian learning machine for real-time management of reservoir releases
NASA Astrophysics Data System (ADS)
Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew
2005-11-01
Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
An intelligent assistant for physicians.
Gavrilis, Dimitris; Georgoulas, George; Vasiloglou, Nikolaos; Nikolakopoulos, George
2016-08-01
This paper presents a software tool developed for assisting physicians during an examination process. The tool consists of a number of modules with the aim to make the examination process not only quicker but also fault proof moving from a simple electronic medical records management system towards an intelligent assistant for the physician. The intelligent component exploits users' inputs as well as well established standards to line up possible suggestions for filling in the examination report. As the physician continues using it, the tool keeps extracting new knowledge. The architecture of the tool is presented in brief while the intelligent component which builds upon the notion of multilabel learning is presented in more detail. Our preliminary results from a real test case indicate that the performance of the intelligent module can reach quite high performance without a large amount of data.
Artificial intelligence within the chemical laboratory.
Winkel, P
1994-01-01
Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)
Technology of machine tools. Volume 4. Machine tool controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 3. Machine tool mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tlusty, J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 5. Machine tool accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hocken, R.J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... workers of ASC Machine Tools, Inc., Spokane Valley, Washington. Signed in Washington, DC, on this 2nd day...
Study of application of adaptive systems to the exploration of the solar system. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1973-01-01
The field of artificial intelligence to identify practical applications to unmanned spacecraft used to explore the solar system in the decade of the 80s is examined. If an unmanned spacecraft can be made to adjust or adapt to the environment, to make decisions about what it measures and how it uses and reports the data, it can become a much more powerful tool for the science community in unlocking the secrets of the solar system. Within this definition of an adaptive spacecraft or system, there is a broad range of variability. In terms of sophistication, an adaptive system can be extremely simple or as complex as a chess-playing machine that learns from its mistakes.
The UMLS Knowledge Sources: Tools for Building Better User Interfaces
Lindberg, Donald A. B.; Humphreys, Betsy L.
1990-01-01
The current focus of the National Library of Medicine's Unified Medical Language System (UMLS) project is the development, testing, and evaluation of the first versions of three new knowledge sources: the Metathesaurus, the Semantic Network, and the Information Sources Map. These three knowledge sources can be used by interface programs to conduct an intelligent interaction with the user and to make the conceptual link between the user's question and relevant machine-readable information. NLM is providing experimental copies of the initial versions of the UMLS knowledge sources in exchange for feedback on ways they can and should be improved. The hope is that the results of such experimentation will provide both immediate improvements in biomedical information service and useful suggestions for enhancements to the UMLS.
Machine learning in laboratory medicine: waiting for the flood?
Cabitza, Federico; Banfi, Giuseppe
2018-03-28
This review focuses on machine learning and on how methods and models combining data analytics and artificial intelligence have been applied to laboratory medicine so far. Although still in its infancy, the potential for applying machine learning to laboratory data for both diagnostic and prognostic purposes deserves more attention by the readership of this journal, as well as by physician-scientists who will want to take advantage of this new computer-based support in pathology and laboratory medicine.
1981-02-01
the machine . ARI’s efforts in this area focus on human perfor- mance problems related to interactions with command and control centers, and on issues...improvement of the user- machine interface. Lacking consistent design principles, current practice results in a fragmented and unsystematic approach to system...complexity in the user- machine interface of BAS, ARI supported this effort for develop- me:nt of an online language for Army tactical intelligence
Brown, Raymond J.
1977-01-01
The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.
NASA Astrophysics Data System (ADS)
Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig
2007-06-01
The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.
Business Intelligence: Turning Knowledge into Power
ERIC Educational Resources Information Center
Endsley, Krista
2009-01-01
Today, many school districts are turning to business intelligence tools to retrieve, organize, and share knowledge for faster analysis and more effective, guided decision making. Business intelligence (BI) tools are the technologies and applications that gather and report information to help an organization's leaders make better decisions. BI…
EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),
MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR
Technology of machine tools. Volume 2. Machine tool systems management and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, A.R.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
NASA Astrophysics Data System (ADS)
Zhang, P. P.; Guo, Y.; Wang, B.
2017-05-01
The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.
Machine learning in cardiovascular medicine: are we there yet?
Shameer, Khader; Johnson, Kipp W; Glicksberg, Benjamin S; Dudley, Joel T; Sengupta, Partho P
2018-01-19
Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
A multi-armed bandit approach to superquantile selection
2017-06-01
decision learning, machine learning, intelligence processing, intelligence cycle, quantitative finance. 15. NUMBER OF PAGES 73 16. PRICE CODE 17...fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH from the NAVAL POSTGRADUATE SCHOOL June 2017 Approved by...Roberto S. Szechtman Thesis Advisor Michael P. Atkinson Second Reader Patricia A. Jacobs Chair, Operations Research Department iii THIS PAGE
Information Sciences Assessment for Asia and Australasia
2009-10-16
entertainment and home services - Machine Translation for international cooperation - NLU + Affective Computing for education - Intelligent Optimization for...into an emotion. ETTS, embedded Mandarin, music retrieval. Also, research in areas of computer graphics, digital media processing Intelligent...many from outside China, 40% in phase 2 Sales volume in 2007 130 * 100 million RMB SAP (1st), CITI, AIG, EDS, Capgemini, ILOG, Infosys, HCL, Sony
Introduction to Fuzzy Set Theory
NASA Technical Reports Server (NTRS)
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Simultaneous Planning and Control for Autonomous Ground Vehicles
2009-02-01
these applications is called A * ( A -star), and it was originally developed by Hart, Nilsson, and Raphael [HAR68]. Their research presented the formal...sequence, rather than a dynamic programming approach. A * search is a technique originally developed for Artificial Intelligence 43 applications ... developed at the Center for Intelligent Machines and Robotics, serves as a platform for the implementation and testing discussed. autonomous
AI in Informal Science Education: Bringing Turing Back to Life to Perform the Turing Test
ERIC Educational Resources Information Center
Gonzalez, Avelino J.; Hollister, James R.; DeMara, Ronald F.; Leigh, Jason; Lanman, Brandan; Lee, Sang-Yoon; Parker, Shane; Walls, Christopher; Parker, Jeanne; Wong, Josiah; Barham, Clayton; Wilder, Bryan
2017-01-01
This paper describes an interactive museum exhibit featuring an avatar of Alan Turing that informs museum visitors about artificial intelligence and Turing's seminal Turing Test for machine intelligence. The objective of the exhibit is to engage and motivate visiting children in the hope of sparking an interest in them about computer science and…
NASA Astrophysics Data System (ADS)
Fijani, Elham; Nadiri, Ata Allah; Asghari Moghaddam, Asghar; Tsai, Frank T.-C.; Dixon, Barnali
2013-10-01
Contamination of wells with nitrate-N (NO3-N) poses various threats to human health. Contamination of groundwater is a complex process and full of uncertainty in regional scale. Development of an integrative vulnerability assessment methodology can be useful to effectively manage (including prioritization of limited resource allocation to monitor high risk areas) and protect this valuable freshwater source. This study introduces a supervised committee machine with artificial intelligence (SCMAI) model to improve the DRASTIC method for groundwater vulnerability assessment for the Maragheh-Bonab plain aquifer in Iran. Four different AI models are considered in the SCMAI model, whose input is the DRASTIC parameters. The SCMAI model improves the committee machine artificial intelligence (CMAI) model by replacing the linear combination in the CMAI with a nonlinear supervised ANN framework. To calibrate the AI models, NO3-N concentration data are divided in two datasets for the training and validation purposes. The target value of the AI models in the training step is the corrected vulnerability indices that relate to the first NO3-N concentration dataset. After model training, the AI models are verified by the second NO3-N concentration dataset. The results show that the four AI models are able to improve the DRASTIC method. Since the best AI model performance is not dominant, the SCMAI model is considered to combine the advantages of individual AI models to achieve the optimal performance. The SCMAI method re-predicts the groundwater vulnerability based on the different AI model prediction values. The results show that the SCMAI outperforms individual AI models and committee machine with artificial intelligence (CMAI) model. The SCMAI model ensures that no water well with high NO3-N levels would be classified as low risk and vice versa. The study concludes that the SCMAI model is an effective model to improve the DRASTIC model and provides a confident estimate of the pollution risk.
Conformal Predictions in Multimedia Pattern Recognition
ERIC Educational Resources Information Center
Nallure Balasubramanian, Vineeth
2010-01-01
The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…
An Evaluative Study of Machine Translation in the EFL Scenario of Saudi Arabia
ERIC Educational Resources Information Center
Al-Tuwayrish, Raneem Khalid
2016-01-01
Artificial Intelligence or AI as it is popularly known and its corollary, Machine Translation (MT) have long engaged scientists, thinkers and linguists alike in the twenty first century. However, the wider question that lies in the relation between technology and translation is, What does technology do to language? This is an important question in…
The IS-GEO RCN: Fostering Collaborations for Intelligent Systems Research to Support Geosciences
NASA Astrophysics Data System (ADS)
Gil, Y.; Pierce, S. A.
2016-12-01
Geoscience problems are complex and often involve data that changes across space and time. Frequently geoscience knowledge and understanding provides valuable information and insight for problems related to energy, water, climate, mineral resources, and our understanding of how the Earth evolves through time. Simultaneously, many grand challenges in the geosciences cannot be addressed without the aid of computational support and innovations. Intelligent and Information Systems (IS) research includes a broad range of computational methods and topics such as knowledge representation, information integration, machine learning, robotics, adaptive sensors, and intelligent interfaces. IS research has a very important role to play in accelerating the speed of scientific discovery in geosciences and thus in solving challenges in geosciences. Many aspects of geosciences (GEO) research pose novel open problems for intelligent systems researchers. To develop intelligent systems with sound knowledge of theory and practice, it is important that GEO and IS experts collaborate. The EarthCube Research Coordination Network for Intelligent Systems for Geosciences (IS-GEO RCN) represents an emerging community of interdisciplinary researchers producing fundamental new capabilities for understanding Earth systems. Furthermore, the educational component aims to identify new approaches to teaching students in this new interdisciplinary area, seeking to raise a new generation of scientists that are better able to apply IS methods and tools to geoscience challenges of the future. By providing avenues for IS and GEO researchers to work together, the IS-GEO RCN will serve as both a point of contact, as well as an avenue for educational outreach across the disciplines for the nascent community of research and practice. The initial efforts are focused on connecting the communities in ways that help researchers understand opportunities and challenges that can benefit from IS-GEO collaborations. The IS-GEO RCN will jumpstart interdisciplinary research collaborations in this emerging new area so that progress across both disciplines can be accelerated.
Automation and robotics human performance
NASA Technical Reports Server (NTRS)
Mah, Robert W.
1990-01-01
The scope of this report is limited to the following: (1) assessing the feasibility of the assumptions for crew productivity during the intra-vehicular activities and extra-vehicular activities; (2) estimating the appropriate level of automation and robotics to accomplish balanced man-machine, cost-effective operations in space; (3) identifying areas where conceptually different approaches to the use of people and machines can leverage the benefits of the scenarios; and (4) recommending modifications to scenarios or developing new scenarios that will improve the expected benefits. The FY89 special assessments are grouped into the five categories shown in the report. The high level system analyses for Automation & Robotics (A&R) and Human Performance (HP) were performed under the Case Studies Technology Assessment category, whereas the detailed analyses for the critical systems and high leverage development areas were performed under the appropriate operations categories (In-Space Vehicle Operations or Planetary Surface Operations). The analysis activities planned for the Science Operations technology areas were deferred to FY90 studies. The remaining activities such as analytic tool development, graphics/video demonstrations and intelligent communicating systems software architecture were performed under the Simulation & Validations category.
Hidden Markov models and other machine learning approaches in computational molecular biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldi, P.
1995-12-31
This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In thismore » tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.« less
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Artificial intelligence applications in the intensive care unit.
Hanson, C W; Marshall, B E
2001-02-01
To review the history and current applications of artificial intelligence in the intensive care unit. The MEDLINE database, bibliographies of selected articles, and current texts on the subject. The studies that were selected for review used artificial intelligence tools for a variety of intensive care applications, including direct patient care and retrospective database analysis. All literature relevant to the topic was reviewed. Although some of the earliest artificial intelligence (AI) applications were medically oriented, AI has not been widely accepted in medicine. Despite this, patient demographic, clinical, and billing data are increasingly available in an electronic format and therefore susceptible to analysis by intelligent software. Individual AI tools are specifically suited to different tasks, such as waveform analysis or device control. The intensive care environment is particularly suited to the implementation of AI tools because of the wealth of available data and the inherent opportunities for increased efficiency in inpatient care. A variety of new AI tools have become available in recent years that can function as intelligent assistants to clinicians, constantly monitoring electronic data streams for important trends, or adjusting the settings of bedside devices. The integration of these tools into the intensive care unit can be expected to reduce costs and improve patient outcomes.
Vassanelli, Stefano; Mahmud, Mufti
2016-01-01
Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term "neurobiohybrids" indicating all those systems where such interaction is established. We argue that achieving a "high-level" communication and functional synergy between natural and artificial neuronal networks in vivo , will allow the development of a heterogeneous world of neurobiohybrids, which will include "living robots" but will also embrace "intelligent" neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted "intelligent" artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a "community building" perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes.
Predicting asthma exacerbations using artificial intelligence.
Finkelstein, Joseph; Wood, Jeffrey
2013-01-01
Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.
VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi
2018-04-17
Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.
NASA Technical Reports Server (NTRS)
Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.
Proceedings of the NASA Conference on Space Telerobotics, volume 3
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.
Teleoperators - Manual/automatic system requirements.
NASA Technical Reports Server (NTRS)
Janow, C.; Malone, T. B.
1973-01-01
The teleoperator is defined as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and cognitive capabilities. The teleoperator system incorporates the decision making, adaptive intelligence without requiring its presence. The man and the machine work as a team, each contributing unique and significant capabilities, and each depending on the other to achieve a common goal. Some of the more significant requirements associated with the development of teleoperator systems technology for space, industry, and medicine are examined. Emphasis is placed on the requirement to more effectively use the man and the machine in any man-machine system.
Development of intelligent robots - Achievements and issues
NASA Astrophysics Data System (ADS)
Nitzan, D.
1985-03-01
A flexible, intelligent robot is regarded as a general purpose machine system that may include effectors, sensors, computers, and auxiliary equipment and, like a human, can perform a variety of tasks under unpredictable conditions. Development of intelligent robots is essential for increasing the growth rate of today's robot population in industry and elsewhere. Robotics research and development topics include manipulation, end effectors, mobility, sensing (noncontact and contact), adaptive control, robot programming languages, and manufacturing process planning. Past achievements and current issues related to each of these topics are described briefly.
Plan for conducting an international machine tool task force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.; McClure, E.R.; Schuman, J.F.
1978-08-28
The basic objectives of the Machine Tool Task Force (MTTF) are to characterize and summarize the state of the art of cutting machine tool technology and to identify promising areas of future R and D. These goals will be accomplished with a series of multidisciplinary teams of prominent experts and individuals experienced in the specialized technologies of machine tools or in the management of machine tool operations. Experts will be drawn from all areas of the machine tool community: machine tool users or buyer organizations, builders, and R and D establishments including universities and government laboratories, both domestic and foreign.more » A plan for accomplishing this task is presented. The area of machine tool technology has been divided into about two dozen technology subjects on which teams of one or more experts will work. These teams are, in turn, organized into four principal working groups dealing, respectively, with machine tool accuracy, mechanics, control, and management systems/utilization. Details are presented on specific subjects to be covered, the organization of the Task Force and its four working groups, and the basic approach to determining the state of the art of technology and the future directions of this technology. The planned review procedure, the potential benefits, our management approach, and the schedule, as well as the key participating personnel and their background are discussed. The initial meeting of MTTF members will be held at a plenary session on October 16 and 17, 1978, in Scottsdale, AZ. The MTTF study will culminate in a conference on September 1, 1980, in Chicago, IL, immediately preceeding the 1980 International Machine Tool Show. At this time, our results will be released to the public; a series of reports will be published in late 1980.« less
NASA Astrophysics Data System (ADS)
Jiang, Guodong; Fan, Ming; Li, Lihua
2016-03-01
Mammography is the gold standard for breast cancer screening, reducing mortality by about 30%. The application of a computer-aided detection (CAD) system to assist a single radiologist is important to further improve mammographic sensitivity for breast cancer detection. In this study, a design and realization of the prototype for remote diagnosis system in mammography based on cloud platform were proposed. To build this system, technologies were utilized including medical image information construction, cloud infrastructure and human-machine diagnosis model. Specifically, on one hand, web platform for remote diagnosis was established by J2EE web technology. Moreover, background design was realized through Hadoop open-source framework. On the other hand, storage system was built up with Hadoop distributed file system (HDFS) technology which enables users to easily develop and run on massive data application, and give full play to the advantages of cloud computing which is characterized by high efficiency, scalability and low cost. In addition, the CAD system was realized through MapReduce frame. The diagnosis module in this system implemented the algorithms of fusion of machine and human intelligence. Specifically, we combined results of diagnoses from doctors' experience and traditional CAD by using the man-machine intelligent fusion model based on Alpha-Integration and multi-agent algorithm. Finally, the applications on different levels of this system in the platform were also discussed. This diagnosis system will have great importance for the balanced health resource, lower medical expense and improvement of accuracy of diagnosis in basic medical institutes.
Object as a model of intelligent robot in the virtual workspace
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.
2015-11-01
The contemporary industry requires that every element of a production line will fit into the global schema, which is connected with the global structure of business. There is the need to find the practical and effective ways of the design and management of the production process. The term “effective” should be understood in a manner that there exists a method, which allows building a system of nodes and relations in order to describe the role of the particular machine in the production process. Among all the machines involved in the manufacturing process, industrial robots are the most complex ones. This complexity is reflected in the realization of elaborated tasks, involving handling, transporting or orienting the objects in a work space, and even performing simple machining processes, such as deburring, grinding, painting, applying adhesives and sealants etc. The robot also performs some activities connected with automatic tool changing and operating the equipment mounted on the wrist of the robot. Because of having the programmable control system, the robot also performs additional activities connected with sensors, vision systems, operating the storages of manipulated objects, tools or grippers, measuring stands, etc. For this reason the description of the robot as a part of production system should take into account the specific nature of this machine: the robot is a substitute of a worker, who performs his tasks in a particular environment. In this case, the model should be able to characterize the essence of "employment" in the sufficient way. One of the possible approaches to this problem is to treat the robot as an object, in the sense often used in computer science. This allows both: to describe certain operations performed on the object, as well as describing the operations performed by the object. This paper focuses mainly on the definition of the object as the model of the robot. This model is confronted with the other possible descriptions. The results can be further used during designing of the complete manufacturing system, which takes into account all the involved machines and has the form of an object-oriented model.
Carpenter, Kristy A; Huang, Xudong
2018-06-07
Virtual Screening (VS) has emerged as an important tool in the drug development process, as it conducts efficient in silico searches over millions of compounds, ultimately increasing yields of potential drug leads. As a subset of Artificial Intelligence (AI), Machine Learning (ML) is a powerful way of conducting VS for drug leads. ML for VS generally involves assembling a filtered training set of compounds, comprised of known actives and inactives. After training the model, it is validated and, if sufficiently accurate, used on previously unseen databases to screen for novel compounds with desired drug target binding activity. The study aims to review ML-based methods used for VS and applications to Alzheimer's disease (AD) drug discovery. To update the current knowledge on ML for VS, we review thorough backgrounds, explanations, and VS applications of the following ML techniques: Naïve Bayes (NB), k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN). All techniques have found success in VS, but the future of VS is likely to lean more heavily toward the use of neural networks - and more specifically, Convolutional Neural Networks (CNN), which are a subset of ANN that utilize convolution. We additionally conceptualize a work flow for conducting ML-based VS for potential therapeutics of for AD, a complex neurodegenerative disease with no known cure and prevention. This both serves as an example of how to apply the concepts introduced earlier in the review and as a potential workflow for future implementation. Different ML techniques are powerful tools for VS, and they have advantages and disadvantages albeit. ML-based VS can be applied to AD drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)
1992-01-01
The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.
Intelligent fuzzy controller for event-driven real time systems
NASA Technical Reports Server (NTRS)
Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.
1992-01-01
Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbin, C.R.; Hamel, W.R.; Barhen, J.
1986-02-01
The Oak Ridge National Laboratory has established the Center for Engineering Systems Advanced Research (CESAR) for the purpose of addressing fundamental problems of intelligent machine technologies. The purpose of this document is to establish a framework and guidelines for research and development within ORNL's CESAR program in areas pertaining to intelligent machines. The specific objective is to present a CESAR Research and Development Plan for such work with a planning horizon of five to ten years, i.e., FY 1985 to FY 1990 and beyond. As much as possible, the plan is based on anticipated DOE needs in the area ofmore » productivity increase and safety to the end of this century.« less
Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin
2018-05-22
Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.
The desktop interface in intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Baudendistel, Stephen; Hua, Grace
1987-01-01
The interface between an Intelligent Tutoring System (ITS) and the person being tutored is critical to the success of the learning process. If the interface to the ITS is confusing or non-supportive of the tutored domain, the effectiveness of the instruction will be diminished or lost entirely. Consequently, the interface to an ITS should be highly integrated with the domain to provide a robust and semantically rich learning environment. In building an ITS for ZetaLISP on a LISP Machine, a Desktop Interface was designed to support a programming learning environment. Using the bitmapped display, windows, and mouse, three desktops were designed to support self-study and tutoring of ZetaLISP. Through organization, well-defined boundaries, and domain support facilities, the desktops provide substantial flexibility and power for the student and facilitate learning ZetaLISP programming while screening the student from the complex LISP Machine environment. The student can concentrate on learning ZetaLISP programming and not on how to operate the interface or a LISP Machine.
NASA Astrophysics Data System (ADS)
Sigurdson, J.; Tagerud, J.
1986-05-01
A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Mukherjee, S.
2016-09-01
One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.
Highly Productive Tools For Turning And Milling
NASA Astrophysics Data System (ADS)
Vasilko, Karol
2015-12-01
Beside cutting speed, shift is another important parameter of machining. Its considerable influence is shown mainly in the workpiece machined surface microgeometry. In practice, mainly its combination with the radius of cutting tool tip rounding is used. Options to further increase machining productivity and machined surface quality are hidden in this approach. The paper presents variations of the design of productive cutting tools for lathe work and milling on the base of the use of the laws of the relationship among the highest reached uneveness of machined surface, tool tip radius and shift.
NASA Technical Reports Server (NTRS)
Cohen, A.; Erickson, J. D.
1985-01-01
The exciting possibilities for advancing the technologies of artificial intelligence, robotics, and automation on the Space Station is summarized. How these possibilities will be realized and how their realization can benefit the U.S. economy are described. Plans, research programs and preliminary designs that will lead to the realization of many of these possibilities are being formulated.
Artificial Intelligence and Virology - quo vadis
Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T.
2017-01-01
Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology. PMID:29379259
High-Level Vision and Planning Workshop Proceedings
1989-08-01
Correspondence in Line Drawings of Multiple View-. In Proc. of 8th Intern. Joint Conf. on Artificial intellignece . 1983. [63] Tomiyasu, K. Tutorial...joint U.S.-Israeli workshop on artificial intelligence are provided in this Institute for Defense Analyses document. This document is based on a broad...participants is provided along with applicable references for individual papers. 14. SUBJECT TERMS 15. NUMBER OF PAGES Artificial Intelligence; Machine Vision
Diagnostic Assessment of Troubleshooting Skill in an Intelligent Tutoring System
1994-03-01
the information that can be provided from studying gauges and indicators and conventional test equipment procedures. Experts are particularly adept at...uses the results of the strategy and action evaluator to update the student profile, represented as a network, using the ERGO ( Noetic Systems, 1993...1990). Individualized tutoring using an intelligent fuzzy temporal relational database. International Tournal of Man-Machine Studies . & 409-429. . 34
Artificial Intelligence and Virology - quo vadis.
Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T
2017-01-01
Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology.
NASA Technical Reports Server (NTRS)
Abbott, Kathy H.; Schutte, Paul C.
1989-01-01
A development status evaluation is presented for the NASA-Langley Intelligent Cockpit Aids research program, which encompasses AI, human/machine interfaces, and conventional automation. Attention is being given to decision-aiding concepts for human-centered automation, with emphasis on inflight subsystem fault management, inflight mission replanning, and communications management. The cockpit envisioned is for advanced commercial transport aircraft.
The in-situ 3D measurement system combined with CNC machine tools
NASA Astrophysics Data System (ADS)
Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang
2013-06-01
With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.
Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining
NASA Astrophysics Data System (ADS)
Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek
2016-12-01
Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.
An immune-inspired semi-supervised algorithm for breast cancer diagnosis.
Peng, Lingxi; Chen, Wenbin; Zhou, Wubai; Li, Fufang; Yang, Jin; Zhang, Jiandong
2016-10-01
Breast cancer is the most frequently and world widely diagnosed life-threatening cancer, which is the leading cause of cancer death among women. Early accurate diagnosis can be a big plus in treating breast cancer. Researchers have approached this problem using various data mining and machine learning techniques such as support vector machine, artificial neural network, etc. The computer immunology is also an intelligent method inspired by biological immune system, which has been successfully applied in pattern recognition, combination optimization, machine learning, etc. However, most of these diagnosis methods belong to a supervised diagnosis method. It is very expensive to obtain labeled data in biology and medicine. In this paper, we seamlessly integrate the state-of-the-art research on life science with artificial intelligence, and propose a semi-supervised learning algorithm to reduce the need for labeled data. We use two well-known benchmark breast cancer datasets in our study, which are acquired from the UCI machine learning repository. Extensive experiments are conducted and evaluated on those two datasets. Our experimental results demonstrate the effectiveness and efficiency of our proposed algorithm, which proves that our algorithm is a promising automatic diagnosis method for breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Virtual Neurorobotics (VNR) to Accelerate Development of Plausible Neuromorphic Brain Architectures.
Goodman, Philip H; Buntha, Sermsak; Zou, Quan; Dascalu, Sergiu-Mihai
2007-01-01
Traditional research in artificial intelligence and machine learning has viewed the brain as a specially adapted information-processing system. More recently the field of social robotics has been advanced to capture the important dynamics of human cognition and interaction. An overarching societal goal of this research is to incorporate the resultant knowledge about intelligence into technology for prosthetic, assistive, security, and decision support applications. However, despite many decades of investment in learning and classification systems, this paradigm has yet to yield truly "intelligent" systems. For this reason, many investigators are now attempting to incorporate more realistic neuromorphic properties into machine learning systems, encouraged by over two decades of neuroscience research that has provided parameters that characterize the brain's interdependent genomic, proteomic, metabolomic, anatomic, and electrophysiological networks. Given the complexity of neural systems, developing tenable models to capture the essence of natural intelligence for real-time application requires that we discriminate features underlying information processing and intrinsic motivation from those reflecting biological constraints (such as maintaining structural integrity and transporting metabolic products). We propose herein a conceptual framework and an iterative method of virtual neurorobotics (VNR) intended to rapidly forward-engineer and test progressively more complex putative neuromorphic brain prototypes for their ability to support intrinsically intelligent, intentional interaction with humans. The VNR system is based on the viewpoint that a truly intelligent system must be driven by emotion rather than programmed tasking, incorporating intrinsic motivation and intentionality. We report pilot results of a closed-loop, real-time interactive VNR system with a spiking neural brain, and provide a video demonstration as online supplemental material.
Intelligent robot trends and predictions for the first year of the new millennium
NASA Astrophysics Data System (ADS)
Hall, Ernest L.
2000-10-01
An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The current use of these machines in outer space, medicine, hazardous materials, defense applications and industry is being pursued with vigor. In factory automation, industrial robots can improve productivity, increase product quality and improve competitiveness. The computer and the robot have both been developed during recent times. The intelligent robot combines both technologies and requires a thorough understanding and knowledge of mechatronics. Today's robotic machines are faster, cheaper, more repeatable, more reliable and safer than ever. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has more than a billion-dollar market in the U.S. and is growing. Feasibility studies show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society. The fearful robot stories may help us prevent future disaster. The inspirational robot ideas may inspire the scientists of tomorrow. However, the intelligent robot ideas, which can be reduced to practice, will change the world.
Three-dimensional tool radius compensation for multi-axis peripheral milling
NASA Astrophysics Data System (ADS)
Chen, Youdong; Wang, Tianmiao
2013-05-01
Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.
Self-Assessing of the Emotional Intelligence and Organizational Intelligence in Schools
ERIC Educational Resources Information Center
Dagiene, Valentina; Juškeviciene, Anita; Carneiro, Roberto; Child, Camilla; Cullen, Joe
2015-01-01
The paper presents the results of an evaluation of the Emotional Intelligence (EI) and Organisational Intelligence (OI) competences self-assessment tools developed and applied by the IGUANA project. In the paper Emotional Intelligence and Organisational Intelligence competences are discussed, their use in action research experiments to assess and…
Surface dimpling on rotating work piece using rotation cutting tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhapkar, Rohit Arun; Larsen, Eric Richard
A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less
A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.
Li, Shan; Kang, Liying; Zhao, Xing-Ming
2014-01-01
With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Graphite fiber reinforced structure for supporting machine tools
Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.
1978-01-01
Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.
Intelligent Model Management in a Forest Ecosystem Management Decision Support System
Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama
2002-01-01
Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...
Man/Machine Interaction Dynamics And Performance (MMIDAP) capability
NASA Technical Reports Server (NTRS)
Frisch, Harold P.
1991-01-01
The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.
Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor
NASA Technical Reports Server (NTRS)
Szu, Harold H.
1990-01-01
In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously.
Social Intelligence in a Human-Machine Collaboration System
NASA Astrophysics Data System (ADS)
Nakajima, Hiroshi; Morishima, Yasunori; Yamada, Ryota; Brave, Scott; Maldonado, Heidy; Nass, Clifford; Kawaji, Shigeyasu
In this information society of today, it is often argued that it is necessary to create a new way of human-machine interaction. In this paper, an agent with social response capabilities has been developed to achieve this goal. There are two kinds of information that is exchanged by two entities: objective and functional information (e.g., facts, requests, states of matters, etc.) and subjective information (e.g., feelings, sense of relationship, etc.). Traditional interactive systems have been designed to handle the former kind of information. In contrast, in this study social agents handling the latter type of information are presented. The current study focuses on sociality of the agent from the view point of Media Equation theory. This article discusses the definition, importance, and benefits of social intelligence as agent technology and argues that social intelligence has a potential to enhance the user's perception of the system, which in turn can lead to improvements of the system's performance. In order to implement social intelligence in the agent, a mind model has been developed to render affective expressions and personality of the agent. The mind model has been implemented in a human-machine collaborative learning system. One differentiating feature of the collaborative learning system is that it has an agent that performs as a co-learner with which the user interacts during the learning session. The mind model controls the social behaviors of the agent, thus making it possible for the user to have more social interactions with the agent. The experiment with the system suggested that a greater degree of learning was achieved when the students worked with the co-learner agent and that the co-learner agent with the mind model that expressed emotions resulted in a more positive attitude toward the system.
Traceability of On-Machine Tool Measurement: A Review.
Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A
2017-07-11
Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.
Improvements to the Ontology-based Metadata Portal for Unified Semantics (OlyMPUS)
NASA Astrophysics Data System (ADS)
Linsinbigler, M. A.; Gleason, J. L.; Huffer, E.
2016-12-01
The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support Earth Science data consumers and data providers, enabling the latter to register data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS complements the ODISEES' data discovery system with an intelligent tool to enable data producers to auto-generate semantically enhanced metadata and upload it to the metadata repository that drives ODISEES. Like ODISEES, the OlyMPUS metadata provisioning tool leverages robust semantics, a NoSQL database and query engine, an automated reasoning engine that performs first- and second-order deductive inferencing, and uses a controlled vocabulary to support data interoperability and automated analytics. The ODISEES data discovery portal leverages this metadata to provide a seamless data discovery and access experience for data consumers who are interested in comparing and contrasting the multiple Earth science data products available across NASA data centers. Olympus will support scientists' services and tools for performing complex analyses and identifying correlations and non-obvious relationships across all types of Earth System phenomena using the full spectrum of NASA Earth Science data available. By providing an intelligent discovery portal that supplies users - both human users and machines - with detailed information about data products, their contents and their structure, ODISEES will reduce the level of effort required to identify and prepare large volumes of data for analysis. This poster will explain how OlyMPUS leverages deductive reasoning and other technologies to create an integrated environment for generating and exploiting semantically rich metadata.
Skoraczyński, G; Dittwald, P; Miasojedow, B; Szymkuć, S; Gajewska, E P; Grzybowski, B A; Gambin, A
2017-06-15
As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest - and hope - that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that the applicability of machine learning to the problems of chemical reactivity over diverse types of chemistries remains limited - in particular, with the currently available chemical descriptors, fundamental mathematical theorems impose upper bounds on the accuracy with which raction yields and times can be predicted. Improving the performance of machine-learning methods calls for the development of fundamentally new chemical descriptors.
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
The ZOG Technology Demonstration Project: A System Evaluation of USS CARL VINSON (CVN 70)
1984-12-01
part of a larger project involving development of a wide range of computer technologies, including artifcial intelligence and a long-range computer...shipboard manage- ment, aircraft management, expert systems, menu selection, man- machine interface, artificial intelligence , automation; shipboard It AWM...functions, planning, evaluation, training, hierarchical data bases The objective of this project was to conduct an evaluation of ZOG, a general purpose
Event detection for car park entries by video-surveillance
NASA Astrophysics Data System (ADS)
Coquin, Didier; Tailland, Johan; Cintract, Michel
2007-10-01
Intelligent surveillance has become an important research issue due to the high cost and low efficiency of human supervisors, and machine intelligence is required to provide a solution for automated event detection. In this paper we describe a real-time system that has been used for detecting car park entries, using an adaptive background learning algorithm and two indicators representing activity and identity to overcome the difficulty of tracking objects.
NASA Astrophysics Data System (ADS)
Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.
2018-01-01
Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.
Automatic feed system for ultrasonic machining
Calkins, Noel C.
1994-01-01
Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.
Neuroscience-Inspired Artificial Intelligence.
Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew
2017-07-19
The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kant Garg, Girish; Garg, Suman; Sangwan, K. S.
2018-04-01
The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.
Chatter active control in a lathe machine using magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Nosouhi, R.; Behbahani, S.
2011-01-01
This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.
NASA Astrophysics Data System (ADS)
Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.
2017-12-01
In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.
Nanometric edge profile measurement of cutting tools on a diamond turning machine
NASA Astrophysics Data System (ADS)
Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei
2008-10-01
Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.
Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1
1989-03-01
American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to
Quest for business intelligence in health care.
Van De Graaff, Joe; Cameron, Austin
2013-02-01
In an era of reform, providers are examining more forward-thinking business intelligence strategies, according to a recent study. Enterprise business intelligence tool sets offer a breadth of design and functionality that often are capable of serving the enterprise. One limitation of broader tool sets is that they may lack needed application-specific functionality or prebuilt healthcare content for a specific department.
[The urologist of the future and new technologies.
Peinado, Francois; Fernández, Atanasio; Teba, Fernando; Celada, Guillermo; Acosta, Marco Antonio
2018-01-01
The last 25 years have brought about revolutionary changes for medicine and in particular for urology: internet was only in its infancy, medical records were written on paper, searches for medical information were done in the hospital library, medical articles were photocopied and our relationship with patients only existed face to face. Social networks had not yet appeared and even Google did not exist. Just imagine what might happen during the next 25 years, we're going to see even more radical changes. The urologist of the future is going to see the arrival of artificial intelligence, collaborative medicine, telemedicine, machine learning, the Internet of Things and personalized robotics; in the meantime, social media will continue to transform the interaction between physician and patient. The training of urologists will also be different thanks to new learning technologies such as virtual reality or augmented reality. IBM Watson Health through its system of artificial intelligence and its learning algorithms will become our essential travel companion. The urologist of the future, as well as physician, will have to acquire the necessary technological skills in order to use all these new tools which are already on the horizon.
Spike: Artificial intelligence scheduling for Hubble space telescope
NASA Technical Reports Server (NTRS)
Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert
1990-01-01
Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.
Design of a real-time tax-data monitoring intelligent card system
NASA Astrophysics Data System (ADS)
Gu, Yajun; Bi, Guotang; Chen, Liwei; Wang, Zhiyuan
2009-07-01
To solve the current problem of low efficiency of domestic Oil Station's information management, Oil Station's realtime tax data monitoring system has been developed to automatically access tax data of Oil pumping machines, realizing Oil-pumping machines' real-time automatic data collection, displaying and saving. The monitoring system uses the noncontact intelligent card or network to directly collect data which can not be artificially modified and so seals the loopholes and improves the tax collection's automatic level. It can perform real-time collection and management of the Oil Station information, and find the problem promptly, achieves the automatic management for the entire process covering Oil sales accounting and reporting. It can also perform remote query to the Oil Station's operation data. This system has broad application future and economic value.
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
A human-machine cooperation route planning method based on improved A* algorithm
NASA Astrophysics Data System (ADS)
Zhang, Zhengsheng; Cai, Chao
2011-12-01
To avoid the limitation of common route planning method to blindly pursue higher Machine Intelligence and autoimmunization, this paper presents a human-machine cooperation route planning method. The proposed method includes a new A* path searing strategy based on dynamic heuristic searching and a human cooperated decision strategy to prune searching area. It can overcome the shortage of A* algorithm to fall into a local long term searching. Experiments showed that this method can quickly plan a feasible route to meet the macro-policy thinking.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…
A 'Turing' Test for Landscape Evolution Models
NASA Astrophysics Data System (ADS)
Parsons, A. J.; Wise, S. M.; Wainwright, J.; Swift, D. A.
2008-12-01
Resolving the interactions among tectonics, climate and surface processes at long timescales has benefited from the development of computer models of landscape evolution. However, testing these Landscape Evolution Models (LEMs) has been piecemeal and partial. We argue that a more systematic approach is required. What is needed is a test that will establish how 'realistic' an LEM is and thus the extent to which its predictions may be trusted. We propose a test based upon the Turing Test of artificial intelligence as a way forward. In 1950 Alan Turing posed the question of whether a machine could think. Rather than attempt to address the question directly he proposed a test in which an interrogator asked questions of a person and a machine, with no means of telling which was which. If the machine's answer could not be distinguished from those of the human, the machine could be said to demonstrate artificial intelligence. By analogy, if an LEM cannot be distinguished from a real landscape it can be deemed to be realistic. The Turing test of intelligence is a test of the way in which a computer behaves. The analogy in the case of an LEM is that it should show realistic behaviour in terms of form and process, both at a given moment in time (punctual) and in the way both form and process evolve over time (dynamic). For some of these behaviours, tests already exist. For example there are numerous morphometric tests of punctual form and measurements of punctual process. The test discussed in this paper provides new ways of assessing dynamic behaviour of an LEM over realistically long timescales. However challenges remain in developing an appropriate suite of challenging tests, in applying these tests to current LEMs and in developing LEMs that pass them.
Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy
NASA Astrophysics Data System (ADS)
Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel
2018-04-01
Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.
Slide system for machine tools
Douglass, S.S.; Green, W.L.
1980-06-12
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Slide system for machine tools
Douglass, Spivey S.; Green, Walter L.
1982-01-01
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker
Aguilar, Juan José
2014-01-01
This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744
Robots Make Intelligent Teachers
ERIC Educational Resources Information Center
Trotter, Robert J.
1973-01-01
Discussion of the use of teaching machines to help a child learn the basics of geometry. Fully developed educational modules for such subjects as physics, biology, physiology and linguistics are forth-coming. (EB)
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
Modeling and simulation of five-axis virtual machine based on NX
NASA Astrophysics Data System (ADS)
Li, Xiaoda; Zhan, Xianghui
2018-04-01
Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.
Business intelligence tools for radiology: creating a prototype model using open-source tools.
Prevedello, Luciano M; Andriole, Katherine P; Hanson, Richard; Kelly, Pauline; Khorasani, Ramin
2010-04-01
Digital radiology departments could benefit from the ability to integrate and visualize data (e.g. information reflecting complex workflow states) from all of their imaging and information management systems in one composite presentation view. Leveraging data warehousing tools developed in the business world may be one way to achieve this capability. In total, the concept of managing the information available in this data repository is known as Business Intelligence or BI. This paper describes the concepts used in Business Intelligence, their importance to modern Radiology, and the steps used in the creation of a prototype model of a data warehouse for BI using open-source tools.
Development of Android Based Powered Intelligent Wheelchair for Quadriplegic Persons
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Ghosh, Tathagata; Kumar, Pradeep; Bhawna, Shruthi. S.
2017-08-01
Several surveys give us the view that both children and adults benefit substantially from access towards independent mobility. With the inventions of technology, no individuals are satisfied with traditional manual operated machines. To accommodate population, researchers are using technology, originally developed for mobile robots to create ‘intelligent wheelchairs’. It’s a major challenge for quadriplegic persons as they really find it difficult to manipulate powered wheelchair during the activities of their daily living. As the Smartphone era has evolved with innovative android based applications, engineers are improving and trying to make such machines simple and cheap to the next level. In this paper, we present a development of android based powered intelligent wheelchair to assist the quadriplegic person by making them self sufficient in controlling the wheelchair. The wheels of the chair can be controlled by the voice or gesture movement or by touching the screen of the android app by the challenged persons. The system uses the Bluetooth communication to interface the microcontroller and the inbuilt sensors in the android Smartphone. According to the commands received from android phone, the kinematics of the wheels are controlled.
Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin
2018-05-04
The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.
High speed turning of compacted graphite iron using controlled modulation
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler Paul
Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.
NASA Astrophysics Data System (ADS)
Rana, Narender; Chien, Chester
2018-03-01
A key sensor element in a Hard Disk Drive (HDD) is the read-write head device. The device is complex 3D shape and its fabrication requires over thousand process steps with many of them being various types of image inspection and critical dimension (CD) metrology steps. In order to have high yield of devices across a wafer, very tight inspection and metrology specifications are implemented. Many images are collected on a wafer and inspected for various types of defects and in CD metrology the quality of image impacts the CD measurements. Metrology noise need to be minimized in CD metrology to get better estimate of the process related variations for implementing robust process controls. Though there are specialized tools available for defect inspection and review allowing classification and statistics. However, due to unavailability of such advanced tools or other reasons, many times images need to be manually inspected. SEM Image inspection and CD-SEM metrology tools are different tools differing in software as well. SEM Image inspection and CD-SEM metrology tools are separate tools differing in software and purpose. There have been cases where a significant numbers of CD-SEM images are blurred or have some artefact and there is a need for image inspection along with the CD measurement. Tool may not report a practical metric highlighting the quality of image. Not filtering CD from these blurred images will add metrology noise to the CD measurement. An image classifier can be helpful here for filtering such data. This paper presents the use of artificial intelligence in classifying the SEM images. Deep machine learning is used to train a neural network which is then used to classify the new images as blurred and not blurred. Figure 1 shows the image blur artefact and contingency table of classification results from the trained deep neural network. Prediction accuracy of 94.9 % was achieved in the first model. Paper covers other such applications of the deep neural network in image classification for inspection, review and metrology.
Building intelligent systems: Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, P.; Lum, H.
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
Building intelligent systems - Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, Peter; Lum, Henry
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
Interferometric correction system for a numerically controlled machine
Burleson, Robert R.
1978-01-01
An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.
2012-01-01
Background Japanese nurses are increasingly required to read published international research in clinical, educational, and research settings. Language barriers are a significant obstacle, and online machine translation (MT) is a tool that can be used to address this issue. We examined the quality of Google Translate® (English to Japanese and Korean to Japanese), which is a representative online MT, using a previously verified evaluation method. We also examined the perceived usability and current use of online MT among Japanese nurses. Findings Randomly selected nursing abstracts were translated and then evaluated for intelligibility and usability by 28 participants, including assistants and research associates from nursing universities throughout Japan. They answered a questionnaire about their online MT use. From simple comparison of mean scores between two language pairs, translation quality was significantly better, with respect to both intelligibility and usability, for Korean-Japanese than for English-Japanese. Most respondents perceived a language barrier. Online MT had been used by 61% of the respondents and was perceived as not useful enough. Conclusion Nursing articles translated from Korean into Japanese by an online MT system could be read at an acceptable level of comprehension, but the same could not be said for English-Japanese translations. Respondents with experience using online MT used it largely to grasp the overall meanings of the original text. Enrichment in technical terms appeared to be the key to better usability. Users will be better able to use MT outputs if they improve their foreign language proficiency as much as possible. Further research is being conducted with a larger sample size and detailed analysis. PMID:23151362
NASA Astrophysics Data System (ADS)
Sargis, J. C.; Gray, W. A.
1999-03-01
The APWS allows user friendly access to several legacy systems which would normally each demand domain expertise for proper utilization. The generalized model, including objects, classes, strategies and patterns is presented. The core components of the APWS are the Microsoft Windows 95 Operating System, Oracle, Oracle Power Objects, Artificial Intelligence tools, a medical hyperlibrary and a web site. The paper includes a discussion of how could be automated by taking advantage of the expert system, object oriented programming and intelligent relational database tools within the APWS.
Ranjith, G; Parvathy, R; Vikas, V; Chandrasekharan, Kesavadas; Nair, Suresh
2015-04-01
With the advent of new imaging modalities, radiologists are faced with handling increasing volumes of data for diagnosis and treatment planning. The use of automated and intelligent systems is becoming essential in such a scenario. Machine learning, a branch of artificial intelligence, is increasingly being used in medical image analysis applications such as image segmentation, registration and computer-aided diagnosis and detection. Histopathological analysis is currently the gold standard for classification of brain tumors. The use of machine learning algorithms along with extraction of relevant features from magnetic resonance imaging (MRI) holds promise of replacing conventional invasive methods of tumor classification. The aim of the study is to classify gliomas into benign and malignant types using MRI data. Retrospective data from 28 patients who were diagnosed with glioma were used for the analysis. WHO Grade II (low-grade astrocytoma) was classified as benign while Grade III (anaplastic astrocytoma) and Grade IV (glioblastoma multiforme) were classified as malignant. Features were extracted from MR spectroscopy. The classification was done using four machine learning algorithms: multilayer perceptrons, support vector machine, random forest and locally weighted learning. Three of the four machine learning algorithms gave an area under ROC curve in excess of 0.80. Random forest gave the best performance in terms of AUC (0.911) while sensitivity was best for locally weighted learning (86.1%). The performance of different machine learning algorithms in the classification of gliomas is promising. An even better performance may be expected by integrating features extracted from other MR sequences. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Traceability of On-Machine Tool Measurement: A Review
Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor
2017-01-01
Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
Following a planning period during which the Lawrence Livermore Laboratory and the Department of Defense managing sponsor, the USAF Materials Laboratory, agreed on work statements, the Department of Defense Tri-Service Precision Machine-Tool Program began in February 1978. Milestones scheduled for the first quarter have been met. Tasks and manpower requirements for two basic projects, precision-machining commercialization (PMC) and a machine-tool task force (MTTF), were defined. Progress by PMC includes: (1) documentation of existing precision machine-tool technology by initiation and compilation of a bibliography containing several hundred entries: (2) identification of the problems and needs of precision turning-machine builders and ofmore » precision turning-machine users interested in developing high-precision machining capability; and (3) organization of the schedule and content of the first seminar, to be held in October 1978, which will bring together representatives from the machine-tool and optics communities to address the problems and begin the process of high-precision machining commercialization. Progress by MTTF includes: (1) planning for the organization of a team effort of approximately 60 to 80 international experts to contribute in various ways to project objectives, namely, to summarize state-of-the-art cutting-machine-tool technology and to identify areas where future R and D should prove technically and economically profitable; (2) preparation of a comprehensive plan to achieve those objectives; and (3) preliminary arrangements for a plenary session, also in October, when the task force will meet to formalize the details for implementing the plan.« less
Entanglement-Based Machine Learning on a Quantum Computer
NASA Astrophysics Data System (ADS)
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Artificial intelligence: A social spin on language analysis
NASA Astrophysics Data System (ADS)
Rosé, Carolyn Penstein
2017-05-01
Understanding the prevalence and impact of personal attacks in online discussions is challenging. A method that combines crowdsourcing and machine learning provides a way forward, but caveats must be considered.
Authoring Tools for Collaborative Intelligent Tutoring System Environments
ERIC Educational Resources Information Center
Olsen, Jennifer K.; Belenky, Daniel M.; Aleven, Vincent; Rummel, Nikol; Sewall, Jonathan; Ringenberg, Michael
2014-01-01
Authoring tools have been shown to decrease the amount of time and resources needed for the development of Intelligent Tutoring Systems (ITSs). Although collaborative learning has been shown to be beneficial to learning, most of the current authoring tools do not support the development of collaborative ITSs. In this paper, we discuss an extension…
ERIC Educational Resources Information Center
BOLDT, MILTON; POKORNY, HARRY
THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…
Accessing the public MIMIC-II intensive care relational database for clinical research.
Scott, Daniel J; Lee, Joon; Silva, Ikaro; Park, Shinhyuk; Moody, George B; Celi, Leo A; Mark, Roger G
2013-01-10
The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge "Predicting mortality of ICU Patients". QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database.
An iterative learning control method with application for CNC machine tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.I.; Kim, S.
1996-01-01
A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less
The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel
NASA Astrophysics Data System (ADS)
Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.
2018-01-01
Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…
Humans, Intelligent Technology, and Their Interface: A Study of Brown’s Point
2017-12-01
known about the role of drivers. When combining humans and intelligent technology (machines), such as self-driving vehicles, how people think about...disrupt the entire transportation industry and potentially change how society moves people and goods. The findings of the investigation are likely...The power of suggestion is very important to understand and consider when framing and bringing meaning to new technology, which points to looking at
The Challenges of Human-Autonomy Teaming
NASA Technical Reports Server (NTRS)
Vera, Alonso
2017-01-01
Machine intelligence is improving rapidly based on advances in big data analytics, deep learning algorithms, networked operations, and continuing exponential growth in computing power (Moores Law). This growth in the power and applicability of increasingly intelligent systems will change the roles humans, shifting them to tasks where adaptive problem solving, reasoning and decision-making is required. This talk will address the challenges involved in engineering autonomous systems that function effectively with humans in aeronautics domains.
2007-09-01
behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
NASA Astrophysics Data System (ADS)
Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania
2007-05-01
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…