Science.gov

Sample records for intense alpha radiation

  1. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  2. Standoff alpha radiation detection via excited state absorption of air

    SciTech Connect

    Yao, Jimmy; Yin, Stuart Shizhuo; Brenizer, Jack; Hui, Rongqing

    2013-06-24

    A standoff alpha radiation detection technique based on the physical mechanism of excited state absorption of air molecules was explored and is presented in this paper. Instead of directly detecting the radiation via measuring the intensity of radiation induced air fluorescence, the radiation is detected via the excited state absorption of alpha radiation excited/ionized air molecules. Both theoretical analyses and experimental verifications were conducted. The experimental results confirmed that the radiation could be detected via excited state absorption of radiation excited/ionized air molecules at a 10 m standoff distance, which was consistent with the theoretical analyses.

  3. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  4. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  5. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  6. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  7. Multipurpose Radiation Resistant Semiconductor Detectors for Alpha, Neutron & Low Energy Gamma Ray Measurements at High Temperatures in High-Intensity Gamma Ray

    SciTech Connect

    Ruddy, Frank H.

    2005-06-01

    Work scheduled under year two of DOE Grant DE-FG02-04ER63734 is on schedule and all year-two milestones have or will be met. Results to date demonstrate that unprecedented silicon carbide (SiC) energy resolution has been obtained, and that SiC detectors may achieve energy resolution that exceeds that obtainable with the best silicon alpha spectrometers. Fast-neutron energy spectrometry measurements indicate that recoil-ion energy spectrometry should be possible with SiC detectors. Furthermore, SiC detectors have been demonstrated to perform well even after gamma-ray exposures of 1.E09 Rad. This result and the previously demonstrated capability of SiC detectors to operate in elevated-temperature environments are very promising for potential DOE EMSP applications. A new class of multipurpose, radiation-resistant semiconductor detectors that can be used in elevated-temperature and high-radiation environments is being developed under this grant. These detectors, based on silicon carbide (SiC) semiconductor are designed to have larger active volumes than previously available SiC detectors, and are being tested for their response to alpha particles, X-rays and low energy gamma rays, and fast neutrons. Specifically, SiC radiation detectors with larger areas and 100-micrometer thick active regions have been designed and manufactured according to detector-design specifications. Detectors based on a Schottky diode design were specified in order to minimize the effects of the detector entrance window on alpha particle measurements. During manufacture of the Schottky diodes, the manufacturer also provided a set of large-volume SiC p-i-n diodes for testing Extensive alpha particle measurements have been carried out to test and quantify the response of the SiC Schottky diodes. Exposures to 148-Gd, 213-Po, 217-At, 221-Fr, 225-Ac, 237-Np, 238-Pu, 240-Pu, and 242-Pu sources were used to obtain detailed alpha response data in the alpha energy range from 3182.787 keV to 8375.9 ke

  8. Multipurpose Radiation Resistant Semiconductor Detectors for Alpha, Neutron & Low Energy Gamma Ray Measurements at High Temperatures in High-Intensity Gamma Ray

    SciTech Connect

    Ruddy, Frank H.

    2005-06-01

    Work scheduled under year two of DOE Grant DE-FG02-04ER63734 is on schedule and all year-two milestones have or will be met. Results to date demonstrate that unprecedented silicon carbide (SiC) energy resolution has been obtained, and that SiC detectors may achieve energy resolution that exceeds that obtainable with the best silicon alpha spectrometers. Fast-neutron energy spectrometry measurements indicate that recoil-ion energy spectrometry should be possible with SiC detectors. Furthermore, SiC detectors have been demonstrated to perform well even after gamma-ray exposures of 1.E09 Rad. This result and the previously demonstrated capability of SiC detectors to operate in elevated-temperature environments are very promising for potential DOE EMSP applications. A new class of multipurpose, radiation-resistant semiconductor detectors that can be used in elevated-temperature and high-radiation environments is being developed under this grant. These detectors, based on silicon carbide (SiC) semiconductor are designed to have larger active volumes than previously available SiC detectors, and are being tested for their response to alpha particles, X-rays and low energy gamma rays, and fast neutrons.

  9. Multipurpose Radiation Resistant Semiconductor Detectors for Alpha, Neutron & Low Energy Gamma Ray Measurements at High Temperatures in High-Intensity Gamma Ray

    SciTech Connect

    Ruddy, Frank H.

    2005-06-01

    Work scheduled under year two of DOE Grant DE-FG02-04ER63734 is on schedule and all year-two milestones have or will be met. Results to date demonstrate that unprecedented silicon carbide (SiC) energy resolution has been obtained, and that SiC detectors may achieve energy resolution that exceeds that obtainable with the best silicon alpha spectrometers. Fast-neutron energy spectrometry measurements indicate that recoil-ion energy spectrometry should be possible with SiC detectors. Furthermore, SiC detectors have been demonstrated to perform well even after gamma-ray exposures of 1.E09 Rad. This result and the previously demonstrated capability of SiC detectors to operate in elevated-temperature environments are very promising for potential DOE EMSP applications. A new class of multipurpose, radiation-resistant semiconductor detectors that can be used in elevated-temperature and high-radiation environments is being developed under this grant. These detectors, based on silicon carbide (SiC) semiconductor are designed to have larger active volumes than previously available SiC detectors, and are being tested for their response to alpha particles, X-rays and low energy gamma rays, and fast neutrons. Specifically, SiC radiation detectors with larger areas and 100-micrometer thick active regions have been designed and manufactured according to detector-design specifications. Detectors based on a Schottky diode design were specified in order to minimize the effects of the detector entrance window on alpha particle measurements. During manufacture of the Schottky diodes, the manufacturer also provided a set of large-volume SiC p-i-n diodes for testing Extensive alpha particle measurements have been carried out to test and quantify the response of the SiC Schottky diodes. Exposures to 148-Gd, 213-Po, 217-At, 221-Fr, 225-Ac, 237-Np, 238-Pu, 240-Pu, and 242-Pu sources were used to obtain detailed alpha response data in the alpha energy range from 3182.787 keV to 8375.9 ke

  10. Multipurpose Radiation Resistant Semiconductor Detectors for Alpha, Neutron & Low Energy Gamma Ray Measurements at High Temperatures in High-Intensity Gamma Ray

    SciTech Connect

    Ruddy, Frank H

    2005-06-01

    Work scheduled under year two of DOE Grant DE-FG02-04ER63734 is on schedule and all year-two milestones have or will be met. Results to date demonstrate that unprecedented silicon carbide (SiC) energy resolution has been obtained, and that SiC detectors may achieve energy resolution that exceeds that obtainable with the best silicon alpha spectrometers. Fast-neutron energy spectrometry measurements indicate that recoil-ion energy spectrometry should be possible with SiC detectors. Furthermore, SiC detectors have been demonstrated to perform well even after gamma-ray exposures of 1.E09 Rad. This result and the previously demonstrated capability of SiC detectors to operate in elevated-temperature environments are very promising for potential DOE EMSP applications. A new class of multipurpose, radiation-resistant semiconductor detectors that can be used in elevated-temperature and high-radiation environments is being developed under this grant.

  11. L-alpha intensity in coronal streamers

    NASA Technical Reports Server (NTRS)

    Noci, G.; Poletto, G.; Suess, S. T.; Wang, A.-H.; Wu, S. T.

    1993-01-01

    White-light images are presently the primary source of information on physical conditions in the solar corona at distances greater than a few tenths of a solar radius above the limb. As a consequence, we still only have an incomplete description of structures extending beyond the solar limb. In particular, streamers, although observed for decades, represent a poorly known phenomenon. SOHO, to be launched in 1995, will be able to make long-term observations of these features up to heights of a few solar radii, both in white light and UV. In this paper we present simulations of L-alpha intensity in coronal streamers, based on the two-dimensional (2D) model developed by Wang et at. (1992, 1993) via a time-dependent numerical relaxation approach. Because the model is 2D, we make an a priori hypothesis about the extension of streamers in the third dimension. L-alpha data, obtained from a rocket (Kohl et al., 1983), allowed us to identify a shape which fits the observations.

  12. L-alpha intensity in coronal streamers

    NASA Astrophysics Data System (ADS)

    Noci, G.; Poletto, G.; Suess, S. T.; Wang, A.-H.; Wu, S. T.

    1993-09-01

    White-light images are presently the primary source of information on physical conditions in the solar corona at distances greater than a few tenths of a solar radius above the limb. As a consequence, we still only have an incomplete description of structures extending beyond the solar limb. In particular, streamers, although observed for decades, represent a poorly known phenomenon. SOHO, to be launched in 1995, will be able to make long-term observations of these features up to heights of a few solar radii, both in white light and UV. In this paper we present simulations of L-alpha intensity in coronal streamers, based on the two-dimensional (2D) model developed by Wang et at. (1992, 1993) via a time-dependent numerical relaxation approach. Because the model is 2D, we make an a priori hypothesis about the extension of streamers in the third dimension. L-alpha data, obtained from a rocket (Kohl et al., 1983), allowed us to identify a shape which fits the observations.

  13. Lyman alpha radiation in external galaxies

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Mckee, Christopher F.

    1990-01-01

    The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.

  14. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  15. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  16. Alpha-beta radiation detector

    DOEpatents

    Fleming, D.M.; Simmons, K.L.; Froelich, T.J.; Carter, G.L.

    1998-08-18

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws. 16 figs.

  17. Alpha-beta radiation detector

    DOEpatents

    Fleming, Dale M.; Simmons, Kevin L.; Froelich, Thomas J.; Carter, Gregory L.

    1998-01-01

    The invention is based in part on the discovery that a plastic housing that is lightweight is surprisingly efficient inasmuch as background signals from any gamma radiation are significantly reduced by using a plastic housing instead of a metal housing. A further aspect of the present invention is the profile of the housing as a bi-linear approximation to a parabola resulting in full optical response from any location on the scintillation material to the photomultiplier tube. A yet further aspect of the present invention is that the survey probe is resistant to magnetic fields. A yet further aspect of the present invention is the use of a snap-fit retaining bracket that overcomes the need for multiple screws.

  18. LOGNORMAL INTENSITY DISTRIBUTION OF THE FAR-ULTRAVIOLET CONTINUUM BACKGROUND SHORTWARD OF Ly{alpha}

    SciTech Connect

    Seon, Kwang-Il

    2013-07-20

    The diffuse far-ultraviolet (FUV) continuum radiation 'longward' of Ly{alpha} (1216 A) is well known to correlate with the dust emission at 100 {mu}m. However, it has been claimed that the FUV continuum background 'shortward' of Ly{alpha} shows very weak or no correlation with the 100 {mu}m emission. In this paper, the observational data of the diffuse FUV radiation by the Far Ultraviolet Spectroscopic Explorer (FUSE) are reexamined in order to investigate the correlation between the diffuse FUV radiation shortward of Ly{alpha} and the 100 {mu}m emission. Large fluctuations were confirmed in the linear-linear correlation plots, but good correlations were found in the log-log plots. The large fluctuations in the linear-linear plots, and thus poor correlations, between the FUV and 100 {mu}m intensities were attributed to the lognormal property of the FUV intensity distribution. The standard deviation of the intensity distribution of the FUV radiation shortward of Ly{alpha} was found to be {sigma}{sub logI} = 0.16-0.25. The result is consistent with that obtained not only for the FUV radiation longward of 1216 A but also with the dust column density measurements of various molecular clouds. This implies that most of the diffuse FUV radiation shortward of Ly{alpha} is dust-scattered light in the turbulent interstellar medium. The diffuse FUV data obtained from the Voyager missions were also investigated. However, much wider random fluctuations were found compared with the FUSE data, which is most likely due to the systematic difficulties in data reduction of the Voyager data.

  19. Predicting Ly-alpha intensities in coronal streamers

    NASA Technical Reports Server (NTRS)

    Noci, Giancarlo; Poletto, Giannina; Suess, Steven T.; Wang, A.-H.; Wu, S. T.

    1992-01-01

    SOHO (Solar and Heliospheric Observatory) UVCS (Ultraviolet Coronagraph Spectrometer) will make long term observations of coronal streamers in UV lines, providing a new tool for the analysis of structures which have been known for decades but are still far from being adequately described. Work to evaluate the Lyman alpha brightness of coronal streamers is reported, adopting the streamer models obtained, via a time dependent numerical relaxation technique. This will yield understanding on the role of geometric versus physical factors in determining the streamer lyman alpha intensity and provide guidelines for UVCS observational operations. Future prospects along this line of research are summarized.

  20. A novel nanometric DNA thin film as a sensor for alpha radiation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Atul; Kim, Byeonghoon; Dugasani, Sreekantha Reddy; Joshirao, Pranav; Kim, Jang Ah; Vyas, Chirag; Manchanda, Vijay; Kim, Taesung; Park, Sung Ha

    2013-06-01

    The unexpected nuclear accidents have provided a challenge for scientists and engineers to develop sensitive detectors, especially for alpha radiation. Due to the high linear energy transfer value, sensors designed to detect such radiation require placement in close proximity to the radiation source. Here we report the morphological changes and optical responses of artificially designed DNA thin films in response to exposure to alpha radiation as observed by an atomic force microscope, a Raman and a reflectance spectroscopes. In addition, we discuss the feasibility of a DNA thin film as a radiation sensing material. The effect of alpha radiation exposure on the DNA thin film was evaluated as a function of distance from an 241Am source and exposure time. Significant reflected intensity changes of the exposed DNA thin film suggest that a thin film made of biomolecules can be one of promising candidates for the development of online radiation sensors.

  1. A novel nanometric DNA thin film as a sensor for alpha radiation

    PubMed Central

    Kulkarni, Atul; Kim, Byeonghoon; Dugasani, Sreekantha Reddy; Joshirao, Pranav; Kim, Jang Ah; Vyas, Chirag; Manchanda, Vijay; Kim, Taesung; Park, Sung Ha

    2013-01-01

    The unexpected nuclear accidents have provided a challenge for scientists and engineers to develop sensitive detectors, especially for alpha radiation. Due to the high linear energy transfer value, sensors designed to detect such radiation require placement in close proximity to the radiation source. Here we report the morphological changes and optical responses of artificially designed DNA thin films in response to exposure to alpha radiation as observed by an atomic force microscope, a Raman and a reflectance spectroscopes. In addition, we discuss the feasibility of a DNA thin film as a radiation sensing material. The effect of alpha radiation exposure on the DNA thin film was evaluated as a function of distance from an 241Am source and exposure time. Significant reflected intensity changes of the exposed DNA thin film suggest that a thin film made of biomolecules can be one of promising candidates for the development of online radiation sensors. PMID:23792924

  2. Radiative trapping in intense laser beams

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron-positron pairs can be optimized by a suitable choice of the intensity ratio.

  3. Radiative trapping in intense laser beams

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

  4. Interactions of intense laser radiation with plasma

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    1981-04-01

    The dominant physical processes involved in the interaction of intense laser radiation with plasma are discussed with emphasis on their dependence on the wavelength of the laser radiation. Hydrodynamic pressure resulting from these interactions, acceleration of spherical shell targets, and fluid instability associated with the acceleration are discussed with reference to compression of plasma in laser driven implosions. Experimental data are presented to illustrate the various phenomena.

  5. Intense terahertz radiation and their applications

    NASA Astrophysics Data System (ADS)

    Hafez, H. A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T.

    2016-09-01

    In this paper, we will review both past and recent progresses in the generation, detection and application of intense terahertz (THz) radiation. We will restrict the review to laser based intense few-cycle THz sources, and thus will not include sources such as synchrotron-based or narrowband sources. We will first review the various methods used for generating intense THz radiation, including photoconductive antennas (PCAs), optical rectification sources (especially the tilted-pulse-front lithium niobate source and the DAST source, but also those using other crystals), air plasma THz sources and relativistic laser–plasma sources. Next, we will give a brief introduction on the common methods for coherent THz detection techniques (namely the PCA technique and the electro-optic sampling), and point out the limitations of these techniques for measuring intense THz radiation. We will then review three techniques that are highly suited for detecting intense THz radiation, namely the air breakdown coherent detection technique, various single-shot THz detection techniques, and the spectral-domain interferometry technique. Finally, we will give an overview of the various applications that have been made possible with such intense THz sources, including nonlinear THz spectroscopy of condensed matter (optical-pump/THz-probe, THz-pump/THz-probe, THz-pump/optical-probe), nonlinear THz optics, resonant and non-resonant control of material (such as switching of superconductivity, magnetic and polarization switching) and controlling the nonlinear response of metamaterials. We will also provide a short perspective on the future of intense THz sources and their applications.

  6. Intense terahertz radiation and their applications

    NASA Astrophysics Data System (ADS)

    Hafez, H. A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T.

    2016-09-01

    In this paper, we will review both past and recent progresses in the generation, detection and application of intense terahertz (THz) radiation. We will restrict the review to laser based intense few-cycle THz sources, and thus will not include sources such as synchrotron-based or narrowband sources. We will first review the various methods used for generating intense THz radiation, including photoconductive antennas (PCAs), optical rectification sources (especially the tilted-pulse-front lithium niobate source and the DAST source, but also those using other crystals), air plasma THz sources and relativistic laser-plasma sources. Next, we will give a brief introduction on the common methods for coherent THz detection techniques (namely the PCA technique and the electro-optic sampling), and point out the limitations of these techniques for measuring intense THz radiation. We will then review three techniques that are highly suited for detecting intense THz radiation, namely the air breakdown coherent detection technique, various single-shot THz detection techniques, and the spectral-domain interferometry technique. Finally, we will give an overview of the various applications that have been made possible with such intense THz sources, including nonlinear THz spectroscopy of condensed matter (optical-pump/THz-probe, THz-pump/THz-probe, THz-pump/optical-probe), nonlinear THz optics, resonant and non-resonant control of material (such as switching of superconductivity, magnetic and polarization switching) and controlling the nonlinear response of metamaterials. We will also provide a short perspective on the future of intense THz sources and their applications.

  7. Physics of intense, high energy radiation effects.

    SciTech Connect

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  8. High Energy K(alpha) Radiography Using High-intensity, Short-pulse Lasers

    SciTech Connect

    Park, H; Izumi, N; Key, M H; King, J A; Koch, J A; Landen, O L; Patel, P K; Price, D F; Remington, B A; Robey, H F; Snavely, R A; Tabak, M; Town, R J; Wickersham, J E; Stoeckl, C; Storm, M; Theobald, W; Chambers, D M; Eagelton, R; Goldsack, T; Clarke, R J; Heathcote, R; Giraldez, E; Nikroo, A; Steinman, D A; Stephens, R B; Zhang, B B

    2005-11-16

    We have performed experiments using Callisto, the Vulcan 100 TW and the Vulcan Petawatt high intensity lasers to understand the characteristics of high energy, K{alpha} x-ray sources and to implement workable radiography solutions at 20-100 keV. Our measurements show that the K{alpha} size from a simple foil target is larger than 60 {micro}m, far larger than the experiment resolution requirement. The total K{alpha} yield is independent of target thicknesses verifying that refluxing plays a major role in photon generation. Smaller radiating volumes emit brighter K{alpha} radiation. 1-D radiography experiments using small-edge-on foils resolved 10 {micro}m features with high contrast. We tested a variety of small volume 2-D point sources such as cones, wires, and embedded wires, measuring photon yields and comparing our measurements with predictions from hybrid-PIC LSP simulations. In addition to high-energy, high-resolution backlighters, future experiments will also need imaging detectors and diagnostic tools that are workable in the 20-100 keV energy range. An initial look at some of these detector issues is also presented.

  9. High-energy K{alpha} radiography using high-intensity, short-pulse lasers

    SciTech Connect

    Park, H.-S.; Chung, H.-K.; Izumi, N.; Key, M.H.; King, J.A.; Koch, J.A.; Landen, O.L.; Patel, P.K.; Price, D.F.; Remington, B.A.; Robey, H.F.; Snavely, R.A.; Tabak, M.; Town, R.P.J.; Wickersham, J.E.; Chambers, D.M.; Eagleton, R.; Goldsack, T.; Clarke, R.J.; Heathcote, R.

    2006-05-15

    The characteristics of 22-40 keV K{alpha} x-ray sources are measured. These high-energy sources are produced by 100 TW and petawatt high-intensity lasers and will be used to develop and implement workable radiography solutions to probe high-Z and dense materials for the high-energy density experiments. The measurements show that the K{alpha} source size from a simple foil target is larger than 60 {mu}m, too large for most radiography applications. The total K{alpha} yield is independent of target thicknesses, verifying that refluxing plays a major role in photon generation. Smaller radiating volumes emit brighter K{alpha} radiation. One-dimensional radiography experiments using small-edge-on foils resolved 10 {mu}m features with high contrast. Experiments were performed to test a variety of small volume two-dimensional point sources such as cones, wires, and embedded wires, measured photon yields, and compared the measurements with predictions from hybrid-particle-in-cell simulations. In addition to high-energy, high-resolution backlighters, future experiments will also need imaging detectors and diagnostic tools that are workable in the high-energy range. An initial look at some of these detector issues is also presented.

  10. A High-Throughput Screen for Alpha Particle Radiation Protectants

    PubMed Central

    Seideman, Jonathan H.; Shum, David; Djaballah, Hakim

    2010-01-01

    Abstract Alpha-particle-emitting elements are of increasing importance as environmental and occupational carcinogens, toxic components of radiation dispersal devices and accidents, and potent therapeutics in oncology. Alpha particle radiation differs from radiations of lower linear energy transfer in that it predominantly damages DNA via direct action. Because of this, radical scavengers effective for other radiations have had only limited effect in mitigating alpha particle toxicity. We describe here a simple assay and a pilot screen of 3,119 compounds in a high-throughput screen (HTS), using the alpha-particle-emitting isotope, 225Ac, for the discovery of compounds that might protect mammalian cells from alpha particles through novel mechanisms. The assay, which monitored the viability of a myeloid leukemic cell line upon alpha particle exposure, was robust and reproducible, yielding a Z' factor of 0.66 and a signal-to-noise ratio of nearly 10 to 1. Surprisingly, 1 compound emerged from this screen, epoxy-4,5-α-dihydroxysantonin (EDHS), that showed considerable protective activity. While the value of EDHS remains to be determined, its discovery is a proof of concept and validation of the utility of this HTS methodology. Further application of the described assay could yield compounds useful in minimizing the toxicity and carcinogenesis associated with alpha particle exposure. PMID:20658946

  11. Quasiclassical description of bremsstrahlung accompanying {alpha} decay including quadrupole radiation

    SciTech Connect

    Jentschura, U. D.; Milstein, A. I.; Terekhov, I. S.; Boie, H.; Scheit, H.; Schwalm, D.

    2008-01-15

    We present a quasiclassical theory of {alpha} decay accompanied by bremsstrahlung with a special emphasis on the case of {sup 210}Po, with the aim of finding a unified description that incorporates both the radiation during the tunneling through the Coulomb wall and the finite energy E{sub {gamma}} of the radiated photon up to E{sub {gamma}}{approx}Q{sub {alpha}}/{radical}({eta}), where Q{sub {alpha}} is the {alpha}-decay Q-value and {eta} is the Sommerfeld parameter. The corrections with respect to previous quasiclassical investigations are found to be substantial, and excellent agreement with a full quantum mechanical treatment is achieved. Furthermore, we find that a dipole-quadrupole interference significantly changes the {alpha}-{gamma} angular correlation. We obtain good agreement between our theoretical predictions and experimental results.

  12. Detection of alpha radiation in a beta radiation field

    DOEpatents

    Mohagheghi, Amir H.; Reese, Robert P.

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  13. Radiation risks from inhaled alpha emitters

    NASA Astrophysics Data System (ADS)

    Simmons, Jack A.

    2001-06-01

    The alpha emitter that gives rise to the greatest concern over its link to the induction of lung cancer is radon. As noted by the ICRP, attempts to relate the risk of cancer induction to the dose delivered by the alpha particles result in a value for this risk which is unrealistically high. Instead, an estimate based on the epidemiology of radon in mines is preferred. The logical result, that the weighting factor for these alpha particles should be very much lesser than the recommended value of 20, appears to have been ignored. It will be shown that there are two fundamental reasons for this large discrepancy. The first is that the implied "linear non-threshold" hypothesis is not supported by recent investigations. The second is that the concept of "dose" is meaningless at the levels of exposure considered in this context. Alternative proposals in terms of fluence and the effect cross-section will be presented.

  14. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  15. Colloquium: Nanoplasmas generated by intense radiation

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kostya Ken; Beg, Farhat; Ng, Andrew

    2016-01-01

    Solid, liquid, and gaseous states of matter can exist and acquire unique properties when reduced in size into a nanometer domain. This Colloquium explores the approaches to produce plasmas with nanometer dimensions and the arising physical phenomena and properties associated with this extreme, nonequilibrium state of matter. Analysis of the spatial confinement, coupling, ideality, and degeneracy criteria lead to the possibilities to produce transient nanoplasma states near, in, and from solids by using ultrafast photoexcitation. These states arise through the interplay of nonequilibrium, many-body Coulomb interactions, thermal, and nonthermal effects. Examples include photoexcited electron-hole plasmas in semiconductors, transient solid-to-plasma states including warm dense matter, nanoplasmas produced by interaction of nanoclusters and nanoparticles with intense radiation, nanoplasmas in high-energy ion tracks within solids, nanoplasmas in relativistic regime, and others. Physical phenomena arising due to the localization of high-energy densities to microscales and nanoscales and their potential applications are discussed.

  16. Apparatus for detecting alpha radiation in difficult access areas

    DOEpatents

    Steadman, P.; MacArthur, D.W.

    1997-09-02

    An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.

  17. Apparatus for detecting alpha radiation in difficult access areas

    DOEpatents

    Steadman, Peter; MacArthur, Duncan W.

    1997-09-02

    An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.

  18. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation.

    PubMed Central

    Hallahan, D E; Spriggs, D R; Beckett, M A; Kufe, D W; Weichselbaum, R R

    1989-01-01

    We report that tumor necrosis factor alpha (TNF-alpha) mRNA is increased after treatment with x-rays in certain human sarcoma cells. An increase in TNF-alpha mRNA is accompanied by the increased production of TNF-alpha protein. TNF-alpha enhances radiation lethality in both TNF-alpha-producing and -nonproducing tumor cells. These data suggest that, in addition to the direct cytotoxic effects of x-rays, production of TNF-alpha may add to radiation lethality through autocrine and paracrine mechanisms. Combinations of TNF-alpha and therapeutic radiation may be useful in clinical cancer therapy. Images PMID:2602359

  19. Radiation cross-linking of ethylene vinyl alcohol copolymer functionalized with m-isopropenyl-{alpha},{alpha}-dimethyl benzyl isocyanate

    SciTech Connect

    Ekman, K.B.; Naesman, J.H.

    1993-12-31

    In order to allow radiation cross-linking at low radiation doses, pendant unsaturation was introduced by reactive processing of ethylene vinyl alcohol copolymer and m-isopropenyl-{alpha},{alpha}-dimethyl benzyl isocyanate. Oxygen permeability of ethylene vinyl alcohol copolymer decreased with increasing degree of functionalization, while irradiation of the samples form trapped radicals, which act as oxygen scavengers and consequently no oxygen permeability was detected. However, radical activity was inhibited by annealing the samples at 110{degrees}C for 2.5 h, resulting in a 24% higher oxygen permeability value for the irradiated unfunctionalized copolymer, while the oxygen permeability values of the irradiated functionalized samples were 13% lower. Laminates, of m-isopropenyl-{alpha},{alpha}-dimethyl benzyl isocyanate functionalized ethylene vinyl alcohol copolymer and m-isopropenyl-{alpha},{alpha}-dimethyl benzyl isocyanate functionalized ethylene hydroxyethyl methacrylate copolymer acquired improved adhesive strength both at dry and wet conditions as well as at elevated temperatures upon exposure to radiation.

  20. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    PubMed

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium. PMID:11158669

  1. Intense alpha-particle emitting crystallites in uranium mill wastes

    USGS Publications Warehouse

    Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.

    1994-01-01

    Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.

  2. Supersonic intensity and non-negative intensity for prediction of radiated sound.

    PubMed

    Liu, Daipei; Peters, Herwig; Marburg, Steffen; Kessissoglou, Nicole

    2016-05-01

    Two numerical methods to identify the surface areas of a vibrating structure that radiate sound are presented. The supersonic intensity identifies only the supersonic wave components of the sound field contributing to far-field radiated sound. The supersonic intensity is calculated using a two-dimensional convolution between a spatial radiation filter and the sound field. To compute the spatial radiation filter, the shortest surface distance between two points on the structure is calculated using the geodesic distance method. The non-negative intensity is based on acoustic radiation modes and identifies the radiated sound power from a vibrating structure. Numerical models of a baffled plate, a cylinder and an engine crankcase are presented. The supersonic intensity is shown to be difficult to implement at low frequencies due to the size of the spatial radiation filter and accuracy of the surface distances. A cut-off coefficient associated with the acoustic wavenumber of the spatial radiation filter is used to reduce the aperture error. A comparison of the two intensity-based techniques both in terms of a sound power ratio and the modal assurance criterion is introduced to identify the optimal values of the cut-off coefficients that result in better convergence between the intensity techniques.

  3. Supersonic intensity and non-negative intensity for prediction of radiated sound.

    PubMed

    Liu, Daipei; Peters, Herwig; Marburg, Steffen; Kessissoglou, Nicole

    2016-05-01

    Two numerical methods to identify the surface areas of a vibrating structure that radiate sound are presented. The supersonic intensity identifies only the supersonic wave components of the sound field contributing to far-field radiated sound. The supersonic intensity is calculated using a two-dimensional convolution between a spatial radiation filter and the sound field. To compute the spatial radiation filter, the shortest surface distance between two points on the structure is calculated using the geodesic distance method. The non-negative intensity is based on acoustic radiation modes and identifies the radiated sound power from a vibrating structure. Numerical models of a baffled plate, a cylinder and an engine crankcase are presented. The supersonic intensity is shown to be difficult to implement at low frequencies due to the size of the spatial radiation filter and accuracy of the surface distances. A cut-off coefficient associated with the acoustic wavenumber of the spatial radiation filter is used to reduce the aperture error. A comparison of the two intensity-based techniques both in terms of a sound power ratio and the modal assurance criterion is introduced to identify the optimal values of the cut-off coefficients that result in better convergence between the intensity techniques. PMID:27250172

  4. SOLAR H{alpha} OSCILLATIONS FROM INTENSITY AND DOPPLER OBSERVATIONS

    SciTech Connect

    Jackiewicz, Jason; Balasubramaniam, K. S.

    2013-03-01

    Chromospheric wave activity around flares and filaments has been a research focus for years, and could provide indirect measurements of local conditions that are not otherwise accessible. One interesting observed phenomenon is oscillations in filaments, activated by distant flares and the large-scale waves they produce. Characteristics of these oscillations, such as periods, amplitudes, and lifetimes, can provide unique information about the filament. We measure oscillation properties in flares and filaments from H{alpha} chromospheric data using a new method that provides important spatial and frequency content of the dynamics. We apply the method to two flare events where filaments are observed to oscillate and determine their properties. We find strong oscillatory signal in flaring active regions in the chromosphere over a range of frequencies. Two filaments are found to oscillate without any detectable chromospheric wave acting as an activation mechanism. We find that filaments oscillate with periods of tens of minutes, but variations are significant at small spatial scales along the filamentary region. The results suggest that there is a frequency dependence of the oscillation amplitude, as well as a spatial dependence along single filaments that is more difficult to quantify. It also appears that the strength of the oscillations does not necessarily depend on the strength of the trigger, although there are other possible effects that make this conclusion preliminary. Applications of this technique to other events and different data sets will provide important new insights into the local energy densities and magnetic fields associated with dynamic chromospheric structures.

  5. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  6. An Alpha and Theta Intensive and Short Neurofeedback Protocol for Healthy Aging Working-Memory Training

    PubMed Central

    Reis, Joana; Portugal, Ana Maria; Fernandes, Luís; Afonso, Nuno; Pereira, Mariana; Sousa, Nuno; Dias, Nuno S.

    2016-01-01

    The present study tested the effects of an intensive and short alpha and theta neurofeedback (NF) protocol in working memory (WM) performance in a healthy elder population and explored the effects of a multimodal approach, by supplementing NF with cognitive tasks. Participants were allocated to four groups: NF (N = 9); neurofeedback supplemented with cognitive training (NFCT) (N = 8); cognitive training (CT) (N = 7) and sham neurofeedback (Sham-NF) (N = 6). The intervention consisted in 30-min sessions for 8 days. The NF group presented post intervention increases of alpha and theta relative power as well as performance in the matrix rotation task. In addition, a successful up training of frontal theta showed positive correlation with an improvement of post-training alpha and a better performance in the matrix rotation task. The results presented herein suggest that an intensive and short NF protocol enables elders to learn alpha and theta self-modulation and already presents moderate improvements in cognition and basal EEG. Also, CT group showed moderate performance gains on the cognitive tasks used during the training sessions but no clear improvements on neurophysiology and behavioral measurements were observed. This study represents a first attempt to study the effects of an intensive and short NF protocol in WM performance of elders. The evidence presented here suggests that an intensive and short NF intervention could be a valid alternative for introduction of older populations to NF methodologies. PMID:27458369

  7. Investigation of the Frohlich hypothesis with high intensity terahertz radiation

    NASA Astrophysics Data System (ADS)

    Weightman, Peter

    2014-03-01

    This article provides an update to recent reviews of the Frohlich hypothesis that biological organisation is facilitated by the creation of coherent excited states driven by a flow of free energy provided by metabolic processes and mediated by molecular motions in the terahertz range. Sources of intense terahertz radiation have the potential to test this hypothesis since if it is true the growth and development of sensitive systems such as stem cells should be influenced by irradiation with intense terahertz radiation. A brief survey of recent work shows that it is not yet possible to make an assessment of the validity of the Frohlich hypothesis. Under some conditions a variety of cell types respond to irradiation with intense THz radiation in ways that involve changes in the activity of their DNA. In other experiments very intense and prolonged THz radiation has no measureable effect on the behavior of very sensitive systems such as stem cells. The wide variation in experimental conditions makes it impossible to draw any conclusions as to characteristics of THz radiation that will induce a response in living cells. It is possible that in environments suitable for their maintenance and growth cells are capable of compensating for any effects caused by exposure to THz radiation up to some currently unknown level of THz peak power.

  8. A Device for Search of Gamma-Radiation Intensive Sources at the Radiation Accident Condition

    SciTech Connect

    Batiy, Valeriy; Klyuchnykov, A; Kochnev, N; Rudko, Vladimir; shcherbin, vladimir; Yegorov, V; Schmieman, Eric A.

    2005-08-08

    The procedure designed for measuring angular distributions of gamma radiation and for search of gamma radiation intensive sources is described. It is based on application of the original multidetector device ShD-1, for measuring an angular distribution in a complete solid angle (4 pi). The calibration results and data on the angular distributions of intensity of gamma radiation at the roof of Chornobyl NPP ''Shelter'' are presented.

  9. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  10. Scatter radiation intensities around full-field digital mammography units.

    PubMed

    Judge, M A; Keavey, E; Phelan, N

    2013-01-01

    The aim of this study was to investigate the scatter radiation intensity around digital mammography systems and apply these data to standard shielding calculations to reveal whether shielding design of existing breast screening rooms is adequate for the use of digital mammography systems. Three digital mammography systems from GE Healthcare, Hologic and Philips were employed in the study. A breast-equivalent phantom was imaged under clinical workload conditions and scatter radiation intensities around the digital mammography systems were measured for a range of angles in three planes using an ionisation chamber. The results were compared with those from previous studies of film-screen systems. It may be deduced from the results that scattering in the backward direction is significant for all three systems, while scattering in the forward direction can be significant for some planes around the GE and Hologic systems. Measurements at typical clinical settings on each system revealed the Philips system to have markedly lower scatter radiation intensities than the other systems. Substituting the measured scattered radiation intensity into shielding calculations yielded barrier requirements similar to those already in place at the screening centres operating these systems. Current radiation protection requirements based on film-screen technology remain sufficient when applied to rooms with digital mammography installations and no alteration is required to the structural shielding.

  11. Testing Unruh Radiation with Ultra-Intense Lasers

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Tajima, Toshiki

    1997-04-01

    We point of that using the state-of-the-art (or soon to be) intense ultrafast laser technology, violent acceleration of electrons that may be suitable for testing general relativistic effects can be realized in the laboratory settings. In particular we demonstrate that the Unruh radiation is detectable, in principle, beyond the conventional radiation (most notably the Larmor radiation) background noise, by taking the advantages of their specific dependences on the laser power, their different characters in spectral-angular distributions, and the time structure of the signals.

  12. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  13. Measurement of natural background radiation intensity on a train.

    PubMed

    Chen, Yen-Fu; Lin, Jeng-Wei; Sheu, Rong-Jiun; Lin, Uei-Tyng; Jiang, Shiang-Huei

    2011-03-01

    This work aims to measure different components of natural background radiation on a train. A radiation measurement system consisting of four types of radiation detectors, namely, a Berkeley Lab cosmic-ray detector, moderated (3)He detector, high-pressure ionisation chamber and NaI(Tl) spectrometer, associated with a global positioning system unit was established for this purpose. For the commissioning of the system, a test measurement on a train along the railway around the northern Taiwan coast from Hsinchu to Hualien with a distance of ∼ 275 km was carried out. No significant variation of the intensities of the different components of natural background radiation was observed, except when the train went underground or in the tunnels. The average external dose rate received by the crew of the train was estimated to be 62 nSv h(-1).

  14. Modal analysis and intensity of acoustic radiation of the kettledrum.

    PubMed

    Tronchin, Lamberto

    2005-02-01

    The acoustical features of kettledrums have been analyzed by means of modal analysis and acoustic radiation (p/v ratio) measurements. Modal analysis of two different kettledrums was undertaken, exciting the system both by a hammer and a shaker. Up to 15 vibrational modes were clearly identified. Acoustic radiation was studied using two ways. Based on previous experiments of other researchers, a new parameter, called intensity of acoustic radiation (IAR), has been defined and measured. Results show a strict relationship between IAR and the frequency response function (FRF, which is the v/F ratio), and IAR also strongly relates the modal pattern to acoustic radiation. Finally, IAR is proposed for vibro-acoustical characterization of kettledrums and other musical instruments such as strings, pianos, and harpsichords. PMID:15759711

  15. Coherent Cherenkov radiation as an intense THz source

    NASA Astrophysics Data System (ADS)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.

  16. INTERPRETING THE UNRESOLVED INTENSITY OF COSMOLOGICALLY REDSHIFTED LINE RADIATION

    SciTech Connect

    Switzer, E. R.; Chang, T.-C.; Pen, U.-L.; Voytek, T. C.

    2015-12-10

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically ∼10{sup 2}–10{sup 3} times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of foregrounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  17. Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    NASA Technical Reports Server (NTRS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2016-01-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  18. Intensity modulating and other radiation therapy devices for dose painting.

    PubMed

    Galvin, James M; De Neve, Wilfried

    2007-03-10

    The introduction of intensity-modulated radiation therapy (IMRT) in the early 1990s created the possibility of generating dramatically improved dose distributions that could be tailored to fit a complex geometric arrangement of targets that push against or even surround healthy critical structures. IMRT is a new treatment paradigm that goes beyond the capabilities of the earlier technology called three-dimensional radiation therapy (3DCRT). IMRT took the older approach of using fields that conformed to the silhouette of the target to deliver a relatively homogeneous intensity of radiation and separated the conformal fields into many subfields so that intensity could be varied to better control the final dose distribution. This technique makes it possible to generate radiation dose clouds that have indentations in their surface. Initially, this technology was mainly used to avoid and thus control the dose delivered to critical structures so that they are not seriously damaged in the process of irradiating nearby targets to an appropriately high dose. Avoidance of critical structures allowed homogeneous dose escalation that led to improved local control for small tumors. However, the normal tissue component of large tumors often prohibits homogeneous dose escalation. A newer concept of dose-painting IMRT is aimed at exploiting inhomogeneous dose distributions adapted to tumor heterogeneity. Tumor regions of increased radiation resistance receive escalated dose levels, whereas radiation-sensitive regions receive conventional or even de-escalated dose levels. Dose painting relies on biologic imaging such as positron emission tomography, functional magnetic resonance imaging, and magnetic resonance spectroscopy. This review will describe the competing techologies for dose painting with an emphasis on their commonalities.

  19. Identification of patterns in diffraction intensities affected by radiation exposure.

    PubMed

    Borek, Dominika; Dauter, Zbigniew; Otwinowski, Zbyszek

    2013-01-01

    In an X-ray diffraction experiment, the structure of molecules and the crystal lattice changes owing to chemical reactions and physical processes induced by the absorption of X-ray photons. These structural changes alter structure factors, affecting the scaling and merging of data collected at different absorbed doses. Many crystallographic procedures rely on the analysis of consistency between symmetry-equivalent reflections, so failure to account for the drift of their intensities hinders the structure solution and the interpretation of structural results. The building of a conceptual model of radiation-induced changes in macromolecular crystals is the first step in the process of correcting for radiation-induced inconsistencies in diffraction data. Here the complexity of radiation-induced changes in real and reciprocal space is analysed using matrix singular value decomposition applied to multiple complete datasets obtained from single crystals. The model consists of a resolution-dependent decay correction and a uniform-per-unique-reflection term modelling specific radiation-induced changes. This model is typically sufficient to explain radiation-induced effects observed in diffraction intensities. This analysis will guide the parameterization of the model, enabling its use in subsequent crystallographic calculations.

  20. Alpha radiation effects on weapons-grade plutonium encapsulating materials

    NASA Astrophysics Data System (ADS)

    Saglam, Mehmet

    The scientific understanding of material problems in the long-term storage of plutonium pits is investigated using experimental and theoretical models. The durability of the plutonium pit depends on the integrity of the metal cladding that encapsulates the plutonium. Given sufficient time, the energetic alpha particles (helium nuclei) produced by nuclear decay of the plutonium would degrade the mechanical strength of the metal cladding which could lead to cladding failure and dispersion of plutonium. It is shown that the long-term behavior of the encapsulating materials can be simulated by beam implantation and subsequent analysis using experimental techniques of Electron Microscopy and Neutron Depth Profiling (NDP). In addition computer simulations using the TRIM code were made in order to correlate the measurements to cladding damage. The Neutron Depth Profiling measurements done with samples that had 10 16 cm-2 3He beam implant dose showed no helium redistribution, indicating no microcracking between bubbles, for both beryllium and stainless steel, the pit cladding materials of interest. However, helium redistribution and significant helium loss were observed for samples with a beam implant dose of 1018 cm-2 , indicating microstructural damage. The SEM observations were consistent with the NDP measurements. The proper interpretation of the results rests on the realization that (i)the deleterious effects are related to helium concentration, not implant dose, and (ii)a specified maximum concentration of helium is achieved with a much smaller dose when monoenergetic ions are implanted using beam geometry than for the situation where Pu alphas stop in the pit cladding. Helium is distributed over a much smaller depth interval for beam implantation of monoenergetic ions as compared to the pit cladding implanted ions. Taking this effect into account and using the calculated pit implant dose gives a pit storage time for the 1016 cm-2 beam implant dose results equal to

  1. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  2. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  3. RadICalc. A program for estimating radiation intensity of radionuclide mixtures

    SciTech Connect

    Robinson, John W.; Dion, Michael P.; Eiden, Gregory C.; Farmer, Orville T.; Liezers, Martin

    2014-09-24

    RadICalc is a cross-platform program designed to calculate the intensity of radiation released by the decay of arbitrary isotopic mixtures. It was developed to address the need for a program that could calculate the composition, activity, and measurable radiation of a sample over time without significant effort from end-users. RadICalc uses Bateman's solutions for radioactive decay to determine activity over time. Radiation intensities are subsequently calculated using a database containing information about alpha particles, beta electrons, gamma- rays, conversion and Auger electrons, and X-rays. The user interface accepts input for isotopic mixture, initial number of atoms, and time passed since sample composition was known. Results are plotted graphically, and there is a search interface provided to and isotopes of interest. RadICalc can determine activity and radiation expected at specific masses with user-defined molecules in addition to atomic species; the latter is useful in mass based isotope separations for radiometric counting applications, a novel method under development at PNNL.

  4. The Effect of Intense Laser Radiation on Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Young, Stephen Michael Radley

    1991-02-01

    Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used

  5. Evaluation of pGL1-TNF-alpha therapy in combination with radiation

    NASA Technical Reports Server (NTRS)

    Li, J.; Andres, M. L.; Fodor, I.; Nelson, G. A.; Gridley, D. S.

    1998-01-01

    Long-term control of high-grade brain tumors is rarely achieved with current therapeutic regimens. In this study a new plasmid-based human tumor necrosis factor-alpha (TNF-alpha) expression vector was synthesized (pGL1-TNF-alpha) and evaluated together with radiation in the aggressive, rapidly growing C6 rat glioma model. pGL1-TNF-alpha was successfully transfected into C6 cells in vitro using a cationic polyamine method. Expression was detected up to 7 days and averaged 0.4 ng of TNF-alpha in the culture medium from 1x10(5) cells. The expressed protein was biologically functional, as evidenced by growth inhibition of L929, a TNF-alpha-susceptible cell line. Using fluorescence-labeled monoclonal antibodies and laser scanning cytometry, we confirmed that both the P55 and P75 receptors for TNF-alpha were present on the C6 cell membrane. However, the receptors were present at low density and P55 was expressed more than the P75 receptor. These findings were in contrast to results obtained with TNF-alpha-susceptible L929 cells. Tests in athymic mice showed that pGL1-TNF-alpha administered intratumorally 16-18 h before radiation (each modality given three times) significantly inhibited C6 tumor progression (P<0.05). This effect was more than additive, because pGL1-TNF-alpha alone did not slow tumor growth and radiation alone had little effect on tumor growth. These results indicate that pGL1-TNF-alpha has potential to augment the antitumor effects of radiation against a tumor type that is virtually incurable.

  6. Development of an alpha/beta/gamma detector for radiation monitoring

    SciTech Connect

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-15

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd{sub 2}SiO{sub 5} (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

  7. Wake Measurements at alpha ventus - Dependency on Stability and Turbulence Intensity

    NASA Astrophysics Data System (ADS)

    Westerhellweg, Annette; Cañadillas, Beatriz; Kinder, Friederike; Neumann, Tom

    2014-12-01

    Wind and power deficit in the wake are assessed for the offshore wind farm Alpha Ventus. Operational data are evaluated for the power deficit in the wake of a single wind turbine and in a row of wind turbines. The wake of a single wind turbine is described by the maximum power deficit and expansion width of the wake. The impact of atmospheric stability in respect to vertical wind shear and turbulence intensity is assessed showing that wake effects are more pronounced under stable conditions.

  8. Approaching Oxygen-Guided Intensity-Modulated Radiation Therapy.

    PubMed

    Epel, Boris; Redler, Gage; Pelizzari, Charles; Tormyshev, Victor M; Halpern, Howard J

    2016-01-01

    The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered.

  9. Ly{alpha} DOMINANCE OF THE CLASSICAL T TAURI FAR-ULTRAVIOLET RADIATION FIELD

    SciTech Connect

    Schindhelm, Eric; France, Kevin; Brown, Alexander; Herczeg, Gregory J.; Bergin, Edwin; Yang Hao; Brown, Joanna M.; Linsky, Jeffrey L.; Valenti, Jeff

    2012-09-01

    Far-ultraviolet (FUV) radiation plays an important role in determining chemical abundances in protoplanetary disks. H I Lyman {alpha} (Ly{alpha}) is suspected to be the dominant component of the FUV emission from Classical T Tauri Stars (CTTSs), but is difficult to measure directly due to circumstellar and interstellar H I absorption. To better characterize the intrinsic Ly{alpha} radiation, we present FUV spectra of 14 CTTSs taken with the Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph instruments. H{sub 2} fluorescence, commonly seen in the spectra of CTTSs, is excited by Ly{alpha} photons, providing an indirect measure of the Ly{alpha} flux incident upon the warm disk surface. We use observed H{sub 2} progression fluxes to reconstruct the CTTS Ly{alpha} profiles. The Ly{alpha} flux correlates with total measured FUV flux, in agreement with an accretion-related source of FUV emission. With a geometry-independent analysis, we confirm that in accreting T Tauri systems Ly{alpha} radiation dominates the FUV flux ({approx}1150 A -1700 A). In the systems surveyed this one line comprises 70%-90% of the total FUV flux.

  10. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  11. Monte Carlo treatment of Lyman-alpha radiation in a plane-parallel atmosphere.

    NASA Technical Reports Server (NTRS)

    Modali, S. B.; Brandt, J. C.; Kastner, S. O.

    1972-01-01

    A Monte Carlo technique involving Stokes vectors is used to obtain the state of polarization and intensity of solar Lyman-alpha photons as they diffuse through a plane-parallel homogeneous model of earth's hydrogen envelope. Fine structure of Lyman-alpha and Doppler redistribution of frequencies are taken into account. Comparison of the results with Heath's observed upper limit for polarization of 1.5 per cent implies an optical thickness tau greater than 7 and intensities of 8-10 kilorayleighs for a solar Lyman-alpha flux of 5.8 ergs per sq cm per sec.

  12. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  13. Nanoscale shift of the intensity distribution of dipole radiation.

    PubMed

    Shu, Jie; Li, Xin; Arnoldus, Henk F

    2009-02-01

    The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.

  14. A Novel Microsensor for Measuring Angular Distribution of Radiative Intensity.

    PubMed

    Murphy, Thomas E; Pilorz, Stuart; Prufert-Bebout, Leslie; Bebout, Brad

    2015-01-01

    This article presents the design, construction and characterization of a novel type of light probe for measuring the angular radiance distribution of light fields. The differential acceptance angle (DAA) probe can resolve the directionality of a light field in environments with steep light gradients, such as microbial mats, without the need to remove, reorient, and reinsert the probe, a clear advantage over prior techniques. The probe consists of an inner irradiance sensor inside a concentric, moveable light-absorbing sheath. The radiative intensity in a specific zenith direction can be calculated by comparing the irradiance onto the sensor at different acceptance angles. We used this probe to measure the angular radiance distribution of two sample light fields, and observed good agreement with a conventional radiance probe. The DAA probe will aid researchers in understanding light transfer physics in dense microbial communities and expedite validation of numerical radiative transfer models for these environments. PMID:25763775

  15. Direct Radiative Effect of Intense Dust Outbreaks in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Gkikas, A.; Obiso, V.; Basart, S.; Jorba, O.; Pérez García-Pando, C.; Hatzianastassiou, N.; Gassó, S.; Baldasano, J. M.

    2015-12-01

    The broader Mediterranean basin is affected by intense desert dust outbreaks in spring. In the present study, we make use of satellite observations and modelling to investigate dust radiative impacts during three consecutive dust outbreaks occurred over the Mediterranean in the period 9/4-15/4/2008. The direct radiative effect (DRE) is estimated by using two simulations run with the NMMB/BSC-Dust model, where the interaction between dust aerosols and radiation is activated and deactivated, respectively. The simulation domain covers the North Africa, the Middle East and Europe at 0.25ºx0.25° and 40σ-layers. The first outbreak took place over the central and eastern Mediterranean on the 9th reaching aerosol optical depths (AODs) close to 1. The second one, with AODs up to 2, lasted from 10th to 14th affecting mainly the central Mediterranean. The third one, with AODs up to 5, affected the Iberian Peninsula on the 15th. DREs are computed for the outgoing radiation at the top of the atmosphere (TOA), the absorbed radiation into the atmosphere (ATMAB), for the downwelling (SURF) and the absorbed (NETSURF) radiation at surface, for the shortwave (SW), longwave (LW) and NET (SW+LW) radiation. According to our results, it is evident that DREs' spatial patterns are driven by those of AOD. Negative (cooling) instantaneous DRETOA, DRESURF and DRENETSURF values up to -500W/m2, -700W/m2 and -600W/m2, respectively, and positive (warming) instantaneous DREATMAB up to 340W/m2 are found for the SW spectrum, during daytime. Opposite but less pronounced effects are encountered for the LW radiation and during nightime. Due to these perturbations on the radiation field, the surface temperature is reduced locally by up to 8°C during daytime and increased by up to 4°C during nightime. It is found that the regional average NET DREs can be as large as -12W/m2, -45W/m2, -30W/m2 and 27W/m2 for TOA, SURF, NETSURF and ATMAB, respectively. Impacts on atmospheric stability and dust

  16. Radiation control in the intensive care unit for high intensity iridium-192 brain implants

    SciTech Connect

    Sewchand, W.; Drzymala, R.E.; Amin, P.P.; Salcman, M.; Salazar, O.M.

    1987-04-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent /sup 192/Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent /sup 192/Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent /sup 192/Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various /sup 192/Ir loads. The bedside shield reduces exposure from /sup 192/Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable.

  17. Radiation control in the intensive care unit for high intensity iridium-192 brain implants.

    PubMed

    Sewchand, W; Drzymala, R E; Amin, P P; Salcman, M; Salazar, O M

    1987-04-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent 192Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent 192Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent 192Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various 192Ir loads. The bedside shield reduces exposure from 192Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable.

  18. Development of optical monitor of alpha radiations based on CR-39.

    PubMed

    Joshirao, Pranav M; Shin, Jae Won; Vyas, Chirag K; Kulkarni, Atul D; Kim, Hojoong; Kim, Taesung; Hong, Seung-Woo; Manchanda, Vijay K

    2013-11-01

    Fukushima accident has highlighted the need to intensify efforts to develop sensitive detectors to monitor the release of alpha emitting radionuclides in the environment caused by the meltdown of the discharged spent fuel. Conventionally, proportional counting, scintillation counting and alpha spectrometry are employed to assay the alpha emitting radionuclides but these techniques are difficult to be configured for online operations. Solid State Nuclear Track Detectors (SSNTDs) offer an alternative off line sensitive technique to measure alpha emitters as well as fissile radionuclides at ultra-trace level in the environment. Recently, our group has reported the first ever attempt to use reflectance based fiber optic sensor (FOS) to quantify the alpha radiations emitted from (232)Th. In the present work, an effort has been made to develop an online FOS to monitor alpha radiations emitted from (241)Am source employing CR-39 as detector. Here, we report the optical response of CR-39 (on exposure to alpha radiations) employing techniques such as Atomic Force Microscopy (AFM) and Reflectance Spectroscopy. In the present work GEANT4 simulation of transport of alpha particles in the detector has also been carried out. Simulation includes validation test wherein the projected ranges of alpha particles in the air, polystyrene and CR-39 were calculated and were found to agree with the literature values. An attempt has been further made to compute the fluence as a function of the incidence angle and incidence energy of alphas. There was an excellent correlation in experimentally observed track density with the simulated fluence. The present work offers a novel approach to design an online CR-39 based fiber optic sensor (CRFOS) to measure the release of nanogram quantity of (241)Am in the environment.

  19. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  20. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  1. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  2. CHEMISTRY OF A PROTOPLANETARY DISK WITH GRAIN SETTLING AND Ly{alpha} RADIATION

    SciTech Connect

    Fogel, Jeffrey K. J.; Bethell, Thomas J.; Bergin, Edwin A.; Calvet, Nuria; Semenov, Dmitry E-mail: tbethell@umich.edu E-mail: ncalvet@umich.edu

    2011-01-01

    We present results from a model of the chemical evolution of protoplanetary disks. In our models, we directly calculate the changing propagation and penetration of a high energy radiation field with Ly{alpha} radiation included. We also explore the effect on our models of including dust grain settling. We find that, in agreement with earlier studies, the evolution of dust grains plays a large role in determining how deep the UV radiation penetrates into the disk. Significant grain settling at the midplane leads to much smaller freeze-out regions and a correspondingly larger molecular layer, which leads to an increase in column density for molecular species such as CO, CN, and SO. The inclusion of Ly{alpha} radiation impacts the disk chemistry through specific species that have large photodissociation cross sections at 1216 A. These include HCN, NH{sub 3}, and CH{sub 4}, for which the column densities are decreased by an order of magnitude or more due to the presence of Ly{alpha} radiation in the UV spectrum. A few species, such as CO{sub 2} and SO, are enhanced by the presence of Ly{alpha} radiation, but rarely by more than a factor of a few.

  3. Nonlinear vacuum polarization in intense blackbody radiation and its effects on the radiation spectrum

    NASA Astrophysics Data System (ADS)

    Wu, Sheldon; Hartemann, Frederic; Siders, Craig; Barty, Christopher

    2009-11-01

    A study of thermally induced vacuum polarization stemming from the Euler-Heisenberg radiation correction to Maxwell equations is conducted. While nonlinear effects associated with interactions of electromagnetic pulse with a background photon gas had been previously calculated, we examine the possibility of nonlinear corrective terms to the blackbody radiation spectrum. Suitable conditions can be found in both astrophysical and laboratory environments. Inertial confined, ignited thermonuclear plasmas will produce intense blackbody radiation at temperatures in excess of 20 keV. In this theoretical investigation, our analysis shows that in an ideal incoherent blackbody the radiation spectrum is unaffected in the regime studied. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Intensity-modulated radiation therapy: supportive data for prostate cancer.

    PubMed

    Cahlon, Oren; Hunt, Margie; Zelefsky, Michael J

    2008-01-01

    Since its introduction into clinical use in the mid-1990s, intensity-modulated radiation therapy (IMRT) has emerged as the most effective and widely used form of external-beam radiotherapy for localized prostate cancer. Multiple studies have confirmed the importance of delivering sufficiently high doses to the prostate to achieve cure. The dosimetric superiority of IMRT over conventional techniques to produce conformal dose distributions that allow for organ sparing has been shown. A growing number of reports have confirmed that IMRT is the safest way to deliver high doses of external-beam irradiation to the prostate and the regional lymph nodes. Advances in imaging and onboard verification systems continue to advance the capabilities of IMRT and have potential implications with regards to further dose escalation and hypofractionated regimens. The clinical data in support of IMRT and the associated technical aspects of IMRT treatment planning and implementation are highlighted in this review.

  5. Intensity-modulated radiation therapy for head and neck carcinoma.

    PubMed

    Grégoire, Vincent; De Neve, Wilfried; Eisbruch, Avraham; Lee, Nancy; Van den Weyngaert, Danielle; Van Gestel, Dirk

    2007-05-01

    Intensity-modulated radiation therapy (IMRT) for head and neck tumors refers to a new approach that aims at increasing the radiation dose gradient between the target tissues and the surrounding normal tissues at risk, thus offering the prospect of increasing the locoregional control probability while decreasing the complication rate. As a prerequisite, IMRT requires a proper selection and delineation of target volumes. For the latter, recent data indicate the potential of functional imaging to complement anatomic imaging modalities. Nonrandomized clinical series in paranasal sinuses and pharyngolaryngeal carcinoma have shown that IMRT was able to achieve a very high rate of locoregional control with less morbidity, such as dry-eye syndrome, xerostomia, and swallowing dysfunction. The promising results of IMRT are likely to be achieved when many treatment conditions are met, for example, optimal selection and delineation of the target volumes and organs at risk, appropriate physical quality control of the irradiation, and accurate patient setup with the use of onboard imaging. Because of the complexity of the various tasks, it is thus likely that these conditions will only be met in institutions having large patient throughput and experience with IMRT. Therefore, patient referral to those institutions is recommended.

  6. Rock Burst Intensity Classification Based on the Radiated Energy with Damage Intensity at Jinping II Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Rui; Feng, Xia-Ting; Li, Qing-Peng; Luo, Ru-Zhou; Li, Shaojun

    2015-01-01

    Based on the radiated energy of 133 rock bursts monitored by a microseismic technique at the Jinping II hydropower station, in Sichuan province, China, we analyzed the advantages and disadvantages of qualitative classification methods for the rock burst intensity. Then, we investigated the characteristics, magnitude, and laws of the radiated energy, as well as the relationship between the rock burst radiated energy and intensity. Then, we selected the energy as an evaluation index for the rock burst intensity classification, and proposed a new rock burst intensity quantitative classification method, which utilized the hierarchical clustering analysis technique with the complete-linkage method. Next, we created a new set of criteria for the quantitative classification of the rock burst intensity based on radiated energy and surrounding rock damage severity. The new criteria classified the rock burst intensity into five levels: extremely intense, intense, moderate, weak, and none, and the common logarithms of the radiated energy of each level were >7 lg( E/J), >4 lg( E/J) and <7 lg( E/J), >2 lg( E/J) and <4 lg( E/J), >1 lg( E/J) and <2 lg( E/J), and <1 lg( E/J), respectively. Finally, we investigated the factors influencing the classification, and verified its feasibility and applicability via several practical rock burst examples.

  7. Monte Carlo treatment of Lyman-alpha. II - Radiation in a spherical atmosphere

    NASA Technical Reports Server (NTRS)

    Modali, S. B.; Brandt, J. C.; Kastner, S. O.

    1975-01-01

    Intensity and state of polarization of solar L-alpha photons as they diffuse through an inhomogeneous, spherically symmetric, isothermal geocorona are theoretically determined. The fine structure of L-alpha and Doppler redistribution of frequencies are taken into account. The calculation use the Monte Carlo technique involving Stokes vectors. Comparison of the results with OGO-4 and OSO-4 observed intensities at an altitude of 650 km shows good agreement. Calculations of the polarization versus solar zenith angle show a residual polarization at large zenith angles which is mainly due to multiply scattered photons.

  8. Radiation damage induced by krypton ions in sintered alpha-Al2O3.

    PubMed

    Dalmasso, C; Iacconi, P; Beauvy, M; Lapraz, D; Balan, E; Calas, G

    2006-01-01

    Alpha-alumina is a useful thermoluminescence (TL) dosemeter. The knowledge of its behaviour under irradiation is thus of primary importance. The purpose of this paper is to characterise the radiation damage produced by swift krypton ions using various experimental methods, namely TL, optical absorption, fluorescence and electron paramagnetic resonance (EPR). After ion irradiation, the TL intensity is shown to decrease, whereas the optical absorption rises in the whole studied wavelength range. These two phenomena seem to be related to one another. Furthermore, optical absorption measurements highlight the appearance of new absorption bands probably owing to oxygen vacancies. Induced defects are also observed in the EPR spectra of irradiated pellets. They are likely related to electronic holes trapped on oxygen ions. The concentration of these defects increases with ion fluence and fluorescence measurements indicate that some pre-existing defects such as F2(2+) centres follow the same trend up to approximately 4.1 x 10(13) ions cm(-2).

  9. TESTING PULSAR RADIATION MODELS USING AN alpha-WEAK-DEPENDENT ALTITUDE RATIO

    SciTech Connect

    Lee, K. J.; Cui, X. H.; Qiao, G. J.; Xu, R. X.; Wang, H. G.

    2009-09-20

    It is found that pulsar radiation altitude ratios between different radio frequencies are weak-dependent on the inclination angle alpha. This is proved via series expansion techniques and illustrated by using pulsar examples of PSR B0329+54, B1508+55, B2016+28, B1133+16, and B2319+60. It is emphasized that this alpha-weak-dependent radiation altitude ratio offers a good tool to test pulsar radiation models. We use the measured altitude ratios to constrain the parameter space for the Ruderman-Sutherland model and the inverse Compton scattering model. It is found that the Ruderman-Sutherland model is not compatible with the measured altitude ratios, while the results are compatible with the inverse Compton scattering model. The potential possible applications of this method in studying pulsar timing and in studying pulsar high energy radiation are also discussed.

  10. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  11. Ultrasound-based guidance of intensity-modulated radiation therapy.

    PubMed

    Fung, Albert Y C; Ayyangar, Komanduri M; Djajaputra, David; Nehru, Ramasamy M; Enke, Charles A

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  12. Ultrasound-based guidance of intensity-modulated radiation therapy

    SciTech Connect

    Fung, Albert Y.C. . E-mail: afung@unmc.edu; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-04-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  13. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  14. Mapping of laser diode radiation intensity by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Dunaevskii, M. S.; Slipchenko, S. O.; Podoskin, A. A.; Tarasov, I. S.

    2015-09-01

    The distribution of the intensity of laser diode radiation has been studied using an original method based on atomic-force microscopy (AFM). It is shown that the laser radiation intensity in both the near field and transition zone of a high-power semiconductor laser under room-temperature conditions can be mapped by AFM at a subwavelength resolution. The obtained patterns of radiation intensity distribution agree with the data of modeling and the results of near-field optical microscopy measurements.

  15. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    SciTech Connect

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-07-15

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% {+-} 9%. The 3-year local control rate was 68% {+-} 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival.

  16. Alpha particle response study of polycrstalline diamond radiation detector

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Topkar, Anita

    2016-05-01

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  17. Radiation efficacy and biological risk from whole-breast irradiation via intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Desantis, David M.

    Radiotherapy is an established modality for women with breast cancer. During the delivery of external beam radiation to the breast, leakage, scattered x-rays from the patient and the linear accelerator also expose healthy tissues and organs outside of the breast, thereby increasing the patient's whole-body dose, which then increases the chance of developing a secondary, radiation-induced cancer. Generally, there are three IntensityModulated Radiotherapy (IMRT) delivery techniques from a conventional linear accelerator; forward planned (FMLC), inverse planned 'sliding window' (DMLC), and inverse planned 'step-and-shoot' (SMLC). The goal of this study was to determine which of these three techniques delivers an optimal dose to the breast with the least chance of causing a fatal, secondary, radiation-induced cancer. A conventional, non-IMRT, 'Wedge' plan also was compared. Computerized Tomography (CT) data sets for both a large and small sized patient were used in this study. With Varian's Eclipse AAA algorithm, the organ doses specified in the revised ICRP 60 publication were used to calculate the whole-body dose. Also, an anthropomorphic phantom was irradiated with thermoluminescent dosimeters (TLD) at each organ site for measured doses. The risk coefficient from the Biological Effects of Ionizing Radiation (BEIR) VII report of 4.69 x 10-2 deaths per Gy was used to convert whole-body dose to risk of a fatal, secondary, radiation-induced cancer. The FMLC IMRT delivered superior tumor coverage over the 3D conventional plan and the inverse DMLC or SMLC treatment plans delivered clinically equivalent tumor coverage. However, the FMLC plan had the least likelihood of inadvertently causing a fatal, secondary, radiation-induced cancer compared to the inverse DMLC, SMLC, and Wedge plans.

  18. Influence of reactor radiation on {alpha}-Al{sub 2}O{sub 3} in electrically insulating ceramic

    SciTech Connect

    Astapova, E.S.; Kostyukov, N.S.

    1995-11-01

    Under the action of radiation, structural changes occur in ceramic materials; these changes influence its mechanical properties and corrosion resistance. Neutron resistance has the strongest effect, inducing a number of complex processes. Most ceramic materials consist of one or more crystalline phases cemented by glass phases. Neutron radiation produces opposite density changes in the crystalline and glass phase. The conflict between these processes in the ceramic leads to increase in radiation resistance, which is the essence of the compensation effect. Thus, on irradiation, the density of crystalline quartz in the free state decreases by 15%, while the density of quartz glass increase by 3%, with corresponding changes in the volume of the phases. In porcelain, such changes facilitate an increase in strength. The radiational strength of ceramic materials was investigated - in particular, the structural changes in the irradiation of the ceramic by fast neutrons in a flux of no more than 2{center_dot}10{sup 20} cm{sup -2}. The main effects noticed after irradiation of the ceramic by fast distance and decrease in intensity of the diffractional maxima in the crystalline phases of the ceramic, for example, in the {alpha}-Al{sub 2}O{sub 3} phase of the ceramics microlite, GB-7, ultraporcelain, and 22KhS. In the initial state, GB-7 ceramic has a homogeneous, analogous, but the {alpha}-Al{sub 2}O{sub 3} crystals are smaller. According to chemical analysis, the mass fraction of aluminum oxide in GB-7 and 22KhS is 97.09% and 95.14%, respectively.

  19. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  20. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    NASA Astrophysics Data System (ADS)

    Yelon, W. B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS2, which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol.

  1. Coupling the emission of ionizing radiation and Lyman alpha

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2013-10-01

    The class of objects that reionized intergalactic hydrogen remains an observational and theoretical problem that is in contention for being the most prominent puzzle piece in contemporary astrophysics. The current consensus - determined almost entirely by ruling out bright active galaxies - is that the process was possibly begun and almost certainly finished by faint, lower-mass galaxies forming their early generations of stars. Recent observations of z 3 galaxies may even have identified the analog populations.However understanding how the emitted ionizing power of galaxies is causally related to their {robustly determined} physical properties is not a study that can be performed at high-z: neither the spatial information nor the standard multi-wavelength diagnostics are available. Moreover, on a case-by-case basis, the intervening IGM absorption is impossible to determine. These considerations have spawned a number of detailed studies with UV space telescopes, the synthesis of which however is that a characteristic population of Lyman continuum {LyC} emitting objects has not yet been identified. We show in this proposal that we have identified a characteristic trait in galaxy spectra that is highly indicative of LyC emission, by combining {a} high-z phenomenological studies, {b} new high-resolution UV spectra of local galaxies, and {c} sophisticated models of radiation transport. Believing that we have determined the signature, we propose to test the new hypothesis with deep spectroscopic observations with HST/COS under the Cycle 21 UV initiative.

  2. The role of protein kinase C alpha translocation in radiation-induced bystander effect.

    PubMed

    Fang, Zihui; Xu, An; Wu, Lijun; Hei, Tom K; Hong, Mei

    2016-01-01

    Ionizing radiation is a well known human carcinogen. Evidence accumulated over the past decade suggested that extranuclear/extracellular targets and events may also play a critical role in modulating biological responses to ionizing radiation. However, the underlying mechanism(s) of radiation-induced bystander effect is still unclear. In the current study, AL cells were irradiated with alpha particles and responses of bystander cells were investigated. We found out that in bystander AL cells, protein kinase C alpha (PKCα) translocated from cytosol to membrane fraction. Pre-treatment of cells with PKC translocation inhibitor chelerythrine chloride suppressed the induced extracellular signal-regulated kinases (ERK) activity and the increased cyclooxygenase 2 (COX-2) expression as well as the mutagenic effect in bystander cells. Furthermore, tumor necrosis factor alpha (TNFα) was elevated in directly irradiated but not bystander cells; while TNFα receptor 1 (TNFR1) increased in the membrane fraction of bystander cells. Further analysis revealed that PKC activation caused accelerated internalization and recycling of TNFR1. Our data suggested that PKCα translocation may occur as an early event in radiation-induced bystander responses and mediate TNFα-induced signaling pathways that lead to the activation of ERK and up-regulation of COX-2. PMID:27165942

  3. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  4. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  5. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  6. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  7. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  8. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  9. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1308 High-intensity Radiated Fields (HIRF) Protection. (a) Except as provided...

  10. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section,...

  11. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section,...

  12. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF... Equipment General § 23.1308 High-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in... reduce the capability of the airplane or the ability of the flightcrew to respond to an adverse...

  13. [Modalities of breast cancer irradiation in 2016: Aims and indications of intensity modulated radiation therapy].

    PubMed

    Bourgier, C; Fenoglietto, P; Lemanski, C; Ducteil, A; Charissoux, M; Draghici, R; Azria, D

    2016-10-01

    Irradiation techniques for breast cancer (arctherapy, tomotherapy) are evolving and intensity-modulated radiation therapy is being increasingly considered for the management of these tumours. Here, we propose a review of intensity-modulated radiation therapy planning issues, clinical toxicities and indications for breast cancer. PMID:27614497

  14. Bile Acid Malabsorption After Pelvic and Prostate Intensity Modulated Radiation Therapy: An Uncommon but Treatable Condition

    SciTech Connect

    Harris, Victoria; Benton, Barbara; Sohaib, Aslam; Dearnaley, David; Andreyev, H. Jervoise N.

    2012-12-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a significant therapeutic advance in prostate cancer, allowing increased tumor dose delivery and increased sparing of normal tissues. IMRT planning uses strict dose constraints to nearby organs to limit toxicity. Bile acid malabsorption (BAM) is a treatable disorder of the terminal ileum (TI) that presents with symptoms similar to radiation therapy toxicity. It has not been described in patients receiving RT for prostate cancer in the contemporary era. We describe new-onset BAM in men after IMRT for prostate cancer. Methods and Materials: Diagnosis of new-onset BAM was established after typical symptoms developed, selenium-75 homocholic acid taurine (SeHCAT) scanning showed 7-day retention of <15%, and patients' symptoms unequivocally responded to a bile acid sequestrant. The TI was identified on the original radiation therapy plan, and the radiation dose delivered was calculated and compared with accepted dose-volume constraints. Results: Five of 423 men treated in a prospective series of high-dose prostate and pelvic IMRT were identified with new onset BAM (median age, 65 years old). All reported having normal bowel habits before RT. The volume of TI ranged from 26-141 cc. The radiation dose received by the TI varied between 11.4 Gy and 62.1 Gy (uncorrected). Three of 5 patients had TI treated in excess of 45 Gy (equivalent dose calculated in 2-Gy fractions, using an {alpha}/{beta} ratio of 3) with volumes ranging from 1.6 cc-49.0 cc. One patient had mild BAM (SeHCAT retention, 10%-15%), 2 had moderate BAM (SeHCAT retention, 5%-10%), and 2 had severe BAM (SeHCAT retention, <5%). The 3 patients whose TI received {>=}45 Gy developed moderate to severe BAM, whereas those whose TI received <45 Gy had only mild to moderate BAM. Conclusions: Radiation delivered to the TI during IMRT may cause BAM. Identification of the TI from unenhanced RT planning computed tomography scans is difficult and may impede accurate

  15. Radiation Transport of Heliospheric Lyman-alpha from Combined Cassini and Voyager Data Sets

    NASA Technical Reports Server (NTRS)

    Pryor, W.; Gangopadhyay, P.; Sandel, B.; Forrester, T.; Quemerais, E.; Moebius, E.; Esposito, L.; Stewart, I.; McClintock, W.; Jouchoux, A.; Colwell, J.; Izmodenov, V.; Malama, Y.; Shemansky, D.; Ajello, J.; Hansen, C.; Bzowski, M.

    2008-01-01

    Heliospheric neutral hydrogen scatters solar Lyman-alpha radiation from the Sun with '27-day' intensity modulations observed near Earth due to the Sun's rotation combined with Earth's orbital motion. These modulations are increasingly damped in amplitude at larger distances from the Sun due to multiple scattering in the heliosphere, providing a diagnostic of the interplanetary neutral hydrogen density independent of instrument calibration. This paper presents Cassini data from 2003-2004 obtained downwind near Saturn at approximately 10 AU that at times show undamped '27-day' waves in good agreement with the single-scattering models of Pryor et al., 1992. Simultaneous Voyager 1 data from 2003- 2004 obtained upwind at a distance of 88.8-92.6 AU from the Sun show waves damped by a factor of -0.21. The observed degree of damping is interpreted in terms of Monte Carlo multiple-scattering calculations (e.g., Keller et al., 1981) applied to two heliospheric hydrogen two-shock density distributions (discussed in Gangopadhyay et al., 2006) calculated in the frame of the Baranov-Malama model of the solar wind interaction with the two-component (neutral hydrogen and plasma) interstellar wind (Baranov and Malama 1993, Izmodenov et al., 2001, Baranov and Izmodenov, 2006). We conclude that multiple scattering is definitely occurring in the outer heliosphere. Both models compare favorably to the data, using heliospheric neutral H densities at the termination shock of 0.085 cm(exp -3) and 0.095 cm(exp -3). This work generally agrees with earlier discussions of Voyager data in Quemerais et al., 1996 showing the importance of multiple scattering but is based on Voyager data obtained at larger distances from the Sun (with larger damping) simultaneously with Cassini data obtained closer to the Sun.

  16. [Adaptation reactions of rat blood exposed to low intensity electromagnetic radiation].

    PubMed

    Krylov, V N; Deriugina, A V

    2010-06-01

    It is carried out research of action low-intensive electromagnetic radiations--low-intensive laser radiation and radiations of the highest frequency on normal animals and at modelling the stress-reaction, caused by introduction of adrenaline. Absence of effects of system of blood is noted at action low-intensive electromagnetic radiations on normal an organism and them correction action on alteration an organism, shown in restoration of the broken parameters--leukocyte the blood count, electrophoretic mobility of erythrocytes and phospholipide's structure of their membranes.

  17. Remote diagnostic of the hydrogen wall through measurements of the backscattered solar Lyman alpha radiation by Voyager 1/UVS in 1993-2003

    NASA Astrophysics Data System (ADS)

    Katushkina, O. A.; Quémerais, E.; Izmodenov, V. V.; Alexashov, D. B.; Sandel, B. R.

    2016-01-01

    We perform a new analysis of the Lyman alpha data obtained by Voyager 1 during the spatial scans in 1993-2003 while Voyager 1 was at 53-88 AU from the Sun. These data are the important source of information on the hydrogen distribution in the outer heliosphere. A sophisticated global kinetic-MHD model of the heliospheric interface and a radiative transfer model are used for the analysis. It is shown for the first time that the ratio of the Lyman alpha intensities detected in the downwind and upwind lines of sight in the outer heliosphere is sensitive to the configuration (peak value and location) of the hydrogen wall. The hydrogen wall is a source of Doppler-shifted backscattered Lyman alpha photons, so it can be seen from inside the heliosphere. Therefore, Voyager 1/ultraviolet spectrometer (UVS) Lyman alpha data can be used for remote sensing of the hydrogen wall. We show that our current global model of the outer heliosphere, which is consistent with many other measurements including Lyman alpha data from both Voyager 1 and 2 in 1980-1993, provides a systematically larger downwind to upwind intensity ratio compared with the UVS data in 1993-2003. In order to decrease the ratio, a higher and/or closer hydrogen wall is needed.

  18. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  19. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay.

    PubMed

    Zhu, Jian; Li, Jian-Jun; Wang, A-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-06-15

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  20. Precise Determination of the Intensity of 226Ra Alpha Decay to the 186 keV Excited State

    SciTech Connect

    S.P. LaMont; R.J. Gehrke; S.E. Glover; R.H. Filby

    2001-04-01

    There is a significant discrepancy in the reported values for the emission probability of the 186 keV gamma-ray resulting from the alpha decay of 226 Ra to 186 keV excited state of 222 Rn. Published values fall in the range of 3.28 to 3.59 gamma-rays per 100 alpha-decays. An interesting observation is that the lower value, 3.28, is based on measuring the 186 keV gamma-ray intensity relative to the 226 Ra alpha-branch to the 186 keV level. The higher values, which are close to 3.59, are based on measuring the gamma-ray intensity from mass standards of 226 Ra that are traceable to the mass standards prepared by HÓNIGSCHMID in the early 1930''s. This discrepancy was resolved in this work by carefully measuring the 226 Ra alpha-branch intensities, then applying the theoretical E2 multipolarity internal conversion coefficient of 0.692±0.007 to calculate the 186 keV gamma-ray emission probability. The measured value for the alpha branch to the 186 keV excited state was (6.16±0.03)%, which gives a 186 keV gamma-ray emission probability of (3.64±0.04)%. This value is in excellent agreement with the most recently reported 186 keV gamma-ray emission probabilities determined using 226 Ra mass standards.

  1. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    PubMed

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  2. Inverse planning optimization method for intensity modulated radiation therapy.

    PubMed

    Lan, Yihua; Ren, Haozheng; Li, Cunhua; Min, Zhifang; Wan, Jinxin; Ma, Jianxin; Hung, Chih-Cheng

    2013-10-01

    In order to facilitate the leaf sequencing process in intensity modulated radiation therapy (IMRT), and design of a practical leaf sequencing algorithm, it is an important issue to smooth the planned fluence maps. The objective is to achieve both high-efficiency and high-precision dose delivering by considering characteristics of leaf sequencing process. The key factor which affects total number of monitor units for the leaf sequencing optimization process is the max flow value of the digraph which formulated from the fluence maps. Therefore, we believe that one strategy for compromising dose conformity and total number of monitor units in dose delivery is to balance the dose distribution function and the max flow value mentioned above. However, there are too many paths in the digraph, and we don't know the flow value of which path is the maximum. The maximum flow value among the horizontal paths was selected and used in the objective function of the fluence map optimization to formulate the model. The model is a traditional linear constrained quadratic optimization model which can be solved by interior point method easily. We believe that the smoothed maps from this model are more suitable for leaf sequencing optimization process than other smoothing models. A clinical head-neck case and a prostate case were tested and compared using our proposed model and the smoothing model which is based on the minimization of total variance. The optimization results with the same level of total number of monitor units (TNMU) show that the fluence maps obtained from our model have much better dose performance for the target/non-target region than the maps from total variance based on the smoothing model. This indicates that our model achieves better dose distribution when the algorithm suppresses the TNMU at the same level. Although we have just used the max flow value of the horizontal paths in the diagraph in the objective function, a good balance has been achieved between

  3. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  4. Stereotactic Body Radiation Therapy Versus Intensity-Modulated Radiation Therapy for Prostate Cancer: Comparison of Toxicity

    PubMed Central

    Yu, James B.; Cramer, Laura D.; Herrin, Jeph; Soulos, Pamela R.; Potosky, Arnold L.; Gross, Cary P.

    2014-01-01

    Purpose Stereotactic body radiation therapy (SBRT) is a technically demanding prostate cancer treatment that may be less expensive than intensity-modulated radiation therapy (IMRT). Because SBRT may deliver a greater biologic dose of radiation than IMRT, toxicity could be increased. Studies comparing treatment cost to the Medicare program and toxicity are needed. Methods We performed a retrospective study by using a national sample of Medicare beneficiaries age ≥ 66 years who received SBRT or IMRT as primary treatment for prostate cancer from 2008 to 2011. Each SBRT patient was matched to two IMRT patients with similar follow-up (6, 12, or 24 months). We calculated the cost of radiation therapy treatment to the Medicare program and toxicity as measured by Medicare claims; we used a random effects model to compare genitourinary (GU), GI, and other toxicity between matched patients. Results The study sample consisted of 1,335 SBRT patients matched to 2,670 IMRT patients. The mean treatment cost was $13,645 for SBRT versus $21,023 for IMRT. In the 6 months after treatment initiation, 15.6% of SBRT versus 12.6% of IMRT patients experienced GU toxicity (odds ratio [OR], 1.29; 95% CI, 1.05 to 1.53; P = .009). At 24 months after treatment initiation, 43.9% of SBRT versus 36.3% of IMRT patients had GU toxicity (OR, 1.38; 95% CI, 1.12 to 1.63; P = .001). The increase in GU toxicity was due to claims indicative of urethritis, urinary incontinence, and/or obstruction. Conclusion Although SBRT was associated with lower treatment costs, there appears to be a greater rate of GU toxicity for patients undergoing SBRT compared with IMRT, and prospective correlation with randomized trials is needed. PMID:24616315

  5. Generation of radiation by intense plasma and electromagnetic undulators

    SciTech Connect

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  6. New evaluation of the alpha and gamma emission intensities in the decay of (244)Cm.

    PubMed

    Badikov, Sergey A; Chechev, Valery P

    2016-03-01

    A method for self-consistent evaluation of the absolute emission probabilities for particles and photons accompanying radionuclide decays was applied to the evaluation of the (244)Cm alpha decay data. The absolute emission probabilities evaluated by the method meet the accurate balance relationships. The self-consistency of the results was reached through an iterative scheme of calculations, using the DDEP recommended probabilities for alpha transitions to the five (240)Pu highly excited levels as an initial approximation.

  7. The comparative effects of gamma radiation and in situ alpha particles on five strong-base anion exchange resins

    SciTech Connect

    Marsh, S.F.

    1991-01-01

    The effects of external gamma radiation and in situ alpha particles were measured on a recently available, macroporous, strong-base polyvinylpyridine resin and on four strong-base polystyrene anion exchange resins. Each resin was irradiated in 7 M nitric acid to 1--10 megaGray of gamma radiation from external {sup 60}Co, or to 5--14 megaGray of alpha particles from sorbed {sup 238}Pu. Each irradiated resin was measured for changes in dry weight, wet volume, weak-base and strong-base chloride exchange capacities, and exchange capacities for Pu(4) from nitric acid. Alpha-induced resin damage was significantly less than that caused by an equivalent dose of gamma radiation. The polyvinylpyridine resin offers the greatest resistance to damage from gamma radiation and from alpha particles. 5 refs., 1 figs. 5 tabs.

  8. Quantification of actinide alpha-radiation damage in minerals and ceramics.

    PubMed

    Farnan, Ian; Cho, Herman; Weber, William J

    2007-01-11

    There are large amounts of heavy alpha-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is consensus that actinides that have been separated from spent nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their superior aqueous durability and lower risk of accidental criticality. However, in the long term, the alpha-decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per alpha-decay. At present, this number is estimated to be 1,000-2,000 atoms/alpha in zircon. Here we report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/alpha in radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the same dose, indicating no significant effect of half-life or loading levels (dose rate). On the basis of these measurements, the initially crystalline structure of a 10 weight per cent 239Pu zircon would be amorphous after only 1,400 years in a geological repository (desired immobilization timescales are of the order of 250,000 years). These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage event. PMID:17215840

  9. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  10. Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG Alpha Waves.

    PubMed

    Renauld, Emmanuelle; Descoteaux, Maxime; Bernier, Michaël; Garyfallidis, Eleftherios; Whittingstall, Kevin

    2016-01-01

    At rest, healthy human brain activity is characterized by large electroencephalography (EEG) fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although it is well known that EEG alpha activity varies across individuals, few studies have investigated how this may be related to underlying morphological variations in brain structure. Specifically, it is generally believed that the lateral geniculate nucleus (LGN) and its efferent fibres (optic radiation, OR) play a key role in alpha activity, yet it is unclear whether their shape or size variations contribute to its inter-subject variability. Given the widespread use of EEG alpha in basic and clinical research, addressing this is important, though difficult given the problems associated with reliably segmenting the LGN and OR. For this, we employed a multi-modal approach and combined diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI) and EEG in 20 healthy subjects to measure structure and function, respectively. For the former, we developed a new, semi-automated approach for segmenting the OR and LGN, from which we extracted several structural metrics such as volume, position and diffusivity. Although these measures corresponded well with known morphology based on previous post-mortem studies, we nonetheless found that their inter-subject variability was not significantly correlated to alpha power or peak frequency (p >0.05). Our results therefore suggest that alpha variability may be mediated by an alternative structural source and our proposed methodology may in general help in better understanding the influence of anatomy on function such as measured by EEG or fMRI. PMID:27383146

  11. Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG Alpha Waves

    PubMed Central

    Descoteaux, Maxime; Bernier, Michaël; Garyfallidis, Eleftherios; Whittingstall, Kevin

    2016-01-01

    At rest, healthy human brain activity is characterized by large electroencephalography (EEG) fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although it is well known that EEG alpha activity varies across individuals, few studies have investigated how this may be related to underlying morphological variations in brain structure. Specifically, it is generally believed that the lateral geniculate nucleus (LGN) and its efferent fibres (optic radiation, OR) play a key role in alpha activity, yet it is unclear whether their shape or size variations contribute to its inter-subject variability. Given the widespread use of EEG alpha in basic and clinical research, addressing this is important, though difficult given the problems associated with reliably segmenting the LGN and OR. For this, we employed a multi-modal approach and combined diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI) and EEG in 20 healthy subjects to measure structure and function, respectively. For the former, we developed a new, semi-automated approach for segmenting the OR and LGN, from which we extracted several structural metrics such as volume, position and diffusivity. Although these measures corresponded well with known morphology based on previous post-mortem studies, we nonetheless found that their inter-subject variability was not significantly correlated to alpha power or peak frequency (p >0.05). Our results therefore suggest that alpha variability may be mediated by an alternative structural source and our proposed methodology may in general help in better understanding the influence of anatomy on function such as measured by EEG or fMRI. PMID:27383146

  12. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis

    PubMed Central

    Weigel, Christoph; Veldwijk, Marlon R.; Oakes, Christopher C.; Seibold, Petra; Slynko, Alla; Liesenfeld, David B.; Rabionet, Mariona; Hanke, Sabrina A.; Wenz, Frederik; Sperk, Elena; Benner, Axel; Rösli, Christoph; Sandhoff, Roger; Assenov, Yassen; Plass, Christoph; Herskind, Carsten; Chang-Claude, Jenny; Schmezer, Peter; Popanda, Odilia

    2016-01-01

    Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. PMID:26964756

  13. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis.

    PubMed

    Weigel, Christoph; Veldwijk, Marlon R; Oakes, Christopher C; Seibold, Petra; Slynko, Alla; Liesenfeld, David B; Rabionet, Mariona; Hanke, Sabrina A; Wenz, Frederik; Sperk, Elena; Benner, Axel; Rösli, Christoph; Sandhoff, Roger; Assenov, Yassen; Plass, Christoph; Herskind, Carsten; Chang-Claude, Jenny; Schmezer, Peter; Popanda, Odilia

    2016-03-11

    Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy.

  14. Identification of gene-based responses in human blood cells exposed to alpha particle radiation

    PubMed Central

    2014-01-01

    Background The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving α-particles. Methods Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of α-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Results Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either α-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the α-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no α-particle specific transcripts were identified. Conclusion Current gene panels for photon radiation may also be applicable for use in α-particle radiation biodosimetry. PMID:25017500

  15. Features of electromagnetic radiation time-and-frequency fluctuation intensity distributions from human brain structures.

    PubMed

    Kublanov, V S; Gasilov, V L; Kazakov, Y E

    2000-01-01

    Time-and-frequency fluctuation intensity distributions' analysis is made of the electromagnetic radiation obtained from deep human brain structures. The role of monitoring the distribution changes due to various cerebral circulation disorders is explained.

  16. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Spatial coherence and intensity of reflected laser radiation

    NASA Astrophysics Data System (ADS)

    Kozin, G. I.; Kuznetsov, A. P.

    1998-12-01

    A theoretical analysis is made of the statistical characteristics of nonspecularly reflected laser radiation in its far-field zone. No restrictions are placed on the angles of incidence and observation of light. Generalised integral relationships are derived between the distribution of the intensity of light on a reflector and the degree of the spatial coherence of the emitted light, and also between the function representing the degree of the spatial coherence on a reflector and the intensity of the emitted radiation. The shape of the surface representing the regular phase of the reflected radiation is determined. It is shown that the degree of coherence of the radiation and its intensity can be represented by a function of the angles of observation. A method is proposed for determination of the relative intensity and of the degree of the spatial coherence in images formed by paraxial optical systems subject to aperture restrictions.

  17. Art, alpha-1-antitrypsin polymorphisms and intense creative energy: blessing or curse?

    PubMed

    Schmechel, Donald Everett

    2007-09-01

    Persons heterozygous for Z, S and rare alpha-1-antitrypsin (AAT, SERPIN1A) polymorphisms (ca. 9% of population) are often considered 'silent' carriers with increased vulnerability to environmentally modulated liver and lung disease. They may have significantly more anxiety and bipolar spectrum disorders, nutritional compromise, and white matter disease [Schmechel DE, Browndyke J, Ghio A. Strategies for the dissection of genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006;27:637-57]. Given association of art and mood disorders, we examined occupation and artistic vocation from this same series. One thousand five hundred and thirty-seven consecutive persons aged 16-90 years old received comprehensive work-up including testing for AAT 'phenotype' and level, nutritional factors, and inflammatory, iron and copper indices. Occupations were grouped by Bureau of Labor Standards classification and information gathered on artistic activities. Proportion of reactive airway disease, obstructive pulmonary disease, and pre-existing anxiety disorder or bipolar disorder were significantly increased in persons carrying AAT non-M polymorphisms compared to normal MM genotype (respectively, 10, 20, 21, and 33% compared to 8, 12, 11, and 9%; contingency table, pulmonary: chi2 37, p=0.0001; affective disorder: chi2=171, p=0.0001). In persons with artistic avocation (n=189) or occupation (n=57), AAT non-M polymorphisms are significantly increased (respectively, proportions of 44 and 40% compared to background rate of 9%; contingency table, avocation: chi2=172, p=0.0001; occupation: chi2=57, p=0.0007). Artistic ability and 'anxiety/bipolar spectrum' mood disorders may represent phenotypic attributes that had selective advantage during recent human evolution, an 'intensive creative energy' (ICE) behavioral phenotype. Background proportion of ICE of 7% consists of 49 of 1312 persons with AAT MM genotype (4%), and 58 of 225 persons with non-MM genotypes

  18. Art, alpha-1-antitrypsin polymorphisms and intense creative energy: blessing or curse?

    PubMed

    Schmechel, Donald Everett

    2007-09-01

    Persons heterozygous for Z, S and rare alpha-1-antitrypsin (AAT, SERPIN1A) polymorphisms (ca. 9% of population) are often considered 'silent' carriers with increased vulnerability to environmentally modulated liver and lung disease. They may have significantly more anxiety and bipolar spectrum disorders, nutritional compromise, and white matter disease [Schmechel DE, Browndyke J, Ghio A. Strategies for the dissection of genetic-environmental interactions in neurodegenerative disorders. Neurotoxicology 2006;27:637-57]. Given association of art and mood disorders, we examined occupation and artistic vocation from this same series. One thousand five hundred and thirty-seven consecutive persons aged 16-90 years old received comprehensive work-up including testing for AAT 'phenotype' and level, nutritional factors, and inflammatory, iron and copper indices. Occupations were grouped by Bureau of Labor Standards classification and information gathered on artistic activities. Proportion of reactive airway disease, obstructive pulmonary disease, and pre-existing anxiety disorder or bipolar disorder were significantly increased in persons carrying AAT non-M polymorphisms compared to normal MM genotype (respectively, 10, 20, 21, and 33% compared to 8, 12, 11, and 9%; contingency table, pulmonary: chi2 37, p=0.0001; affective disorder: chi2=171, p=0.0001). In persons with artistic avocation (n=189) or occupation (n=57), AAT non-M polymorphisms are significantly increased (respectively, proportions of 44 and 40% compared to background rate of 9%; contingency table, avocation: chi2=172, p=0.0001; occupation: chi2=57, p=0.0007). Artistic ability and 'anxiety/bipolar spectrum' mood disorders may represent phenotypic attributes that had selective advantage during recent human evolution, an 'intensive creative energy' (ICE) behavioral phenotype. Background proportion of ICE of 7% consists of 49 of 1312 persons with AAT MM genotype (4%), and 58 of 225 persons with non-MM genotypes

  19. Growth and Characterization of alpha-PbO for Room Temperature Radiation Detection

    NASA Astrophysics Data System (ADS)

    Ford, Erin Leigh

    A global trading structure and high throughput of shipping containers into ports around the world increases the chance of nuclear terrorism via cargo containers. Harmless radioactive sources confuse and impede detection of the materials that pose a real threat, making spectroscopy difficult and requiring detectors with high resolution. The current methods that are used to check containers in ports have security flaws, and only 5% of all shipping containers are checked. The development of semiconductor gamma-ray detectors is one of the protocols being advanced to alleviate this risk because they can function at room temperature and they are cost effective, easily produced, and have high resolution. This dissertation has addressed the current lack of "perfect" room temperature detector materials by investigating alpha-PbO, a novel material in this field. This includes the development of a growth process for alpha-PbO thin films, as well as its structural and performance characterization as a detector material. Because we intend alpha-PbO to be a photoconductive detector, it should have certain properties. A photoconductive detector consists of a highly resistive material with a voltage bias across it. It absorbs incident gamma-rays, creating electron-hole pairs that provide a signal. To function well, it must have a high atomic number and a high density in order to absorb high-energy photons via the photoelectric effect. It should also have a large resistivity and a wide band gap to avoid large leakage currents at room temperature. Finally, it must have good charge carrier transport properties and detector resolution in order to be able to determine the characteristic energy peaks of the radiation-emitting source. We chose alpha-PbO because it has a very high Z and a very high density and a band gap in the correct range. It also has a rich history of use as a photoconductor that reaches back to the 1950s. Numerous methods have been used to grow thin films of alpha

  20. Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1988-01-01

    The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.

  1. Development of a personal dosimetry system based on optically stimulated luminescence of alpha-Al2O3:C for mixed radiation fields.

    PubMed

    Lee, S Y; Lee, K J

    2001-04-01

    To develop a personal optically stimulated luminescence (OSL) dosimetry system for mixed radiation fields using alpha-Al2O3:C, a discriminating badge filter system was designed by taking advantage of its optically stimulable properties and energy dependencies. This was done by designing a multi-element badge system for powder layered alpha-Al2O3:C material and an optical reader system based on high-intensity blue light-emitting diode (LED). The design of the multielement OSL dosimeter badge system developed allows the measurement of a personal dose equivalent value Hp(d) in mixed radiation fields of beta and gamma. Dosimetric properties of the personal OSL dosimeter badge system investigated here were the dose response, energy response and multi-readability. Based on the computational simulations and experiments of the proposed dosimeter design, it was demonstrated that a multi-element dosimeter system with an OSL technology based on alpha-Al2O3:C is suitable to obtain personal dose equivalent information in mixed radiation fields. PMID:11225704

  2. Energetic response of Chlorella vulgaris to alpha radiation and PCB stress

    SciTech Connect

    Schaffer, S.A.

    1982-01-01

    This research project has evaluated the bioenergetic response of the green alga Chlorella vulgaris following acute exposure to either the physical stress of radiation or the chemical stress of PCBs. After exposure, changes in survival or growth, adenylate pools (ATP, ADP, and AMP), CO/sub 2/ fixation and oxygen evolution and uptake were measured. By employing anaerobic conditions, or the electron transport inhibitor DCMU or dark conditions separately and in specific combinations, this study evaluated the response of three separate algal ATP producing mechanisms (respiration, total and cyclic photophosphorylation) to alpha radiation or PCB. The use of the adenylate energy charge ratio as an indicator of stress was also evaluated. The results of the radiation experiments indicated that alpha particle exposure between 25 to 275 rads caused a one-hour latent demand for ATP due to radioinduced DNA repair. In order to compensate for this ATP demand, nonessential utilization of ATP was decreased by slowing the rate of carbon fixation. The results also suggest that use of radiation as a tool to study algal physiology. The data obtained from the PCB experiments again showed each phosphorylation mechanism to be insensitive to 10, 100 and 200 ppm Aroclor 1254 exposures. Data suggest, however, that PCBs caused an increased photosynthetic rate, and total adenylate pool with decreased growth. The use of the adenylate energy charge ratio as a stress indicator was assessed. Because this ratio did not fluctuate at doses of radiation or PCBs that caused reduced survival and growth rates, this study concluded that for Chlorella the adenylate energy charge ration was a poor indicator of sublethal stress.

  3. Strategies for quality assurance of intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Benedek, Hunor; Isacsson, Ulf; Olevik-Dunder, Maria; Westermark, Mathias; Hållström, Per; Olofsson, Jörgen; Gustafsson, Magnus

    2015-01-01

    In late 2011 The Swedish Society of Radiation Physics formed a working group to concentrate on the Quality Assurance of modern radiation therapy techniques. The given task was to identify and summarise the different QA strategies in Sweden and also the international recommendations. This was used to formulate recommendations for practical guidelines within Sweden. In this paper a brief summery of the group's work is presented. All the Swedish radiation therapy centres do a pre treatment verification measurement as QA for every new IMRT and VMAT plan. Physicists do it and they believe it to be time consuming. A general standpoint from all the centres was that new guidelines and legislation is needed to allow QA that does not require a measurement. Based on various international publications and recommendations the working group has presented two strategies, one where all new plans are checked through measurement and one where no measurement is needed. The measurement- based strategy is basically the same as the one used today with an extended machine QA part. The other presented strategy is process oriented where all the different parts of the treatment chain are checked separately. The final report can be found in Swedish on http://www.radiofysik.org.

  4. Low-intensity infrared laser radiation influence on the tumor growth

    NASA Astrophysics Data System (ADS)

    Cheida, A. A.; Efimova, E. G.

    2005-08-01

    Infrared laser radiation of low intensity in exposition dose of 25-35 mJicm2 does not cause progress the tumor process. Moreover, disturbing the blood flow in the tumor due to changing synthesis of norepinephrine and histamine this radiation contributes to the damage of the tumor tissue accompanied by the beginning of adaptation reaction in the organism.

  5. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, R.J.; McElhaney, S.A.; Bates, J.B.

    1994-07-26

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments. 4 figs.

  6. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, Robert J.; McElhaney, Stephanie A.; Bates, John B.

    1994-01-01

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments.

  7. Silicone rubber curing by high intensity infrared radiation

    SciTech Connect

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-08-10

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice

    PubMed Central

    Jeong, Bae Kwon; Song, Jin Ho; Jeong, Hojin; Choi, Hoon Sik; Jung, Jung Hwa; Hahm, Jong Ryeal; Woo, Seung Hoon; Jung, Myeong Hee; Choi, Bong-Hoi; Kim, Jin Hyun; Kang, Ki Mun

    2016-01-01

    Purpose Radiation therapy is a highly effective treatment for patients with solid tumors. However, it can cause damage and inflammation in normal tissues. Here, we investigated the effects of alpha-lipoic acid (ALA) as radioprotection agent for the small intestine in a mouse model. Materials and Methods Whole abdomen was evenly irradiated with total a dose of 15 Gy. Mice were treated with either ALA (100 mg/kg, intraperitoneal injection [i.p.]) or saline (equal volume, i.p.) the prior to radiation as 100 mg/kg/day for 3 days. Body weight, food intake, histopathology, and biochemical parameters were evaluated. Results Significant differences in body weight and food intake were observed between the radiation (RT) and ALA + RT groups. Moreover, the number of crypt cells was higher in the ALA + RT group. Inflammation was decreased and recovery time was shortened in the ALA + RT group compared with the RT group. The levels of inflammation-related factors (i.e., phosphorylated nuclear factor kappa B and matrix metalloproteinase-9) and mitogen-activated protein kinases were significantly decreased in the ALA + RT group compared with those in the RT group. Conclusions ALA treatment prior to radiation decreases the severity and duration of radiation-induced enteritis by reducing inflammation, oxidative stress, and cell death. PMID:26943777

  9. Differential Effects of Alpha-Particle Radiation and X-Irradiation on Genes Associated with Apoptosis

    PubMed Central

    Chauhan, Vinita; Howland, Matthew; Chen, Jeremy; Kutzner, Barbara; Wilkins, Ruth C.

    2011-01-01

    This study examined differential effects of alpha-(α-) particle radiation and X-rays on apoptosis and associated changes in gene expression. Human monocytic cells were exposed to α-particle radiation and X-rays from 0 to 1.5 Gy. Four days postexposure, cell death was measured by flow cytometry and 84 genes related to apoptosis were analyzed using real-time PCR. On average, 33% of the cells were apoptotic at 1.5 Gy of α-particle radiation. Transcript profiling showed statistical expression of 15 genes at all three doses tested. Cells exposed to X-rays were <5% apoptotic at ~1.5 Gy and induced less than a 2-fold expression in 6 apoptotic genes at the higher doses of radiation. Among these 6 genes, Fas and TNF-α were common to the α-irradiated cells. This data suggests that α-particle radiation initiates cell death by TNF-α and Fas activation and through intermediate signalling mediators that are distinct from X-irradiated cells. PMID:22091383

  10. Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    NASA Astrophysics Data System (ADS)

    Capdessus, Remi; d'Humières, Emmanuel; Tikhonchuk, Vladimir

    2013-11-01

    Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity.

  11. Effects of PGF{sub 2{alpha}} on human melanocytes and regulation of the FP receptor by ultraviolet radiation

    SciTech Connect

    Scott, Glynis . E-mail: Glynis_Scott@urmc.rochester.edu; Jacobs, Stacey; Leopardi, Sonya; Anthony, Frank A.; Learn, Doug; Malaviya, Rama; Pentland, Alice

    2005-04-01

    Prostaglandins are potent lipid hormones that activate multiple signaling pathways resulting in regulation of cellular growth, differentiation, and apoptosis. In the skin, prostaglandins are rapidly released by keratinocytes following ultraviolet radiation and are chronically present in inflammatory skin lesions. We have shown previously that melanocytes, which provide photoprotection to keratinocytes through the production of melanin, express several receptors for prostaglandins, including the PGE{sub 2} receptors EP{sub 1} and EP{sub 3} and the PGF{sub 2{alpha}} receptor FP, and that PGF{sub 2{alpha}} stimulates melanocyte dendricity. We now show that PGF{sub 2{alpha}} stimulates the activity and expression of tyrosinase, the rate-limiting enzyme in melanin synthesis. Analysis of FP receptor regulation showed that the FP receptor is regulated by ultraviolet radiation in melanocytes in vitro and in human skin in vivo. We also show that ultraviolet irradiation stimulates production of PGF{sub 2{alpha}} by melanocytes. These results show that PGF{sub 2{alpha}} binding to the FP receptor activates signals that stimulate a differentiated phenotype (dendricity and pigmentation) in melanocytes. The regulation of the FP receptor and the stimulation of production of PGF{sub 2{alpha}} in melanocytes in response to ultraviolet radiation suggest that PGF{sub 2{alpha}} could act as an autocrine factor for melanocyte differentiation.

  12. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse

    SciTech Connect

    Li Zhichao; Zheng Jian

    2007-05-15

    When an ultra-intense laser pulse impacts the tip of a wire whose other end is grounded, a strong return current can be driven along the wire because some energetic electrons generated in ultra-intense laser matter interaction can escape from the target and an electric field builds up. The wire then behaves like a current-carrying antenna that can emit electromagnetic radiations. If the duration of the driving pulse is several tens of femtoseconds, the radiation spectrum reaches a maximum at terahertz region, and the radiation power per solid angle could be as high as 10{sup 9} W/rad.

  13. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans.

    PubMed

    Shahin-Jafari, Ariyo; Bayat, Mansour; Shahhosseiny, Mohammad Hassan; Tajik, Parviz; Roudbar-Mohammadi, Shahla

    2016-05-01

    Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence. PMID:27081370

  14. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans

    PubMed Central

    Shahin-jafari, Ariyo; Bayat, Mansour; Shahhosseiny, Mohammad Hassan; Tajik, Parviz; Roudbar-mohammadi, Shahla

    2015-01-01

    Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence. PMID:27081370

  15. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans.

    PubMed

    Shahin-Jafari, Ariyo; Bayat, Mansour; Shahhosseiny, Mohammad Hassan; Tajik, Parviz; Roudbar-Mohammadi, Shahla

    2016-05-01

    Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence.

  16. Monitoring Alpha Oscillations and Pupil Dilation across a Performance-Intensity Function

    PubMed Central

    McMahon, Catherine M.; Boisvert, Isabelle; de Lissa, Peter; Granger, Louise; Ibrahim, Ronny; Lo, Chi Yhun; Miles, Kelly; Graham, Petra L.

    2016-01-01

    Listening to degraded speech can be challenging and requires a continuous investment of cognitive resources, which is more challenging for those with hearing loss. However, while alpha power (8–12 Hz) and pupil dilation have been suggested as objective correlates of listening effort, it is not clear whether they assess the same cognitive processes involved, or other sensory and/or neurophysiological mechanisms that are associated with the task. Therefore, the aim of this study is to compare alpha power and pupil dilation during a sentence recognition task in 15 randomized levels of noise (-7 to +7 dB SNR) using highly intelligible (16 channel vocoded) and moderately intelligible (6 channel vocoded) speech. Twenty young normal-hearing adults participated in the study, however, due to extraneous noise, data from only 16 (10 females, 6 males; aged 19–28 years) was used in the Electroencephalography (EEG) analysis and 10 in the pupil analysis. Behavioral testing of perceived effort and speech performance was assessed at 3 fixed SNRs per participant and was comparable to sentence recognition performance assessed in the physiological test session for both 16- and 6-channel vocoded sentences. Results showed a significant interaction between channel vocoding for both the alpha power and the pupil size changes. While both measures significantly decreased with more positive SNRs for the 16-channel vocoding, this was not observed with the 6-channel vocoding. The results of this study suggest that these measures may encode different processes involved in speech perception, which show similar trends for highly intelligible speech, but diverge for more spectrally degraded speech. The results to date suggest that these objective correlates of listening effort, and the cognitive processes involved in listening effort, are not yet sufficiently well understood to be used within a clinical setting. PMID:27252671

  17. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  18. Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.

    2010-01-01

    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.

  19. Radiation-induced peroxidation of lipid dissolved in organic solvent and its inhibition by alpha-tocopherol and cepharanthine

    SciTech Connect

    Shiraishi, N.; Joja, I.; Kuroda, M.; Fujishima, M.; Miyake, M.; Aono, K.

    1985-01-01

    Effects of cepharanthine and alpha-tocopherol on radiation-induced peroxidation of lipids dissolved in methanol(MeOH)-chloroform (CHCl3)-H2O(v/v, 2/1/0.8) were examined. alpha-Tocopherol strongly inhibited radiation-induced peroxidation of lipids dissolved in MeOH-CHCl3-H2O. However, cepharanthine exhibited a weak inhibitory action in this system. The change in the absorption spectrum of alpha-tocopherol and cepharanthine by X-irradiation was measured. The reagents were dissolved in 95% EtOH acidified with 20 mM HCl and in MeOH-CHCl3-H2O. alpha-Tocopherol exhibited the change in its absorption spectrum in both systems, and seemed to be oxidized at a high rate by free radicals. However, cepharanthine slightly exhibited the change in its spectrum in MeOH-CHCl3-H2O, but not in acidified EtOH.

  20. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    NASA Astrophysics Data System (ADS)

    Yoffe, S. R.; Noble, A.; Macleod, A. J.; Jaroszynski, D. A.

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra.

  1. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program.

  2. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  3. Prevention and Treatment of Functional and Structural Radiation Injury in the Rat Heart by Pentoxifylline and Alpha-Tocopherol

    SciTech Connect

    Boerma, Marjan Roberto, Kerrey A.; Hauer-Jensen, Martin

    2008-09-01

    Purpose: Radiation-induced heart disease (RIHD) is a severe side effect of thoracic radiotherapy. This study examined the effects of pentoxifylline (PTX) and {alpha}-tocopherol on cardiac injury in a rat model of RIHD. Methods and Materials: Male Sprague-Dawley rats received fractionated local heart irradiation with a daily dose of 9 Gy for 5 days and were observed for 6 months after irradiation. Rats were treated with a combination of PTX, 100 mg/kg/day, and {alpha}-tocopherol (20 IU/kg/day) and received these compounds either from 1 week before until 6 months after irradiation or starting 3 months after irradiation, a time point at which histopathologic changes become apparent in our model of RIHD. Results: Radiation-induced increases in left ventricular diastolic pressure (in mm Hg: 35 {+-} 6 after sham-irradiation, 82 {+-} 11 after irradiation) were significantly reduced by PTX and {alpha}-tocopherol (early treatment: 48 {+-} 7; late treatment: 53 {+-} 6). PTX and {alpha}-tocopherol significantly reduced deposition of collagen types I (radiation only: 3.5 {+-} 0.2 {mu}m{sup 2} per 100 {mu}m{sup 2}; early treatment: 2.7 {+-} 0.8; late treatment: 2.2 {+-} 0.2) and III (radiation only: 13.9 {+-} 0.8; early treatment: 11.0 {+-} 1.2; late treatment: 10.6 {+-} 0.8). On the other hand, radiation-induced alterations in heart/body weight ratios, myocardial degeneration, left ventricular mast cell densities, and most echocardiographic parameters were not significantly altered by PTX and {alpha}-tocopherol. Conclusions: Treatment with PTX and {alpha}-tocopherol may have beneficial effects on radiation-induced myocardial fibrosis and left ventricular function, both when started before irradiation and when started later during the process of RIHD.

  4. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice

    PubMed Central

    Singh, Vijay K.; Wise, Stephen Y.; Fatanmi, Oluseyi O.; Beattie, Lindsay A.; Ducey, Elizabeth J.; Seed, Thomas M.

    2014-01-01

    The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5–12.5 Gy) of 60Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans. PMID:23814114

  5. Growth and Characterization of alpha-PbO for Room Temperature Radiation Detection

    NASA Astrophysics Data System (ADS)

    Ford, Erin Leigh

    A global trading structure and high throughput of shipping containers into ports around the world increases the chance of nuclear terrorism via cargo containers. Harmless radioactive sources confuse and impede detection of the materials that pose a real threat, making spectroscopy difficult and requiring detectors with high resolution. The current methods that are used to check containers in ports have security flaws, and only 5% of all shipping containers are checked. The development of semiconductor gamma-ray detectors is one of the protocols being advanced to alleviate this risk because they can function at room temperature and they are cost effective, easily produced, and have high resolution. This dissertation has addressed the current lack of "perfect" room temperature detector materials by investigating alpha-PbO, a novel material in this field. This includes the development of a growth process for alpha-PbO thin films, as well as its structural and performance characterization as a detector material. Because we intend alpha-PbO to be a photoconductive detector, it should have certain properties. A photoconductive detector consists of a highly resistive material with a voltage bias across it. It absorbs incident gamma-rays, creating electron-hole pairs that provide a signal. To function well, it must have a high atomic number and a high density in order to absorb high-energy photons via the photoelectric effect. It should also have a large resistivity and a wide band gap to avoid large leakage currents at room temperature. Finally, it must have good charge carrier transport properties and detector resolution in order to be able to determine the characteristic energy peaks of the radiation-emitting source. We chose alpha-PbO because it has a very high Z and a very high density and a band gap in the correct range. It also has a rich history of use as a photoconductor that reaches back to the 1950s. Numerous methods have been used to grow thin films of alpha

  6. SU-E-J-267: Change in Mean CT Intensity of Lung Tumors During Radiation Treatment

    SciTech Connect

    Mahon, R; Tennyson, N; Weiss, E; Hugo, G

    2015-06-15

    Purpose: To evaluate CT intensity change of lung tumors during radiation therapy. Methods: Repeated 4D CT images were acquired on a CT simulator during the course of therapy for 27 lung cancer patients on IRB approved protocols. All subjects received definitive radiation treatment ± chemotherapy. CT scans were completed prior to treatment, and 2–7 times during the treatment course. Primary tumor was delineated by an experienced Radiation Oncologist. Contours were thresholded between −100 HU and 200 HU to remove airways and bone. Correlations between the change in the mean tumor intensity and initial tumor intensity, SUVmax, and tumor volume change rate were investigated. Reproducibility was assessed by evaluating the variation in mean intensity over all phases in 4DCT, for a subgroup of 19 subjects. Results: Reproducibility of tumor intensity between phases as characterized by the root mean square of standard deviation across 19 subjects was 1.8 HU. Subjects had a mean initial tumor intensity of 16.5 ± 11.6 HU and an overall reduction in HU by 10.3 ± 8.5 HU. Evaluation of the changes in tumor intensity during treatment showed a decrease of 0.3 ± 0.3 HU/day for all subjects, except three. No significant correlation was found between change in HU/day and initial HU intensity (p=0.53), initial PET SUVmax (p=0.69), or initial tumor volume (p=0.70). The rate of tumor volume change was weakly correlated (R{sup 2}=0.05) with HU change (p=0.01). Conclusion: Most lung cancer subjects showed a marked trend of decreasing mean tumor CT intensity throughout radiotherapy, including early in the treatment course. Change in HU/day is not correlated with other potential early predictors for response, such as SUV and tumor volume change. This Result supports future studies to evaluate change in tumor intensity on CT as an early predictor of response.

  7. Protective effects of DL-alpha-tocopherol acetate and sodium selenate on the liver of rats exposed to gamma radiation.

    PubMed

    Yanardağ, R; Bolkent, S; Kizir, A

    2001-12-01

    The aim of this study is to investigate whether vitamin E (as DL-alpha-tocopherol acetate) and selenium (as sodium selenate) exert a protective effect against radiation damage. The liver tissue of rats irradiated with a single dose of 1,000 cGy 60Co-gamma-irradiation was examined for morphological changes after the intraperitoneal (ip) administration DL-alpha-tocopherol acetate and sodium selenate as compared to controls. Also, the amounts of blood glutathione and serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and total protein were determined by spectrophotometric methods. Degenerative changes were observed under light and electron microscopy in the liver tissue of the control (radiation only) group. In the group receiving radiation and ip doses of DL-alpha-tocopherol acetate and sodium selenate, the damage to the liver tissue was minimal or absent. In the radiation-only group, a reduction of the blood glutathione level and increases in serum values of AST, ALT, ALP, and LDH activity were observed, whereas in the irradiation-treated group, the reverse was found to occur. Based on these morphological and biochemical observations, it was concluded that the ip administration of DL-alpha-tocopherol acetate and sodium selenate exerts a protective effect against liver radiation damage.

  8. [Application of low-intensity and ultrahigh frequency electromagnetic radiation in modern pediatric practice].

    PubMed

    Azov, N A; Azova, E A

    2009-01-01

    The use of an Amfit-0,2/10-01 apparatus generating low-intensity ultrahigh frequency (UHF) electromagnetic radiation improved efficiency of therapy of sick children. This treatment allowed to reduce the frequency of intake of anesthetics in the post-operative period, correct metabolic disorders in children with type 1 diabetes mellitus, reduce severity of diabetic nephropathy and polyneuropathy, prevent formation of fresh foci of lipoid necrobiosis. The results of the study indicate that the use of low-intensity UHF electromagnetic radiation may be recommended for more extensive introduction into practical clinical work of pediatric endocrinologists and surgeons.

  9. Effect of low-intensity infrared and millimeter radiation on higher plants' biopotentials.

    PubMed

    Mironova, E A; Romanovskii, Y M

    2001-01-01

    This article studies the effect of local low-intensity electromagnetic radiation on the bioelectric responses of plants. In our investigation, we used thirty-three wavelengths in the visible and infrared spectrurm regions as well as three wavelengths in the millimeter spectrum region. As a result, we obtained the bioelectric responses of plants to electromagnetic radiation not only in the absorption region of cellular pigments (such as chlorophyll, flavin, and phytochrome) but also in the absorption region of water molecules.

  10. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25/sup 0/C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the ..cap alpha..-pinene and ..beta..-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the ..cap alpha..-pinene oxide and ..beta..-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer.

  11. Lyman-{alpha} radiation of a metastable hydrogen beam to measure electric fields

    SciTech Connect

    Lejeune, A.; Cherigier-Kovacic, L.; Doveil, F.

    2011-10-31

    The interaction between a metastable H(2s) atomic hydrogen beam and an external electric field leads to the emission of the Lyman-{alpha} line. It originates in the Stark mixing of the near-degenerate 2s{sub 1/2} and 2p{sub 1/2} levels separated by the Lamb shift. The quenched radiation proportional to the square of the electric field amplitude is recovered in vacuum by using such an atomic probe beam. We observe the strong enhancement of the signal when the field is oscillating at the Lamb shift frequency. This technique is applied in a plasma, offering an alternative way to measure weak electric fields by direct and non-intrusive means.

  12. Radiation dosimetry of iodine-123 HEAT, an alpha-1 receptor imaging agent

    SciTech Connect

    Thomas, K.D.; Greer, D.M.; Couch, M.W.; Williams, C.M.

    1987-11-01

    Biologic distribution data in the rat were obtained for the alpha-1 adrenoceptor imaging agent (+/-) 2-(beta-(iodo-4-hydroxyphenyl)ethylaminomethyl)tetralone (HEAT) labeled with (/sup 123/I). The major excretory routes were through the liver (67%) and the kidney (33%). Internal radiation absorbed dose estimates to nine source organs, total body, the GI tract, gonads, and red bone marrow were calculated for the human using the physical decay data for (/sup 123/I). The critical organ was found to be the lower large intestine, receiving 1.1 rad per mCi of (/sup 123/I)HEAT administered. The total-body dose was found to be 58 mrad per mCi.

  13. Scintillator assembly for alpha radiation detection and method of making the assembly

    DOEpatents

    McElhaney, Stephanie A.; Bauer, Martin L.; Chiles, Marion M.

    1992-01-01

    A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window.

  14. Scintillator assembly for alpha radiation detection and method of making the assembly

    DOEpatents

    McElhaney, S.A.; Bauer, M.L.; Chiles, M.M.

    1992-09-22

    A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window. 6 figs.

  15. Mitigation of radiation nephropathy after internal {alpha}-particle irradiation of kidneys

    SciTech Connect

    Jaggi, Jaspreet Singh; Seshan, Surya V.; McDevitt, Michael R.; Sgouros, George; Hyjek, Elizabeth; Scheinberg, David A. . E-mail: d-scheinberg@ski.mskcc.org

    2006-04-01

    Purpose: Internal irradiation of kidneys as a consequence of radioimmunotherapy, radiation accidents, or nuclear terrorism can result in radiation nephropathy. We attempted to modify pharmacologically, the functional and morphologic changes in mouse kidneys after injection with the actinium ({sup 225}Ac) nanogenerator, an in vivo generator of {alpha}- and {beta}-particle emitting elements. Methods and Materials: The animals were injected with 0.35 {mu}Ci of the {sup 225}Ac nanogenerator, which delivers a dose of 27.6 Gy to the kidneys. Then, they were randomized to receive captopril (angiotensin-converting enzyme inhibitor), L-158,809 (angiotensin II receptor-1 blocker), spironolactone (aldosterone receptor antagonist), or a placebo. Results: Forty weeks after the {sup 225}Ac injection, the placebo-control mice showed a significant increase in blood urea nitrogen (BUN) (87.6 {+-} 6.9 mg/dL), dilated Bowman spaces, and tubulolysis with basement membrane thickening. Captopril treatment accentuated the functional (BUN 119.0 {+-} 4.0 mg/dL; p <0.01 vs. placebo controls) and histopathologic damage. In contrast, L-158,809 offered moderate protection (BUN 66.6 {+-} 3.9 mg/dL; p = 0.02 vs. placebo controls). Spironolactone treatment, however, significantly prevented the development of histopathologic and functional changes (BUN 31.2 {+-} 2.5 mg/dL; p <0.001 vs. placebo controls). Conclusions: Low-dose spironolactone and, to a lesser extent, angiotensin receptor-1 blockade can offer renal protection in a mouse model of internal {alpha}-particle irradiation.

  16. Temperature dependence of decay time and intensity of alpha pulses in pure and thallium-activated cesium iodide

    USGS Publications Warehouse

    Senftle, F.E.; Martinez, P.; Alekna, V.P.

    1962-01-01

    The intensity and decay time of Po210 ?? particle scintillations produced in pure and thallium-activated cesium iodide have been measured with a fast electronic system as a function of temperature down to 77??K. Three modes of decay due to alpha excitation have been observed for CsI(Tl), and two for CsI. Other than the 7- and 0.55-??sec modes (at room temperature) reported in the literature for CsI(Tl), an additional temperature-independent mode of about 1.3 ??sec has been detected between 77 and 150??K. In CsI a fast temperature-dependent mode of decay (???100 nsec) was observed between 100-200??K in addition to the known principal mode. ?? 1962 The American Institute of Physics.

  17. Nonlinear Vacuum Polarization In Intense Blackbody Radiation And The Generation Of Cherenkov Radiation By Energetic Charged Particles

    NASA Astrophysics Data System (ADS)

    Wu, Sheldon S. Q.; Hartemann, F. V.; Barty, C. P. J.

    2010-03-01

    A study of thermally-induced vacuum polarization stemming from the Euler-Heisenberg nonlinear radiation correction to Maxwell equations is conducted. While nonlinear effects associated with photon-photon scattering in the photon gas had been previously calculated, we present an analysis in the framework of stochastic electrodynamics. To lowest order of approximation, it is shown that the phase velocity of light is reduced in the presence of intense ambient electromagnetic radiation. Therefore Cherenkov radiation can be generated when charged particles traverse a region of intense blackbody radiation. Suitable conditions may be found in astrophysical environments. Cosmic ray electrons and positrons in the GeV to TeV range meet the energy requirement for this process to occur. We present calculations of the emission characteristics and conditions under which Cherenkov radiation may be observed. This effect combined with synchrotron and inverse Compton processes may lead to a more complete understanding of cosmic ray propagation. Also of interest, the question of the linearity of the relic cosmic microwave background is under investigation using this formalism and will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Thermal conditions on the International Space Station: Effects of operations of the station Main Radiators on the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Burger, Joseph

    2016-04-01

    A thermal model of the Alpha Magnetic Spectrometer on the International Space Station (ISS) has been developed, and Thermal Desktop® (with RadCAD®) and SINDA/FLUINT software have been used to calculate the effects of the operations of the ISS Main Radiators on AMS temperatures. We find that the ISS Starboard Main Radiator has significant influence on temperatures on the port side of AMS. The simulation results are used in AMS thermal control operations.

  19. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    SciTech Connect

    Campos, D; Peeters, W; Nickel, K; Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  20. The promoting effect of tumour necrosis factor alpha in radiation-induced cell transformation.

    PubMed Central

    Guo, R. F.; Gong, Y. F.

    1998-01-01

    The ability of tumour necrosis factor alpha (TNF-alpha), a potent endogenous inflammatory agent, to promote malignant transformation of Syrian hamster embryo cells (SHE) initiated by a 0.5-Gy dose of alpha-particles was investigated. Opsonized zymosan particles, which were phagocytosed by a human macrophage-like cell line, triggered TNF-alpha production from U937 cells. This cell supernatant could significantly increase the transformation frequency (TF) of primary SHE cells previously irradiated by a 0.5-Gy dose of alpha-particles. The TF decreased significantly if monoclonal antibody against TNF-alpha was added to the supernatant. Similarly, recombinant human TNF-alpha (rhTNF-alpha) increased the TF of alpha-irradiated primary SHE cells to an even greater extent. Addition of TNF-alpha to subcultures of irradiated SHE cells permitted the continuous propagation of these primary cells. In contrast, both TNF-alpha-treated control and alpha-irradiated cells without subsequent TNF-alpha treatment senesced after 7-15 passages. Irradiated SHE cells treated continuously with TNF-alpha could be subcultured over 40 passages and produced fibrosarcomas upon inoculation into nude mice. Our results provide the first evidence that TNF-alpha released by activated macrophages may contribute to the process of malignant transformation initiated by low-dose alpha-particles. PMID:9579824

  1. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  2. Primary radiation damage of protein crystals by an intense synchrotron X-ray beam.

    PubMed

    Teng, T Y; Moffat, K

    2000-09-01

    X-ray radiation damage of a lysozyme single crystal by an intense monochromatic beam from a third-generation radiation source at the Advanced Photon Source has been studied. The results show that primary radiation damage is linearly dependent on the X-ray dose even when the crystal is at cryogenic temperatures. The existence of an upper limit for the primary radiation damage was observed. Above the threshold of approximately 1 x 10(7) Gy, excessive damage of the crystal develops which is interpreted as the onset of secondary and/or tertiary radiation damage. This upper limit of X-ray dose is compared with Henderson's limit [Henderson (1990). Proc. R. Soc. London, B241, 6-8], and its implication for the amount of useful X-ray diffraction data that can be obtained for crystals of a given scattering power is also discussed. PMID:16609214

  3. High-intensity coherent FIR radiation from sub-picosecond electron bunches

    SciTech Connect

    Kung, P.H.; Lihn, Hung-chi; Wiedemann, H.; Bocek, D.

    1994-01-01

    A facility to generate high-intensity, ultra-short pulses of broad-band far-infrared radiation has been assembled and tested at Stanford. The device uses sub-picosecond relativistic electron bunches to generate coherent radiation through transition or synchrotron radiation in the far-infrared (FIR) regime between millimeter waves and wavelengths of about 100 {mu}m and less. Experimental results show a peak radiation power of greater than 0.33 MW within a micro-bunch and an average FIR radiation power of 4 mW. The average bunch length of 2856 micro-bunches within a 1 {mu}sec macro-pulse is estimated to be about 480 sec. Simulations experimental setup and results will be discussed.

  4. Dosimetric Comparison of High-Dose-Rate Brachytherapy and Intensity-Modulated Radiation Therapy as a Boost to the Prostate

    SciTech Connect

    Hermesse, Johanne; Biver, Sylvie; Jansen, Nicolas; Lenaerts, Eric; Nickers, Philippe

    2010-01-15

    Purpose: We compared the dose conformity of two radiation modalities: high-dose-rate brachytherapy (HDR BT) and intensity-modulated radiation therapy (IMRT) to deliver a boost to the prostate after external beam radiotherapy (EBRT). Methods and Materials: Ten successive patients with prostate adenocarcinoma treated with a single 10-Gy HDR BT boost after EBRT were investigated. Four theoretical IMRT plans were computed: (a) 32.85 Gy IMRT and (b) 26 Gy IMRT with CTV-PTV expansions, doses corresponding to the equivalent dose in 2-Gy fractions (EQD2) of one 10-Gy fraction calculated with a prostate alpha/beta ratio of respectively 1.5 and 3 Gy; and (c) 32.85 Gy IMRT and (d) 26 Gy IMRT without CTV-PTV expansions. The dose-volume histogram values converted in EQD2 with an alpha/beta ratio of 3 Gy for the organs at risk were compared. Results: The HDR BT plan delivered higher mean doses to the PTV compared with IMRT plans. In all, 33% of the rectal volume received a mean dose of 5.32 +- 0.65 Gy and 20% of bladder volume received 4.61 +- 1.24 Gy with HDR BT. In comparison, doses delivered with IMRT were respectively 13.4 +- 1.49 Gy and 10.81 +- 4 Gy, even if only 26 Gy was prescribed to the PTV with no CTV-PTV expansion (p < 0.0001). The hot spots inside the urethra were greater with HDR BT but acceptable. Conclusions: Use of HDR BT produced a more conformal plan for the boost to the prostate than IMRT even without CTV-PTV expansions.

  5. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    SciTech Connect

    Freedman, Gary M. . E-mail: Gary.Freedman@FCCC.edu; Anderson, Penny R.; Goldstein, Lori J.; Ma Changming; Li Jinsheng; Swaby, Ramona F.; Litwin, Samuel; Watkins-Bruner, Deborah; Sigurdson, Elin R.; Morrow, Monica

    2007-06-01

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age {>=}18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.

  6. In vitro study of cell survival following dynamic MLC intensity-modulated radiation therapy dose delivery

    SciTech Connect

    Moiseenko, Vitali; Duzenli, Cheryl; Durand, Ralph E.

    2007-04-15

    The possibility of reduced cell kill following intensity-modulated radiation therapy (IMRT) compared to conventional radiation therapy has been debated in the literature. This potential reduction in cell kill relates to prolonged treatment times typical of IMRT dose delivery and consequently increased repair of sublethal lesions. While there is some theoretical support to this reduction in cell kill published in the literature, direct experimental evidence specific to IMRT dose delivery patterns is lacking. In this study we present cell survival data for three cell lines: Chinese hamster V79 fibroblasts, human cervical carcinoma, SiHa and colon adenocarcinoma, WiDr. Cell survival was obtained for 2.1 Gy delivered as acute dose with parallel-opposed pair (POP), irradiation time 75 s, which served as a reference; regular seven-field IMRT, irradiation time 5 min; and IMRT with a break for multiple leaf collimator (MLC) re-initialization after three fields were delivered, irradiation time 10 min. An actual seven-field dynamic MLC IMRT plan for a head and neck patient was used. The IMRT plan was generated for a Varian EX or iX linear accelerator with 120 leaf Millenium MLC. Survival data were also collected for doses 1x, 2x, 3x, 4x, and 5x 2.1 Gy to establish parameters of the linear-quadratic equation describing survival following acute dose delivery. Cells were irradiated inside an acrylic cylindrical phantom specifically designed for this study. Doses from both IMRT and POP were validated using ion chamber measurements. A reproducible increase in cell survival was observed following IMRT dose delivery. This increase varied from small for V79, with a surviving fraction of 0.8326 following POP vs 0.8420 following uninterrupted IMRT, to very pronounced for SiHa, with a surviving fraction of 0.3903 following POP vs 0.5330 for uninterrupted IMRT. When compared to IMRT or IMRT with a break for MLC initialization, cell survival following acute dose delivery was

  7. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  8. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  9. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... adversely affected during and after the time the airplane is exposed to HIRF environment I, as described...

  10. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... adversely affected during and after the time the rotorcraft is exposed to HIRF environment I, as...

  11. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... HIRF environment I, as described in appendix J to this part; (2) The system automatically...

  12. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... adversely affected during and after the time the rotorcraft is exposed to HIRF environment I, as...

  13. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High... that performs a function whose failure would significantly reduce the capability of the airplane or...

  14. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    SciTech Connect

    Freedman, Gary M. Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-07-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  15. A two-temperature model of radiation damage in {alpha}-quartz

    SciTech Connect

    Phillips, Carolyn L.; Magyar, Rudolph J.; Crozier, Paul S.

    2010-10-14

    Two-temperature models are used to represent the physics of the interaction between atoms and electrons during thermal transients such as radiation damage, laser heating, and cascade simulations. We introduce a two-temperature model applied to an insulator, {alpha}-quartz, to model heat deposition in a SiO{sub 2} lattice. Our model of the SiO{sub 2} electronic subsystem is based on quantum simulations of the electronic response in a SiO{sub 2} repeat cell. We observe how the parametrization of the electronic subsystem impacts the degree of permanent amorphization of the lattice, especially compared to a metallic electronic subsystem. The parametrization of the insulator electronic subsystem has a significant effect on the amount of residual defects in the crystal after 10 ps. While recognizing that more development in the application of two-temperature models to insulators is needed, we argue that the inclusion of a simple electronic subsystem substantially improves the realism of such radiation damage simulations.

  16. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  17. Thermal conditions on the International Space Station: Heat flux and temperature investigation of main radiators for the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Gao, Jianmin; Wu, Shaohua; Qin, Yukun

    2016-09-01

    The investigation on heat flux can clarify the thermal condition and explain temperature behavior on the main radiators of the Alpha Magnetic Spectrometer (AMS). In this paper, a detailed investigation of heat flux on the AMS main radiators is proposed. The heat transfer process of the AMS main radiators is theoretically analyzed. An updated thermal model of the AMS on the International Space Station (ISS) is developed to calculate the external heat flux density on the AMS main radiators. We conclude the ISS components and operations affect on the solar flux density of the AMS main radiators by reflecting or shading solar illumination. According to the energy conservation on the AMS main radiators, the temperature variation mainly depends on the solar flux change. The investigations are conducive to reference for the long-duration thermal control of the AMS, and knowledge for the thermal conditions on the ISS.

  18. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  19. Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2015-01-01

    Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al)/DNA/silicon (Si) rectifying junctions using their current-voltage (I-V) characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0) was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min). These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors. PMID:25730484

  20. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  1. Intensity-modulated radiation therapy, protons, and the risk of second cancers

    SciTech Connect

    Hall, Eric J. . E-mail: ejh1@columbia.edu

    2006-05-01

    Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses. Intensity-modulated radiation therapy may double the incidence of solid cancers in long-term survivors. This outcome may be acceptable in older patients if balanced by an improvement in local tumor control and reduced acute toxicity. On the other hand, the incidence of second cancers is much higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children for three reasons. First, children are more sensitive to radiation-induced cancer than are adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, the question of genetic susceptibility arises because many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs are not inevitable. Leakage can be reduced but at substantial cost. An alternative strategy is to replace X-rays with protons. However, this change is only an advantage if the proton machine employs a pencil scanning beam. Many proton facilities use passive modulation to produce a field of sufficient size, but the use of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT. The benefit of protons is only achieved if a scanning beam is used in which the doses are 10 times lower than with IMRT.

  2. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  3. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    SciTech Connect

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  4. On the excitation of Lyman beta and Balmer alpha radiation by electron-impact dissociation of methane

    NASA Technical Reports Server (NTRS)

    Mclaughlin, R. W.; Zipf, E. C.

    1978-01-01

    The cross sections for the excitation of Ly-beta and H-alpha when methane is dissociated by electron impact have values of 17.1 by 10 to the -19th power sq cm and 26.0 by 10 to the -19th power sq cm, respectively, at an electron impact energy of 100 eV. These results are in disagreement with the implications of recent polarization measurements of H-alpha radiation that suggest negligible H(3p) excitation in the dissociation of CH4 by electron impact.

  5. Radiation exposure among medical professionals working in the Intensive Care Unit

    PubMed Central

    Siddiqui, Suhail S.; Jha, Ashish; Konar, Nambiraj; Ranganathan, Priya; Deshpande, Deepak D.; Divatia, Jigeeshu V.

    2014-01-01

    Background and Aims: With the expanding use of diagnostic and therapeutic radiological modalities in critically ill patients, doctors working in Intensive Care Units (ICUs) are increasingly exposed to ionizing radiation. This risk of radiation exposure occurs not only during bedside radiologic procedures, but also when ICU physicians accompany patients to radiology suites. The aim of this study was to quantify levels of radiation exposure among medical professionals working in the ICU. Materials and Methods: The study was carried out prospectively over 6 months in the ICU of a tertiary-referral cancer hospital. Two teams consisting of 4 ICU resident doctors each were instructed to wear thermoluminescent dosimeters (TLDs) during their duty shifts. Standard radiation protection precautions were used throughout the study period. TLDs were also placed in selected areas of the ICU to measure the amount of scattered radiation. TLDs were analyzed at the end of every 3 months. Results: The readings recorded on TLDs placed in the ICU were almost immeasurable. The mean value of residents' radiation exposure was 0.059 mSv, though the highest individual reading approached 0.1 mSv. The projected maximum yearly radiation exposure was 0.4 mSv. Conclusions: If standard radiation safety precautions are followed, the cumulative radiation exposure to ICU resident doctors is well within permissible limits and is not a cause of concern. However, with the increasing use of radiological procedures in the management of critically ill patients, there is a need to repeat such audits periodically to monitor radiation exposure. PMID:25249743

  6. Diffuse gamma radiation. [intensity, energy spectrum and spatial distribution from SAS 2 observations

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1978-01-01

    Results are reported for an investigation of the intensity, energy spectrum, and spatial distribution of the diffuse gamma radiation detected by SAS 2 away from the galactic plane in the energy range above 35 MeV. The gamma-ray data are compared with relevant data obtained at other wavelengths, including 21-cm emission, radio continuum radiation, and the limited UV and radio information on local molecular hydrogen. It is found that there are two quite distinct components to the diffuse radiation, one of which shows a good correlation with the galactic matter distribution and continuum radiation, while the other has a much steeper energy spectrum and appears to be isotropic at least on a coarse scale. The galactic component is interpreted in terms of its implications for both local and more distant regions of the Galaxy. The apparently isotropic radiation is discussed partly with regard to the constraints placed on possible models by the steep energy spectrum, the observed intensity, and an upper limit on the anisotropy.

  7. Augmentation of Radiation Intensity in Quasi-Spherical Double Liner/Dynamic Hohlraum

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Smirnov, V. P.

    2006-01-01

    To increase the conversion efficiency of magnetic energy to radiation in Double Liner/Dynamic-Hohlraum and to approach closer to the ignition conditions we proposed the concept of implosion of a quasi-spherical double liner. The almost spherical implosion can be realized with a special mass distribution in liners. Axial cumulating of liner kinetic energy and more efficient radiation energy confinement allow augmentation of radiation intensity on the capsule with respect to cylindrical case under the same driver conditions. A controllable mass redistribution inside the nested external liner allows significant reduction and correction of distortions produced by the Rayleigh-Taylor instability. A phenomenon of energy confinement and enhancement of radiation intensity is considered and compared with the cylindrical case. On the basis of the developed physical model of non-LTE plasma using the RMHD code ZETA the dynamics of quasi-spherical Double Liner/Dynamic-Hohlraum and generation of radiation in two-dimensional geometry is examined and liner configuration is optimized.

  8. Augmentation of Radiation Intensity in Quasi-Spherical Double Liner/Dynamic Hohlraum

    SciTech Connect

    Zakharov, S.V.; Smirnov, V.P.

    2006-01-05

    To increase the conversion efficiency of magnetic energy to radiation in Double Liner/Dynamic-Hohlraum and to approach closer to the ignition conditions we proposed the concept of implosion of a quasi-spherical double liner. The almost spherical implosion can be realized with a special mass distribution in liners. Axial cumulating of liner kinetic energy and more efficient radiation energy confinement allow augmentation of radiation intensity on the capsule with respect to cylindrical case under the same driver conditions. A controllable mass redistribution inside the nested external liner allows significant reduction and correction of distortions produced by the Rayleigh-Taylor instability. A phenomenon of energy confinement and enhancement of radiation intensity is considered and compared with the cylindrical case. On the basis of the developed physical model of non-LTE plasma using the RMHD code ZETA the dynamics of quasi-spherical Double Liner/Dynamic-Hohlraum and generation of radiation in two-dimensional geometry is examined and liner configuration is optimized.

  9. Estimation of effective day length at any light intensity using solar radiation data.

    PubMed

    Yokoya, Masana; Shimizu, Hideyasu

    2011-11-01

    The influence of day length on living creatures differs with the photosensitivity of the creature; however, the possible sunshine duration (N(0)) might be an inadequate index of the photoperiod for creatures with low light sensitivity. To address this issue, the authors tried to estimate the effective day length, i.e., the duration of the photoperiod that exceeds a certain threshold of light intensity. Continual global solar radiation observation data were gathered from the baseline surface radiation network (BSRN) of 18 sites from 2004 to 2007 and were converted to illuminance data using a luminous efficiency model. The monthly average of daily photoperiods exceeding each defined intensity (1 lx, 300 lx, … 20,000 lx) were calculated [defined as Ne(() (lux) ())]. The relationships between the monthly average of global solar radiation (Rs), N(0), and Ne(() (lux) ()) were investigated. At low light intensity (<500 lx), Ne(() (lux) ()) were almost the same as N(0). At high light intensity (>10,000 lx), Ne(() (lux) ()) and Rs showed a logarithmic relationship. Using these relationships, empirical models were derived to estimate the effective day length at different light intensities. According to the validation of the model, the effective day length for any light intensity could be estimated with an accuracy of less than 11% of the mean absolute percentage error (MAPE) in the estimation of the monthly base photoperiod. Recently, a number of studies have provided support for a link between day length and some diseases. Our results will be useful in further assessing the relationships between day length and these diseases.

  10. Theory of molecular rate processes in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.

    1979-01-01

    The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.

  11. Development of a proposed international standard for certification of aircraft to High Intensity Radiated Fields (HIRF)

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    1993-01-01

    Avionic systems performing critical functions in modern aircraft are potentially susceptible to the hazards of electromagnetic radiation from ground and airborne transmitters. The Federal Aviation Administration (FAA) requested that the Society of Automotive Engineers (SAE) coordinate the development of procedures and guidance material which can be used during the aircraft certification process to ensure adequate protection against high intensity radiated fields (HIRF). This paper addresses both the technical challenge of drafting a certification procedure and guidance standard as well as the management process used by the SAE subcommittee AE4R to converge a diverse range of opinions by its international membership in the shortest possible time.

  12. Experiments on the interaction of intense femtosecond radiation with dense plasmas. Final report

    SciTech Connect

    Rhodes, C.K.

    1996-01-24

    An upgraded KrF{sup {asterisk}} (248 nm) system producing a pulse energy of {approximately} 400 mJ, a pulse width of {approximately} 220 fs, and focal intensities above 10{sup 19} W/cm{sup 2}, has been constructed, tested, operated, and used in experimental studies. The spatial morphology of channeled radiation in plasmas has been measured with a spatial resolution of {approximately} 30 {mu}m and damage studies of fused silica indicate that femtosecond (200 - 300 fs) 248 nm radiation has a damage limit not exceeding {approximately} 50 GW/cm{sup 2}, an unfavorably low level. 2 figs.

  13. Dependence of injection locking of a TEA CO2 laser on intensity of injected radiation

    NASA Technical Reports Server (NTRS)

    Oppenheim, U. P.; Menzies, R. T.; Kavaya, M. J.

    1982-01-01

    The results of an experimental study to determine the minimum required injected power to control the output frequency of a TEA CO2 laser are reported. A CW CO2 waveguide laser was used as the injection oscillator. Both the power and the frequency of the injected radiation were varied, while the TEA resonator cavity length was adjusted to match the frequency of the injected signal. Single-longitudinal mode (SLM) TEA laser radiation was produced for injected power levels which are several orders of magnitude below those previously reported. The ratio of SLM output power to injection power exceeded 10 to the 12th at the lowest levels of injected intensity.

  14. High-order harmonic generation of picosecond radiation of moderate intensity in laser plasma

    SciTech Connect

    Boltaev, G S; Ganeev, Rashid A; Kulagin, I A; Satlikov, N Kh; Usmanov, T

    2012-10-31

    The results of investigations into the generation of highorder harmonics (up to the 21st order) of picosecond ({tau} = 38 ps) Nd : YAG laser radiation in the plasma produced by laser ablation of metal and carbon-containing material surfaces are presented. We demonstrate the feasibility of generating high-order harmonics in the vacuum ultraviolet spectral range (with radiation wavelengths shorter than 120 nm) in plasmas with an efficiency of {approx}0.7 Multiplication-Sign 10{sup -4}. In carbon-containing plasma, the 7th harmonic intensity exceeded that of the 5th one by a factor of seven. (nonlinear optical phenomena)

  15. High-order harmonic generation of picosecond radiation of moderate intensity in laser plasma

    NASA Astrophysics Data System (ADS)

    Boltaev, G. S.; Ganeev, Rashid A.; Kulagin, I. A.; Satlikov, N. Kh; Usmanov, T.

    2012-10-01

    The results of investigations into the generation of highorder harmonics (up to the 21st order) of picosecond (τ = 38 ps) Nd : YAG laser radiation in the plasma produced by laser ablation of metal and carbon-containing material surfaces are presented. We demonstrate the feasibility of generating high-order harmonics in the vacuum ultraviolet spectral range (with radiation wavelengths shorter than 120 nm) in plasmas with an efficiency of ~0.7 × 10-4. In carbon-containing plasma, the 7th harmonic intensity exceeded that of the 5th one by a factor of seven.

  16. Measurement of potential alpha energy exposure and potential alpha energy concentration and estimating radiation dose of radon in Sari city in the north region of Iran.

    PubMed

    Rahimi, Seyed Ali; Nikpour, Behzad

    2014-12-01

    In dwellings in Sari city in the northern region of Iran, the potential alpha energy exposure (PAEE) and potential alpha energy concentration (PAEC) have been measured and the radiation dose due to radon and its progenies has been estimated. In this study, the dosemeters DOSEman and SARAD GmbH (Germany), which are sensitive to alpha particles, were used. The population of the city of Sari is 495,369 people and the density of population is 116.5 people per km(2). A percentage of the total household population of Sari in areas of geographically different samples was selected. The PAEE, PAEC and radon concentration in four different seasons in a year in homes for sampling were measured. The mean PAEE due to indoor radon in homes of four cities in Sari city was estimated to be 28.23 Bq m(-3) and the mean PAEC was estimated to be 27.11 Bq m(-3). Also the mean indoor radon level was found to be 29.95 Bq m(-3). The annual dose equivalent is ∼0.0151 μSv y(-1). Measurement results show that the average PAEE, PAEC and radon concentration are higher in winter than in other seasons. This difference could be due to stillness and lack of air movement indoors in winter.

  17. Ablation and transmission of thin solid targets irradiated by intense extreme ultraviolet laser radiation

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Kuznetsov, I.; Bravo, H.; Woolston, M. R.; Rossall, A. K.; Menoni, C. S.; Rocca, J. J.; Tallents, G. J.

    2016-09-01

    The interaction of an extreme ultraviolet (EUV) laser beam with a parylene foil was studied by experiments and simulation. A single EUV laser pulse of nanosecond duration focused to an intensity of 3 × 1010 W cm-2 perforated micrometer thick targets. The same laser pulse was simultaneously used to diagnose the interaction by a transmission measurement. A combination of 2-dimensional radiation-hydrodynamic and diffraction calculations was used to model the ablation, leading to good agreement with experiment. This theoretical approach allows predictive modelling of the interaction with matter of intense EUV beams over a broad range of parameters.

  18. Transcriptional and Secretomic Profiling of Epidermal Cells Exposed to Alpha Particle Radiation

    PubMed Central

    Chauhan, Vinita; Howland, Matthew; Greene, Hillary Boulay; Wilkins, Ruth C

    2012-01-01

    Alpha (α)-particle emitters are probable isotopes to be used in a terrorist attack. The development of biological assessment tools to identify those who have handled these difficult to detect materials would be an asset to our current forensic capacity. In this study, for the purposes of biomarker discovery, human keratinocytes were exposed to α-particle and X-radiation (0.98 Gy/h at 0, 0.5, 1.0, 1.5 Gy) and assessed for differential gene and protein expression using microarray and Bio-Plex technology, respectively. Secretomic analysis of supernatants showed expression of two pro-inflammatory cytokines (IL-13 and PDGF-bb) to be exclusively affected in α-particle exposed cells. The highest dose of α-particle radiation modulated a total of 67 transcripts (fold change>|1.5|, (False discovery rate) FDR<0.05) in exposed cells. Several genes which responded with high expression levels (>2 fold) included KIF20A, NEFM, C7orf10, HIST1H2BD, BMP6, and HIST1H2AC. Among the high expressing genes, five (CCNB2, BUB1, NEK2, CDC20, AURKA) were also differentially expressed at the medium (1.0 Gy) dose however, these genes were unmodulated following exposure to X-irradiation. Networks of these genes clustered around tumor protein-53 and transforming growth factor-beta signaling. This study has identified some potential gene /protein responses and networks that may be validated further to confirm their specificity and potential to be signature biomarkers of α-particle exposure. PMID:23002402

  19. Telomere Length in Aged Mayak PA Nuclear Workers Chronically Exposed to Internal Alpha and External Gamma Radiation.

    PubMed

    Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael

    2016-06-01

    Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length. PMID:27340887

  20. Telomere Length in Aged Mayak PA Nuclear Workers Chronically Exposed to Internal Alpha and External Gamma Radiation.

    PubMed

    Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael

    2016-06-01

    Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length.

  1. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain.

  2. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    NASA Technical Reports Server (NTRS)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  3. Higher order terms of radiative damping in extreme intense laser-matter interaction

    SciTech Connect

    Pandit, Rishi R.; Sentoku, Yasuhiko

    2012-07-15

    The higher order terms of the Lorentz-Abraham-Dirac equation have been derived, and their effects are studied via a relativistic collisional particle-in-cell simulation. The dominant group of terms up to the fourth order of the Lorentz-Abraham-Dirac equation is identified for ultra-intense laser-matter interactions. The second order terms are found to be the damping terms of the Lorentz force while the first order terms represent friction in the equation of motion. Because the second order terms restrict electron acceleration during the laser interaction, electrons/ions are prevented from over-accelerating. Radiative damping becomes highly significant when I{>=} 10{sup 22} W/cm{sup 2} while Bremsstrahlung will be saturated, thus radiative damping will be a dominant source of hard x-rays in regimes at extreme intensities.

  4. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  5. [The application of low-intensity electromagnetic radiation under immobilization stress conditions (an experimental study)].

    PubMed

    Korolev, Iu N; Bobrovnitskiĭ, I P; Nikoulina, L A; Mikhaĭlik, L V; Geniatulina, M S; Bobkova, A S

    2014-01-01

    The experiments carried out on outbred male white rats with the use of optical, electron-microscopic, biochemical, and radioimmunological methods have demonstrated that the application of low-intensity electromagnetic radiation (LI-EMR) with a flow density of 1 mcW/cm2 and a frequency of around 1,000 MHz both in the primary prophylaxis regime and as the therapeuticpreventive modality arrested the development of post-stress disorders in the rat testicles, liver, and thymus; moreover, it promoted activation of the adaptive, preventive, and compensatory processes. The data obtained provide a rationale for the application of low-intensity electromagnetic radiation to protect the organism from negative effects of stressful factors.

  6. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have

  7. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    NASA Astrophysics Data System (ADS)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  8. Generation of Intense Narrow-Band Tunable Terahertz Radiation from Highly Bunched Electron Pulse Train

    NASA Astrophysics Data System (ADS)

    Li, Heting; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-07-01

    We present the analysis and start-to-end simulation of an intense narrow-band terahertz (THz) source with a broad tuning range of radiation frequency, using a single-pass free electron laser (FEL) driven by a THz-pulse-train photoinjector. The fundamental radiation frequency, corresponding to the spacing between the electron microbunches, can be easily tuned by varying the spacing time between the laser micropulses. Since the prebunched electron beam is highly bunched at the first several harmonics, with the harmonic generation technique, the radiation frequency range can be further enlarged by several times. The start-to-end simulation results show that this FEL is capable of generating a few tens megawatts power, several tens micro-joules pulse energy, and a few percent bandwidth at the frequencies of 0.5-5 THz. In addition, several practical issues are considered.

  9. Radiation dosimetry using decreasing TL intensity in a few variety of silicate crystals.

    PubMed

    Watanabe, Shigueo; Cano, Nilo F; Gundu Rao, T K; Oliveira, Letícia M; Carmo, Lucas S; Chubaci, Jose F D

    2015-11-01

    This study shows that there are some ionic crystals which after irradiation with high gamma dose Dm and subsequent irradiation with low doses ranging up to 500Gy present a decreasing TL intensity as dose increases. This interesting feature can be used as a calibration curve in radiation dosimetry. Such behavior can be found in green quartz, three varieties of beryl and pink tourmaline. In all these silicate crystals it can be shown that irradiation with increasing γ-dose there is a dose Dm for which the TL intensity is maximum. Of course, Dm varies depending on the crystal and irradiated crystal with the dose Dm is stable. If one of these crystals is taken and irradiated with doses from low values up to 400-500Gy, a curve of decreasing TL intensity is obtained; such a curve can be used as a calibration curve. PMID:26277189

  10. Radiation dosimetry using decreasing TL intensity in a few variety of silicate crystals.

    PubMed

    Watanabe, Shigueo; Cano, Nilo F; Gundu Rao, T K; Oliveira, Letícia M; Carmo, Lucas S; Chubaci, Jose F D

    2015-11-01

    This study shows that there are some ionic crystals which after irradiation with high gamma dose Dm and subsequent irradiation with low doses ranging up to 500Gy present a decreasing TL intensity as dose increases. This interesting feature can be used as a calibration curve in radiation dosimetry. Such behavior can be found in green quartz, three varieties of beryl and pink tourmaline. In all these silicate crystals it can be shown that irradiation with increasing γ-dose there is a dose Dm for which the TL intensity is maximum. Of course, Dm varies depending on the crystal and irradiated crystal with the dose Dm is stable. If one of these crystals is taken and irradiated with doses from low values up to 400-500Gy, a curve of decreasing TL intensity is obtained; such a curve can be used as a calibration curve.

  11. alpha-Tocopherol, an inhibitor of epidermal lipid peroxidation, prevents ultraviolet radiation from suppressing the skin immune system.

    PubMed

    Yuen, K S; Halliday, G M

    1997-03-01

    We investigated the involvement of epidermal lipid peroxidation in the induction of ultraviolet radiation (UVR)-induced suppression of the skin immune system. The shaved dorsal skin of C3H/HeJ mice was irradiated with one of two subinflammatory solar-simulated UVR protocols 3 days per week for 4 weeks. Then half of 1 mg, 1, 2.5 or 5 mg alpha-tocopherol in a vehicle of acetone was topically applied to the shaved dorsal skin before UVR, A 5 mg dose of vitamin E gave complete protection against a UVR protocol that induced a 55% reduction in the contact hypersensitivity response to 2,4,6-trinitrochlorobenzene and a 23% reduction in epidermal Langerhans cell density. Lower doses were ineffective. alpha-Tocopherol was unable to protect against a higher UVR protocol. As 5 mg alpha-tocopherol did not prevent postirradiation inflammatory edema it is unlikely that the antioxidant acted as a sunscreen. However, 5 mg alpha-tocopherol inhibited UVR-induced epidermal lipid peroxidation, suggesting that this may be one mechanism by which alpha-tocopherol prevented UVR-induced local immunosuppression. Scavenging of UVR-generated lipid peroxides and reactive oxygen may have inhibited loss of cell membrane integrity preventing depletion of LC numbers, thus protecting from local immunosuppression.

  12. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    PubMed

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect

  13. Predictors of Radiation Pneumonitis in Patients Receiving Intensity Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    SciTech Connect

    Pinnix, Chelsea C.; Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F.; Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, M. Alma [Department of Lymphoma and others

    2015-05-01

    Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed

  14. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    SciTech Connect

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  15. Radiation brain injury is reduced by the polyamine inhibitor [alpha]-difluoromethylornithine

    SciTech Connect

    Fike, J.R.; Seilhan, T.M.; Gobbel, G.T. ); Marton, L.J. )

    1994-04-01

    [alpha]-difluoromethylornithine (DFMO) was used to reduce [sup 125]I-induced brain injury in normal beagle dogs. Different DFMO doses and administration schedules were used to determine if the reduction in brain injury was dependent on dose and/or dependent upon when the drug was administered relative to the radiation treatment. Doses of DMFO of 75 mg/kg/day and 37.5 mg/kg/day given 2 days before, during and for 14 days after irradiation reduced levels of putrescine (PU) in the cerebrospinal fluid relative to controls. Volume of edema was significantly reduced by 75 mg/kg/day of DFMO before, during and after irradiation and by the same dose when the drug was started immediately after irradiation. A reduction in edema volume after 37.5 mg/kg/day of DFMO before, during and after irradiation was very near significance. Ultrafast CT studies performed on dogs that received a DFMO dose of 75 mg/kg/day before, during and after irradiation suggested that the reduce edema volume was associated with reduced vascular permeability. Volume of necrosis and volume of contrast enhancement (breakdown of the blood-brain barrier) were significantly lower than controls only after a DFMO dose of 75 mg/kg/day before, during and after irradiation. These latter data, coupled with the findings relative to edema, suggest that different mechanisms may be involved with respect to the effects of DFMO on brain injury, or that the extents of edema, necrosis and breakdown of the blood-brain barrier may depend upon different levels of polyamine depletion. The precise mechanisms by which DFMO exerts the effects observed here need to be determined. 41 refs., 5 figs.

  16. Influence of alpha and gamma radiations and non-radiation risk factors on the incidence of malignant liver tumors among Mayak PA workers.

    PubMed

    Tokarskaya, Z B; Zhuntova, G V; Scott, B R; Khokhryakov, V F; Belyaeva, Z D; Vasilenko, E K; Syrchikov, V A

    2006-10-01

    This Mayak worker-based study focuses on evaluating possible associations between malignant liver cancers and chronic alpha irradiation, chronic gamma irradiation, and non-radiation risk factors (alcohol consumption, smoking, viral hepatitis, chemical exposure, and chronic digestive diseases). This is the first multivariate study related to liver cancer among Mayak workers. The study was performed using the nested, case-control approach and includes 44 cases of malignant liver tumors diagnosed from 1972 to 1999, and 111 matched controls. Adjusted odds ratio (OR(ad)) was evaluated relative to a group of workers with alpha radiation doses to liver (D(alpha)) < 2.0 Gy. Dose estimates of D(alpha) > 2.0 Gy (corresponding (239)Pu body burden estimates >20.4 kBq) were significantly associated (p < 0.003) with the occurrence of hemangiosarcomas (HAS) but only marginal significance (0.05 < p < 0.1) was found for hepatocellular cancers (HCC). The ORad for HAS was 41.7 [95% confidence interval (CI): 4.6, 333] for a group with D(alpha) in the range >2.0-5.0 Gy and was 62.5 (7.4, 500) for a group with D(alpha) > 5.0-16.9 Gy. The attributable risk (AR) was calculated as 82%. For HCC, O(Rad) was estimated as 8.4 (0.8, 85.3; p < 0.07) for a group with D(alpha) in the range >2.0-9.3 Gy. For the indicated group, the AR was 14%. An association with high external gamma-ray doses (D(gamma)) to the total body was revealed for both HCC and for combined liver cancers when dose was treated as a continuous variable. However, we find no evidence that chronic low doses of gamma rays are associated with liver cancer occurrence. Cholangiocarcinoma (CHC) was not associated with either alpha- or gamma-ray exposure. As expected, an association between alcohol abuse and HCC was inferred [O(Rad) = 3.3 (1.2, 9); AR = 41%] but not for CHC or HAS.

  17. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  18. Propagation and absorption of high-intensity femtosecond laser radiation in diamond

    SciTech Connect

    Kononenko, V V; Konov, V I; Gololobov, V M; Zavedeev, E V

    2014-12-31

    Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 10{sup 11} to 10{sup 14} W cm{sup -2}. The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti : sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at λ = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultrashort pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond. (interaction of laser radiation with matter. laser plasma)

  19. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    SciTech Connect

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-09-28

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications.

  20. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. PMID:26235550

  1. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  2. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.

    PubMed

    Pesnya, Dmitry S; Romanovsky, Anton V

    2013-01-20

    The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.

  3. Direct radiative effects induced by intense desert dust outbreaks over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gkikas, Antonis; Obiso, Vincenzo; Vendrell, Lluis; Basart, Sara; Jorba, Oriol; Pérez Garcia-Pando, Carlos; Hatzianastassiou, Nikos; Gassó, Santiago; Baldasano, Jose Maria

    2016-04-01

    Throughout the year, under favorable conditions, massive loads of mineral particles originating in the northern African and Middle East deserts are transported over the Mediterranean basin. Due to their composition and size, dust aerosols perturb the Earth-Atmosphere system's energy budget interacting directly with the shortwave (SW) and longwave (LW) radiation. The present study aims to compute the Mediterranean dust outbreaks' direct radiative effects (DREs) as well as to assess the effect of including dust DREs in numerical simulations of a regional model. To this aim, 20 intense dust outbreaks have been selected based on their spatial coverage and intensity. Their identification, over the period 2000-2013, has been achieved through an objective and dynamic algorithm which utilizes as inputs daily satellite retrievals derived by the MODIS-Terra, EP-TOMS and OMI-Aura sensors. For each outbreak, two simulations of the NMMB/BSC-Dust model were made for a forecast period of 84 hours, with the model initialized at 00 UTC of the day when the dust outbreak was ignited, activating (RADON) and deactivating (RADOFF) dust-radiation interactions. The simulation domain covers the northern Africa, the Middle East and Europe at 0.25° x 0.25° horizontal resolution, for 40 hybrid sigma pressure levels up to 50 hPa. The instantaneous and regional DREs have been calculated at the top of the atmosphere (TOA), into the atmosphere (ATMAB), and at surface, for the downwelling (SURF) and the absorbed (NETSURF) radiation, for the SW, LW and NET (SW+LW) radiation. The interaction between dust aerosols and NET radiation, locally leads to an atmospheric warming (DREATMAB) by up to 150 Wm-2, a surface cooling (DRENETSURF) by up to 250 Wm-2 and a reduction of the downwelling radiation at the surface (DRESURF) by up to 300 Wm-2. At TOA, DREs are mainly negative (down to -150 Wm-2) indicating a cooling of the Earth-Atmosphere system, although positive values (up to 50 Wm-2) are encountered

  4. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel.

    PubMed

    Shahid, Saman; Mahmood, Nasir; Chaudhry, Muhammad Nawaz; Sheikh, Shaharyar; Ahmad, Nauman

    2015-05-01

    Ionizing radiations impact human tissues by affecting the DNA bases which constitute genes. Human interferon alpha 2b gene synthesizes a protein which is an important anticancerous, immunomodulatory, anti-proliferative and antiviral protein. This study was aimed to identify interferon alpha-2b mutations as a consequence of the use of occupational chronic low dose radiation by hospital radiation exposed workers. A molecular analysis was done in which DNAs were extracted from blood samples from radiology, radiotherapy and nuclear medicine workers. The gene was amplified through polymerase chain reaction and further genetic data from sequencing results analyzed by bioinformatics tools in order to determine as to how mutations in interferon alpha 2b sequences will lead to changes in human interferon alpha-2b protein. A total of 41% gene mutations was detected among all radiation exposed workers in which higher percentage (5.4%) of base insertion mutations and 14% frameshift mutations were found in radiology workers. The chronic use of low dose of radiations by occupational workers has a significant correlation with mutational effects on interferon alpha 2b gene, further evident by depressed interferon alpha levels in serum. This can lead to depressed immunity in radiation exposed workers. Hematological profiling of this group also showed hyperimmune response in the form of lymphocytosis.

  5. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame.

    PubMed

    Duerfahrt, Thomas; Doekel, Sascha; Sonke, Theo; Quaedflieg, Peter J L M; Marahiel, Mohamed A

    2003-11-01

    Microorganisms produce a large number of pharmacologically and biotechnologically important peptides by using nonribosomal peptide synthetases (NRPSs). Due to their modular arrangement and their domain organization NRPSs are particularly suitable for engineering recombinant proteins for the production of novel peptides with interesting properties. In order to compare different strategies of domain assembling and module fusions we focused on the selective construction of a set of peptide synthetases that catalyze the formation of the dipeptide alpha-l-aspartyl-l-phenylalanine (Asp-Phe), the precursor of the high-intensity sweetener alpha-l-aspartyl-l-phenylalanine methyl ester (aspartame). The de novo design of six different Asp-Phe synthetases was achieved by fusion of Asp and Phe activating modules comprising adenylation, peptidyl carrier protein and condensation domains. Product release was ensured by a C-terminally fused thioesterase domains and quantified by HPLC/MS analysis. Significant differences of enzyme activity caused by the fusion strategies were observed. Two forms of the Asp-Phe dipeptide were detected, the expected alpha-Asp-Phe and the by-product beta-Asp-Phe. Dependent on the turnover rates ranging from 0.01-0.7 min-1, the amount of alpha-Asp-Phe was between 75 and 100% of overall product, indicating a direct correlation between the turnover numbers and the ratios of alpha-Asp-Phe to beta-Asp-Phe. Taken together these results provide useful guidelines for the rational construction of hybrid peptide synthetases.

  6. Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy

    SciTech Connect

    Gensheimer, Michael F.; Hummel-Kramer, Sharon M.; Cain, David; Quang, Tony S.

    2015-10-01

    Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreement between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing.

  7. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  8. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  9. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2010-01-01

    This paper is a compilation of our findings on non-thermal effects of electromagnetic radiation (EMR) at the molecular level. The outcomes of our studies revealed that that enzymes' activity can be modulated by external electromagnetic fields (EMFs) of selected frequencies. Here, we discuss the possibility of modulating protein activity using visible and infrared light based on the concepts of protein activation outlined in the resonant recognition model (RRM), and by low intensity microwaves. The theoretical basis behind the RRM model expounds a potential interaction mechanism between electromagnetic radiation and proteins as well as protein-protein interactions. Possibility of modulating protein activity by external EMR is experimentally validated by irradiation of the L-lactate Dehydrogenase enzyme.

  10. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    SciTech Connect

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B.

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  11. Radiation emission from ultra-relativistic plasma electrons in short-intense laser light interactions

    NASA Astrophysics Data System (ADS)

    Ondarza-Rovira, R.; Boyd, TJM

    2016-05-01

    Intense femtosecond laser light incident on overcritical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterised by power-law decays. When the laser pulse is p-polarised, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay index p = 8/3 to 5/3. In this work appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using these, we further show that the emission radiated by electrons -those that are relativistically accelerated inside the plasma, after being expelled into vacuum, the so-called Brunel electrons- is characterised not only by the plasma line but also by ultraviolet harmonic orders characterised by the 5/3 decay index.

  12. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    NASA Astrophysics Data System (ADS)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  13. A radiation emission shielding method for high intensity focus ultrasound probes.

    PubMed

    Wu, Hao; Shen, Guofeng; Chen, Yazhu

    2015-01-01

    Electromagnetic compatibility (EMC) is a key issue in the design and development of safe and effective medical instruments. The treatment probes of high intensity focused ultrasound (HIFU) systems not only receive and transmit electromagnetic waves, but also radiate ultrasound waves, resulting in electromagnetic coupling. In this paper, an electromagnetic shielding method involving the enclosure of the probe in a copper wire mesh was introduced. First, sound pressure distribution simulations and measurements were performed using a hydrophone in order to evaluate the effects of the wire mesh on the acoustic performance of the HIFU system. The results indicated that the wire mesh did not disturb the normalized sound pressure field. In addition, the attenuation of the maximum pressure in the focal plane was equal to 6.2%. Then, the electronic emission level was tested in a chamber. After the implementation of the wire mesh, the 10-100 MHz frequency band radiation was suppressed, and the HIFU system satisfied the national EMC standards.

  14. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  15. Intensity-modulated radiation therapy to bilateral lower limb extremities concurrently: a planning case study

    SciTech Connect

    Fitzgerald, Emma Miles, Wesley; Fenton, Paul; Frantzis, Jim

    2014-09-15

    Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cm bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations.

  16. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  17. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  18. Observation of intense terahertz-wave coherent synchrotron radiation at LEBRA

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Ogawa, Hiroshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Sakai, Takeshi; Nogami, Kyoko; Inagaki, Manabu

    2013-01-01

    We observed intense coherent synchrotron radiation (CSR) in the terahertz region using an S-band linac at the Laboratory for Electron Beam Research and Application at Nihon University. The evolution of the CSR power was measured, and the CSR reflected in the vacuum chamber of the bending magnet could be extracted through the quartz window for a few tens of picoseconds. The long wave packet of the delayed CSR in the autocorrelation suggests that the delayed CSR was the non-resonant ring-down of the vacuum chamber of the bending magnet. To design a high-energy accelerator, it is necessary to decrease high-energy photons resulting from Compton backscattering with intense CSR.

  19. Synthetic single crystal diamond dosimeters for Intensity Modulated Radiation Therapy applications

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Ciancaglioni, I.; Consorti, R.; De Notaristefani, F.; Manfredotti, C.; Marinelli, Marco; Milani, E.; Petrucci, A.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2009-09-01

    A synthetic single crystal diamond Schottky diode, in a p-type/intrinsic/metal structure, deposited by Chemical Vapour Deposition (CVD) and operating in photovoltaic regime, with no external bias voltage applied, was tested as a dosimeter for Intensity Modulated Radiation Therapy (IMRT) applications. The device response was compared with dose measurements from two commercial ionization chambers and a 2D diode array in an IMRT prostate cancer treatment plan. The obtained results indicate that CVD synthetic single crystal diamond-based dosimeters can successfully be used for highly conformed radiotherapy and IMRT dosimetry, due to their small size and high sensitivity per unit volume.

  20. Sensitive measurement of radiation trapping in cold-atom clouds by intensity correlation detection.

    PubMed

    Stites, Ronald; Beeler, Matthew; Feeney, Laura; Kim, Soo; Bali, Samir

    2004-12-01

    We present experimental evidence that the intensity correlations of light scattered from a cold-atom cloud are sensitive to the presence of small amounts of radiation trapping in an atomic sample of density 6 x 10(8)/cm3, with an optical depth (for a resonant light beam) of 0.4. This density and optical depth are approximately an order of magnitude less than the density and on-resonance optical depth at which effects of multiple scattering in cold-atom clouds have been previously observed [Phys. Rev. Lett. 64, 408 (1990)].

  1. Results of using low-intensity laser radiation for plumbum intoxication

    NASA Astrophysics Data System (ADS)

    Dejneka, S. Y.

    1999-11-01

    We have studied the noninvasive effect of low-intensive laser impulse radiation in the infrared spectrum region on the liver projection site in experimental lead intoxication achieved by means of intragastric administration of Pb acetate to albino rats over a period of 30 days in a dose of 30 mg/kg. We determined a number of indices in laboratory animals which characterized the state of the nervous system, immune system, muscular performance efficiency. We have also investigated the hematologic indices and the blood and urinary delta-aminolevulinic acid content as well as the plumbum levels in the blood, urine and the animals' inner organs.

  2. New 33 GHz Measurements of the Cosmic Background RadiationIntensity

    SciTech Connect

    De Amici, G.; Smoot, G.; Friedman, S.G.; Witebsky, C.

    1985-03-01

    New measurements have been made of the intensity of the cosmic background radiation (CBR) at 33 GHz (0.91 cm). The experiment was part of a larger effort to measure the spectrum of the CBR between 2.5 and 90 GHz (12 and 0.33 cm). Details are given of the experimental equipment and measurement procedures. The results of measurements made in 1982 and 1983 are presented and discussed in relation to preliminary results from the other radiometers. The measured value, T{sub CBR} = (2.81 {+-} 0.12) K, is in very good agreement both with those previously published and those reported by our collaborators.

  3. Radiative processes in Alpha-ZnAl_2S4: Ti spinel type single crystals

    NASA Astrophysics Data System (ADS)

    Kulyuk, Leonid; Klokishner, Sophia; Sushkevich, Konstantin; Koshchug, Dmitrii; Boulon, Georges; Brenier, Alain; Fortin, Emery

    2008-06-01

    The radiative properties of the alpha-ZnAl_2S4 wide band -gap semiconductor (E_g=3.4eV) doped with Ti-ions are investigated . It is shown, that the ZnAl_2S_4:Ti spinel type crystals exhibit a IR luminescence in the spectral range 0.8-1.4 micrometers. The observed spectroscopic and temporal characteristics are assigned to the emission bands arising from the ligand - -Ti^4+ charge transfer for octahedral sites of titanium. Bulk stoichiometric alpha-ZnAl2S4:Ti crystals with impurity concentration 0.1-0.5 at % were grown by a closed tube vapor method with halogen as a transport agent. At temperatures T=2-300K the steady state and time-resolved photoluminescence (PL) studies, as well as the optical absorption measurements , were carried out in the spectral range 0.4-1.5 μm using a liquid nitrogen cooled Ge-detector or photomultiplier. The steady-state PL excitation was provided by Ar^+ (λ_ex1=514nm) and He-Ne (Lambda_ex2=633nm) lasers. The PL kinetics has been examined under pulsed excitation (tau_P~10^-8 s) with wavelengths: "green"-λ_ex1P=532nm and "red"-λ_ex2P=630nm (dye laser and OPO) close to Lambda_ex1 and λ_ex2. The EPR studies of the samples have been carried out as well. Under the "green" excitation (λ_ex1), that corresponds to the maximum of the Ti-impurity absorption (λ_abs~510nm), the steady -state PL spectra of ZnAl^2S^4:Ti crystals consist of 2 broad bands centered at λ_1=1.1μm and Lambda_20.8μm. Τhe first component λ_1 dominates in the spectrum at low temperatures (T<200K). At T~300K the shape of the integral spectrum practically is determined by the second broad band Lambda_2. At "red" excitation (λ_ex2, λ_ex2P) the main contribution to the PL spectra in the whole temperature range is provided by the second component, the kinetics of which obeys the exponential law with a single decay time. In contrast to the second band , the emission decay can be described by the superposition of two exponents with different lifetimes. At low

  4. Analysis of radiation risk from alpha particle component of solar particle events.

    PubMed

    Cucinotta, F A; Townsend, L W; Wilson, J W; Golightly, M J; Weyland, M

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup. PMID:11538031

  5. Alpha slow-moving high-density-lipoprotein subfraction in serum of a patient with radiation enteritis and peritoneal carcinosis

    SciTech Connect

    Peynet, J.; Legrand, A.; Messing, B.; Thuillier, F.; Rousselet, F.

    1989-04-01

    An alpha slow-moving high-density-lipoprotein (HDL) subfraction was seen in a patient presenting with radiation enteritis and peritoneal carcinosis, who was given long-term cyclic parenteral nutrition. This subfraction, observed in addition to normal HDL, was precipitated with low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) by sodium phosphotungstate-magnesium chloride. The patient's serum lipoproteins were analyzed after fractionation by density gradient ultracentrifugation. The alpha slow-moving HDL floated in the ultracentrifugation subfractions with densities ranging from 1.028 to 1.084 kg/L, and their main apolipoproteins included apolipoprotein E in addition to apolipoprotein A-I. These HDL were larger than HDL2. The pathogenesis of this unusual HDL subfraction is hypothesized.

  6. Shortwave Radiative Closure Studies for Clear Skies During the Atmospheric Radiation Measurement 2003 Aerosol Intensive Observation Period

    SciTech Connect

    Michalsky, Joseph J.; Anderson, Gail; Barnard, James C.; Delamere, Jennifer; Gueymard, C.; Kato, Seiji; Kiedron, P.; McComiskey, A.; Ricchiazzi, P.

    2006-07-20

    The Department of Energy's Atmospheric Radiation Measurement (ARM) program sponsored a large aerosol intensive observation period (AIOP) to study aerosol during the month of May 2003 around the Southern Great Plains (SGP) Climate Research Facility (CRF) in north central Oklahoma. Redundant measurements of aerosol optical properties were made using different techniques at the surface as well as in vertical profile with sensors aboard two aircraft. One of the principal motivations for this experiment was to resolve the disagreement between models and measurements of diffuse horizontal broadband shortwave irradiance at the surface, especially for modest aerosol loading. This paper focuses on using the redundant aerosol and radiation measurements during this AIOP to compare direct beam and diffuse horizontal broadband shortwave irradiance measurements and models at the surface for a wide range of aerosol cases that occurred during 30 clear-sky periods on 13 days of May 2003. Models and measurements are compared over a large range of solar-zenith angles. Six different models are used to assess the relative agreement among them and the measurements. Better agreement than previously achieved appears to be the result of better specification of input parameters and better measurements of irradiances than in prior studies. Biases between modeled and measured direct irradiances are in the worst case 1%, and biases between modeled and measured diffuse irradiances are less than 1.9%.

  7. Quantitative analysis of tomotherapy, linear-accelerator-based 3D conformal radiation therapy, intensity-modulated radiation therapy, and 4D conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee

    2012-04-01

    This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could

  8. Effect of low-intensity laser radiation on thermal denaturing of oxyhemoglobin and hemolysis of human erythrocytes

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Batian, A. N.; Trusevich, M. O.; Rubinova, A. N.

    2013-05-01

    We present the results of studies on the effect of optical radiation on thermal denaturing of oxyhemoglobin and hemolysis of human erythrocytes. We have established that low-intensity laser radiation promotes decreased structural and conformational changes and stabilizes the oxyhemoglobin molecules and erythrocytes against thermal denaturing.

  9. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    NASA Astrophysics Data System (ADS)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  10. Comparing Radiation Treatments Using Intensity-Modulated Beams, Multiple Arcs, and Single Arcs

    SciTech Connect

    Tang, Grace; Earl, Matthew A.; Luan Shuang; Wang Chao; Mohiuddin, Majid M.; Yu, Cedric X.

    2010-04-15

    Purpose: A dosimetric comparison of multiple static-field intensity-modulated radiation therapy (IMRT), multiarc intensity-modulated arc therapy (IMAT), and single-arc arc-modulated radiation therapy (AMRT) was performed to evaluate their clinical advantages and shortcomings. Methods and Materials: Twelve cases were selected for this study, including three head-and-neck, three brain, three lung, and three prostate cases. An IMRT, IMAT, and AMRT plan was generated for each of the cases, with clinically relevant planning constraints. For a fair comparison, the same parameters were used for the IMRT, IMAT, and AMRT planning for each patient. Results: Multiarc IMAT provided the best plan quality, while single-arc AMRT achieved dose distributions comparable to those of IMRT, especially in the complicated head-and-neck and brain cases. Both AMRT and IMAT showed effective normal tissue sparing without compromising target coverage and delivered a lower total dose to the surrounding normal tissues in some cases. Conclusions: IMAT provides the most uniform and conformal dose distributions, especially for the cases with large and complex targets, but with a delivery time similar to that of IMRT; whereas AMRT achieves results comparable to IMRT with significantly faster treatment delivery.

  11. An angular momentum approximation for molecular collisions in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1979-01-01

    An approximation to a previously presented rigorous description of molecular (atom-atom) collisions occurring in the presence of intense radiation is investigated. This rigorous description explicitly considers the angular momentum transferred between the molecule and the radiation field in the absorption or emission of a photon, but involves a complicated system of close-coupled equations which must be solved independently for each projection M of the initial, total molecular angular momentum. (This is a direct consequence of the lack of rotational invariance in the molecule-field problem). These equations are solved for a model system which mimics the collision of a halogen with a rare gas atom. Empirical observations made in the course of performing these calculations lead to the development of an approximation which avoids the repeated calculations for each initial M. This orientational average approximation greatly reduces the effort required to describe the system, and for the model calculation, yields accurate results for field intensities as high as 10 GW/sq cm.

  12. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    SciTech Connect

    1996-11-22

    The Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water ({approximately}40 Tm), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, Tecogen, a division of Thermo Power Corporation, a Thermo Electron company, is developing a real-time, field-deployable, alpha monitor based on a solid-state silicon wafer semiconductor (patent pending, to be assigned to the Department of Energy). The Thermo Alpha Monitor (TAM) will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste Focus Area and D&D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This instrument for direct counting of alpha-emitters in aqueous streams is presently being developed by Thermo Power under a development program funded by the DOE Environmental Management program (DOE-EM), administered by the Morgantown Energy Technology Center (METC). Under this contract, Thermo Power has demonstrated a solid-state, silicon-based semiconductor instrument, which uses a proprietary film-based collection system to quantitatively extract the

  13. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    PubMed

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  14. Astrophysical Ionizing Radiation and Earth: A Brief Review and Census of Intermittent Intense Sources

    NASA Astrophysics Data System (ADS)

    Melott, Adrian L.; Thomas, Brian C.

    2011-05-01

    Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note

  15. Astrophysical ionizing radiation and Earth: a brief review and census of intermittent intense sources.

    PubMed

    Melott, Adrian L; Thomas, Brian C

    2011-05-01

    Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note

  16. Astrophysical ionizing radiation and Earth: a brief review and census of intermittent intense sources.

    PubMed

    Melott, Adrian L; Thomas, Brian C

    2011-05-01

    Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note

  17. Correcting radiation survey data to account for increased leakage during intensity modulated radiotherapy treatments

    SciTech Connect

    Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2013-11-15

    Purpose: Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially costly overestimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls, and other walls) by evaluating three different bunker designs.Methods: Radiation survey measurements of primary, scattered, and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0° to 330°, to assess the effects of radiation beam direction on the results.Results: For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage.Conclusions: Results of this study suggest that IMRT workload corrections are unnecessary, for survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in

  18. Quantum-mechanical calculation of three-dimensional atom-diatom collisions in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1979-01-01

    A formalism is presented for describing the collision of fluorine with the hydrogen molecule in the presence of intense radiation. For a laser frequency on the order of the spin-orbit splitting of fluorine, the interaction of the molecular system with the radiation occurs at relatively long range where, for this system, the electric dipole is vanishingly small. Hence the interaction occurs due to the magnetic dipole coupling. Even so, at low collision energies a substantial enhancement of the quenching cross section is found for a radiation intensity of 10 to the 11th W/sq cm.

  19. Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field

    NASA Astrophysics Data System (ADS)

    Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan

    2016-10-01

    The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).

  20. Optical Spectroscopy Measurements of Shock Waves Driven by Intense Z-Pinch Radiation

    SciTech Connect

    Asay, J. Bernard, M.; Bailey, J.E.; Carlson, A.L.; Chandler, G.A.; Hall, C.A.; Hanson, D.; Johnston, R.; Lake, P.; Lawrence, J.

    1999-04-09

    Z-pinches created using the Z accelerator generate {approximately}220 TW, 1.7 MJ radiation pulses that heat large ({approximately}10 cm{sup 3}) hohlraums to 100-150 eV temperatures for times of order 10 nsec. We are performing experiments exploiting this intense radiation to drive shock waves for equation of state studies. The shock pressures are typically 1-10 Mbar with 10 nsec duration in 6-mm-diameter samples. In this paper we demonstrate the ability to perform optical spectroscopy measurements on shocked samples located in close proximity to the z-pinch. These experiments are particularly well suited to optical spectroscopy measurements because of the relatively large sample size and long duration. The optical emission is collected using fiber optics and recorded with a streaked spectrograph. Other diagnostics include VISAR and active shock breakout measurements of the shocked sample and a suite of diagnostics that characterize the radiation drive. Our near term goal is to use the spectral emission to obtain the temperature of the shocked material. Longer term objectives include the examination of deviations of the spectrum from blackbody, line emission from lower density regions, determination of kinetic processes in molecular systems, evaluation of phase transitions such as the onset of metalization in transparent materials, and characterization of the plasma formed when the shock exits the rear surface. An initial set of data illustrating both the potential and the challenge of these measurements is described.

  1. Acoustic intensity-based method for sound radiations in a uniform flow.

    PubMed

    Yu, Chao; Zhou, Zhengfang; Zhuang, Mei

    2009-11-01

    An acoustic intensity-based method (AIBM) is extended and verified for predicting sound radiation in a subsonic uniform flow. The method assumes that the acoustic propagation is governed by the modified Helmholtz equation on and outside of a control surface, which encloses all the noise sources and nonlinear effects. With acoustic pressure derivative and its co-located acoustic pressure as input from an open control surface, the unique solution of the modified Helmholtz equation is obtained by solving the least squares problem. The AIBM is coupled with near-field Computational Fluid Dynamics (CFD)/Computational Aeroacoustics (CAA) methods to predict sound radiation of model aeroacoustic problems. The effectiveness of this hybrid approach has been demonstrated by examples of both tonal and broadband noise. Since the AIBM method is stable and accurate based on the input acoustic data from an open surface in a radiated field, it is therefore advantageous for the far-field prediction of aerodynamics noise propagation when an acoustic input from a closed control surface, like the Ffowcs Williams-Hawkings surface, is not available [Philos. Trans. R. Soc. London, Ser. A 264, 321-342 (1969)]. PMID:19894800

  2. Relative ultraviolet spectral intensity of direct solar radiation, sky radiation and surface reflections. Relative contribution of natural sources to the outdoor UV irradiation of man.

    PubMed

    Kromann, N; Wulf, H C; Eriksen, P; Brodthagen, H

    1986-04-01

    Relative measurements of UVA and UVB radiation from the sun and the sky, as well as the reflected intensity from various land and water surfaces, have been carried out in the Copenhagen area. The measurements were taken in January and in the period April through July and supplemented by measurements in Greenland during May. Likewise, the angular distribution of direct solar radiation and sky radiation close to the direction of the sun was measured with a 0.5 degree field of view. Absolute UV irradiances were measured with detector-filter combinations. Calculations of the relative contributions of direct solar radiation, sky radiation and reflected radiation to the irradiation of a standing person show, in particular, that if seawater with waves is the surrounding scene, its reflected radiation will account for more than 10% of the received UV dose.

  3. A comparison of H-alpha intensity and radio wave scattering on eight low-latitude lines of sight

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.; Reynolds, Ronald J.

    1990-01-01

    Radio scattering and H-alpha measurements for eight sources in Cygnus are compared. The diameter of the radio scattering disk at 1 GHz is found to be correlated with emission measure as determined from the H-alpha measurements, and that strong radio scattering characterized by a diameter of about 30 milliarcsec is produced in regions with emission measures of about 100/cm exp 6 pc or less. The slope of diameter-emission measure correlation is steeper than would be the case if all lines of sight were characterized by the same turbulent outer scale and modulation index. It is suggested that the lines of sight to unscattered or lightly scattered sources traverse only a diffuse medium which is revealed by H-alpha observations at high latitudes. Heavily scattered sources are viewed through an additional component of interstellar H II which has turbulence with different properties.

  4. Using time-integrated K{sub {alpha}} images to study refluxing and the extent of pre-plasmas in intense laser-plasma experiment

    SciTech Connect

    Ovchinnikov, V. M.; Schumacher, D. W.; Kemp, G. E.; Krygier, A. G.; Van Woerkom, L. D.; Akli, K. U.; Freeman, R. R.; Stephens, R. B.; Link, A.

    2011-11-15

    We report the results of an experimental and numerical modeling study of the formation of time-integrated K{sub {alpha}} images by electrons excited during an intense laser-plasma interaction. We report the use of the spatial structure of time-integrated K{sub {alpha}} images to quantitatively characterize the pre-plasma profile near the critical surface and to verify the near elimination of back-surface refluxing from targets when a thick layer of a low-Z material is attached to the back. The time integrated K{sub {alpha}} images are found to be sensitive to the relative separation between the critical surface and the bulk target, permitting a single parameter exponential pre-plasma scale length to be determined by fitting to experimental results. The refluxed electrons affect different parts of the K{sub {alpha}} images in a manner that varies depending on the location of the refluxing. We use these properties to characterize refluxing also by fitting to experimental results. Experiments were performed using the Titan laser at the Lawrence Livermore National Laboratory and the simulations used a customized version of the hybrid-PIC code, LSP. We find good quantitative match between experiment and simulation.

  5. 3-Dimensional modeling of large diameter wire array high intensity K-shell radiation sources.

    SciTech Connect

    Giuliani, J. L.; Waisman, Eduardo Mario; Chittenden, Jeremy Paul; Jennings, Christopher A.; Ampleford, David J.; Yu, Edmund P.; Thornhill, Joseph W.; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Hansen, Stephanie B.

    2010-06-01

    Large diameter nested wire array z-pinches imploded on the Z-generator at Sandia National Laboratories have been used extensively to generate high intensity K-shell radiation. Large initial radii are required to obtain the high implosion velocities needed to efficiently radiate in the K-shell. This necessitates low wire numbers and large inter-wire gaps which introduce large azimuthal non-uniformities. Furthermore, the development of magneto-Rayleigh-Taylor instabilities during the implosion are known to generate large axial non-uniformity These effects motivate the complete, full circumference 3-dimensional modeling of these systems. Such high velocity implosions also generate large voltages, which increase current losses in the power feed and limit the current delivery to these loads. Accurate representation of the generator coupling is therefore required to reliably represent the energy delivered to, and the power radiated from these sources. We present 3D-resistive MHD calculations of the implosion and stagnation of a variety of large diameter stainless steel wire arrays (hv {approx} 6.7 keV), imploded on the Z-generator both before and after its refurbishment. Use of a tabulated K-shell emission model allows us to compare total and K-shell radiated powers to available experimental measurements. Further comparison to electrical voltage and current measurements allows us to accurately assess the power delivered to these loads. These data allow us to begin to constrain and validate our 3D MHD calculations, providing insight into ways in which these sources may be further optimized.

  6. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    SciTech Connect

    Unknown

    1999-03-14

    The US Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water ({approximately}40 Im), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, the Advanced Technologies Group of Thermo Power Corporation (a Thermo Electron company) is developing a real-time, field-deployable alpha monitor based on a solid-state silicon wafer semiconductor (US Patent 5,652,013 and pending, assigned to the US Department of Energy). The Thermo Water Alpha Monitor will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning (D and D) operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste, Plutonium, and D and D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This report details the program's accomplishments to date. Most significantly, the Alpha Monitoring Instrument was successfully field demonstrated on water 100X below the Environmental Protection Agency's proposed safe drinking water limit--down to under 1 pCi/1. During the Field Test, the Alpha Monitoring Instrument successfully analyzed isotopic uranium levels on a total of five different surface water, process water, and

  7. Enhancement of Lyman-. alpha. radiation following foil-induced dissociation of fast ionic hydrogen clusters H sub n sup +

    SciTech Connect

    Farizon, M.; Clouvas, A.; de Castro Faria, N.V.; Farizon-Mazuy, B.; Gaillard, M.J.; Gerlic, E. ); Denis, A.; Desesquelles, J.; Ouerdane, Y. )

    1991-01-01

    We have measured the Lyman-{alpha} radiation following foil breakup of hydrogen ionic clusters H{sub {ital n}}{sup +} ({ital n}=2 and {ital n}=3 to 61, odd) with velocities above and around the Bohr velocity. An enhancement of this radiation was observed and could reach a factor of 3 with respect to the proton case of the same velocity. Cluster mass number, velocity, and thickness dependences of the relative population of the 2{ital p} state in hydrogen fragments following H{sub {ital n}}{sup +} foil dissociation have been extracted. A specific collective effect on the 2{ital p}-state hydrogen has been observed and interpreted in terms of charge-exchange processes.

  8. Bridging the gap between IMRT and VMAT: Dense angularly sampled and sparse intensity modulated radiation therapy

    SciTech Connect

    Li, Ruijiang; Xing, Lei

    2011-09-15

    Purpose: To propose an alternative radiation therapy (RT) planning and delivery scheme with optimal angular beam sampling and intrabeam modulation for improved dose distribution while maintaining high delivery efficiency. Methods: In the proposed approach, coined as dense angularly sampled and sparse intensity modulated RT (DASSIM-RT), a large number of beam angles are used to increase the angular sampling, leading to potentially more conformal dose distributions as compared to conventional IMRT. At the same time, intensity modulation of the incident beams is simplified to eliminate the dispensable segments, compensating the increase in delivery time caused by the increased number of beams and facilitating the plan delivery. In a sense, the proposed approach shifts and transforms, in an optimal fashion, some of the beam segments in conventional IMRT to the added beams. For newly available digital accelerators, the DASSIM-RT delivery can be made very efficient by concatenating the beams so that they can be delivered sequentially without operator's intervention. Different from VMAT, the level of intensity modulation in DASSIS-RT is field specific and optimized to meet the need of each beam direction. Three clinical cases (a head and neck (HN) case, a pancreas case, and a lung case) are used to evaluate the proposed RT scheme. DASSIM-RT, VMAT, and conventional IMRT plans are compared quantitatively in terms of the conformality index (CI) and delivery efficiency. Results: Plan quality improves generally with the number and intensity modulation of the incident beams. For a fixed number of beams or fixed level of intensity modulation, the improvement saturates after the intensity modulation or number of beams reaches to a certain level. An interplay between the two variables is observed and the saturation point depends on the values of both variables. For all the cases studied here, the CI of DASSIM-RT with 15 beams and 5 intensity levels (0.90, 0.79, and 0.84 for the HN

  9. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    SciTech Connect

    Hodges, Joseph C.; Beg, Muhammad S.; Das, Prajnan; Meyer, Jeffrey

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  10. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    SciTech Connect

    Wooten, H. Omar Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.

  11. [The effect of continuous millimeter low-intensity radiation on the Na+ ion transport in the frog skin].

    PubMed

    Kazarinov, K D; Sharov, V S; Putvinskiĭ, A V; Betskiĭ, O V

    1984-01-01

    Many data on the effect of millimeter (MM) radiation of low intensity (of the order of 1 mVt/cm2) on living organisms were accumulated [1]. The specifics of this effect is first of all manifested in frequency--selective (resonance) pattern of the biological system response and the effect of threshold dependence of exposition time and power of MM radiation. To study the mechanism of this effect it seems perspective to investigate the influence of radiation on the membrane transport. The present work investigated the effect of MM radiation on a comparatively simple and well investigated object--isolated frog skin. PMID:6331853

  12. A review of electrodeposition methods for the preparation of alpha-radiation sources.

    PubMed

    Crespo, M T

    2012-01-01

    This paper addresses an approach to the theory and practice of electrodeposition processes of alpha-emitting nuclides. Some of the main contributions made to this field are reviewed, including the rotating disk electrode technique. Also, several interpretations concerning the electrodeposition process as well as a number of practical recommendations are included in the study. PMID:21975108

  13. Radiative corrections to e/sup +/e/sup -/ reactions to all orders in. cap alpha. using the renormalization group

    SciTech Connect

    Tsai, Y.S.

    1983-01-01

    Renormalization group technique is used to improve the accuracy of the lowest order radiative corrections in QED. The exponentiation of infrared terms comes automatically. It also leads to exponentiation of the vertex functions. It predicts the existence of conversion of photons into pairs and the result agrees with the Kroll-Wada relation. Kinoshita-Lee-Nauenberg cancellation of mass singularities occurs to all order in ..cap alpha.. in leading log approximation in the final state if we sum over all the final states. Higher order corrections to the order ..cap alpha../sup 3/ asymmetry is shown to be small. The results are used to derive useful formulas for the radiative corrections to processes such as e/sup +/e/sup -/ ..-->.. ..mu../sup +/..mu../sup -/, e/sup +/e/sup -/ ..-->.. ..mu../sup +/..mu../sup -/..gamma.., e/sup +/e/sup -/ ..-->.. hadron continuum, e/sup +/e/sup -/ ..-->.. very narrow resonance such as phi, and e/sup +/e/sup -/ ..-->.. not very narrow resonance such as Z/sup 0/.

  14. Intense terahertz pulses from SLAC electron beams using coherent transition radiation

    SciTech Connect

    Wu Ziran; Fisher, Alan S.; Hogan, Mark; Loos, Henrik; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Lindenberg, Aaron

    2013-02-15

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/A) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  15. Generation of intense excimer radiation from high-pressure hollow cathode discharges

    SciTech Connect

    El-Habachi, A.; Schoenbach, K.H.

    1998-08-01

    By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values on the order of 100 {mu}m, we were able to operate these discharges in noble gases in a direct current mode up to atmospheric pressure. High-pressure discharges in xenon were found to be strong sources of excimer radiation. Highest intensities at a wavelength of 172 nm were obtained at a pressure of 400 Torr. At this pressure, the vacuum ultraviolet (VUV) radiant power of a single discharge operating at a forward voltage of 220 V and currents exceeding 2 mA reaches values between 6{percent} and 9{percent} of the input electrical power. The possibility to form arrays of these discharges allows the generation of flat panel VUV lamps with radiant emittances exceeding 50 W/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  16. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    SciTech Connect

    Amdur, Robert J. Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-10-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction.

  17. Measurement of the intensity of the cosmic background radiation at 3. 0 cm

    SciTech Connect

    Friedman, S.D.

    1984-01-01

    The intensity of the cosmic background radiation (CBR) has been measured at a wavelength of 3.0 cm as part of a program to measure th Rayleigh-Jeans spectrum of the CBR at five wavelengths between 0.33 cm and 12 cm. The instrument used is a dual-antenna Dicke-switched radiometer with a double-sideband noise temperature of 490 K and a sensitivity of 46 mK/Hz/sup 1/2/. The entire radiometer is mounted on bearings. The atmospheric emission was measured by rotating the radiometer, and thus directing one antenna to zenith angles of +- 30/sup 0/ and +- 40/sup 0/. 61 references, 24 figures, 18 tables.

  18. Intensity Modulated Radiation Therapy for Primary Soft Tissue Sarcoma of the Extremity: Preliminary Results

    SciTech Connect

    Alektiar, Kaled M. . E-mail: alektiak@mskcc.org; Hong, Linda; Brennan, Murray F.; Della-Biancia, Cesar; Singer, Samuel

    2007-06-01

    Purpose: To report preliminary results on using intensity modulated radiation therapy (IMRT) as an adjuvant treatment in primary soft tissue sarcoma (STS) of the extremity. Methods and Materials: Between February 2002 and March 2005, 31 adult patients with primary STS of the extremity were treated with surgery and adjuvant IMRT. Tumor size was >10 cm in 74% of patients and grade was high in 77%. Preoperative IMRT was given to 7 patients (50 Gy) and postoperative IMRT (median dose, 63 Gy) was given to 24 patients. Complete gross resection including periosteal stripping or bone resection was required in 10, and neurolysis or nerve resection in 20. The margins were positive or within 1 mm in 17. Complications from surgery and radiation therapy (RT) were assessed using the Common Terminology Criteria for Adverse Events grading system. Results: Median follow-up time was 23 months. Grade 1 RT dermatitis developed in 71% of patients, Grade 2 in 16%, and Grade 3 in 10%. Infectious wound complications developed in 13% and noninfectious complications in 10%. Two patients (6.4%) developed fractures. Grade 1 neuropathy developed in 28% of patients and Grade 2 in 5%. The rates of Grade 1 and 2 joint stiffness were each 19%. Grade 1 edema was observed in 19% of patients and Grade 2 in 13%. The 2-year local control, distant control, and overall survival were 95%, 65%, and 81%, respectively. Conclusion: Intensity modulated RT appears to provide excellent local control in a difficult group of high-risk patients. The morbidity profile is also favorable, but longer follow-up is needed to confirm the results from this study.

  19. Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bangert, Mark; Oelfke, Uwe

    2010-10-01

    An intuitive heuristic to establish beam configurations for intensity-modulated radiation therapy is introduced as an extension of beam ensemble selection strategies applying scalar scoring functions. It is validated by treatment plan comparisons for three intra-cranial, pancreas, and prostate cases each. Based on a patient specific matrix listing the radiological quality of candidate beam directions individually for every target voxel, a set of locally ideal beam angles is generated. The spherical distribution of locally ideal beam angles is characteristic for every treatment site and patient: ideal beam angles typically cluster around distinct orientations. We interpret the cluster centroids, which are identified with a spherical K-means algorithm, as irradiation angles of an intensity-modulated radiation therapy treatment plan. The fluence profiles are subsequently optimized during a conventional inverse planning process. The average computation time for the pre-optimization of a beam ensemble is six minutes on a state-of-the-art work station. The treatment planning study demonstrates the potential benefit of the proposed beam angle optimization strategy. For the three prostate cases under investigation, the standard treatment plans applying nine coplanar equi-spaced beams and treatment plans applying an optimized non-coplanar nine-beam ensemble yield clinically comparable dose distributions. For symmetric patient geometries, the dose distribution formed by nine equi-spaced coplanar beams cannot be improved significantly. For the three pancreas and intra-cranial cases under investigation, the optimized non-coplanar beam ensembles enable better sparing of organs at risk while guaranteeing equivalent target coverage. Beam angle optimization by spherical cluster analysis shows the biggest impact for target volumes located asymmetrically within the patient and close to organs at risk.

  20. Comparison of three dimensional conformal radiation therapy, intensity modulated radiation therapy and volumetric modulated arc therapy for low radiation exposure of normal tissue in patients with prostate cancer.

    PubMed

    Cakir, Aydin; Akgun, Zuleyha; Fayda, Merdan; Agaoglu, Fulya

    2015-01-01

    Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment.

  1. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.; Bennion, Brian J.

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  2. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses.

    PubMed

    Hau-Riege, Stefan P; Bennion, Brian J

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  3. Intensity-modulated radiation therapy for the treatment of nonanaplastic thyroid cancer

    SciTech Connect

    Rosenbluth, Benjamin D.; Serrano, Victoria B.S.; Happersett, Laura; Shaha, Ashok R.; Tuttle, R. Michael; Narayana, Ashwatha; Wolden, Suzanne L.; Rosenzweig, Kenneth E.; Chong, Lanceford M.; Lee, Nancy Y. . E-mail: leen2@mskcc.org

    2005-12-01

    Purpose: Intensity-modulated radiation therapy (IMRT) enables highly conformal treatment for thyroid cancer (TC). In this study, we review outcomes/toxicity in a series of TC patients treated with IMRT. Methods and Materials: Between July 2001 and January 2004, 20 nonanaplastic TC patients underwent IMRT. Mean age was 55. There were 3 T2 and 17 T4 patients. Sixteen patients had N1 disease. Seven patients had metastases before RT. Fifteen underwent surgery before RT. Radioactive iodine (RAI) and chemotherapy were used in 70% and 40%, respectively. Median total RT dose was 63 Gy. Results: With two local failures, 2-year local progression-free rate was 85%. There were six deaths, with a 2-year overall survival rate of 60%. For patients with M0 disease, the 2-year distant metastases-free rate was 46%. The worst acute mucositis and pharyngitis was Grade 3 (n = 7 and 3, respectively). Two patients had Grade 3 acute skin toxicity and 2 had Grade 3 acute laryngeal toxicity. No significant radiation-related late effects were reported. Conclusions: IMRT for TC is feasible and effective in appropriately selected cases. Acute toxicity is manageable with proactive clinical care. Ideal planning target volume doses have yet to be determined. Additional patients and long-term follow-up are needed to confirm these preliminary findings and to clarify late toxicities.

  4. SU-E-P-18: Intensity-Modulated Radiation Therapy for Cervical Esophageal Squamous Cell Carcinoma

    SciTech Connect

    Bai, W; Qiao, X; Zhou, Z; Song, Y; Zhang, R; Zhen, C

    2015-06-15

    Purpose: To retrospectively analyze the outcomes and prognostic factors of cervical esophageal squamous cell carcinoma (SCC) treated with intensity modulated radiation therapy (IMRT). Methods: Thirty-seven patients with cervical esophageal SCC treated with IMRT were analyzed retrospectively. They received 54–66 Gy in 27–32 fractions. Nineteen patients received concurrent (n=12) or sequential (n=7) platinum-based two drugs chemoradiotherapy. Overall survival (OS), local control rates (LCR) and prognostic factors were evaluated. Acute toxicities and patterns of first failures were observed. Results: The median follow-up was 46 months for alive patients. The l-, 3-, 4- and 5-year OS of the all patients were 83.8%, 59.1%, 47.5% and 32.6% respectively. The median survival time was 46 months. The l-, 3-,4- and 5-year LCR were 82.9%, 63.0%, 54.5% and 54.5%, respectively. Univariate and Multivariate analysis all showed that size of GTV was an independent prognostic factor (p=0.033, p=0.039). There were no patients with Grade 3 acute radiation esophagitis and Grade 2–4 acute pneumonitis. The local failure accounted for 70.0% of all treatment-related failures. Conclusion: IMRT is safe and effective in the treatment of cervical esophageal squamous cell carcinoma. Size of GTV is an independent prognostic factor. Local failure still remains the main reason of treatment failures. The authors declare no conflicts of interest in preparing this article.

  5. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  6. "Radiative Closure Studies for Clear Skies During the ARM 2003 Aerosol Intensive Observation Period"

    SciTech Connect

    J. J. Michalsky, G. P. Anderson, J. Barnard, J. Delamere, C. Gueymard, S. Kato, P. Kiedron, A. McComiskey, and P. Ricchiazzi

    2006-04-01

    The Department of Energy's Atmospheric Radiation Measurement (ARM) program sponsored a large intensive observation period (IOP) to study aerosol during the month of May 2003 around the Southern Great Plains (SGP) Climate Research Facility (CRF) in north central Oklahoma. Redundant measurements of aerosol optical properties were made using different techniques at the surface as well as in vertical profile with sensors aboard two aircraft. One of the principal motivations for this experiment was to resolve the disagreement between models and measurements of diffuse horizontal broadband shortwave irradiance at the surface, especially for modest aerosol loading. This paper focuses on using the redundant aerosol and radiation measurements during this IOP to compare direct beam and diffuse horizontal broadband shortwave irradiance measurements and models at the surface for a wide range of aerosol cases that occurred during 30 clear-sky periods on 13 days of May 2003. Models and measurements are compared over a large range of solar-zenith angles. Six different models are used to assess the relative agreement among them and the measurements. Better agreement than previously achieved appears to be the result of better specification of input parameters and better measurements of irradiances than in prior studies. Biases between modeled and measured direct irradiances are less than 1%, and biases between modeled and measured diffuse irradiances are less than 2%.

  7. Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation.

    PubMed

    Deshmukh, Pravin Suryakantrao; Nasare, Namita; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Singh, Digvijay; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar; Mediratta, Pramod Kumari

    2015-01-01

    The health hazard of microwave radiation (MWR) has become a recent subject of interest as a result of the enormous increase in mobile phone usage. The present study aimed to investigate the effects of chronic low-intensity microwave exposure on cognitive function, heat shock protein 70 (HSP70), and DNA damage in rat brain. Experiments were performed on male Fischer rats exposed to MWR for 180 days at 3 different frequencies, namely, 900, 1800 MHz, and 2450 MHz. Animals were divided into 4 groups: group I: sham exposed; group II: exposed to MWR at 900 MHz, specific absorption rate (SAR) 5.953 × 10(-4) W/kg; group III: exposed to 1800 MHz, SAR 5.835 × 10(-4) W/kg; and group IV: exposed to 2450 MHz, SAR 6.672 × 10(-4) W/kg. All the rats were tested for cognitive function at the end of the exposure period and were subsequently sacrificed to collect brain. Level of HSP70 was estimated by enzyme-linked immunotarget assay and DNA damage was assessed using alkaline comet assay in all the groups. The results showed declined cognitive function, elevated HSP70 level, and DNA damage in the brain of microwave-exposed animals. The results indicated that, chronic low-intensity microwave exposure in the frequency range of 900 to 2450 MHz may cause hazardous effects on the brain. PMID:25749756

  8. Gas Electron Multiplier performance under high intensity X-ray radiation

    NASA Astrophysics Data System (ADS)

    di, Danning

    2015-10-01

    Large size Gas Electron Multiplier (GEM) for the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab) have been built at Detector Lab of University of Virginia(UVa). The Proton Polarimeter Back Tracker of the SBS consist of 40 GEM modules of size 60 ×50 cm2. We report R&D and quality test of the GEM detectors under high intensity X-ray radiation. Expected background rate in experiment is up to about 500 kHz/cm2. Such high background rate requires GEM detectors to have timing resolution of about a few nano seconds and operate stably with high rate activities going on within. X-ray with high rate up to 50 MHz/cm2 and energy up to 50 keV was used to test the performance of GEM detectors in detector lab at UVa. Issues caused by high intensity background and detailed R&D effort to adapt GEM detectors for use in the SBS are described.

  9. Electronic response of graphene to an ultrashort intense terahertz radiation pulse

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenichi L.

    2013-05-01

    We have recently reported a study (Ishikawa 2010 Phys. Rev. B 82 201402) on a nonlinear optical response of graphene to a normally incident terahertz radiation pulse within the massless Dirac fermion (MDF) picture, where we have derived physically transparent graphene Bloch equations (GBE). Here we extend it to the tight-binding (TB) model and oblique incidence. The derived equations indicate that interband transitions are governed by the temporal variation of the spinor phase along the electron path in the momentum space and predominantly take place when the electron passes near the Dirac point. At normal incidence, the equations for electron dynamics within the TB model can be cast into the same form of GBE as for the MDF model. At oblique incidence, the equations automatically incorporate photon drag and satisfy the continuity equation for electron density. Single-electron dynamics strongly depend on the model and pulse parameters, but the rapid variations are averaged out after momentum-space integration. Direct current remaining after the pulse is generated in graphene irradiated by an intense monocycle terahertz pulse, even if it is linearly polarized and normally incident. The generated current depends on the carrier-envelope phase, pulse intensity and Fermi energy in a complex manner.

  10. [Experimental justification of possible mechanisms of action of low intensity electromagnetic radiation (EMR) on animals' behavior].

    PubMed

    Pavlov, L N; Dubrovik, B V; Zhavoronkov, l P; Glushakova, V S

    2012-01-01

    Effects of EMR on the behavior of Wistar rats (196 males, 180-240 g of mass) under the conflict of opposed motivations: strong positive, drinking, motivation, and strong negative, pain, motivation were studied. The animals were exposed to low intensity EMR (40 microW/cm2) produced by two independent sources, 475 MHz (Albatross) with two orthogonal E vectors, and synchronization of rhythm modulation in the range of electroencephalography (EEG) frequency. The effect on behavior was observed during 10 min: 1) following the 5-minute exposure to EMR and 2) during the 10-minute exposure. Low intensity EMR of the above mentioned parameters and pulse modulation of 4, 8, 10 and 13 Hz was found to inhibit development of phobia to pain, increase the number of punishable contacts. It testifies to the existence of a weak anxiolytic effect which is similar to the effect of tranquilizers. If animals were exposed to EMR following administration of phenazepam, the radiation was shown to produce potentiation of the anxiolytic effect ofphenazepam. Effect of phenazepam is associated with activation ofbenzdiazipine receptors in the structure ofGABA-ergic receptor complex, which regulates neural membrane chloride channel conductance. We can suggest that anxiolytic and neurodepressive effects of EMR are realized to some extent at the level of ionophore and regulatory receptor complexes.

  11. Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation.

    PubMed

    Deshmukh, Pravin Suryakantrao; Nasare, Namita; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Singh, Digvijay; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar; Mediratta, Pramod Kumari

    2015-01-01

    The health hazard of microwave radiation (MWR) has become a recent subject of interest as a result of the enormous increase in mobile phone usage. The present study aimed to investigate the effects of chronic low-intensity microwave exposure on cognitive function, heat shock protein 70 (HSP70), and DNA damage in rat brain. Experiments were performed on male Fischer rats exposed to MWR for 180 days at 3 different frequencies, namely, 900, 1800 MHz, and 2450 MHz. Animals were divided into 4 groups: group I: sham exposed; group II: exposed to MWR at 900 MHz, specific absorption rate (SAR) 5.953 × 10(-4) W/kg; group III: exposed to 1800 MHz, SAR 5.835 × 10(-4) W/kg; and group IV: exposed to 2450 MHz, SAR 6.672 × 10(-4) W/kg. All the rats were tested for cognitive function at the end of the exposure period and were subsequently sacrificed to collect brain. Level of HSP70 was estimated by enzyme-linked immunotarget assay and DNA damage was assessed using alkaline comet assay in all the groups. The results showed declined cognitive function, elevated HSP70 level, and DNA damage in the brain of microwave-exposed animals. The results indicated that, chronic low-intensity microwave exposure in the frequency range of 900 to 2450 MHz may cause hazardous effects on the brain.

  12. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Bedford, J. L.; Webb, S.

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans.

  13. Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy as Preoperative Treatment for Localized Gastric Adenocarcinoma

    SciTech Connect

    Chakravarty, Twisha; Crane, Christopher H.; Ajani, Jaffer A.; Mansfield, Paul F.; Briere, Tina M.; Beddar, A. Sam; Mok, Henry; Reed, Valerie K.; Krishnan, Sunil; Delclos, Marc E.; Das, Prajnan

    2012-06-01

    Purpose: The goal of this study was to evaluate dosimetric parameters, acute toxicity, pathologic response, and local control in patients treated with preoperative intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for localized gastric adenocarcinoma. Methods: Between November 2007 and April 2010, 25 patients with localized gastric adenocarcinoma were treated with induction chemotherapy, followed by preoperative IMRT and concurrent chemotherapy and, finally, surgical resection. The median radiation therapy dose was 45 Gy. Concurrent chemotherapy was 5-fluorouracil and oxaliplatin in 18 patients, capecitabine in 3, and other regimens in 4. Subsequently, resection was performed with total gastrectomy in 13 patients, subtotal gastrectomy in 7, and other surgeries in 5. Results: Target coverage, expressed as the ratio of the minimum dose received by 99% of the planning target volume to the prescribed dose, was a median of 0.97 (range, 0.92-1.01). The median V{sub 30} (percentage of volume receiving at least 30 Gy) for the liver was 26%; the median V{sub 20} (percentage of volume receiving at least 20 Gy) for the right and left kidneys was 14% and 24%, respectively; and the median V{sub 40} (percentage of volume receiving at least 40 Gy) for the heart was 18%. Grade 3 acute toxicity developed in 14 patients (56%), including dehydration in 10, nausea in 8, and anorexia in 5. Grade 4 acute toxicity did not develop in any patient. There were no significant differences in the rates of acute toxicity, hospitalization, or feeding tube use in comparison to those in a group of 50 patients treated with preoperative three-dimensional conformal radiation therapy with concurrent chemotherapy. R0 resection was obtained in 20 patients (80%), and pathologic complete response occurred in 5 (20%). Conclusions: Preoperative IMRT for gastric adenocarcinoma was well tolerated, accomplished excellent target coverage and normal structure sparing, and led to appropriate

  14. Intensity-Modulated Radiation Therapy in the Salvage of Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Qiu Sufang; Lin Shaojun; Tham, Ivan W.K.; Pan Jianji; Lu Jun; Lu, Jiade J.

    2012-06-01

    Purpose: Local recurrences of nasopharyngeal carcinoma (NPC) may be salvaged by reirradiation with conventional techniques, but with significant morbidity. Intensity-modulated radiation therapy (IMRT) may improve the therapeutic ratio by reducing doses to normal tissue. The aim of this study was to address the efficacy and toxicity profile of IMRT for a cohort of patients with locally recurrent NPC. Methods and Materials: Between August 2003 and June 2009, 70 patients with radiologic or pathologically proven locally recurrent NPC were treated with IMRT. The median time to recurrence was 30 months after the completion of conventional radiation to definitive dose. Fifty-seven percent of the tumors were classified asrT3-4. The minimum planned doses were 59.4 to 60 Gy in 1.8- to 2-Gy fractions per day to the gross disease with margins, with or without chemotherapy. Results: The median dose to the recurrent tumor was 70 Gy (range, 50-77.4 Gy). Sixty-five patients received the planned radiation therapy; 5 patients received between 50 and 60 Gy because of acute side effects. With a median follow-up time of 25 months, the rates of 2-year locoregional recurrence-free survival, disease-free survival, and overall survival were 65.8%, 65.8%, and 67.4%, respectively. Moderate to severe late toxicities were noted in 25 patients (35.7%). Eleven patients (15.7%) had posterior nasal space ulceration, 17 (24.3%) experienced cranial nerve palsies, 12 (17.1%) had trismus, and 12 (17.1%) experienced deafness. Extended disease-free interval (relative risk 2.049) and advanced T classification (relative risk 3.895) at presentation were adverse prognostic factors. Conclusion: Reirradiation with IMRT provides reasonable long-term control in patients with locally recurrent NPC.

  15. DICOM-based computer-aided evaluation of intensity modulated radiation therapy (IMRT) treatment plans

    NASA Astrophysics Data System (ADS)

    Cheung, Fion W. K.; Law, Maria Y. Y.

    2011-03-01

    Intensity-modulated radiation therapy (IMRT) has gained popularity in the treatment of cancers because of its excellent local control with decreased normal tissue complications. Yet, computer planning for the treatment relies heavily on human inspection of resultant radiation dose distribution within the irradiated region of the body. Even for experienced planners, comparison of IMRT plans is definitely cumbersome and not error-free. To solve this problem, a computer-aided decision-support system was built for automatic evaluation of IMRT plans based on the DICOM standard. A DICOM based IMRT plan with DICOM and DICOM-RT objects including CT images, RT Structure Set, RT Dose and RT Plan were retrieved from the Treatment Planning System for programming. Utilizing the MATLAB program language, the decoding-encoding software applications were developed on the basis of the DICOM information object definitions. After tracing the clinical workflow and understanding the needs and expectations from radiation oncologists, a set of routines were written to parse key data items such as isodose curves, region of interests, dose-volume histogram from the DICOM-RT objects. Then graphical user interfaces (GUIs) were created to allow planners to query for parameters such as overdose or underdose areas. A total of 30 IMRT plans were collected in a Department of Clinical Oncology for systematic testing of the DICOM-based decision-support system. Both structural and functional tests were implemented as a major step on the road to software maturity. With promising test results, this decision-support system could represent a major breakthrough in the routine IMRT planning workflow.

  16. Dosimetric effects of jaw tracking in step-and-shoot intensity-modulated radiation therapy.

    PubMed

    Joy, Sarah; Starkschall, George; Kry, Stephen; Salehpour, Mohammed; White, R Allen; Lin, Steven H; Balter, Peter

    2012-03-08

    The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking the multi-leaf collimator (MLC) apertures with the photon jaws in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform. Radiation treatment plans for ten thoracic, three pediatric, and three head and neck cancer patients were converted to plans with the jaws tracking each segment's MLC apertures, and compared to the original plans in a commercial radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 (volumes receiving 5, 10 and 20 Gy, respectively) in the cumulative dose-volume histogram for the following structures: total lung minus gross target volume, heart, esophagus, spinal cord, liver, parotids, and brainstem. To validate the accuracy of our beam model, MLC transmission was measured and compared to that predicted by the TPS. The greatest changes between the original and new plans occurred at lower dose levels. In all patients, the reduction in V20 was never more than 6.3% and was typically less than 1%; the maximum reduction in V5 was 16.7% and was typically less than 3%. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1% and, thus, uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. We conclude that the amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT is probably not clinically significant.

  17. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer.

    PubMed

    Freilich, J; Hoffe, S E; Almhanna, K; Dinwoodie, W; Yue, B; Fulp, W; Meredith, K L; Shridhar, R

    2015-01-01

    Emerging data suggests a benefit for using intensity modulated radiation therapy (IMRT) for the management of esophageal cancer. We retrospectively reviewed patients treated at our institution who received definitive or preoperative chemoradiation with either IMRT or 3D conformal radiation therapy (3DCRT) between October 2000 and January 2012. Kaplan Meier analysis and the Cox proportional hazard model were used to evaluate survival outcomes. We evaluated a total of 232 patients (138 IMRT, 94 3DCRT) who received a median dose of 50.4 Gy (range, 44-64.8) to gross disease. Median follow up for all patients, IMRT patients alone, and 3DCRT patients alone was 18.5 (range, 2.5-124.2), 16.5 (range, 3-59), and 25.9 months (range, 2.5-124.2), respectively. We observed no significant difference based on radiation technique (3DCRT vs. IMRT) with respect to median overall survival (OS) (median 29 vs. 32 months; P = 0.74) or median relapse free survival (median 20 vs. 25 months; P = 0.66). On multivariable analysis (MVA), surgical resection resulted in improved OS (HR 0.444; P < 0.0001). Superior OS was also associated on MVA with stage I/II disease (HR 0.523; P = 0.010) and tumor length ≤5 cm (HR 0.567; P = 0.006). IMRT was also associated on univariate analysis with a significant decrease in acute weight loss (mean 6% + 4.3% vs 9% + 7.4%, P = 0.012) and on MVA with a decrease in objective grade ≥3 toxicity, defined as any hospitalization, feeding tube, or >20% weight loss (OR 0.51; P = 0.050). Our data suggest that while IMRT-based chemoradiation for esophageal cancer does not impact survival there was significantly less toxicity. In the IMRT group there was significant decrease in weight loss and grade ≥3 toxicity compared to 3DCRT.

  18. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    SciTech Connect

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-07-15

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.

  19. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-01-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866

  20. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming.

    PubMed

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  1. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    SciTech Connect

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  2. Measurement of intense coherent synchrotron radiation at frequencies around 0.1 THz using the compact S-band linac

    SciTech Connect

    Sei, Norihiro; Kuroda, Ryunosuke; Yasumoto, Masato; Toyokawa, Hiroyuki; Ogawa, Hiroshi; Koike, Masaki; Yamada, Kawakatsu

    2008-12-01

    We measured intense radiation from an electron bunch in a millimeter wave region using the compact S-band linac. The dependence of the radiation on the electron-bunch charge was measured with an rf detector system at frequencies around 0.1 THz and was confirmed to be a coherent synchrotron radiation (CSR). The total power of the horizontally and vertically polarized CSRs, which were extracted through the Z-cut quartz window within 1 ns, was calculated to be about 88 and 30 nJ/pulse, excluding the absorption by the window. The two-dimensional distribution of the vertically polarized CSR was measured at a distance of about 0.7 m from the radiation point. The CSR distribution was comparatively uniform in the horizontal plane. Intense CSR, which was reflected in the vacuum chamber, was extracted with a delay of about 6 ns. This suggests that measurement of temporal structure is needed for CSR applications.

  3. Protective action of low-intensity laser radiation relative to the toxic effect of metals (experimental study in vitro)

    NASA Astrophysics Data System (ADS)

    Dejneka, S. Y.

    1997-12-01

    The study of a possible cytotoxic effect of different doses of low-insensitive laser radiation and protective action of low-intensive laser radiation relative to the toxic effect of metals was carried out by means of the alternative method of investigation in vitro on cell cultura Hela. It was established that the investigated doses of low-intensive laser radiation had not produced any toxic effect on cell culture Hela, so the mentioned doses were not cytotoxic. It was revealed that laser radiation reduced the level of the cytotoxic effect of the studied metal salts on the cell culture, and possessed the protective action against the toxic effect of metals. This action has a clear-cut dose- related character.

  4. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    SciTech Connect

    Tsai, Jen-San; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was

  5. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    SciTech Connect

    Merchant, Thomas E.; Kun, Larry E.; Hua, Chia-Ho; Wu, Shengjie; Xiong, Xiaoping; Sanford, Robert A.; Boop, Frederick A.

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  6. Intensity-modulated radiation therapy: dynamic MLC (DMLC) therapy, multisegment therapy and tomotherapy. An example of QA in DMLC therapy.

    PubMed

    Webb, S

    1998-10-01

    Intensity-modulated radiation therapy will make a quantum leap in tumor control. It is the new radiation therapy for the new millennium. The major methods to achieve IMRT are: 1. dynamic multileaf collimator (DMLC) therapy, 2. multisegment therapy, and 3. tomotherapy. The principles of these 3 techniques are briefly reviewed. Each technique presents unique QA issues which are outlined. As an example this paper will present the results of a recent new study of an important QA concern in DMLC therapy.

  7. Application of neural networks for determining optical parameters of strongly scattering media from the intensity profile of backscattered radiation

    SciTech Connect

    Kotova, S P; Maiorov, I V; Maiorova, A M

    2007-01-31

    We analyse the possibilities of simultaneous measuring three optical parameters of scattering media, namely, the scattering and absorption coefficients and the scattering anisotropy parameter by the intensity profile of backscattered radiation by using the neural network inversion method and the method of adaptive-network-based fuzzy inference system. The measurement errors of the absorption and scattering coefficients and the scattering anisotropy parameter are 20%, 5%, and 10%, respectively. (special issue devoted to multiple radiation scattering in random media)

  8. Oncogenic action of beta, proton, alpha and electron radiation on the rat skin

    SciTech Connect

    Burns, F.J.

    1980-01-01

    Rat skin is being utilized as an empirical model for testing dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light, and polycyclic aromatic hydrocarbons. Molecular lesions in the skin DNA, including, strand breaks and thymine dimers, are being measured and compared to tumor induction. The induction and repair kinetics of molcular lesions are being compared to split dose repair. Modifiers and radiosensitizers are being utilized to test specific aspects of a chromosome breakage theory of radiation oncogenesis.

  9. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    SciTech Connect

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-04-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the {alpha}-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  10. Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation

    SciTech Connect

    Gandhi, V.C.; Ross, D.H.

    1987-01-01

    Microwave radiation produces hyperthermia. The mammalian thermoregulatory system defends against changes in temperature by mobilizing diverse control mechanisms. Neurotransmitters play a major role in eliciting thermoregulatory responses. The involvement of adrenergic and muscarinic cholinergic receptors was investigated in radiation-induced hyperthermia. Rats were subjected to radiation at 700 MHz frequency and 15 mW/cm/sup 2/ power density and the body temperature was raised by 2.5 degrees C. Of six brain regions investigated only the hypothalamus showed significant changes in receptor states, confirming its pivotal role in thermoregulation. Adrenergic receptors, studied by (/sup 3/H)clonidine binding, showed a 36% decrease in binding following radiation after a 2.5 degrees C increase in body temperature, suggesting a mechanism to facilitate norepinephrine release. Norepinephrine may be speculated to maintain thermal homeostasis by activating heat dissipation. Muscarinic cholinergic receptors, studied by (3H)quinuclidinyl benzilate binding, showed a 65% increase in binding at the onset of radiation. This may be attributed to the release of acetylcholine in the hypothalamus in response to heat cumulation. The continued elevated binding during the period of cooling after radiation was shut off may suggest the existence of an extra-hypothalamic heat-loss pathway.

  11. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  12. Isochronal annealing of radiation damage in (alpha)- and (delta)-Pu alloys

    SciTech Connect

    McCall, S K; Fluss, M J; Chung, B W; Haire, R G

    2009-06-22

    Magnetic isochronal annealing curves were measured on specimens of self damaged {alpha}-Pu and several {delta}-Pu alloys stabilized by Ga and Am. These results are compared to one another and to isochronal resistivity annealing curves, where distinct differences are observed between the magnetic and resistive annealing for the case of {delta}-Pu. The first stage of annealing observed in the resistivity measurements is largely missing from the magnetic measurements, indicating that interstitials contribute little if any signal to the magnetization, while the onset of vacancy migration is strongly reflected in the magnetization signal.

  13. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats

    PubMed Central

    Kim, Jin Hyun; Kim, Kyung Mi; Jung, Myeong Hee; Jung, Jung Hwa; Kang, Ki Mun; Jeong, Bae Kwon; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon

    2016-01-01

    Purpose Radiation therapy is a treatment for patients with head and neck (HN) cancer. However, radiation exposure to the HN often induces salivary gland (SG) dysfunction. We investigated the effect of α-lipoic acid (ALA) on radiation-induced SG injury in rats. Results ALA preserved acinoductal integrity and acinar cell secretary function following irradiation. These results are related to the mechanisms by which ALA inhibits oxidative stress by inhibiting gp91 mRNA and 8-OHdG expression and apoptosis of acinar cells and ductal cells by inactivating MAPKs in the early period and expression of inflammation-related factors including NF-κB, IκB-α, and TGF-β1 and fibrosis in late irradiated SG. ALA effects began in the acute phase and persisted for at least 56 days after irradiation. Materials and Methods Rats were assigned to followings: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation. The neck area including the SG was evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were killed at 4, 7, 28, and 56 days after radiation. Conclusions Our results show that ALA could be used to ameliorate radiation-induced SG injury in patients with HN cancer. PMID:27072584

  14. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy.

    PubMed

    Desai, Dharmin; Ramsey, Chester R; Breinig, Marianne; Mahan, Stephen L

    2006-08-01

    Topographic treatment is a radiation therapy delivery technique for fixed-gantry (nonrotational) treatments on a helical tomotherapy system. The intensity-modulated fields are created by moving the treatment couch relative to a fan-beam positioned at fixed gantry angles. The delivered dose distribution is controlled by moving multileaf collimator (MLC) leaves into and out of the fan beam. The purpose of this work was to develop a leaf-sequencing algorithm for creating topographic MLC sequences. Topographic delivery was modeled using the analogy of a water faucet moving over a collection of bottles. The flow rate per unit length of the water from the faucet represented the photon fluence per unit length along the width of the fan beam, the collection of bottles represented the pixels in the treatment planning fluence map, and the volume of water collected in each bottle represented the delivered fluence. The radiation fluence per unit length delivered to the target at a given position is given by the convolution of the intensity distribution per unit length over the width of the beam and the time per unit distance along the direction of travel that an MLC leaf is open. The MLC opening times for the desired dose profiles were determined using a technique based on deconvolution using a genetic algorithm. The MLC opening times were expanded in terms of a Fourier series, and a genetic algorithm was used to find the best expansion coefficients for a given dose distribution. A series of wedge shapes (15, 30, 45, and 60 deg) and "dose well" test fluence maps were created to test the algorithm's ability to generate topographic leaf sequences. The accuracy of the leaf-sequencing algorithm was measured on a helical tomotherapy system using radiographic film placed at depth in water equivalent material. The measured dose profiles were compared with the desired dose distributions. The agreement was within +/- 2% or 2 mm distance-to-agreement (DTA) in the high dose gradient

  15. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy

    SciTech Connect

    Desai, Dharmin; Ramsey, Chester R.; Breinig, Marianne; Mahan, Stephen L.

    2006-08-15

    Topographic treatment is a radiation therapy delivery technique for fixed-gantry (nonrotational) treatments on a helical tomotherapy system. The intensity-modulated fields are created by moving the treatment couch relative to a fan-beam positioned at fixed gantry angles. The delivered dose distribution is controlled by moving multileaf collimator (MLC) leaves into and out of the fan beam. The purpose of this work was to develop a leaf-sequencing algorithm for creating topographic MLC sequences. Topographic delivery was modeled using the analogy of a water faucet moving over a collection of bottles. The flow rate per unit length of the water from the faucet represented the photon fluence per unit length along the width of the fan beam, the collection of bottles represented the pixels in the treatment planning fluence map, and the volume of water collected in each bottle represented the delivered fluence. The radiation fluence per unit length delivered to the target at a given position is given by the convolution of the intensity distribution per unit length over the width of the beam and the time per unit distance along the direction of travel that an MLC leaf is open. The MLC opening times for the desired dose profiles were determined using a technique based on deconvolution using a genetic algorithm. The MLC opening times were expanded in terms of a Fourier series, and a genetic algorithm was used to find the best expansion coefficients for a given dose distribution. A series of wedge shapes (15, 30, 45, and 60 deg) and 'dose well' test fluence maps were created to test the algorithm's ability to generate topographic leaf sequences. The accuracy of the leaf-sequencing algorithm was measured on a helical tomotherapy system using radiographic film placed at depth in water equivalent material. The measured dose profiles were compared with the desired dose distributions. The agreement was within {+-}2% or 2 mm distance-to-agreement (DTA) in the high dose gradient

  16. Ototoxicity After Intensity-Modulated Radiation Therapy and Cisplatin-Based Chemotherapy in Children With Medulloblastoma

    SciTech Connect

    Paulino, Arnold C.; Lobo, Mark; Teh, Bin S.; Okcu, M. Fatih; South, Michael; Butler, E. Brian; Su, Jack; Chintagumpala, Murali

    2010-12-01

    Purpose: To report the incidence of Pediatric Oncology Group (POG) Grade 3 or 4 ototoxicity in a cohort of patients treated with craniospinal irradiation (CSI) followed by posterior fossa (PF) and/or tumor bed (TB) boost using intensity-modulated radiation therapy (IMRT). Methods and Materials: From 1998 to 2006, 44 patients with medulloblastoma were treated with CSI followed by IMRT to the PF and/or TB and cisplatin-based chemotherapy. Patients with standard-risk disease were treated with 18 to 23.4 Gy CSI followed by either a (1) PF boost to 36 Gy and TB boost to 54 to 55.8 Gy or (2) TB boost to 55.8 Gy. Patients with high-risk disease received 36 to 39.6 Gy CSI followed by a (1) PF boost to 54 to 55.8 Gy, (2) PF boost to 45 Gy and TB boost to 55.8 Gy, or (3) TB boost to 55.8 Gy. Median audiogram follow-up was 41 months (range, 11-92.4 months). Results: POG Grade Ototoxicity 0, 1, 2, 3. and 4 was found in 29, 32, 11, 13. and 3 ears. respectively, with POG Grade 3 or 4 accounting for 18.2% of cases. There was a statistically significant difference in mean radiation dose (D{sub mean}) cochlea according to degree of ototoxicity, with D{sub mean} cochlea increasing with severity of hearing loss (p = 0.027). Conclusions: Severe ototoxicity was seen in 18.2% of ears in children treated with IMRT boost and cisplatin-based chemotherapy. Increasing dose to the cochlea was associated with increasing severity of hearing loss.

  17. Utility of Smart Arc CDR for intensity-modulated radiation therapy for prostate cancer.

    PubMed

    Hatanaka, Shogo; Tamaki, Seiichi; Endo, Haruna; Mizuno, Norifumi; Nakamura, Naoki

    2014-07-01

    Volumetric-modulated arc therapy (VMAT) is a widespread intensity-modulated radiation therapy (IMRT) method, however, VMAT requires adaptation of the radiation treatment planning system (RTPS) and linear accelerator (linac); these upgrades are quite expensive. The Smart Arc of Pinnacle(3) (Philips), which is the software used in VMAT calculations, can select constant dose rate (CDR) mode. This approach has a low initial cost because the linac upgrade is not required. The objective of this study was to clarify the utility of CDR mode for prostate IMRT. Pinnacle(3) and Clinac 21EX linac (Varian, 10 MV X-rays) were used for planning. The plans were created for 28 patients using a fixed multi-field IMRT (f-IMRT), VMAT and CDR techniques. The dose distribution results were classified into three groups: optimal, suboptimal and reject. For the f-IMRT, VMAT and CDR results, 25, 26 and 21 patients were classified as 'optimal', respectively. Our results show a significant reduction in the achievement rate of 'optimal' for a CDR when the bladder volume is <100 cm(3). The total numbers of monitoring units (MUs) (average ± 1σ) were 469 ± 53, 357 ± 35 and 365 ± 33; the average optimization times were ∼50 min, 2 h and 2 h 40 min, and the irradiation times were ∼280 s, 60 s and 110 s, respectively. CDR can reduce the total MUs and irradiation time compared with f-IMRT, and CDR has a lower initial cost compared with VMAT. Thus, for institutions that do not currently perform VMAT, CDR is a useful option. Additionally, in the context of patient identification, bladder volume may be useful.

  18. Vaginal Motion and Bladder and Rectal Volumes During Pelvic Intensity-Modulated Radiation Therapy After Hysterectomy

    SciTech Connect

    Jhingran, Anuja; Salehpour, Mohammad; Sam, Marianne; Levy, Larry; Eifel, Patricia J.

    2012-01-01

    Purpose: To evaluate variations in bladder and rectal volume and the position of the vaginal vault during a 5-week course of pelvic intensity-modulated radiation therapy (IMRT) after hysterectomy. Methods and Materials: Twenty-four patients were instructed how to fill their bladders before simulation and treatment. These patients underwent computed tomography simulations with full and empty bladders and then underwent rescanning twice weekly during IMRT; patients were asked to have full bladder for treatment. Bladder and rectal volumes and the positions of vaginal fiducial markers were determined, and changes in volume and position were calculated. Results: The mean full and empty bladder volumes at simulation were 480 cc (range, 122-1,052) and 155 cc (range, 49-371), respectively. Bladder volumes varied widely during IMRT: the median difference between the maximum and minimum volumes was 247 cc (range, 96-585). Variations in rectal volume during IMRT were less pronounced. For the 16 patients with vaginal fiducial markers in place throughout IMRT, the median maximum movement of the markers during IMRT was 0.59 cm in the right-left direction (range, 0-0.9), 1.46 cm in the anterior-posterior direction (range, 0.8-2.79), and 1.2 cm in the superior-inferior direction (range, 0.6-2.1). Large variations in rectal or bladder volume frequently correlated with significant displacement of the vaginal apex. Conclusion: Although treatment with a full bladder is usually preferred because of greater sparing of small bowel, our data demonstrate that even with detailed instruction, patients are unable to maintain consistent bladder filling. Variations in organ position during IMRT can result in marked changes in the position of the target volume and the volume of small bowel exposed to high doses of radiation.

  19. Hypofractionated Dose-Painting Intensity Modulated Radiation Therapy With Chemotherapy for Nasopharyngeal Carcinoma: A Prospective Trial

    SciTech Connect

    Bakst, Richard L.; Lee, Nancy; Pfister, David G.; Zelefsky, Michael J.; Hunt, Margie A.; Kraus, Dennis H.; Wolden, Suzanne L.

    2011-05-01

    Purpose: To evaluate the feasibility of dose-painting intensity-modulated radiation therapy (DP-IMRT) with a hypofractionated regimen to treat nasopharyngeal carcinoma (NPC) with concomitant toxicity reduction. Methods and Materials: From October 2002 through April 2007, 25 newly diagnosed NPC patients were enrolled in a prospective trial. DP-IMRT was prescribed to deliver 70.2 Gy using 2.34-Gy fractions to the gross tumor volume for the primary and nodal sites while simultaneously delivering 54 Gy in 1.8-Gy fractions to regions at risk of microscopic disease. Patients received concurrent and adjuvant platin-based chemotherapy similar to the Intergroup 0099 trial. Results: Patient and disease characteristics are as follows: median age, 46; 44% Asian; 68% male; 76% World Health Organization III; 20% T1, 52% T2, 16% T3, 12% T4; 20% N0, 36% N1, 36% N2, 8% N3. With median follow-up of 33 months, 3-year local control was 91%, regional control was 91%, freedom from distant metastases was 91%, and overall survival was 89%. The average mean dose to each cochlea was 43 Gy. With median audiogram follow-up of 14 months, only one patient had clinically significant (Grade 3) hearing loss. Twelve percent of patients developed temporal lobe necrosis; one patient required surgical resection. Conclusions: Preliminary findings using a hypofractionated DP-IMRT regimen demonstrated that local control, freedom from distant metastases, and overall survival compared favorably with other series of IMRT and chemotherapy. The highly conformal boost to the tumor bed resulted low rates of severe ototoxicity (Grade 3-4). However, the incidence of in-field brain radiation necrosis indicates that 2.34 Gy per fraction is not safe in this setting.

  20. Intensity-Modulated Radiation Therapy for Anal Malignancies: A Preliminary Toxicity and Disease Outcomes Analysis

    SciTech Connect

    Pepek, Joseph M.; Willett, Christopher G.; Wu, Q. Jackie; Yoo, Sua; Clough, Robert W.; Czito, Brian G.

    2010-12-01

    Purpose: Intensity-modulated radiation therapy (IMRT) has the potential to reduce toxicities associated with chemoradiotherapy in the treatment of anal cancer. This study reports the results of using IMRT in the treatment of anal cancer. Methods and Materials: Records of patients with anal malignancies treated with IMRT at Duke University were reviewed. Acute toxicity was graded using the NCI CTCAEv3.0 scale. Overall survival (OS), metastasis-free survival (MFS), local-regional control (LRC) and colostomy-free survival (CFS) were calculated using the Kaplan-Meier method. Results: Forty-seven patients with anal malignancy (89% canal, 11% perianal skin) were treated with IMRT between August 2006 and September 2008. Median follow-up was 14 months (19 months for SCC patients). Median radiation dose was 54 Gy. Eight patients (18%) required treatment breaks lasting a median of 5 days (range, 2-7 days). Toxicity rates were as follows: Grade 4: leukopenia (7%), thrombocytopenia (2%); Grade 3: leukopenia (18%), diarrhea (9%), and anemia (4%); Grade 2: skin (93%), diarrhea (24%), and leukopenia (24%). The 2-year actuarial overall OS, MFS, LRC, and CFS rates were 85%, 78%, 90% and 82%, respectively. For SCC patients, the 2-year OS, MFS, LRC, and CFS rates were 100%, 100%, 95%, and 91%, respectively. Conclusions: IMRT-based chemoradiotherapy for anal cancer results in significant reductions in normal tissue dose and acute toxicities versus historic controls treated without IMRT, leading to reduced rates of toxicity-related treatment interruption. Early disease-related outcomes seem encouraging. IMRT is emerging as a standard therapy for anal cancer.

  1. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    SciTech Connect

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-05-15

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique.

  2. Disease-control rates following intensity-modulated radiation therapy for small primary oropharyngeal carcinoma

    SciTech Connect

    Garden, Adam S. . E-mail: agarden@mdanderson.org; Morrison, William H.; Wong, P.-F.; Tung, Sam S.; Rosenthal, David I.; Dong Lei; Mason, Brian M.S.; Perkins, George H.; Ang, K. Kian

    2007-02-01

    Background: The purpose of this study was to assess the ability of intensity-modulated radiation therapy (IMRT) to achieve favorable disease-control rates while minimizing parotid gland doses in patients treated for small primary tumors of the oropharynx. Methods and Materials: We retrospectively identified all patients who received IMRT as treatment for a small (<4 cm) primary tumor of the oropharynx between October 2000 and June 2002. Tumor characteristics, IMRT parameters, and patient outcomes were assessed. Results: Fifty-one patients met the criteria for our study. All patients had treatment to gross disease with margin (CTV1), and all but 1 had treatment to the bilateral necks. The most common treatment schedule (39 patients) was a once-daily fractionation of prescribed doses of 63-66 Gy to the CTV1 and 54 Gy to subclinical sites, delivered in 30 fractions. Twenty-one patients (40%) had gastrostomy tubes placed during therapy; in 4 patients, the tube remained in place for more than 6 months after completion of IMRT. The median follow-up was 45 months. The 2-year actuarial locoregional control, recurrence-free, and overall survival rates were 94%, 88%, and 94%, respectively. Conclusions: These preliminary data suggest that treatment with IMRT results in favorable locoregional control of small primary oropharynx tumors. IMRT did not appear to have a more favorable acute toxicity profile in this group with respect to the use of a feeding tube; however, the mean dose of radiation delivered to the parotid gland by IMRT was decreased, because 95% of patients had a mean dose of <30 Gy to at least one gland.

  3. Intensity-Modulated Radiation Therapy Significantly Improves Acute Gastrointestinal Toxicity in Pancreatic and Ampullary Cancers

    SciTech Connect

    Yovino, Susannah; Poppe, Matthew; Jabbour, Salma; David, Vera; Garofalo, Michael; Pandya, Naimesh; Alexander, Richard; Hanna, Nader; Regine, William F.

    2011-01-01

    Purpose: Among patients with upper abdominal malignancies, intensity-modulated radiation therapy (IMRT) can improve dose distributions to critical dose-limiting structures near the target. Whether these improved dose distributions are associated with decreased toxicity when compared with conventional three-dimensional treatment remains a subject of investigation. Methods and Materials: 46 patients with pancreatic/ampullary cancer were treated with concurrent chemoradiation (CRT) using inverse-planned IMRT. All patients received CRT based on 5-fluorouracil in a schema similar to Radiation Therapy Oncology Group (RTOG) 97-04. Rates of acute gastrointestinal (GI) toxicity for this series of IMRT-treated patients were compared with those from RTOG 97-04, where all patients were treated with three-dimensional conformal techniques. Chi-square analysis was used to determine if there was a statistically different incidence in acute GI toxicity between these two groups of patients. Results: The overall incidence of Grade 3-4 acute GI toxicity was low in patients receiving IMRT-based CRT. When compared with patients who had three-dimensional treatment planning (RTOG 97-04), IMRT significantly reduced the incidence of Grade 3-4 nausea and vomiting (0% vs. 11%, p = 0.024) and diarrhea (3% vs. 18%, p = 0.017). There was no significant difference in the incidence of Grade 3-4 weight loss between the two groups of patients. Conclusions: IMRT is associated with a statistically significant decrease in acute upper and lower GI toxicity among patients treated with CRT for pancreatic/ampullary cancers. Future clinical trials plan to incorporate the use of IMRT, given that it remains a subject of active investigation.

  4. Intensity modulated radiation therapy or stereotactic fractionated radiotherapy for infratentorial ependymoma in children: a multicentric study.

    PubMed

    Weber, Damien C; Zilli, Thomas; Do, Hans Peter; Nouet, Philippe; Gumy Pause, Fabienne; Pause, Fabienne Gumy; Pica, Alessia

    2011-04-01

    This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.

  5. Adoption of Intensity Modulated Radiation Therapy For Early-Stage Breast Cancer From 2004 Through 2011

    SciTech Connect

    Wang, Elyn H.; Mougalian, Sarah S.; Soulos, Pamela R.; Smith, Benjamin D.; Haffty, Bruce G.; Gross, Cary P.; Yu, James B.

    2015-02-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a newer method of radiation therapy (RT) that has been increasingly adopted as an adjuvant treatment after breast-conserving surgery (BCS). IMRT may result in improved cosmesis compared to standard RT, although at greater expense. To investigate the adoption of IMRT, we examined trends and factors associated with IMRT in women under the age of 65 with early stage breast cancer. Methods and Materials: We performed a retrospective study of early stage breast cancer patients treated with BCS followed by whole-breast irradiation (WBI) who were ≤65 years old in the National Cancer Data Base from 2004 to 2011. We used logistic regression to identify factors associated with receipt of IMRT (vs standard RT). Results: We identified 11,089 women with early breast cancer (9.6%) who were treated with IMRT and 104,448 (90.4%) who were treated with standard RT, after BCS. The proportion of WBI patients receiving IMRT increased yearly from 2004 to 2009, with 5.3% of WBI patients receiving IMRT in 2004 and 11.6% receiving IMRT in 2009. Further use of IMRT declined afterward, with the proportion remaining steady at 11.0% and 10.7% in 2010 and 2011, respectively. Patients treated in nonacademic community centers were more likely to receive IMRT (odds ratio [OR], 1.36; 95% confidence interval [CI], 1.30-1.43 for nonacademic vs academic center). Compared to privately insured patients, the uninsured patients (OR, 0.81; 95% CI, 0.70-0.95) and those with Medicaid insurance (OR, 0.87; 95% CI, 0.79-0.95) were less likely to receive IMRT. Conclusions: The use of IMRT rose from 2004 to 2009 and then stabilized. Important nonclinical factors associated with IMRT use included facility type and insurance status.

  6. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    SciTech Connect

    Kwint, Margriet; Uyterlinde, Wilma; Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob; Heuvel, Michel van den; Knegjens, Joost; Herk, Marcel van; Belderbos, Jose

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  7. Intensity modulated radiation-therapy for preoperative posterior abdominal wall irradiation of retroperitoneal liposarcomas

    SciTech Connect

    Bossi, Alberto . E-mail: alberto.bossi@uz.kuleuven.ac.be; De Wever, Ivo; Van Limbergen, Erik; Vanstraelen, Bianca

    2007-01-01

    Purpose: Preoperative external-beam radiation therapy (preop RT) in the management of Retroperitoneal Liposarcomas (RPLS) typically involves the delivery of radiation to the entire tumor mass: yet this may not be necessary. The purpose of this study is to evaluate a new strategy of preop RT for RPLS in which the target volume is limited to the contact area between the tumoral mass and the posterior abdominal wall. Methods and Materials: Between June 2000 and Jan 2005, 18 patients with the diagnosis of RPLS have been treated following a pilot protocol of pre-op RT, 50 Gy in 25 fractions of 2 Gy/day. The Clinical Target Volume (CTV) has been limited to the posterior abdominal wall, region at higher risk for local relapse. A Three-Dimensional conformal (3D-CRT) and an Intensity Modulated (IMRT) plan were generated and compared; toxicity was reported following the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events v3.0. Results: All patients completed the planned treatment and the acute toxicity was tolerable: 2 patients experienced Grade 3 and 1 Grade 2 anorexia while 2 patients developed Grade 2 nausea. IMRT allows a better sparing of the ipsilateral and the contralateral kidney. All tumors were successfully resected without major complications. At a median follow-up of 27 months 2 patients developed a local relapse and 1 lung metastasis. Conclusions: Our strategy of preop RT is feasible and well tolerated: the rate of resectability is not compromised by limiting the preop CTV to the posterior abdominal wall and a better critical-structures sparing is obtained with IMRT.

  8. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  9. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories. PMID:26133876

  10. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  11. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  12. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  13. Tissue distribution and radiation dosimetry of astatine-211-labeled chimeric 81C6, an alpha-particle-emitting immunoconjugate.

    PubMed

    Zalutsky, M R; Stabin, M G; Larsen, R H; Bigner, D D

    1997-04-01

    A paired-label study was performed in athymic mice bearing subcutaneous D-54 MG human glioma xenografts to compare the localization of human/mouse anti-tenascin chimeric antibody 81C6 labeled by reaction with N-succinimidyl 3-[211At]astatobenzoate and N-succinimidyl 3-[131I]iodobenzoate. Over the 48-h observation period, the distribution of 211At- and 131I-labeled antibody were quite similar in tumor and normal tissues except stomach. These data were used to calculate human radiation doses for both intravenously and intrathecal administered 211At-labeled chimeric 81C6 using a quality factor of 5 for alpha-emissions.

  14. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    SciTech Connect

    Vaezzadeh, Seyedali; Allahverdi, Mahmoud; Nedaie, Hasan A.; Ay, Mohammadreza; Shirazi, Alireza; Yarahmadi, Mehran

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  15. Whole Abdominopelvic Intensity-Modulated Radiation Therapy for Desmoplastic Small Round Cell Tumor After Surgery

    SciTech Connect

    Pinnix, Chelsea C.; Fontanilla, Hiral P.; Hayes-Jordan, Andrea; Subbiah, Vivek; Bilton, Stephen D.; Chang, Eric L.; Grosshans, David R.; McAleer, Mary F.; Sulman, Eric P.; Woo, Shiao Y.; Anderson, Peter; Green, Holly L.; Mahajan, Anita

    2012-05-01

    Purpose: Desmoplastic small round cell tumor (DSCRT) is an uncommon pediatric tumor with a poor prognosis. Aggressive multimodality therapy is the current treatment approach; however. treatment toxicity is of concern. We report our results with whole abdominopelvic intensity-modulated radiation therapy (WAP-IMRT) as a component of multimodality therapy for DSCRT at a single institution. Materials/Methods: Medical records of all patients with DSCRT who received WAP-IMRT as part of definitive treatment at MD Anderson (2006-2010) were identified and reviewed. Results: Eight patients with DSRCT received WAP-IMRT with a median follow-up of 15.2 months. All patients received multiple courses of chemotherapy followed by surgical debulking of intra-abdominal disease; seven also had intraoperative hyperthermic cisplatin. WAP-IMRT was delivered to a total dose of 30 Gy postoperatively; four patients received a simultaneous boost (6-10 Gy) to sites of gross residual disease. Seven patients received concurrent chemotherapy during WAP-IMRT. No Radiation Therapy Oncology Group Grade 4 nausea, vomiting, or diarrhea occurred during RT. Red-cell transfusions were given to two patients to maintain hemoglobin levels >10 g/dL. Grade 4 cytopenia requiring growth factor support occurred in only one patient; no other significant cytopenias were noted. WAP-IMRT resulted in 25% lower radiation doses to the lumbosacral vertebral bodies and pelvic bones than conventional RT plans. The median time to local or distant failure after WAP-IMRT was 8.73 months in seven patients. One patient who had completed RT 20 months before the last follow-up remains alive without evidence of disease. Five patients (63%) experienced treatment failure in the abdomen. Distant failure occurred in three patients (37.5%). Conclusions: WAP-IMRT with concurrent radiosensitizing chemotherapy was well tolerated after aggressive surgery for DSCRT. Enhanced bone sparing with IMRT probably accounts for the low hematologic

  16. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans

    SciTech Connect

    Du, Weiliang Cho, Sang Hyun; Zhang, Xiaodong; Kudchadker, Rajat J.; Hoffman, Karen E.

    2014-02-15

    Purpose: Excessive complexity in intensity-modulated radiation therapy (IMRT) plans increases the dose uncertainty, prolongs the treatment time, and increases the susceptibility to changes in patient or target geometry. To date, the tools for quantitative assessment of IMRT beam complexity are still lacking. In this study, The authors have sought to develop metrics to characterize different aspects of beam complexity and investigate the beam complexity for IMRT plans of different disease sites. Methods: The authors evaluated the beam complexity scores for 65 step-and-shoot IMRT plans from three sites (prostate, head and neck, and spine) and 26 volumetric-modulated arc therapy (VMAT) plans for the prostate. On the basis of the beam apertures and monitor unit weights of all segments, the authors calculated the mean aperture area, extent of aperture shape irregularity, and degree of beam modulation for each beam. Then the beam complexity values were averaged to obtain the complexity metrics of the IMRT plans. The authors studied the correlation between the beam complexity metrics and the quality assurance (QA) results. Finally, the effects of treatment planning parameters on beam complexity were studied. Results: The beam complexity scores were not uniform among the prostate IMRT beams from different gantry angles. The lateral beams had larger monitor units and smaller shape irregularity, while the anterior-posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest aperture irregularity, beam modulation, and normalized monitor units; the head and neck IMRT plans had large beam irregularity and beam modulation; and the spine stereotactic radiation therapy plans often had small beam apertures, which may have been associated with the relatively large discrepancies between planned and QA measured doses. There were weak correlations between the beam complexity scores and the measured dose errors. The prostate VMAT beams showed

  17. Cumulative radiation exposure from diagnostic imaging in intensive care unit patients

    PubMed Central

    Moloney, Fiachra; Fama, Daniel; Twomey, Maria; O’Leary, Ruth; Houlihane, Conor; Murphy, Kevin P; O’Neill, Siobhan B; O’Connor, Owen J; Breen, Dorothy; Maher, Michael M

    2016-01-01

    AIM: To quantify cumulative effective dose of intensive care unit (ICU) patients attributable to diagnostic imaging. METHODS: This was a prospective, interdisciplinary study conducted in the ICU of a large tertiary referral and level 1 trauma center. Demographic and clinical data including age, gender, date of ICU admission, primary reason for ICU admission, APACHE II score, length of stay, number of days intubated, date of death or discharge, and re-admission data was collected on all patients admitted over a 1-year period. The overall radiation exposure was quantified by the cumulative effective radiation dose (CED) in millisieverts (mSv) and calculated using reference effective doses published by the United Kingdom National Radiation Protection Board. Pediatric patients were selected for subgroup-analysis. RESULTS: A total of 2737 studies were performed in 421 patients. The total CED was 1704 mSv with a median CED of 1.5 mSv (IQR 0.04-6.6 mSv). Total CED in pediatric patients was 74.6 mSv with a median CED of 0.07 mSv (IQR 0.01-4.7 mSv). Chest radiography was the most commonly performed examination accounting for 83% of all studies but only 2.7% of total CED. Computed tomography (CT) accounted for 16% of all studies performed and contributed 97% of total CED. Trauma patients received a statistically significant higher dose [median CED 7.7 mSv (IQR 3.5-13.8 mSv)] than medical [median CED 1.4 mSv (IQR 0.05-5.4 mSv)] and surgical [median CED 1.6 mSv (IQR 0.04-7.5 mSv)] patients. Length of stay in ICU [OR = 1.12 (95%CI: 1.079-1.157)] was identified as an independent predictor of receiving a CED greater than 15 mSv. CONCLUSION: Trauma patients and patients with extended ICU admission times are at increased risk of higher CEDs. CED should be minimized where feasible, especially in young patients. PMID:27158429

  18. Plasminogen activator inhibitor-I-related regulation of procollagen I ({alpha}{sub 1} and {alpha}{sub 2}) by antitransforming growth factor-{beta}{sub 1} treatment during radiation-impaired wound healing

    SciTech Connect

    Schultze-Mosgau, Stefan; Thorwarth, Michael; Roedel, Franz; Melnychenko, Ivan; Grabenbauer, Gerhard G.; Amann, Kerstin; Wehrhan, Falk

    2006-01-01

    Purpose: Plasminogen activator inhibitor (PAI)-1 mediates transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1})-related signaling by stimulating collagen Type I synthesis in radiation-impaired wound healing. The regulation of {alpha}(I)-procollagen is contradictory in fibroblasts of different fibrotic lesions. It is not known whether anti-TGF-{beta}{sub 1} treatment specifically inhibits {alpha}(I)-procollagen synthesis. We used an experimental wound healing study to address anti-TGF-{beta}{sub 1}-associated influence on {alpha}(I)-procollagen synthesis. Methods and Materials: A free flap was transplanted into the preirradiated (40 Gy) or nonirradiated neck region of Wistar rats: Group 1 (n = 8) surgery alone; Group 2 (n = 14) irradiation and surgery; Group 3 (n = 8) irradiation and surgery and anti-TGF-{beta}{sub 1} treatment. On the 14th postoperative day, skin samples were processed for fibroblast culture, in situ hybridization for TGF-{beta}{sub 1}, immunohistochemistry, and immunoblotting for PAI-1, {alpha}{sub 1}/{alpha}{sub 2}(I)-procollagen. Results: Anti-TGF-{beta}{sub 1} significantly reduced TGF-{beta}{sub 1} mRNA (p < 0.05) and PAI-1 expression (p < 0.05). Anti-TGF-{beta}{sub 1} treatment in vivo significantly reduced {alpha}{sub 1}(I)-procollagen protein (p < 0.05) and the number of expressing cells (p < 0.05) in contrast to significantly increased (p < 0.05) {alpha}{sub 2}(I)-procollagen expression. Conclusion: These results emphasize anti-TGF-{beta}{sub 1} treatment to reduce radiation-induced fibrosis by decreasing {alpha}{sub 1}(I)-procollagen synthesis in vivo. {alpha}{sub 1}(I)-procollagen and {alpha}{sub 2}(I)-procollagen might be differentially regulated by anti-TGF-{beta}{sub 1} treatment. Increased TGF-{beta} signaling in irradiated skin fibroblasts seemed to be reversible, as shown by a reduction in PAI-1 expression after anti-TGF-{beta}{sub 1} treatment.

  19. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    PubMed

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-01

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation

  20. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-01

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 106 particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 105 particles per beamlet. Correspondingly, the computation time

  1. Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study

    NASA Astrophysics Data System (ADS)

    Akbas, Ugur; Okutan, Murat; Demir, Bayram; Koksal, Canan

    2015-07-01

    Dosimetry of the Intensity Modulated Radiation Therapy (IMRT) is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.

  2. Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses

    SciTech Connect

    Daly, Megan E.; Chen, Allen M. . E-mail: allenmchen@yahoo.com; Bucci, M. Kara; El-Sayed, Ivan; Xia Ping; Kaplan, Michael J.; Eisele, David W.

    2007-01-01

    Purpose: To report the clinical outcome of patients treated with intensity-modulated radiation therapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 1998 and 2004, 36 patients with malignancies of the sinonasal region were treated with IMRT. Thirty-two patients (89%) were treated in the postoperative setting after gross total resection. Treatment plans were designed to provide a dose of 70 Gy to 95% or more of the gross tumor volume (GTV) and 60 Gy to 95% or more of the clinical tumor volume (CTV) while sparing neighboring critical structures including the optic chiasm, optic nerves, eyes, and brainstem. The primary sites were: 13 ethmoid sinus, 10 maxillary sinus, 7 nasal cavity, and 6 other. Histology was: 12 squamous cell, 7 esthesioneuroblastoma, 5 adenoid cystic, 5 undifferentiated, 5 adenocarcinoma, and 2 other. Median follow-up was 51 months among surviving patients (range, 9-82 months). Results: The 2-year and 5-year estimates of local control were 62% and 58%, respectively. One patient developed isolated distant metastasis, and none developed isolated regional failure. The 5-year rates of disease-free and overall survival were 55% and 45%, respectively. The incidence of ocular toxicity was minimal with no patients reporting decreased vision. Late complications included xerophthalmia (1 patient), lacrimal stenosis (1 patient), and cataract (1 patient). Conclusion: Although IMRT for malignancies of the sinonasal region does not appear to lead to significant improvements in disease control, the low incidence of complications is encouraging.

  3. The Accuracy of Inhomogeneity Corrections in Intensity Modulated Radiation Therapy Planning in Philips Pinnacle System

    SciTech Connect

    Alaei, Parham; Higgins, Patrick D.

    2011-10-01

    The degree of accuracy of inhomogeneity corrections in a treatment planning system is dependent on the algorithm used by the system. The choice of field size, however, could have an effect on the calculation accuracy as well. There have been several evaluation studies on the accuracy of inhomogeneity corrections used by different algorithms. Most of these studies, however, focus on evaluating the dose in phantom using simplified geometry and open/static fields. This work focuses on evaluating the degree of dose accuracy in calculations involving intensity-modulated radiation therapy (IMRT) fields incident on a phantom containing both lung- and bone-equivalent heterogeneities using 6 and 10 MV beams. IMRT treatment plans were generated using the Philips Pinnacle treatment planning system and delivered to a phantom containing 55 thermoluminescent dosimeter (TLD) locations within the lung and bone and near the lung and bone interfaces with solid water. The TLD readings were compared with the dose predicted by the planning system. We find satisfactory agreement between planned and delivered doses, with an overall absolute average difference between measurement and calculation of 1.2% for the 6 MV and 3.1% for the 10 MV beam with larger variations observed near the interfaces and in areas of high-dose gradient. The results presented here demonstrate that the convolution algorithm used in the Pinnacle treatment planning system produces accurate results in IMRT plans calculated and delivered to inhomogeneous media, even in regions that potentially lack electronic equilibrium.

  4. Meningioma Causing Visual Impairment: Outcomes and Toxicity After Intensity Modulated Radiation Therapy

    SciTech Connect

    Maclean, Jillian; Fersht, Naomi; Bremner, Fion; Stacey, Chris; Sivabalasingham, Suganya; Short, Susan

    2013-03-15

    Purpose: To evaluate ophthalmologic outcomes and toxicity of intensity modulated radiation therapy (IMRT) in patients with meningiomas causing visual deficits. Methods and Materials: A prospective observational study with formal ophthalmologic and clinical assessment of 30 consecutive cases of meningioma affecting vision treated with IMRT from 2007 to 2011. Prescriptions were 50.4 Gy to mean target dose in 28 daily fractions. The median follow-up time was 28 months. Twenty-six meningiomas affected the anterior visual pathway (including 3 optic nerve sheath meningiomas); 4 were posterior to the chiasm. Results: Vision improved objectively in 12 patients (40%). Improvements were in visual field (5/16 patients), color vision (4/9 patients), acuity (1/15 patients), extraocular movements (3/11 patients), ptosis (1/5 patients), and proptosis (2/6 patients). No predictors of clinical response were found. Two patients had minor reductions in tumor dimensions on magnetic resonance imaging, 1 patient had radiological progression, and the other patients were stable. One patient experienced grade 2 keratitis, 1 patient had a minor visual field loss, and 5 patients had grade 1 dry eye. Conclusion: IMRT is an effective method for treating meningiomas causing ophthalmologic deficits, and toxicity is minimal. Thorough ophthalmologic assessment is important because clinical responses often occur in the absence of radiological change.

  5. Risk of secondary cancers from scattered radiation during intensity-modulated radiotherapies for hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Purpose To evaluate and compare the risks of secondary cancers from therapeutic doses received by patients with hepatocellular carcinoma (HCC) during intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT), and tomotherapy (TOMO). Methods Treatments for five patients with hepatocellular carcinoma (HCC) were planned using IMRT, VMAT, and TOMO. Based on the Biological Effects of Ionizing Radiation VII method, the excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) were evaluated from therapeutic doses, which were measured using radiophotoluminescence glass dosimeters (RPLGDs) for each organ inside a humanoid phantom. Results The average organ equivalent doses (OEDs) of 5 patients were measured as 0.23, 1.18, 0.91, 0.95, 0.97, 0.24, and 0.20 Gy for the thyroid, lung, stomach, liver, small intestine, prostate (or ovary), and rectum, respectively. From the OED measurements, LAR incidence were calculated as 83, 46, 22, 30, 2 and 6 per 104 person for the lung, stomach, normal liver, small intestine, prostate (or ovary), and rectum. Conclusions We estimated the secondary cancer risks at various organs for patients with HCC who received different treatment modalities. We found that HCC treatment is associated with a high secondary cancer risk in the lung and stomach. PMID:24886163

  6. Organisational standards for the delivery of intensity-modulated radiation therapy in Ontario.

    PubMed

    Whitton, A; Warde, P; Sharpe, M; Oliver, T K; Bak, K; Leszczynski, K; Etheridge, S; Fleming, K; Gutierrez, E; Favell, L; Green, E

    2009-04-01

    By minimising the effect of irradiation on surrounding tissue, intensity-modulated radiation therapy (IMRT) can deliver higher, more effective doses to the targeted tumour site, minimising treatment-related morbidity and possibly improving cancer control and cure. A multidisciplinary IMRT Expert Panel was convened to develop the organisational standards for the delivery of IMRT. The systematic literature search used MEDLINE, EMBASE, the Cochrane Database, the National Guidelines Clearing House and the Health Technology Assessment Database. An environmental scan of unpublished literature used the Google search engine to review the websites of key organisations, cancer agencies/centres and vendor sites in Canada, the USA, Australia and Europe. In total, 22 relevant guidance documents were identified; 12 from the published literature and 10 from the environmental scan. Professional and organisational standards for the provision of IMRT were developed through the analysis of this evidence and the consensus opinion of the IMRT Expert Panel. The resulting standards address the following domains: planning of new IMRT programmes, practice setting requirements, tools, devices and equipment requirements; professional training requirements; role of personnel; and requirements for quality assurance and safety. Here the IMRT Expert Panel offers organisational and professional standards for the delivery of IMRT, with the intent of promoting innovation, improving access and enhancing patient care.

  7. Physical basis of adverse and therapeutic effects of low intensity microwave radiation.

    PubMed

    Hyland, G J

    2008-05-01

    A physical basis of adverse and therapeutic effects of low intensity microwave radiation is presented based on the concept of oscillatory similitude between the frequency of an external microwave field (together with any lower frequency modulations thereof) and those of certain endogenous dipolar coherent excitations allied to aliveness, which play the role of 'tuned circuits' via which a living organism is electromagnetically sensitised in a non-linear way to external fields too weak to be able to cause heating. From this perspective, an external electromagnetic field affects a living system not as a toxin but rather by perturbing its endogenous electromagnetic activity. The possibility of adverse perturbation is illustrated by reference to the microwave fields used in mobile telecommunications whose signals interfere in a non-thermal way with biofunctionality--in particular, undermining the efficacy of processes that would otherwise afford natural protection against the development of pathology. Therapeutic modalities of microwave exposure, on the other hand, are illustrated using the example of microwave resonance therapy--which can be considered as an electromagnetic version of acupuncture, and as an example of 'quantum medicine'--whose normalising effect on a wide range of pathologies is striking, and which affords a novel alternative to conventional pharmacological interventions.

  8. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.

  9. Dosimetric evaluations of the interplay effect in respiratory-gated intensity-modulated radiation therapy

    SciTech Connect

    Chen Hungcheng; Wu, Andrew; Brandner, Edward D.; Heron, Dwight E.; Huq, M. Saiful; Yue, Ning J.; Chen Wencheng

    2009-03-15

    The interplay between a mobile target and a dynamic multileaf collimator can compromise the accuracy of intensity-modulated radiation therapy (IMRT). Our goal in this study is to investigate the dosimetric effects caused by the respiratory motion during IMRT. A moving phantom was built to simulate the typical breathing motion. Different sizes of the gating windows were selected for gated deliveries. The residual motions during the beam-on period ranged from 0.5 to 3 cm. An IMRT plan with five treatment fields from different gantry angles were delivered to the moving phantom for three irradiation conditions: Stationary condition, moving with the use of gating system, and moving without the use of gating system. When the residual motion was 3 cm, the results showed significant differences in dose distributions between the stationary condition and the moving phantom without gating beam control. The overdosed or underdosed areas enclosed about 33% of the treatment area. In contrast, the dose distribution on the moving phantom with gating window set to 0.5 cm showed no significant differences from the stationary phantom. With the appropriate setting of the gating window, the deviation of dose from the respiratory motion can be minimized. It appeals that limiting the residual motion to less than 0.5 cm is critical for the treatments of mobile structures.

  10. Melt dynamics of aluminum irradiated with ultrafast laser radiation at large intensities

    SciTech Connect

    Mingareev, Ilya; Horn, Alexander

    2009-07-01

    Ablation of bulk aluminum has been investigated in situ using ultrafast laser radiation produced by chirped-pulse amplification technique (t{sub p}=80 fs, lambda=800 nm). Melt dynamics and the contribution of the amplified spontaneous emission (ASE) to the ablation have been studied experimentally and numerically for laser fluences well above ablation threshold (F < or approx. 10{sup 3}xF{sub thr}). Using transient quantitative phase microscopy (TQPm), dimensions and volume of ejected vapor, melt droplets, and liquid jets has been investigated. Computational analysis of the optical phase images has been used to determine the total volume of ejected material. A series of time-resolved phase images of vaporized material and/or melt, which are induced by n=1.8 pulses on an aluminum target, are obtained by means of TQPm up to temporal delay tau=1.65 mus after irradiation. Increase in material ejection rate is observed at delays tauapprox =300 ns and tauapprox =1.1 mus after the incident pulse. For large irradiation intensities a considerable contribution of ASE to ablation dynamics has been detected. Ex situ measurements of the ablated material by means of white-light interferometry and scanning electron microscopy provides corresponding factual removed volumes and highlight the pulse-to-pulse morphology changes.

  11. Possible fractionated regimens for image-guided intensity-modulated radiation therapy of large arteriovenous malformations

    NASA Astrophysics Data System (ADS)

    Qi, X. Sharon; Schultz, Christopher J.; Li, X. Allen

    2007-09-01

    The aim of this study was to estimate a plausible α/β ratio for arteriovenous malformations (AVMs) based on reported clinical data, and to design possible fractionation regimens suitable for image-guided intensity-modulated radiation therapy (IG-IMRT) for large AVMs based on the newly obtained α/β ratio. The commonly used obliteration rate (OR) for AVMs with a three year angiographic follow-up from many institutes was fitted to linear-quadratic (LQ) formalism and the Poisson OR model. The determined parameters were then used to calculate possible fractionation regimens for IG-IMRT based on the concept of a biologically effective dose (BED) and an equivalent uniform dose (EUD). The radiobiological analysis yields a α/β ratio of 2.2 ± 1.6 Gy for AVMs. Three sets of possible fractionated schemes were designed to achieve equal or better biological effectiveness than the single-fraction treatments while maintaining the same probability of normal brain complications. A plausible α/β ratio was derived for AVMs and possible fractionation regimens that may be suitable for IG-IMRT for large AVM treatment are proposed. The sensitivity of parameters on the calculation was also studied. The information may be useful to design new clinical trials that use IG-IMRT for the treatment of large AVMs.

  12. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy.

    PubMed

    D'Souza, Warren D; Zhang, Hao H; Nazareth, Daryl P; Shi, Leyuan; Meyer, Robert R

    2008-06-21

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods. PMID:18523351

  13. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    D'Souza, Warren D.; Zhang, Hao H.; Nazareth, Daryl P.; Shi, Leyuan; Meyer, Robert R.

    2008-06-01

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.

  14. In vivo measurements with MOSFET detectors in oropharynx and nasopharynx intensity-modulated radiation therapy

    SciTech Connect

    Marcie, Serge . E-mail: serge.marcie@cal.nice.fnclcc.fr; Charpiot, Elisabeth; Bensadoun, Rene-Jean; Ciais, Gaston; Herault, Joel; Costa, Andre; Gerard, Jean-Pierre

    2005-04-01

    Purpose: To evaluate the feasibility of in vivo measurements with metal oxide semiconductor field effect transistor (MOSFET) dosimeters for oropharynx and nasopharynx intensity-modulated radiation therapy (IMRT). Methods and Materials: During a 1-year period, in vivo measurements of the dose delivered to one or two points of the oral cavity by IMRT were obtained with MOSFET dosimeters. Measurements were obtained during each session of 48 treatment plans for 21 patients, all of whom were fitted with a custom-made mouth plate. Calculated and measured values were compared. Results: A total of 344 and 452 measurements were performed for the right and left sides, respectively, of the oral cavity. Seventy percent of the discrepancies between calculated and measured values were within {+-}5%. Uncertainties were due to interfraction patient positions, intrafraction patient movements, and interfraction MOSFET positions. Nevertheless, the discrepancies between the measured and calculated means were within {+-}5% for 92% and 95% of the right and left sides, respectively. Comparison of these discrepancies and the discrepancies between calculated values and measurements made on a phantom revealed that all differences were within {+-}5%. Conclusion: Our experience demonstrates the feasibility of in vivo measurements with MOSFET dosimeters for oropharynx and nasopharynx IMRT.

  15. Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshihito; Hara, Toru; Kitamura, Hideo; Ishikawa, Tetsuya

    2000-03-01

    We have developed a control system to synchronize intense picosecond laser pulses to the hard x-ray synchrotron radiation (SR) pulses of SPring-8. A regeneratively amplified mode-locked Ti:sapphire laser is synchronized to 40 ps SR pulses by locking the laser to the radio frequency of the ring. The synchronization of the pulses is monitored by detecting both beams simultaneously on a gold photocathode of a streak camera. This method enabled us to make a precise measurement of the time interval between the beams, even if the trigger of the streak camera drifts. Synchronization between the laser and the SR pulses has been achieved with a precision of ±2 ps for some hours. The stable timing control ensures the possibility of making two-photon excitation and pump-probe experiments with time resolution of a few tens of ps (limited by the pulse duration of the SR). We have used this system to show that closing undulator gaps in the storage ring shifts the arrival time of the SR pulses, in accord with expectations for the increased power loss.

  16. Racial Differences in Diffusion of Intensity-Modulated Radiation Therapy for Localized Prostate Cancer.

    PubMed

    Cobran, Ewan K; Chen, Ronald C; Overman, Robert; Meyer, Anne-Marie; Kuo, Tzy-Mey; O'Brien, Jonathon; Sturmer, Til; Sheets, Nathan C; Goldin, Gregg H; Penn, Dolly C; Godley, Paul A; Carpenter, William R

    2016-09-01

    Intensity-modulated radiation therapy (IMRT), an innovative treatment option for prostate cancer, has rapidly diffused over the past decade. To inform our understanding of racial disparities in prostate cancer treatment and outcomes, this study compared diffusion of IMRT in African American (AA) and Caucasian American (CA) prostate cancer patients during the early years of IMRT diffusion using the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database. A retrospective cohort of 947 AA and 10,028 CA patients diagnosed with localized prostate cancer from 2002 through 2006, who were treated with either IMRT or non-IMRT as primary treatment within 1 year of diagnoses was constructed. Logistic regression was used to examine potential differences in diffusion of IMRT in AA and CA patients, while adjusting for socioeconomic and clinical covariates. A significantly smaller proportion of AA compared with CA patients received IMRT for localized prostate cancer (45% vs. 53%, p < .0001). Racial differences were apparent in multivariable analysis though did not achieve statistical significance, as time and factors associated with race (socioeconomic, geographic, and tumor related factors) explained the preponderance of variance in use of IMRT. Further research examining improved access to innovative cancer treatment and technologies is essential to reducing racial disparities in cancer care.

  17. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  18. International comparison of cave radon concentrations identifying the potential alpha radiation risks to British cave users

    SciTech Connect

    Hyland, R.; Gunn, J.

    1994-08-01

    Elevated concentrations of {sup 222}Rn have been recorded in many limestone caves throughout the world. As prolonged exposure to high radon concentrations has been linked to cancer and tumors, particularly of the lung, a national survey of radon in British caves was undertaken. Passive radon detectors were exposed at 250 sites in 47 caves over four 7-d sampling periods. Mean concentrations ranging from 454-8,868 Bq m{sup {minus}3} were recorded. In one system, in the Peak District, radon concentrations of 155,000 Bq m{sup {minus}3} were recorded. The results indicate that the potential radiation dose from a single 4-h trip could exceed the national average annual background radiation dose (for the UK) from radon of 1.25 mSv. 18 refs., 3 tabs.

  19. Tumorigenic action of beta, proton, alpha and electron radiation on the rat skin

    SciTech Connect

    Burns, F.J.

    1980-01-01

    Rat skin is utilized as a model system for studying dose and time related aspects of the oncogenic action of ionizing radiation, ultraviolet light and polycyclic aromatic hydrocarbons. Molecular lesions in the DNA of the epidermis, including strand breaks and thymine dimers, are measured and compared to the temporal and dose related aspects of tumor induction. The induction and repair kinetics of molecular lesions are compared to split dose recovery as modified by sensitizers and type of radition of oncogenic damage.

  20. Genomic Profiling of a Human Leukemic Monocytic Cell-Line (THP-1) Exposed to Alpha Particle Radiation

    PubMed Central

    Chauhan, Vinita; Howland, Matthew

    2012-01-01

    This study examined alpha (α-) particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1) for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure. PMID:23097634

  1. Alpha Lipoic Acid Attenuates Radiation-Induced Thyroid Injury in Rats

    PubMed Central

    Jung, Jung Hwa; Jung, Jaehoon; Kim, Soo Kyoung; Woo, Seung Hoon; Kang, Ki Mun; Jeong, Bae-Kwon; Jung, Myeong Hee; Kim, Jin Hyun; Hahm, Jong Ryeal

    2014-01-01

    Exposure of the thyroid to radiation during radiotherapy of the head and neck is often unavoidable. The present study aimed to investigate the protective effect of α-lipoic acid (ALA) on radiation-induced thyroid injury in rats. Rats were randomly assigned to four groups: healthy controls (CTL), irradiated (RT), received ALA before irradiation (ALA + RT), and received ALA only (ALA, 100 mg/kg, i.p.). ALA was treated at 24 h and 30 minutes prior to irradiation. The neck area including the thyroid gland was evenly irradiated with 2 Gy per minute (total dose of 18 Gy) using a photon 6-MV linear accelerator. Greater numbers of abnormal and unusually small follicles in the irradiated thyroid tissues were observed compared to the controls and the ALA group on days 4 and 7 after irradiation. However, all pathologies were decreased by ALA pretreatment. The quantity of small follicles in the irradiated rats was greater on day 7 than day 4 after irradiation. However, in the ALA-treated irradiated rats, the numbers of small and medium follicles were significantly decreased to a similar degree as in the control and ALA-only groups. The PAS-positive density of the colloid in RT group was decreased significantly compared with all other groups and reversed by ALA pretreatment. The high activity index in the irradiated rats was lowered by ALA treatment. TGF-ß1 immunoreactivity was enhanced in irradiated rats and was more severe on the day 7 after radiation exposure than on day 4. Expression of TGF-ß1 was reduced in the thyroid that had undergone ALA pretreatment. Levels of serum pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) did not differ significantly between the all groups. This study provides that pretreatment with ALA decreased the severity of radiation-induced thyroid injury by reducing inflammation and fibrotic infiltration and lowering the activity index. Thus, ALA could be used to ameliorate radiation-induced thyroid injury. PMID:25401725

  2. Leakage-Penumbra effect in intensity modulated radiation therapy step-and-shoot dose delivery

    PubMed Central

    Grigorov, Grigor N; Chow, James CL

    2016-01-01

    AIM: To study the leakage-penumbra (LP) effect with a proposed correction method for the step-and-shoot intensity modulated radiation therapy (IMRT). METHODS: Leakage-penumbra dose profiles from 10 randomly selected prostate IMRT plans were studied. The IMRT plans were delivered by a Varian 21 EX linear accelerator equipped with a 120-leaf multileaf collimator (MLC). For each treatment plan created by the Pinnacle3 treatment planning system, a 3-dimensional LP dose distribution generated by 5 coplanar photon beams, starting from 0o with equal separation of 72o, was investigated. For each photon beam used in the step-and-shoot IMRT plans, the first beam segment was set to have the largest area in the MLC leaf-sequencing, and was equal to the planning target volume (PTV). The overshoot effect (OSE) and the segment positional errors were measured using a solid water phantom with Kodak (TL and X-OMAT V) radiographic films. Film dosimetric analysis and calibration were carried out using a film scanner (Vidar VXR-16). The LP dose profiles were determined by eliminating the OSE and segment positional errors with specific individual irradiations. RESULTS: A non-uniformly distributed leaf LP dose ranging from 3% to 5% of the beam dose was measured in clinical IMRT beams. An overdose at the gap between neighboring segments, represented as dose peaks of up to 10% of the total BP, was measured. The LP effect increased the dose to the PTV and surrounding critical tissues. In addition, the effect depends on the number of beams and segments for each beam. Segment positional error was less than the maximum tolerance of 1 mm under a dose rate of 600 monitor units per minute in the treatment plans. The OSE varying with the dose rate was observed in all photon beams, and the effect increased from 1 to 1.3 Gy per treatment of the rectal intersection. As the dosimetric impacts from the LP effect and OSE may increase the rectal post-radiation effects, a correction of LP was proposed and

  3. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    SciTech Connect

    Clivio, Alessandro; Kluge, Anne; Cozzi, Luca; Köhler, Christhardt; Neumann, Oliver; Vanetti, Eugenio; Wlodarczyk, Waldemar; Marnitz, Simone

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  4. Treatment of Oral Cavity Squamous Cell Carcinoma With Adjuvant or Definitive Intensity-Modulated Radiation Therapy

    SciTech Connect

    Sher, David J.; Thotakura, Vijaya; Balboni, Tracy A.; Norris, Charles M.; Haddad, Robert I.; Posner, Marshall R.; Lorch, Jochen; Goguen, Laura A.; Annino, Donald J.; Tishler, Roy B.

    2011-11-15

    Purpose: The optimal management of oral cavity squamous cell carcinoma (OCSCC) typically involves surgical resection followed by adjuvant radiotherapy or chemoradiotherapy (CRT) in the setting of adverse pathologic features. Intensity-modulated radiation therapy (IMRT) is frequently used to treat oral cavity cancers, but published IMRT outcomes specific to this disease site are sparse. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for OCSCC. Methods and Materials: Retrospective study of all patients treated at Dana-Farber Cancer Institute for OCSCC with adjuvant or definitive IMRT between August 2004 and December 2009. The American Joint Committee on Cancer disease stage criteria distribution of this cohort included 5 patients (12%) with stage I; 10 patients (24%) with stage II (n = 10, 24%),; 14 patients (33%) with stage III (n = 14, 33%),; and 13 patients (31%) with stage IV. The primary endpoint was overall survival (OS); secondary endpoints were locoregional control (LRC) and acute and chronic toxicity. Results: Forty-two patients with OCSCC were included, 30 of whom were initially treated with surgical resection. Twenty-three (77%) of 30 surgical patients treated with adjuvant IMRT also received concurrent chemotherapy, and 9 of 12 (75%) patients treated definitively without surgery were treated with CRT or induction chemotherapy and CRT. With a median follow-up of 2.1 years (interquartile range, 1.1-3.1 years) for all patients, the 2-year actuarial rates of OS and LRC following adjuvant IMRT were 85% and 91%, respectively, and the comparable results for definitive IMRT were 63% and 64% for OS and LRC, respectively. Only 1 patient developed symptomatic osteoradionecrosis, and among patients without evidence of disease, 35% experienced grade 2 to 3 late dysphagia, with only 1 patient who was continuously gastrostomy-dependent. Conclusions: In this single-institution series, postoperative IMRT was associated with promising LRC

  5. Tumor trailing strategy for intensity-modulated radiation therapy of moving targets

    SciTech Connect

    Trofimov, Alexei; Vrancic, Christian; Chan, Timothy C. Y.; Sharp, Gregory C.; Bortfeld, Thomas

    2008-05-15

    Internal organ motion during the course of radiation therapy of cancer affects the distribution of the delivered dose and, generally, reduces its conformality to the targeted volume. Previously proposed approaches aimed at mitigating the effect of internal motion in intensity-modulated radiation therapy (IMRT) included expansion of the target margins, motion-correlated delivery (e.g., respiratory gating, tumor tracking), and adaptive treatment plan optimization employing a probabilistic description of motion. We describe and test the tumor trailing strategy, which utilizes the synergy of motion-adaptive treatment planning and delivery methods. We regard the (rigid) target motion as a superposition of a relatively fast cyclic component (e.g., respiratory) and slow aperiodic trends (e.g., the drift of exhalation baseline). In the trailing approach, these two components of motion are decoupled and dealt with separately. Real-time motion monitoring is employed to identify the 'slow' shifts, which are then corrected by applying setup adjustments. The delivery does not track the target position exactly, but trails the systematic trend due to the delay between the time a shift occurs, is reliably detected, and, subsequently, corrected. The ''fast'' cyclic motion is accounted for with a robust motion-adaptive treatment planning, which allows for variability in motion parameters (e.g., mean and extrema of the tidal volume, variable period of respiration, and expiratory duration). Motion-surrogate data from gated IMRT treatments were used to provide probability distribution data for motion-adaptive planning and to test algorithms that identified systematic trends in the character of motion. Sample IMRT fields were delivered on a clinical linear accelerator to a programmable moving phantom. Dose measurements were performed with a commercial two-dimensional ion-chamber array. The results indicate that by reducing intrafractional motion variability, the trailing strategy

  6. Assessing software upgrades, plan properties and patient geometry using intensity modulated radiation therapy (IMRT) complexity metrics

    SciTech Connect

    McGarry, Conor K.; Chinneck, Candice D.; O'Toole, Monica M.; O'Sullivan, Joe M; Prise, Kevin M.; Hounsell, Alan R.

    2011-04-15

    Purpose: The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed. Method: A program was developed to calculate a series of metrics used to describe the complexity of IMRT fields using monitor units (MUs) and multileaf collimator files: Modulation index (MI), modulation complexity score (MCS), and plan intensity map variation (PIMV). Each metric, including the MUs, was used to assess changes in beam complexity for six prostate patients, following upgrades in the inverse planning optimization software designed to incorporate direct aperture optimization (DAO). All beams were delivered to a 2D ionization chamber array and compared to those calculated using gamma analysis. Each complexity metric was then calculated for all beams, on a different set of six prostate IMRT patients, to assess differences between plans calculated using different minimum field sizes and different maximum segment numbers. Different geometries, including CShape, prostate, and head and neck phantoms, were also assessed using the metrics. Correlations between complexity metrics were calculated for 20 prostate IMRT patients. Results: MU, MCS, MI, and PIMV could all detect reduced complexity following an upgrade to the optimization leaf sequencer, although only MI and MCS could detect a reduction in complexity when one-step optimization (DAO) was employed rather than two-step optimization. All metrics detected a reduction in complexity when the minimum field size was increased from 1 to 4 cm and all apart from PIMV detected reduced complexity when the number of segments was significantly reduced. All metrics apart from MI showed differences in complexity depending on the treatment site. Significant correlations exist between all metrics apart from MI and PIMV for

  7. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for Intensity-modulated Radiation Therapy (IMRT).

    PubMed

    Hartford, Alan C; Galvin, James M; Beyer, David C; Eichler, Thomas J; Ibbott, Geoffrey S; Kavanagh, Brian; Schultz, Christopher J; Rosenthal, Seth A

    2012-12-01

    Intensity-modulated radiation therapy (IMRT) is a complex technique for the delivery of radiation therapy preferentially to target structures while minimizing doses to adjacent normal critical structures. It is widely utilized in the treatment of a variety of clinical indications in radiation oncology, including tumors of the central nervous system, head and neck, breast, prostate, gastrointestinal tract, and gynecologic organs, as well as in situations where previous radiation therapy has been delivered, and has allowed for significant therapeutic advances in many clinical areas. IMRT treatment planning and delivery is a complex process. Safe and reliable delivery of IMRT requires appropriate process design and adherence to quality assurance (QA) standards. A collaborative effort of the American College of Radiology and American Society for Therapeutic Radiation Oncology has produced a practice guideline for IMRT. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist, dosimetrist, and radiation therapist. Factors with respect to the QA of the treatment planning system, treatment-planning process, and treatment-delivery process are discussed, as are issues related to the utilization of volumetric modulated arc therapy. Patient-specific QA procedures are presented. Successful IMRT programs involve integration of many processes: patient selection, patient positioning/immobilization, target definition, treatment plan development, and accurate treatment delivery. Appropriate QA procedures, including patient-specific QA procedures, are essential to ensure quality in an IMRT program and to assure patient safety.

  8. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for Intensity-modulated Radiation Therapy (IMRT).

    PubMed

    Hartford, Alan C; Galvin, James M; Beyer, David C; Eichler, Thomas J; Ibbott, Geoffrey S; Kavanagh, Brian; Schultz, Christopher J; Rosenthal, Seth A

    2012-12-01

    Intensity-modulated radiation therapy (IMRT) is a complex technique for the delivery of radiation therapy preferentially to target structures while minimizing doses to adjacent normal critical structures. It is widely utilized in the treatment of a variety of clinical indications in radiation oncology, including tumors of the central nervous system, head and neck, breast, prostate, gastrointestinal tract, and gynecologic organs, as well as in situations where previous radiation therapy has been delivered, and has allowed for significant therapeutic advances in many clinical areas. IMRT treatment planning and delivery is a complex process. Safe and reliable delivery of IMRT requires appropriate process design and adherence to quality assurance (QA) standards. A collaborative effort of the American College of Radiology and American Society for Therapeutic Radiation Oncology has produced a practice guideline for IMRT. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist, dosimetrist, and radiation therapist. Factors with respect to the QA of the treatment planning system, treatment-planning process, and treatment-delivery process are discussed, as are issues related to the utilization of volumetric modulated arc therapy. Patient-specific QA procedures are presented. Successful IMRT programs involve integration of many processes: patient selection, patient positioning/immobilization, target definition, treatment plan development, and accurate treatment delivery. Appropriate QA procedures, including patient-specific QA procedures, are essential to ensure quality in an IMRT program and to assure patient safety. PMID:23165357

  9. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Norrlinger, Bernhard D.; Smale, Jason R.; Heaton, Robert K.; Galbraith, Duncan; Fan, Cary; Jaffray, David A.

    2009-12-15

    Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy. Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.e., multileaf collimator (MLC)] and the patient. The prototype AIMS consists of a novel spatially sensitive large area ionization chamber with a gradient along the direction of the MLC motion. The signal from the AIMS provides a simple output for each beam segment, which is compared in real time to the expected value. The prototype ionization chamber, with a physical area of 22x22 cm{sup 2}, has been constructed out of aluminum with the electrode separations varying linearly from 2 to 20 mm. A calculation method has been developed to predict AIMS signals based on an elementwise integration technique, which takes into account various predetermined factors, including the spatial response function of the chamber, MLC characteristics, beam transmission through the secondary jaws, and field size factors. The influence of the ionization chamber on the beam has been evaluated in terms of transmission, surface dose, beam profiles, and depth dose. The sensitivity of the system was tested by introducing small deviations in leaf positions. A small set of IMRT fields for prostate and head and neck plans was used to evaluate the system. The ionization chamber and the data acquisition software systems were interfaced to two different types of linear accelerators: Elekta Synergy and Varian iX. Results: For a 10x10 cm{sup 2} field, the chamber attenuates the beam intensity by 7% and 5% for 6 and 18

  10. Impact of geometric uncertainties on dose calculations for intensity modulated radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing

    Intensity-modulated radiation therapy (IMRT) uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI) during treatment delivery, a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or "blurred" dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). A Gaussian probability density function (PDF) is reasonable for modeling geometric uncertainties as indicated by the 118 patients group. The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. In addition, individual SD should not be determined or predicted from small imaging samples because of random nature of the fluctuations. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. Cumulative PDF data can be used for re-planning to assess accuracy of delivered dose. Group data is useful for determining worst case discrepancy between planned and delivered dose. The margins for the PTV should ideally represent true geometric uncertainties. The measured geometric uncertainties were used in this thesis to assess PTV coverage, dose to OAR, equivalent

  11. Modification of radiation-induced brain injury by alpha-difluoromethylornithine.

    PubMed

    Gobbel, G T; Marton, L J; Lamborn, K; Seilhan, T M; Fike, J R

    1991-12-01

    The effect of alpha-difluoromethylornithine (DFMO) on 125I-induced brain injury was investigated in a dog model. Cerebrospinal putrescine levels were reduced from baseline levels 1-2 weeks after irradiation in animals treated with 125I and DFMO, while putrescine levels were elevated in 125I and saline-treated animals. In addition, the time course of changes in the volumes of edema, necrosis, and tissue showing evidence of blood-brain barrier breakdown was altered significantly by DFMO treatment. The most significant alterations occurred 2-4 weeks after irradiation, at which times the average volumes of damage in DFMO-treated animals were reduced compared to saline-treated animals. The time course of alterations in blood-to-brain transfer, brain-to-blood transfer, and vascularity following irradiation was also altered by DFMO treatment. Analysis of variance demonstrated a strong relationship of blood-to-brain transfer and vascularity to volume of edema, suggesting that the effect of DFMO on edema may be partially mediated by its effects on blood-brain barrier breakdown.

  12. Development of a strongly focusing high-intensity He{sup +} ion source for a confined alpha particle measurement at ITER

    SciTech Connect

    Kisaki, M.; Shinto, K.; Kobuchi, T.; Okamoto, A.; Kitajima, S.; Sasao, M.; Tsumori, K.; Nishiura, M.; Kaneko, O.; Matsuda, Y.; Wada, M.; Sakakita, H.; Kiyama, S.; Hirano, Y.

    2008-02-15

    A strongly focusing high-intensity He{sup +} ion source has been designed and constructed as a beam source for a high-energy He{sup 0} beam probe system for diagnosis of fusion produced alpha particles in the thermonuclear fusion plasmas. The He{sup +} beam was extracted from the ion source at an acceleration voltage of 18-35 kV. Temperature distributions of the beam target were observed with an IR camera. The 1/e-holding beam profile half-width was about 15 mm at optimum perveance (Perv) of 0.03 (I{sub beam}=2.4 A). A beam current about 3 A was achieved at an acceleration voltage of 26.7 kV with an arc power of 10 kW (Perv=0.023)

  13. Note: Application of laser produced plasma K{alpha} x-ray probe in radiation biology

    SciTech Connect

    Nishikino, Masaharu; Hasegawa, Noboru; Ishino, Masahiko; Kawachi, Tetsuya; Sato, Katsutoshi; Numasaki, Hodaka; Teshima, Tetruki; Ohshima, Shinsuke; Okano, Yasuaki; Nishimura, Hiroaki

    2010-02-15

    A dedicated radiation biology x-ray generation and exposure system has been developed. 8.0 keV in energy x-ray pulses generated with a femtosecond-laser pulse was used to irradiate sample cells through a custom-made culture dish with a silicon nitride membrane. The x-ray irradiation resulted in DNA double-strand breaks in the nucleus of a culture cell that were similar to those obtained with a conventional x-ray source, thus demonstrating the feasibility of radiobiological studies utilizing a single burst of x-rays focused on single cell specimens.

  14. Atmospheric Radiation Measurements Aerosol Intensive Operating Period: Comparison of Aerosol Scattering during Coordinated Flights

    NASA Technical Reports Server (NTRS)

    Hallar, A. G.; Strawa, A. W.; Schmid, B.; Andrews, E.; Ogren, J.; Sheridan, P.; Ferrare, R.; Covert, D.; Elleman, R.; Jonsson, H.; Bokarius, K.; Luu, A.

    2006-01-01

    In May 2003, a Twin Otter airplane, equipped with instruments for making in situ measurements of aerosol optical properties, was deployed during the Atmospheric Radiation Measurements (ARM) Program s Aerosol Intensive Operational Period in Oklahoma. Several of the Twin Otter flights were flown in formation with an instrumented light aircraft (Cessna 172XP) that makes routine in situ aerosol profile flights over the site. This paper presents comparisons of measured scattering coefficients at 467 nm, 530 nm, and 675 nm between identical commercial nephelometers aboard each aircraft. Overall, the agreement between the two nephelometers decreases with longer wavelength. During the majority of the flights, the Twin Otter flew with a diffuser inlet while the Cessna had a 1 mm impactor, allowing for an estimation of the fine mode fraction aloft. The fine mode fraction aloft was then compared to the results of a ground-based nephelometer. Comparisons are also provided in which both nephelometers operated with identical 1 mm impactors. These scattering coefficient comparisons are favorable at the longer wavelengths (i.e., 530 nm and 675 nm), yet differed by approximately 30% at 467 nm. Mie scattering calculations were performed using size distribution measurements, made during the level flight legs. Results are also presented from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument, which compared favorably (i.e., agreed within 2%) with data from other instruments aboard the Twin Otter. With this paper, we highlight the significant implications of coarse mode (larger than 1 mm) aerosol aloft with respect to aerosol optical properties.

  15. Gamma evaluation combined with isocenter optimal matching in intensity modulated radiation therapy quality assurance

    NASA Astrophysics Data System (ADS)

    Bak, Jino; Choi, Jin Hwa; Park, Suk Won; Park, Kwangwoo; Park, Sungho

    2015-12-01

    Two-dimensional (2D) dose comparisons are widely performed by using a gamma evaluation with patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) or dose delivery quality assurance (DQA). In this way, a pass/fail determination is made for a particular treatment plan. When gamma evaluation results are close to the failure criterion, the pass/fail decision may change applying a small shift to the center of the 2D dose distribution. In this study, we quantitatively evaluated the meaning of such a small relative shift in a 2D dose distribution comparison. In addition, we propose the use of a small shift for a pass/fail criterion in gamma analysis, where the concept of isocenter optimal matching (IOM) is applied to IMRT QA of 20 patients. Gamma evaluations were performed to compare two dose distributions, one with and the other without IOM. In-house software was developed in C++ in order to find IOM values including both translational and rotational shifts. Upon gamma evaluation failure, further investigation was initiated using IOM. In this way, three groups were categorized: group 1 for `pass' on gamma evaluation, group 21 for `fail' on the gamma evaluation and `pass' on the gamma the evaluation with IOM, and group 22 for `fail' on the both gamma evaluations and the IOM calculation. IOM results revealed that some failures could be considered as a `pass'. In group 21, 88.98% (fail) of the averaged gamma pass rate changed to 90.45% (pass) when IOM was applied. On average, a ratio of γ ≥ 1 was reduced by 11.06% in 20 patients. We propose that gamma evaluations that do not pass with a rate of 85% to 90% may be augmented with IOM to reveal a potential pass result.

  16. Low-intensity laser radiation in complex treatment of inflammatory diseases of parodontium

    NASA Astrophysics Data System (ADS)

    Sokolova, Irina A.; Erina, Stanislava V.

    1995-04-01

    The problem of complex treatment of inflammatory disease of parodontium has become very acute and actual at the moment. The diseases of inflammatory nature are considered to be the most vital issues of the day. The state of the local immune system of oral cavity plays the most important role in the complicated mechanism of inflammatory process development in the tissues of parodontium. Recently physical factors have become predominant in the system of complex therapy of parodontitis. The application of low-intense laser radiation (LLR) is considered to be the most important and up-to-date method in the preventive dentistry. There were 60 patients of average damage rate suffering from chronic generalizing parodontitis at the age of 25 up to 55 under observation. The major goal of examination was to get the objective results of the following methods' application: parodontium index (Russel, 1956), hygiene index (Fyodorov, Volodkina, 1971), Bacterioscopy of dental-gingival pockets content, simple and broadened stomatoscopy (Kunin, 1970), SIgA level determination in mixed saliva (Manchini et all, 1965) and R-protein level in gingival blood (Kulberg, 1990). All the patients were split into 2 groups. The first group (30 patients) has undergone the laser therapy course while the second group of 30 patients couldn't get it (LLR). Despite the kind of therapy they have undergone, all the patients have got the local anti-inflammatory medicamental therapy. The results of clinical observations have proved the fact that laser therapy application makes it possible to shorten the course of treatment in 1.5 times. The shifts of oral cavity local resistance take place in case of chronic generalizing parodontitis. The direct immunostimulating effect could be observed as a result of LLR- therapy application. The close connection of both anti-inflammatory medicamental and LLR-therapy has proved the possibility of purposeful local immune status correction in case of parodontitis.

  17. An Anatomically Validated Brachial Plexus Contouring Method for Intensity Modulated Radiation Therapy Planning

    SciTech Connect

    Van de Velde, Joris; Audenaert, Emmanuel; Speleers, Bruno; Vercauteren, Tom; Mulliez, Thomas; Vandemaele, Pieter; Achten, Eric; Kerckaert, Ingrid; D'Herde, Katharina; De Neve, Wilfried; Van Hoof, Tom

    2013-11-15

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validated the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection.

  18. Effect of fluence smoothing on the quality of intensity-modulated radiation treatment plans.

    PubMed

    Niyas, Puzhakkal; Abdullah, Kallikuzhiyil Kochunny; Noufal, Manthala Padannayil; Sankaran Nair, Thekkedath

    2016-07-01

    A fluence-smoothing function applied for reducing the complexity of a treatment plan is an optional requirement in the inverse planning optimization algorithm of intensity-modulated radiation therapy (IMRT). In this study, we investigated the consequences of fluence smoothing on the quality of highly complex and inhomogeneous plans in a treatment-planning system, Eclipse™. The smoothing function was applied both in the direction of leaf travel (X) and perpendicular to leaf travel (Y). Twenty IMRT plans from patients with cancer of the nasopharynx and lung were selected and re-optimized with use of various smoothing combinations from X = 0, Y = 0 to X = 100, Y = 100. Total monitor units (MUs), dose-volume histograms, and radiobiological estimates were computed for all plans. The study yielded a significant reduction in the average total MUs from 2079 ± 265.4 to 1107 ± 137.4 (nasopharynx) and from 1556 ± 490.3 to 791 ± 176.8 (lung) while increasing smoothing from X, Y = 0 to X, Y = 100. Both the tumor control and normal tissue complication probabilities were found to vary, but not significantly so. No appreciable differences in doses to the target and most of the organs at risk (OARs) were noticed. The doses measured with the I'MRT MatriXX 2-D system indicated improvements in deliverability of the plans with higher smoothing values. Hence, it can be concluded that increased smoothing reduced the total MUs exceptionally well without any considerable changes in OAR doses. The observed progress in plan deliverability in terms of the gamma index strongly supports the recommendation of smoothing levels up to X = 70 and Y = 60, at least for the nasopharynx and lung. PMID:26951466

  19. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the

  20. Planning Hybrid Intensity Modulated Radiation Therapy for Whole-breast Irradiation

    SciTech Connect

    Farace, Paolo; Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco; Deidda, Maria Assunta; Possanzini, Marco; Orru, Sivia; Lay, Giancarlo

    2012-09-01

    Purpose: To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Methods and Materials: Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Results: Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose ({approx}5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses ({approx}20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Conclusions: Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation.

  1. The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer

    PubMed Central

    Sung, Wonmo; Park, Jong Min; Choi, Chang Heon; Ha, Sung Whan

    2012-01-01

    Purpose To evaluate the effect of common three photon energies (6-MV, 10-MV, and 15-MV) on intensity-modulated radiation therapy (IMRT) plans to treat prostate cancer patients. Materials and Methods Twenty patients with prostate cancer treated locally to 81.0 Gy were retrospectively studied. 6-MV, 10-MV, and 15-MV IMRT plans for each patient were generated using suitable planning objectives, dose constraints, and 8-field setting. The plans were analyzed in terms of dose-volume histogram for the target coverage, dose conformity, organs at risk (OAR) sparing, and normal tissue integral dose. Results Regardless of the energies chosen at the plans, the target coverage, conformity, and homogeneity of the plans were similar. However, there was a significant dose increase in rectal wall and femoral heads for 6-MV compared to those for 10-MV and 15-MV. The V20 Gy of rectal wall with 6-MV, 10-MV, and 15-MV were 95.6%, 88.4%, and 89.4% while the mean dose to femoral heads were 31.7, 25.9, and 26.3 Gy, respectively. Integral doses to the normal tissues in higher energy (10-MV and 15-MV) plans were reduced by about 7%. Overall, integral doses in mid and low dose regions in 6-MV plans were increased by up to 13%. Conclusion In this study, 10-MV prostate IMRT plans showed better OAR sparing and less integral doses than the 6-MV. The biological and clinical significance of this finding remains to be determined afterward, considering neutron dose contribution. PMID:23120741

  2. Aichi Cancer Center Initial Experience of Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer Using Helical Tomotherapy

    SciTech Connect

    Kodaira, Takeshi Tomita, Natsuo; Tachibana, Hiroyuki; Nakamura, Tatsuya; Nakahara, Rie; Inokuchi, Haruo; Fuwa, Nobukazu

    2009-03-15

    Purpose: To assess the feasibility of helical tomotherapy (HT) for patients with nasopharyngeal carcinoma. Methods and Materials: From June 2006 to June 2007, 20 patients with nasopharyngeal carcinoma were treated with HT with (n = 18) or without (n = 2) systemic chemotherapy. The primary tumor and involved lymph node (PTV1) were prescribed 70 Gy and the prophylactic region 54 Gy at D95, respectively. The majority of patients received 2 Gy per fraction for PTV1 in 35 fractions. Parotid function was evaluated using quantitative scintigraphy at pretreatment, and posttreatment at 3 months and 1 year later. Results: The median patient age was 53 years, ranging from 15 to 83. Our cohort included 5, 8, 4, 2, and 1 patients with disease Stages IIB, III, IVA, IVB, and IVC, respectively. Histopathological record revealed two for World Health Organization Type I and 18 for Type 2 or 3. The median duration time for treatment preparation was 9.5 days, and all plans were thought to be acceptable regarding dose constraints of both the planning target volume and organ at risk. All patients completed their treatment procedure of intensity-modulated radiation therapy (IMRT). All patients achieved clinical remission after IMRT. The majority of patients had Grade 3 or higher toxicity of skin, mucosa, and neutropenia. At the median follow-up of 10.9 months, two patients recurred, and one patient died from cardiac disease. Parotid gland function at 1 year after completion of IMRT was significantly improved compared with that at 3 months. Conclusion: HT was clinically effective in terms of IMRT planning and utility for patients with nasopharyngeal cancer.

  3. Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection

    NASA Astrophysics Data System (ADS)

    Meyer, Jürgen; Phillips, Mark H.; Cho, Paul S.; Kalet, Ira; Doctor, Jason N.

    2004-05-01

    The purpose is to incorporate clinically relevant factors such as patient-specific and dosimetric information as well as data from clinical trials in the decision-making process for the selection of prostate intensity-modulated radiation therapy (IMRT) plans. The approach is to incorporate the decision theoretic concept of an influence diagram into the solution of the multiobjective optimization inverse planning problem. A set of candidate IMRT plans was obtained by varying the importance factors for the planning target volume (PTV) and the organ-at-risk (OAR) in combination with simulated annealing to explore a large part of the solution space. The Pareto set for the PTV and OAR was analysed to demonstrate how the selection of the weighting factors influenced which part of the solution space was explored. An influence diagram based on a Bayesian network with 18 nodes was designed to model the decision process for plan selection. The model possessed nodes for clinical laboratory results, tumour grading, staging information, patient-specific information, dosimetric information, complications and survival statistics from clinical studies. A utility node was utilized for the decision-making process. The influence diagram successfully ranked the plans based on the available information. Sensitivity analyses were used to judge the reasonableness of the diagram and the results. In conclusion, influence diagrams lend themselves well to modelling the decision processes for IMRT plan selection. They provide an excellent means to incorporate the probabilistic nature of data and beliefs into one model. They also provide a means for introducing evidence-based medicine, in the form of results of clinical trials, into the decision-making process.

  4. Upper limit on the inner radiation belt MeV electron intensity

    PubMed Central

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  5. Evaluation of Parotid Gland Function following Intensity Modulated Radiation Therapy for Head and Neck Cancer

    PubMed Central

    Lee, Seok Ho; Kim, Tae Hyun; Kim, Joo Young; Park, Sung Yong; Pyo, Hong Ryull; Shin, Kyung Hwan; Kim, Dae Yong; Kim, Joo Young

    2006-01-01

    Purpose This study was undertaken to determine the parotid gland tolerance dose levels following intensity modulated radiation therapy (IMRT) for treating patients who suffered with head and neck cancer. Materials and Methods From February 2003 through June 2004, 34 head and neck patients with 6 months of follow-up were evaluated for xerostomia after being treated by IMRT. Their median age was 59 years (range: 29~78). Xerostomia was assessed using a 4-question xerostomia questionnaire score (XQS) and a test for the salivary flow rates (unstimulated and stimulated: USFR and SSFR, respectively). The patients were also given a validated LENT SOMA scale (LSS) questionnaire. Evaluations were performed before IMRT and at 1, 3 and 6 months after IMRT. Results All 34 patients showed significant changes in the XQS, LSS and Salivary Flow rates (USFR and SSFR) after IMRT. No significant changes in the XQS or LSS were noted in 12 patients who received a total parotid mean dose of ≤3,100 cGy at 1, 3 and 6 months post-IMRT relative to the baseline values. However, for the 22 patients who received >3,100 cGy, significant increases in the XQS and LSS were observed. The USFR and SSFR from the parotid glands in 7 patients who received ≤2,750 cGy were significantly preserved at up to 6 months after IMRT. However, the USFR and SSFR in 27 patients who were treated with >2,750 cGy were significantly lower than the baseline values at all times after IMRT. Conclusion We suggest that the total parotid mean dose should be limited to ≤2,750 cGy to preserve the USFR and SSFR and so improve the subsequent quality of life. PMID:19771265

  6. Disease Control and Ototoxicity Using Intensity-Modulated Radiation Therapy Tumor-Bed Boost for Medulloblastoma

    SciTech Connect

    Polkinghorn, William R.; Dunkel, Ira J.; Souweidane, Mark M.; Khakoo, Yasmin; Lyden, David C.; Gilheeney, Stephen W.; Becher, Oren J.; Budnick, Amy S.; Wolden, Suzanne L.

    2011-11-01

    Purpose: We previously reported excellent local control for treating medulloblastoma with a limited boost to the tumor bed. In order to decrease ototoxicity, we subsequently implemented a tumor-bed boost using intensity-modulated radiation therapy (IMRT), the clinical results of which we report here. Patients and Methods: A total of 33 patients with newly diagnosed medulloblastoma, 25 with standard risk, and 8 with high risk, were treated on an IMRT tumor-bed boost following craniospinal irradiation (CSI). Six standard-risk patients were treated with an institutional protocol with 18 Gy CSI in conjunction with intrathecal iodine-131-labeled monoclonal antibody. The majority of patients received concurrent vincristine and standard adjuvant chemotherapy. Pure-tone audiograms were graded according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Results: Median age was 9 years old (range, 4-46 years old). Median follow-up was 63 months. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) rates for standard-risk patients who received 23.4 or 36 Gy CSI (not including those who received 18 Gy CSI with radioimmunotherapy) were 81.4% and 88.4%, respectively, at 5 years; 5-year PFS and OS rates for high-risk patients were both 87.5%. There were no isolated posterior fossa failures outside of the boost volume. Posttreatment audiograms were available for 31 patients, of whom 6%, at a median follow-up of 19 months, had developed Grade 3 hearing loss. Conclusion: An IMRT tumor-bed boost results in excellent local control while delivering a low mean dose to the cochlea, resulting in a low rate of ototoxicity.

  7. Replanning During Intensity Modulated Radiation Therapy Improved Quality of Life in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Yang Haihua; Hu Wei; Wang Wei; Chen Peifang; Ding Weijun; Luo Wei

    2013-01-01

    Purpose: Anatomic and dosimetric changes have been reported during intensity modulated radiation therapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the effects of replanning on quality of life (QoL) and clinical outcomes during the course of IMRT for NPC patients. Methods and Materials: Between June 2007 and August 2011, 129 patients with NPC were enrolled. Forty-three patients received IMRT without replanning, while 86 patients received IMRT replanning after computed tomography (CT) images were retaken part way through therapy. Chinese versions of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Head and Neck Quality of Life Questionnaire 35 were completed before treatment began and at the end of treatment and at 1, 3, 6, and 12 months after the completion of treatment. Overall survival (OS) data were compared using the Kaplan-Meier method. Results: IMRT replanning had a profound impact on the QoL of NPC patients, as determined by statistically significant changes in global QoL and other QoL scales. Additionally, the clinical outcome comparison indicates that replanning during IMRT for NPC significantly improved 2-year local regional control (97.2% vs 92.4%, respectively, P=.040) but did not improve 2-year OS (89.8% vs 82.2%, respectively, P=.475). Conclusions: IMRT replanning improves QoL as well as local regional control in patients with NPC. Future research is needed to determine the criteria for replanning for NPC patients undergoing IMRT.

  8. Automation and Intensity Modulated Radiation Therapy for Individualized High-Quality Tangent Breast Treatment Plans

    SciTech Connect

    Purdie, Thomas G.; Dinniwell, Robert E.; Fyles, Anthony; Sharpe, Michael B.

    2014-11-01

    Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented

  9. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  10. Intense attosecond radiation from an X-ray FEL - extended version

    SciTech Connect

    Zholents, Alexander A.; Fawley, William M.

    2003-12-01

    We propose the use of a ultra-relativistic electron beam interacting with a few-cycle, intense laser pulse and an intense pulse of the coherent x-rays to produce a multi-MW intensity, x-ray pulses {approx}100 attoseconds in duration. Due to a naturally-occurring frequency chirp, these pulses can be further temporally compressed.

  11. Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation

    SciTech Connect

    Yuan Chunqing; Yates, John T. Jr.

    2013-04-21

    The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

  12. Utility of Normal Tissue-to-Tumor {alpha}/{beta} Ratio When Evaluating Isodoses of Isoeffective Radiation Therapy Treatment Plans

    SciTech Connect

    Gay, Hiram A.; Jin Jianyue; Chang, Albert J.; Ten Haken, Randall K.

    2013-01-01

    Purpose: To achieve a better understanding of the effect of the number of fractions on normal tissue sparing for equivalent tumor control in radiation therapy plans by using equivalent biologically effective dose (BED) isoeffect calculations. Methods and Materials: The simple linear quadratic (LQ) model was assumed to be valid up to 10 Gy per fraction. Using the model, we formulated a well-known mathematical equality for the tumor prescription dose and probed and solved a second mathematical problem for normal tissue isoeffect. That is, for a given arbitrary relative isodose distribution (treatment plan in percentages), 2 isoeffective tumor treatment regimens (N fractions of the dose D and n fractions of the dose d) were denoted, which resulted in the same BED (corresponding to 100% prescription isodose). Given these situations, the LQ model was further exploited to mathematically establish a unique relative isodose level, z (%), for the same arbitrary treatment plan, where the BED to normal tissues was also isoeffective for both fractionation regimens. Results: For the previously stated problem, the relative isodose level z (%), where the BEDs to the normal tissue were also equal, was defined by the normal tissue {alpha}/{beta} ratio divided by the tumor {alpha}/{beta} times 100%. Fewer fractions offers a therapeutic advantage for those portions of the normal tissue located outside the isodose surface, z, whereas more fractions offer a therapeutic advantage for those portions of the normal tissue within the isodose surface, z. Conclusions: Relative isodose-based treatment plan evaluations may be useful for comparing isoeffective tumor regimens in terms of normal tissue effects. Regions of tissues that would benefit from hypofractionation or standard fractionation can be identified.

  13. Real-time, automated characterization of surfaces for alpha and beta radiation

    SciTech Connect

    Egidi, P.V.; Flynn, C.R.; Blair, M.S.; Selfridge, R.J.

    1997-12-31

    A new data collection system, called ABACUS{trademark}, has been developed that automates and expedites the collection, conversion, and reporting of radiological survey data of surfaces. Field testing of the system by Oak Ridge National Laboratory/Environmental Technology Section is currently underway. Preliminary results are presented. The system detects, discriminates, and separately displays the results for alpha and beta contamination scans on floors and walls with a single pass. Fixed-position static counting is also possible for quantitative measuring. The system is currently configured with five 100 cm{sup 2} dual-phosphor plastic scintillation detectors mounted in a lightweight aluminum fixture that holds the detectors in a fixed array. ABACUS{trademark} can be configured with other detectors if desired. Ratemeter/scalars traditionally coupled to individual detectors have been replaced by a single unit that houses the power supply and discriminator circuit boards to support up to five detectors. The system is designed to be used by a single operator. Each detector`s position and data are transmitted once per second and recorded on a nearby laptop computer. The data are converted to appropriate units, color-coded, and mapped to display graphically the findings for each detector in real-time. Reports can be generated immediately following the survey. Survey data can be exported in a variety of formats. Benefits of ABACUS{trademark} are: (1) immediate feedback to decision makers using the observational approach to characterization or remediation, (2) thorough documentation of survey results, (3) increased statistical confidence in scans by recording counts every second, (4) reduced paperwork and elimination of transcription errors, and (5) time and cost savings for collection, conversion, mapping, evaluating, and reporting data over traditional methods.

  14. Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result

    NASA Astrophysics Data System (ADS)

    Basar, Khairul; Riupassa, Robi D.; Bachtiar, Reza; Badrianto, Muldani D.

    2014-09-01

    It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

  15. Radiation reaction effects in cascade scattering of intense, tightly focused laser pulses by relativistic electrons: Classical approach

    NASA Astrophysics Data System (ADS)

    Zhidkov, A.; Masuda, S.; Bulanov, S. S.; Koga, J.; Hosokai, T.; Kodama, R.

    2014-05-01

    Nonlinear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including radiation damping for the quantum parameter ⟨ℏωxray⟩/ɛ <1 and an arbitrary radiation parameter χ. The electron's energy loss, along with its being scattered to the side by the ponderomotive force, makes scattering in the vicinity of a high laser field nearly impossible at high electron energies. The use of a second, copropagating laser pulse as a booster is shown to partially solve this problem.

  16. Extension of the possibilities of a commercial digital camera in detecting spatial intensity distribution of laser radiation

    SciTech Connect

    Konnik, M V; Manykin, Eduard A; Starikov, S N

    2010-06-23

    Performance capabilities of commercial digital cameras are demonstrated by the example of a Canon EOS 400D camera in measuring and detecting spatial distributions of laser radiation intensity. It is shown that software extraction of linear data expands the linear dynamic range of the camera by a factor greater than 10, up to 58 dB. Basic measurement characteristics of the camera are obtained in the regime of linear data extraction: the radiometric function, deviation from linearity, dynamic range, temporal and spatial noises (both dark and those depending on the signal value). The parameters obtained correspond to those of technical measuring cameras. (measurement of laser radiation parameters)

  17. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    SciTech Connect

    Adachi, Naoki; Kubota, Yoshitaka; Kosaka, Kentarou; Akita, Shinsuke; Sasahara, Yoshitarou; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.

  18. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation

    NASA Astrophysics Data System (ADS)

    Williams, Rachel; Schofield, Amy; Holder, Gareth; Downes, Joan; Edgar, David; Harrison, Paul; Siggel-King, Michele; Surman, Mark; Dunning, David; Hill, Stephen; Holder, David; Jackson, Frank; Jones, James; McKenzie, Julian; Saveliev, Yuri; Thomsen, Neil; Williams, Peter; Weightman, Peter

    2013-01-01

    Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.

  19. Reactive Astrocytes Expressing Intense Estrogen Receptor-alpha Immunoreactivities Have Much Elongated Cytoplasmic Processes: An Autopsy Case of Human Cerebellar Tissue with Multiple Genitourinary and Gastrointestinal Anomalies

    PubMed Central

    Kim, Eo-Jin; Oh, Chang Seok; Kim, Jaehyup; Kim, Wu Ho; Chung, Yoon Hee

    2007-01-01

    We performed an immunohistochemical study on the estrogen receptor alpha (ER-α) distribution in the cerebellum of a human neonate with multiple congenital anomalies, that had been acquired during autopsy. Although the exact pathology in the brain was not clearly elucidated in this study, an unidentified stressful condition might have induced the astrocytes into reactive states. In this immunohistochemical study on the neonatal cerebellum with multiple congenital anomalies, intense ER-α immunoreactivities (IRs) were localized mainly within the white matter even though ER-α IRs were known to be mainly localized in neurons. Double immunohistochemical staining showed that ER-α IR cells were reactive astrocytes, but not neurons. Interestingly, there were differences in the process length among the reactive astrocytes showing ER-α IRs. Our quantitative data confirmed that among the glial fibrillary acidic protein (GFAP)-expressing reactive astrocytes, the cells exhibiting intense ER-α IRs have much longer cytoplasmic processes and relatively weaker GFAP IRs. Taken together, the elongated processes of reactive astrocytes might be due to decreased expression of GFAP, which might be induced by elevated expression of ER-α even though the elucidation of the exact mechanism needs further studies. PMID:17982251

  20. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy

    SciTech Connect

    Hong, Theodore S.; Tome, Wolfgang A.; Chappell, Richard J.; Chinnaiyan, Prakash; Mehta, Minesh P.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2005-03-01

    Purpose: Intensity-modulated radiation therapy (IMRT) in the treatment of head-and-neck (H and N) cancer provides the opportunity to diminish normal tissue toxicity profiles and thereby enhance patient quality of life. However, highly conformal treatment techniques commonly establish steep dose gradients between tumor and avoidance structures. Daily setup variations can therefore significantly compromise the ultimate precision of idealized H and N IMRT delivery. This study provides a detailed analysis regarding the potential impact of daily setup variations on the overall integrity of H and N IMRT. Methods and materials: A series of 10 patients with advanced H and N cancer were prospectively enrolled in a clinical trial to examine daily H and N radiation setup accuracy. These patients were treated with conventional shrinking field design using three-dimensional treatment planning techniques (not IMRT). Immobilization and alignment were performed using modern H and N practice techniques including conventional thermoplastic masking, baseplate fixation to the treatment couch, three-point laser alignment, and weekly portal film evaluation. After traditional laser alignment, setup accuracy was assessed daily for each patient by measuring 3 Cartesian and 3 angular deviations from the specified isocenter using a high-precision, optically guided patient localization system, which affords submillimeter setup accuracy. These positional errors were then applied to a distinct series of 10 H and N IMRT plans for detailed analysis regarding the impact of daily setup variation (without optical guidance) on the ultimate integrity of IMRT plans over a 30-day treatment course. Dose-volume histogram (DVH), equivalent uniform dose (EUD), mean total dose (mTd), and maximal total dose (MTD) for normal structures were analyzed for IMRT plans with and without incorporation of daily setup variation. Results: Using conventional H and N masking and laser alignment for daily positioning, the

  1. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.

    PubMed

    Achterberg, Nils; Müller, Reinhold G

    2007-10-01

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of +/- 36 degrees. Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of "step and shoot" MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as "multibeam tomotherapy." Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The "Multifocal MLC-positioning" algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  2. Multibeam tomotherapy: A new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy

    SciTech Connect

    Achterberg, Nils; Mueller, Reinhold G.

    2007-10-15

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of {+-}36 deg. . Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of 'step and shoot' MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as 'multibeam tomotherapy.' Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The 'Multifocal MLC-positioning' algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  3. Postoperative intensity modulated radiation therapy in high risk prostate cancer: a dosimetric comparison.

    PubMed

    Digesú, Cinzia; Cilla, Savino; De Gaetano, Andrea; Massaccesi, Mariangela; Macchia, Gabriella; Ippolito, Edy; Deodato, Francesco; Panunzi, Simona; Iapalucci, Chiara; Mattiucci, Gian Carlo; D'Angelo, Elisa; Padula, Gilbert D A; Valentini, Vincenzo; Cellini, Numa; Piermattei, Angelo; Morganti, Alessio G

    2011-01-01

    The aim of this study was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal technique (3D-CRT), with respect to target coverage and irradiation of organs at risk for high dose postoperative radiotherapy (PORT) of the prostate fossa. 3D-CRT and IMRT treatment plans were compared with respect to dose to the rectum and bladder. The dosimetric comparison was carried out in 15 patients considering 2 different scenarios: (1) exclusive prostate fossa irradiation, and (2) pelvic node irradiation followed by a boost on the prostate fossa. In scenario (1), a 3D-CRT plan (box technique) and an IMRT plan were calculated and compared for each patient. In scenario (2), 3 treatment plans were calculated and compared for each patient: (a) 3D-CRT box technique for both pelvic (prophylactic nodal irradiation) and prostate fossa irradiation (3D-CRT only); (b) 3D-CRT box technique for pelvic irradiation followed by an IMRT boost to the prostatic fossa (hybrid 3D-CRT and IMRT); and (c) IMRT for both pelvic and prostate fossa irradiation (IMRT only). For exclusive prostate fossa irradiation, IMRT significantly reduced the dose to the rectum (lower Dmean, V50%, V75%, V90%, V100%, EUD, and NTCP) and the bladder (lower Dmean, V50%, V90%, EUD and NTCP). When prophylactic irradiation of the pelvis was also considered, plan C (IMRT only) performed better than plan B (hybrid 3D-CRT and IMRT) as respect to both rectum and bladder irradiation (reduction of Dmean, V50%, V75%, V90%, equivalent uniform dose [EUD], and normal tissue complication probability [NTCP]). Plan (b) (hybrid 3D-CRT and IMRT) performed better than plan (a) (3D-CRT only) with respect to dose to the rectum (lower Dmean, V75%, V90%, V100%, EUD, and NTCP) and the bladder (Dmean, EUD, and NTCP). Postoperative IMRT in prostate cancer significantly reduces rectum and bladder irradiation compared with 3D-CRT.

  4. Potentially Missing Physics of the Early Universe: Nonlinear Vacuum Polarization in Intense Blackbody Radiation

    SciTech Connect

    Wu, S Q; Hartemann, F V

    2010-04-13

    The standard Big Bang universe model is mainly based on linear interactions, except during exotic periods such as inflation. The purpose of the present proposal is to explore the effects, if any, of vacuum polarization in the very high energy density environment of the early universe. These conditions can be found today in astrophysical settings and may also be emulated in the laboratory using high intensity advanced lasers. Shortly after the Big Bang, there once existed a time when the energy density of the universe corresponded to a temperature in the range 10{sup 8} - 10{sup 9} K, sufficient to cause vacuum polarization effects. During this period, the nonlinear vacuum polarization may have had significant modifications on the propagation of radiation. Thus the thermal spectrum of the early universe may have been starkly non-Planckian. Measurements of the cosmic microwave background today show a spectrum relatively close to an ideal blackbody. Could the early universe have shown spectral deviations due to nonlinear vacuum effects? If so, is it possible to detect traces of those relic photons in the universe today? Found in galactic environments, compact objects such as blazars and magnetars can possess astronomically large energy densities that far exceed anything that can be created in the laboratory. Their field strengths are known to reach energy levels comparable to or surpassing the energy corresponding to the Schwinger critical field E {approx} 10{sup 18} V/m. Nonlinear vacuum effects become prominent under these conditions and have garnered much interest from the astronomical and theoretical physics communities. The effects of a nonlinear vacuum may be of crucial importance for our understanding of these objects. At energies of the order of the electron rest mass, the most important interactions are described by quantum electrodynamics (QED). It is predicted that nonlinear photon-photon interactions will occur at energies approaching the Schwinger

  5. Lateral loss and dose discrepancies of multileaf collimator segments in intensity modulated radiation therapy.

    PubMed

    Cheng, Chee W; Das, Indra J; Huq, M Saiful

    2003-11-01

    In the step-and-shoot technique delivery of intensity modulated radiation therapy (IMRT), each static field consists of a number of beamlets, some of which may be very small. In this study, we measured the dose characteristics for a range of field sizes: 2 x 2 to 12 x 10 cm2 for 6 and 15 MV x rays. For a given field length, a number of treatment fields are set up by sequentially increasing the field width using a multi leaf collimator. A set of fields is delivered with the accelerator operated in the IMRT mode. Using an ion chamber, the output factors at 1 cm and 3 cm laterally from a field edge are measured at different depths in a solid water phantom. Our results show that with insufficient lateral distance in at least one direction, the absorbed dose never reaches the equilibrium values, and can be significantly lower for very small field sizes. For example, the output factor of the 2 x 2 cm2 field relative to 10 x 10 cm2 at d(max0 is 0.832 and 0.790 for 6 MV and 15 MV x rays, respectively. Multiple output factor curves are obtained for different field lengths and different buildup conditions. Thus under nonequilibrium conditions, output factors are critically dependent on the field size and the conventional method of determining the equivalent square does not apply. Comparison of output factors acquired in the commissioning of the accelerator with those measured in the present study under conditions of nonequilibrium shows large discrepancies between the two sets of measurements. Thus monitor units generated by a treatment planning system using beam data commissioned with symmetric fields may be underestimated by > 5%, depending on the size and shape of the segments. To facilitate manual MU calculation as an independent check in step-and-shoot IMRT, the concept of effective equivalent square (EES) is introduced. Using EES, output factors can be calculated using existing beam data for fields with asymmetric collimator settings and under conditions of lateral

  6. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies

    SciTech Connect

    Ali, Arif N.; Dhabaan, Anees H.; Jarrio, Christie S.; Siddiqi, Arsalan K.; Landry, Jerome C.

    2012-10-01

    Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V{sub 25} (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V{sub 15} (53.4 Gy vs. 45.9 Gy, p = 0.035), V{sub 20} (32.2 Gy vs. 25.5 Gy, p = 0.016), and V{sub 25} (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.

  7. Origin of Tumor Recurrence After Intensity Modulated Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma

    SciTech Connect

    Raktoe, Sawan A.S.; Dehnad, Homan; Raaijmakers, Cornelis P.J.; Braunius, Weibel; Terhaard, Chris H.J.

    2013-01-01

    Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal', or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The COM model is practical and specific for recurrence assessment. Most

  8. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer

    SciTech Connect

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R.; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  9. Optimal beam design on intensity-modulated radiation therapy with simultaneous integrated boost in nasopharyngeal cancer

    SciTech Connect

    Cheng, Mei-Chun; Hu, Yu-Wen; Liu, Ching-Sheng; Lee, Jeun-Shenn; Huang, Pin-I; Yen, Sang-Hue; Lee, Yuh-Lin; Hsieh, Chun-Mei; Shiau, Cheng-Ying

    2014-10-01

    This study aims to determine the optimal beam design among various combinations of field numbers and beam trajectories for intensity-modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB) technique for the treatment of nasopharyngeal cancer (NPC). We used 10 fields with gantry angles of 155°, 130°, 75°, 25°, 0° L, 0° R, 335°, 285°, 230°, and 205° denoted as F10. To decrease doses in the spinal cord, the F10 technique was designed by featuring 2 pairs of split-opposed beam fields at 155° to 335° and 205° to 25°, as well as one pair of manually split beam fields at 0°. The F10 technique was compared with 4 other common field arrangements: F7E, 7 fields with 50° equally spaced gantry angles; F7, the basis of F10 with 155°, 130°, 75°, 0°, 285°, 230°, and 205°; F9E, 9 fields with 40° equally spaced gantry angles; and FP, 7 posterior fields with 180°, 150°, 120°, 90°, 270°, 240°, and 210°. For each individual case of 10 patients, the customized constraints derived after optimization with the standard F10 technique were applied to 4 other field arrangements. The 4 new optimized plans of each individual case were normalized to achieve the same coverage of planning target volume (PTV){sub 63} {sub Gy} as that of the standard F10 technique. The F10 field arrangement exhibited the best coverage in PTV{sub 70} {sub Gy} and the least mean dose in the trachea-esophagus region. Furthermore, the F10 field arrangement demonstrated the highest level of conformity in the low-dose region and the least monitor unit. The F10 field arrangement performed more outstandingly than the other field arrangements in PTV{sub 70} {sub Gy} coverage and spared the central organ. This arrangement also exhibited the highest conformity and delivery efficiency. The F10 technique is recommended as the standard beam geometry for the SIB-IMRT of NPC.

  10. Radiation and functional diversification of alpha keratins during early vertebrate evolution.

    PubMed

    Vandebergh, Wim; Bossuyt, Franky

    2012-03-01

    The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expected that such proteins have undergone fundamental changes in both stem and crown tetrapods. Here, we integrate genomic, phylogenetic, and expression data in a comprehensive study on the early evolution and functional diversification of tetrapod keratins. Our analyses reveal that all type I and type II tetrapod keratins evolved from only two genes that were present in the ancestor of extant vertebrates. Subsequently, the water-to-land transition in the stem lineage of tetrapods was associated with a major radiation and functional diversification of keratin genes. These duplications acquired functions that serve rigidity in integumental hard structures and were the prime for subsequent independent keratin diversification in tetrapod lineages. PMID:22046002

  11. Lyman-alpha radiative transfer during the epoch of reionization: contribution to 21-cm signal fluctuations

    NASA Astrophysics Data System (ADS)

    Semelin, B.; Combes, F.; Baek, S.

    2007-11-01

    During the epoch of reionization, Ly-α photons emitted by the first stars can couple the neutral hydrogen spin temperature to the kinetic gas temperature, providing an opportunity to observe the gas in emission or absorption in the 21-cm line. Given the bright foregrounds, it is particularly important to determine the fluctuation signature of the signal precisely, so as to be able to extract it by its correlation power. LICORICE is a Monte-Carlo radiative transfer code, coupled to the dynamics via an adaptative Tree-SPH code. We present here the Ly-α part of the implementation and validate it through three classical tests. Unlike previous works, we do not assume that P_α, the number of scatterings of Ly-α photons per atom per second, is proportional to the Ly-α background flux, but take the scatterings in the Ly-α line wings into account. The latter have the effect of steepening the radial profile of P_α around each source, and re-inforce the contrast of the fluctuations. In the particular geometry of cosmic filaments of baryonic matter, Ly-α photons are scattered out of the filament, and the large-scale structure of P_α is significantly anisotropic. This could have strong implications for the possible detection of the 21-cm signal.

  12. The Influence of the Photoionizing Radiation Spectrum on Metal-Line Ratios in Ly(alpha) Forest Clouds

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Shull, J. Michael

    1997-01-01

    Recent measurements of Si IV/C IV ratios in the high-redshift Ly(alpha) forest (Songaila & Cowie, AJ, 112, 335 (1996a); Savaglio et at., A&A (in press) (1997)) have opened a new window on chemical enrichment and the first generations of stars. However, the derivation of accurate Si/C abundances requires reliable ionization corrections, which are strongly dependent on the spectral shape of the metagalactic ionizing background and on the 'local effects' of hot stars in nearby galaxies. Recent models have assumed power-law quasar ionizing backgrounds plus a decrement at 4 Ryd to account for He II attenuation in intervening clouds. However, we show that realistic ionizing backgrounds based on cosmological radiative transfer models produce more complex ionizing spectra between 1-5 Ryd that are critical to interpreting ions of Si and C. We also make a preliminary investigation of the effects of He II ionization front nonoverlap. Because the attenuation and reemission by intervening clouds enhance Si IV relative to C the observed high Si IV/C IV ratios do not require an unrealistic Si overproduction (Si/C greater than or equal to 3 (Si/C)(solar mass)). If the ionizing spectrum is dominated by 'local effects' from massive stars, even larger Si IV/C IV ratios are possible. However, unless stellar radiation dominates quasars by more than a factor of 10, we confirm the evidence for some Si overproduction by massive stars; values Si/C approx. 2(Si/C)(solar mass) fit the measurements better than solar abundances. Ultimately, an adequate interpretation of the ratios of C IV, Si IV, and C II may require hot, collisionally ionized gas in a multiphase medium.

  13. [Effect of low-intensity 900 MHz frequency electromagnetic radiation on rat liver and blood serum enzyme activities].

    PubMed

    Nersesova, L S; Petrosian, M S; Gazariants, M G; Mkrtchian, Z S; Meliksetian, G O; Pogosian, L G; Akopian, Zh I

    2014-01-01

    The comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them. The dynamics of post-radiation changes in the activity of investigated enzyme levels following a single and short-term fractional schedules of radiation did not differ essentially.

  14. Intensity-Modulated Radiation Therapy, Proton Therapy, or Conformal Radiation Therapy and Morbidity and Disease Control in Localized Prostate Cancer

    PubMed Central

    Sheets, Nathan C.; Goldin, Gregg H.; Meyer, Anne-Marie; Wu, Yang; Chang, YunKyung; Stürmer, Til; Holmes, Jordan A.; Reeve, Bryce B.; Godley, Paul A.; Carpenter, William R.; Chen, Ronald C.

    2013-01-01

    Context There has been rapid adoption of newer radiation treatments such as intensitymodulated radiation therapy (IMRT) and proton therapy despite greater cost and limited demonstrated benefit compared with previous technologies. Objective To determine the comparative morbidity and disease control of IMRT, proton therapy, and conformal radiation therapy for primary prostate cancer treatment. Design, Setting, and Patients Population-based study using Surveillance, Epidemiology, and End Results–Medicare-linked data from 2000 through 2009 for patients with nonmetastatic prostate cancer. Main Outcome Measures Rates of gastrointestinal and urinary morbidity, erectile dysfunction, hip fractures, and additional cancer therapy. Results Use of IMRT vs conformal radiation therapy increased from 0.15% in 2000 to 95.9% in 2008. In propensity score–adjusted analyses (N=12 976), men who received IMRT vs conformal radiation therapy were less likely to receive a diagnosis of gastrointestinal morbidities (absolute risk, 13.4 vs 14.7 per 100 person-years; relative risk [RR], 0.91; 95% CI, 0.86–0.96) and hip fractures (absolute risk, 0.8 vs 1.0 per 100 person-years; RR, 0.78; 95% CI, 0.65–0.93) but more likely to receive a diagnosis of erectile dysfunction (absolute risk, 5.9 vs 5.3 per 100 person-years; RR, 1.12; 95% CI, 1.03–1.20). Intensitymodulated radiation therapy patients were less likely to receive additional cancer therapy (absolute risk, 2.5 vs 3.1 per 100 person-years; RR, 0.81; 95% CI, 0.73–0.89). In a propensity score–matched comparison between IMRT and proton therapy (n=1368), IMRT patients had a lower rate of gastrointestinal morbidity (absolute risk, 12.2 vs 17.8 per 100 person-years; RR, 0.66; 95% CI, 0.55–0.79). There were no significant differences in rates of other morbidities or additional therapies between IMRT and proton therapy. Conclusions Among patients with nonmetastatic prostate cancer, the use of IMRT compared with conformal radiation

  15. The Analysis of Data from Voyager's Ultraviolet Spectrometers: The Trend of Observed Interplanetary Lyman-alpha Intensity with Increasing Heliocentric Distance for Multiple Viewing Directions

    NASA Astrophysics Data System (ADS)

    Gilbert, C. R.; Fayock, B.; Heerikhuisen, J.; Zank, G. P.

    2014-12-01

    The motivation for this project was simple: to reduce raw data from the Ultraviolet Spectrometers on both Voyager Spacecraft to verify the results of a simulation of Lyman-alpha radiative transfer within a 3D MHD kinetic-neutral model of the heliosphere created at the University of Alabama in Huntsville. The heliospheric model, which self-consistently includes the interaction between ionized and neutral hydrogen, outputs a density map of neutral hydrogen. The Monte Carlo radiative transfer model then simulates the propagation and scattering of millions of photons through this density map and outputs the relative number of photons that should be seen by spacecraft at any point within 1000 AU of the sun. My project was to learn how to analyze the raw Voyager data and compare it to these simulations. There were several stages of analysis necessary to reduce to useful data. Records containing signals from sources other than the interplanetary medium, such as stars and planets, were discarded. The remaining records were averaged along regional lines of sight to achieve better signal to noise. The spectra were then corrected for inherent device flaws, such as channel-to-channel variations in sensitivity (fixed-pattern noise), dark counts due to the radioisotope thermal electric generator, and imperfections in the scattering of the diffraction grating. Records were then sorted and averaged to create a full-sky map consisting of 18 regions for each specified radial bin to match the cell spacing of the radiative transfer model. The results were then normalized to solar minimum to reduce variations in the data due to solar cycle oscillations. Initial results indicate an unexpected deviation from the models, but more analysis must be performed to determine if the discrepancy comes from the normalization of the data, insufficient angular resolution of the radiative transfer model, or the physics of the models themselves. Future work involves increasing the resolution of the

  16. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  17. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  18. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Yang, Shengpeng; Xu, Jin; Zhang, Wenchao; Tang, Changjian; Duan, Zhaoyun; Gong, Yubin

    2016-06-01

    The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of the beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.

  19. Patterns of Care and Outcomes Associated With Intensity-Modulated Radiation Therapy Versus Conventional Radiation Therapy for Older Patients With Head-and-Neck Cancer

    SciTech Connect

    Yu, James B.; Soulos, Pamela R.; Sharma, Richa; Makarov, Danil V.; Decker, Roy H.; Smith, Benjamin D.; Desai, Rani A.; Cramer, Laura D.; Gross, Cary P.

    2012-05-01

    Purpose: Intensity-modulated radiation therapy (IMRT) requires a high degree of expertise compared with standard radiation therapy (RT). We performed a retrospective cohort study of Medicare patients treated with IMRT compared with standard RT to assess outcomes in national practice. Methods and Materials: Using the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database, we identified patients treated with radiation for cancer of the head and neck from 2002 to 2005. We used multivariate Cox models to determine whether the receipt of IMRT was associated with differences in survival. Results: We identified 1613 patients, 33.7% of whom received IMRT. IMRT was not associated with differences in survival: the 3-year overall survival was 50.5% for IMRT vs. 49.6% for standard RT (p = 0.47). The 3-year cancer-specific survival was 60.0% for IMRT vs. 58.8% (p = 0.45). Conclusion: Despite its complexity and resource intensive nature, IMRT use seems to be as safe as standard RT in national community practice, because the use of IMRT did not have an adverse impact on survival.

  20. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  1. Effects of radiation quality, intensity, and duration on photosynthesis and growth

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1994-01-01

    Differences in radiation quality from the six most common electric lamps have little effect on photosynthetic rate. Radiation quality primarily alters growth because of changes in branching or internode elongation, which change radiation absorption. Growth and yield in wheat appear to be insensitive to radiation quality. Growth and yield in soybeans can be slightly increased under high pressure sodium (HPS) lamps compared to metal halide lamps, in spite of greatly reduced chlorophyll concentrations under HPS lamps. Daily integrated photosynthetic photon flux (mol m(exp -2)d(exp -1)) most directly determines leaf anatomy and growth. Photosynthetic photon flux (PPF) levels of 800 (mu)mol m(exp -2)s(exp -1) are adequate to simulate field daily-integrated PPF levels for both short and long day plants, but plant canopies can benefit from much higher PPF levels.

  2. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  3. The protective effects of ambroxol on radiation lung injury and influence on production of transforming growth factor beta1 and tumor necrosis factor alpha.

    PubMed

    Xia, De-Hong; Xi, Lei; Xv, Chen; Mao, Wei-Dong; Shen, Wei-Sheng; Shu, Zhong-Qin; Yang, Hong-Zhi; Dai, Min

    2010-09-01

    The aim of this article was to investigate the effect of ambroxol on radiation lung injury and the expression of transforming growth factor beta(1) (TGF-beta(1)), as well as tumor necrosis factor alpha (TNF-alpha) in plasma. Totally, 120 patients with locally advanced lung cancer in radiotherapy were randomized into treatment and control groups. Patients in the treatment group took ambroxol orally at a dosage of 90 mg, three times per day for 3 months from the beginning of radiotherapy. The expression of TGF-beta(1) and TNF-alpha in plasma was analyzed. The clinical symptoms and lung diffusing capacity were monitored using high resolving power computed tomography. The level of TGF-beta(1) in the control group was increased (11.8 +/- 5.5 ng/ml), whereas in ambroxol-treated patients, the increase was not significant (5.6 +/- 2.6 ng/ml, P < 0.001). Radiotherapy-induced elevation of TNF-alpha levels, seen in control patients, was also abolished after treatment with ambroxol (5.1 +/- 1.0 vs. 2.4 +/- 0.8 ng/ml, P < 0.001). In the treatment group, carbon monoxide diffusion capacity was not significantly decreased at 6, 12, and 18 months post-radiotherapy, compared with the control group (P < 0.05). Ambroxol decreased the expression of TGF-beta(1) and TNF-alpha, and minimized the diminishment of lung diffusion capacity after radiotherapy.

  4. Optimal sensitometric curves of Kodak EDR2 film for dynamic intensity modulated radiation therapy verification

    PubMed Central

    Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I

    2008-01-01

    Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and

  5. A novel conformity index for intensity modulated radiation therapy plan evaluation

    SciTech Connect

    Cheung, Fion W. K.; Law, Maria Y. Y.

    2012-09-15

    Purpose: Intensity modulated radiation therapy (IMRT) has gained popularity in the treatment of cancers. Manual evaluation of IMRT plans for head-and-neck cancers has been especially challenging necessitating efficient and objective assessment tools. In this work, the authors address this issue by developing a personalized conformity index (CI) for comparison of IMRT plans for head-and-neck cancers and evaluating its plan quality discerning power in comparison with other widely used CIs. Methods: A two-dimensional CI with dose and distance incorporated (CI{sub DD}) was developed using the MATLAB program language, to quantify the planning target volume (PTV) coverage. Valuable information contained in the digital imaging and communication in medicine (DICOM) RT objects were harvested for computation of each of the CI{sub DD} components. Apart from the dose penalty factor, a distance-based exponential function was employed by varying the penalty weight associated with the location of cold spots within the PTV. With the goal of deriving a customized penalty factor, the distances between individual pixel and its nearest PTV boundary was found. Using the exponential function, the impact of distance penalty was substantially larger for cold spots closer to the PTV centroid but petered out quickly wherever they were situated in the vicinity of PTV border. In order to evaluate the CI{sub DD} scoring system, three CT image data sets of nasopharyngeal carcinoma (NPC) patients were collected. Ten IMRT plans with degrading qualities were generated from each dataset and were ranked based on CI{sub DD} and other existing indices. The coefficient of variance was calculated for each dataset to compare the degree of variation. Results: The CI{sub DD} scoring system that considered spatial importance of each voxel within the PTV was successfully developed. The results demonstrated that the CI{sub DD} including four discrete factors could provide accurate rankings of plan quality by

  6. Radiation Exposure to Staff in Intensive Care Unit with Portable CT Scanner

    PubMed Central

    Xie, Zhichao; Liao, Xuelian; Zhang, Jiangqian; Jia, Lingli

    2016-01-01

    Background. Bedside radiological procedures pose a risk of radiation exposure to ICU staff. The perception of risk may increase the degree of caution among the health care staff and raise new barriers preventing patients from obtaining prompt care. Objective. The aim of this study was to estimate the annual cumulative radiation dose to individual ICU staff. Methods. In this prospective study, forty subjects were required to wear thermoluminescent dosimeter badges during their working hours. The badges were analyzed to determine the exposure after 3 months. Results. A total of 802 radiological procedures were completed at bedside during the study period. The estimated annual dosage to doctors and nurses on average was 0.99 mSv and 0.88 mSv (p < 0.001), respectively. Residents were subjected to the highest radiation exposure (1.04 mSv per year, p = 0.002). The radiation dose was correlated with day shift working hours (r = 0.426; p = 0.006) and length of service (r = −0.403; p < 0.01). Conclusions. With standard precautions, bedside radiological procedures—including portable CT scans—do not expose ICU staff to high dose of ionizing radiation. The level of radiation exposure is related to the daytime working hours and length of service. PMID:27556036

  7. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    PubMed

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  8. Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve

    PubMed Central

    Xu, Wanlong; Zhao, Xibin; Wang, Qing; Sun, Jungang; Xu, Jiangbo; Zhou, Wenzheng; Wang, Hao; Yan, Shigui; Yuan, Hong

    2014-01-01

    During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of radiotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease in Meriones meridiani. The focus of the hydatid disease on the left femur was subjected to radiotherapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no obvious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized with Echinococcus granulosus disappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized with Echinococcus granulosus was lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease in Meriones meridiani without damaging the morphology or function of the sciatic nerve. PMID:25422645

  9. Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXK alpha spectral region.

    PubMed

    Yücel, H; Dikmen, H

    2009-04-30

    In this paper, the known multigroup gamma-ray analysis method for uranium (MGAU) as one of the non-destructive gamma-ray spectrometry methods has been applied to certified reference nuclear materials (depleted, natural and enriched uranium) containing (235)U isotope in the range of 0.32-4.51% atom (235)U. Its analysis gives incorrect results for the low component (235)U in depleted and natural uranium samples where the build-up of the decay products begins to interfere with the analysis. The results reveal that the build-up of decay products seems to be significant and thus the algorithms for the presence of decay products should be improved to resulting in the correct enrichment value. For instance, for the case of (235)U analysis in depleted uranium or natural ore samples, self-induced X-rays such as 94.6 keV and 98.4 keV lying in UXK(alpha) spectral region used by MGAU can be excluded from the calculation. Because the significant increases have been observed in the intensities of uranium self-induced X-rays due to gamma-ray emissions with above 100 keV energy arising from decay products of (238)U and (235)U and these parents. Instead, the use of calibration curve to be made between the intensity ratios of self-fluorescence X-rays to 92(*)keV gamma-ray and the certified (235)U abundances is suggested for the determination of (235)U when higher amounts of decay products are detected in the gamma-ray spectrum acquired for the MGAU analysis. PMID:19203602

  10. Dosimetric properties of alpha-Al(2)O(3):C exposed to ionizing and non-ionizing radiation

    NASA Astrophysics Data System (ADS)

    Colyott, Leslie Edward

    Scope and method of study. The trapping states of Czochralski-grown α-Al2O3:C were studied using a variety of experimental techniques, including thermoluminescence (TL), phototransferred thermoluminescence (PTTL) and optical absorption measurements. The focus was placed upon those states responsible for the dosimetric behavior of the α- Al2O3:C, following exposure to various forms of ionizing and non-ionizing radiation. Findings and conclusions. The most effective wavelengths for PTTL are in the short wavelength visible to UV range. The phototransfer processes are complex and appear to involve both electrons and holes. PTTL data suggest that the fading is due to the optical stimulation of charge from the traps into the delocalized bands. At short wavelengths the phototransfer of charge from deep traps into the dosimetry traps must be considered and, thus, the exact wavelength dependence is governed by the radiation and thermal history of the sample. The dose dependence of the TL peak suggests an overlap of several peaks resulting from an array of closely spaced energy levels. A dosimeter which measures the integrated ultraviolet-B (UVB) exposure in air or in water was developed as an application of the PTTL properties of α- Al2O3:C. This dosimeter exploits the increased phototransfer efficiency of α- Al2O3:C to light in the UVB region of the spectrum to produce a near-linear dynamic range of over three decades of UVB exposure. TL and PTTL signals are analyzed, using an algorithm which assumes that a distribution of trapping levels are responsible for the observed TL signals. The signals are deconvolved into unique distribution signatures, which enable the discrimination between irradiations due to gamma/beta, alpha and neutrons. Experiments involving the high temperature anneal of α-Al2O3:C powder in an oxygen atmosphere suggest a diffusion of oxygen vacancies out of the crystal lattice under these conditions, resulting in a decrease in F- and F+- centers. TL

  11. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    NASA Astrophysics Data System (ADS)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  12. An Intercomparison of Cloud-Resolving Models with the Atmospheric Radiation Measurement Summer 1997 Intensive Observation Period Data

    NASA Astrophysics Data System (ADS)

    Xu, Kuan-Man; Cederwall, Richard T.; Donner, Leo J.; Grabowski, Wojciech W.; Guichard, Francoise; Johnson, Daniel E.; Khairoutdinov, Marat; Krueger, Steven K.; Petch, Jon C.; Randall, David A.

    2002-01-01

    This paper reports an intercomparison study of midlatitude continental cumulus convection simulated by eight two-dimensional and two three-dimensional cloud-resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulent fluxes, and radiative-heating profiles during three sub-periods of the summer 1997 Intensive Observation Period of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. Each sub-period includes two or three precipitation events of various intensities over a span of 4 or 5 days. The results can be summarized as follows. CRMs can reasonably simulate midlatitude continental summer convection observed at the ARM Cloud and Radiation Testbed site in terms of the intensity of convective activity, and the temperature and specific-humidity evolution. Delayed occurrences of the initial precipitation events are a common feature for all three sub-cases among the models. Cloud mass fluxes, condensate mixing ratios and hydrometeor fractions produced by all CRMs are similar. Some of the simulated cloud properties such as cloud liquid-water path and hydrometeor fraction are rather similar to available observations. All CRMs produce large downdraught mass fluxes with magnitudes similar to those of updraughts, in contrast to CRM results for tropical convection. Some inter-model differences in cloud properties are likely to be related to those in the parametrizations of microphysical processes. There is generally a good agreement between the CRMs and observations with CRMs being significantly better than single-column models (SCMs), suggesting that current results are suitable for use in improving parametrizations in SCMs. However, improvements can still be made in the CRM simulations; these include the proper initialization of the CRMs and a more proper method of diagnosing cloud boundaries in model outputs for comparison with satellite and radar cloud observations.

  13. Inverse problem of nonlinear acoustics: Synthesizing intense signals to intensify the thermal and radiation action of ultrasound

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Gurbatov, S. N.

    2016-07-01

    Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.

  14. A self-consistent regime of generation of terahertz radiation by an optical pulse with a tilted intensity front

    SciTech Connect

    Bugai, A N; Sazonov, S V; Shashkov, Andrei Yu

    2012-11-30

    We derived a self-consistent system of nonlinear wave equations describing the terahertz generation in dielectric uniaxial crystals by optical pulsed radiation with a tilted wavefront. The numerical analysis of the system of equations showed that the generation of a broadband one-period terahertz signal is accompanied by a red shift of the carrier frequency of the optical pulse, the magnitude of the shift being proportional to the pulse intensity. The generation efficiency with respect to energy reached a maximum at a certain distance of propagation in the crystal, after which the efficiency decreased. A satisfactory agreement was obtained between theoretical calculations and experimental data of other investigations. (generation of terahertz radiation)

  15. Dependence of injection locking of a TEA CO/sub 2/ laser on intensity of injected radiation

    SciTech Connect

    Not Available

    1982-09-01

    The authors report the results of an experimental study to determine the minimum required injected power to control the output frequency of a TEA CO/sub 2/ laser. A CW CO/sub 2/ waveguide laser was used as the injection oscillator. Both the power and the frequency of the injected radiation were varied, while the TEA reasonator cavity length was adjusted to match the frequency of the injected signal. Single longitudinal mode (SLM) TEA laser radiation was produced for injected power levels which are several orders of magnitude below those previously reported. The ratio of SLM output power to injection power exceeded 10/sup 12/ at the lowest levels of injected intensity.

  16. Possible molecular effect related to the reception of low-intensity IR radiation: Role of Src-kinase

    NASA Astrophysics Data System (ADS)

    Yachnev, I. L.; Shelykh, T. N.; Podzorova, S. A.; Rogachevskii, I. V.; Krylov, B. V.; Plakhova, V. B.

    2016-06-01

    The patch-clamp technique has been used to demonstrate that low-intensity IR irradiation affects the effective charge of the activation gating system of slow sodium channels in the nociceptive neuron membrane. IR photons are absorbed by ATP molecules bound to Na+,K+-ATPase at their hydrolysis site. Na+,K+-ATPase is a transducer of signal that is further delivered to slow sodium channels and cell genome. It is demonstrated that the irradiation does not modulate the response of a sensory neuron in the presence of PP2, an inhibitor of Src-kinase. The results show that Src-kinase is a series unit involved in the intracellular cascade processes triggered by low-intensity radiation of CO2 laser.

  17. Electron beam requirements for a three-dimensional Smith-Purcell backward-wave oscillator for intense terahertz radiation.

    SciTech Connect

    Kim, K.-J.; Kumar, V.; Accelerator Systems Division; Raja Ramanna Center for Advanced Tech.

    2007-08-01

    A Smith-Purcell device can operate as a backward-wave oscillator for intense, narrow-bandwidth, continuous wave radiation at terahertz wavelengths. We determine the requirements on electron beam current and emittance for the system to oscillate based on a three-dimensional extension of our previous two-dimensional analysis. It is found that specially designed electron beams are required with a current that exceeds a certain threshold value and a flat transverse profile that allows the beam to travel very close to the grating surface. Two methods for producing electron beams with the required characteristics are discussed.

  18. Waveguide CO{sub 2} laser with a quasi-homogeneous distribution of the output radiation intensity

    SciTech Connect

    Vlasenko, S A; Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Topkov, A N

    2013-05-31

    An experimental sample of a waveguide CO{sub 2} laser with a quasi-uniform profile of the output radiation intensity is designed on the basis of a waveguide quasi-optical cavity of a new type comprising the generic confocal cavity with a nonuniform mirror and the hollow waveguide with the dimensions satisfying the conditions for self-imaging the quasi-uniform field. The surface of the mirror has the discrete large-scale absorbing nonuniformities. Results of theoretical and experimental investigations of spatial-energy characteristics of the laser in using uniform or amplitude-stepped reflecting mirrors are presented. (lasers)

  19. First Experiences in Intensity Modulated Radiation Surgery at the National Institute of Neurology and Neurosurgery: A Dosimetric Point of View

    NASA Astrophysics Data System (ADS)

    Lárraga-Gutiérrez, José M.; Celis-López, Miguel A.

    2003-09-01

    The National Institute of Neurology and Neurosurgery in Mexico City has acquired a Novalis® shaped beam radiosurgery unit. The institute is pioneer in the use of new technologies for neuroscience. The Novalis® unit allows the use of conformal beam radiosurgery/therapy and the more advanced modality of conformal therapy: Intensity Modulated Radiation Therapy (IMRT). In the present work we present the first cases of treatments that use the IMRT technique and show its ability to protect organs at risk, such as brainstem and optical vias.

  20. On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation

    SciTech Connect

    Milant'ev, V. P. Castillo, A. J.

    2013-04-15

    Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive force in the cases of circularly and linearly polarized waves has been confirmed.

  1. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in low-dose natural terrestrial ionizing radiation exposed dwellers.

    PubMed

    Shahid, Saman; Mahmood, Nasir; Chaudhry, Muhammad Nawaz; Ahmad, Nauman

    2015-12-01

    Natural terrestrial ionizing radiations emerge from uranium deposits and can impact human tissues by affecting DNA bases which constitute genes. Human interferon alpha-2b (hIFNα-2b) gene synthesizes a protein which exhibits anticancerous, immunomodulatory, anti-proliferative and antiviral properties. This research aimed to find out hIFNα-2b gene mutations for those residents who were chronically exposed to low-dose natural terrestrial ionizing radiations. The gene amplifications was done through PCR technique and gene mutations were identified by bioinformatics in order to conclude as to how mutations identified in hIFNα-2b gene sequences will lead to alterations in the hIFNα-2b protein in radiation exposed residents. The range of radiation dose exposure was 0.4383-4.55832 (mSv/y) for the selected radiation exposed locations which were having uranium mineralization. Mutations (24%) in hIFNα-2b gene shows that some of the radiation exposed inhabitants were having a modulated immune response. The CBC (Complete Blood Count) parameters: WBC (White Blood Cells), MCH (Mean Corpuscular Hemoglobin), MCHC (MCH Concentration) and PLT (Platelets) on average were below the normal range in 24% radiation exposed subjects who were having hIFNα-2b gene mutations. Immunomodulation is observed by the mixed trend of either lymphocytosis or lymphopenia and neutropenia or neutrophilia in the exposed population. Thus, a radioactive exposure from uranium can affect the immune system and can induce mutations.

  2. Thermal shielding by subliming volume reflectors in convective and intense radiative environments.

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Green, M. J.; Weston, K. C.

    1973-01-01

    The behavior of dielectric materials having densely packed internal scattering centers subject to extreme convective and radiative environments is analyzed. Experiments have shown that these materials act as volume reflectors of incident radiation even when the exposed surface is being eroded by thermochemical ablation. The analysis was applied to interpret experiments of subliming Teflon models exposed to combined radiative and convective fluxes up to 1.7 kW/sq cm for several seconds. Results show that, although the exposed surface receded at an apparently steady rate, the internal temperature climbed continually, due to internal absorption of radiation and would have caused failure internally if the test duration were extended a few seconds. Thus, performance is time-limited by the internal absorption coefficient. Results were obtained for larger configurations and other materials. Typically, Teflon shells may withstand radiant fluxes up to 20 kW/sq cm for about 5 sec and fritted quartz up to 50 kW/sq cm for about 8 sec (corresponding to the Jupiter entry).

  3. Decoupling Intensity Radiated by the Emitter in Distance Estimation from Camera to IR Emitter

    PubMed Central

    Cano-García, Angel E.; Galilea, José Luis Lázaro; Fernández, Pedro; Infante, Arturo Luis; Pompa-Chacón, Yamilet; Vázquez, Carlos Andrés Luna

    2013-01-01

    Various models using radiometric approach have been proposed to solve the problem of estimating the distance between a camera and an infrared emitter diode (IRED). They depend directly on the radiant intensity of the emitter, set by the IRED bias current. As is known, this current presents a drift with temperature, which will be transferred to the distance estimation method. This paper proposes an alternative approach to remove temperature drift in the distance estimation method by eliminating the dependence on radiant intensity. The main aim was to use the relative accumulated energy together with other defined models, such as the zeroth-frequency component of the FFT of the IRED image and the standard deviation of pixel gray level intensities in the region of interest containing the IRED image. By using the abovementioned models, an expression free of IRED radiant intensity was obtained. Furthermore, the final model permitted simultaneous estimation of the distance between the IRED and the camera and the IRED orientation angle. The alternative presented in this paper gave a 3% maximum relative error over a range of distances up to 3 m. PMID:23727954

  4. Photoionization of highly charged ions from ultra-intense, ultraviolet and near-infrared radiation fields

    NASA Astrophysics Data System (ADS)

    Ekanayake, Nagitha

    High intensity laser light was instrumental for notable advances across an exceptional range of disciplines including plasma physics, quantum control, attosecond science, molecular dynamics, inertial confinement fusion, and optical science. Current laser technology has brought about the next generation of ultra-high intensities (1019 W/cm2). Our common understanding of light-matter interactions breaks down at these extreme intensities, especially when the liberated photoelectron becomes relativistic and the effect of the laser magnetic field is no longer negligible. As the ultrastrong laser science frontier involves unprecedented energy scales from 1 keV to 1 MeV and opens up an abundance of new high energy atomic and molecular processes, photoionization dynamics of atoms and molecules in super- and ultra-high intensity fields become an area of interest. The work presented in this dissertation is carried out to provide a better answer to the fundamental question "How atoms and molecules interact with super- and ultra-intense light fields?" In particular, the presented work will cover quantitative measurements of ionization products, ions and photoelectrons, from strong- (1013 -- 1016 W/cm2) to ultra-strong (10 16 -- 1019 W/cm2) field ionization of noble gas atoms (Ne, Kr, and Xe) and hydrocarbon molecules (CH4). In order to understand the molecular ionization processes at extreme intensities the ellipticity dependence of the ultrafast photoionization for Cn+ fragments from methane is investigated. The study extends from the strong field (C+, C2+) at 10 14 W/cm2 to the ultrastrong field (C5+) at 1018 W/cm2. The first precision measurements of ionization of Ne and Kr at 400 nm are presented from 1013 to 1017 W/cm2 for charge states up to Kr 8+. The findings indicate that ultraviolet to vacuum ultraviolet wavelengths can give the largest recollision for higher charge states. Experimental photoelectron measurements from single atom photoionization of noble gases

  5. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    SciTech Connect

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  6. On stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well

    SciTech Connect

    Krasheninnikov, S. I.

    2014-10-15

    A simple model developed by Paradkar et al. [Phys. Plasmas 19, 060703 (2012)] for the study of synergistic effects of electrostatic potential well and laser radiation is extended for the case where electric field of the well is accelerating electrons moving in the direction of the laser field propagation. It was found that in these cases, the rate of stochastic heating of energetic electrons remains virtually the same as in Paradkar et al. [Phys. Plasmas 19, 060703 (2012)], where electric field in electrostatic potential was slowing down electrons moving in the direction of the laser field propagation. However, the heating of electrons with relatively low energy can be sensitive to the orientation of the electrostatic potential well with respect to the direction of the laser radiation propagation.

  7. Alpha particles as radiopharmaceuticals in the treatment of bone metastases: mechanism of action of radium-223 chloride (Alpharadin) and radiation protection.

    PubMed

    Cheetham, Philippa J; Petrylak, Daniel P

    2012-04-01

    Approximately 85% to 90% of men with castration-resistant prostate cancer (CRPC) have radiological evidence of bone metastases. To date, however, therapies to manage bone metastases have been primarily palliative. Among CRPC patients with bone metastases, there is a significant unmet need for active antitumor treatment options that are highly efficacious and have a favorable safety profile. This article will present current information about alpha-pharmaceuticals, a new class of targeted cancer therapy for the treatment of patients with CRPC and bone metastases. It will review preclinical and clinical studies of the experimental radiopharmaceutical radium-223 chloride (Alpharadin), a first-in-class, highly targeted and well-tolerated alpha-pharmaceutical under development to improve survival in patients with bone metastases from advanced prostate cancer. Alpharadin kills cancer cells via alpha radiation from the decay of radium-223, a calcium mimetic that naturally self-targets to bone metastases. The mechanism of action of Alpharadin and specifics of administration, radiation protection, and patient management will be discussed.

  8. Measurements of x-ray spectral flux and intensity distribution of APS/CHESS undulator radiation

    SciTech Connect

    Ilinski, P.; Yun, W.; Lai, B.; Gluskin, E.; Cai, Z.

    1994-09-01

    Absolute radiation flux and polarization measurements of the APS undulators may have to be made under high thermal loading conditions. A method that may circumvent the high-heat-load problem was tested during a recent APS/CHESS undulator run. The technique makes use of a Si(Li) energy-dispersive detector to measure 5--35 keV x-rays scattered from a well-defined He gas volume at controlled pressure.

  9. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  10. An update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    NASA Technical Reports Server (NTRS)

    Shea, M. A.; Smart, D. F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979.

  11. A Phase II Study of Intensity Modulated Radiation Therapy to the Pelvis for Postoperative Patients With Endometrial Carcinoma: Radiation Therapy Oncology Group Trial 0418

    SciTech Connect

    Jhingran, Anuja; Winter, Kathryn; Portelance, Lorraine; Miller, Brigitte; Salehpour, Mohammad; Gaur, Rakesh; Souhami, Luis; Small, William; Berk, Lawrence; Gaffney, David

    2012-09-01

    Purpose: To determine the feasibility of pelvic intensity modulated radiation therapy (IMRT) for patients with endometrial cancer in a multi-institutional setting and to determine whether this treatment is associated with fewer short-term bowel adverse events than standard radiation therapy. Methods: Patients with adenocarcinoma of the endometrium treated with pelvic radiation therapy alone were eligible. Guidelines for target definition and delineation, dose prescription, and dose-volume constraints for the targets and critical normal structures were detailed in the study protocol and a web-based atlas. Results: Fifty-eight patients were accrued by 25 institutions; 43 were eligible for analysis. Forty-two patients (98%) had an acceptable IMRT plan; 1 had an unacceptable variation from the prescribed dose to the nodal planning target volume. The proportions of cases in which doses to critical normal structures exceeded protocol criteria were as follows: bladder, 67%; rectum, 76%; bowel, 17%; and femoral heads, 33%. Twelve patients (28%) developed grade {>=}2 short-term bowel adverse events. Conclusions: Pelvic IMRT for endometrial cancer is feasible across multiple institutions with use of a detailed protocol and centralized quality assurance (QA). For future trials, contouring of vaginal and nodal tissue will need continued monitoring with good QA and better definitions will be needed for organs at risk.

  12. Analysis of the plasma radiation spectra with lines of significantly varying intensity

    NASA Astrophysics Data System (ADS)

    Kostrin, D. K.; Lisenkov, A. A.; Uhov, A. A.; Ramazanov, A. N.

    2016-07-01

    Range of charge accumulation times for the charge-coupled device photodetector, in which there is linearity of its signal characteristics, is demonstrated. The influence of the blooming effect during the saturation of a signal on the form of spectral lines is shown. Method of simultaneous analysis of lines of significantly different intensity using multiple summations of the emission spectra, obtained with a small time of charge accumulation, is proposed.

  13. Intense Low-frequency Chorus Waves Observed by Van Allen Probes: Fine Structures and Potential Effect on Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Su, Z.; Zhu, H.

    2015-12-01

    Whistler-mode chorus emission in the low-density plasmatrough contributes significantly to the radiation belt electron dynamics. Chorus was usually considered to occur in the frequency range 0.1-0.8 fce (with the equatorial electron gyrofrequency fce ). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 fce observed by the Van Allen Probes on 27 August 2014. This emission exhibited little discrete rising tones but mainly the hiss-like signatures, had the high ellipticity of ˜1 and propagated quasi-parallel to the magnetic field. Compared with the typical chorus, the low-frequency chorus can produce weaker (2 times at ~ MeV and even up to several orders of magnitude at ~0.1MeV) momentum diffusion of the near-equatorially trapped electrons, but much stronger (1-2 orders of magnitude) pitch-angle diffusion near the loss cone. The acceleration and particularly loss effect of such intense low-frequency chorus may need to be taken into account in future radiation belt models.

  14. Experimental Study on Fast Electrons Transport in Ultra-intense Laser Irradiated Solid Targets by Transition Radiation

    NASA Astrophysics Data System (ADS)

    Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu

    2008-11-01

    The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.

  15. Regulatory Effect of Low-Intensity Optical Radiation on Oxygenation of Blood Irradiated In Vivo and Metabolic Processes

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.

    2016-03-01

    For three series of blood samples, we have studied the effect of therapeutic doses of low-intensity optical radiation (LOR) on oxygenation parameters of blood irradiated in vivo, and also on the levels of some metabolites: lactate, glucose, cholesterol. The quality of blood oxygenation was assessed using three parameters: the partial pressure of oxygen pVO2, the oxygen saturation of hemoglobin SVO2, and the oxygen level in arterial and venous blood, varying under the influence of low-intensity optical radiation due to photodissociation of hemoglobin/ligand complexes. We have established that during photohemotherapy (PHT), including extracorporeal, supravascular, and intravenous blood irradiation, positive changes occur in the oxygenation parameters and the metabolite levels, while after the courses of PHT have been completed, the individual changes in such parameters in individual patients were both positive and negative. The regulatory effect of PHT was apparent in the tendency toward a decrease in high initial values and an increase in low initial values both for the oxygenation parameters and for the metabolites; but at the doses recommended for use, PHT had a regulatory but still not a normalizing effect.

  16. [Personnel requirements of medical radiation physics in radiotherapy in comparison to the current guidelines "radiation protection in medicine" : Special consideration of intensity-modulated radiation therapy].

    PubMed

    Leetz, H-K; Eipper, H H; Gfirtner, H; Schneider, P; Welker, K

    2014-08-01

    In 1994 and 1998 reports on staffing levels in medical radiation physics for radiation therapy were published by the "Deutsche Gesellschaft für Medizinische Physik" (DGMP, German Society for Medical Physics). Because of the technical and methodological progress, changes in recommended qualifications of staff and new governmental regulations, it was necessary to establish new staffing levels. The data were derived from a new survey in clinics. Some of the previously established results from the old reports were adapted to the new conditions by conversion.The staffing requirements were normalized to main components as in the earlier reports resulting in a simple method for calculation of staffing levels. The results were compared with the requirements in the "Richtlinie Strahlenschutz in der Medizin" (guidelines on radiation protection in medicine) and showed satisfactory agreement.

  17. HYDRODYNAMIC AND RADIATIVE MODELING OF TEMPORAL H{alpha} EMISSION V/R VARIATIONS CAUSED BY DISCONTINUOUS MASS TRANSFER IN BINARIES

    SciTech Connect

    Chadima, Pavel; Harmanec, Petr; Wolf, Marek; Firt, Roman; Ruzdjak, Domagoj; Bozic, Hrvoje; Koubsky, Pavel

    2011-07-15

    H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.

  18. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies

    SciTech Connect

    Salama, Joseph K. . E-mail: jsalama@radonc.uchicago.edu; Mundt, Arno J.; Roeske, John; Mehta, Neil

    2006-07-15

    Purpose: The aim of this article is to report a preliminary analysis of our initial clinical experience with extended-field intensity-modulated radiotherapy for gynecologic malignancies. Methods and Materials: Between November 2002 and May 2005, 13 women with gynecologic malignancies were treated with extended-field radiation therapy. Of the women, 7 had endometrial cancer, 4 cervical cancer, 1 recurrent endometrial cancer, and 1 suspected cervical cancer. All women underwent computed tomography planning, with the upper vagina, parametria, and uterus (if present) contoured within the CTV. In addition, the clinical target volume contained the pelvic and presacral lymph nodes as well as the para-aortic lymph nodes. All acute toxicity was scored according to the Common Terminology Criteria for Adverse Events (CTCAE v 3.0). All late toxicity was scored using the Radiation Therapy Oncology Group late toxicity score. Results: The median follow-up was 11 months. Extended-field intensity-modulated radiation therapy (IMRT) for gynecologic malignancies was well tolerated. Two patients experienced Grade 3 or higher toxicity. Both patients were treated with concurrent cisplatin based chemotherapy. Neither patient was planned with bone marrow sparing. Eleven patients had no evidence of late toxicity. One patient with multiple previous surgeries experienced a bowel obstruction. One patient with bilateral grossly involved and unresectable common iliac nodes experienced bilateral lymphedema. Extended-field-IMRT achieved good local control with only 1 patient, who was metastatic at presentation, and 1 patient not able to complete treatment, experiencing in-field failure. Conclusions: Extended-field IMRT is safe and effective with a low incidence of acute toxicity. Longer follow-up is needed to assess chronic toxicity, although early results are promising.

  19. A Phase 1 Study of Everolimus + Weekly Cisplatin + Intensity Modulated Radiation Therapy in Head-and-Neck Cancer

    SciTech Connect

    Fury, Matthew G.; Lee, Nancy Y.; Sherman, Eric; Ho, Alan L.; Rao, Shyam; Heguy, Adriana; Shen, Ronglai; Korte, Susan; Lisa, Donna; Ganly, Ian; Patel, Snehal; Wong, Richard J.; Shaha, Ashok; Shah, Jatin; Haque, Sofia; Katabi, Nora; Pfister, David G.

    2013-11-01

    Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m{sup 2} weekly × 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neck cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ≥3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins.

  20. Development of new shipborne aureolemeter to measure the intensities of both direct and circumsolar radiation.

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Shiobara, M.

    2015-12-01

    Atmospheric aerosols play important role in the Earth's radiation budget through the scattering and absorption of solar radiation (direct effect) and modification of cloud properties (indirect effect). A global understanding of the spatial and temporal variations of aerosol optical thickness (AOT) and aerosol optical properties is necessary for assessment of it. Oceans cover about 70% of the Earth's surface and produce a large quantity of natural aerosols. The new shipborne aureolemeter was developed to improve the sun-tracking performance for accurate measurements of not only direct but circumsolar radiation, even on a vessel weltering. Sun position is determined by a real-time image processing system with a CCD camera. A round shape is extracted from the captured image. The position of the center of gravity of the round shape is used as the sun position. The accuracy of the sun paosition determination is finer than 0.01˚. The radiometer is tracked the sun under a feedback control with the derived sun position. For a sky radiance distribution measurement, the control target position on the CCD camera image is shifted a pixel corresponding to a measuring scattering angle. In the case of a scattering angle larger than 7˚, the radiometer's tracking is conducted under feedforward control on the basis of the angle of roll and pitch monitored with a gyroscope. To decide the solid angle of the radiometer, the radiance around the sun was measured in the angle range between the sun and sensor directions from -1.5˚ to +1.5˚ with 0.1˚ resolution. The instrument constants were determined from a Langley plot method. Now, we are conducting a comparison observation between the developed shipborne aureolemeter and an existing sky radiometer.

  1. Influence of low-intensity laser radiation upon the microflora of carious cavities and root canal

    NASA Astrophysics Data System (ADS)

    Shumilovitch, Bogdan R.; Nekrylov, Valery; Mazo, Leonid

    1995-04-01

    Laser stomatology- a relatively young branch of stomatology -has been developing actively lately. Bactericidal action of laser radiation enables to use it widely for processing carious cavities and root canals in the treatment of caries and its complications. 113 patients were studied by us. The 40 patients had antiseptic procedure of the caries cavity and then the procedure of laser therapy, so micro-organisms were found out in 26% cases. The 63 patients had antiseptic procedure only, so micro-organisms were found out in 70% cases. Control group were consisted of patients, where laser therapy was carried out without antiseptic remedies.

  2. Stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, Sergei

    2014-10-01

    Previous model used for the study of synergistic effects of electrostatic potential well and laser radiation where electric field in electrostatic potential was slowing down electrons moving in the direction of the laser field propagation, is extended for the opposite case, where electric field of the well is accelerating electrons moving in the direction of the laser field propagation. It was found that in both cases the rate of stochastic heating of energetic electrons remains virtually the same. This work was supported by the USDOE Grant DE-NA0001858 at UCSD and Grant 14.Y26.31.008 of the MES of the Russian Federation at MEPhI.

  3. X-ray optics for laser-plasma sources: Aplications of intense SXR and EUV radiation pulses

    SciTech Connect

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Miroslaw; Wachulak, Przemyslaw; Pina, Ladislav

    2012-05-17

    In this work we present a short review of SXR and EUV optics that have been designed and developed for experiments concerning material processing and imaging, using a laser-plasma radiation source based on a gas puff target. Three different kinds of mirrors employed as the EUV collectors are presented: the grazing incidence axisymmetrical ellipsoidal mirror, the grazing incidence multifoil mirror, and the ellipsoidal mirror with Mo/Si multilayer coating. Experiments concerning characterization of the mirrors were performed using EUV radiation from Kr or Xe plasmas produced in a double stream gas puff target irradiated with Nd:YAG laser pulses (4ns, 0.8 J, 10 Hz). Intensity of the focused radiation was sufficient for micromachining of organic polymers and surface modification of organic and inorganic solids. Different kinds of micro-and nanostructures created in near-surface layers of different kinds polymers were obtained. Significant differences were revealed in XPS spectra acquired for irradiated and not irradiated polymers.

  4. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    PubMed

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  5. X-ray optics for laser-plasma sources: Aplications of intense SXR and EUV radiation pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Mirosław; Wachulak, Przemysław; Pina, Ladislav

    2012-05-01

    In this work we present a short review of SXR and EUV optics that have been designed and developed for experiments concerning material processing and imaging, using a laser-plasma radiation source based on a gas puff target. Three different kinds of mirrors employed as the EUV collectors are presented: the grazing incidence axisymmetrical ellipsoidal mirror, the grazing incidence multifoil mirror, and the ellipsoidal mirror with Mo/Si multilayer coating. Experiments concerning characterization of the mirrors were performed using EUV radiation from Kr or Xe plasmas produced in a double stream gas puff target irradiated with Nd:YAG laser pulses (4ns, 0.8 J, 10 Hz). Intensity of the focused radiation was sufficient for micromachining of organic polymers and surface modification of organic and inorganic solids. Different kinds of micro-and nanostructures created in near-surface layers of different kinds polymers were obtained. Significant differences were revealed in XPS spectra acquired for irradiated and not irradiated polymers.

  6. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  7. Electronic and intraband optical properties of single quantum rings under intense laser field radiation

    SciTech Connect

    Radu, A.; Kirakosyan, A. A.; Baghramyan, H. M.; Barseghyan, M. G.; Laroze, D.

    2014-09-07

    The influence of an intense laser field on one-electron states and intraband optical absorption coefficients is investigated in two-dimensional GaAs/Ga{sub 0.7}Al{sub 0.3}As quantum rings. An analytical expression of the effective lateral confining potential induced by the laser field is obtained. The one-electron energy spectrum and wave functions are found using the effective mass approximation and exact diagonalization technique. We have shown that changes in the incident light polarization lead to blue- or redshifts in the intraband optical absorption spectrum. Moreover, we found that only blueshift is obtained with increasing outer radius of the quantum ring.

  8. Assessments of Sequential Intensity Modulated Radiation Therapy Boost (SqIB) Treatments Using HART

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    A retrospective study was pursued to evaluate the SqIB treatments performed on ten head and neck cancer patients(n=10).Average prescription doses (PDs) of 39 Gy,15Gy and 17.8Gy were delivered consecutively from larger to smaller planning target volumes(ptvs) in three different treatment plans using 6 MV X-ray photon beams from a Linear accelerator (SLA Linac, Elekta) on BID weak on-weak off schedules. These plans were statistically evaluated on basis of plan indices (PIs),dose response of targets and critical structures, and dose tolerance(DT) of various organs utilizing the DVH analysis automated software known as Histogram Analysis in Radiation Therapy-HART(S.Jang et al., 2008, Med Phys 35, p.2812). Mean SqIB PIs were found consistent with the reported values for varying radio-surgical systems.The 95.5%(n=10)of each ptvs and the gross tumor volume also received 95% (n=10)of PDs in treatments. The average volume of ten organs (N=10) affected by each PDs shrank with decreasing size of ptvs in above plans.A largest volume of Oropharynx (79%,n=10,N=10) irradiated at PD, but the largest volume of Larynx (98%, n=10, N=10) was vulnerable to DT of structure (TD50).Thus, we have demonstrated the efficiency and accuracy of HART in the assessment of Linac based plans in radiation therapy treatments of cancer.

  9. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams.

    PubMed

    Nass, Karol; Foucar, Lutz; Barends, Thomas R M; Hartmann, Elisabeth; Botha, Sabine; Shoeman, Robert L; Doak, R Bruce; Alonso-Mori, Roberto; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bean, Richard; Beyerlein, Kenneth R; Bublitz, Maike; Drachmann, Nikolaj; Gregersen, Jonas; Jönsson, H Olof; Kabsch, Wolfgang; Kassemeyer, Stephan; Koglin, Jason E; Krumrey, Michael; Mattle, Daniel; Messerschmidt, Marc; Nissen, Poul; Reinhard, Linda; Sitsel, Oleg; Sokaras, Dimosthenis; Williams, Garth J; Hau-Riege, Stefan; Timneanu, Nicusor; Caleman, Carl; Chapman, Henry N; Boutet, Sébastien; Schlichting, Ilme

    2015-03-01

    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.

  10. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams.

    PubMed

    Nass, Karol; Foucar, Lutz; Barends, Thomas R M; Hartmann, Elisabeth; Botha, Sabine; Shoeman, Robert L; Doak, R Bruce; Alonso-Mori, Roberto; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bean, Richard; Beyerlein, Kenneth R; Bublitz, Maike; Drachmann, Nikolaj; Gregersen, Jonas; Jönsson, H Olof; Kabsch, Wolfgang; Kassemeyer, Stephan; Koglin, Jason E; Krumrey, Michael; Mattle, Daniel; Messerschmidt, Marc; Nissen, Poul; Reinhard, Linda; Sitsel, Oleg; Sokaras, Dimosthenis; Williams, Garth J; Hau-Riege, Stefan; Timneanu, Nicusor; Caleman, Carl; Chapman, Henry N; Boutet, Sébastien; Schlichting, Ilme

    2015-03-01

    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations. PMID:25723924

  11. Modeling TiO₂ nanoparticle phototoxicity: The importance of chemical concentration, ultraviolet radiation intensity, and time.

    PubMed

    Li, Shibin; Erickson, Russell J; Wallis, Lindsay K; Diamond, Stephen A; Hoff, Dale J

    2015-10-01

    As a semiconductor with wide band gap energy, TiO2 nanoparticles (nano-TiO2) are highly photoactive, and recent efforts have demonstrated phototoxicity of nano-TiO2 to aquatic organisms. However, a dosimetry model for the phototoxicity of nanomaterials that incorporates both direct UV and photo-activated chemical toxicity has not yet been developed. In this study, a set of Hyalella azteca acute toxicity bioassays at multiple light intensities and nano-TiO2 concentrations, and with multiple diel light cycles, was conducted to assess how existing phototoxicity models should be adapted to nano-TiO2. These efforts demonstrated (a) adherence to the Bunsen-Roscoe law for the reciprocity of light intensity and time, (b) no evidence of damage repair during dark periods, (c) a lack of proportionality of effects to environmental nano-TiO2 concentrations, and (d) a need to consider the joint effects of nano-TiO2 phototoxicity and direct UV toxicity. PMID:26123721

  12. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  13. A model for the disc Lyman alpha emission of Uranus

    SciTech Connect

    Jaffel, L.B.; Vidal-Madjar, A. ); Prange, R.; Emerich, C. ); McConnell, J.C. )

    1991-06-01

    A new efficient radiative transfer algorithm for inhomogeneous atmospheres has been used to simulate the limb to limb Lyman {alpha} reflectivities observed with the Voyager ultraviolet spectrometer during the flyby of Uranus. It was shown that complete frequency redistribution should be adequate to describe the disc emissions. The model atmosphere used was derived using a combination of Voyager measurements and modeling. Atomic H densities calculated had sources derivable directly from solar FUV and EUV fluxes. To fit the observations, four contributions are evaluated: (1) the resonance scattering of solar Lyman {alpha} radiation, (2) Rayleigh-Raman scattering of solar Lyman {alpha} radiation, (3) the resonance scattering of interplanetary Lyman {alpha} radiation, and (4) a possible internal source of unknown origin. From comparison with the observations, and provided that the published Voyager calibrations are correct, it is shown that only atmospheres with low eddy diffusion coefficients (K{sub H}{le}100 cm{sup 2} s{sup {minus}1}) and an internal source could simulate both the shape and the strength of the measured disc emission. The main results are then that the direct solar Lyman {alpha} scattering contribution (type 1 plus type 2) is of the order of 760 R, the scattering of interplanetary Lyman {alpha} contributes about 320 R, and a small additional internal source providing about 100-500 R is needed to match the measurements. Further, the analysis of the disc intensities suggests that there is no strong variation of K with latitude.

  14. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  15. Sensorineural Hearing Loss after Combined Intensity Modulated Radiation Therapy and Cisplatin-Based Chemotherapy for Nasopharyngeal Carcinoma12

    PubMed Central

    Wang, Jin; Chen, Yuan-Yuan; Tai, An; Chen, Xue-Lin; Huang, Shao-Ming; Yang, Cungen; Bao, Yong; Li, Ning-Wei; Deng, Xiao-Wu; Zhao, Chong; Chen, Ming; Li, X. Allen

    2015-01-01

    PURPOSE: The incidence of sensorineural hearing loss (SNHL) after treatment with combination of intensity-modulated radiation therapy (IMRT) and cisplatin-based chemotherapy in nasopharyngeal carcinoma (NPC) patients was evaluated, and relationships of SNHL with host factors, treatment-related factors, and radiation dosimetric parameters were investigated. METHODS: Fifty-one NPC patients treated with IMRT from 2004 to 2009 were analyzed. All patients received neoadjuvant, concurrent, or adjuvant use of cisplatin. Pure tone audiometry was performed during the follow-up period with a median time of 60 months, ranging from 28 to 84 months. Correlation of SNHL at low frequencies (pure tone average, 0.5-2 kHz) with a series of factors was analyzed. RESULTS: Among 102 ears, 12.7% had low-frequency SNHL and 42.2% had high-frequency (4 kHz) SNHL. The incidence of low-frequency SNHL was greater in patients with age > 40, with T-stage 4, or who received cumulative cisplatin dose (CCD) > 200 mg/m2 (P = .034, .011, and .003, respectively) and in ears with secretory otitis media (SOM) (P = .002). Several dosimetric parameters were found to be correlated with SNHL. Univariate analysis showed that the minimum radiation dose to 0.1 ml highest dose volume (D0.1 ml) of the cochlea was the best radiation-related predictive parameter. Multivariate analysis indicated that CCD, SOM, and D0.1 ml of cochlea (P = .035, .012, and .022, respectively) were the factors associated with SNHL. CONCLUSION: For NPC patients treated with IMRT and chemotherapy, the incidence of treatment-related SNHL was associated with CCD, D0.1 ml of cochlea, and SOM. PMID:26692526

  16. The Occurence Rate, Polarization Character, and Intensity of Broadband Jovian Kilometric Radiation. [Voyager Project

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1980-01-01

    The major observational features of one new component of Jupiter's radio emission spectrum, the broadband kilometer-wavelenth radiation or bKOM are described. The Voyager planetary radio astronomy experiments reveal that the overall occurrence morphology, total power, and polarization character of bKOM are strong functions of the latitude and/or local time geometry of the observations. The post-encounter data show a decline in the mean occurrence rates and power level of bKOM and, in particular, a depletion in the occurrence rate at those same longitudes where the detection rate is a maximum before encounter. Additionally, the polarization sense undergoes a permanent reversal in sign after encounter, whereas the time-averaged wave axial ratio and degrees of polarization remain relatively unchanged. No evidence of any control by Io is found. The strong dependence of the morphology on local time suggests a source whose beam is nearly fixed relative to the Jupiter-sun line.

  17. [Calculation of the dose of low-intensity laser radiation: the need or the harm?].

    PubMed

    Moskvin, S V

    2012-01-01

    This study showed that it is highly undesirable to equip the devices for laser therapy with the dose-calculation function. In order to avoid mistakes, the operator should perform a strict sequence of actions as follows: to choose the needed wavelength and operating regime (the laser head block) of the LILR source, to set and measure the radiation power, the time and frequency of treatment, turn on the apparatus, control its operation and switch it off at the scheduled time. Meeting all these requirements eventually ensures obtaining a certain optimal dose density and guarantees that the entire procedure of laser irradiation is performed in a proper way. The equipment of the apparatus with the dose-calculation function is nothing more than a marketing ploy intended to earn extra money that apart from everything else creates additional problems for the customer. PMID:23373298

  18. Responses of organic and inorganic materials to intense EUV radiation from laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Torii, Shuichi; Nakamura, Daisuke; Takahashi, Akihiko; Okada, Tatsuo; Niino, Hiroyuki; Murakami, Kouichi

    2013-05-01

    We have investigated responses of polymers to EUV radiation from laser-produced plasmas beyond ablation thresholds and micromachining. We concentrated on fabricate precise 3D micro-structures of PDMS, PMMA, acrylic block copolymers (BCP), and silica. The micromachining technique can be applied to three-dimensional micro-fluidic and bio-medical devices. The EUV processing is a promising to realize a