Sample records for intelligent pattern recognition

  1. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  2. Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: intelligent morphological systems - problems and solutions

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.

    2017-01-01

    The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.

  3. An Intelligent Pattern Recognition System Based on Neural Network and Wavelet Decomposition for Interpretation of Heart Sounds

    DTIC Science & Technology

    2001-10-25

    wavelet decomposition of signals and classification using neural network. Inputs to the system are the heart sound signals acquired by a stethoscope in a...Proceedings. pp. 415–418, 1990. [3] G. Ergun, “An intelligent diagnostic system for interpretation of arterpartum fetal heart rate tracings based on ANNs and...AN INTELLIGENT PATTERN RECOGNITION SYSTEM BASED ON NEURAL NETWORK AND WAVELET DECOMPOSITION FOR INTERPRETATION OF HEART SOUNDS I. TURKOGLU1, A

  4. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  5. Multiple degree of freedom optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  6. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  7. Implementation of age and gender recognition system for intelligent digital signage

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Heon; Sohn, Myoung-Kyu; Kim, Hyunduk

    2015-12-01

    Intelligent digital signage systems transmit customized advertising and information by analyzing users and customers, unlike existing system that presented advertising in the form of broadcast without regard to type of customers. Currently, development of intelligent digital signage system has been pushed forward vigorously. In this study, we designed a system capable of analyzing gender and age of customers based on image obtained from camera, although there are many different methods for analyzing customers. We conducted age and gender recognition experiments using public database. The age/gender recognition experiments were performed through histogram matching method by extracting Local binary patterns (LBP) features after facial area on input image was normalized. The results of experiment showed that gender recognition rate was as high as approximately 97% on average. Age recognition was conducted based on categorization into 5 age classes. Age recognition rates for women and men were about 67% and 68%, respectively when that conducted separately for different gender.

  8. Conformal Predictions in Multimedia Pattern Recognition

    ERIC Educational Resources Information Center

    Nallure Balasubramanian, Vineeth

    2010-01-01

    The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…

  9. Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements

    NASA Astrophysics Data System (ADS)

    Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo

    1999-05-01

    Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  10. Orthogonal Patterns In A Binary Neural Network

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1991-01-01

    Report presents some recent developments in theory of binary neural networks. Subject matter relevant to associate (content-addressable) memories and to recognition of patterns - both of considerable importance in advancement of robotics and artificial intelligence. When probed by any pattern, network converges to one of stored patterns.

  11. Optical and digital pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)

    1987-01-01

    The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.

  12. Background characterization techniques for target detection using scene metrics and pattern recognition

    NASA Astrophysics Data System (ADS)

    Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.

    1990-09-01

    The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.

  13. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  14. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  15. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Ye, Lin

    2004-08-01

    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  16. Effects of Pattern Matching, Pattern Discrimination, and Experience in the Development of Diagnostic Expertise.

    ERIC Educational Resources Information Center

    Papa, Frank; And Others

    1990-01-01

    In this study an artificial intelligence assessment tool used disease-by-feature frequency estimates to create disease prototypes for nine common causes of acute chest pain. The tool then used each subject's prototypes and a pattern-recognition-based decision-making mechanism to diagnose 18 myocardial infarction cases. (MLW)

  17. On the Application of Pattern Recognition and AI Technique to the Cytoscreening of Vaginal Smears by Computer

    NASA Astrophysics Data System (ADS)

    Bow, Sing T.; Wang, Xia-Fang

    1989-05-01

    In this paper the concepts of pattern recognition, image processing and artificial intelligence are applied to the development of an intelligent cytoscreening system to differentiate the abnormal cytological objects from the normal ones in vaginal smears. To achieve this goal,work listed below are involved: 1. Enhancement of the microscopic images of the smears; 2. Elevation of the qualitative differentiation under the microscope by cytologists to a quantitative differentiation plateau on the epithelial cells, ciliated cells, vacuolated cells, foreign-body-giant cells, plasma cells, lymph cells, white blood cells, red blood cells, etc. These knowledges are to be inputted into our intelligent cyto-screening system to ameliorate machine differentiation; 3. Selection of a set of effective features to characterize the cytological objects onto various regions of the multiclustered by computer algorithms; and 4. Systematical summarization of the knowledge that a gynecologist has and the way he/she follows when dealing with a case.

  18. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  19. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    NASA Astrophysics Data System (ADS)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  20. Remote Video Monitor of Vehicles in Cooperative Information Platform

    NASA Astrophysics Data System (ADS)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  1. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.

    PubMed

    Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui

    2016-01-01

    Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.

  2. Open ended intelligence: the individuation of intelligent agents

    NASA Astrophysics Data System (ADS)

    Weinbaum Weaver, David; Veitas, Viktoras

    2017-03-01

    Artificial general intelligence is a field of research aiming to distil the principles of intelligence that operate independently of a specific problem domain and utilise these principles in order to synthesise systems capable of performing any intellectual task a human being is capable of and beyond. While "narrow" artificial intelligence which focuses on solving specific problems such as speech recognition, text comprehension, visual pattern recognition and robotic motion has shown impressive breakthroughs lately, understanding general intelligence remains elusive. We propose a paradigm shift from intelligence perceived as a competence of individual agents defined in relation to an a priori given problem domain or a goal, to intelligence perceived as a formative process of self-organisation. We call this process open-ended intelligence. Starting with a brief introduction of the current conceptual approach, we expose a number of serious limitations that are traced back to the ontological roots of the concept of intelligence. Open-ended intelligence is then developed as an abstraction of the process of human cognitive development, so its application can be extended to general agents and systems. We introduce and discuss three facets of the idea: the philosophical concept of individuation, sense-making and the individuation of general cognitive agents. We further show how open-ended intelligence can be framed in terms of a distributed, self-organising network of interacting elements and how such process is scalable. The framework highlights an important relation between coordination and intelligence and a new understanding of values.

  3. On the recognition of complex structures: Computer software using artificial intelligence applied to pattern recognition

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.

    1974-01-01

    An approach to simultaneous interpretation of objects in complex structures so as to maximize a combined utility function is presented. Results of the application of a computer software system to assign meaning to regions in a segmented image based on the principles described in this paper and on a special interactive sequential classification learning system, which is referenced, are demonstrated.

  4. Artificial intelligence tools for pattern recognition

    NASA Astrophysics Data System (ADS)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  5. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  6. Recognition of complex human behaviours using 3D imaging for intelligent surveillance applications

    NASA Astrophysics Data System (ADS)

    Yao, Bo; Lepley, Jason J.; Peall, Robert; Butler, Michael; Hagras, Hani

    2016-10-01

    We introduce a system that exploits 3-D imaging technology as an enabler for the robust recognition of the human form. We combine this with pose and feature recognition capabilities from which we can recognise high-level human behaviours. We propose a hierarchical methodology for the recognition of complex human behaviours, based on the identification of a set of atomic behaviours, individual and sequential poses (e.g. standing, sitting, walking, drinking and eating) that provides a framework from which we adopt time-based machine learning techniques to recognise complex behaviour patterns.

  7. FaceIt: face recognition from static and live video for law enforcement

    NASA Astrophysics Data System (ADS)

    Atick, Joseph J.; Griffin, Paul M.; Redlich, A. N.

    1997-01-01

    Recent advances in image and pattern recognition technology- -especially face recognition--are leading to the development of a new generation of information systems of great value to the law enforcement community. With these systems it is now possible to pool and manage vast amounts of biometric intelligence such as face and finger print records and conduct computerized searches on them. We review one of the enabling technologies underlying these systems: the FaceIt face recognition engine; and discuss three applications that illustrate its benefits as a problem-solving technology and an efficient and cost effective investigative tool.

  8. Technologies for developing an advanced intelligent ATM with self-defence capabilities

    NASA Astrophysics Data System (ADS)

    Sako, Hiroshi

    2010-01-01

    We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.

  9. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  10. Microgravity

    NASA Image and Video Library

    1999-05-26

    Looking for a faster computer? How about an optical computer that processes data streams simultaneously and works with the speed of light? In space, NASA researchers have formed optical thin-film. By turning these thin-films into very fast optical computer components, scientists could improve computer tasks, such as pattern recognition. Dr. Hossin Abdeldayem, physicist at NASA/Marshall Space Flight Center (MSFC) in Huntsville, Al, is working with lasers as part of an optical system for pattern recognition. These systems can be used for automated fingerprinting, photographic scarning and the development of sophisticated artificial intelligence systems that can learn and evolve. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  11. Breast Cancer Recognition Using a Novel Hybrid Intelligent Method

    PubMed Central

    Addeh, Jalil; Ebrahimzadeh, Ata

    2012-01-01

    Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. This paper presents a novel hybrid intelligent method for recognition of breast cancer tumors. The proposed method includes three main modules: the feature extraction module, the classifier module, and the optimization module. In the feature extraction module, fuzzy features are proposed as the efficient characteristic of the patterns. In the classifier module, because of the promising generalization capability of support vector machines (SVM), a SVM-based classifier is proposed. In support vector machine training, the hyperparameters have very important roles for its recognition accuracy. Therefore, in the optimization module, the bees algorithm (BA) is proposed for selecting appropriate parameters of the classifier. The proposed system is tested on Wisconsin Breast Cancer database and simulation results show that the recommended system has a high accuracy. PMID:23626945

  12. Gesture recognition for smart home applications using portable radar sensors.

    PubMed

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  13. Decision Aids for Naval Air ASW

    DTIC Science & Technology

    1980-03-15

    Algorithm for Zone Optimization Investigation) NADC Developing Sonobuoy Pattern for Air ASW Search DAISY (Decision Aiding Information System) Wharton...sion making behavior. 0 Artificial intelligence sequential pattern recognition algorithm for reconstructing the decision maker’s utility functions. 0...display presenting the uncertainty area of the target. 3.1.5 Algorithm for Zone Optimization Investigation (AZOI) -- Naval Air Development Center 0 A

  14. [The design and applications of a non-invasive intelligent detector for cardiovascular functions].

    PubMed

    Li, Feng; Xing, Wu; Chen, Ming-zhi; Shang, Huai

    2006-05-01

    An apparatus based on a high sensitive sensor which detects cardiovascular functions is introduced in this paper. Some intelligent detecting technologies, such as syntactic pattern recognition and a medical expert system are used in this detector. Its embedded single-chip microcomputer processes and analyzes pulse signals for gaining automatically the parameters about heart, blood vessel and blood etc., so as to get the health evaluation, correct medical diagnosis and prediction of cardiovascular diseases.

  15. Flightspeed Integral Image Analysis Toolkit

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2009-01-01

    The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles

  16. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  17. Extracting semantics from audio-visual content: the final frontier in multimedia retrieval.

    PubMed

    Naphade, M R; Huang, T S

    2002-01-01

    Multimedia understanding is a fast emerging interdisciplinary research area. There is tremendous potential for effective use of multimedia content through intelligent analysis. Diverse application areas are increasingly relying on multimedia understanding systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, pattern recognition, multimedia databases, and smart sensors. We review the state-of-the-art techniques in multimedia retrieval. In particular, we discuss how multimedia retrieval can be viewed as a pattern recognition problem. We discuss how reliance on powerful pattern recognition and machine learning techniques is increasing in the field of multimedia retrieval. We review the state-of-the-art multimedia understanding systems with particular emphasis on a system for semantic video indexing centered around multijects and multinets. We discuss how semantic retrieval is centered around concepts and context and the various mechanisms for modeling concepts and context.

  18. Fuzzy tree automata and syntactic pattern recognition.

    PubMed

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.

  19. Structural Pattern Recognition Techniques for Data Retrieval in Massive Fusion Databases

    NASA Astrophysics Data System (ADS)

    Vega, J.; Murari, A.; Rattá, G. A.; Castro, P.; Pereira, A.; Portas, A.

    2008-03-01

    Diagnostics of present day reactor class fusion experiments, like the Joint European Torus (JET), generate thousands of signals (time series and video images) in each discharge. There is a direct correspondence between the physical phenomena taking place in the plasma and the set of structural shapes (patterns) that they form in the signals: bumps, unexpected amplitude changes, abrupt peaks, periodic components, high intensity zones or specific edge contours. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behavior, i.e. discharges with "similar" patterns. Pattern recognition techniques are efficient tools to search for similar structural forms within the database in a fast an intelligent way. To this end, classification systems must be developed to be used as indexation methods to directly fetch the more similar patterns.

  20. The Influence of Fluid Intelligence, Executive Functions and Premorbid Intelligence on Memory in Frontal Patients.

    PubMed

    Chan, Edgar; MacPherson, Sarah E; Bozzali, Marco; Shallice, Tim; Cipolotti, Lisa

    2018-01-01

    Objective: It is commonly thought that memory deficits in frontal patients are a result of impairments in executive functions which impact upon storage and retrieval processes. Yet, few studies have specifically examined the relationship between memory performance and executive functions in frontal patients. Furthermore, the contribution of more general cognitive processes such as fluid intelligence and demographic factors such as age, education, and premorbid intelligence has not been considered. Method: Our study examined the relationship between recall and recognition memory and performance on measures of fluid intelligence, executive functions and premorbid intelligence in 39 frontal patients and 46 healthy controls. Results: Recall memory impairments in frontal patients were strongly correlated with fluid intelligence, executive functions and premorbid intelligence. These factors were all found to be independent predictors of recall performance, with fluid intelligence being the strongest predictor. In contrast, recognition memory impairments were not related to any of these factors. Furthermore, age and education were not significantly correlated with either recall or recognition memory measures. Conclusion: Our findings show that recall memory in frontal patients was related to fluid intelligence, executive functions and premorbid intelligence. In contrast, recognition memory was not. These findings suggest that recall and recognition memory deficits following frontal injury arise from separable cognitive factors. Recognition memory tests may be more useful when assessing memory functions in frontal patients.

  1. The Influence of Fluid Intelligence, Executive Functions and Premorbid Intelligence on Memory in Frontal Patients

    PubMed Central

    Chan, Edgar; MacPherson, Sarah E.; Bozzali, Marco; Shallice, Tim; Cipolotti, Lisa

    2018-01-01

    Objective: It is commonly thought that memory deficits in frontal patients are a result of impairments in executive functions which impact upon storage and retrieval processes. Yet, few studies have specifically examined the relationship between memory performance and executive functions in frontal patients. Furthermore, the contribution of more general cognitive processes such as fluid intelligence and demographic factors such as age, education, and premorbid intelligence has not been considered. Method: Our study examined the relationship between recall and recognition memory and performance on measures of fluid intelligence, executive functions and premorbid intelligence in 39 frontal patients and 46 healthy controls. Results: Recall memory impairments in frontal patients were strongly correlated with fluid intelligence, executive functions and premorbid intelligence. These factors were all found to be independent predictors of recall performance, with fluid intelligence being the strongest predictor. In contrast, recognition memory impairments were not related to any of these factors. Furthermore, age and education were not significantly correlated with either recall or recognition memory measures. Conclusion: Our findings show that recall memory in frontal patients was related to fluid intelligence, executive functions and premorbid intelligence. In contrast, recognition memory was not. These findings suggest that recall and recognition memory deficits following frontal injury arise from separable cognitive factors. Recognition memory tests may be more useful when assessing memory functions in frontal patients. PMID:29937746

  2. Artificially intelligent recognition of Arabic speaker using voice print-based local features

    NASA Astrophysics Data System (ADS)

    Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz

    2016-11-01

    Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.

  3. Proceedings of the 1986 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.

  4. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  5. Intelligent Scene Analysis and Recognition

    DTIC Science & Technology

    2010-03-30

    Database, 1998, pp. 42–51. [9] I. Biederman , Aspects and extension of a theory of human image understanding, Z. Pylyshyn, Ed. Ablex Publishing Corporation...geometry in the visual system,” Biological Cybernetics, vol. 55, no. 6, pp. 367–375, 1987 . [30] W. T. Freeman and E. H. Adelson, “The design and use of...Computer Vision and Pattern Recognition, 2009, pp. 1980– 1987 . [47] M. Leordeanu and M. Hebert, “A spectral technique for correspondence problems using

  6. Forecasting of hourly load by pattern recognition in a small area power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti-Shahrokh, A.

    1982-01-01

    An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less

  7. CONSULT-I Reading. Cincinnati Project. Final Report.

    ERIC Educational Resources Information Center

    Newman, Anabel; And Others

    A study examined the effectiveness of the spring-semester 1993 implementation of the CONSULT-I(R) program, which uses artificial intelligence with statistical pattern recognition in constructing a diagnosis and recommending treatment of reading difficulties. Eight classroom teachers and two Gifted and Talented coordinators at South Avondale…

  8. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential.

    PubMed

    Das, Nilakash; Topalovic, Marko; Janssens, Wim

    2018-03-01

    The application of artificial intelligence in the diagnosis of obstructive lung diseases is an exciting phenomenon. Artificial intelligence algorithms work by finding patterns in data obtained from diagnostic tests, which can be used to predict clinical outcomes or to detect obstructive phenotypes. The purpose of this review is to describe the latest trends and to discuss the future potential of artificial intelligence in the diagnosis of obstructive lung diseases. Machine learning has been successfully used in automated interpretation of pulmonary function tests for differential diagnosis of obstructive lung diseases. Deep learning models such as convolutional neural network are state-of-the art for obstructive pattern recognition in computed tomography. Machine learning has also been applied in other diagnostic approaches such as forced oscillation test, breath analysis, lung sound analysis and telemedicine with promising results in small-scale studies. Overall, the application of artificial intelligence has produced encouraging results in the diagnosis of obstructive lung diseases. However, large-scale studies are still required to validate current findings and to boost its adoption by the medical community.

  9. How feasible is the rapid development of artificial superintelligence?

    NASA Astrophysics Data System (ADS)

    Sotala, Kaj

    2017-11-01

    What kinds of fundamental limits are there in how capable artificial intelligence (AI) systems might become? Two questions in particular are of interest: (1) How much more capable could AI become relative to humans, and (2) how easily could superhuman capability be acquired? To answer these questions, we will consider the literature on human expertise and intelligence, discuss its relevance for AI, and consider how AI could improve on humans in two major aspects of thought and expertise, namely simulation and pattern recognition. We find that although there are very real limits to prediction, it seems like AI could still substantially improve on human intelligence.

  10. [Association between intelligence development and facial expression recognition ability in children with autism spectrum disorder].

    PubMed

    Pan, Ning; Wu, Gui-Hua; Zhang, Ling; Zhao, Ya-Fen; Guan, Han; Xu, Cai-Juan; Jing, Jin; Jin, Yu

    2017-03-01

    To investigate the features of intelligence development, facial expression recognition ability, and the association between them in children with autism spectrum disorder (ASD). A total of 27 ASD children aged 6-16 years (ASD group, full intelligence quotient >70) and age- and gender-matched normally developed children (control group) were enrolled. Wechsler Intelligence Scale for Children Fourth Edition and Chinese Static Facial Expression Photos were used for intelligence evaluation and facial expression recognition test. Compared with the control group, the ASD group had significantly lower scores of full intelligence quotient, verbal comprehension index, perceptual reasoning index (PRI), processing speed index(PSI), and working memory index (WMI) (P<0.05). The ASD group also had a significantly lower overall accuracy rate of facial expression recognition and significantly lower accuracy rates of the recognition of happy, angry, sad, and frightened expressions than the control group (P<0.05). In the ASD group, the overall accuracy rate of facial expression recognition and the accuracy rates of the recognition of happy and frightened expressions were positively correlated with PRI (r=0.415, 0.455, and 0.393 respectively; P<0.05). The accuracy rate of the recognition of angry expression was positively correlated with WMI (r=0.397; P<0.05). ASD children have delayed intelligence development compared with normally developed children and impaired expression recognition ability. Perceptual reasoning and working memory abilities are positively correlated with expression recognition ability, which suggests that insufficient perceptual reasoning and working memory abilities may be important factors affecting facial expression recognition ability in ASD children.

  11. Biometric identification

    NASA Astrophysics Data System (ADS)

    Syryamkim, V. I.; Kuznetsov, D. N.; Kuznetsova, A. S.

    2018-05-01

    Image recognition is an information process implemented by some information converter (intelligent information channel, recognition system) having input and output. The input of the system is fed with information about the characteristics of the objects being presented. The output of the system displays information about which classes (generalized images) the recognized objects are assigned to. When creating and operating an automated system for pattern recognition, a number of problems are solved, while for different authors the formulations of these tasks, and the set itself, do not coincide, since it depends to a certain extent on the specific mathematical model on which this or that recognition system is based. This is the task of formalizing the domain, forming a training sample, learning the recognition system, reducing the dimensionality of space.

  12. Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique

    ERIC Educational Resources Information Center

    Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao

    2014-01-01

    During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…

  13. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1981-01-01

    The role of the pilot and crew for future aircraft is discussed. Fifteen formal experimental studies and the development of a variety of models of human behavior based on queueing history, pattern recognition methods, control theory, fuzzy set theory, and artificial intelligence concepts are presented. L.F.M.

  14. CONSULT-I Reading South Avondale Elementary School Cincinnati Project. Final Report.

    ERIC Educational Resources Information Center

    Newman, Anabel; And Others

    A study examined the effectiveness of the third year of implementation of the CONSULT-I program, which uses artificial intelligence with statistical pattern recognition in constructing a diagnosis and recommending treatment of reading difficulties. Six elementary classroom teachers at South Avondale Elementary School in Cincinnati, Ohio,…

  15. CONSULT-I Reading. South Avondale Elementary School, Cincinnati Project. Final Report.

    ERIC Educational Resources Information Center

    Newman, Anabel; And Others

    A study examined the effectiveness of the second year of implementation of the CONSULT-I program, which uses artificial intelligence with statistical pattern recognition in constructing a diagnosis and recommending treatment of reading difficulties. Five elementary classroom teachers, two ESEA (Elementary and Secondary Education Act) teachers, and…

  16. CONSULT-I Reading. Ohio Project. Final Report.

    ERIC Educational Resources Information Center

    Newman, Anabel; And Others

    A study examined the effectiveness of the 1991-1992 implementation of the CONSULT-I(R) program (which uses artificial intelligence with statistical pattern recognition in constructing a diagnosis and recommending treatment of reading difficulties) at five cities in Ohio (Akron, Cincinnati, Cleveland, Columbus, and Toledo). A total of 30 teachers…

  17. Static facial expression recognition with convolution neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Chen, Zhong; Ouyang, Chao; Zhang, Yifei

    2018-03-01

    Facial expression recognition is a currently active research topic in the fields of computer vision, pattern recognition and artificial intelligence. In this paper, we have developed a convolutional neural networks (CNN) for classifying human emotions from static facial expression into one of the seven facial emotion categories. We pre-train our CNN model on the combined FER2013 dataset formed by train, validation and test set and fine-tune on the extended Cohn-Kanade database. In order to reduce the overfitting of the models, we utilized different techniques including dropout and batch normalization in addition to data augmentation. According to the experimental result, our CNN model has excellent classification performance and robustness for facial expression recognition.

  18. Intelligence May Moderate the Cognitive Profile of Patients with ASD.

    PubMed

    Rommelse, Nanda; Langerak, Ilse; van der Meer, Jolanda; de Bruijn, Yvette; Staal, Wouter; Oerlemans, Anoek; Buitelaar, Jan

    2015-01-01

    The intelligence of individuals with Autism Spectrum Disorder (ASD) varies considerably. The pattern of cognitive deficits associated with ASD may differ depending on intelligence. We aimed to study the absolute and relative severity of cognitive deficits in participants with ASD in relation to IQ. A total of 274 children (M age = 12.1, 68.6% boys) participated: 30 ASD and 22 controls in the below average Intelligence Quotient (IQ) group (IQ<85), 57 ASD and 54 controls in the average IQ group (85115). Matching for age, sex, Full Scale IQ (FSIQ), Verbal IQ (VIQ), Performance IQ (PIQ) and VIQ-PIQ difference was performed. Speed and accuracy of social cognition, executive functioning, visual pattern recognition and basic processing speed were examined per domain and as a composite score. The composite score revealed a trend significant IQ by ASD interaction (significant when excluding the average IQ group). In absolute terms, participants with below average IQs performed poorest (regardless of diagnosis). However, in relative terms, above average intelligent participants with ASD showed the most substantial cognitive problems (particularly for social cognition, visual pattern recognition and verbal working memory) since this group differed significantly from the IQ-matched control group (p < .001), whereas this was not the case for below-average intelligence participants with ASD (p = .57). In relative terms, cognitive deficits appear somewhat more severe in individuals with ASD and above average IQs compared to the below average IQ patients with ASD. Even though high IQ ASD individuals enjoy a certain protection from their higher IQ, they clearly demonstrate cognitive impairments that may be targeted in clinical assessment and treatment. Conversely, even though in absolute terms ASD patients with below average IQs were clearly more impaired than ASD patients with average to above average IQs, the differences in cognitive functioning between participants with and without ASD on the lower end of the IQ spectrum were less pronounced. Clinically this may imply that cognitive assessment and training of cognitive skills in below average intelligent children with ASD may be a less fruitful endeavour. These findings tentatively suggest that intelligence may act as a moderator in the cognitive presentation of ASD, with qualitatively different cognitive processes affected in patients at the high and low end of the IQ spectrum.

  19. Intelligence May Moderate the Cognitive Profile of Patients with ASD

    PubMed Central

    Rommelse, Nanda; Langerak, Ilse; van der Meer, Jolanda; de Bruijn, Yvette; Staal, Wouter; Oerlemans, Anoek; Buitelaar, Jan

    2015-01-01

    Background The intelligence of individuals with Autism Spectrum Disorder (ASD) varies considerably. The pattern of cognitive deficits associated with ASD may differ depending on intelligence. We aimed to study the absolute and relative severity of cognitive deficits in participants with ASD in relation to IQ. Methods A total of 274 children (M age = 12.1, 68.6% boys) participated: 30 ASD and 22 controls in the below average Intelligence Quotient (IQ) group (IQ<85), 57 ASD and 54 controls in the average IQ group (85115). Matching for age, sex, Full Scale IQ (FSIQ), Verbal IQ (VIQ), Performance IQ (PIQ) and VIQ-PIQ difference was performed. Speed and accuracy of social cognition, executive functioning, visual pattern recognition and basic processing speed were examined per domain and as a composite score. Results The composite score revealed a trend significant IQ by ASD interaction (significant when excluding the average IQ group). In absolute terms, participants with below average IQs performed poorest (regardless of diagnosis). However, in relative terms, above average intelligent participants with ASD showed the most substantial cognitive problems (particularly for social cognition, visual pattern recognition and verbal working memory) since this group differed significantly from the IQ-matched control group (p < .001), whereas this was not the case for below-average intelligence participants with ASD (p = .57). Conclusions In relative terms, cognitive deficits appear somewhat more severe in individuals with ASD and above average IQs compared to the below average IQ patients with ASD. Even though high IQ ASD individuals enjoy a certain protection from their higher IQ, they clearly demonstrate cognitive impairments that may be targeted in clinical assessment and treatment. Conversely, even though in absolute terms ASD patients with below average IQs were clearly more impaired than ASD patients with average to above average IQs, the differences in cognitive functioning between participants with and without ASD on the lower end of the IQ spectrum were less pronounced. Clinically this may imply that cognitive assessment and training of cognitive skills in below average intelligent children with ASD may be a less fruitful endeavour. These findings tentatively suggest that intelligence may act as a moderator in the cognitive presentation of ASD, with qualitatively different cognitive processes affected in patients at the high and low end of the IQ spectrum. PMID:26444877

  20. Facial Recognition Training: Improving Intelligence Collection by Soldiers

    DTIC Science & Technology

    2008-01-01

    Facial Recognition Training: Improving Intelligence Collection by Soldiers By: 2LT Michael Mitchell, MI, ALARNG “In combat, you don’t rise to...technology, but on patrol a Soldier cannot use a device as quickly as simply looking at the subject. Why is Facial Recognition Difficult? Soldiers...00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Facial Recognition Training: Improving Intelligence Collection by Soldiers 5a. CONTRACT NUMBER 5b

  1. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery.

    PubMed

    Tian, Shu; Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness.

  2. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery

    PubMed Central

    Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness. PMID:26693249

  3. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  4. Two speed factors of visual recognition independently correlated with fluid intelligence.

    PubMed

    Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki

    2014-01-01

    Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).

  5. Artificial intelligence approaches for rational drug design and discovery.

    PubMed

    Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław

    2007-01-01

    Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.

  6. Proceedings of the 1984 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    This conference contains papers on artificial intelligence, pattern recognition, and man-machine systems. Topics considered include concurrent minimization, a robot programming system, system modeling and simulation, camera calibration, thermal power plants, image processing, fault diagnosis, knowledge-based systems, power systems, hydroelectric power plants, expert systems, and electrical transients.

  7. Current State of an Intelligent System to Aid in Tephra Layer Correlation

    NASA Astrophysics Data System (ADS)

    Hanson-Hedgecock, S.; Bursik, M.; Rogova, G.

    2007-12-01

    We are developing a computer based intelligent system to correlate tephra layers by using the lithologic, mineralogic, and geochemical characteristics of field samples, to aid geologists in interpreting eruption patterns of volcanic chains and fields. The intelligent system is used to define groups of tephra source vents by utilizing geochemical data, and to correlate tephra layers based on lithostratigraphic characteristics. Understanding the eruption history of a volcano from stratigraphic studies is important for forecasting future eruptive behavior and hazards. In volcanic chains and fields with a complex eruptive history and no central vent, determining the spatio- temporal eruption patterns is difficult. Sedimentologic and chemical variability, and sparse sampling often result in relatively large variances and imprecision in the dataset. Lithostratigraphic and geochemical interpretation also depends on ones' level of expertise and can be subjective. The processing of lithostratigraphic features is conducted by a hybrid classifier, composed of supervised artificial neural networks (ANNs) combined within the framework of the Dempster-Shafer theory of evidence. Since lithostratigraphic features vary with distance from source, hypothetical vent locations are determined by using expert domain knowledge and geostatistical methods. Geochemical data are processed by a suit of fuzzy k- means classifiers. Each fuzzy k-means classifier assigns observations to multiple clusters with various degrees, called membership coefficients. The assignment minimizes a function of the total distance between the centers of clusters and the individual geochemical data patterns weighed by the membership coefficients. Improved clustering results of geochemical data are achieved by the fusion of individual clustering results with an evidential combination method. Lithostratigraphic data from individual tephra beds of the North Mono eruption sequence are used to test the effectiveness of the intelligent system for tephra layer correlation. Geochemical data from tephra bedsets of the Mono and Inyo Craters, CA, are used to test the effectiveness of the intelligent system for eruption sequence correlation. The intelligent system aids correlation by showing matches and disparities between data patterns from different outcrops that may have been overlooked in initial interpretations. Initial results show that the lithostratigraphic classifier is able to accurately differentiate known layers 76% of the time. Output from the lithostratigraphic classifier can furthermore be plotted directly as isopleth maps that can aid in rapid recognition of tephra layers as well as determination of eruption characteristics, e.g. eruption volume, plume height, etc. The intelligent system produces a useful recognition result, while dealing with the uncertainty from sparse data and the imprecise description of layer characteristics.

  8. Early prediction of student goals and affect in narrative-centered learning environments

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoung

    Recent years have seen a growing recognition of the role of goal and affect recognition in intelligent tutoring systems. Goal recognition is the task of inferring users' goals from a sequence of observations of their actions. Because of the uncertainty inherent in every facet of human computer interaction, goal recognition is challenging, particularly in contexts in which users can perform many actions in any order, as is the case with intelligent tutoring systems. Affect recognition is the task of identifying the emotional state of a user from a variety of physical cues, which are produced in response to affective changes in the individual. Accurately recognizing student goals and affect states could contribute to more effective and motivating interactions in intelligent tutoring systems. By exploiting knowledge of student goals and affect states, intelligent tutoring systems can dynamically modify their behavior to better support individual students. To create effective interactions in intelligent tutoring systems, goal and affect recognition models should satisfy two key requirements. First, because incorrectly predicted goals and affect states could significantly diminish the effectiveness of interactive systems, goal and affect recognition models should provide accurate predictions of user goals and affect states. When observations of users' activities become available, recognizers should make accurate early" predictions. Second, goal and affect recognition models should be highly efficient so they can operate in real time. To address key issues, we present an inductive approach to recognizing student goals and affect states in intelligent tutoring systems by learning goals and affect recognition models. Our work focuses on goal and affect recognition in an important new class of intelligent tutoring systems, narrative-centered learning environments. We report the results of empirical studies of induced recognition models from observations of students' interactions in narrative-centered learning environments. Experimental results suggest that induced models can make accurate early predictions of student goals and affect states, and they are sufficiently efficient to meet the real-time performance requirements of interactive learning environments.

  9. Effects of intelligibility on working memory demand for speech perception.

    PubMed

    Francis, Alexander L; Nusbaum, Howard C

    2009-08-01

    Understanding low-intelligibility speech is effortful. In three experiments, we examined the effects of intelligibility on working memory (WM) demands imposed by perception of synthetic speech. In all three experiments, a primary speeded word recognition task was paired with a secondary WM-load task designed to vary the availability of WM capacity during speech perception. Speech intelligibility was varied either by training listeners to use available acoustic cues in a more diagnostic manner (as in Experiment 1) or by providing listeners with more informative acoustic cues (i.e., better speech quality, as in Experiments 2 and 3). In the first experiment, training significantly improved intelligibility and recognition speed; increasing WM load significantly slowed recognition. A significant interaction between training and load indicated that the benefit of training on recognition speed was observed only under low memory load. In subsequent experiments, listeners received no training; intelligibility was manipulated by changing synthesizers. Improving intelligibility without training improved recognition accuracy, and increasing memory load still decreased it, but more intelligible speech did not produce more efficient use of available WM capacity. This suggests that perceptual learning modifies the way available capacity is used, perhaps by increasing the use of more phonetically informative features and/or by decreasing use of less informative ones.

  10. Two Speed Factors of Visual Recognition Independently Correlated with Fluid Intelligence

    PubMed Central

    Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki

    2014-01-01

    Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one’s IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR). PMID:24825574

  11. Chess knowledge predicts chess memory even after controlling for chess experience: Evidence for the role of high-level processes.

    PubMed

    Lane, David M; Chang, Yu-Hsuan A

    2018-04-01

    The expertise effect in memory for chess positions is one of the most robust effects in cognitive psychology. One explanation of this effect is that chess recall is based on the recognition of familiar patterns and that experts have learned more and larger patterns. Template theory and its instantiation as a computational model are based on this explanation. An alternative explanation is that the expertise effect is due, in part, to stronger players having better and more conceptual knowledge, with this knowledge facilitating memory performance. Our literature review supports the latter view. In our experiment, a sample of 79 chess players were given a test of memory for chess positions, a test of declarative chess knowledge, a test of fluid intelligence, and a questionnaire concerning the amount of time they had played nontournament chess and the amount of time they had studied chess. We determined the numbers of tournament games the players had played from chess databases. Chess knowledge correlated .67 with chess memory and accounted for 16% of the variance after controlling for chess experience. Fluid intelligence accounted for an additional 13% of the variance. These results support the conclusion that both high-level conceptual processing and low-level recognition of familiar patterns play important roles in memory for chess positions.

  12. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  13. Use of pattern recognition and neural networks for non-metric sex diagnosis from lateral shape of calvarium: an innovative model for computer-aided diagnosis in forensic and physical anthropology.

    PubMed

    Cavalli, Fabio; Lusnig, Luca; Trentin, Edmondo

    2017-05-01

    Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.

  14. Intelligibility of emotional speech in younger and older adults.

    PubMed

    Dupuis, Kate; Pichora-Fuller, M Kathleen

    2014-01-01

    Little is known about the influence of vocal emotions on speech understanding. Word recognition accuracy for stimuli spoken to portray seven emotions (anger, disgust, fear, sadness, neutral, happiness, and pleasant surprise) was tested in younger and older listeners. Emotions were presented in either mixed (heterogeneous emotions mixed in a list) or blocked (homogeneous emotion blocked in a list) conditions. Three main hypotheses were tested. First, vocal emotion affects word recognition accuracy; specifically, portrayals of fear enhance word recognition accuracy because listeners orient to threatening information and/or distinctive acoustical cues such as high pitch mean and variation. Second, older listeners recognize words less accurately than younger listeners, but the effects of different emotions on intelligibility are similar across age groups. Third, blocking emotions in list results in better word recognition accuracy, especially for older listeners, and reduces the effect of emotion on intelligibility because as listeners develop expectations about vocal emotion, the allocation of processing resources can shift from emotional to lexical processing. Emotion was the within-subjects variable: all participants heard speech stimuli consisting of a carrier phrase followed by a target word spoken by either a younger or an older talker, with an equal number of stimuli portraying each of seven vocal emotions. The speech was presented in multi-talker babble at signal to noise ratios adjusted for each talker and each listener age group. Listener age (younger, older), condition (mixed, blocked), and talker (younger, older) were the main between-subjects variables. Fifty-six students (Mage= 18.3 years) were recruited from an undergraduate psychology course; 56 older adults (Mage= 72.3 years) were recruited from a volunteer pool. All participants had clinically normal pure-tone audiometric thresholds at frequencies ≤3000 Hz. There were significant main effects of emotion, listener age group, and condition on the accuracy of word recognition in noise. Stimuli spoken in a fearful voice were the most intelligible, while those spoken in a sad voice were the least intelligible. Overall, word recognition accuracy was poorer for older than younger adults, but there was no main effect of talker, and the pattern of the effects of different emotions on intelligibility did not differ significantly across age groups. Acoustical analyses helped elucidate the effect of emotion and some intertalker differences. Finally, all participants performed better when emotions were blocked. For both groups, performance improved over repeated presentations of each emotion in both blocked and mixed conditions. These results are the first to demonstrate a relationship between vocal emotion and word recognition accuracy in noise for younger and older listeners. In particular, the enhancement of intelligibility by emotion is greatest for words spoken to portray fear and presented heterogeneously with other emotions. Fear may have a specialized role in orienting attention to words heard in noise. This finding may be an auditory counterpart to the enhanced detection of threat information in visual displays. The effect of vocal emotion on word recognition accuracy is preserved in older listeners with good audiograms and both age groups benefit from blocking and the repetition of emotions.

  15. Artificial neural network detects human uncertainty

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  16. Decision making and problem solving with computer assistance

    NASA Technical Reports Server (NTRS)

    Kraiss, F.

    1980-01-01

    In modern guidance and control systems, the human as manager, supervisor, decision maker, problem solver and trouble shooter, often has to cope with a marginal mental workload. To improve this situation, computers should be used to reduce the operator from mental stress. This should not solely be done by increased automation, but by a reasonable sharing of tasks in a human-computer team, where the computer supports the human intelligence. Recent developments in this area are summarized. It is shown that interactive support of operator by intelligent computer is feasible during information evaluation, decision making and problem solving. The applied artificial intelligence algorithms comprehend pattern recognition and classification, adaptation and machine learning as well as dynamic and heuristic programming. Elementary examples are presented to explain basic principles.

  17. The anticipatory profile. An attempt to describe anticipation as process

    NASA Astrophysics Data System (ADS)

    Nadin, Mihai

    2012-01-01

    Inductive class representation and the more comprehensive evolving transformation system (ETS) are congenial to the subject matter of anticipation. In substantiating this assertion, we examine the epistemological premises of a new form of representation, of interest to pattern recognition and Artificial Intelligence (AI), but even more to the study of living systems. Some concepts, such as classes, time and time scale, and generative processes are examined in detail with respect to their pertinence to anticipation. Finally, pattern generation and ETS programming are suggested.

  18. Autonomous planning and scheduling on the TechSat 21 mission

    NASA Technical Reports Server (NTRS)

    Sherwood, R.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting.

  19. Perceptual telerobotics

    NASA Technical Reports Server (NTRS)

    Ligomenides, Panos A.

    1989-01-01

    A sensory world modeling system, congruent with a human expert's perception, is proposed. The Experiential Knowledge Base (EKB) system can provide a highly intelligible communication interface for telemonitoring and telecontrol of a real time robotic system operating in space. Paradigmatic acquisition of empirical perceptual knowledge, and real time experiential pattern recognition and knowledge integration are reviewed. The cellular architecture and operation of the EKB system are also examined.

  20. Expert system for analyzing eddy current measurements

    DOEpatents

    Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.

    1994-01-01

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.

  1. Banknote recognition: investigating processing and cognition framework using competitive neural network.

    PubMed

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-02-01

    Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.

  2. Artificial intelligence in sports on the example of weight training.

    PubMed

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements.Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates.

  3. Artificial Intelligence in Sports on the Example of Weight Training

    PubMed Central

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements. Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates. PMID:24149722

  4. Tuberculosis control, and the where and why of artificial intelligence

    PubMed Central

    Falzon, Dennis; Thomas, Bruce V.; Temesgen, Zelalem; Sadasivan, Lal; Raviglione, Mario

    2017-01-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB. PMID:28656130

  5. Tuberculosis control, and the where and why of artificial intelligence.

    PubMed

    Doshi, Riddhi; Falzon, Dennis; Thomas, Bruce V; Temesgen, Zelalem; Sadasivan, Lal; Migliori, Giovanni Battista; Raviglione, Mario

    2017-04-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB.

  6. The effect of emotion on keystroke: an experimental study using facial feedback hypothesis.

    PubMed

    Tsui, Wei-Hsuan; Lee, Poming; Hsiao, Tzu-Chien

    2013-01-01

    The automatic emotion recognition technology is an important part of building intelligent systems to prevent the computers acting inappropriately. A novel approach for recognizing emotional state by their keystroke typing patterns on a standard keyboard was developed in recent years. However, there was very limited investigation about the phenomenon itself in the previous literatures. Hence, in our study, we conduct a controlled experiment to collect subjects' keystroke data in the different emotional states induced by facial feedback. We examine the difference of the keystroke data between positive and negative emotional states. The results prove the significance in the differences in the typing patterns under positive and negative emotions for all subjects. Our study provides an evidence for the reasonability about developing the technique of emotion recognition by keystroke.

  7. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    PubMed

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Ambient agents: embedded agents for remote control and monitoring using the PANGEA platform.

    PubMed

    Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier; Corchado, Juan M

    2014-07-31

    Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation.

  9. Ambient Agents: Embedded Agents for Remote Control and Monitoring Using the PANGEA Platform

    PubMed Central

    Villarrubia, Gabriel; De Paz, Juan F.; Bajo, Javier; Corchado, Juan M.

    2014-01-01

    Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation. PMID:25090416

  10. The role of soft computing in intelligent machines.

    PubMed

    de Silva, Clarence W

    2003-08-15

    An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.

  11. A quantum leap into the IED age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, R.C.

    1996-11-01

    The integration of pattern recognition, artificial intelligence and advanced communication technologies in utility substation IED`s (Intelligent Electronic Devices) has opened the door to practical and cost effective automation of power distribution systems. A major driver for the application of these new technologies has been the research directed toward the detection of high-impedance faults. The commercial products which embody these complex detection functions have already expanded to include most of the protection, control, and monitoring required at a utility substation. These new Super-IED`s enable major utility initiatives, such as power quality management, improved public safety, operation and maintenance productivity, and powermore » system automation.« less

  12. A Field Study in the Application of CONSULT-I to the Problem of Inconsistency in Diagnosis and Treatment of Reading Difficulties. Proffitt Grant Final Report.

    ERIC Educational Resources Information Center

    Newman, Anabel P.; Metz, Elizabeth

    A field study tested the application of the CONSULT-I (R) program, which uses artificial intelligence with statistical pattern recognition in constructing a diagnosis and recommending treatment of reading difficulties. Participants in the field study came from 10 southern and central Indiana school districts, both public and parochial, and one…

  13. Using an intelligent system to aid in tephra layer correlation of the tephra beds of the Mono-Inyo Craters, California

    NASA Astrophysics Data System (ADS)

    Hanson-Hedgecock, S.; Bursik, M.; Rogova, G.

    2008-12-01

    We are developing an intelligent system to correlate tephra layers by using the lithologic and geochemical characteristics of field samples, to aid geologists in interpreting eruption patterns in volcanic fields. Understanding the eruption history of a volcanic field from stratigraphic studies is important for forecasting future eruptive behavior and hazards. The intelligent system is used to define groups of tephra source vents and to correlate tephra layers based on a combination of geochemical data and lithostratigraphic characteristics. The tephra beds of the Mono-Inyo Craters, California, are used to test the ability of the intelligent system for tephra layer correlation. The data processing is performed by a suite of both unsupervised and supervised classifiers, built and combined within the framework of the Dempster-Shafer theory of evidence. We have developed algorithms to calculate isopleth maps of thickness, lithic and pumice size that are used in the processing of the lithostratigraphic data. This spatial information is important in the determination of eruption patterns and is used by an evidential nearest neighbor classifier to correlate tephra layers. Integrating a better isopleth approximation function and expert knowledge about stratigraphic order of the tephra layers into the classifier improves the lithostratigraphic correlation from 56% to 87% of layers correctly identified. Geochemical data for defining groups of tephra sources are processed by a suit of fuzzy k-means classifiers. Improved clustering results of geochemical data are achieved by the fusion of individual clustering results with an evidential combination method. The intelligent system aids correlation by showing matches and disparities between data patterns from different outcrops that may have been overlooked. The intelligent system produces a useful recognition result, while dealing with the uncertainty from sparse data and the imprecise description of layer characteristics.

  14. Smart sensor for terminal homing

    NASA Astrophysics Data System (ADS)

    Panda, D.; Aggarwal, R.; Hummel, R.

    1980-01-01

    The practical scene matching problem is considered to present certain complications which must extend classical image processing capabilities. Certain aspects of the scene matching problem which must be addressed by a smart sensor for terminal homing are discussed. First a philosophy for treating the matching problem for the terminal homing scenario is outlined. Then certain aspects of the feature extraction process and symbolic pattern matching are considered. It is thought that in the future general ideas from artificial intelligence will be more useful for terminal homing requirements of fast scene recognition and pattern matching.

  15. Face recognition system for set-top box-based intelligent TV.

    PubMed

    Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Park, Kang Ryoung

    2014-11-18

    Despite the prevalence of smart TVs, many consumers continue to use conventional TVs with supplementary set-top boxes (STBs) because of the high cost of smart TVs. However, because the processing power of a STB is quite low, the smart TV functionalities that can be implemented in a STB are very limited. Because of this, negligible research has been conducted regarding face recognition for conventional TVs with supplementary STBs, even though many such studies have been conducted with smart TVs. In terms of camera sensors, previous face recognition systems have used high-resolution cameras, cameras with high magnification zoom lenses, or camera systems with panning and tilting devices that can be used for face recognition from various positions. However, these cameras and devices cannot be used in intelligent TV environments because of limitations related to size and cost, and only small, low cost web-cameras can be used. The resulting face recognition performance is degraded because of the limited resolution and quality levels of the images. Therefore, we propose a new face recognition system for intelligent TVs in order to overcome the limitations associated with low resource set-top box and low cost web-cameras. We implement the face recognition system using a software algorithm that does not require special devices or cameras. Our research has the following four novelties: first, the candidate regions in a viewer's face are detected in an image captured by a camera connected to the STB via low processing background subtraction and face color filtering; second, the detected candidate regions of face are transmitted to a server that has high processing power in order to detect face regions accurately; third, in-plane rotations of the face regions are compensated based on similarities between the left and right half sub-regions of the face regions; fourth, various poses of the viewer's face region are identified using five templates obtained during the initial user registration stage and multi-level local binary pattern matching. Experimental results indicate that the recall; precision; and genuine acceptance rate were about 95.7%; 96.2%; and 90.2%, respectively.

  16. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  17. The Impact of Age, Background Noise, Semantic Ambiguity, and Hearing Loss on Recognition Memory for Spoken Sentences.

    PubMed

    Koeritzer, Margaret A; Rogers, Chad S; Van Engen, Kristin J; Peelle, Jonathan E

    2018-03-15

    The goal of this study was to determine how background noise, linguistic properties of spoken sentences, and listener abilities (hearing sensitivity and verbal working memory) affect cognitive demand during auditory sentence comprehension. We tested 30 young adults and 30 older adults. Participants heard lists of sentences in quiet and in 8-talker babble at signal-to-noise ratios of +15 dB and +5 dB, which increased acoustic challenge but left the speech largely intelligible. Half of the sentences contained semantically ambiguous words to additionally manipulate cognitive challenge. Following each list, participants performed a visual recognition memory task in which they viewed written sentences and indicated whether they remembered hearing the sentence previously. Recognition memory (indexed by d') was poorer for acoustically challenging sentences, poorer for sentences containing ambiguous words, and differentially poorer for noisy high-ambiguity sentences. Similar patterns were observed for Z-transformed response time data. There were no main effects of age, but age interacted with both acoustic clarity and semantic ambiguity such that older adults' recognition memory was poorer for acoustically degraded high-ambiguity sentences than the young adults'. Within the older adult group, exploratory correlation analyses suggested that poorer hearing ability was associated with poorer recognition memory for sentences in noise, and better verbal working memory was associated with better recognition memory for sentences in noise. Our results demonstrate listeners' reliance on domain-general cognitive processes when listening to acoustically challenging speech, even when speech is highly intelligible. Acoustic challenge and semantic ambiguity both reduce the accuracy of listeners' recognition memory for spoken sentences. https://doi.org/10.23641/asha.5848059.

  18. An Approach to Object Recognition: Aligning Pictorial Descriptions.

    DTIC Science & Technology

    1986-12-01

    PERFORMING 0RGANIZATION NAMIE ANDORS IS551. PROGRAM ELEMENT. PROJECT. TASK Artificial Inteligence Laboratory AREKA A WORK UNIT NUMBERS ( 545 Technology... ARTIFICIAL INTELLIGENCE LABORATORY A.I. Memo No. 931 December, 1986 AN APPROACH TO OBJECT RECOGNITION: ALIGNING PICTORIAL DESCRIPTIONS Shimon Ullman...within the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Support for the A.I. Laboratory’s artificial intelligence

  19. Neural network for intelligent query of an FBI forensic database

    NASA Astrophysics Data System (ADS)

    Uvanni, Lee A.; Rainey, Timothy G.; Balasubramanian, Uma; Brettle, Dean W.; Weingard, Fred; Sibert, Robert W.; Birnbaum, Eric

    1997-02-01

    Examiner is an automated fired cartridge case identification system utilizing a dual-use neural network pattern recognition technology, called the statistical-multiple object detection and location system (S-MODALS) developed by Booz(DOT)Allen & Hamilton, Inc. in conjunction with Rome Laboratory. S-MODALS was originally designed for automatic target recognition (ATR) of tactical and strategic military targets using multisensor fusion [electro-optical (EO), infrared (IR), and synthetic aperture radar (SAR)] sensors. Since S-MODALS is a learning system readily adaptable to problem domains other than automatic target recognition, the pattern matching problem of microscopic marks for firearms evidence was analyzed using S-MODALS. The physics; phenomenology; discrimination and search strategies; robustness requirements; error level and confidence level propagation that apply to the pattern matching problem of military targets were found to be applicable to the ballistic domain as well. The Examiner system uses S-MODALS to rank a set of queried cartridge case images from the most similar to the least similar image in reference to an investigative fired cartridge case image. The paper presents three independent tests and evaluation studies of the Examiner system utilizing the S-MODALS technology for the Federal Bureau of Investigation.

  20. Biomorphic Networks for ATR and Higher-Level Processing.

    DTIC Science & Technology

    1998-01-10

    Publications during this period: 1. N.H. Farhat, "Biomorphic Dynamical Networks for Cognition and Control", Journal of Intelligent and Rototic Systems...34 Neurodynamic networks for recognition of radar targets", Ph.D. dissertation, University of Pennsyl- vania, 1992. 2. J. Wood, "Invariant pattern...167-177,1998. 167 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Biomorphic Dynamical Networks for Cognition and Control N. H

  1. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal

    NASA Astrophysics Data System (ADS)

    Mlynarczuk, Mariusz; Skiba, Marta

    2017-06-01

    The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.

  2. A Parallel Neuromorphic Text Recognition System and Its Implementation on a Heterogeneous High-Performance Computing Cluster

    DTIC Science & Technology

    2013-01-01

    M. Ahmadi, and M. Shridhar, “ Handwritten Numeral Recognition with Multiple Features and Multistage Classifiers,” Proc. IEEE Int’l Symp. Circuits...ARTICLE (Post Print) 3. DATES COVERED (From - To) SEP 2011 – SEP 2013 4. TITLE AND SUBTITLE A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS...research in computational intelligence has entered a new era. In this paper, we present an HPC-based context-aware intelligent text recognition

  3. Improving Pattern Recognition and Neural Network Algorithms with Applications to Solar Panel Energy Optimization

    NASA Astrophysics Data System (ADS)

    Zamora Ramos, Ernesto

    Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures, multilayer percepterons and convolutional neural networks. Our research with neural networks has encountered a great deal of difficulties regarding hyperparameter estimation for good training convergence rate and accuracy. Most hyperparameters, including architecture, learning rate, regularization, trainable parameters (or weights) initialization, and so on, are chosen via a trial and error process with some educated guesses. However, we developed the first quantitative method to compare weight initialization strategies, a critical hyperparameter choice during training, to estimate among a group of candidate strategies which would make the network converge to the highest classification accuracy faster with high probability. Our method provides a quick, objective measure to compare initialization strategies to select the best possible among them beforehand without having to complete multiple training sessions for each candidate strategy to compare final results.

  4. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    NASA Astrophysics Data System (ADS)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  5. Age-related Effects on Word Recognition: Reliance on Cognitive Control Systems with Structural Declines in Speech-responsive Cortex

    PubMed Central

    Walczak, Adam; Ahlstrom, Jayne; Denslow, Stewart; Horwitz, Amy; Dubno, Judy R.

    2008-01-01

    Speech recognition can be difficult and effortful for older adults, even for those with normal hearing. Declining frontal lobe cognitive control has been hypothesized to cause age-related speech recognition problems. This study examined age-related changes in frontal lobe function for 15 clinically normal hearing adults (21–75 years) when they performed a word recognition task that was made challenging by decreasing word intelligibility. Although there were no age-related changes in word recognition, there were age-related changes in the degree of activity within left middle frontal gyrus (MFG) and anterior cingulate (ACC) regions during word recognition. Older adults engaged left MFG and ACC regions when words were most intelligible compared to younger adults who engaged these regions when words were least intelligible. Declining gray matter volume within temporal lobe regions responsive to word intelligibility significantly predicted left MFG activity, even after controlling for total gray matter volume, suggesting that declining structural integrity of brain regions responsive to speech leads to the recruitment of frontal regions when words are easily understood. Electronic supplementary material The online version of this article (doi:10.1007/s10162-008-0113-3) contains supplementary material, which is available to authorized users. PMID:18274825

  6. Female voice communications in high level aircraft cockpit noises--part II: vocoder and automatic speech recognition systems.

    PubMed

    Nixon, C; Anderson, T; Morris, L; McCavitt, A; McKinley, R; Yeager, D; McDaniel, M

    1998-11-01

    The intelligibility of female and male speech is equivalent under most ordinary living conditions. However, due to small differences between their acoustic speech signals, called speech spectra, one can be more or less intelligible than the other in certain situations such as high levels of noise. Anecdotal information, supported by some empirical observations, suggests that some of the high intensity noise spectra of military aircraft cockpits may degrade the intelligibility of female speech more than that of male speech. In an applied research study, the intelligibility of female and male speech was measured in several high level aircraft cockpit noise conditions experienced in military aviation. In Part I, (Nixon CW, et al. Aviat Space Environ Med 1998; 69:675-83) female speech intelligibility measured in the spectra and levels of aircraft cockpit noises and with noise-canceling microphones was lower than that of the male speech in all conditions. However, the differences were small and only those at some of the highest noise levels were significant. Although speech intelligibility of both genders was acceptable during normal cruise noises, improvements are required in most of the highest levels of noise created during maximum aircraft operating conditions. These results are discussed in a Part I technical report. This Part II report examines the intelligibility in the same aircraft cockpit noises of vocoded female and male speech and the accuracy with which female and male speech in some of the cockpit noises were understood by automatic speech recognition systems. The intelligibility of vocoded female speech was generally the same as that of vocoded male speech. No significant differences were measured between the recognition accuracy of male and female speech by the automatic speech recognition systems. The intelligibility of female and male speech was equivalent for these conditions.

  7. Two-Dimensional Grammars And Their Applications To Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Lee, Edward T.

    1987-05-01

    During the past several years, the concepts and techniques of two-dimensional grammars1,2 have attracted growing attention as promising avenues of approach to problems in picture generation as well as in picture description3 representation, recognition, transformation and manipulation. Two-dimensional grammar techniques serve the purpose of exploiting the structure or underlying relationships in a picture. This approach attempts to describe a complex picture in terms of their components and their relative positions. This resembles the way a sentence is described in terms of its words and phrases, and the terms structural picture recognition, linguistic picture recognition, or syntactic picture recognition are often used. By using this approach, the problem of picture recognition becomes similar to that of phrase recognition in a language. However, describing pictures using a string grammar (one-dimensional grammar), the only relation between sub-pictures and/or primitives is the concatenation; that is each picture or primitive can be connected only at the left or right. This one-dimensional relation has not been very effective in describing two-dimensional pictures. A natural generaliza-tion is to use two-dimensional grammars. In this paper, two-dimensional grammars and their applications to artificial intelligence are presented. Picture grammars and two-dimensional grammars are introduced and illustrated by examples. In particular, two-dimensional grammars for generating all possible squares and all possible rhombuses are presented. The applications of two-dimensional grammars to solving region filling problems are discussed. An algorithm for region filling using two-dimensional grammars is presented together with illustrative examples. The advantages of using this algorithm in terms of computation time are also stated. A high-level description of a two-level picture generation system is proposed. The first level is the picture primitive generation using two-dimensional grammars. The second level is picture generation using either string description or entity-relationship (ER) diagram description. Illustrative examples are also given. The advantages of ER diagram description together with its comparison to string description are also presented. The results obtained in this paper may have useful applications in artificial intelligence, robotics, expert systems, picture processing, pattern recognition, knowledge engineering and pictorial database design. Furthermore, examples related to satellite surveillance and identifications are also included.

  8. Research on autonomous identification of airport targets based on Gabor filtering and Radon transform

    NASA Astrophysics Data System (ADS)

    Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei

    2017-11-01

    Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.

  9. Motorcycle Start-stop System based on Intelligent Biometric Voice Recognition

    NASA Astrophysics Data System (ADS)

    Winda, A.; E Byan, W. R.; Sofyan; Armansyah; Zariantin, D. L.; Josep, B. G.

    2017-03-01

    Current mechanical key in the motorcycle is prone to bulgary, being stolen or misplaced. Intelligent biometric voice recognition as means to replace this mechanism is proposed as an alternative. The proposed system will decide whether the voice is belong to the user or not and the word utter by the user is ‘On’ or ‘Off’. The decision voice will be sent to Arduino in order to start or stop the engine. The recorded voice is processed in order to get some features which later be used as input to the proposed system. The Mel-Frequency Ceptral Coefficient (MFCC) is adopted as a feature extraction technique. The extracted feature is the used as input to the SVM-based identifier. Experimental results confirm the effectiveness of the proposed intelligent voice recognition and word recognition system. It show that the proposed method produces a good training and testing accuracy, 99.31% and 99.43%, respectively. Moreover, the proposed system shows the performance of false rejection rate (FRR) and false acceptance rate (FAR) accuracy of 0.18% and 17.58%, respectively. In the intelligent word recognition shows that the training and testing accuracy are 100% and 96.3%, respectively.

  10. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  11. The Role of Fixation and Visual Attention in Object Recognition.

    DTIC Science & Technology

    1995-01-01

    computers", Technical Report, Aritificial Intelligence Lab, M.I. T., AI-Memo-915, June 1986. [29] D.P. Huttenlocher and S.Ullman, "Object Recognition Using...attention", Technical Report, Aritificial Intelligence Lab, M.I. T., AI-memo-770, Jan 1984. [35] E.Krotkov, K. Henriksen and R. Kories, "Stereo...MIT Artificial Intelligence Laboratory [ PCTBTBimON STATEMENT X \\ Afipioved tor puciic reieo*«* \\ »?*•;.., jDi*tiibutK» U»lisut»d* 19951004

  12. Velocity and Structure Estimation of a Moving Object Using a Moving Monocular Camera

    DTIC Science & Technology

    2006-01-01

    map the Euclidean position of static landmarks or visual features in the environment . Recent applications of this technique include aerial...From Motion in a Piecewise Planar Environment ,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, No. 3, pp. 485-508...1988. [9] J. M. Ferryman, S. J. Maybank , and A. D. Worrall, “Visual Surveil- lance for Moving Vehicles,” Intl. Journal of Computer Vision, Vol. 37, No

  13. Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR

    PubMed Central

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894

  14. Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.

    PubMed

    Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng

    2010-01-01

    Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.

  15. Autocorrelation factors and intelligibility of Japanese monosyllables in individuals with sensorineural hearing loss.

    PubMed

    Shimokura, Ryota; Akasaka, Sakie; Nishimura, Tadashi; Hosoi, Hiroshi; Matsui, Toshie

    2017-02-01

    Some Japanese monosyllables contain consonants that are not easily discernible for individuals with sensorineural hearing loss. However, the acoustic features that make these monosyllables difficult to discern have not been clearly identified. Here, this study used the autocorrelation function (ACF), which can capture temporal features of signals, to clarify the factors influencing speech intelligibility. For each monosyllable, five factors extracted from the ACF [Φ(0): total energy; τ 1 and ϕ 1 : delay time and amplitude of the maximum peak; τ e : effective duration; W ϕ (0) : spectral centroid], voice onset time, speech intelligibility index, and loudness level were compared with the percentage of correctly perceived articulations (144 ears) obtained by 50 Japanese vowel and consonant-vowel monosyllables produced by one female speaker. Results showed that median effective duration [(τ e ) med ] was strongly correlated with the percentage of correctly perceived articulations of the consonants (r = 0.87, p < 0.01). (τ e ) med values were computed by running ACFs with the time lag at which the magnitude of the logarithmic-ACF envelope had decayed to -10 dB. Effective duration is a measure of temporal pattern persistence, i.e., the duration over which the waveform maintains a stable pattern. The authors postulate that low recognition ability is related to degraded perception of temporal fluctuation patterns.

  16. A design philosophy for multi-layer neural networks with applications to robot control

    NASA Technical Reports Server (NTRS)

    Vadiee, Nader; Jamshidi, MO

    1989-01-01

    A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.

  17. [Artificial intelligence in sleep analysis (ARTISANA)--modelling visual processes in sleep classification].

    PubMed

    Schwaibold, M; Schöller, B; Penzel, T; Bolz, A

    2001-05-01

    We describe a novel approach to the problem of automated sleep stage recognition. The ARTISANA algorithm mimics the behaviour of a human expert visually scoring sleep stages (Rechtschaffen and Kales classification). It comprises a number of interacting components that imitate the stepwise approach of the human expert, and artificial intelligence components. On the basis of parameters extracted at 1-s intervals from the signal curves, artificial neural networks recognize the incidence of typical patterns, e.g. delta activity or K complexes. This is followed by a rule interpretation stage that identifies the sleep stage with the aid of a neuro-fuzzy system while taking account of the context. Validation studies based on the records of 8 patients with obstructive sleep apnoea have confirmed the potential of this approach. Further features of the system include the transparency of the decision-taking process, and the flexibility of the option for expanding the system to cover new patterns and criteria.

  18. Pattern detection in forensic case data using graph theory: application to heroin cutting agents.

    PubMed

    Terrettaz-Zufferey, Anne-Laure; Ratle, Frédéric; Ribaux, Olivier; Esseiva, Pierre; Kanevski, Mikhail

    2007-04-11

    Pattern recognition techniques can be very useful in forensic sciences to point out to relevant sets of events and potentially encourage an intelligence-led style of policing. In this study, these techniques have been applied to categorical data corresponding to cutting agents found in heroin seizures. An application of graph theoretic methods has been performed, in order to highlight the possible relationships between the location of seizures and co-occurrences of particular heroin cutting agents. An analysis of the co-occurrences to establish several main combinations has been done. Results illustrate the practical potential of mathematical models in forensic data analysis.

  19. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule.

    PubMed

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-20

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  20. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule

    NASA Astrophysics Data System (ADS)

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-01

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  1. Page Oriented Holographic Memories And Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Caulfield, H. J.

    1987-08-01

    In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.

  2. Character Recognition Using Genetically Trained Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfidmore » recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of noise significantly degrades character recognition efficiency, some of which can be overcome by adding noise during training and optimizing the form of the network's activation fimction.« less

  3. Use of artificial intelligence in analytical systems for the clinical laboratory

    PubMed Central

    Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784

  4. Profiling nonhuman intelligence: An exercise in developing unbiased tools for describing other "types" of intelligence on earth

    NASA Astrophysics Data System (ADS)

    Herzing, Denise L.

    2014-02-01

    Intelligence has historically been studied by comparing nonhuman cognitive and language abilities with human abilities. Primate-like species, which show human-like anatomy and share evolutionary lineage, have been the most studied. However, when comparing animals of non-primate origins our abilities to profile the potential for intelligence remains inadequate. Historically our measures for nonhuman intelligence have included a variety of tools: (1) physical measurements - brain to body ratio, brain structure/convolution/neural density, presence of artifacts and physical tools, (2) observational and sensory measurements - sensory signals, complexity of signals, cross-modal abilities, social complexity, (3) data mining - information theory, signal/noise, pattern recognition, (4) experimentation - memory, cognition, language comprehension/use, theory of mind, (5) direct interfaces - one way and two way interfaces with primates, dolphins, birds and (6) accidental interactions - human/animal symbiosis, cross-species enculturation. Because humans tend to focus on "human-like" attributes and measures and scientists are often unwilling to consider other "types" of intelligence that may not be human equated, our abilities to profile "types" of intelligence that differ on a variety of scales is weak. Just as biologists stretch their definitions of life to look at extremophiles in unusual conditions, so must we stretch our descriptions of types of minds and begin profiling, rather than equating, other life forms we may encounter.

  5. Bring It On, Complexity! Present and Future of Self-Organising Middle-Out Abstraction

    NASA Astrophysics Data System (ADS)

    Mammen, Sebastian Von; Steghöfer, Jan-Philipp

    The following sections are included: * The Great Complexity Challenge * Self-Organising Middle-Out Abstraction * Optimising Graphics, Physics and Artificial Intelligence * Emergence and Hierarchies in a Natural System * The Technical Concept of SOMO * Observation of interactions * Interaction pattern recognition and behavioural abstraction * Creating and adjusting hierarchies * Confidence measures * Execution model * Learning SOMO: parameters, knowledge propagation, and procreation * Current Implementations * Awareness Beyond Virtuality * Integration and emergence * Model inference * SOMO net * SOMO after me * The Future of SOMO

  6. Object Recognition Using Range Images.

    DTIC Science & Technology

    1985-12-01

    and Reflectance Data to Find Planar Suface Regions," IEEE Transactions on Pattern Reco1iio n and Machine Intelligence , PAMI-l: 259-271 (July 1979...large number of data points. The dashed curve in the second through fourth qua- drants was drawn so as to parallel the curve in the first quadrant. One...find too much data . This lack of data has to do with the discri- mination ability of SDFs for objects of which the SDF’s are not composed. Thus for

  7. Do adults with mental retardation show pictorial superiority effects in recall and recognition?

    PubMed

    Cherry, Katie E; Applegate, Heather; Reese, Celinda M

    2002-01-01

    We examined memory for pictures and words in adults with mental retardation and a control group of adults of normal intelligence. During acquisition, sets of simple line drawings and matching words were presented for study using an intentional learning procedure. The principle dependent measures were free recall and recognition. Measures of working memory span were also administered. Pictorial superiority effects occurred in free recall and recognition for both intelligence-level groups. Correlational analyses indicated that working memory span was primarily related to recall performance, irrespective of stimulus format. These data strongly suggest that persons with mental retardation can utilize nonverbal memory codes to support long-term retention as effectively as do adults of normal intelligence.

  8. Synthesis of compact patterns for NMR relaxation decay in intelligent "electronic tongue" for analyzing heavy oil composition

    NASA Astrophysics Data System (ADS)

    Lapshenkov, E. M.; Volkov, V. Y.; Kulagin, V. P.

    2018-05-01

    The article is devoted to the problem of pattern creation of the NMR sensor signal for subsequent recognition by the artificial neural network in the intelligent device "the electronic tongue". The specific problem of removing redundant data from the spin-spin relaxation signal pattern that is used as a source of information in analyzing the composition of oil and petroleum products is considered. The method is proposed that makes it possible to remove redundant data of the relaxation decay pattern but without introducing additional distortion. This method is based on combining some relaxation decay curve intervals that increment below the noise level such that the increment of the combined intervals is above the noise level. In this case, the relaxation decay curve samples that are located inside the combined intervals are removed from the pattern. This method was tested on the heavy-oil NMR signal patterns that were created by using the Carr-Purcell-Meibum-Gill (CPMG) sequence for recording the relaxation process. Parameters of CPMG sequence are: 100 μs - time interval between 180° pulses, 0.4s - duration of measurement. As a result, it was revealed that the proposed method allowed one to reduce the number of samples 15 times (from 4000 to 270), and the maximum detected root mean square error (RMS error) equals 0.00239 (equivalent to signal-to-noise ratio 418).

  9. Intelligent indexing: a semi-automated, trainable system for field labeling

    NASA Astrophysics Data System (ADS)

    Clawson, Robert; Barrett, William

    2015-01-01

    We present Intelligent Indexing: a general, scalable, collaborative approach to indexing and transcription of non-machinereadable documents that exploits visual consensus and group labeling while harnessing human recognition and domain expertise. In our system, indexers work directly on the page, and with minimal context switching can navigate the page, enter labels, and interact with the recognition engine. Interaction with the recognition engine occurs through preview windows that allow the indexer to quickly verify and correct recommendations. This interaction is far superior to conventional, tedious, inefficient post-correction and editing. Intelligent Indexing is a trainable system that improves over time and can provide benefit even without prior knowledge. A user study was performed to compare Intelligent Indexing to a basic, manual indexing system. Volunteers report that using Intelligent Indexing is less mentally fatiguing and more enjoyable than the manual indexing system. Their results also show that it reduces significantly (30.2%) the time required to index census records, while maintaining comparable accuracy. (a video demonstration is available at http://youtube.com/gqdVzEPnBEw)

  10. Thunderstorm Hypothesis Reasoner

    NASA Technical Reports Server (NTRS)

    Mulvehill, Alice M.

    1994-01-01

    THOR is a knowledge-based system which incorporates techniques from signal processing, pattern recognition, and artificial intelligence (AI) in order to determine the boundary of small thunderstorms which develop and dissipate over the area encompassed by KSC and the Cape Canaveral Air Force Station. THOR interprets electric field mill data (derived from a network of electric field mills) by using heuristics and algorithms about thunderstorms that have been obtained from several domain specialists. THOR generates two forms of output: contour plots which visually describe the electric field activity over the network and a verbal interpretation of the activity. THOR uses signal processing and pattern recognition to detect signatures associated with noise or thunderstorm behavior in a near real time fashion from over 31 electrical field mills. THOR's AI component generates hypotheses identifying areas which are under a threat from storm activity, such as lightning. THOR runs on a VAX/VMS at the Kennedy Space Center. Its software is a coupling of C and FORTRAN programs, several signal processing packages, and an expert system development shell.

  11. Improving visual memory, attention, and school function with atomoxetine in boys with attention-deficit/hyperactivity disorder.

    PubMed

    Shang, Chi-Yung; Gau, Susan Shur-Fen

    2012-10-01

    Atomoxetine is efficacious in reducing symptoms of attention- deficit/hyperactivity disorder (ADHD), but its effect on visual memory and attention needs more investigation. This study aimed to assess the effect of atomoxetine on visual memory, attention, and school function in boys with ADHD in Taiwan. This was an open-label 12 week atomoxetine treatment trial among 30 drug-naíve boys with ADHD, aged 8-16 years. Before administration of atomoxetine, the participants were assessed using psychiatric interviews, the Wechsler Intelligence Scale for Children, 3rd edition (WISC-III), the school function of the Chinese version of the Social Adjustment Inventory for Children and Adolescents (SAICA), the Conners' Continuous Performance Test (CPT), and the tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB) involving visual memory and attention: Pattern Recognition Memory, Spatial Recognition Memory, and Reaction Time, which were reassessed at weeks 4 and 12. Our results showed there was significant improvement in pattern recognition memory and spatial recognition memory as measured by the CANTAB tasks, sustained attention and response inhibition as measured by the CPT, and reaction time as measured by the CANTAB after treatment with atomoxetine for 4 weeks or 12 weeks. In addition, atomoxetine significantly enhanced school functioning in children with ADHD. Our findings suggested that atomoxetine was associated with significant improvement in visual memory, attention, and school functioning in boys with ADHD.

  12. Building machines that learn and think like people.

    PubMed

    Lake, Brenden M; Ullman, Tomer D; Tenenbaum, Joshua B; Gershman, Samuel J

    2017-01-01

    Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.

  13. The effect of audiovisual and binaural listening on the acceptable noise level (ANL): establishing an ANL conceptual model.

    PubMed

    Wu, Yu-Hsiang; Stangl, Elizabeth; Pang, Carol; Zhang, Xuyang

    2014-02-01

    Little is known regarding the acoustic features of a stimulus used by listeners to determine the acceptable noise level (ANL). Features suggested by previous research include speech intelligibility (noise is unacceptable when it degrades speech intelligibility to a certain degree; the intelligibility hypothesis) and loudness (noise is unacceptable when the speech-to-noise loudness ratio is poorer than a certain level; the loudness hypothesis). The purpose of the study was to investigate if speech intelligibility or loudness is the criterion feature that determines ANL. To achieve this, test conditions were chosen so that the intelligibility and loudness hypotheses would predict different results. In Experiment 1, the effect of audiovisual (AV) and binaural listening on ANL was investigated; in Experiment 2, the effect of interaural correlation (ρ) on ANL was examined. A single-blinded, repeated-measures design was used. Thirty-two and twenty-five younger adults with normal hearing participated in Experiments 1 and 2, respectively. In Experiment 1, both ANL and speech recognition performance were measured using the AV version of the Connected Speech Test (CST) in three conditions: AV-binaural, auditory only (AO)-binaural, and AO-monaural. Lipreading skill was assessed using the Utley lipreading test. In Experiment 2, ANL and speech recognition performance were measured using the Hearing in Noise Test (HINT) in three binaural conditions, wherein the interaural correlation of noise was varied: ρ = 1 (N(o)S(o) [a listening condition wherein both speech and noise signals are identical across two ears]), -1 (NπS(o) [a listening condition wherein speech signals are identical across two ears whereas the noise signals of two ears are 180 degrees out of phase]), and 0 (N(u)S(o) [a listening condition wherein speech signals are identical across two ears whereas noise signals are uncorrelated across ears]). The results were compared to the predictions made based on the intelligibility and loudness hypotheses. The results of the AV and AO conditions appeared to support the intelligibility hypothesis due to the significant correlation between visual benefit in ANL (AV re: AO ANL) and (1) visual benefit in CST performance (AV re: AO CST) and (2) lipreading skill. The results of the N(o)S(o), NπS(o), and N(u)S(o) conditions negated the intelligibility hypothesis because binaural processing benefit (NπS(o) re: N(o)S(o), and N(u)S(o) re: N(o)S(o)) in ANL was not correlated to that in HINT performance. Instead, the results somewhat supported the loudness hypothesis because the pattern of ANL results across the three conditions (N(o)S(o) ≈ NπS(o) ≈ N(u)S(o) ANL) was more consistent with what was predicted by the loudness hypothesis (N(o)S(o) ≈ NπS(o) < N(u)S(o) ANL) than by the intelligibility hypothesis (NπS(o) < N(u)S(o) < N(o)S(o) ANL). The results of the binaural and monaural conditions supported neither hypothesis because (1) binaural benefit (binaural re: monaural) in ANL was not correlated to that in speech recognition performance, and (2) the pattern of ANL results across conditions (binaural < monaural ANL) was not consistent with the prediction made based on previous binaural loudness summation research (binaural ≥ monaural ANL). The study suggests that listeners may use multiple acoustic features to make ANL judgments. The binaural/monaural results showing that neither hypothesis was supported further indicate that factors other than speech intelligibility and loudness, such as psychological factors, may affect ANL. The weightings of different acoustic features in ANL judgments may vary widely across individuals and listening conditions. American Academy of Audiology.

  14. Report of Defense Science Board Task Force on Industry-to-Industry International Armaments Cooperation. Phase II. Japan

    DTIC Science & Technology

    1984-06-01

    TEMPERATURE MAT’LS IMAGE RECOGNITION ROCKET PROPULSION SPEECH RECOGNITION/TRANSLATION COMPUTER-AIDED DESIGN ARTIFICIAL INTELLIGENCE PRODUCTION TECHNOLOGY...planning, intelligence exchange, and logistics. While not called out in the Guidelines, any further standardization in equipments and interoperability...COST AND TIME THAN DEVELCPING THEM -ESTABLISHMENT OF PRODUCTIVE LONG-TERM BUSINESS RELATIONSH IPS WITH JAPANESE COMPAN IES * PROBLEM -POSSIBILITY OF

  15. Perceived Task-Difficulty Recognition from Log-File Information for the Use in Adaptive Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    Janning, Ruth; Schatten, Carlotta; Schmidt-Thieme, Lars

    2016-01-01

    Recognising students' emotion, affect or cognition is a relatively young field and still a challenging task in the area of intelligent tutoring systems. There are several ways to use the output of these recognition tasks within the system. The approach most often mentioned in the literature is using it for giving feedback to the students. The…

  16. Investigating the Improvement of Decoding Abilities and Working Memory in Children with Incremental or Entity Personal Conceptions of Intelligence: Two Case Reports

    PubMed Central

    Alesi, Marianna; Rappo, Gaetano; Pepi, Annamaria

    2016-01-01

    One of the most significant current discussions has led to the hypothesis that domain-specific training programs alone are not enough to improve reading achievement or working memory abilities. Incremental or Entity personal conceptions of intelligence may be assumed to be an important prognostic factor to overcome domain-specific deficits. Specifically, incremental students tend to be more oriented toward change and autonomy and are able to adopt more efficacious strategies. This study aims at examining the effect of personal conceptions of intelligence to strengthen the efficacy of a multidimensional intervention program in order to improve decoding abilities and working memory. Participants included two children (M age = 10 years) with developmental dyslexia and different conceptions of intelligence. The children were tested on a whole battery of reading and spelling tests commonly used in the assessment of reading disabilities in Italy. Afterwards, they were given a multimedia test to measure motivational factors such as conceptions of intelligence and achievement goals. The children took part in the T.I.R.D. Multimedia Training for the Rehabilitation of Dyslexia (Rappo and Pepi, 2010) reinforced by specific units to improve verbal working memory for 3 months. This training consisted of specific tasks to rehabilitate both visual and phonological strategies (sound blending, word segmentation, alliteration test and rhyme test, letter recognition, digraph recognition, trigraph recognition, and word recognition as samples of visual tasks) and verbal working memory (rapid words and non-words recognition). Posttest evaluations showed that the child holding the incremental theory of intelligence improved more than the child holding a static representation. On the whole this study highlights the importance of treatment programs in which both specificity of deficits and motivational factors are both taken into account. There is a need to plan multifaceted intervention programs based on a transverse approach, considering both cognitive and motivational factors. PMID:26779069

  17. Intelligibility and Individual Learner Differences in the EIL Context

    ERIC Educational Resources Information Center

    Matsuura, Hiroko

    2007-01-01

    According to Smith and Nelson [Smith, L.E., Nelson, C.E., 1985. "International intelligibility of English: directions and resources." "World Englishes" 3, 333-342.], "intelligibility" refers to word/utterance recognition, whereas "comprehensibility" is the understanding of word/utterance meaning. This study…

  18. A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting

    NASA Astrophysics Data System (ADS)

    Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle

    2017-10-01

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

  19. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  20. Learning a Taxonomy of Predefined and Discovered Activity Patterns

    PubMed Central

    Krishnan, Narayanan; Cook, Diane J.; Wemlinger, Zachary

    2013-01-01

    Many intelligent systems that focus on the needs of a human require information about the activities that are being performed by the human. At the core of this capability is activity recognition. Activity recognition techniques have become robust but rarely scale to handle more than a few activities. They also rarely learn from more than one smart home data set because of inherent differences between labeling techniques. In this paper we investigate a data-driven approach to creating an activity taxonomy from sensor data found in disparate smart home datasets. We investigate how the resulting taxonomy can help analyze the relationship between classes of activities. We also analyze how the taxonomy can be used to scale activity recognition to a large number of activity classes and training datasets. We describe our approach and evaluate it on 34 smart home datasets. The results of the evaluation indicate that the hierarchical modeling can reduce training time while maintaining accuracy of the learned model. PMID:25302084

  1. Development of coffee maker service robot using speech and face recognition systems using POMDP

    NASA Astrophysics Data System (ADS)

    Budiharto, Widodo; Meiliana; Santoso Gunawan, Alexander Agung

    2016-07-01

    There are many development of intelligent service robot in order to interact with user naturally. This purpose can be done by embedding speech and face recognition ability on specific tasks to the robot. In this research, we would like to propose Intelligent Coffee Maker Robot which the speech recognition is based on Indonesian language and powered by statistical dialogue systems. This kind of robot can be used in the office, supermarket or restaurant. In our scenario, robot will recognize user's face and then accept commands from the user to do an action, specifically in making a coffee. Based on our previous work, the accuracy for speech recognition is about 86% and face recognition is about 93% in laboratory experiments. The main problem in here is to know the intention of user about how sweetness of the coffee. The intelligent coffee maker robot should conclude the user intention through conversation under unreliable automatic speech in noisy environment. In this paper, this spoken dialog problem is treated as a partially observable Markov decision process (POMDP). We describe how this formulation establish a promising framework by empirical results. The dialog simulations are presented which demonstrate significant quantitative outcome.

  2. Cross-modal reorganization in cochlear implant users: Auditory cortex contributes to visual face processing.

    PubMed

    Stropahl, Maren; Plotz, Karsten; Schönfeld, Rüdiger; Lenarz, Thomas; Sandmann, Pascale; Yovel, Galit; De Vos, Maarten; Debener, Stefan

    2015-11-01

    There is converging evidence that the auditory cortex takes over visual functions during a period of auditory deprivation. A residual pattern of cross-modal take-over may prevent the auditory cortex to adapt to restored sensory input as delivered by a cochlear implant (CI) and limit speech intelligibility with a CI. The aim of the present study was to investigate whether visual face processing in CI users activates auditory cortex and whether this has adaptive or maladaptive consequences. High-density electroencephalogram data were recorded from CI users (n=21) and age-matched normal hearing controls (n=21) performing a face versus house discrimination task. Lip reading and face recognition abilities were measured as well as speech intelligibility. Evaluation of event-related potential (ERP) topographies revealed significant group differences over occipito-temporal scalp regions. Distributed source analysis identified significantly higher activation in the right auditory cortex for CI users compared to NH controls, confirming visual take-over. Lip reading skills were significantly enhanced in the CI group and appeared to be particularly better after a longer duration of deafness, while face recognition was not significantly different between groups. However, auditory cortex activation in CI users was positively related to face recognition abilities. Our results confirm a cross-modal reorganization for ecologically valid visual stimuli in CI users. Furthermore, they suggest that residual takeover, which can persist even after adaptation to a CI is not necessarily maladaptive. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Next generation emotional intelligence (Abstract)

    Treesearch

    Jim Saveland

    2012-01-01

    Emotional intelligence has been a hot topic in leadership training since Dan Goleman published his book on the subject in 1995. Emotional intelligence competencies are typically focused on recognition and regulation of emotions in one's self and social situations, yielding four categories: self-awareness, self-management, social awareness and relationship...

  4. Next generation Emotional Intelligence

    Treesearch

    J. Saveland

    2012-01-01

    Emotional Intelligence has been a hot topic in leadership training since Dan Goleman published his book on the subject in 1995. Emotional intelligence competencies are typically focused on recognition and regulation of emotions in one's self and social situations, yielding four categories: self-awareness, self-management, social awareness and relationship...

  5. Towards Seamless Validation of Land Cover Data

    NASA Astrophysics Data System (ADS)

    Chuprikova, Ekaterina; Liebel, Lukas; Meng, Liqiu

    2018-05-01

    This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.

  6. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    NASA Astrophysics Data System (ADS)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  7. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    PubMed Central

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Mª; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle. PMID:22163639

  8. Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.

    PubMed

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  9. Observational program options and system requirements for the search for extraterrestrial intelligence /SETI/

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Wolfe, J. H.; Edelson, R. E.; Gulkis, S.; Sadin, S. R.

    1978-01-01

    The possibility that intelligent life may be widespread in the universe is now being investigated. A formula for estimating the number of coexisting communicative civilizations has been developed by Drake. A good way of conducting a search for extraterrestrial intelligence (SETI) is to examine the microwave window of the electromagnetic spectrum for narrow-band signals which such civilizations may be transmitting. Two specific search strategies are described. Both employ existing antennas equipped with sophisticated multichannel spectrum analyzers and pattern recognition devices. The Ames Research Center proposal is a high sensitivity, high-resolution search of nearby promising stars and selected sky areas in the 'water hole' (1400-1727 MHz). The Jet Propulsion Laboratory proposal is for a survey of most of the sky over a significant portion of the free-space microwave window at lower sensitivities and resolutions. The approaches are complementary and both are being pursued. The consummation of these programs could achieve one of the most profound discoveries in the history of human civilization, or at least will show the way to future efforts.

  10. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    NASA Technical Reports Server (NTRS)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  11. Behavioral biometrics for verification and recognition of malicious software agents

    NASA Astrophysics Data System (ADS)

    Yampolskiy, Roman V.; Govindaraju, Venu

    2008-04-01

    Homeland security requires technologies capable of positive and reliable identification of humans for law enforcement, government, and commercial applications. As artificially intelligent agents improve in their abilities and become a part of our everyday life, the possibility of using such programs for undermining homeland security increases. Virtual assistants, shopping bots, and game playing programs are used daily by millions of people. We propose applying statistical behavior modeling techniques developed by us for recognition of humans to the identification and verification of intelligent and potentially malicious software agents. Our experimental results demonstrate feasibility of such methods for both artificial agent verification and even for recognition purposes.

  12. Artificial intelligence in radiology.

    PubMed

    Hosny, Ahmed; Parmar, Chintan; Quackenbush, John; Schwartz, Lawrence H; Aerts, Hugo J W L

    2018-05-17

    Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.

  13. The Impact of Critical Thinking Strategies on Curriculum and Instruction for USAF Operations Intelligence

    ERIC Educational Resources Information Center

    Baker, Jason R.

    2017-01-01

    The goals of the present action research study were to understand intelligence analysts' perceptions of weapon systems visual recognition ("vis-recce") training and to determine the impact of a Critical Thinking Training (CTT) Seminar and Formative Assessments on unit-level intelligence analysts' "vis-recce" performance at a…

  14. FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.

    PubMed

    Abbasi, Elham; Ghatee, Mehdi; Shiri, M E

    2013-09-01

    In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2012-10-01

    Recognition), ICR (Intelligent Character Recognition) and HWR ( Handwriting Recognition). A number of various software packages were evaluated and we have...the third-party software is able to recognize check-boxes and columns and do a reasonable job with handwriting – which is does. This workflow will

  16. CHAMPION: Intelligent Hierarchical Reasoning Agents for Enhanced Decision Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohimer, Ryan E.; Greitzer, Frank L.; Noonan, Christine F.

    2011-11-15

    We describe the design and development of an advanced reasoning framework employing semantic technologies, organized within a hierarchy of computational reasoning agents that interpret domain specific information. Designed based on an inspirational metaphor of the pattern recognition functions performed by the human neocortex, the CHAMPION reasoning framework represents a new computational modeling approach that derives invariant knowledge representations through memory-prediction belief propagation processes that are driven by formal ontological language specification and semantic technologies. The CHAMPION framework shows promise for enhancing complex decision making in diverse problem domains including cyber security, nonproliferation and energy consumption analysis.

  17. Are we there yet?

    PubMed

    Cristianini, Nello

    2010-05-01

    Statistical approaches to Artificial Intelligence are behind most success stories of the field in the past decade. The idea of generating non-trivial behaviour by analysing vast amounts of data has enabled recommendation systems, search engines, spam filters, optical character recognition, machine translation and speech recognition, among other things. As we celebrate the spectacular achievements of this line of research, we need to assess its full potential and its limitations. What are the next steps to take towards machine intelligence? 2010 Elsevier Ltd. All rights reserved.

  18. Design of embedded intelligent monitoring system based on face recognition

    NASA Astrophysics Data System (ADS)

    Liang, Weidong; Ding, Yan; Zhao, Liangjin; Li, Jia; Hu, Xuemei

    2017-01-01

    In this paper, a new embedded intelligent monitoring system based on face recognition is proposed. The system uses Pi Raspberry as the central processor. A sensors group has been designed with Zigbee module in order to assist the system to work better and the two alarm modes have been proposed using the Internet and 3G modem. The experimental results show that the system can work under various light intensities to recognize human face and send alarm information in real time.

  19. Present situation and trend of precision guidance technology and its intelligence

    NASA Astrophysics Data System (ADS)

    Shang, Zhengguo; Liu, Tiandong

    2017-11-01

    This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.

  20. Classification of Partial Discharge Measured under Different Levels of Noise Contamination.

    PubMed

    Jee Keen Raymond, Wong; Illias, Hazlee Azil; Abu Bakar, Ab Halim

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.

  1. An intelligent knowledge mining model for kidney cancer using rough set theory.

    PubMed

    Durai, M A Saleem; Acharjya, D P; Kannan, A; Iyengar, N Ch Sriman Narayana

    2012-01-01

    Medical diagnosis processes vary in the degree to which they attempt to deal with different complicating aspects of diagnosis such as relative importance of symptoms, varied symptom pattern and the relation between diseases themselves. Rough set approach has two major advantages over the other methods. First, it can handle different types of data such as categorical, numerical etc. Secondly, it does not make any assumption like probability distribution function in stochastic modeling or membership grade function in fuzzy set theory. It involves pattern recognition through logical computational rules rather than approximating them through smooth mathematical functional forms. In this paper we use rough set theory as a data mining tool to derive useful patterns and rules for kidney cancer faulty diagnosis. In particular, the historical data of twenty five research hospitals and medical college is used for validation and the results show the practical viability of the proposed approach.

  2. Empirical modeling for intelligent, real-time manufacture control

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoshu

    1994-01-01

    Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with a specific input pattern, can associate specific output patterns. It is essentially a highly complex, nonlinear, mathematical relationship or transform. These constructs have two significant properties that have proven useful to the authors in signal processing and process modeling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning algorithm that has resulted in the successful application of ANS's to high speed signal processing and to developing models of highly complex processes. Two of the applications, the Weld Bead Geometry Control System and the Welding Penetration Monitoring System, are discussed in the body of this paper.

  3. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.

    PubMed

    Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-07-15

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.

  4. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology

    PubMed Central

    Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-01-01

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884

  5. Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals.

    PubMed

    Connor, Richard C

    2007-04-29

    Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.

  6. Robust Behavior Recognition in Intelligent Surveillance Environments.

    PubMed

    Batchuluun, Ganbayar; Kim, Yeong Gon; Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2016-06-30

    Intelligent surveillance systems have been studied by many researchers. These systems should be operated in both daytime and nighttime, but objects are invisible in images captured by visible light camera during the night. Therefore, near infrared (NIR) cameras, thermal cameras (based on medium-wavelength infrared (MWIR), and long-wavelength infrared (LWIR) light) have been considered for usage during the nighttime as an alternative. Due to the usage during both daytime and nighttime, and the limitation of requiring an additional NIR illuminator (which should illuminate a wide area over a great distance) for NIR cameras during the nighttime, a dual system of visible light and thermal cameras is used in our research, and we propose a new behavior recognition in intelligent surveillance environments. Twelve datasets were compiled by collecting data in various environments, and they were used to obtain experimental results. The recognition accuracy of our method was found to be 97.6%, thereby confirming the ability of our method to outperform previous methods.

  7. Formant-Frequency Variation and Informational Masking of Speech by Extraneous Formants: Evidence Against Dynamic and Speech-Specific Acoustical Constraints

    PubMed Central

    2014-01-01

    How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 − F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints. PMID:24842068

  8. Individual differences in false memory from misinformation: cognitive factors.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; Lin, Chongde; He, Qinghua; Chen, Chunhui; Li, He; Xue, Gui; Lu, Zhonglin; Dong, Qi

    2010-07-01

    This research investigated the cognitive correlates of false memories that are induced by the misinformation paradigm. A large sample of Chinese college students (N=436) participated in a misinformation procedure and also took a battery of cognitive tests. Results revealed sizable and systematic individual differences in false memory arising from exposure to misinformation. False memories were significantly and negatively correlated with measures of intelligence (measured with Raven's Advanced Progressive Matrices and Wechsler Adult Intelligence Scale), perception (Motor-Free Visual Perception Test, Change Blindness, and Tone Discrimination), memory (Wechsler Memory Scales and 2-back Working Memory tasks), and face judgement (Face Recognition and Facial Expression Recognition). These findings suggest that people with relatively low intelligence and poor perceptual abilities might be more susceptible to the misinformation effect.

  9. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  10. Adjustment of gripping force by optical systems

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Barz, C.

    2018-01-01

    With increasing automation, robotics also requires ever more intelligent solutions in the handling of various tasks. In this context, many grippers must also be re-designed. For this, they must always be adapted for different requirements. The equipment of the gripper systems with sensors should help to make the gripping process more intelligent. In order to achieve such objectives, optical systems can also be used. This work analyzes how the gripping force can be adjusted by means of an optical recognition. The result of this work is the creation of a connection between optical recognition, tolerances, gripping force and real-time control. In this way, algorithms can be created, with the aid of which robot grippers as well as other gripping systems become more intelligent.

  11. A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction.

    PubMed

    Cannesson, Maxime; Tanabe, Masaki; Suffoletto, Matthew S; McNamara, Dennis M; Madan, Shobhit; Lacomis, Joan M; Gorcsan, John

    2007-01-16

    We sought to test the hypothesis that a novel 2-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition can rapidly and reproducibly calculate ejection fraction (EF). Echocardiographic EF by manual tracing is time consuming, and visual assessment is inherently subjective. We studied 218 patients (72 female), including 165 with abnormal left ventricular (LV) function. Auto EF incorporated a database trained on >10,000 human EF tracings to automatically locate and track the LV endocardium from routine grayscale digital cineloops and calculate EF in 15 s. Auto EF results were independently compared with manually traced biplane Simpson's rule, visual EF, and magnetic resonance imaging (MRI) in a subset. Auto EF was possible in 200 (92%) of consecutive patients, of which 77% were completely automated and 23% required manual editing. Auto EF correlated well with manual EF (r = 0.98; 6% limits of agreement) and required less time per patient (48 +/- 26 s vs. 102 +/- 21 s; p < 0.01). Auto EF correlated well with visual EF by expert readers (r = 0.96; p < 0.001), but interobserver variability was greater (3.4 +/- 2.9% vs. 9.8 +/- 5.7%, respectively; p < 0.001). Visual EF was less accurate by novice readers (r = 0.82; 19% limits of agreement) and improved with trainee-operated Auto EF (r = 0.96; 7% limits of agreement). Auto EF also correlated with MRI EF (n = 21) (r = 0.95; 12% limits of agreement), but underestimated absolute volumes (r = 0.95; bias of -36 +/- 27 ml overall). Auto EF can automatically calculate EF similarly to results by manual biplane Simpson's rule and MRI, with less variability than visual EF, and has clinical potential.

  12. Concurrent Correlates of Chinese Word Recognition in Deaf and Hard-of-Hearing Children

    ERIC Educational Resources Information Center

    Ching, Boby Ho-Hong; Nunes, Terezinha

    2015-01-01

    The aim of this study was to explore the relative contributions of phonological, semantic radical, and morphological awareness to Chinese word recognition in deaf and hard-of-hearing (DHH) children. Measures of word recognition, general intelligence, phonological, semantic radical, and morphological awareness were administered to 32 DHH and 35…

  13. Perceptual learning for speech in noise after application of binary time-frequency masks

    PubMed Central

    Ahmadi, Mahnaz; Gross, Vauna L.; Sinex, Donal G.

    2013-01-01

    Ideal time-frequency (TF) masks can reject noise and improve the recognition of speech-noise mixtures. An ideal TF mask is constructed with prior knowledge of the target speech signal. The intelligibility of a processed speech-noise mixture depends upon the threshold criterion used to define the TF mask. The study reported here assessed the effect of training on the recognition of speech in noise after processing by ideal TF masks that did not restore perfect speech intelligibility. Two groups of listeners with normal hearing listened to speech-noise mixtures processed by TF masks calculated with different threshold criteria. For each group, a threshold criterion that initially produced word recognition scores between 0.56–0.69 was chosen for training. Listeners practiced with one set of TF-masked sentences until their word recognition performance approached asymptote. Perceptual learning was quantified by comparing word-recognition scores in the first and last training sessions. Word recognition scores improved with practice for all listeners with the greatest improvement observed for the same materials used in training. PMID:23464038

  14. Using a computer-based simulation with an artificial intelligence component and discovery learning to formulate training needs for a new technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillis, D.R.

    A computer-based simulation with an artificial intelligence component and discovery learning was investigated as a method to formulate training needs for new or unfamiliar technologies. Specifically, the study examined if this simulation method would provide for the recognition of applications and knowledge/skills which would be the basis for establishing training needs. The study also examined the effect of field-dependence/independence on recognition of applications and knowledge/skills. A pretest-posttest control group experimental design involving fifty-eight college students from an industrial technology program was used. The study concluded that the simulation was effective in developing recognition of applications and the knowledge/skills for amore » new or unfamiliar technology. And, the simulation's effectiveness for providing this recognition was not limited by an individual's field-dependence/independence.« less

  15. Automated information-analytical system for thunderstorm monitoring and early warning alarms using modern physical sensors and information technologies with elements of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.

    2017-05-01

    Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.

  16. Development of an Intelligent Videogrammetric Wind Tunnel Measurement System

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.

    2004-01-01

    A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models. These include high-speed research and transport models tested over a wide range of aerodynamic conditions including subsonic, transonic, and supersonic regimes. The technique, based on digital photogrammetry, has been used to measure model attitude, deformation, and sting bending. In addition, the technique has been used to study model injection rate effects and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models. An effort is currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in large production wind tunnels while providing accurate data in a robust and timely manner. Designed to encode a higher degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that was used in a recent test at a large transonic wind tunnel.

  17. Plant Pest Detection Using an Artificial Nose System: A Review.

    PubMed

    Cui, Shaoqing; Ling, Peter; Zhu, Heping; Keener, Harold M

    2018-01-28

    This paper reviews artificial intelligent noses (or electronic noses) as a fast and noninvasive approach for the diagnosis of insects and diseases that attack vegetables and fruit trees. The particular focus is on bacterial, fungal, and viral infections, and insect damage. Volatile organic compounds (VOCs) emitted from plants, which provide functional information about the plant's growth, defense, and health status, allow for the possibility of using noninvasive detection to monitor plants status. Electronic noses are comprised of a sensor array, signal conditioning circuit, and pattern recognition algorithms. Compared with traditional gas chromatography-mass spectrometry (GC-MS) techniques, electronic noses are noninvasive and can be a rapid, cost-effective option for several applications. However, using electronic noses for plant pest diagnosis is still in its early stages, and there are challenges regarding sensor performance, sampling and detection in open areas, and scaling up measurements. This review paper introduces each element of electronic nose systems, especially commonly used sensors and pattern recognition methods, along with their advantages and limitations. It includes a comprehensive comparison and summary of applications, possible challenges, and potential improvements of electronic nose systems for different plant pest diagnoses.

  18. Artificial Intelligence in planetary spectroscopy

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  19. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  20. Effect of filtration of signals of brain activity on quality of recognition of brain activity patterns using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Musatov, Vyachaslav Yu.

    2018-02-01

    In present work we studied features of the human brain states classification, corresponding to the real movements of hands and legs. For this purpose we used supervised learning algorithm based on feed-forward artificial neural networks (ANNs) with error back-propagation along with the support vector machine (SVM) method. We compared the quality of operator movements classification by means of EEG signals obtained experimentally in the absence of preliminary processing and after filtration in different ranges up to 25 Hz. It was shown that low-frequency filtering of multichannel EEG data significantly improved accuracy of operator movements classification.

  1. Eyes and ears: Using eye tracking and pupillometry to understand challenges to speech recognition.

    PubMed

    Van Engen, Kristin J; McLaughlin, Drew J

    2018-05-04

    Although human speech recognition is often experienced as relatively effortless, a number of common challenges can render the task more difficult. Such challenges may originate in talkers (e.g., unfamiliar accents, varying speech styles), the environment (e.g. noise), or in listeners themselves (e.g., hearing loss, aging, different native language backgrounds). Each of these challenges can reduce the intelligibility of spoken language, but even when intelligibility remains high, they can place greater processing demands on listeners. Noisy conditions, for example, can lead to poorer recall for speech, even when it has been correctly understood. Speech intelligibility measures, memory tasks, and subjective reports of listener difficulty all provide critical information about the effects of such challenges on speech recognition. Eye tracking and pupillometry complement these methods by providing objective physiological measures of online cognitive processing during listening. Eye tracking records the moment-to-moment direction of listeners' visual attention, which is closely time-locked to unfolding speech signals, and pupillometry measures the moment-to-moment size of listeners' pupils, which dilate in response to increased cognitive load. In this paper, we review the uses of these two methods for studying challenges to speech recognition. Copyright © 2018. Published by Elsevier B.V.

  2. Williams syndrome starts making sense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashkenas, J.

    1996-10-01

    1996 may be marked as a transitional year in the study of Williams syndrome (WS), when the causes of this complex condition and a practical way to investigate began to come into focus. WS presents a remarkable collection of symptoms that affect blood vessels, growth, intelligence, and behavior. WS commonly leads to infantile hypercalcemia, retardation of growth, prematurely wrinkled skin, supraventricular aortic stenosis (SVAS), and sensitivity to loud noise. Children with this condition are often mentally retarded, with distinctive {open_quotes}elfin{close_quotes} facial features, a hoarse voice, and an {open_quotes}engaging{close_quotes} personality. Their cognitive deficits may be minimal or profound but typically involvemore » a specific pattern of strengths and weaknesses, with better-than-average face recognition but little ability to recognize how parts of patterns that they see fit into a whole. 36 refs.« less

  3. Application of Dynamic Logic Algorithm to Inverse Scattering Problems Related to Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Perlovsky, L.; Deming, R. W.; Sotnikov, V.

    2010-11-01

    In plasma diagnostics scattering of electromagnetic waves is widely used for identification of density and wave field perturbations. In the present work we use a powerful mathematical approach, dynamic logic (DL), to identify the spectra of scattered electromagnetic (EM) waves produced by the interaction of the incident EM wave with a Langmuir soliton in the presence of noise. The problem is especially difficult since the spectral amplitudes of the noise pattern are comparable with the amplitudes of the scattered waves. In the past DL has been applied to a number of complex problems in artificial intelligence, pattern recognition, and signal processing, resulting in revolutionary improvements. Here we demonstrate its application to plasma diagnostic problems. [4pt] Perlovsky, L.I., 2001. Neural Networks and Intellect: using model-based concepts. Oxford University Press, New York, NY.

  4. A novel fiber-optical vibration defending system with on-line intelligent identification function

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Xie, Xin; Li, Hanyu; Li, Xiaoyu; Wu, Yu; Gong, Yuan; Rao, Yunjiang

    2013-09-01

    Capacity of the sensor network is always a bottleneck problem for the novel FBG-based quasi-distributed fiberoptical defending system. In this paper, a highly sensitive sensing network with FBG vibration sensors is presented to relieve stress of the capacity and the system cost. However, higher sensitivity may cause higher Nuisance Alarm Rates (NARs) in practical uses. It is necessary to further classify the intrusion pattern or threat level and determine the validity of an unexpected event. Then an intelligent identification method is proposed by extracting the statistical features of the vibration signals in the time domain, and inputting them into a 3-layer Back-Propagation(BP) Artificial Neural Network to classify the events of interest. Experiments of both simulation and field tests are carried out to validate its effectiveness. The results show the recognition rate can be achieved up to 100% for the simulation signals and as high as 96.03% in the real tests.

  5. Teachers' Emotional Intelligence: The Impact of Training

    ERIC Educational Resources Information Center

    Dolev, Nina; Leshem, Shosh

    2016-01-01

    A growing number of studies have suggested that teachers' personal competencies, and more specifically Emotional Intelligence (EI), are particularly important for teacher effectiveness. Recently, there has also been a growing recognition of the importance of social-emotional competencies to students' learning and academic achievement. However,…

  6. Imaging Systems: What, When, How.

    ERIC Educational Resources Information Center

    Lunin, Lois F.; And Others

    1992-01-01

    The three articles in this special section on document image files discuss intelligent character recognition, including comparison with optical character recognition; selection of displays for document image processing, focusing on paperlike displays; and imaging hardware, software, and vendors, including guidelines for system selection. (MES)

  7. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Intelligent form removal with character stroke preservation

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.

    1996-03-01

    A new technique for intelligent form removal has been developed along with a new method for evaluating its impact on optical character recognition (OCR). All the dominant lines in the image are automatically detected using the Hough line transform and intelligently erased while simultaneously preserving overlapping character strokes by computing line width statistics and keying off of certain visual cues. This new method of form removal operates on loosely defined zones with no image deskewing. Any field in which the writer is provided a horizontal line to enter a response can be processed by this method. Several examples of processed fields are provided, including a comparison of results between the new method and a commercially available forms removal package. Even if this new form removal method did not improve character recognition accuracy, it is still a significant improvement to the technology because the requirement of a priori knowledge of the form's geometric details has been greatly reduced. This relaxes the recognition system's dependence on rigid form design, printing, and reproduction by automatically detecting and removing some of the physical structures (lines) on the form. Using the National Institute of Standards and Technology (NIST) public domain form-based handprint recognition system, the technique was tested on a large number of fields containing randomly ordered handprinted lowercase alphabets, as these letters (especially those with descenders) frequently touch and extend through the line along which they are written. Preserving character strokes improves overall lowercase recognition performance by 3%, which is a net improvement, but a single performance number like this doesn't communicate how the recognition process was really influenced. There is expected to be trade- offs with the introduction of any new technique into a complex recognition system. To understand both the improvements and the trade-offs, a new analysis was designed to compare the statistical distributions of individual confusion pairs between two systems. As OCR technology continues to improve, sophisticated analyses like this are necessary to reduce the errors remaining in complex recognition problems.

  9. A Potential Spatial Working Memory Training Task to Improve Both Episodic Memory and Fluid Intelligence

    PubMed Central

    Rudebeck, Sarah R.; Bor, Daniel; Ormond, Angharad; O’Reilly, Jill X.; Lee, Andy C. H.

    2012-01-01

    One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary. PMID:23209740

  10. A potential spatial working memory training task to improve both episodic memory and fluid intelligence.

    PubMed

    Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H

    2012-01-01

    One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.

  11. Classification of Partial Discharge Measured under Different Levels of Noise Contamination

    PubMed Central

    2017-01-01

    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination. PMID:28085953

  12. Detection of Anomalies in Hydrometric Data Using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Lauzon, N.; Lence, B. J.

    2002-12-01

    This work focuses on the detection of anomalies in hydrometric data sequences, such as 1) outliers, which are individual data having statistical properties that differ from those of the overall population; 2) shifts, which are sudden changes over time in the statistical properties of the historical records of data; and 3) trends, which are systematic changes over time in the statistical properties. For the purpose of the design and management of water resources systems, it is important to be aware of these anomalies in hydrometric data, for they can induce a bias in the estimation of water quantity and quality parameters. These anomalies may be viewed as specific patterns affecting the data, and therefore pattern recognition techniques can be used for identifying them. However, the number of possible patterns is very large for each type of anomaly and consequently large computing capacities are required to account for all possibilities using the standard statistical techniques, such as cluster analysis. Artificial intelligence techniques, such as the Kohonen neural network and fuzzy c-means, are clustering techniques commonly used for pattern recognition in several areas of engineering and have recently begun to be used for the analysis of natural systems. They require much less computing capacity than the standard statistical techniques, and therefore are well suited for the identification of outliers, shifts and trends in hydrometric data. This work constitutes a preliminary study, using synthetic data representing hydrometric data that can be found in Canada. The analysis of the results obtained shows that the Kohonen neural network and fuzzy c-means are reasonably successful in identifying anomalies. This work also addresses the problem of uncertainties inherent to the calibration procedures that fit the clusters to the possible patterns for both the Kohonen neural network and fuzzy c-means. Indeed, for the same database, different sets of clusters can be established with these calibration procedures. A simple method for analyzing uncertainties associated with the Kohonen neural network and fuzzy c-means is developed here. The method combines the results from several sets of clusters, either from the Kohonen neural network or fuzzy c-means, so as to provide an overall diagnosis as to the identification of outliers, shifts and trends. The results indicate an improvement in the performance for identifying anomalies when the method of combining cluster sets is used, compared with when only one cluster set is used.

  13. [Intelligent systems tools in the diagnosis of acute coronary syndromes: A systemic review].

    PubMed

    Sprockel, John; Tejeda, Miguel; Yate, José; Diaztagle, Juan; González, Enrique

    2017-03-27

    Acute myocardial infarction is the leading cause of non-communicable deaths worldwide. Its diagnosis is a highly complex task, for which modelling through automated methods has been attempted. A systematic review of the literature was performed on diagnostic tests that applied intelligent systems tools in the diagnosis of acute coronary syndromes. A systematic review of the literature is presented using Medline, Embase, Scopus, IEEE/IET Electronic Library, ISI Web of Science, Latindex and LILACS databases for articles that include the diagnostic evaluation of acute coronary syndromes using intelligent systems. The review process was conducted independently by 2 reviewers, and discrepancies were resolved through the participation of a third person. The operational characteristics of the studied tools were extracted. A total of 35 references met the inclusion criteria. In 22 (62.8%) cases, neural networks were used. In five studies, the performances of several intelligent systems tools were compared. Thirteen studies sought to perform diagnoses of all acute coronary syndromes, and in 22, only infarctions were studied. In 21 cases, clinical and electrocardiographic aspects were used as input data, and in 10, only electrocardiographic data were used. Most intelligent systems use the clinical context as a reference standard. High rates of diagnostic accuracy were found with better performance using neural networks and support vector machines, compared with statistical tools of pattern recognition and decision trees. Extensive evidence was found that shows that using intelligent systems tools achieves a greater degree of accuracy than some clinical algorithms or scales and, thus, should be considered appropriate tools for supporting diagnostic decisions of acute coronary syndromes. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  14. A Spoken English Recognition Expert System.

    DTIC Science & Technology

    1983-09-01

    Davidson. "Representation of Knowledge," Handbook of Artificial Intelligence, edited by Avron Barr and Edward A. Felgenbaum. DTIC document number AD...Regents of the University of CalTorni, 1981. 9. Gardner, Anne. "Search," Handbook of Artificial Intelligence, edited by Avron Barr and Edward A...Felgenbaum, DTIC document number AD A074078, 1979. 10. Gardner, Anne,et al. "Natural Language Understanding," Handbook of Artificial Intelligence, edited

  15. Strategic Computing. New-Generation Computing Technology: A Strategic Plan for Its Development and Application to Critical Problems in Defense

    DTIC Science & Technology

    1983-10-28

    Computing. By seizing an opportunity to leverage recent advances in artificial intelligence, computer science, and microelectronics, the Agency plans...occurred in many separated areas of artificial intelligence, computer science, and microelectronics. Advances in "expert system" technology now...and expert knowledge o Advances in Artificial Intelligence: Mechanization of speech recognition, vision, and natural language understanding. o

  16. Plan Recognition and Discourse Analysis: An Integrated Approach for Understanding Dialogues.

    DTIC Science & Technology

    1985-01-01

    S~ 11 The data analysis also indicates what kinds of knowledge an intelligent computer system will need to understand such dialogues. As Grosz [371...Abbreviations: AAAI: Proceedings of the National Conference on Artifcial Intelligence ACL: Proceedings of the Annual Meeting of the Association for Computational...for Default Reasoning, Artifcial Intelligence 13. (1980). 81-132. 79. E. D, Sacerdod. Planning in a Hierarchy of Abstraction Spaces. Artificial

  17. Intelligent Classification in Huge Heterogeneous Data Sets

    DTIC Science & Technology

    2015-06-01

    Competencies DoD Department of Defense GMTI Ground Moving Target Indicator ISR Intelligence, Surveillance and Reconnaissance NCD Noncoherent Change...Detection OCR Optical Character Recognition PCA Principal Component Analysis SAR Synthetic Aperture Radar SVD Singular Value Decomponsition USPS United States Postal Service 8 Approved for Public Release; Distribution Unlimited.

  18. MassImager: A software for interactive and in-depth analysis of mass spectrometry imaging data.

    PubMed

    He, Jiuming; Huang, Luojiao; Tian, Runtao; Li, Tiegang; Sun, Chenglong; Song, Xiaowei; Lv, Yiwei; Luo, Zhigang; Li, Xin; Abliz, Zeper

    2018-07-26

    Mass spectrometry imaging (MSI) has become a powerful tool to probe molecule events in biological tissue. However, it is a widely held viewpoint that one of the biggest challenges is an easy-to-use data processing software for discovering the underlying biological information from complicated and huge MSI dataset. Here, a user-friendly and full-featured MSI software including three subsystems, Solution, Visualization and Intelligence, named MassImager, is developed focusing on interactive visualization, in-situ biomarker discovery and artificial intelligent pathological diagnosis. Simplified data preprocessing and high-throughput MSI data exchange, serialization jointly guarantee the quick reconstruction of ion image and rapid analysis of dozens of gigabytes datasets. It also offers diverse self-defined operations for visual processing, including multiple ion visualization, multiple channel superposition, image normalization, visual resolution enhancement and image filter. Regions-of-interest analysis can be performed precisely through the interactive visualization between the ion images and mass spectra, also the overlaid optical image guide, to directly find out the region-specific biomarkers. Moreover, automatic pattern recognition can be achieved immediately upon the supervised or unsupervised multivariate statistical modeling. Clear discrimination between cancer tissue and adjacent tissue within a MSI dataset can be seen in the generated pattern image, which shows great potential in visually in-situ biomarker discovery and artificial intelligent pathological diagnosis of cancer. All the features are integrated together in MassImager to provide a deep MSI processing solution at the in-situ metabolomics level for biomarker discovery and future clinical pathological diagnosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  20. Auditory-Phonetic Projection and Lexical Structure in the Recognition of Sine-Wave Words

    ERIC Educational Resources Information Center

    Remez, Robert E.; Dubowski, Kathryn R.; Broder, Robin S.; Davids, Morgana L.; Grossman, Yael S.; Moskalenko, Marina; Pardo, Jennifer S.; Hasbun, Sara Maria

    2011-01-01

    Speech remains intelligible despite the elimination of canonical acoustic correlates of phonemes from the spectrum. A portion of this perceptual flexibility can be attributed to modulation sensitivity in the auditory-to-phonetic projection, although signal-independent properties of lexical neighborhoods also affect intelligibility in utterances…

  1. Reasoning about Users' Actions in a Graphical User Interface.

    ERIC Educational Resources Information Center

    Virvou, Maria; Kabassi, Katerina

    2002-01-01

    Describes a graphical user interface called IFM (Intelligent File Manipulator) that provides intelligent help to users. Explains two underlying reasoning mechanisms, one an adaptation of human plausible reasoning and one that performs goal recognition based on the effects of users' commands; and presents results of an empirical study that…

  2. Mathematical Modelling for the Evaluation of Automated Speech Recognition Systems--Research Area 3.3.1 (c)

    DTIC Science & Technology

    2016-01-07

    news. Both of these resemble typical activities of intelligence analysts in OSINT processing and production applications. We assessed two task...intelligence analysts in a number of OSINT processing and production applications. (5) Summary of the most important results In both settings

  3. Enhancing Speech Intelligibility: Interactions among Context, Modality, Speech Style, and Masker

    ERIC Educational Resources Information Center

    Van Engen, Kristin J.; Phelps, Jasmine E. B.; Smiljanic, Rajka; Chandrasekaran, Bharath

    2014-01-01

    Purpose: The authors sought to investigate interactions among intelligibility-enhancing speech cues (i.e., semantic context, clearly produced speech, and visual information) across a range of masking conditions. Method: Sentence recognition in noise was assessed for 29 normal-hearing listeners. Testing included semantically normal and anomalous…

  4. Speech Recognition for A Digital Video Library.

    ERIC Educational Resources Information Center

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Production of the meta-data supporting the Informedia Digital Video Library interface is automated using techniques derived from artificial intelligence research. Speech recognition and natural-language processing, information retrieval, and image analysis are applied to produce an interface that helps users locate information and navigate more…

  5. (YIP-09) Improving Synthesis and Recognition of Crowded Scenes using Statistical Models of Group Behavior

    DTIC Science & Technology

    2013-05-01

    prisoner’s dilemma. In Proceedings of Florida Artifical Intelligence Research Society, pages 2–7, Day- tona Beach, FL, May 2010. [6] M. Maghami* and...A. Shah*, P. Bell*, and G. Sukthankar. A destination recommendation system for virtual worlds. In Proceedings of Florida Artifical Intelligence ...question convey? Leveraging help-seeking behavior for improved modeling in a simulation- based intelligent tutor. In Proceedings of SpringSim Military

  6. Utilizing Current Commercial-off-the-Shelf Facial Recognition and Public Live Video Streaming to Enhance National Security

    DTIC Science & Technology

    2014-09-01

    biometrics technologies. 14. SUBJECT TERMS Facial recognition, systems engineering, live video streaming, security cameras, national security ...national security by sharing biometric facial recognition data in real-time utilizing infrastructures currently in place. It should be noted that the...9/11),law enforcement (LE) and Intelligence community (IC)authorities responsible for protecting citizens from threats against national security

  7. A study of perceptual analysis in a high-level autistic subject with exceptional graphic abilities.

    PubMed

    Mottron, L; Belleville, S

    1993-11-01

    We report here the case study of a patient (E.C.) with an Asperger syndrome, or autism with quasinormal intelligence, who shows an outstanding ability for three-dimensional drawing of inanimate objects (savant syndrome). An assessment of the subsystems proposed in recent models of object recognition evidenced intact perceptual analysis and identification. The initial (or primal sketch), viewer-centered (or 2-1/2-D), or object-centered (3-D) representations and the recognition and name levels were functional. In contrast, E.C.'s pattern of performance in three different types of tasks converge to suggest an anomaly in the hierarchical organization of the local and global parts of a figure: a local interference effect in incongruent hierarchical visual stimuli, a deficit in relating local parts to global form information in impossible figures, and an absence of feature-grouping in graphic recall. The results are discussed in relation to normal visual perception and to current accounts of the savant syndrome in autism.

  8. Multi-sensor information fusion method for vibration fault diagnosis of rolling bearing

    NASA Astrophysics Data System (ADS)

    Jiao, Jing; Yue, Jianhai; Pei, Di

    2017-10-01

    Bearing is a key element in high-speed electric multiple unit (EMU) and any defect of it can cause huge malfunctioning of EMU under high operation speed. This paper presents a new method for bearing fault diagnosis based on least square support vector machine (LS-SVM) in feature-level fusion and Dempster-Shafer (D-S) evidence theory in decision-level fusion which were used to solve the problems about low detection accuracy, difficulty in extracting sensitive characteristics and unstable diagnosis system of single-sensor in rolling bearing fault diagnosis. Wavelet de-nosing technique was used for removing the signal noises. LS-SVM was used to make pattern recognition of the bearing vibration signal, and then fusion process was made according to the D-S evidence theory, so as to realize recognition of bearing fault. The results indicated that the data fusion method improved the performance of the intelligent approach in rolling bearing fault detection significantly. Moreover, the results showed that this method can efficiently improve the accuracy of fault diagnosis.

  9. Multi-objects recognition for distributed intelligent sensor networks

    NASA Astrophysics Data System (ADS)

    He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.

    2008-04-01

    This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.

  10. Eliminating chromatic aberration of lens and recognition of thermal images with artificial intelligence applications

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Wu, Bo-Wen; Lin, Wei-Tang; Jon, Jen-Liung

    2007-11-01

    Resolution and color are two main directions for measuring optical digital image, but it will be a hard work to integral improve the image quality of optical system, because there are many limits such as size, materials and environment of optical system design. Therefore, it is important to let blurred images as aberrations and noises or due to the characteristics of human vision as far distance and small targets to raise the capability of image recognition with artificial intelligence such as genetic algorithm and neural network in the condition that decreasing color aberration of optical system and not to increase complex calculation in the image processes. This study could achieve the goal of integral, economically and effectively to improve recognition and classification in low quality image from optical system and environment.

  11. Where value lives in a networked world.

    PubMed

    Sawhney, M; Parikh, D

    2001-01-01

    While many management thinkers proclaim an era of radical uncertainty, authors Sawhney and Parikh assert that the seemingly endless upheavals of the digital age are more predictable than that: today's changes have a common root, and that root lies in the nature of intelligence in networks. Understanding the patterns of intelligence migration can help companies decipher and plan for the inevitable disruptions in today's business environment. Two patterns in network intelligence are reshaping industries and organizations. First, intelligence is decoupling--that is, modern high-speed networks are pushing back-end intelligence and front-end intelligence toward opposite ends of the network, making the ends the two major sources of potential profits. Second, intelligence is becoming more fluid and modular. Small units of intelligence now float freely like molecules in the ether, coalescing into temporary bundles whenever and wherever necessary to solve problems. The authors present four strategies that companies can use to profit from these patterns: arbitrage allows companies to move intelligence to new regions or countries where the cost of maintaining intelligence is lower; aggregation combines formerly isolated pieces of infrastructure intelligence into a large pool of shared infrastructure provided over a network; rewiring allows companies to connect islands of intelligence by creating common information backbones; and reassembly allows businesses to reorganize pieces of intelligence into coherent, personalized packages for customers. By being aware of patterns in network intelligence and by acting rather than reacting, companies can turn chaos into opportunity, say the authors.

  12. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2012-10-01

    Intelligent Character Recognition) and HWR ( Handwriting Recognition). A number of various software packages were evaluated and we have settled on a...third-party software is able to recognize check-boxes and columns and do a reasonable job with handwriting – which is does. This workflow will

  13. Intelligence Is Associated With Voluntary Disclosure in Child Sexual Abuse Victims.

    PubMed

    Bae, Seung Min; Kang, Jae Myeong; Hwang, In Cheol; Cho, Hyeongrae; Cho, Seong-Jin

    2017-09-01

    The purpose of this study was (1) to determine whether intelligence level is associated with the pattern of the disclosure and (2) to elucidate which, between the verbal and performance intelligence, better reflect the pattern of disclosure in child and adolescent sexual abuse victims. Data were collected on 162 participants who visited a public center for sexually abused children and adolescents between January 2013 and December 2014. Demographic information, case characteristics, and disclosure pattern as well as intelligence quotients (IQs) of subjects were gathered. Intelligence was analyzed as level, full scale IQ, and the verbal and performance IQ. Eighty-one subjects (50.0%) voluntarily disclosed that they have been sexually abused. In regression analysis, intellectual level, age, and the number of perpetrators were associated with disclosure pattern. Full scale IQ was associated with the disclosure pattern (odds ratio = .983, 95% confidence interval = .968-.997, p = .017). When intelligence was divided into verbal and performance IQ, verbal IQ affected the pattern of disclosure (odds ratio = .973, 95% confidence interval = .956-.991, p = .003) with linear correlation (p = .001). We found that IQ was associated with the disclosure pattern. The intelligence, especially in verbal domain, is linearly correlated with the probability of voluntary disclosure. We suggest that special legal assistance and social concern are required for children and adolescent victims below normal intelligence to make them disclose the sexual abuse. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  14. Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision.

    PubMed

    Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu

    2018-06-22

    The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on-off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.

  15. Self-powered vision electronic-skin basing on piezo-photodetecting Ppy/PVDF pixel-patterned matrix for mimicking vision

    NASA Astrophysics Data System (ADS)

    Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu

    2018-06-01

    The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on–off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.

  16. Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation and Completion of Episodic Information.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aimone, James Bradley; Bernard, Michael Lewis; Vineyard, Craig Michael

    2014-10-01

    Adult neurogenesis in the hippocampus region of the brain is a neurobiological process that is believed to contribute to the brain's advanced abilities in complex pattern recognition and cognition. Here, we describe how realistic scale simulations of the neurogenesis process can offer both a unique perspective on the biological relevance of this process and confer computational insights that are suggestive of novel machine learning techniques. First, supercomputer based scaling studies of the neurogenesis process demonstrate how a small fraction of adult-born neurons have a uniquely larger impact in biologically realistic scaled networks. Second, we describe a novel technical approach bymore » which the information content of ensembles of neurons can be estimated. Finally, we illustrate several examples of broader algorithmic impact of neurogenesis, including both extending existing machine learning approaches and novel approaches for intelligent sensing.« less

  17. Oxytocin improves facial emotion recognition in young adults with antisocial personality disorder.

    PubMed

    Timmermann, Marion; Jeung, Haang; Schmitt, Ruth; Boll, Sabrina; Freitag, Christine M; Bertsch, Katja; Herpertz, Sabine C

    2017-11-01

    Deficient facial emotion recognition has been suggested to underlie aggression in individuals with antisocial personality disorder (ASPD). As the neuropeptide oxytocin (OT) has been shown to improve facial emotion recognition, it might also exert beneficial effects in individuals providing so much harm to the society. In a double-blind, randomized, placebo-controlled crossover trial, 22 individuals with ASPD and 29 healthy control (HC) subjects (matched for age, sex, intelligence, and education) were intranasally administered either OT (24 IU) or a placebo 45min before participating in an emotion classification paradigm with fearful, angry, and happy faces. We assessed the number of correct classifications and reaction times as indicators of emotion recognition ability. Significant group×substance×emotion interactions were found in correct classifications and reaction times. Compared to HC, individuals with ASPD showed deficits in recognizing fearful and happy faces; these group differences were no longer observable under OT. Additionally, reaction times for angry faces differed significantly between the ASPD and HC group in the placebo condition. This effect was mainly driven by longer reaction times in HC subjects after placebo administration compared to OT administration while individuals with ASPD revealed descriptively the contrary response pattern. Our data indicate an improvement of the recognition of fearful and happy facial expressions by OT in young adults with ASPD. Particularly the increased recognition of facial fear is of high importance since the correct perception of distress signals in others is thought to inhibit aggression. Beneficial effects of OT might be further mediated by improved recognition of facial happiness probably reflecting increased social reward responsiveness. Copyright © 2017. Published by Elsevier Ltd.

  18. Recognizing Spoken Words: The Neighborhood Activation Model

    PubMed Central

    Luce, Paul A.; Pisoni, David B.

    2012-01-01

    Objective A fundamental problem in the study of human spoken word recognition concerns the structural relations among the sound patterns of words in memory and the effects these relations have on spoken word recognition. In the present investigation, computational and experimental methods were employed to address a number of fundamental issues related to the representation and structural organization of spoken words in the mental lexicon and to lay the groundwork for a model of spoken word recognition. Design Using a computerized lexicon consisting of transcriptions of 20,000 words, similarity neighborhoods for each of the transcriptions were computed. Among the variables of interest in the computation of the similarity neighborhoods were: 1) the number of words occurring in a neighborhood, 2) the degree of phonetic similarity among the words, and 3) the frequencies of occurrence of the words in the language. The effects of these variables on auditory word recognition were examined in a series of behavioral experiments employing three experimental paradigms: perceptual identification of words in noise, auditory lexical decision, and auditory word naming. Results The results of each of these experiments demonstrated that the number and nature of words in a similarity neighborhood affect the speed and accuracy of word recognition. A neighborhood probability rule was developed that adequately predicted identification performance. This rule, based on Luce's (1959) choice rule, combines stimulus word intelligibility, neighborhood confusability, and frequency into a single expression. Based on this rule, a model of auditory word recognition, the neighborhood activation model, was proposed. This model describes the effects of similarity neighborhood structure on the process of discriminating among the acoustic-phonetic representations of words in memory. The results of these experiments have important implications for current conceptions of auditory word recognition in normal and hearing impaired populations of children and adults. PMID:9504270

  19. Performance Review of Harmony Search, Differential Evolution and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Mohan Pandey, Hari

    2017-08-01

    Metaheuristic algorithms are effective in the design of an intelligent system. These algorithms are widely applied to solve complex optimization problems, including image processing, big data analytics, language processing, pattern recognition and others. This paper presents a performance comparison of three meta-heuristic algorithms, namely Harmony Search, Differential Evolution, and Particle Swarm Optimization. These algorithms are originated altogether from different fields of meta-heuristics yet share a common objective. The standard benchmark functions are used for the simulation. Statistical tests are conducted to derive a conclusion on the performance. The key motivation to conduct this research is to categorize the computational capabilities, which might be useful to the researchers.

  20. Speech intelligibility index predictions for young and old listeners in automobile noise: Can the index be improved by incorporating factors other than absolute threshold?

    NASA Astrophysics Data System (ADS)

    Saweikis, Meghan; Surprenant, Aimée M.; Davies, Patricia; Gallant, Don

    2003-10-01

    While young and old subjects with comparable audiograms tend to perform comparably on speech recognition tasks in quiet environments, the older subjects have more difficulty than the younger subjects with recognition tasks in degraded listening conditions. This suggests that factors other than an absolute threshold may account for some of the difficulty older listeners have on recognition tasks in noisy environments. Many metrics, including the Speech Intelligibility Index (SII), used to measure speech intelligibility, only consider an absolute threshold when accounting for age related hearing loss. Therefore these metrics tend to overestimate the performance for elderly listeners in noisy environments [Tobias et al., J. Acoust. Soc. Am. 83, 859-895 (1988)]. The present studies examine the predictive capabilities of the SII in an environment with automobile noise present. This is of interest because people's evaluation of the automobile interior sound is closely linked to their ability to carry on conversations with their fellow passengers. The four studies examine whether, for subjects with age related hearing loss, the accuracy of the SII can be improved by incorporating factors other than an absolute threshold into the model. [Work supported by Ford Motor Company.

  1. The Construct Validity of the Category Test: Is It a Measure of Reasoning or Intelligence?

    ERIC Educational Resources Information Center

    Johnstone, Brick; And Others

    1997-01-01

    The construct validity of the Category Test (W. C. Halstead, 1947) was studied for 308 adults with heterogeneous cognitive dysfunction. Factor analysis indicated that Category subtests load on three factors distinct from intelligence: (1) symbol recognition/counting; (2) spatial position reasoning; (3) and proportional reasoning. Clinical…

  2. Using Poetry and the Visual Arts to Develop Emotional Intelligence

    ERIC Educational Resources Information Center

    Morris, J. Andrew; Urbanski, John; Fuller, Janice

    2005-01-01

    This article presents a series of experiential exercises designed to use visual arts and poetry in classroom settings to increase students' awareness and recognition of emotion--two key components of emotional intelligence. Drawing on the liberal arts in the manner described in the exercises provides the instructor with a context in which students…

  3. Employing Textual and Facial Emotion Recognition to Design an Affective Tutoring System

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Wang, Cheng-Hung; Chao, Ching-Ju; Chien, Ming-Kuan

    2012-01-01

    Emotional expression in Artificial Intelligence has gained lots of attention in recent years, people applied its affective computing not only in enhancing and realizing the interaction between computers and human, it also makes computer more humane. In this study, emotional expressions were applied into intelligent tutoring system, where learners'…

  4. Shape Matching and Image Segmentation Using Stochastic Labeling

    DTIC Science & Technology

    1981-08-01

    hierarchique d’Etiquetage Probabiliste," To be presented at AFCET, 3 eme Congres, Reconnaissance Des Formes et Intelligence Artificielle , Sept. 16-18...Tenenbaum, "MSYS: A System for Reasoning About Scenes," Tech. Note 121, Artificial Intelligence Center, SRI Intl., Menlo Park, CA, 1976. [1-6] D. Marr, T...Analysis and Machine Intelligence . [1-10] O.D. Faugeras and M. Berthod, "Using Context in the Global Recognition of a Set of Objects: An Optimization

  5. Ultra-fast Object Recognition from Few Spikes

    DTIC Science & Technology

    2005-07-06

    Computer Science and Artificial Intelligence Laboratory Ultra-fast Object Recognition from Few Spikes Chou Hung, Gabriel Kreiman , Tomaso Poggio...neural code for different kinds of object-related information. *The authors, Chou Hung and Gabriel Kreiman , contributed equally to this work...Supplementary Material is available at http://ramonycajal.mit.edu/ kreiman /resources/ultrafast

  6. Northeast Artificial Intelligence Consortium Annual Report. Volume 7. 1988 Research in Automated Photointerpretation

    DTIC Science & Technology

    1989-10-01

    weight based on how powerful the corresponding feature is for object recognition and discrimination. For example, consider an arbitrary weight, denoted...quality of the segmentation, how powerful the features and spatial constraints in the knowledge base are (as far as object recognition is concern...that are powerful for object recognition and discrimination. At this point, this selection is performed heuristically through trial-and-error. As a

  7. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    NASA Astrophysics Data System (ADS)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  8. Use of Biometrics within Sub-Saharan Refugee Communities

    DTIC Science & Technology

    2013-12-01

    fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is

  9. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  10. Ongoing slow oscillatory phase modulates speech intelligibility in cooperation with motor cortical activity.

    PubMed

    Onojima, Takayuki; Kitajo, Keiichi; Mizuhara, Hiroaki

    2017-01-01

    Neural oscillation is attracting attention as an underlying mechanism for speech recognition. Speech intelligibility is enhanced by the synchronization of speech rhythms and slow neural oscillation, which is typically observed as human scalp electroencephalography (EEG). In addition to the effect of neural oscillation, it has been proposed that speech recognition is enhanced by the identification of a speaker's motor signals, which are used for speech production. To verify the relationship between the effect of neural oscillation and motor cortical activity, we measured scalp EEG, and simultaneous EEG and functional magnetic resonance imaging (fMRI) during a speech recognition task in which participants were required to recognize spoken words embedded in noise sound. We proposed an index to quantitatively evaluate the EEG phase effect on behavioral performance. The results showed that the delta and theta EEG phase before speech inputs modulated the participant's response time when conducting speech recognition tasks. The simultaneous EEG-fMRI experiment showed that slow EEG activity was correlated with motor cortical activity. These results suggested that the effect of the slow oscillatory phase was associated with the activity of the motor cortex during speech recognition.

  11. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  12. Experiments in Schema-Driven Interpretation of a Natural Scene

    DTIC Science & Technology

    1980-04-01

    Intilliaence, "rbilisi, USSR; 1975, pp. 483-490. EFEL743 JzA. Feldman and Y. Yakimovsky, "Deciesion Theorg and Artificiel Int lligence:, I. A Semantics-Based...lTra. ttern i a Machine Intelligence , Vol. PAMI-., Janua’ry 1980 p’p. 16-27. CRIS743 E.M. Riseman and A.R. Hanson, "I)eign o’f a Semanticall...Machine Intelligence , School of Artificial Intelligence , University of Edinburgh, 1974. tUHR723 L. Uhr, "Layered ’Recognition Cone’ Networks That

  13. An Autonomous Learning System of Bengali Characters Using Web-Based Intelligent Handwriting Recognition

    ERIC Educational Resources Information Center

    Khatun, Nazma; Miwa, Jouji

    2016-01-01

    This research project was aimed to develop an intelligent Bengali handwriting education system to improve the literacy level in Bangladesh. Due to the socio-economical limitation, all of the population does not have the chance to go to school. Here, we developed a prototype of web-based (iPhone/smartphone or computer browser) intelligent…

  14. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    PubMed

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  15. Do Adults with Mental Retardation Show Pictorial Superiority Effects in Recall and Recognition?

    ERIC Educational Resources Information Center

    Cherry, Katie E.; Applegate, Heather; Reese, Celinda M.

    2002-01-01

    A study examined memory for pictures and words in 16 adults with mental retardation and 24 controls. Pictorial superiority effects occurred in free recall and recognition for both intelligence-level groups. Correlational analyses indicated working memory span was primarily related to recall performance, irrespective of stimulus format. (Contains…

  16. Computing with Connections in Visual Recognition of Origami Objects.

    ERIC Educational Resources Information Center

    Sabbah, Daniel

    1985-01-01

    Summarizes an initial foray in tackling artificial intelligence problems using a connectionist approach. The task chosen is visual recognition of Origami objects, and the questions answered are how to construct a connectionist network to represent and recognize projected Origami line drawings and the advantages such an approach would have. (30…

  17. A Fast Goal Recognition Technique Based on Interaction Estimates

    NASA Technical Reports Server (NTRS)

    E-Martin, Yolanda; R-Moreno, Maria D.; Smith, David E.

    2015-01-01

    Goal Recognition is the task of inferring an actor's goals given some or all of the actor's observed actions. There is considerable interest in Goal Recognition for use in intelligent personal assistants, smart environments, intelligent tutoring systems, and monitoring user's needs. In much of this work, the actor's observed actions are compared against a generated library of plans. Recent work by Ramirez and Geffner makes use of AI planning to determine how closely a sequence of observed actions matches plans for each possible goal. For each goal, this is done by comparing the cost of a plan for that goal with the cost of a plan for that goal that includes the observed actions. This approach yields useful rankings, but is impractical for real-time goal recognition in large domains because of the computational expense of constructing plans for each possible goal. In this paper, we introduce an approach that propagates cost and interaction information in a plan graph, and uses this information to estimate goal probabilities. We show that this approach is much faster, but still yields high quality results.

  18. Vision-based obstacle recognition system for automated lawn mower robot development

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  19. Information Compression, Multiple Alignment, and the Representation and Processing of Knowledge in the Brain.

    PubMed

    Wolff, J Gerard

    2016-01-01

    The SP theory of intelligence , with its realization in the SP computer model , aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realized in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory- SP-neural -is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory-outlined in the paper-provides indirect support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of knowledge are represented with patterns , where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a "pattern" is realized as an array of neurons called a pattern assembly , similar to Hebb's concept of a "cell assembly" but with important differences. Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP) and, more specifically, information compression via the powerful concept of multiple alignment , borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another. It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from sensory information and from the neural equivalents of multiple alignments, much as in the non-neural SP theory-and significantly different from the "Hebbian" kinds of learning which are widely used in the kinds of artificial neural network that are popular in computer science. The paper discusses several associated issues, with relevant empirical evidence.

  20. Big Data breaking barriers - first steps on a long trail

    NASA Astrophysics Data System (ADS)

    Schade, S.

    2015-04-01

    Most data sets and streams have a geospatial component. Some people even claim that about 80% of all data is related to location. In the era of Big Data this number might even be underestimated, as data sets interrelate and initially non-spatial data becomes indirectly geo-referenced. The optimal treatment of Big Data thus requires advanced methods and technologies for handling the geospatial aspects in data storage, processing, pattern recognition, prediction, visualisation and exploration. On the one hand, our work exploits earth and environmental sciences for existing interoperability standards, and the foundational data structures, algorithms and software that are required to meet these geospatial information handling tasks. On the other hand, we are concerned with the arising needs to combine human analysis capacities (intelligence augmentation) with machine power (artificial intelligence). This paper provides an overview of the emerging landscape and outlines our (Digital Earth) vision for addressing the upcoming issues. We particularly request the projection and re-use of the existing environmental, earth observation and remote sensing expertise in other sectors, i.e. to break the barriers of all of these silos by investigating integrated applications.

  1. Factors influencing relative speech intelligibility in patients with oral squamous cell carcinoma: a prospective study using automatic, computer-based speech analysis.

    PubMed

    Stelzle, F; Knipfer, C; Schuster, M; Bocklet, T; Nöth, E; Adler, W; Schempf, L; Vieler, P; Riemann, M; Neukam, F W; Nkenke, E

    2013-11-01

    Oral squamous cell carcinoma (OSCC) and its treatment impair speech intelligibility by alteration of the vocal tract. The aim of this study was to identify the factors of oral cancer treatment that influence speech intelligibility by means of an automatic, standardized speech-recognition system. The study group comprised 71 patients (mean age 59.89, range 35-82 years) with OSCC ranging from stage T1 to T4 (TNM staging). Tumours were located on the tongue (n=23), lower alveolar crest (n=27), and floor of the mouth (n=21). Reconstruction was conducted through local tissue plasty or microvascular transplants. Adjuvant radiotherapy was performed in 49 patients. Speech intelligibility was evaluated before, and at 3, 6, and 12 months after tumour resection, and compared to that of a healthy control group (n=40). Postoperatively, significant influences on speech intelligibility were tumour localization (P=0.010) and resection volume (P=0.019). Additionally, adjuvant radiotherapy (P=0.049) influenced intelligibility at 3 months after surgery. At 6 months after surgery, influences were resection volume (P=0.028) and adjuvant radiotherapy (P=0.034). The influence of tumour localization (P=0.001) and adjuvant radiotherapy (P=0.022) persisted after 12 months. Tumour localization, resection volume, and radiotherapy are crucial factors for speech intelligibility. Radiotherapy significantly impaired word recognition rate (WR) values with a progression of the impairment for up to 12 months after surgery. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Emotional intelligence in incarcerated men with psychopathic traits

    PubMed Central

    Ermer, Elsa; Kahn, Rachel E.; Salovey, Peter; Kiehl, Kent A.

    2012-01-01

    The expression, recognition, and communication of emotional states are ubiquitous features of the human social world. Emotional intelligence (EI) is defined as the ability to perceive, manage, and reason about emotions, in oneself and others. Individuals with psychopathy have numerous difficulties in social interaction and show impairment on some emotional tasks. Here we investigate the relation between emotional intelligence and psychopathy in a sample of incarcerated men (n=374), using the Psychopathy Checklist—Revised (PCL-R; Hare, 2003) and the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT; Mayer, Salovey, & Caruso, 2002). The MSCEIT is a well-validated ability-based emotional intelligence measure that does not rely on self-report judgments of emotional skills. The Hare PCL-R is the gold-standard for the assessment of psychopathy in clinical populations. Controlling for general intelligence, psychopathy was associated with lower emotional intelligence. These findings suggest individuals with psychopathy are impaired on a range of emotional intelligence abilities and that emotional intelligence is an important area for understanding deficits in psychopathy. PMID:22329657

  3. Examining explanations for fundamental frequency's contribution to speech intelligibility in noise

    NASA Astrophysics Data System (ADS)

    Schlauch, Robert S.; Miller, Sharon E.; Watson, Peter J.

    2005-09-01

    Laures and Weismer [JSLHR, 42, 1148 (1999)] reported that speech with natural variation in fundamental frequency (F0) is more intelligible in noise than speech with a flattened F0 contour. Cognitive-linguistic based explanations have been offered to account for this drop in intelligibility for the flattened condition, but a lower-level mechanism related to auditory streaming may be responsible. Numerous psychoacoustic studies have demonstrated that modulating a tone enables a listener to segregate it from background sounds. To test these rival hypotheses, speech recognition in noise was measured for sentences with six different F0 contours: unmodified, flattened at the mean, natural but exaggerated, reversed, and frequency modulated (rates of 2.5 and 5.0 Hz). The 180 stimulus sentences were produced by five talkers (30 sentences per condition). Speech recognition for fifteen listeners replicate earlier findings showing that flattening the F0 contour results in a roughly 10% reduction in recognition of key words compared with the natural condition. Although the exaggerated condition produced results comparable to those of the flattened condition, the other conditions with unnatural F0 contours all yielded significantly poorer performance than the flattened condition. These results support the cognitive, linguistic-based explanations for the reduction in performance.

  4. Plant intelligence.

    PubMed

    Trewavas, Anthony

    2005-09-01

    Intelligent behavior is a complex adaptive phenomenon that has evolved to enable organisms to deal with variable environmental circumstances. Maximizing fitness requires skill in foraging for necessary resources (food) in competitive circumstances and is probably the activity in which intelligent behavior is most easily seen. Biologists suggest that intelligence encompasses the characteristics of detailed sensory perception, information processing, learning, memory, choice, optimisation of resource sequestration with minimal outlay, self-recognition, and foresight by predictive modeling. All these properties are concerned with a capacity for problem solving in recurrent and novel situations. Here I review the evidence that individual plant species exhibit all of these intelligent behavioral capabilities but do so through phenotypic plasticity, not movement. Furthermore it is in the competitive foraging for resources that most of these intelligent attributes have been detected. Plants should therefore be regarded as prototypical intelligent organisms, a concept that has considerable consequences for investigations of whole plant communication, computation and signal transduction.

  5. Information Compression, Multiple Alignment, and the Representation and Processing of Knowledge in the Brain

    PubMed Central

    Wolff, J. Gerard

    2016-01-01

    The SP theory of intelligence, with its realization in the SP computer model, aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realized in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory—SP-neural—is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory—outlined in the paper—provides indirect support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of knowledge are represented with patterns, where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a “pattern” is realized as an array of neurons called a pattern assembly, similar to Hebb's concept of a “cell assembly” but with important differences. Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP) and, more specifically, information compression via the powerful concept of multiple alignment, borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another. It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from sensory information and from the neural equivalents of multiple alignments, much as in the non-neural SP theory—and significantly different from the “Hebbian” kinds of learning which are widely used in the kinds of artificial neural network that are popular in computer science. The paper discusses several associated issues, with relevant empirical evidence. PMID:27857695

  6. An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images.

    PubMed

    Shanthi, C; Pappa, N

    2017-05-01

    Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A Decade of Neural Networks: Practical Applications and Prospects

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.

    1994-01-01

    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization.

  8. Concurrent approach for evolving compact decision rule sets

    NASA Astrophysics Data System (ADS)

    Marmelstein, Robert E.; Hammack, Lonnie P.; Lamont, Gary B.

    1999-02-01

    The induction of decision rules from data is important to many disciplines, including artificial intelligence and pattern recognition. To improve the state of the art in this area, we introduced the genetic rule and classifier construction environment (GRaCCE). It was previously shown that GRaCCE consistently evolved decision rule sets from data, which were significantly more compact than those produced by other methods (such as decision tree algorithms). The primary disadvantage of GRaCCe, however, is its relatively poor run-time execution performance. In this paper, a concurrent version of the GRaCCE architecture is introduced, which improves the efficiency of the original algorithm. A prototype of the algorithm is tested on an in- house parallel processor configuration and the results are discussed.

  9. What Process Mediates Predictions of Childhood IQ from Infant Habituation and Recognition Memory? Speculations on the Roles of Inhibition and Rate of Information Processing.

    ERIC Educational Resources Information Center

    McCall, Robert B.

    1994-01-01

    This editorial proposes that the dependent variables that predict childhood intelligence quotient (IQ) from habituation and recognition memory assessments made during infancy may primarily reflect individual differences in rate of information processing. Inhibition may be a stable thread in mental development. (Author/SLD)

  10. The intelligent OR: design and validation of a context-aware surgical working environment.

    PubMed

    Franke, Stefan; Rockstroh, Max; Hofer, Mathias; Neumuth, Thomas

    2018-05-24

    Interoperability of medical devices based on standards starts to establish in the operating room (OR). Devices share their data and control functionalities. Yet, the OR technology rarely implements cooperative, intelligent behavior, especially in terms of active cooperation with the OR team. Technical context-awareness will be an essential feature of the next generation of medical devices to address the increasing demands to clinicians in information seeking, decision making, and human-machine interaction in complex surgical working environments. The paper describes the technical validation of an intelligent surgical working environment for endoscopic ear-nose-throat surgery. We briefly summarize the design of our framework for context-aware system's behavior in integrated OR and present example realizations of novel assistance functionalities. In a study on patient phantoms, twenty-four procedures were implemented in the proposed intelligent surgical working environment based on recordings of real interventions. Subsequently, the whole processing pipeline for context-awareness from workflow recognition to the final system's behavior is analyzed. Rule-based behavior that considers multiple perspectives on the procedure can partially compensate recognition errors. A considerable robustness could be achieved with a reasonable quality of the recognition. Overall, reliable reactive as well as proactive behavior of the surgical working environment can be implemented in the proposed environment. The obtained validation results indicate the suitability of the overall approach. The setup is a reliable starting point for a subsequent evaluation of the proposed context-aware assistance. The major challenge for future work will be to implement the complex approach in a cross-vendor setting.

  11. Pattern Activity Clustering and Evaluation (PACE)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Banas, Christopher; Paul, Michael; Bussjager, Becky; Seetharaman, Guna

    2012-06-01

    With the vast amount of network information available on activities of people (i.e. motions, transportation routes, and site visits) there is a need to explore the salient properties of data that detect and discriminate the behavior of individuals. Recent machine learning approaches include methods of data mining, statistical analysis, clustering, and estimation that support activity-based intelligence. We seek to explore contemporary methods in activity analysis using machine learning techniques that discover and characterize behaviors that enable grouping, anomaly detection, and adversarial intent prediction. To evaluate these methods, we describe the mathematics and potential information theory metrics to characterize behavior. A scenario is presented to demonstrate the concept and metrics that could be useful for layered sensing behavior pattern learning and analysis. We leverage work on group tracking, learning and clustering approaches; as well as utilize information theoretical metrics for classification, behavioral and event pattern recognition, and activity and entity analysis. The performance evaluation of activity analysis supports high-level information fusion of user alerts, data queries and sensor management for data extraction, relations discovery, and situation analysis of existing data.

  12. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.

    PubMed

    Zamaninezhad, Ladan; Hohmann, Volker; Büchner, Andreas; Schädler, Marc René; Jürgens, Tim

    2017-02-01

    This study introduces a speech intelligibility model for cochlear implant users with ipsilateral preserved acoustic hearing that aims at simulating the observed speech-in-noise intelligibility benefit when receiving simultaneous electric and acoustic stimulation (EA-benefit). The model simulates the auditory nerve spiking in response to electric and/or acoustic stimulation. The temporally and spatially integrated spiking patterns were used as the final internal representation of noisy speech. Speech reception thresholds (SRTs) in stationary noise were predicted for a sentence test using an automatic speech recognition framework. The model was employed to systematically investigate the effect of three physiologically relevant model factors on simulated SRTs: (1) the spatial spread of the electric field which co-varies with the number of electrically stimulated auditory nerves, (2) the "internal" noise simulating the deprivation of auditory system, and (3) the upper bound frequency limit of acoustic hearing. The model results show that the simulated SRTs increase monotonically with increasing spatial spread for fixed internal noise, and also increase with increasing the internal noise strength for a fixed spatial spread. The predicted EA-benefit does not follow such a systematic trend and depends on the specific combination of the model parameters. Beyond 300 Hz, the upper bound limit for preserved acoustic hearing is less influential on speech intelligibility of EA-listeners in stationary noise. The proposed model-predicted EA-benefits are within the range of EA-benefits shown by 18 out of 21 actual cochlear implant listeners with preserved acoustic hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Does it really matter whether students' contributions are spoken versus typed in an intelligent tutoring system with natural language?

    PubMed

    D'Mello, Sidney K; Dowell, Nia; Graesser, Arthur

    2011-03-01

    There is the question of whether learning differs when students speak versus type their responses when interacting with intelligent tutoring systems with natural language dialogues. Theoretical bases exist for three contrasting hypotheses. The speech facilitation hypothesis predicts that spoken input will increase learning, whereas the text facilitation hypothesis predicts typed input will be superior. The modality equivalence hypothesis claims that learning gains will be equivalent. Previous experiments that tested these hypotheses were confounded by automated speech recognition systems with substantial error rates that were detected by learners. We addressed this concern in two experiments via a Wizard of Oz procedure, where a human intercepted the learner's speech and transcribed the utterances before submitting them to the tutor. The overall pattern of the results supported the following conclusions: (1) learning gains associated with spoken and typed input were on par and quantitatively higher than a no-intervention control, (2) participants' evaluations of the session were not influenced by modality, and (3) there were no modality effects associated with differences in prior knowledge and typing proficiency. Although the results generally support the modality equivalence hypothesis, highly motivated learners reported lower cognitive load and demonstrated increased learning when typing compared with speaking. We discuss the implications of our findings for intelligent tutoring systems that can support typed and spoken input.

  14. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  15. Listeners Experience Linguistic Masking Release in Noise-Vocoded Speech-in-Speech Recognition.

    PubMed

    Viswanathan, Navin; Kokkinakis, Kostas; Williams, Brittany T

    2018-02-15

    The purpose of this study was to evaluate whether listeners with normal hearing perceiving noise-vocoded speech-in-speech demonstrate better intelligibility of target speech when the background speech was mismatched in language (linguistic release from masking [LRM]) and/or location (spatial release from masking [SRM]) relative to the target. We also assessed whether the spectral resolution of the noise-vocoded stimuli affected the presence of LRM and SRM under these conditions. In Experiment 1, a mixed factorial design was used to simultaneously manipulate the masker language (within-subject, English vs. Dutch), the simulated masker location (within-subject, right, center, left), and the spectral resolution (between-subjects, 6 vs. 12 channels) of noise-vocoded target-masker combinations presented at +25 dB signal-to-noise ratio (SNR). In Experiment 2, the study was repeated using a spectral resolution of 12 channels at +15 dB SNR. In both experiments, listeners' intelligibility of noise-vocoded targets was better when the background masker was Dutch, demonstrating reliable LRM in all conditions. The pattern of results in Experiment 1 was not reliably different across the 6- and 12-channel noise-vocoded speech. Finally, a reliable spatial benefit (SRM) was detected only in the more challenging SNR condition (Experiment 2). The current study is the first to report a clear LRM benefit in noise-vocoded speech-in-speech recognition. Our results indicate that this benefit is available even under spectrally degraded conditions and that it may augment the benefit due to spatial separation of target speech and competing backgrounds.

  16. Rapid Release From Listening Effort Resulting From Semantic Context, and Effects of Spectral Degradation and Cochlear Implants

    PubMed Central

    2016-01-01

    People with hearing impairment are thought to rely heavily on context to compensate for reduced audibility. Here, we explore the resulting cost of this compensatory behavior, in terms of effort and the efficiency of ongoing predictive language processing. The listening task featured predictable or unpredictable sentences, and participants included people with cochlear implants as well as people with normal hearing who heard full-spectrum/unprocessed or vocoded speech. The crucial metric was the growth of the pupillary response and the reduction of this response for predictable versus unpredictable sentences, which would suggest reduced cognitive load resulting from predictive processing. Semantic context led to rapid reduction of listening effort for people with normal hearing; the reductions were observed well before the offset of the stimuli. Effort reduction was slightly delayed for people with cochlear implants and considerably more delayed for normal-hearing listeners exposed to spectrally degraded noise-vocoded signals; this pattern of results was maintained even when intelligibility was perfect. Results suggest that speed of sentence processing can still be disrupted, and exertion of effort can be elevated, even when intelligibility remains high. We discuss implications for experimental and clinical assessment of speech recognition, in which good performance can arise because of cognitive processes that occur after a stimulus, during a period of silence. Because silent gaps are not common in continuous flowing speech, the cognitive/linguistic restorative processes observed after sentences in such studies might not be available to listeners in everyday conversations, meaning that speech recognition in conventional tests might overestimate sentence-processing capability. PMID:27698260

  17. Intelligent Automatic Right-Left Sign Lamp Based on Brain Signal Recognition System

    NASA Astrophysics Data System (ADS)

    Winda, A.; Sofyan; Sthevany; Vincent, R. S.

    2017-12-01

    Comfort as a part of the human factor, plays important roles in nowadays advanced automotive technology. Many of the current technologies go in the direction of automotive driver assistance features. However, many of the driver assistance features still require physical movement by human to enable the features. In this work, the proposed method is used in order to make certain feature to be functioning without any physical movement, instead human just need to think about it in their mind. In this work, brain signal is recorded and processed in order to be used as input to the recognition system. Right-Left sign lamp based on the brain signal recognition system can potentially replace the button or switch of the specific device in order to make the lamp work. The system then will decide whether the signal is ‘Right’ or ‘Left’. The decision of the Right-Left side of brain signal recognition will be sent to a processing board in order to activate the automotive relay, which will be used to activate the sign lamp. Furthermore, the intelligent system approach is used to develop authorized model based on the brain signal. Particularly Support Vector Machines (SVMs)-based classification system is used in the proposed system to recognize the Left-Right of the brain signal. Experimental results confirm the effectiveness of the proposed intelligent Automatic brain signal-based Right-Left sign lamp access control system. The signal is processed by Linear Prediction Coefficient (LPC) and Support Vector Machines (SVMs), and the resulting experiment shows the training and testing accuracy of 100% and 80%, respectively.

  18. Building intelligent communication systems for handicapped aphasiacs.

    PubMed

    Fu, Yu-Fen; Ho, Cheng-Seen

    2010-01-01

    This paper presents an intelligent system allowing handicapped aphasiacs to perform basic communication tasks. It has the following three key features: (1) A 6-sensor data glove measures the finger gestures of a patient in terms of the bending degrees of his fingers. (2) A finger language recognition subsystem recognizes language components from the finger gestures. It employs multiple regression analysis to automatically extract proper finger features so that the recognition model can be fast and correctly constructed by a radial basis function neural network. (3) A coordinate-indexed virtual keyboard allows the users to directly access the letters on the keyboard at a practical speed. The system serves as a viable tool for natural and affordable communication for handicapped aphasiacs through continuous finger language input.

  19. Gender recognition from unconstrained and articulated human body.

    PubMed

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  20. Gender Recognition from Unconstrained and Articulated Human Body

    PubMed Central

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition. PMID:24977203

  1. Cognitive, emotional and social markers of serial murdering.

    PubMed

    Angrilli, Alessandro; Sartori, Giuseppe; Donzella, Giovanna

    2013-01-01

    Although criminal psychopathy is starting to be relatively well described, our knowledge of the characteristics and scientific markers of serial murdering is still very poor. A serial killer who murdered more than five people, KT, was administered a battery of standardized tests aimed at measuring neuropsychological impairment and social/emotional cognition deficits. KT exhibited a striking dissociation between a high level of emotional detachment and a low score on the antisocial behavior scale on the Psychopathy Checklist-Revised (PCL-R). The Minnesota Multiphasic Personality Inventory-2 showed a normal pattern with the psychotic triad at borderline level. KT had a high intelligence score and showed almost no impairment in cognitive tests sensitive to frontal lobe dysfunction (Wisconsin Card Sorting Test, Theory of Mind, Tower of London, this latter evidenced a mild impairment in planning performance). In the tests on moral, emotional and social cognition, his patterns of response differed from matched controls and from past reports on criminal psychopaths as, unlike these individuals, KT exhibited normal recognition of fear and a relatively intact knowledge of moral rules but he was impaired in the recognition of anger, embarrassment and conventional social rules. The overall picture of KT suggests that serial killing may be closer to normality than psychopathy defined according to either the DSM IV or the PCL-R, and it would be characterized by a relatively spared moral cognition and selective deficits in social and emotional cognition domains.

  2. BeSocratic: An Intelligent Tutoring System for the Recognition, Evaluation, and Analysis of Free-Form Student Input

    ERIC Educational Resources Information Center

    Bryfczynski, Samuel Paul

    2012-01-01

    This dissertation describes a novel intelligent tutoring system, BeSocratic, which aims to help fill the gap between simple multiple-choice systems and free-response systems. BeSocratic focuses on targeting questions that are free-form in nature yet defined to the point which allows for automatic evaluation and analysis. The system includes a set…

  3. On the Suitability of Mobile Cloud Computing at the Tactical Edge

    DTIC Science & Technology

    2014-04-23

    geolocation; Facial recognition (photo identification/classification); Intelligence, Surveillance, and Reconnaissance (ISR); and Fusion of Electronic...could benefit most from MCC are those with large processing overhead, low bandwidth requirements, and a need for large database support (e.g., facial ... recognition , language translation). The effect—specifically on the communication links—of supporting these applications at the tactical edge

  4. Automatic Speech Recognition Predicts Speech Intelligibility and Comprehension for Listeners with Simulated Age-Related Hearing Loss

    ERIC Educational Resources Information Center

    Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian

    2017-01-01

    Purpose: The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist…

  5. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture.

    PubMed

    Zhong, Yuanhong; Gao, Junyuan; Lei, Qilun; Zhou, Yao

    2018-05-09

    Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.

  6. Research and Development of Target Recognition and Location Crawling Platform based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Xu, Weidong; Lei, Zhu; Yuan, Zhang; Gao, Zhenqing

    2018-03-01

    The application of visual recognition technology in industrial robot crawling and placing operation is one of the key tasks in the field of robot research. In order to improve the efficiency and intelligence of the material sorting in the production line, especially to realize the sorting of the scattered items, the robot target recognition and positioning crawling platform based on binocular vision is researched and developed. The images were collected by binocular camera, and the images were pretreated. Harris operator was used to identify the corners of the images. The Canny operator was used to identify the images. Hough-chain code recognition was used to identify the images. The target image in the image, obtain the coordinates of each vertex of the image, calculate the spatial position and posture of the target item, and determine the information needed to capture the movement and transmit it to the robot control crawling operation. Finally, In this paper, we use this method to experiment the wrapping problem in the express sorting process The experimental results show that the platform can effectively solve the problem of sorting of loose parts, so as to achieve the purpose of efficient and intelligent sorting.

  7. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture

    PubMed Central

    Zhong, Yuanhong; Gao, Junyuan; Lei, Qilun; Zhou, Yao

    2018-01-01

    Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications. PMID:29747429

  8. Development of equally intelligible Telugu sentence-lists to test speech recognition in noise.

    PubMed

    Tanniru, Kishore; Narne, Vijaya Kumar; Jain, Chandni; Konadath, Sreeraj; Singh, Niraj Kumar; Sreenivas, K J Ramadevi; K, Anusha

    2017-09-01

    To develop sentence lists in the Telugu language for the assessment of speech recognition threshold (SRT) in the presence of background noise through identification of the mean signal-to-noise ratio required to attain a 50% sentence recognition score (SRTn). This study was conducted in three phases. The first phase involved the selection and recording of Telugu sentences. In the second phase, 20 lists, each consisting of 10 sentences with equal intelligibility, were formulated using a numerical optimisation procedure. In the third phase, the SRTn of the developed lists was estimated using adaptive procedures on individuals with normal hearing. A total of 68 native Telugu speakers with normal hearing participated in the study. Of these, 18 (including the speakers) performed on various subjective measures in first phase, 20 performed on sentence/word recognition in noise for second phase and 30 participated in the list equivalency procedures in third phase. In all, 15 lists of comparable difficulty were formulated as test material. The mean SRTn across these lists corresponded to -2.74 (SD = 0.21). The developed sentence lists provided a valid and reliable tool to measure SRTn in Telugu native speakers.

  9. Activity inference for Ambient Intelligence through handling artifacts in a healthcare environment.

    PubMed

    Martínez-Pérez, Francisco E; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C; Rodríguez, Marcela D

    2012-01-01

    Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user.

  10. Activity Inference for Ambient Intelligence Through Handling Artifacts in a Healthcare Environment

    PubMed Central

    Martínez-Pérez, Francisco E.; González-Fraga, Jose Ángel; Cuevas-Tello, Juan C.; Rodríguez, Marcela D.

    2012-01-01

    Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user. PMID:22368512

  11. Computer interpretation of thallium SPECT studies based on neural network analysis

    NASA Astrophysics Data System (ADS)

    Wang, David C.; Karvelis, K. C.

    1991-06-01

    A class of artificial intelligence (Al) programs known as neural networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from "expert system" Al programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The "bullseye" images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of a trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging.

  12. Face recognition system and method using face pattern words and face pattern bytes

    DOEpatents

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  13. Towards building a team of intelligent robots

    NASA Technical Reports Server (NTRS)

    Varanasi, Murali R.; Mehrotra, R.

    1987-01-01

    Topics addressed include: collision-free motion planning of multiple robot arms; two-dimensional object recognition; and pictorial databases (storage and sharing of the representations of three-dimensional objects).

  14. Framework for objective evaluation of privacy filters

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Melle, Andrea; Dugelay, Jean-Luc; Ebrahimi, Touradj

    2013-09-01

    Extensive adoption of video surveillance, affecting many aspects of our daily lives, alarms the public about the increasing invasion into personal privacy. To address these concerns, many tools have been proposed for protection of personal privacy in image and video. However, little is understood regarding the effectiveness of such tools and especially their impact on the underlying surveillance tasks, leading to a tradeoff between the preservation of privacy offered by these tools and the intelligibility of activities under video surveillance. In this paper, we investigate this privacy-intelligibility tradeoff objectively by proposing an objective framework for evaluation of privacy filters. We apply the proposed framework on a use case where privacy of people is protected by obscuring faces, assuming an automated video surveillance system. We used several popular privacy protection filters, such as blurring, pixelization, and masking and applied them with varying strengths to people's faces from different public datasets of video surveillance footage. Accuracy of face detection algorithm was used as a measure of intelligibility (a face should be detected to perform a surveillance task), and accuracy of face recognition algorithm as a measure of privacy (a specific person should not be identified). Under these conditions, after application of an ideal privacy protection tool, an obfuscated face would be visible as a face but would not be correctly identified by the recognition algorithm. The experiments demonstrate that, in general, an increase in strength of privacy filters under consideration leads to an increase in privacy (i.e., reduction in recognition accuracy) and to a decrease in intelligibility (i.e., reduction in detection accuracy). Masking also shows to be the most favorable filter across all tested datasets.

  15. 3D Object Recognition: Symmetry and Virtual Views

    DTIC Science & Technology

    1992-12-01

    NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONI Artificial Intelligence Laboratory REPORT NUMBER 545 Technology Square AIM 1409 Cambridge... ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING A.I. Memo No. 1409 December 1992 C.B.C.L. Paper No. 76 3D Object...research done within the Center for Biological and Computational Learning in the Department of Brain and Cognitive Sciences, and at the Artificial

  16. The Cognitive Bases of Intelligence Analysis.

    DTIC Science & Technology

    1984-01-01

    the truth of a single proposition or to discriminate among several propositions. Indicators represent the potentially observable events that form the ...serves as a checklist against which to evaluate an actual Intelligance product. * If the Ideal product Is specified In sufficient detail for a particular...34 Interf’arence In accessing memory occurs for both recognition and recall. Memory retrieval is most efficient when the memories are discriminable . Memories for

  17. Inferior frontal sensitivity to common speech sounds is amplified by increasing word intelligibility.

    PubMed

    Vaden, Kenneth I; Kuchinsky, Stefanie E; Keren, Noam I; Harris, Kelly C; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A

    2011-11-01

    The left inferior frontal gyrus (LIFG) exhibits increased responsiveness when people listen to words composed of speech sounds that frequently co-occur in the English language (Vaden, Piquado, & Hickok, 2011), termed high phonotactic frequency (Vitevitch & Luce, 1998). The current experiment aimed to further characterize the relation of phonotactic frequency to LIFG activity by manipulating word intelligibility in participants of varying age. Thirty six native English speakers, 19-79 years old (mean=50.5, sd=21.0) indicated with a button press whether they recognized 120 binaurally presented consonant-vowel-consonant words during a sparse sampling fMRI experiment (TR=8 s). Word intelligibility was manipulated by low-pass filtering (cutoff frequencies of 400 Hz, 1000 Hz, 1600 Hz, and 3150 Hz). Group analyses revealed a significant positive correlation between phonotactic frequency and LIFG activity, which was unaffected by age and hearing thresholds. A region of interest analysis revealed that the relation between phonotactic frequency and LIFG activity was significantly strengthened for the most intelligible words (low-pass cutoff at 3150 Hz). These results suggest that the responsiveness of the left inferior frontal cortex to phonotactic frequency reflects the downstream impact of word recognition rather than support of word recognition, at least when there are no speech production demands. Published by Elsevier Ltd.

  18. Baby, Where Did You Get Those Eyes?: IEEE Pulse talks with Mark Sagar about the new face of artificial intelligence.

    PubMed

    Campbell, Sarah

    2015-01-01

    Mark Sagar is changing the way we look at computers by giving them faces?disconcertingly realistic human faces. Sagar first gained widespread recognition for his pioneering work in rendering faces for Hollywood movies, including Avatar and King Kong. With a Ph.D. degree in bioengineering and two Academy Awards under his belt, Sagar now directs a research lab at the University of Auckland, New Zealand, a combinatorial hub where artificial intelligence (AI), neuroscience, computer science, philosophy, and cognitive psychology intersect in creating interactive, intelligent technologies.

  19. A new intrusion prevention model using planning knowledge graph

    NASA Astrophysics Data System (ADS)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  20. Artificial intelligence and signal processing for infrastructure assessment

    NASA Astrophysics Data System (ADS)

    Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif

    2015-04-01

    The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.

  1. Feature extraction inspired by V1 in visual cortex

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Xu, Yuelei; Zhang, Xulei; Ma, Shiping; Li, Shuai; Xin, Peng; Zhu, Mingning; Ma, Hongqiang

    2018-04-01

    Target feature extraction plays an important role in pattern recognition. It is the most complicated activity in the brain mechanism of biological vision. Inspired by high properties of primary visual cortex (V1) in extracting dynamic and static features, a visual perception model was raised. Firstly, 28 spatial-temporal filters with different orientations, half-squaring operation and divisive normalization were adopted to obtain the responses of V1 simple cells; then, an adjustable parameter was added to the output weight so that the response of complex cells was got. Experimental results indicate that the proposed V1 model can perceive motion information well. Besides, it has a good edge detection capability. The model inspired by V1 has good performance in feature extraction and effectively combines brain-inspired intelligence with computer vision.

  2. Computational Intelligence Techniques for Tactile Sensing Systems

    PubMed Central

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  3. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  4. Comprehensive evaluation of a child with an auditory brainstem implant.

    PubMed

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  5. Pattern Recognition Using Artificial Neural Network: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.

  6. An Intelligent Cloud Storage Gateway for Medical Imaging.

    PubMed

    Viana-Ferreira, Carlos; Guerra, António; Silva, João F; Matos, Sérgio; Costa, Carlos

    2017-09-01

    Historically, medical imaging repositories have been supported by indoor infrastructures. However, the amount of diagnostic imaging procedures has continuously increased over the last decades, imposing several challenges associated with the storage volume, data redundancy and availability. Cloud platforms are focused on delivering hardware and software services over the Internet, becoming an appealing solution for repository outsourcing. Although this option may bring financial and technological benefits, it also presents new challenges. In medical imaging scenarios, communication latency is a critical issue that still hinders the adoption of this paradigm. This paper proposes an intelligent Cloud storage gateway that optimizes data access times. This is achieved through a new cache architecture that combines static rules and pattern recognition for eviction and prefetching. The evaluation results, obtained from experiments over a real-world dataset, show that cache hit ratios can reach around 80%, leading to reductions of image retrieval times by over 60%. The combined use of eviction and prefetching policies proposed can significantly reduce communication latency, even when using a small cache in comparison to the total size of the repository. Apart from the performance gains, the proposed system is capable of adjusting to specific workflows of different institutions.

  7. Discrepant visual speech facilitates covert selective listening in "cocktail party" conditions.

    PubMed

    Williams, Jason A

    2012-06-01

    The presence of congruent visual speech information facilitates the identification of auditory speech, while the addition of incongruent visual speech information often impairs accuracy. This latter arrangement occurs naturally when one is being directly addressed in conversation but listens to a different speaker. Under these conditions, performance may diminish since: (a) one is bereft of the facilitative effects of the corresponding lip motion and (b) one becomes subject to visual distortion by incongruent visual speech; by contrast, speech intelligibility may be improved due to (c) bimodal localization of the central unattended stimulus. Participants were exposed to centrally presented visual and auditory speech while attending to a peripheral speech stream. In some trials, the lip movements of the central visual stimulus matched the unattended speech stream; in others, the lip movements matched the attended peripheral speech. Accuracy for the peripheral stimulus was nearly one standard deviation greater with incongruent visual information, compared to the congruent condition which provided bimodal pattern recognition cues. Likely, the bimodal localization of the central stimulus further differentiated the stimuli and thus facilitated intelligibility. Results are discussed with regard to similar findings in an investigation of the ventriloquist effect, and the relative strength of localization and speech cues in covert listening.

  8. An immune-inspired semi-supervised algorithm for breast cancer diagnosis.

    PubMed

    Peng, Lingxi; Chen, Wenbin; Zhou, Wubai; Li, Fufang; Yang, Jin; Zhang, Jiandong

    2016-10-01

    Breast cancer is the most frequently and world widely diagnosed life-threatening cancer, which is the leading cause of cancer death among women. Early accurate diagnosis can be a big plus in treating breast cancer. Researchers have approached this problem using various data mining and machine learning techniques such as support vector machine, artificial neural network, etc. The computer immunology is also an intelligent method inspired by biological immune system, which has been successfully applied in pattern recognition, combination optimization, machine learning, etc. However, most of these diagnosis methods belong to a supervised diagnosis method. It is very expensive to obtain labeled data in biology and medicine. In this paper, we seamlessly integrate the state-of-the-art research on life science with artificial intelligence, and propose a semi-supervised learning algorithm to reduce the need for labeled data. We use two well-known benchmark breast cancer datasets in our study, which are acquired from the UCI machine learning repository. Extensive experiments are conducted and evaluated on those two datasets. Our experimental results demonstrate the effectiveness and efficiency of our proposed algorithm, which proves that our algorithm is a promising automatic diagnosis method for breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    ERIC Educational Resources Information Center

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  10. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  11. Understanding eye movements in face recognition using hidden Markov models.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  12. Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    NASA Technical Reports Server (NTRS)

    Szu, Harold H.

    1990-01-01

    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously.

  13. Vision-based object detection and recognition system for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Ran, Bin; Liu, Henry X.; Martono, Wilfung

    1999-01-01

    Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.

  14. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  15. Intelligent multi-sensor integrations

    NASA Technical Reports Server (NTRS)

    Volz, Richard A.; Jain, Ramesh; Weymouth, Terry

    1989-01-01

    Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration.

  16. Transfer Learning for Activity Recognition: A Survey

    PubMed Central

    Cook, Diane; Feuz, Kyle D.; Krishnan, Narayanan C.

    2013-01-01

    Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed. PMID:24039326

  17. Speech-on-speech masking with variable access to the linguistic content of the masker speech for native and nonnative english speakers.

    PubMed

    Calandruccio, Lauren; Bradlow, Ann R; Dhar, Sumitrajit

    2014-04-01

    Masking release for an English sentence-recognition task in the presence of foreign-accented English speech compared with native-accented English speech was reported in Calandruccio et al (2010a). The masking release appeared to increase as the masker intelligibility decreased. However, it could not be ruled out that spectral differences between the speech maskers were influencing the significant differences observed. The purpose of the current experiment was to minimize spectral differences between speech maskers to determine how various amounts of linguistic information within competing speech Affiliationect masking release. A mixed-model design with within-subject (four two-talker speech maskers) and between-subject (listener group) factors was conducted. Speech maskers included native-accented English speech and high-intelligibility, moderate-intelligibility, and low-intelligibility Mandarin-accented English. Normalizing the long-term average speech spectra of the maskers to each other minimized spectral differences between the masker conditions. Three listener groups were tested, including monolingual English speakers with normal hearing, nonnative English speakers with normal hearing, and monolingual English speakers with hearing loss. The nonnative English speakers were from various native language backgrounds, not including Mandarin (or any other Chinese dialect). Listeners with hearing loss had symmetric mild sloping to moderate sensorineural hearing loss. Listeners were asked to repeat back sentences that were presented in the presence of four different two-talker speech maskers. Responses were scored based on the key words within the sentences (100 key words per masker condition). A mixed-model regression analysis was used to analyze the difference in performance scores between the masker conditions and listener groups. Monolingual English speakers with normal hearing benefited when the competing speech signal was foreign accented compared with native accented, allowing for improved speech recognition. Various levels of intelligibility across the foreign-accented speech maskers did not influence results. Neither the nonnative English-speaking listeners with normal hearing nor the monolingual English speakers with hearing loss benefited from masking release when the masker was changed from native-accented to foreign-accented English. Slight modifications between the target and the masker speech allowed monolingual English speakers with normal hearing to improve their recognition of native-accented English, even when the competing speech was highly intelligible. Further research is needed to determine which modifications within the competing speech signal caused the Mandarin-accented English to be less effective with respect to masking. Determining the influences within the competing speech that make it less effective as a masker or determining why monolingual normal-hearing listeners can take advantage of these differences could help improve speech recognition for those with hearing loss in the future. American Academy of Audiology.

  18. Pattern activation/recognition theory of mind

    PubMed Central

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  19. Pattern activation/recognition theory of mind.

    PubMed

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  20. Towards Smart Homes Using Low Level Sensory Data

    PubMed Central

    Khattak, Asad Masood; Truc, Phan Tran Ho; Hung, Le Xuan; Vinh, La The; Dang, Viet-Hung; Guan, Donghai; Pervez, Zeeshan; Han, Manhyung; Lee, Sungyoung; Lee, Young-Koo

    2011-01-01

    Ubiquitous Life Care (u-Life care) is receiving attention because it provides high quality and low cost care services. To provide spontaneous and robust healthcare services, knowledge of a patient’s real-time daily life activities is required. Context information with real-time daily life activities can help to provide better services and to improve healthcare delivery. The performance and accuracy of existing life care systems is not reliable, even with a limited number of services. This paper presents a Human Activity Recognition Engine (HARE) that monitors human health as well as activities using heterogeneous sensor technology and processes these activities intelligently on a Cloud platform for providing improved care at low cost. We focus on activity recognition using video-based, wearable sensor-based, and location-based activity recognition engines and then use intelligent processing to analyze the context of the activities performed. The experimental results of all the components showed good accuracy against existing techniques. The system is deployed on Cloud for Alzheimer’s disease patients (as a case study) with four activity recognition engines to identify low level activity from the raw data captured by sensors. These are then manipulated using ontology to infer higher level activities and make decisions about a patient’s activity using patient profile information and customized rules. PMID:22247682

  1. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    PubMed

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers' voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker's face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.

  2. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and powerful case matching mechanisms), technical solutions are challenging. Finally, we discuss the major challenges for a technical solution: case record comprehensiveness, organization of information on similarity principles, development of pattern recognition and solving ethical issues. Summary Medical Informatics is an applied science that should be committed to advancing patient-centered medicine through individual knowledge processing. Case-based reasoning is the technical solution that enables a continuous individual knowledge processing and could be applied providing that challenges and ethical issues arising are addressed appropriately. PMID:15533257

  3. Low-cost and high-speed optical mark reader based on an intelligent line camera

    NASA Astrophysics Data System (ADS)

    Hussmann, Stephan; Chan, Leona; Fung, Celine; Albrecht, Martin

    2003-08-01

    Optical Mark Recognition (OMR) is thoroughly reliable and highly efficient provided that high standards are maintained at both the planning and implementation stages. It is necessary to ensure that OMR forms are designed with due attention to data integrity checks, the best use is made of features built into the OMR, used data integrity is checked before the data is processed and data is validated before it is processed. This paper describes the design and implementation of an OMR prototype system for marking multiple-choice tests automatically. Parameter testing is carried out before the platform and the multiple-choice answer sheet has been designed. Position recognition and position verification methods have been developed and implemented in an intelligent line scan camera. The position recognition process is implemented into a Field Programmable Gate Array (FPGA), whereas the verification process is implemented into a micro-controller. The verified results are then sent to the Graphical User Interface (GUI) for answers checking and statistical analysis. At the end of the paper the proposed OMR system will be compared with commercially available system on the market.

  4. Hands-free human-machine interaction with voice

    NASA Astrophysics Data System (ADS)

    Juang, B. H.

    2004-05-01

    Voice is natural communication interface between a human and a machine. The machine, when placed in today's communication networks, may be configured to provide automation to save substantial operating cost, as demonstrated in AT&T's VRCP (Voice Recognition Call Processing), or to facilitate intelligent services, such as virtual personal assistants, to enhance individual productivity. These intelligent services often need to be accessible anytime, anywhere (e.g., in cars when the user is in a hands-busy-eyes-busy situation or during meetings where constantly talking to a microphone is either undersirable or impossible), and thus call for advanced signal processing and automatic speech recognition techniques which support what we call ``hands-free'' human-machine communication. These techniques entail a broad spectrum of technical ideas, ranging from use of directional microphones and acoustic echo cancellatiion to robust speech recognition. In this talk, we highlight a number of key techniques that were developed for hands-free human-machine communication in the mid-1990s after Bell Labs became a unit of Lucent Technologies. A video clip will be played to demonstrate the accomplishement.

  5. Study on road sign recognition in LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2016-02-01

    Road and traffic sign identification is a field of study that can be used to aid the development of in-car advisory systems. It uses computer vision and artificial intelligence to extract the road signs from outdoor images acquired by a camera in uncontrolled lighting conditions where they may be occluded by other objects, or may suffer from problems such as color fading, disorientation, variations in shape and size, etc. An automatic means of identifying traffic signs, in these conditions, can make a significant contribution to develop an Intelligent Transport Systems (ITS) that continuously monitors the driver, the vehicle, and the road. Road and traffic signs are characterized by a number of features which make them recognizable from the environment. Road signs are located in standard positions and have standard shapes, standard colors, and known pictograms. These characteristics make them suitable for image identification. Traffic sign identification covers two problems: traffic sign detection and traffic sign recognition. Traffic sign detection is meant for the accurate localization of traffic signs in the image space, while traffic sign recognition handles the labeling of such detections into specific traffic sign types or subcategories [1].

  6. Research on the transfer learning of the vehicle logo recognition

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    2017-08-01

    The Convolutional Neural Network of Deep Learning has been a huge success in the field of image intelligent transportation system can effectively solve the traffic safety, congestion, vehicle management and other problems of traffic in the city. Vehicle identification is a vital part of intelligent transportation, and the effective information in vehicles is of great significance to vehicle identification. With the traffic system on the vehicle identification technology requirements are getting higher and higher, the vehicle as an important type of vehicle information, because it should not be removed, difficult to change and other features for vehicle identification provides an important method. The current vehicle identification recognition (VLR) is mostly used to extract the characteristics of the method of classification, which for complex classification of its generalization ability to be some constraints, if the use of depth learning technology, you need a lot of training samples. In this paper, the method of convolution neural network based on transfer learning can solve this problem effectively, and it has important practical application value in the task of vehicle mark recognition.

  7. An Analysis of Individual Differences in Recognizing Monosyllabic Words Under the Speech Intelligibility Index Framework

    PubMed Central

    Shen, Yi; Kern, Allison B.

    2018-01-01

    Individual differences in the recognition of monosyllabic words, either in isolation (NU6 test) or in sentence context (SPIN test), were investigated under the theoretical framework of the speech intelligibility index (SII). An adaptive psychophysical procedure, namely the quick-band-importance-function procedure, was developed to enable the fitting of the SII model to individual listeners. Using this procedure, the band importance function (i.e., the relative weights of speech information across the spectrum) and the link function relating the SII to recognition scores can be simultaneously estimated while requiring only 200 to 300 trials of testing. Octave-frequency band importance functions and link functions were estimated separately for NU6 and SPIN materials from 30 normal-hearing listeners who were naïve to speech recognition experiments. For each type of speech material, considerable individual differences in the spectral weights were observed in some but not all frequency regions. At frequencies where the greatest intersubject variability was found, the spectral weights were correlated between the two speech materials, suggesting that the variability in spectral weights reflected listener-originated factors. PMID:29532711

  8. Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery.

    PubMed

    Culver, Heidi R; Clegg, John R; Peppas, Nicholas A

    2017-02-21

    Nature has mastered the art of molecular recognition. For example, using synergistic non-covalent interactions, proteins can distinguish between molecules and bind a partner with incredible affinity and specificity. Scientists have developed, and continue to develop, techniques to investigate and better understand molecular recognition. As a consequence, analyte-responsive hydrogels that mimic these recognitive processes have emerged as a class of intelligent materials. These materials are unique not only in the type of analyte to which they respond but also in how molecular recognition is achieved and how the hydrogel responds to the analyte. Traditional intelligent hydrogels can respond to environmental cues such as pH, temperature, and ionic strength. The functional monomers used to make these hydrogels can be varied to achieve responsive behavior. For analyte-responsive hydrogels, molecular recognition can also be achieved by incorporating biomolecules with inherent molecular recognition properties (e.g., nucleic acids, peptides, enzymes, etc.) into the polymer network. Furthermore, in addition to typical swelling/syneresis responses, these materials exhibit unique responsive behaviors, such as gel assembly or disassembly, upon interaction with the target analyte. With the diverse tools available for molecular recognition and the ability to generate unique responsive behaviors, analyte-responsive hydrogels have found great utility in a wide range of applications. In this Account, we discuss strategies for making four different classes of analyte-responsive hydrogels, specifically, non-imprinted, molecularly imprinted, biomolecule-containing, and enzymatically responsive hydrogels. Then we explore how these materials have been incorporated into sensors and drug delivery systems, highlighting examples that demonstrate the versatility of these materials. For example, in addition to the molecular recognition properties of analyte-responsive hydrogels, the physicochemical changes that are induced upon analyte binding can be exploited to generate a detectable signal for sensing applications. As research in this area has grown, a number of creative approaches for improving the selectivity and sensitivity (i.e., detection limit) of these sensors have emerged. For applications in drug delivery systems, therapeutic release can be triggered by competitive molecular interactions or physicochemical changes in the network. Additionally, including degradable units within the network can enable sustained and responsive therapeutic release. Several exciting examples exploiting the analyte-responsive behavior of hydrogels for the treatment of cancer, diabetes, and irritable bowel syndrome are discussed in detail. We expect that creative and combinatorial approaches used in the design of analyte-responsive hydrogels will continue to yield materials with great potential in the fields of sensing and drug delivery.

  9. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.

    PubMed

    Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra

    2013-07-02

    The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA functionalization and hybridization. The yield of formed aggregates was found to be about 44%, with a relative fraction of dimers of some 30%. Finally, the electrical properties of the formed dimers were characterized using probe tips inside a scanning electron microscope.

  10. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory?

    PubMed

    Baddeley, A; Vargha-Khadem, F; Mishkin, M

    2001-04-01

    We report the performance on recognition memory tests of Jon, who, despite amnesia from early childhood, has developed normal levels of performance on tests of intelligence, language, and general knowledge. Despite impaired recall, he performed within the normal range on each of six recognition tests, but he appears to lack the recollective phenomenological experience normally associated with episodic memory. His recall of previously unfamiliar newsreel events was impaired, but gained substantially from repetition over a 2-day period. Our results are consistent with the hypothesis that the recollective process of episodic memory is not necessary either for recognition or for the acquisition of semantic knowledge.

  11. Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation

    PubMed Central

    Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin

    2013-01-01

    With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activities, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation of the performance of human activity recognition. PMID:23353144

  12. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  13. Development of a Tool Condition Monitoring System for Impregnated Diamond Bits in Rock Drilling Applications

    NASA Astrophysics Data System (ADS)

    Perez, Santiago; Karakus, Murat; Pellet, Frederic

    2017-05-01

    The great success and widespread use of impregnated diamond (ID) bits are due to their self-sharpening mechanism, which consists of a constant renewal of diamonds acting at the cutting face as the bit wears out. It is therefore important to keep this mechanism acting throughout the lifespan of the bit. Nonetheless, such a mechanism can be altered by the blunting of the bit that ultimately leads to a less than optimal drilling performance. For this reason, this paper aims at investigating the applicability of artificial intelligence-based techniques in order to monitor tool condition of ID bits, i.e. sharp or blunt, under laboratory conditions. Accordingly, topologically invariant tests are carried out with sharp and blunt bits conditions while recording acoustic emissions (AE) and measuring-while-drilling variables. The combined output of acoustic emission root-mean-square value (AErms), depth of cut ( d), torque (tob) and weight-on-bit (wob) is then utilized to create two approaches in order to predict the wear state condition of the bits. One approach is based on the combination of the aforementioned variables and another on the specific energy of drilling. The two different approaches are assessed for classification performance with various pattern recognition algorithms, such as simple trees, support vector machines, k-nearest neighbour, boosted trees and artificial neural networks. In general, Acceptable pattern recognition rates were obtained, although the subset composed by AErms and tob excels due to the high classification performances rates and fewer input variables.

  14. Development of an automated ultrasonic testing system

    NASA Astrophysics Data System (ADS)

    Shuxiang, Jiao; Wong, Brian Stephen

    2005-04-01

    Non-Destructive Testing is necessary in areas where defects in structures emerge over time due to wear and tear and structural integrity is necessary to maintain its usability. However, manual testing results in many limitations: high training cost, long training procedure, and worse, the inconsistent test results. A prime objective of this project is to develop an automatic Non-Destructive testing system for a shaft of the wheel axle of a railway carriage. Various methods, such as the neural network, pattern recognition methods and knowledge-based system are used for the artificial intelligence problem. In this paper, a statistical pattern recognition approach, Classification Tree is applied. Before feature selection, a thorough study on the ultrasonic signals produced was carried out. Based on the analysis of the ultrasonic signals, three signal processing methods were developed to enhance the ultrasonic signals: Cross-Correlation, Zero-Phase filter and Averaging. The target of this step is to reduce the noise and make the signal character more distinguishable. Four features: 1. The Auto Regressive Model Coefficients. 2. Standard Deviation. 3. Pearson Correlation 4. Dispersion Uniformity Degree are selected. And then a Classification Tree is created and applied to recognize the peak positions and amplitudes. Searching local maximum is carried out before feature computing. This procedure reduces much computation time in the real-time testing. Based on this algorithm, a software package called SOFRA was developed to recognize the peaks, calibrate automatically and test a simulated shaft automatically. The automatic calibration procedure and the automatic shaft testing procedure are developed.

  15. The role of pattern recognition in creative problem solving: a case study in search of new mathematics for biology.

    PubMed

    Hong, Felix T

    2013-09-01

    Rosen classified sciences into two categories: formalizable and unformalizable. Whereas formalizable sciences expressed in terms of mathematical theories were highly valued by Rutherford, Hutchins pointed out that unformalizable parts of soft sciences are of genuine interest and importance. Attempts to build mathematical theories for biology in the past century was met with modest and sporadic successes, and only in simple systems. In this article, a qualitative model of humans' high creativity is presented as a starting point to consider whether the gap between soft and hard sciences is bridgeable. Simonton's chance-configuration theory, which mimics the process of evolution, was modified and improved. By treating problem solving as a process of pattern recognition, the known dichotomy of visual thinking vs. verbal thinking can be recast in terms of analog pattern recognition (non-algorithmic process) and digital pattern recognition (algorithmic process), respectively. Additional concepts commonly encountered in computer science, operations research and artificial intelligence were also invoked: heuristic searching, parallel and sequential processing. The refurbished chance-configuration model is now capable of explaining several long-standing puzzles in human cognition: a) why novel discoveries often came without prior warning, b) why some creators had no ideas about the source of inspiration even after the fact, c) why some creators were consistently luckier than others, and, last but not least, d) why it was so difficult to explain what intuition, inspiration, insight, hunch, serendipity, etc. are all about. The predictive power of the present model was tested by means of resolving Zeno's paradox of Achilles and the Tortoise after one deliberately invoked visual thinking. Additional evidence of its predictive power must await future large-scale field studies. The analysis was further generalized to constructions of scientific theories in general. This approach is in line with Campbell's evolutionary epistemology. Instead of treating science as immutable Natural Laws, which already existed and which were just waiting to be discovered, scientific theories are regarded as humans' mental constructs, which must be invented to reconcile with observed natural phenomena. In this way, the pursuit of science is shifted from diligent and systematic (or random) searching for existing Natural Laws to firing up humans' imagination to comprehend Nature's behavioral pattern. The insights gained in understanding human creativity indicated that new mathematics that is capable of handling effectively parallel processing and human subjectivity is sorely needed. The past classification of formalizability vs. non-formalizability was made in reference to contemporary mathematics. Rosen's conclusion did not preclude future inventions of new biology-friendly mathematics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  17. Predicting stress from the ability to eavesdrop on feelings: Emotional intelligence and testosterone jointly predict cortisol reactivity.

    PubMed

    Bechtoldt, Myriam N; Schneider, Vanessa K

    2016-09-01

    While emotional intelligence (EI) is recognized as a resource in social interactions, we hypothesized a positive association with stress in socially evaluative contexts. In particular, we expected emotion recognition, the core component of EI, to inflict stress on individuals in negatively valenced interactions. We expected this association to be stronger for status-driven individuals, that is, for individuals scoring high on basal testosterone. In a laboratory experiment, N = 166 male participants underwent the Trier Social Stress Test (Kirschbaum, Pirke, & Hellhammer, 1993). As expected, EI measured by the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT V2.0; Mayer et al., 2003) predicted higher cortisol reactivity, including slower recovery from stress. The effect was moderated by basal testosterone, such that the association was positive when basal testosterone was high but not when it was low. On the component level of EI, the interaction was replicated for negative emotion recognition. These findings lend support to the hypothesis that EI is associated with higher activity of the hypothalamic-pituitary-adrenal axis in contexts where social status is at stake, particularly for those individuals who are more status-driven. Thus, the effects of EI are not unequivocally positive: While EI may positively affect the course of social interactions, it also inflicts stress on the emotionally intelligent individuals themselves. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  19. Stereo vision with distance and gradient recognition

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu

    2007-12-01

    Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.

  20. Emotional recognition from the speech signal for a virtual education agent

    NASA Astrophysics Data System (ADS)

    Tickle, A.; Raghu, S.; Elshaw, M.

    2013-06-01

    This paper explores the extraction of features from the speech wave to perform intelligent emotion recognition. A feature extract tool (openSmile) was used to obtain a baseline set of 998 acoustic features from a set of emotional speech recordings from a microphone. The initial features were reduced to the most important ones so recognition of emotions using a supervised neural network could be performed. Given that the future use of virtual education agents lies with making the agents more interactive, developing agents with the capability to recognise and adapt to the emotional state of humans is an important step.

  1. Detection of Terrorist Preparations by an Artificial Intelligence Expert System Employing Fuzzy Signal Detection Theory

    DTIC Science & Technology

    2004-10-25

    FUSEDOT does not require facial recognition , or video surveillance of public areas, both of which are apparently a component of TIA ([26], pp...does not use fuzzy signal detection. Involves facial recognition and video surveillance of public areas. Involves monitoring the content of voice...fuzzy signal detection, which TIA does not. Second, FUSEDOT would be easier to develop, because it does not require the development of facial

  2. Novel wavelength diversity technique for high-speed atmospheric turbulence compensation

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.; Sullivan, Sean F.

    2010-04-01

    The defense, intelligence, and homeland security communities are driving a need for software dominant, real-time or near-real time atmospheric turbulence compensated imagery. The development of parallel processing capabilities are finding application in diverse areas including image processing, target tracking, pattern recognition, and image fusion to name a few. A novel approach to the computationally intensive case of software dominant optical and near infrared imaging through atmospheric turbulence is addressed in this paper. Previously, the somewhat conventional wavelength diversity method has been used to compensate for atmospheric turbulence with great success. We apply a new correlation based approach to the wavelength diversity methodology using a parallel processing architecture enabling high speed atmospheric turbulence compensation. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented, and computational and performance assessments are provided.

  3. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  4. The foundations of plant intelligence.

    PubMed

    Trewavas, Anthony

    2017-06-06

    Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.

  5. The foundations of plant intelligence

    PubMed Central

    2017-01-01

    Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses. PMID:28479977

  6. Neural network application for thermal image recognition of low-resolution objects

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Wu, Bo-Wen

    2007-02-01

    In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.

  7. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  8. Intelligence Level and the Allocation of Resources for Creative Tasks: A Pupillometry Study

    ERIC Educational Resources Information Center

    Ojha, Amitash; Indurkhya, Bipin; Lee, Minho

    2017-01-01

    This pupillometry study examined the relationship between intelligence and creative cognition from the resource allocation perspective. It was hypothesized that, during a creative metaphor task, individuals with higher intelligence scores would have different resource allocation patterns than individuals with lower intelligence scores. The study…

  9. Intelligence Score Profiles of Female Juvenile Offenders

    ERIC Educational Resources Information Center

    Werner, Shelby Spare; Hart, Kathleen J.; Ficke, Susan L.

    2016-01-01

    Previous studies have found that male juvenile offenders typically obtain low scores on measures of intelligence, often with a pattern of higher scores on measures of nonverbal relative to verbal tasks. The research on the intelligence performance of female juvenile offenders is limited. This study explored the Wechsler Intelligence Scale for…

  10. Imaging structural covariance in the development of intelligence.

    PubMed

    Khundrakpam, Budhachandra S; Lewis, John D; Reid, Andrew; Karama, Sherif; Zhao, Lu; Chouinard-Decorte, Francois; Evans, Alan C

    2017-01-01

    Verbal and non-verbal intelligence in children is highly correlated, and thus, it has been difficult to differentiate their neural substrates. Nevertheless, recent studies have shown that verbal and non-verbal intelligence can be dissociated and focal cortical regions corresponding to each have been demonstrated. However, the pattern of structural covariance corresponding to verbal and non-verbal intelligence remains unexplored. In this study, we used 586 longitudinal anatomical MRI scans of subjects aged 6-18 years, who had concurrent intelligence quotient (IQ) testing on the Wechsler Abbreviated Scale of Intelligence. Structural covariance networks (SCNs) were constructed using interregional correlations in cortical thickness for low-IQ (Performance IQ=100±8, Verbal IQ=100±7) and high-IQ (PIQ=121±8, VIQ=120±9) groups. From low- to high-VIQ group, we observed constrained patterns of anatomical coupling among cortical regions, complemented by observations of higher global efficiency and modularity, and lower local efficiency in high-VIQ group, suggesting a shift towards a more optimal topological organization. Analysis of nodal topological properties (regional efficiency and participation coefficient) revealed greater involvement of left-hemispheric language related regions including inferior frontal and superior temporal gyri for high-VIQ group. From low- to high-PIQ group, we did not observe significant differences in anatomical coupling patterns, global and nodal topological properties. Our findings indicate that people with higher verbal intelligence have structural brain differences from people with lower verbal intelligence - not only in localized cortical regions, but also in the patterns of anatomical coupling among widely distributed cortical regions, possibly resulting to a system-level reorganization that might lead to a more efficient organization in high-VIQ group. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    PubMed

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  12. 'Tagger' - a Mac OS X Interactive Graphical Application for Data Inference and Analysis of N-Dimensional Datasets in the Natural Physical Sciences.

    NASA Astrophysics Data System (ADS)

    Morse, P. E.; Reading, A. M.; Lueg, C.

    2014-12-01

    Pattern-recognition in scientific data is not only a computational problem but a human-observer problem as well. Human observation of - and interaction with - data visualization software can augment, select, interrupt and modify computational routines and facilitate processes of pattern and significant feature recognition for subsequent human analysis, machine learning, expert and artificial intelligence systems.'Tagger' is a Mac OS X interactive data visualisation tool that facilitates Human-Computer interaction for the recognition of patterns and significant structures. It is a graphical application developed using the Quartz Composer framework. 'Tagger' follows a Model-View-Controller (MVC) software architecture: the application problem domain (the model) is to facilitate novel ways of abstractly representing data to a human interlocutor, presenting these via different viewer modalities (e.g. chart representations, particle systems, parametric geometry) to the user (View) and enabling interaction with the data (Controller) via a variety of Human Interface Devices (HID). The software enables the user to create an arbitrary array of tags that may be appended to the visualised data, which are then saved into output files as forms of semantic metadata. Three fundamental problems that are not strongly supported by conventional scientific visualisation software are addressed:1] How to visually animate data over time, 2] How to rapidly deploy unconventional parametrically driven data visualisations, 3] How to construct and explore novel interaction models that capture the activity of the end-user as semantic metadata that can be used to computationally enhance subsequent interrogation. Saved tagged data files may be loaded into Tagger, so that tags may be tagged, if desired. Recursion opens up the possibility of refining or overlapping different types of tags, tagging a variety of different POIs or types of events, and of capturing different types of specialist observations of important or noticeable events. Other visualisations and modes of interaction will also be demonstrated, with the aim of discovering knowledge in large datasets in the natural, physical sciences. Fig.1 Wave height data from an oceanographic Wave Rider Buoy. Colors/radii are driven by wave height data.

  13. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  14. Intelligent Facial Recognition Systems: Technology advancements for security applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g.,more » fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.« less

  15. Invariant recognition drives neural representations of action sequences

    PubMed Central

    Poggio, Tomaso

    2017-01-01

    Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs), that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences. PMID:29253864

  16. Artificial intelligence, expert systems, computer vision, and natural language processing

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  17. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  18. Distributed video data fusion and mining

    NASA Astrophysics Data System (ADS)

    Chang, Edward Y.; Wang, Yuan-Fang; Rodoplu, Volkan

    2004-09-01

    This paper presents an event sensing paradigm for intelligent event-analysis in a wireless, ad hoc, multi-camera, video surveillance system. In particilar, we present statistical methods that we have developed to support three aspects of event sensing: 1) energy-efficient, resource-conserving, and robust sensor data fusion and analysis, 2) intelligent event modeling and recognition, and 3) rapid deployment, dynamic configuration, and continuous operation of the camera networks. We outline our preliminary results, and discuss future directions that research might take.

  19. Leader/Follower Behaviour Using the SIFT Algorithm for Object Recognition

    DTIC Science & Technology

    2006-06-01

    opérations de convoiement plus complexes qui utiliseraient une vision artificielle basée sur la détection d’un chef. Les travaux futurs : Étant donné la...Systems: A Virtual Trailer Link Model, In Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems. [4] Hong, P., Sahli, H., Colon, E., and... Intelligent Robots and Systems. [6] Nguyen, H., Kogut, G., Barua, R., and Burmeister, A. (2004), A Segway RMP-based Robotic Transport System, In In

  20. Neural network pattern recognition of thermal-signature spectra for chemical defense

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Lim, Pascal I.

    1995-05-01

    We treat infrared patterns of absorption or emission by nerve and blister agent compounds (and simulants of this chemical group) as features for the training of neural networks to detect the compounds' liquid layers on the ground or their vapor plumes during evaporation by external heating. Training of a four-layer network architecture is composed of a backward-error-propagation algorithm and a gradient-descent paradigm. We conduct testing by feed-forwarding preprocessed spectra through the network in a scaled format consistent with the structure of the training-data-set representation. The best-performance weight matrix (spectral filter) evolved from final network training and testing with software simulation trials is electronically transferred to a set of eight artificial intelligence integrated circuits (ICs') in specific modular form (splitting of weight matrices). This form makes full use of all input-output IC nodes. This neural network computer serves an important real-time detection function when it is integrated into pre-and postprocessing data-handling units of a tactical prototype thermoluminescence sensor now under development at the Edgewood Research, Development, and Engineering Center.

  1. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  2. Top 10 "Smart" Technologies for Schools.

    ERIC Educational Resources Information Center

    Fodeman, Doug; Holzberg, Carol S.; Kennedy, Kristen; McIntire, Todd; McLester, Susan; Ohler, Jason; Parham, Charles; Poftak, Amy; Schrock, Kathy; Warlick, David

    2002-01-01

    Describes 10 smart technologies for education, including voice to text software; mobile computing; hybrid computing; virtual reality; artificial intelligence; telementoring; assessment methods; digital video production; fingerprint recognition; and brain functions. Lists pertinent Web sites for each technology. (LRW)

  3. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network.

    PubMed

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-07-12

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.

  4. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  5. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  6. Application of the SP theory of intelligence to the understanding of natural vision and the development of computer vision.

    PubMed

    Wolff, J Gerard

    2014-01-01

    The SP theory of intelligence aims to simplify and integrate concepts in computing and cognition, with information compression as a unifying theme. This article is about how the SP theory may, with advantage, be applied to the understanding of natural vision and the development of computer vision. Potential benefits include an overall simplification of concepts in a universal framework for knowledge and seamless integration of vision with other sensory modalities and other aspects of intelligence. Low level perceptual features such as edges or corners may be identified by the extraction of redundancy in uniform areas in the manner of the run-length encoding technique for information compression. The concept of multiple alignment in the SP theory may be applied to the recognition of objects, and to scene analysis, with a hierarchy of parts and sub-parts, at multiple levels of abstraction, and with family-resemblance or polythetic categories. The theory has potential for the unsupervised learning of visual objects and classes of objects, and suggests how coherent concepts may be derived from fragments. As in natural vision, both recognition and learning in the SP system are robust in the face of errors of omission, commission and substitution. The theory suggests how, via vision, we may piece together a knowledge of the three-dimensional structure of objects and of our environment, it provides an account of how we may see things that are not objectively present in an image, how we may recognise something despite variations in the size of its retinal image, and how raster graphics and vector graphics may be unified. And it has things to say about the phenomena of lightness constancy and colour constancy, the role of context in recognition, ambiguities in visual perception, and the integration of vision with other senses and other aspects of intelligence.

  7. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  8. Classification and machine recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.

  9. The search for extra-terrestrial intelligence.

    PubMed

    Drake, Frank

    2011-02-13

    Modern history of the search for extra-terrestrial intelligence is reviewed. The history of radio searches is discussed, as well as the major advances that have occurred in radio searches and prospects for new instruments and search strategies. Recent recognition that searches for optical and infrared signals make sense, and the reasons for this are described, as well as the equipment and special detection methods used in optical searches. The long-range future of the search for extra-terrestrial intelligence (SETI) is discussed in the context of the history of rapid change, on the cosmic and even the human time scale, of the paradigms guiding SETI searches. This suggests that SETI searches be conducted with a very open mind.

  10. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  11. New Optical Transforms For Statistical Image Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Sing H.

    1983-12-01

    In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.

  12. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  13. Visual feature extraction and establishment of visual tags in the intelligent visual internet of things

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqun; Wang, Zhihui

    2015-12-01

    The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.

  14. Using eye movements as an index of implicit face recognition in autism spectrum disorder.

    PubMed

    Hedley, Darren; Young, Robyn; Brewer, Neil

    2012-10-01

    Individuals with an autism spectrum disorder (ASD) typically show impairment on face recognition tasks. Performance has usually been assessed using overt, explicit recognition tasks. Here, a complementary method involving eye tracking was used to examine implicit face recognition in participants with ASD and in an intelligence quotient-matched non-ASD control group. Differences in eye movement indices between target and foil faces were used as an indicator of implicit face recognition. Explicit face recognition was assessed using old-new discrimination and reaction time measures. Stimuli were faces of studied (target) or unfamiliar (foil) persons. Target images at test were either identical to the images presented at study or altered by changing the lighting, pose, or by masking with visual noise. Participants with ASD performed worse than controls on the explicit recognition task. Eye movement-based measures, however, indicated that implicit recognition may not be affected to the same degree as explicit recognition. Autism Res 2012, 5: 363-379. © 2012 International Society for Autism Research, Wiley Periodicals, Inc. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.

  15. Quantifying Emotional Intelligence: The Relationship between Thinking Patterns and Emotional Skills

    ERIC Educational Resources Information Center

    Cox, Judith E.; Nelson, Darwin B.

    2008-01-01

    This article explores the relationship between thinking patterns and emotional skills identified by 2 research-derived measures of emotional intelligence that reflect integrative and positive theories of human behavior. Findings suggest implications for planning educational and counseling interventions to facilitate positive growth and future…

  16. Artificial Intelligence in ADA: Pattern-Directed Processing. Final Report.

    ERIC Educational Resources Information Center

    Reeker, Larry H.; And Others

    To demonstrate to computer programmers that the programming language Ada provides superior facilities for use in artificial intelligence applications, the three papers included in this report investigate the capabilities that exist within Ada for "pattern-directed" programming. The first paper (Larry H. Reeker, Tulane University) is…

  17. Functional Connectivity between Face-Movement and Speech-Intelligibility Areas during Auditory-Only Speech Perception

    PubMed Central

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers’ voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker’s face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas. PMID:24466026

  18. Speech-on-speech masking with variable access to the linguistic content of the masker speech for native and non-native speakers of English

    PubMed Central

    Calandruccio, Lauren; Bradlow, Ann R.; Dhar, Sumitrajit

    2013-01-01

    Background Masking release for an English sentence-recognition task in the presence of foreign-accented English speech compared to native-accented English speech was reported in Calandruccio, Dhar and Bradlow (2010). The masking release appeared to increase as the masker intelligibility decreased. However, it could not be ruled out that spectral differences between the speech maskers were influencing the significant differences observed. Purpose The purpose of the current experiment was to minimize spectral differences between speech maskers to determine how various amounts of linguistic information within competing speech affect masking release. Research Design A mixed model design with within- (four two-talker speech maskers) and between-subject (listener group) factors was conducted. Speech maskers included native-accented English speech, and high-intelligibility, moderate-intelligibility and low-intelligibility Mandarin-accented English. Normalizing the long-term average speech spectra of the maskers to each other minimized spectral differences between the masker conditions. Study Sample Three listener groups were tested including monolingual English speakers with normal hearing, non-native speakers of English with normal hearing, and monolingual speakers of English with hearing loss. The non-native speakers of English were from various native-language backgrounds, not including Mandarin (or any other Chinese dialect). Listeners with hearing loss had symmetrical, mild sloping to moderate sensorineural hearing loss. Data Collection and Analysis Listeners were asked to repeat back sentences that were presented in the presence of four different two-talker speech maskers. Responses were scored based on the keywords within the sentences (100 keywords/masker condition). A mixed-model regression analysis was used to analyze the difference in performance scores between the masker conditions and the listener groups. Results Monolingual speakers of English with normal hearing benefited when the competing speech signal was foreign-accented compared to native-accented allowing for improved speech recognition. Various levels of intelligibility across the foreign-accented speech maskers did not influence results. Neither the non-native English listeners with normal hearing, nor the monolingual English speakers with hearing loss benefited from masking release when the masker was changed from native-accented to foreign-accented English. Conclusions Slight modifications between the target and the masker speech allowed monolingual speakers of English with normal hearing to improve their recognition of native-accented English even when the competing speech was highly intelligible. Further research is needed to determine which modifications within the competing speech signal caused the Mandarin-accented English to be less effective with respect to masking. Determining the influences within the competing speech that make it less effective as a masker, or determining why monolingual normal-hearing listeners can take advantage of these differences could help improve speech recognition for those with hearing loss in the future. PMID:25126683

  19. The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.

    PubMed

    Marée, Raphaël

    2017-01-01

    Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.

  20. Pattern recognition: A basis for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1973-01-01

    The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.

  1. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  2. Forensic face recognition as a means to determine strength of evidence: A survey.

    PubMed

    Zeinstra, C G; Meuwly, D; Ruifrok, A Cc; Veldhuis, R Nj; Spreeuwers, L J

    2018-01-01

    This paper surveys the literature on forensic face recognition (FFR), with a particular focus on the strength of evidence as used in a court of law. FFR is the use of biometric face recognition for several applications in forensic science. It includes scenarios of ID verification and open-set identification, investigation and intelligence, and evaluation of the strength of evidence. We present FFR from operational, tactical, and strategic perspectives. We discuss criticism of FFR and we provide an overview of research efforts from multiple perspectives that relate to the domain of FFR. Finally, we sketch possible future directions for FFR. Copyright © 2018 Central Police University.

  3. Implementation of the Intelligent Voice System for Kazakh

    NASA Astrophysics Data System (ADS)

    Yessenbayev, Zh; Saparkhojayev, N.; Tibeyev, T.

    2014-04-01

    Modern speech technologies are highly advanced and widely used in day-to-day applications. However, this is mostly concerned with the languages of well-developed countries such as English, German, Japan, Russian, etc. As for Kazakh, the situation is less prominent and research in this field is only starting to evolve. In this research and application-oriented project, we introduce an intelligent voice system for the fast deployment of call-centers and information desks supporting Kazakh speech. The demand on such a system is obvious if the country's large size and small population is considered. The landline and cell phones become the only means of communication for the distant villages and suburbs. The system features Kazakh speech recognition and synthesis modules as well as a web-GUI for efficient dialog management. For speech recognition we use CMU Sphinx engine and for speech synthesis- MaryTTS. The web-GUI is implemented in Java enabling operators to quickly create and manage the dialogs in user-friendly graphical environment. The call routines are handled by Asterisk PBX and JBoss Application Server. The system supports such technologies and protocols as VoIP, VoiceXML, FastAGI, Java SpeechAPI and J2EE. For the speech recognition experiments we compiled and used the first Kazakh speech corpus with the utterances from 169 native speakers. The performance of the speech recognizer is 4.1% WER on isolated word recognition and 6.9% WER on clean continuous speech recognition tasks. The speech synthesis experiments include the training of male and female voices.

  4. Leveling the playing field: attention mitigates the effects of intelligence on memory.

    PubMed

    Markant, Julie; Amso, Dima

    2014-05-01

    Effective attention and memory skills are fundamental to typical development and essential for achievement during the formal education years. It is critical to identify the specific mechanisms linking efficiency of attentional selection of an item and the quality of its memory retention. The present study capitalized on the spatial cueing paradigm to examine the role of selection via suppression in modulating children and adolescents' memory encoding. By varying a single parameter, the spatial cueing task can elicit either a simple orienting mechanism (i.e., facilitation) or one that involves both target selection and simultaneous suppression of competing information (i.e., IOR). We modified this paradigm to include images of common items in target locations. Participants were not instructed to learn the items and were not told they would be completing a memory test later. Following the cueing task, we imposed a 7-min delay and then asked participants to complete a recognition memory test. Results indicated that selection via suppression promoted recognition memory among 7-17year-olds. Moreover, individual differences in the extent of suppression during encoding predicted recognition memory accuracy. When basic cueing facilitated orienting to target items during encoding, IQ was the best predictor of recognition memory performance for the attended items. In contrast, engaging suppression (i.e., IOR) during encoding counteracted individual differences in intelligence, effectively improving recognition memory performance among children with lower IQs. This work demonstrates that engaging selection via suppression during learning and encoding improves memory retention and has broad implications for developing effective educational techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Leveling the playing field: Attention mitigates the effects of intelligence on memory

    PubMed Central

    Markant, Julie; Amso, Dima

    2014-01-01

    Effective attention and memory skills are fundamental to typical development and essential for achievement during the formal education years. It is critical to identify the specific mechanisms linking efficiency of attentional selection of an item and the quality of its memory retention. The present study capitalized on the spatial cueing paradigm to examine the role of selection via suppression in modulating children and adolescents’ memory encoding. By varying a single parameter, the spatial cueing task can elicit either a simple orienting mechanism (i.e., facilitation) or one that involves both target selection and simultaneous suppression of competing information (i.e., IOR). We modified this paradigm to include images of common items in target locations. Participants were not instructed to learn the items and were not told they would be completing a memory test later. Following the cueing task, we imposed a seven-minute delay and then asked participants to complete a recognition memory test. Results indicated that selection via suppression promoted recognition memory among 7-17 year-olds. Moreover, individual differences in the extent of suppression during encoding predicted recognition memory accuracy. When basic cueing facilitated orienting to target items during encoding, IQ was the best predictor of recognition memory performance for the attended items. In contrast, engaging suppression (i.e, IOR) during encoding counteracted individual differences in intelligence, effectively improving recognition memory performance among children with lower IQs. This work demonstrates that engaging selection via suppression during learning and encoding improves memory retention and has broad implications for developing effective educational techniques. PMID:24549142

  6. Intelligence and Psychopathy Do Not Influence Malingering.

    PubMed

    Demakis, George; Rimland, Casey; Reeve, Charlie; Ward, Jonathan

    2015-01-01

    This study examined the influence of psychopathy and intelligence on malingering in a simulated malingering design. We hypothesized that participants high in both traits would be more adept at evading detection on performance validity tests (PVTs). College students (N = 92) were first administered the Wechsler Test of Adult Reading, a reading measure that estimates intelligence, and the Psychopathic Personality Inventory-Short Form under standard conditions. They were then asked to imagine as if they had suffered a concussion a year ago and were instructed to fake or exaggerate symptoms in a believable fashion to improve their settlement as part of a lawsuit. Participants were subsequently administered a brief neuropsychological battery that included the Word Memory Test, Rey 15-Item Test with Recognition, Finger-Tapping Test, and Digit Span from the Wechsler Adult Intelligence Scale-Fourth Edition. Moderated multiple regressions with hierarchical entry were conducted. Intelligence, psychopathy, and the interaction of intelligence and psychopathy were not related to performance on any of the PVTs. In other words, participants who scored higher on intelligence and psychopathy did not perform differently on these measures compared with other participants. Though a null finding, implications of this study are discussed in terms of the broader research and clinical literature on malingering.

  7. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  8. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  9. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  10. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  11. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  12. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  13. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  14. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  15. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  16. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Li

    2010-01-01

    We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.

  17. The recognition of graphical patterns invariant to geometrical transformation of the models

    NASA Astrophysics Data System (ADS)

    Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian

    2010-11-01

    In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.

  18. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  19. Investigation of air transportation technology at Princeton University, 1983

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    Progress is discussed for each of the following areas: voice recognition technology for flight control; guidance and control strategies for penetration of microbursts and wind shear; application of artificial intelligence in flight control systems; and computer-aided aircraft design.

  20. NSF Support for Information Science Research.

    ERIC Educational Resources Information Center

    Brownstein, Charles N.

    1986-01-01

    Major research opportunities and needs are expected by the National Science Foundation in six areas of information science: models of adaptive information processing, learning, searching, and recognition; knowledge resource systems, particularly intelligent systems; user-system interaction; augmentation of human information processing tasks;…

  1. Federal Barriers to Innovation

    ERIC Educational Resources Information Center

    Miller, Raegen; Lake, Robin

    2012-01-01

    With educational outcomes inadequate, resources tight, and students' academic needs growing more complex, America's education system is certainly ready for technological innovation. And technology itself is ripe to be exploited. Devices harnessing cheap computing power have become smart and connected. Voice recognition, artificial intelligence,…

  2. Stellar Atmospheric Parameterization Based on Deep Learning

    NASA Astrophysics Data System (ADS)

    Pan, R. Y.; Li, X. R.

    2016-07-01

    Deep learning is a typical learning method widely studied in machine learning, pattern recognition, and artificial intelligence. This work investigates the stellar atmospheric parameterization problem by constructing a deep neural network with five layers. The proposed scheme is evaluated on both real spectra from Sloan Digital Sky Survey (SDSS) and the theoretic spectra computed with Kurucz's New Opacity Distribution Function (NEWODF) model. On the SDSS spectra, the mean absolute errors (MAEs) are 79.95 for the effective temperature (T_{eff}/K), 0.0058 for lg (T_{eff}/K), 0.1706 for surface gravity (lg (g/(cm\\cdot s^{-2}))), and 0.1294 dex for metallicity ([Fe/H]), respectively; On the theoretic spectra, the MAEs are 15.34 for T_{eff}/K, 0.0011 for lg (T_{eff}/K), 0.0214 for lg (g/(cm\\cdot s^{-2})), and 0.0121 dex for [Fe/H], respectively.

  3. Object recognition through a multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Takagi, Ryosuke; Horisaki, Ryoichi; Tanida, Jun

    2017-04-01

    We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.

  4. Intelligent Vision On The SM9O Mini-Computer Basis And Applications

    NASA Astrophysics Data System (ADS)

    Hawryszkiw, J.

    1985-02-01

    Distinction has to be made between image processing and vision Image processing finds its roots in the strong tradition of linear signal processing and promotes geometrical transform techniques, such as fi I tering , compression, and restoration. Its purpose is to transform an image for a human observer to easily extract from that image information significant for him. For example edges after a gradient operator, or a specific direction after a directional filtering operation. Image processing consists in fact in a set of local or global space-time transforms. The interpretation of the final image is done by the human observer. The purpose of vision is to extract the semantic content of the image. The machine can then understand that content, and run a process of decision, which turns into an action. Thus, intel I i gent vision depends on - Image processing - Pattern recognition - Artificial intel I igence

  5. Intelligent platforms for disease assessment: novel approaches in functional echocardiography.

    PubMed

    Sengupta, Partho P

    2013-11-01

    Accelerating trends in the dynamic digital era (from 2004 onward) has resulted in the emergence of novel parametric imaging tools that allow easy and accurate extraction of quantitative information from cardiac images. This review principally attempts to heighten the awareness of newer emerging paradigms that may advance acquisition, visualization and interpretation of the large functional data sets obtained during cardiac ultrasound imaging. Incorporation of innovative cognitive software that allow advanced pattern recognition and disease forecasting will likely transform the human-machine interface and interpretation process to achieve a more efficient and effective work environment. Novel technologies for automation and big data analytics that are already active in other fields need to be rapidly adapted to the health care environment with new academic-industry collaborations to enrich and accelerate the delivery of newer decision making tools for enhancing patient care. Copyright © 2013. Published by Elsevier Inc.

  6. Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2012-10-01

    The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.

  7. Multi Modality Brain Mapping System (MBMS) Using Artificial Intelligence and Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Kateb, Babak (Inventor)

    2017-01-01

    A Multimodality Brain Mapping System (MBMS), comprising one or more scopes (e.g., microscopes or endoscopes) coupled to one or more processors, wherein the one or more processors obtain training data from one or more first images and/or first data, wherein one or more abnormal regions and one or more normal regions are identified; receive a second image captured by one or more of the scopes at a later time than the one or more first images and/or first data and/or captured using a different imaging technique; and generate, using machine learning trained using the training data, one or more viewable indicators identifying one or abnormalities in the second image, wherein the one or more viewable indicators are generated in real time as the second image is formed. One or more of the scopes display the one or more viewable indicators on the second image.

  8. Intelligent fault recognition strategy based on adaptive optimized multiple centers

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong

    2018-06-01

    For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.

  9. Effects of level of processing but not of task enactment on recognition memory in a case of developmental amnesia.

    PubMed

    Gardiner, John M; Brandt, Karen R; Vargha-Khadem, Faraneh; Baddeley, Alan; Mishkin, Mortimer

    2006-09-01

    We report the performance in four recognition memory experiments of Jon, a young adult with early-onset developmental amnesia whose episodic memory is gravely impaired in tests of recall, but seems relatively preserved in tests of recognition, and who has developed normal levels of performance in tests of intelligence and general knowledge. Jon's recognition performance was enhanced by deeper levels of processing in comparing a more meaningful study task with a less meaningful one, but not by task enactment in comparing performance of an action with reading an action phrase. Both of these variables normally enhance episodic remembering, which Jon claimed to experience. But Jon was unable to support that claim by recollecting what it was that he remembered. Taken altogether, the findings strongly imply that Jon's recognition performance entailed little genuine episodic remembering and that the levels-of-processing effects in Jon reflected semantic, not episodic, memory.

  10. Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.

    PubMed

    Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin

    2016-04-14

    Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.

  11. Dynamic detection of window starting positions and its implementation within an activity recognition framework.

    PubMed

    Ni, Qin; Patterson, Timothy; Cleland, Ian; Nugent, Chris

    2016-08-01

    Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still remains an active research challenge. Much of the existing literature to date has focused on applying machine learning techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable ground truth information from which to build recognition models, these techniques often do not function well when implemented in near real time applications. This paper presents the application of a multivariate online change detection algorithm to dynamically detect the starting position of windows for the purposes of activity recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Integrated system for automated financial document processing

    NASA Astrophysics Data System (ADS)

    Hassanein, Khaled S.; Wesolkowski, Slawo; Higgins, Ray; Crabtree, Ralph; Peng, Antai

    1997-02-01

    A system was developed that integrates intelligent document analysis with multiple character/numeral recognition engines in order to achieve high accuracy automated financial document processing. In this system, images are accepted in both their grayscale and binary formats. A document analysis module starts by extracting essential features from the document to help identify its type (e.g. personal check, business check, etc.). These features are also utilized to conduct a full analysis of the image to determine the location of interesting zones such as the courtesy amount and the legal amount. These fields are then made available to several recognition knowledge sources such as courtesy amount recognition engines and legal amount recognition engines through a blackboard architecture. This architecture allows all the available knowledge sources to contribute incrementally and opportunistically to the solution of the given recognition query. Performance results on a test set of machine printed business checks using the integrated system are also reported.

  13. A Split in the Verbal Comprehension Factor in WAIS and WISC-R Profiles.

    ERIC Educational Resources Information Center

    McGee, Shanna; Brown, Coke

    1984-01-01

    Examined the pattern of verbal subscale scores on the Wechsler Adult Intelligence Scale and Wechsler Intelligence Scale for Children-Revised given to college students (N=129) and elementary students (N=383). Results showed a triangle pattern (Comprehension scores higher than both Vocabulary and Information) that begins to appear at the…

  14. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

    PubMed Central

    2014-01-01

    Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948

  15. The DFKI Competence Center for Ambient Assisted Living

    NASA Astrophysics Data System (ADS)

    Frey, Jochen; Stahl, Christoph; Röfer, Thomas; Krieg-Brückner, Bernd; Alexandersson, Jan

    The DFKI Competence Center for Ambient Assisted Living (CCAAL) is a cross-project and cross-department virtual organization within the German Research Center for Artificial Intelligence coordinating and conducting research and development in the area of Ambient Assisted Living (AAL). Our demonstrators range from multimodal speech dialog systems to fully instrumented environments allowing the development of intelligent assistant systems, for instance an autonomous wheelchair, or the recognition and processing of everyday activities in a smart home. These innovative technologies are then tested, evaluated and demonstrated in DFKI's living labs.

  16. Mutual help in SETIs

    NASA Astrophysics Data System (ADS)

    Melia, F.; Frisch, D. H.

    1985-06-01

    Techniques to establish communication between earth and extraterrestrial intelligent beings are examined analytically, emphasizing that the success of searches for extraterrestrial intelligence (SETIs) depends on the selection by both sender and receiver of one of a few mutually helpful SETI strategies. An equation for estimating the probability that an SETI will result in the recognition of an ETI signal is developed, and numerical results for various SETI strategies are presented in tables. A minimum approach employing 10 40-m 20-kW dish antennas for a 30-yr SETI in a 2500-light-year disk is proposed.

  17. Artificial intelligence in cardiology.

    PubMed

    Bonderman, Diana

    2017-12-01

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  18. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    NASA Astrophysics Data System (ADS)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  19. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  20. Writing and the Seven Intelligences.

    ERIC Educational Resources Information Center

    Grow, Gerald

    In "Frames of Mind," Howard Gardner replaces the standard view of intelligence with the idea that human beings have several distinct intelligences. Using an elaborate set of criteria, including evidence from studies of brain damage, prodigies, developmental patterns, cross-cultural comparisons, and various kinds of tests, Gardner…

  1. Measurements of monopolar and bipolar current spreads using forward-masking with a fixed probe.

    PubMed

    Bingabr, Mohamed G; Espinoza-Varas, Blas; Sigdel, Saroj

    2014-05-01

    This research employed a forward-masking paradigm to estimate the current spread of monopolar (MP) and bipolar (BP) maskers, with current amplitudes adjusted to elicit the same loudness. Since the spatial separation between active and return electrodes is smaller in BP than in MP configurations, the BP current spread is more localized and presumably superior in terms of speech intelligibility. Because matching the loudness requires higher current in BP than in MP stimulation, previous forward-masking studies show that BP current spread is not consistently narrower across subjects or electrodes within a subject. The present forward-masking measures of current spread differ from those of previous studies by using the same BP probe electrode configuration for both MP and BP masker configurations, and adjusting the current levels of the MP and BP maskers so as to match them in loudness. With this method, the estimate of masker current spread would not be contaminated by differences in probe current spread. Forward masking was studied in four cochlear implant patients, two females and two males, with speech recognition scores higher than 50%; that is, their auditory-nerve survival status was more than adequate to carry out the experiments. The data showed that MP and BP masker configurations produce equivalent masking patterns (and current spreads) in three participants. A fourth participant displayed asymmetrical patterns with enhancement rather than masking in some cases, especially when the probe and masker were at the same location. This study showed equivalent masking patterns for MP and BP maskers when the BP masker current amplitude was increased to match the loudness of the MP masker, and the same BP probe configuration is used with both maskers. This finding could help to explain why cochlear implant users often fail to accrue higher speech intelligibility benefit from BP stimulation.

  2. Property Specification Patterns for intelligence building software

    NASA Astrophysics Data System (ADS)

    Chun, Seungsu

    2018-03-01

    In this paper, through the property specification pattern research for Modal MU(μ) logical aspects present a single framework based on the pattern of intelligence building software. In this study, broken down by state property specification pattern classification of Dwyer (S) and action (A) and was subdivided into it again strong (A) and weaknesses (E). Through these means based on a hierarchical pattern classification of the property specification pattern analysis of logical aspects Mu(μ) was applied to the pattern classification of the examples used in the actual model checker. As a result, not only can a more accurate classification than the existing classification systems were easy to create and understand the attributes specified.

  3. Recognition of speech in noise after application of time-frequency masks: Dependence on frequency and threshold parameters

    PubMed Central

    Sinex, Donal G.

    2013-01-01

    Binary time-frequency (TF) masks can be applied to separate speech from noise. Previous studies have shown that with appropriate parameters, ideal TF masks can extract highly intelligible speech even at very low speech-to-noise ratios (SNRs). Two psychophysical experiments provided additional information about the dependence of intelligibility on the frequency resolution and threshold criteria that define the ideal TF mask. Listeners identified AzBio Sentences in noise, before and after application of TF masks. Masks generated with 8 or 16 frequency bands per octave supported nearly-perfect identification. Word recognition accuracy was slightly lower and more variable with 4 bands per octave. When TF masks were generated with a local threshold criterion of 0 dB SNR, the mean speech reception threshold was −9.5 dB SNR, compared to −5.7 dB for unprocessed sentences in noise. Speech reception thresholds decreased by about 1 dB per dB of additional decrease in the local threshold criterion. Information reported here about the dependence of speech intelligibility on frequency and level parameters has relevance for the development of non-ideal TF masks for clinical applications such as speech processing for hearing aids. PMID:23556604

  4. Using listening difficulty ratings of conditions for speech communication in rooms

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Bradley, John S.; Morimoto, Masayuki

    2005-03-01

    The use of listening difficulty ratings of speech communication in rooms is explored because, in common situations, word recognition scores do not discriminate well among conditions that are near to acceptable. In particular, the benefits of early reflections of speech sounds on listening difficulty were investigated and compared to the known benefits to word intelligibility scores. Listening tests were used to assess word intelligibility and perceived listening difficulty of speech in simulated sound fields. The experiments were conducted in three types of sound fields with constant levels of ambient noise: only direct sound, direct sound with early reflections, and direct sound with early reflections and reverberation. The results demonstrate that (1) listening difficulty can better discriminate among these conditions than can word recognition scores; (2) added early reflections increase the effective signal-to-noise ratio equivalent to the added energy in the conditions without reverberation; (3) the benefit of early reflections on difficulty scores is greater than expected from the simple increase in early arriving speech energy with reverberation; (4) word intelligibility tests are most appropriate for conditions with signal-to-noise (S/N) ratios less than 0 dBA, and where S/N is between 0 and 15-dBA S/N, listening difficulty is a more appropriate evaluation tool. .

  5. Automatic Speech Recognition Predicts Speech Intelligibility and Comprehension for Listeners With Simulated Age-Related Hearing Loss.

    PubMed

    Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian

    2017-09-18

    The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist audiologists/hearing-aid dispensers in the fine-tuning of hearing aids. Sixty young participants with normal hearing listened to speech materials mimicking the perceptual consequences of ARHL at different levels of severity. Two intelligibility tests (repetition of words and sentences) and 1 comprehension test (responding to oral commands by moving virtual objects) were administered. Several language models were developed and used by the ASR system in order to fit human performances. Strong significant positive correlations were observed between human and ASR scores, with coefficients up to .99. However, the spectral smearing used to simulate losses in frequency selectivity caused larger declines in ASR performance than in human performance. Both intelligibility and comprehension scores for listeners with simulated ARHL are highly correlated with the performances of an ASR-based system. In the future, it needs to be determined if the ASR system is similarly successful in predicting speech processing in noise and by older people with ARHL.

  6. Information Tailoring Enhancements for Large-Scale Social Data

    DTIC Science & Technology

    2016-06-15

    Intelligent Automation Incorporated Information Tailoring Enhancements for Large-Scale... Automation Incorporated Progress Report No. 3 Information Tailoring Enhancements for Large-Scale Social Data Submitted in accordance with...1 Work Performed within This Reporting Period .................................................... 2 1.1 Enhanced Named Entity Recognition (NER

  7. Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality

    PubMed Central

    Mehta, Dhwani; Siddiqui, Mohammad Faridul Haque

    2018-01-01

    Extensive possibilities of applications have made emotion recognition ineluctable and challenging in the field of computer science. The use of non-verbal cues such as gestures, body movement, and facial expressions convey the feeling and the feedback to the user. This discipline of Human–Computer Interaction places reliance on the algorithmic robustness and the sensitivity of the sensor to ameliorate the recognition. Sensors play a significant role in accurate detection by providing a very high-quality input, hence increasing the efficiency and the reliability of the system. Automatic recognition of human emotions would help in teaching social intelligence in the machines. This paper presents a brief study of the various approaches and the techniques of emotion recognition. The survey covers a succinct review of the databases that are considered as data sets for algorithms detecting the emotions by facial expressions. Later, mixed reality device Microsoft HoloLens (MHL) is introduced for observing emotion recognition in Augmented Reality (AR). A brief introduction of its sensors, their application in emotion recognition and some preliminary results of emotion recognition using MHL are presented. The paper then concludes by comparing results of emotion recognition by the MHL and a regular webcam. PMID:29389845

  8. Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality.

    PubMed

    Mehta, Dhwani; Siddiqui, Mohammad Faridul Haque; Javaid, Ahmad Y

    2018-02-01

    Extensive possibilities of applications have made emotion recognition ineluctable and challenging in the field of computer science. The use of non-verbal cues such as gestures, body movement, and facial expressions convey the feeling and the feedback to the user. This discipline of Human-Computer Interaction places reliance on the algorithmic robustness and the sensitivity of the sensor to ameliorate the recognition. Sensors play a significant role in accurate detection by providing a very high-quality input, hence increasing the efficiency and the reliability of the system. Automatic recognition of human emotions would help in teaching social intelligence in the machines. This paper presents a brief study of the various approaches and the techniques of emotion recognition. The survey covers a succinct review of the databases that are considered as data sets for algorithms detecting the emotions by facial expressions. Later, mixed reality device Microsoft HoloLens (MHL) is introduced for observing emotion recognition in Augmented Reality (AR). A brief introduction of its sensors, their application in emotion recognition and some preliminary results of emotion recognition using MHL are presented. The paper then concludes by comparing results of emotion recognition by the MHL and a regular webcam.

  9. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  10. Acoustic Analyses and Intelligibility Assessments of Timing Patterns among Chinese English Learners with Different Dialect Backgrounds

    ERIC Educational Resources Information Center

    Chen, Hsueh Chu

    2015-01-01

    This paper includes two interrelated studies. The first production study investigates the timing patterns of English as spoken by Chinese learners with different dialect backgrounds. The second comprehension study explores native and non-native speakers' assessments of the intelligibility of Chinese-accented English, and examines the effects of…

  11. Multiple Intelligences Patterns of Students at King Saud University and Its Relationship with Mathematics' Achievement

    ERIC Educational Resources Information Center

    Kandeel, Refat A. A.

    2016-01-01

    The purpose of this study was to determine the multiple intelligences patterns of students at King Saud University and its relationship with academic achievement for the courses of Mathematics. The study sample consisted of 917 students were selected a stratified random manner, the descriptive analysis method and Pearson correlation were used, the…

  12. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  13. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  14. The use of open and machine vision technologies for development of gesture recognition intelligent systems

    NASA Astrophysics Data System (ADS)

    Cherkasov, Kirill V.; Gavrilova, Irina V.; Chernova, Elena V.; Dokolin, Andrey S.

    2018-05-01

    The article is devoted to reflection of separate aspects of intellectual system gesture recognition development. The peculiarity of the system is its intellectual block which completely based on open technologies: OpenCV library and Microsoft Cognitive Toolkit (CNTK) platform. The article presents the rationale for the choice of such set of tools, as well as the functional scheme of the system and the hierarchy of its modules. Experiments have shown that the system correctly recognizes about 85% of images received from sensors. The authors assume that the improvement of the algorithmic block of the system will increase the accuracy of gesture recognition up to 95%.

  15. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  16. Jellyfish prediction of occurrence from remote sensing data and a non-linear pattern recognition approach

    NASA Astrophysics Data System (ADS)

    Albajes-Eizagirre, Anton; Romero, Laia; Soria-Frisch, Aureli; Vanhellemont, Quinten

    2011-11-01

    Impact of jellyfish in human activities has been increasingly reported worldwide in recent years. Segments such as tourism, water sports and leisure, fisheries and aquaculture are commonly damaged when facing blooms of gelatinous zooplankton. Hence the prediction of the appearance and disappearance of jellyfish in our coasts, which is not fully understood from its biological point of view, has been approached as a pattern recognition problem in the paper presented herein, where a set of potential ecological cues was selected to test their usefulness for prediction. Remote sensing data was used to describe environmental conditions that could support the occurrence of jellyfish blooms with the aim of capturing physical-biological interactions: forcing, coastal morphology, food availability, and water mass characteristics are some of the variables that seem to exert an effect on jellyfish accumulation on the shoreline, under specific spatial and temporal windows. A data-driven model based on computational intelligence techniques has been designed and implemented to predict jellyfish events on the beach area as a function of environmental conditions. Data from 2009 over the NW Mediterranean continental shelf have been used to train and test this prediction protocol. Standard level 2 products are used from MODIS (NASA OceanColor) and MERIS (ESA - FRS data). The procedure for designing the analysis system can be described as following. The aforementioned satellite data has been used as feature set for the performance evaluation. Ground truth has been extracted from visual observations by human agents on different beach sites along the Catalan area. After collecting the evaluation data set, the performance between different computational intelligence approaches have been compared. The outperforming one in terms of its generalization capability has been selected for prediction recall. Different tests have been conducted in order to assess the prediction capability of the resulting system in operational conditions. This includes taking into account several types of features with different distances in both the spatial and temporal domains with respect to prediction time and site. Moreover the generalization capability has been measured via cross-fold validation. The implementation and performance evaluation results are detailed in the present communication together with the feature extraction from satellite data. To the best of our knowledge the developed application constitutes the first implementation of an automate system for the prediction of jellyfish appearance founded on remote sensing technologies.

  17. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  18. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  19. ICPR-2016 - International Conference on Pattern Recognition

    Science.gov Websites

    Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and

  20. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  1. Intelligent OCR Processing.

    ERIC Educational Resources Information Center

    Sun, Wei; And Others

    1992-01-01

    Identifies types and distributions of errors in text produced by optical character recognition (OCR) and proposes a process using machine learning techniques to recognize and correct errors in OCR texts. Results of experiments indicating that this strategy can reduce human interaction required for error correction are reported. (25 references)…

  2. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    NASA Astrophysics Data System (ADS)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  3. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  4. What Causes Birth Order-Intelligence Patterns? The Admixture Hypothesis, Revived.

    ERIC Educational Resources Information Center

    Rodgers, Joseph Lee

    2001-01-01

    Describes why birth order interests both parents and researchers, discussing what really causes apparent birth order effects on intelligence, examining problems with using cross-sectional intelligence data, and noting how to move beyond cross-sectional inferences. Explains the admixture hypothesis, which finds that family size is much more…

  5. An Assessment of Perceived Emotional Intelligence and Eating Attitudes among College Students

    ERIC Educational Resources Information Center

    Pettit, Michele L.; Jacobs, Sue C.; Page, Kyle S.; Porras, Claudia V.

    2010-01-01

    Background: Disordered eating patterns continue to surface on college campuses. Studies are needed to examine the potential influence of emotional intelligence on disordered eating behavior. Purpose: The purpose of this study was to assess relationships between perceived emotional intelligence factors and eating disorder symptoms among male and…

  6. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network

    PubMed Central

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-01-01

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault’s characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault’s characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal’s features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear’s weak fault features. PMID:28773148

  7. High-speed railway real-time localization auxiliary method based on deep neural network

    NASA Astrophysics Data System (ADS)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  8. Sub-pattern based multi-manifold discriminant analysis for face recognition

    NASA Astrophysics Data System (ADS)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  9. The software for automatic creation of the formal grammars used by speech recognition, computer vision, editable text conversion systems, and some new functions

    NASA Astrophysics Data System (ADS)

    Kardava, Irakli; Tadyszak, Krzysztof; Gulua, Nana; Jurga, Stefan

    2017-02-01

    For more flexibility of environmental perception by artificial intelligence it is needed to exist the supporting software modules, which will be able to automate the creation of specific language syntax and to make a further analysis for relevant decisions based on semantic functions. According of our proposed approach, of which implementation it is possible to create the couples of formal rules of given sentences (in case of natural languages) or statements (in case of special languages) by helping of computer vision, speech recognition or editable text conversion system for further automatic improvement. In other words, we have developed an approach, by which it can be achieved to significantly improve the training process automation of artificial intelligence, which as a result will give us a higher level of self-developing skills independently from us (from users). At the base of our approach we have developed a software demo version, which includes the algorithm and software code for the entire above mentioned component's implementation (computer vision, speech recognition and editable text conversion system). The program has the ability to work in a multi - stream mode and simultaneously create a syntax based on receiving information from several sources.

  10. Quantifying the intelligibility of speech in noise for non-native listeners.

    PubMed

    van Wijngaarden, Sander J; Steeneken, Herman J M; Houtgast, Tammo

    2002-04-01

    When listening to languages learned at a later age, speech intelligibility is generally lower than when listening to one's native language. The main purpose of this study is to quantify speech intelligibility in noise for specific populations of non-native listeners, only broadly addressing the underlying perceptual and linguistic processing. An easy method is sought to extend these quantitative findings to other listener populations. Dutch subjects listening to Germans and English speech, ranging from reasonable to excellent proficiency in these languages, were found to require a 1-7 dB better speech-to-noise ratio to obtain 50% sentence intelligibility than native listeners. Also, the psychometric function for sentence recognition in noise was found to be shallower for non-native than for native listeners (worst-case slope around the 50% point of 7.5%/dB, compared to 12.6%/dB for native listeners). Differences between native and non-native speech intelligibility are largely predicted by linguistic entropy estimates as derived from a letter guessing task. Less effective use of context effects (especially semantic redundancy) explains the reduced speech intelligibility for non-native listeners. While measuring speech intelligibility for many different populations of listeners (languages, linguistic experience) may be prohibitively time consuming, obtaining predictions of non-native intelligibility from linguistic entropy may help to extend the results of this study to other listener populations.

  11. Quantifying the intelligibility of speech in noise for non-native listeners

    NASA Astrophysics Data System (ADS)

    van Wijngaarden, Sander J.; Steeneken, Herman J. M.; Houtgast, Tammo

    2002-04-01

    When listening to languages learned at a later age, speech intelligibility is generally lower than when listening to one's native language. The main purpose of this study is to quantify speech intelligibility in noise for specific populations of non-native listeners, only broadly addressing the underlying perceptual and linguistic processing. An easy method is sought to extend these quantitative findings to other listener populations. Dutch subjects listening to Germans and English speech, ranging from reasonable to excellent proficiency in these languages, were found to require a 1-7 dB better speech-to-noise ratio to obtain 50% sentence intelligibility than native listeners. Also, the psychometric function for sentence recognition in noise was found to be shallower for non-native than for native listeners (worst-case slope around the 50% point of 7.5%/dB, compared to 12.6%/dB for native listeners). Differences between native and non-native speech intelligibility are largely predicted by linguistic entropy estimates as derived from a letter guessing task. Less effective use of context effects (especially semantic redundancy) explains the reduced speech intelligibility for non-native listeners. While measuring speech intelligibility for many different populations of listeners (languages, linguistic experience) may be prohibitively time consuming, obtaining predictions of non-native intelligibility from linguistic entropy may help to extend the results of this study to other listener populations.

  12. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  13. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  14. Pattern association--a key to recognition of shark attacks.

    PubMed

    Cirillo, G; James, H

    2004-12-01

    Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.

  15. Voice technology and BBN

    NASA Technical Reports Server (NTRS)

    Wolf, Jared J.

    1977-01-01

    The following research was discussed: (1) speech signal processing; (2) automatic speech recognition; (3) continuous speech understanding; (4) speaker recognition; (5) speech compression; (6) subjective and objective evaluation of speech communication system; (7) measurement of the intelligibility and quality of speech when degraded by noise or other masking stimuli; (8) speech synthesis; (9) instructional aids for second-language learning and for training of the deaf; and (10) investigation of speech correlates of psychological stress. Experimental psychology, control systems, and human factors engineering, which are often relevant to the proper design and operation of speech systems are described.

  16. Parallel Algorithms for Computer Vision.

    DTIC Science & Technology

    1989-01-01

    34 IEEE Tran. Pattern Ankyaij and Ma- Artifcial Intelligence , Tokyo, 1979. chine Intelligence , 6, 1984. Kirkpatrick, S., C.D. Gelatt, Jr. and M.P. Vecchi...MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T P06010 JAN 89 ETL-0529 UNCLASSIFIED DACA76-85-C-0010 F.’G 12/1I N mommiimmmiiso...PoggioI Massachusetts Institute of Technology i Artificial Intelligence Laboratory 545 Technology Square Cambridge, Massachusetts 02139 DTIC January

  17. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  18. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  19. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  20. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  1. The role of cognitive versus emotional intelligence in Iowa Gambling Task performance: What's emotion got to do with it?

    PubMed

    Webb, Christian A; DelDonno, Sophie; Killgore, William D S

    2014-01-01

    Debate persists regarding the relative role of cognitive versus emotional processes in driving successful performance on the widely used Iowa Gambling Task (IGT). From the time of its initial development, patterns of IGT performance were commonly interpreted as primarily reflecting implicit, emotion-based processes. Surprisingly, little research has tried to directly compare the extent to which measures tapping relevant cognitive versus emotional competencies predict IGT performance in the same study. The current investigation attempts to address this question by comparing patterns of associations between IGT performance, cognitive intelligence (Wechsler Abbreviated Scale of Intelligence; WASI) and three commonly employed measures of emotional intelligence (EI; Mayer-Salovey-Caruso Emotional Intelligence Test, MSCEIT; Bar-On Emotional Quotient Inventory, EQ-i; Self-Rated Emotional Intelligence Scale, SREIS). Results indicated that IGT performance was more strongly associated with cognitive, than emotional, intelligence. To the extent that the IGT indeed mimics "real-world" decision-making, our findings, coupled with the results of existing research, may highlight the role of deliberate, cognitive capacities over implicit, emotional processes in contributing to at least some domains of decision-making relevant to everyday life.

  2. The role of cognitive versus emotional intelligence in Iowa Gambling Task performance: What’s emotion got to do with it?

    PubMed Central

    Webb, Christian A.; DelDonno, Sophie; Killgore, William D.S.

    2014-01-01

    Debate persists regarding the relative role of cognitive versus emotional processes in driving successful performance on the widely used Iowa Gambling Task (IGT). From the time of its initial development, patterns of IGT performance were commonly interpreted as primarily reflecting implicit, emotion-based processes. Surprisingly, little research has tried to directly compare the extent to which measures tapping relevant cognitive versus emotional competencies predict IGT performance in the same study. The current investigation attempts to address this question by comparing patterns of associations between IGT performance, cognitive intelligence (Wechsler Abbreviated Scale of Intelligence; WASI) and three commonly employed measures of emotional intelligence (EI; Mayer–Salovey–Caruso Emotional Intelligence Test, MSCEIT; Bar-On Emotional Quotient Inventory, EQ-i; Self-Rated Emotional Intelligence Scale, SREIS). Results indicated that IGT performance was more strongly associated with cognitive, than emotional, intelligence. To the extent that the IGT indeed mimics “real-world” decision-making, our findings, coupled with the results of existing research, may highlight the role of deliberate, cognitive capacities over implicit, emotional processes in contributing to at least some domains of decision-making relevant to everyday life. PMID:25635149

  3. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  4. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  5. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  6. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    PubMed

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  7. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft

    NASA Astrophysics Data System (ADS)

    Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.

    2010-07-01

    This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.

  8. Neural Network-Based Landmark Recognition and Navigation with IAMRs. Understanding the Principles of Thought and Behavior.

    ERIC Educational Resources Information Center

    Doty, Keith L.

    1999-01-01

    Research on neural networks and hippocampal function demonstrating how mammals construct mental maps and develop navigation strategies is being used to create Intelligent Autonomous Mobile Robots (IAMRs). Such robots are able to recognize landmarks and navigate without "vision." (SK)

  9. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  10. Intelligence Surveillance And Reconnaissance Full Motion Video Automatic Anomaly Detection Of Crowd Movements: System Requirements For Airborne Application

    DTIC Science & Technology

    The collection of Intelligence , Surveillance, and Reconnaissance (ISR) Full Motion Video (FMV) is growing at an exponential rate, and the manual... intelligence for the warfighter. This paper will address the question of how can automatic pattern extraction, based on computer vision, extract anomalies in

  11. Sex Differences in Brain Activity Related to General and Emotional Intelligence

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2005-01-01

    The study investigated gender differences in resting EEG (in three individually determined narrow [alpha] frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was…

  12. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  13. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  14. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  15. Integrated solutions to SHM problems: an overview of SHM research at the LANL/UCSD engineering institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles; Park, Gyuhae; Farinholt, Kevin

    2010-12-08

    This seminar will provide an overview of structural health monitoring (SHM) research that is being undertaken at Los Alamos National Laboratory (LANL). The seminar will begin by stating that SHM should be viewed as an important component of the more comprehensive intelligent life-cycle engineering process. Then LANL's statistical pattern recognition paradigm for addressing SHM problems will be introduced and current research that is focused on each part of the paradigm will be discussed. In th is paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction, and (4) Statisticalmore » Model Development for Feature Discrimination. When one attempts to apply this paradigm to data from real world structures, it quickly becomes apparent that the ability to cleanse, compress, normalize and fuse data to account for operational and environmental variability is a key implementation issue when addressing Parts 2-4 of this paradigm. This discussion will be followed by the introduction a new project entitled 'Intelligent Wind Turbines' which is the focus of much of our current SHM research . This summary will be followed by a discussion of issues that must be addressed if this technology is to make the transition from research to practice and new research directions that are emerging for SHM.« less

  16. Intellectual system for images restoration

    NASA Astrophysics Data System (ADS)

    Mardare, Igor

    2005-02-01

    Intelligence systems on basis of artificial neural networks and associative memory allow to solve effectively problems of recognition and restoration of images. However, within analytical technologies there are no dominating approaches of deciding of intellectual problems. Choice of the best technology depends on nature of problem, features of objects, volume of represented information about the object, number of classes of objects, etc. It is required to determine opportunities, preconditions and field of application of neural networks and associative memory for decision of problem of restoration of images and to use their supplementary benefits for further development of intelligence systems.

  17. Activity recognition using Video Event Segmentation with Text (VEST)

    NASA Astrophysics Data System (ADS)

    Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge

    2014-06-01

    Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.

  18. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  19. Optical Pattern Recognition for Missile Guidance.

    DTIC Science & Technology

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  20. [Advantages and Application Prospects of Deep Learning in Image Recognition and Bone Age Assessment].

    PubMed

    Hu, T H; Wan, L; Liu, T A; Wang, M W; Chen, T; Wang, Y H

    2017-12-01

    Deep learning and neural network models have been new research directions and hot issues in the fields of machine learning and artificial intelligence in recent years. Deep learning has made a breakthrough in the applications of image and speech recognitions, and also has been extensively used in the fields of face recognition and information retrieval because of its special superiority. Bone X-ray images express different variations in black-white-gray gradations, which have image features of black and white contrasts and level differences. Based on these advantages of deep learning in image recognition, we combine it with the research of bone age assessment to provide basic datum for constructing a forensic automatic system of bone age assessment. This paper reviews the basic concept and network architectures of deep learning, and describes its recent research progress on image recognition in different research fields at home and abroad, and explores its advantages and application prospects in bone age assessment. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  1. Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?

    ERIC Educational Resources Information Center

    Howe, Christine; Taylor Tavares, Joana; Devine, Amy

    2016-01-01

    Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…

  2. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  3. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  4. Audibility-based predictions of speech recognition for children and adults with normal hearing.

    PubMed

    McCreery, Ryan W; Stelmachowicz, Patricia G

    2011-12-01

    This study investigated the relationship between audibility and predictions of speech recognition for children and adults with normal hearing. The Speech Intelligibility Index (SII) is used to quantify the audibility of speech signals and can be applied to transfer functions to predict speech recognition scores. Although the SII is used clinically with children, relatively few studies have evaluated SII predictions of children's speech recognition directly. Children have required more audibility than adults to reach maximum levels of speech understanding in previous studies. Furthermore, children may require greater bandwidth than adults for optimal speech understanding, which could influence frequency-importance functions used to calculate the SII. Speech recognition was measured for 116 children and 19 adults with normal hearing. Stimulus bandwidth and background noise level were varied systematically in order to evaluate speech recognition as predicted by the SII and derive frequency-importance functions for children and adults. Results suggested that children required greater audibility to reach the same level of speech understanding as adults. However, differences in performance between adults and children did not vary across frequency bands. © 2011 Acoustical Society of America

  5. Thinking beyond Recognition: Multiculturalism, Cultural Intelligence, and the Professional Capacities of Teachers

    ERIC Educational Resources Information Center

    Watkins, Megan; Noble, Greg

    2016-01-01

    This article draws on recent research in schools as part of the "Rethinking Multiculturalism/ Reassessing Multicultural Education" (RMRME) Project, which involved teachers undertaking professional learning framed by these ideas and then designing and implementing action research projects to address issues of concern in their schools. The…

  6. Educational Implications of Conductive Hearing Loss in School Children.

    ERIC Educational Resources Information Center

    Lyon, David J.; And Others

    1986-01-01

    The study investigated specific linguistic abilities/disabilities of 15 children with conductive hearing loss and a history of middle ear dysfunction. Results found significant deficits in verbal intelligence, word recognition, and receptive syntactic skills substantiating the finding that conductive hearing loss due to otitis media is deleterious…

  7. Cross-Channel Amplitude Sweeps Are Crucial to Speech Intelligibility

    ERIC Educational Resources Information Center

    Prendergast, Garreth; Green, Gary G. R.

    2012-01-01

    Classical views of speech perception argue that the static and dynamic characteristics of spectral energy peaks (formants) are the acoustic features that underpin phoneme recognition. Here we use representations where the amplitude modulations of sub-band filtered speech are described, precisely, in terms of co-sinusoidal pulses. These pulses are…

  8. The Effectiveness of Clear Speech as a Masker

    ERIC Educational Resources Information Center

    Calandruccio, Lauren; Van Engen, Kristin; Dhar, Sumitrajit; Bradlow, Ann R.

    2010-01-01

    Purpose: It is established that speaking clearly is an effective means of enhancing intelligibility. Because any signal-processing scheme modeled after known acoustic-phonetic features of clear speech will likely affect both target and competing speech, it is important to understand how speech recognition is affected when a competing speech signal…

  9. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  10. The effect of sensorineural hearing loss and tinnitus on speech recognition over air and bone conduction military communications headsets.

    PubMed

    Manning, Candice; Mermagen, Timothy; Scharine, Angelique

    2017-06-01

    Military personnel are at risk for hearing loss due to noise exposure during deployment (USACHPPM, 2008). Despite mandated use of hearing protection, hearing loss and tinnitus are prevalent due to reluctance to use hearing protection. Bone conduction headsets can offer good speech intelligibility for normal hearing (NH) listeners while allowing the ears to remain open in quiet environments and the use of hearing protection when needed. Those who suffer from tinnitus, the experience of perceiving a sound not produced by an external source, often show degraded speech recognition; however, it is unclear whether this is a result of decreased hearing sensitivity or increased distractibility (Moon et al., 2015). It has been suggested that the vibratory stimulation of a bone conduction headset might ameliorate the effects of tinnitus on speech perception; however, there is currently no research to support or refute this claim (Hoare et al., 2014). Speech recognition of words presented over air conduction and bone conduction headsets was measured for three groups of listeners: NH, sensorineural hearing impaired, and/or tinnitus sufferers. Three levels of speech-to-noise (SNR = 0, -6, -12 dB) were created by embedding speech items in pink noise. Better speech recognition performance was observed with the bone conduction headset regardless of hearing profile, and speech intelligibility was a function of SNR. Discussion will include study limitations and the implications of these findings for those serving in the military. Published by Elsevier B.V.

  11. Emotion recognition and social cognition in temporal lobe epilepsy and the effect of epilepsy surgery.

    PubMed

    Amlerova, Jana; Cavanna, Andrea E; Bradac, Ondrej; Javurkova, Alena; Raudenska, Jaroslava; Marusic, Petr

    2014-07-01

    The abilities to identify facial expression from another person's face and to attribute mental states to others refer to preserved function of the temporal lobes. In the present study, we set out to evaluate emotion recognition and social cognition in presurgical and postsurgical patients with unilateral refractory temporal lobe epilepsy (TLE). The aim of our study was to investigate the effects of TLE surgery and to identify the main risk factors for impairment in these functions. We recruited 30 patients with TLE for longitudinal data analysis (14 with right-sided and 16 with left-sided TLE) and 74 patients for cross-sectional data analysis (37 with right-sided and 37 with left-sided TLE) plus 20 healthy controls. Besides standard neuropsychological assessment, we administered an analog of the Ekman and Friesen test and the Faux Pas Test to assess emotion recognition and social cognition, respectively. Both emotion recognition and social cognition were impaired in the group of patients with TLE, irrespective of the focus side, compared with healthy controls. The performance in both tests was strongly dependent on the intelligence level. Beyond intelligence level, earlier age at epilepsy onset, longer disease duration, and history of early childhood brain injury predicted social cognition problems in patients with TLE. Epilepsy surgery within the temporal lobe seems to have neutral effect on patients' performances in both domains. However, there are a few individual patients who appear to be at risk of postoperative decline, even when seizure freedom is achieved following epilepsy surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Children with a cochlear implant: characteristics and determinants of speech recognition, speech-recognition growth rate, and speech production.

    PubMed

    Wie, Ona Bø; Falkenberg, Eva-Signe; Tvete, Ole; Tomblin, Bruce

    2007-05-01

    The objectives of the study were to describe the characteristics of the first 79 prelingually deaf cochlear implant users in Norway and to investigate to what degree the variation in speech recognition, speech- recognition growth rate, and speech production could be explained by the characteristics of the child, the cochlear implant, the family, and the educational setting. Data gathered longitudinally were analysed using descriptive statistics, multiple regression, and growth-curve analysis. The results show that more than 50% of the variation could be explained by these characteristics. Daily user-time, non-verbal intelligence, mode of communication, length of CI experience, and educational placement had the highest effect on the outcome. The results also indicate that children educated in a bilingual approach to education have better speech perception and faster speech perception growth rate with increased focus on spoken language.

  13. Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    1985-01-01

    A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.

  14. Episodic Reasoning for Vision-Based Human Action Recognition

    PubMed Central

    Martinez-del-Rincon, Jesus

    2014-01-01

    Smart Spaces, Ambient Intelligence, and Ambient Assisted Living are environmental paradigms that strongly depend on their capability to recognize human actions. While most solutions rest on sensor value interpretations and video analysis applications, few have realized the importance of incorporating common-sense capabilities to support the recognition process. Unfortunately, human action recognition cannot be successfully accomplished by only analyzing body postures. On the contrary, this task should be supported by profound knowledge of human agency nature and its tight connection to the reasons and motivations that explain it. The combination of this knowledge and the knowledge about how the world works is essential for recognizing and understanding human actions without committing common-senseless mistakes. This work demonstrates the impact that episodic reasoning has in improving the accuracy of a computer vision system for human action recognition. This work also presents formalization, implementation, and evaluation details of the knowledge model that supports the episodic reasoning. PMID:24959602

  15. Theory of mind in schizophrenia: correlation with clinical symptomatology, emotional recognition and ward behavior.

    PubMed

    Lee, Woo Kyeong; Kim, Yong Kyu

    2013-09-01

    Several studies have suggested the presence of a theory of mind (ToM) deficit in schizophrenic disorders. This study examined the relationship of emotion recognition, theory of mind, and ward behavior in patients with schizophrenia. Fifty-five patients with chronic schizophrenia completed measures of emotion recognition, ToM, intelligence, Positive and Negative Syndrome Scale (PANSS) and Nurse's Observation Scale for Inpatient Evaluation (NOSIE). Theory of mind sum score correlated significantly with IQ, emotion recognition, and ward behavior. Ward behavior was linked to the duration of the illness, and even more so to theory of mind deficits. Theory of mind contributed a significant proportion of the amount of variance to explain social behavior on the ward. Considering our study results, impaired theory of mind contributes significantly to the understanding of social competence in patients with schizophrenia. Copyright © 2012 Wiley Publishing Asia Pty Ltd.

  16. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  17. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  18. Searching for pulsars using image pattern recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selectionmore » programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The performance of this system can be improved over time as more training data are accumulated. This AI system has been integrated into the PALFA survey pipeline and has discovered six new pulsars to date.« less

  19. Searching for Pulsars Using Image Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The performance of this system can be improved over time as more training data are accumulated. This AI system has been integrated into the PALFA survey pipeline and has discovered six new pulsars to date.

  20. Repetition and lag effects in movement recognition.

    PubMed

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  1. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed Central

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-01-01

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273

  3. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  4. Common Criteria related security design patterns--validation on the intelligent sensor example designed for mine environment.

    PubMed

    Bialas, Andrzej

    2010-01-01

    The paper discusses the security issues of intelligent sensors that are able to measure and process data and communicate with other information technology (IT) devices or systems. Such sensors are often used in high risk applications. To improve their robustness, the sensor systems should be developed in a restricted way to provide them with assurance. One of assurance creation methodologies is Common Criteria (ISO/IEC 15408), used for IT products and systems. The contribution of the paper is a Common Criteria compliant and pattern-based method for the intelligent sensors security development. The paper concisely presents this method and its evaluation for the sensor detecting methane in a mine, focusing on the security problem of the intelligent sensor definition and solution. The aim of the validation is to evaluate and improve the introduced method.

  5. The cingulo-opercular network provides word-recognition benefit.

    PubMed

    Vaden, Kenneth I; Kuchinsky, Stefanie E; Cute, Stephanie L; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A

    2013-11-27

    Recognizing speech in difficult listening conditions requires considerable focus of attention that is often demonstrated by elevated activity in putative attention systems, including the cingulo-opercular network. We tested the prediction that elevated cingulo-opercular activity provides word-recognition benefit on a subsequent trial. Eighteen healthy, normal-hearing adults (10 females; aged 20-38 years) performed word recognition (120 trials) in multi-talker babble at +3 and +10 dB signal-to-noise ratios during a sparse sampling functional magnetic resonance imaging (fMRI) experiment. Blood oxygen level-dependent (BOLD) contrast was elevated in the anterior cingulate cortex, anterior insula, and frontal operculum in response to poorer speech intelligibility and response errors. These brain regions exhibited significantly greater correlated activity during word recognition compared with rest, supporting the premise that word-recognition demands increased the coherence of cingulo-opercular network activity. Consistent with an adaptive control network explanation, general linear mixed model analyses demonstrated that increased magnitude and extent of cingulo-opercular network activity was significantly associated with correct word recognition on subsequent trials. These results indicate that elevated cingulo-opercular network activity is not simply a reflection of poor performance or error but also supports word recognition in difficult listening conditions.

  6. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  7. Speech intelligibility enhancement after maxillary denture treatment and its impact on quality of life.

    PubMed

    Knipfer, Christian; Riemann, Max; Bocklet, Tobias; Noeth, Elmar; Schuster, Maria; Sokol, Biljana; Eitner, Stephan; Nkenke, Emeka; Stelzle, Florian

    2014-01-01

    Tooth loss and its prosthetic rehabilitation significantly affect speech intelligibility. However, little is known about the influence of speech deficiencies on oral health-related quality of life (OHRQoL). The aim of this study was to investigate whether speech intelligibility enhancement through prosthetic rehabilitation significantly influences OHRQoL in patients wearing complete maxillary dentures. Speech intelligibility by means of an automatic speech recognition system (ASR) was prospectively evaluated and compared with subjectively assessed Oral Health Impact Profile (OHIP) scores. Speech was recorded in 28 edentulous patients 1 week prior to the fabrication of new complete maxillary dentures and 6 months thereafter. Speech intelligibility was computed based on the word accuracy (WA) by means of an ASR and compared with a matched control group. One week before and 6 months after rehabilitation, patients assessed themselves for OHRQoL. Speech intelligibility improved significantly after 6 months. Subjects reported a significantly higher OHRQoL after maxillary rehabilitation with complete dentures. No significant correlation was found between the OHIP sum score or its subscales to the WA. Speech intelligibility enhancement achieved through the fabrication of new complete maxillary dentures might not be in the forefront of the patients' perception of their quality of life. For the improvement of OHRQoL in patients wearing complete maxillary dentures, food intake and mastication as well as freedom from pain play a more prominent role.

  8. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference

    PubMed Central

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J.

    2015-01-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  9. New approach for cognitive analysis and understanding of medical patterns and visualizations

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Tadeusiewicz, Ryszard

    2003-11-01

    This paper presents new opportunities for applying linguistic description of the picture merit content and AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted from the image using linguistic methods and expectations taken from the representaion of the medical knowledge, it is possible to understand the merit content of the image even if teh form of the image is very different from any known pattern. This article proves that structural techniques of artificial intelligence may be applied in the case of tasks related to automatic classification and machine perception based on semantic pattern content in order to determine the semantic meaning of the patterns. In the paper are described some examples presenting ways of applying such techniques in the creation of cognitive vision systems for selected classes of medical images. On the base of scientific research described in the paper we try to build some new systems for collecting, storing, retrieving and intelligent interpreting selected medical images especially obtained in radiological and MRI examinations.

  10. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  11. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  12. Automated Intelligibility Assessment of Pathological Speech Using Phonological Features

    NASA Astrophysics Data System (ADS)

    Middag, Catherine; Martens, Jean-Pierre; Van Nuffelen, Gwen; De Bodt, Marc

    2009-12-01

    It is commonly acknowledged that word or phoneme intelligibility is an important criterion in the assessment of the communication efficiency of a pathological speaker. People have therefore put a lot of effort in the design of perceptual intelligibility rating tests. These tests usually have the drawback that they employ unnatural speech material (e.g., nonsense words) and that they cannot fully exclude errors due to listener bias. Therefore, there is a growing interest in the application of objective automatic speech recognition technology to automate the intelligibility assessment. Current research is headed towards the design of automated methods which can be shown to produce ratings that correspond well with those emerging from a well-designed and well-performed perceptual test. In this paper, a novel methodology that is built on previous work (Middag et al., 2008) is presented. It utilizes phonological features, automatic speech alignment based on acoustic models that were trained on normal speech, context-dependent speaker feature extraction, and intelligibility prediction based on a small model that can be trained on pathological speech samples. The experimental evaluation of the new system reveals that the root mean squared error of the discrepancies between perceived and computed intelligibilities can be as low as 8 on a scale of 0 to 100.

  13. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  14. Evidence-based occupational hearing screening II: validation of a screening methodology using measures of functional hearing ability.

    PubMed

    Soli, Sigfrid D; Amano-Kusumoto, Akiko; Clavier, Odile; Wilbur, Jed; Casto, Kristen; Freed, Daniel; Laroche, Chantal; Vaillancourt, Véronique; Giguère, Christian; Dreschler, Wouter A; Rhebergen, Koenraad S

    2018-05-01

    Validate use of the Extended Speech Intelligibility Index (ESII) for prediction of speech intelligibility in non-stationary real-world noise environments. Define a means of using these predictions for objective occupational hearing screening for hearing-critical public safety and law enforcement jobs. Analyses of predicted and measured speech intelligibility in recordings of real-world noise environments were performed in two studies using speech recognition thresholds (SRTs) and intelligibility measures. ESII analyses of the recordings were used to predict intelligibility. Noise recordings were made in prison environments and at US Army facilities for training ground and airborne forces. Speech materials included full bandwidth sentences and bandpass filtered sentences that simulated radio transmissions. A total of 22 adults with normal hearing (NH) and 15 with mild-moderate hearing impairment (HI) participated in the two studies. Average intelligibility predictions for individual NH and HI subjects were accurate in both studies (r 2  ≥ 0.94). Pooled predictions were slightly less accurate (0.78 ≤ r 2  ≤ 0.92). An individual's SRT and audiogram can accurately predict the likelihood of effective speech communication in noise environments with known ESII characteristics, where essential hearing-critical tasks are performed. These predictions provide an objective means of occupational hearing screening.

  15. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  16. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  17. A strip chart recorder pattern recognition tool kit for Shuttle operations

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.

    1993-01-01

    During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.

  18. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  19. Visual cluster analysis and pattern recognition methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    2001-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  20. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

Top