Sample records for intense dynamic exercise

  1. Blood flow measurement of human skeletal muscle during various exercise intensity using diffuse correlation spectroscopy (DCS)

    NASA Astrophysics Data System (ADS)

    Murakami, Yuya; Ono, Yumie; Ichinose, Masashi

    2017-02-01

    We studied blood flow dynamics of active skeletal muscle using diffuse correlation spectroscopy (DCS), an emerging optical modality that is suitable for noninvasive quantification of microcirculation level in deep tissue. Seven healthy subjects conducted 0.5 Hz dynamic handgrip exercise for 3 minutes at intensities of 10, 20, 30, and 50 % of maximal voluntary contraction (MVC). DCS could detect the time-dependent increase of the blood flow response of the forearm muscle for continuous exercises, and the increase ratios of the mean blood flow through the exercise periods showed good correlation with the exercise intensities. We also compared blood flow responses detected from DCS with two different photon sampling rates and found that an appropriate photon sampling rates should be selected to follow the wide-ranged increase in the muscle blood flow with dynamic exercise. Our results demonstrate the possibility for utilizing DCS in a field of sports medicine to noninvasively evaluate the dynamics of blood flow in the active muscles.

  2. Dynamic characteristics of T2*-weighted signal in calf muscles of peripheral artery disease during low-intensity exercise.

    PubMed

    Li, Zhijun; Muller, Matthew D; Wang, Jianli; Sica, Christopher T; Karunanayaka, Prasanna; Sinoway, Lawrence I; Yang, Qing X

    2017-07-01

    To evaluate the dynamic characteristics of T2* -weighted signal change in exercising skeletal muscle of healthy subjects and peripheral artery disease (PAD) patients under a low-intensity exercise paradigm. Nine PAD patients and nine age- and sex-matched healthy volunteers underwent a low-intensity exercise paradigm while magnetic resonance imaging (MRI) (3.0T) was obtained. T2*-weighted signal time-courses in lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior were acquired and analyzed. Correlations were performed between dynamic T2*-weighted signal and changes in heart rate, mean arterial pressure, leg pain, and perceived exertion. A significant signal decrease was observed during exercise in soleus and tibialis anterior of healthy participants (P = 0.0007-0.04 and 0.001-0.009, respectively). In PAD, negative signals were observed (P = 0.008-0.02 and 0.003-0.01, respectively) in soleus and lateral gastrocnemius during the early exercise stage. Then the signal gradually increased above the baseline in the lateral gastrocnemius during and after exercise in six of the eight patients who completed the study. This signal increase in patients' lateral gastrocnemius was significantly greater than in healthy subjects' during the later exercise stage (two-sample t-tests, P = 0.001-0.03). Heart rate and mean arterial pressure responses to exercise were significantly higher in PAD than healthy subjects (P = 0.036 and 0.008, respectively) and the patients experienced greater leg pain and exertion (P = 0.006 and P = 0.0014, respectively). During low-intensity exercise, there were different dynamic T2*-weighted signal behavior in the healthy and PAD exercising muscles. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:40-48. © 2016 International Society for Magnetic Resonance in Medicine.

  3. W' expenditure and reconstitution during severe intensity constant power exercise: mechanistic insight into the determinants of W'.

    PubMed

    Broxterman, Ryan M; Skiba, Phillip F; Craig, Jesse C; Wilcox, Samuel L; Ade, Carl J; Barstow, Thomas J

    2016-10-01

    The sustainable duration of severe intensity exercise is well-predicted by critical power (CP) and the curvature constant (W'). The development of the W'BAL model allows for the pattern of W' expenditure and reconstitution to be characterized and this model has been applied to intermittent exercise protocols. The purpose of this investigation was to assess the influence of relaxation phase duration and exercise intensity on W' reconstitution during dynamic constant power severe intensity exercise. Six men (24.6 ± 0.9 years, height: 173.5 ± 1.9 cm, body mass: 78.9 ± 5.6 kg) performed severe intensity dynamic handgrip exercise to task failure using 50% and 20% duty cycles. The W'BAL model was fit to each exercise test and the time constant for W' reconstitution (τW') was determined. The τW' was significantly longer for the 50% duty cycle (1640 ± 262 sec) than the 20% duty cycle (863 ± 84 sec, P = 0.02). Additionally, the relationship between τW' and CP was well described as an exponential decay (r(2) = 0.90, P < 0.0001). In conclusion, the W'BAL model is able to characterize the expenditure and reconstitution of W' across the contraction-relaxation cycles comprising severe intensity constant power handgrip exercise. Moreover, the reconstitution of W' during constant power severe intensity exercise is influenced by the relative exercise intensity, the duration of relaxation between contractions, and CP. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Identification of anaerobic threshold by analysis of heart rate variability during discontinuous dynamic and resistance exercise protocols in healthy older men.

    PubMed

    Simões, Rodrigo Polaquini; Castello-Simões, Viviane; Mendes, Renata Gonçalves; Archiza, Bruno; Dos Santos, Daniel Augusto; Bonjorno, José Carlos; de Oliveira, Claudio Ricardo; Catai, Aparecida Maria; Arena, Ross; Borghi-Silva, Audrey

    2014-03-01

    The purposes of this study were to determine anaerobic threshold (AT) during discontinuous dynamic and resistive exercise protocols by analysing of heart rate variability (HRV) and blood lactate (BL) in healthy elderly subjects and compare the cardiovascular, metabolic and autonomic variables obtained from these two forms of exercise. Fourteen elderly (70 ± 4 years) apparently healthy males underwent the following tests: (i) incremental ramp test on cycle ergometer, (ii) one repetition maximum (1RM) leg press at 45°, (iii) a discontinuous exercise test on a cycle ergometer (DET-C) protocol and (iv) a resistance exercise leg press (DET-L) protocol. Heart rate, blood pressure and BL were obtained during each increment of exercise intensity. No significant differences (P>0·05) were found between methods of AT determination (BL and HRV) nor the relative intensity corresponding to AT (30% of maximum intensity) between the types of exercise (DET-C and DET-L). Furthermore, no significant differences (P>0·05) were found between the DET-C and DET-L in relation to HRV, however, the DET-L provided higher values of systolic blood pressure and BL (P<0·05) from the intensity corresponding to AT. We conclude that HRV was effective in determination of AT, and the parasympathetic modulation responses obtained during dynamic and resistive exercise protocols were similar when compared at the same relative intensity. However, DET-L resulted in higher values of blood pressure and BL at workloads beyond AT. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  5. Immediate effects of dynamic sitting exercise on the lower back mobility of sedentary young adults

    PubMed Central

    Chatchawan, Uraiwan; Jupamatangb, Unthika; Chanchitc, Sunisa; Puntumetakul, Rungthip; Donpunha, Wanida; Yamauchi, Junichiro

    2015-01-01

    [Purpose] The aim of this study was to investigate the effects of dynamic sitting exercises during prolonged sitting on the lower back mobility of sedentary young adults. [Subjects and Methods] Seventy-one subjects aged between 18–25 years participated in this study. Following a randomized crossover study design, subjects were randomly assigned to two groups: sitting only and dynamic sitting exercise. The dynamic sitting exercise was a combination of lower back hyperextension and abdominal drawing-in movements which were repeated 6 times in a 1-minute period and performed every 20 minutes during a 2-hour sitting session. Lumbar range of movement was measured with the modified-modified Schober test, and the pain intensity was evaluated using the visual analog scale. [Results] After the experiment, the lumbar range of movement was significantly impaired in the sitting only group; however, it was significantly improved in the dynamic sitting exercise group. There were significant differences in lumbar range of movement of both flexion and extension between the groups. No significant difference in pain intensity between the groups was found. [Conclusion] These results suggest that dynamic sitting exercises during prolonged sitting can prevent decreases in lumbar range of movement in both back flexion and extension following a 2-hour sitting period. PMID:26696698

  6. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise.

    PubMed

    Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko

    2017-04-01

    We examined whether a change in posterior cerebral artery flow velocity (PCAv) reflected the posterior cerebral blood flow in healthy subjects during both static and dynamic exercise. PCAv and vertebral artery (VA) blood flow, as an index of posterior cerebral blood flow, were continuously measured during an exercise trial using transcranial Doppler (TCD) ultrasonography and Doppler ultrasound, respectively. Static handgrip exercise significantly increased both PCAv and VA blood flow. Increasing intensity of dynamic exercise further increased VA blood flow from moderate exercise, while PCAv decreased to almost resting level. During both static and dynamic exercise, the PCA cerebrovascular conductance (CVC) index significantly decreased from rest (static and high-intensity dynamic exercise, -11.5 ± 12.2% and -18.0 ± 16.8%, means ± SD, respectively) despite no change in the CVC of VA. These results indicate that vasoconstriction occurred at PCA but not VA during exercise-induced hypertension. This discrepancy in vascular response to exercise between PCA and VA may be due to different cerebral arterial characteristics. Therefore, to determine the effect of exercise on posterior cerebral circulation, at least, we need to carefully consider which cerebral artery to measure, regardless of exercise mode. NEW & NOTEWORTHY We examined whether transcranial Doppler-determined flow velocity in the posterior cerebral artery can be used as an index of cerebral blood flow during exercise. However, the changes in posterior cerebral artery flow velocity during exercise do not reflect vertebral artery blood flow. Copyright © 2017 the American Physiological Society.

  7. Recruitment of single muscle fibers during submaximal cycling exercise.

    PubMed

    Altenburg, T M; Degens, H; van Mechelen, W; Sargeant, A J; de Haan, A

    2007-11-01

    In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which corresponded to 38% of the maximal dynamic muscle force. Biopsies of the vastus lateralis muscle were taken from six subjects at rest and during the exercise, two at each time point. From the first biopsy single fibers were isolated and characterized as type I and II, and phosphocreatine-to-creatine (PCr/Cr) ratios and periodic acid-Schiff (PAS) stain intensities were measured. Cross sections were cut from the second biopsy, individual fibers were characterized as type I and II, and PAS stain intensities were measured. A decline in PCr/Cr ratio and in PAS stain intensity was used as indication of fiber recruitment. Within 1 min of exercise both type I and, although to a lesser extent, type II fibers were recruited. Furthermore, the PCr/Cr ratio revealed that the same proportion of fibers was recruited during the whole 45 min of exercise, indicating a rather constant recruitment. The PAS staining, however, proved inadequate to fully demonstrate fiber recruitment even after 45 min of exercise. We conclude that during cycling exercise a greater proportion of type II fibers is recruited than previously reported for isometric contractions, probably because of the dynamic character of the exercise. Furthermore, the PCr/Cr ratio method is more sensitive in determining fiber activation than the PAS stain intensity method.

  8. The Effects of Exercise on the Firing Patterns of Single Motor Units.

    ERIC Educational Resources Information Center

    Cracraft, Joe D.

    In this study, the training effects of static and dynamic exercise programs on the firing patterns of 450 single motor units (SMU) in the human tibialis anterior muscle were investigated. In a six week program, the static group (N=5) participated in daily high intensity, short duration, isometric exercises while the dynamic group (N=5)…

  9. High-Intensity Locomotor Exercise Increases Brain-Derived Neurotrophic Factor in Individuals with Incomplete Spinal Cord Injury.

    PubMed

    Leech, Kristan A; Hornby, T George

    2017-03-15

    High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity-dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury.

  10. High-Intensity Locomotor Exercise Increases Brain-Derived Neurotrophic Factor in Individuals with Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.

    2017-01-01

    Abstract High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity–dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury. PMID:27526567

  11. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    PubMed

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  12. Mortality in former Olympic athletes: retrospective cohort analysis

    PubMed Central

    Zwiers, R; Zantvoord, F W A; van Bodegom, D; van der Ouderaa, F J G; Westendorp, R G J

    2012-01-01

    Objective To assess the mortality risk in subsequent years (adjusted for year of birth, nationality, and sex) of former Olympic athletes from disciplines with different levels of exercise intensity. Design Retrospective cohort study. Setting Former Olympic athletes. Participants 9889 athletes (with a known age at death) who participated in the Olympic Games between 1896 and 1936, representing 43 types of disciplines with different levels of cardiovascular, static, and dynamic intensity exercise; high or low risk of bodily collision; and different levels of physical contact. Main outcome measure All cause mortality. Results Hazard ratios for mortality among athletes from disciplines with moderate cardiovascular intensity (1.01, 95% confidence interval 0.96 to 1.07) or high cardiovascular intensity (0.98, 0.92 to 1.04) were similar to those in athletes from disciplines with low cardiovascular intensity. The underlying static and dynamic components in exercise intensity showed similar non-significant results. Increased mortality was seen among athletes from disciplines with a high risk of bodily collision (hazard ratio 1.11, 1.06 to 1.15) and with high levels of physical contact (1.16, 1.11 to 1.22). In a multivariate analysis, the effect of high cardiovascular intensity remained similar (hazard ratio 1.05, 0.89 to 1.25); the increased mortality associated with high physical contact persisted (hazard ratio 1.13, 1.06 to 1.21), but that for bodily collision became non-significant (1.03, 0.98 to 1.09) as a consequence of its close relation with physical contact. Conclusions Among former Olympic athletes, engagement in disciplines with high intensity exercise did not bring a survival benefit compared with disciplines with low intensity exercise. Those who engaged in disciplines with high levels of physical contact had higher mortality than other Olympians later in life. PMID:23241269

  13. Sustained, Low-Intensity Exercise Achieved by a Dynamic Feeding System Decreases Body Fat in Ponies.

    PubMed

    de Laat, M A; Hampson, B A; Sillence, M N; Pollitt, C C

    2016-09-01

    Obesity in horses is increasing in prevalence and can be associated with insulin insensitivity and laminitis. Current treatment strategies for obesity include dietary restriction and exercise. However, whether exercise alone is effective for decreasing body fat is uncertain. Our hypothesis was that twice daily use of a dynamic feeding system for 3 months would induce sustained, low-intensity exercise thereby decreasing adiposity and improving insulin sensitivity (SI). Eight, university-owned, mixed-breed, adult ponies with body condition scores (BCS) ≥5/9 were used. Two treatments ("feeder on" or "feeder off") were administered for a 3-month period by a randomized, crossover design (n = 4/treatment). An interim equilibration period of 6 weeks at pasture separated the 2 study phases. Measurements of body mass (body weight, BCS, cresty neck score [CrNS], and morphometry), body fat (determined before and after the "feeder on" treatment only), triglycerides, and insulin sensitivity (SI; combined glucose-insulin test) were undertaken before and after treatments. The dynamic feeding system induced a 3.7-fold increase in the daily distance travelled (n = 6), compared to with a stationary feeder, which significantly decreased mean BCS (6.53 ± 0.94 to 5.38 ± 1.71), CrNS (2.56 ± 1.12 to 1.63 ± 1.06) and body fat (by 4.95%). An improvement in SI did not occur in all ponies. A dynamic feeding system can be used to induce sustained (daily), low-intensity exercise that promotes weight loss in ponies. However, this exercise may not be sufficient to substantially improve SI. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Effects of dynamic exercise on plasma arachidonic acid epoxides and diols in human volunteers

    USDA-ARS?s Scientific Manuscript database

    Metabolites of the cytochrome P450 pathway may contribute to vasodilation of the vasculature of skeletal muscle during exercise. We determined effects of exercise intensity and duration on plasma concentrations of specific metabolites in the epoxyeicosatrienoic acid family. This allowed us to dete...

  15. [Hypertension and exercise. Sports methods for the hypertensive patient].

    PubMed

    Thiele, Holger; Pohlink, Carla; Schuler, Gerhard

    2004-06-01

    Physical exercise is of paramount therapeutic importance in nonpharmacological interventions of arterial hypertension. The extent and the effects of exercise on blood pressure lowering are analyzed according to the actual literature. Suitable and nonsuitable activities are considered. Dynamic isotonic endurance training is more effective than static isometric exercise. A rather low or moderate extent of endurance training lowers the systolic and diastolic blood pressure by approximately 5-11 mmHg and 3-8 mmHg, respectively. This effect of exercise can be achieved besides the favorable effects on other cardiovascular risk factors. Intensity of exercise should be monitored by the heart rate. The mean intensity should not exceed 70% of the maximal heart rate. An initial ergometry might be suitable for the planning of training recommendations.

  16. The Use of Session RPE to Monitor the Intensity of Weight Training in Older Women: Acute Responses to Eccentric, Concentric, and Dynamic Exercises

    PubMed Central

    Ferreira, Sandro S.; Krinski, Kleverton; Alves, Ragami C.; Benites, Mariana L.; Redkva, Paulo E.; Elsangedy, Hassan M.; Buzzachera, Cosme F.; Souza-Junior, Tácito P.; da Silva, Sergio G.

    2014-01-01

    The rating of perceived exertion (RPE) is ability to detect and interpret organic sensations while performing exercises. This method has been used to measure the level of effort that is felt during weight-training at a given intensity. The purpose of this investigation was to compare session RPE values with those of traditional RPE measurements for different weight-training muscle actions, performed together or separately. Fourteen women with no former weight-training experience were recruited for the investigation. All participants completed five sessions of exercise: familiarization, maximum force, concentric-only (CONC-only), eccentric-only (ECC-only), and dynamic (DYN = CONC + ECC). The traditional RPE method was measured after each series of exercises, and the session RPE was measured 30 min after the end of the training session. The statistical analyses used were the paired t-test, one-way analysis of variance, and repeated measures analysis of variance. Significant differences between traditional RPE and session RPE for DYN, CONC, and ECC exercises were not found. This investigation demonstrated that session RPE is similar to traditional RPE in terms of weight-training involving concentric, eccentric, or dynamic muscle exercises, and that it can be used to prescribe and monitor weight-training sessions in older subjects. PMID:24834354

  17. Incorporating yoga into an intense physical therapy program in someone with Parkinson's disease: a case report.

    PubMed

    Moriello, Gabriele; Denio, Christopher; Abraham, Megan; DeFrancesco, Danielle; Townsley, Jill

    2013-10-01

    The purpose of this case report was to document outcomes following an intense exercise program integrating yoga with physical therapy exercise in a male with Parkinson's disease. The participant performed an intense 1½-hour program (Phase A) incorporating strengthening, balance, agility and yoga exercises twice weekly for 12 weeks. He then completed a new home exercise program developed by the researchers (Phase B) for 12 weeks. His score on the Parkinson's Disease Questionnaire improved 16 points while his score on the High Level Mobility Assessment tool improved 11 points. There were also improvements in muscle length of several lower extremity muscles, in upper and lower extremity muscle strength, in dynamic balance and he continues to work full time 29 months later. There were no improvements in thoracic posture or aerobic power. This intense program was an effective dose of exercise for someone with Parkinson's disease and allowed him to continue to participate in work, leisure, and community activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The kinetics of lactate production and removal during whole-body exercise

    PubMed Central

    2012-01-01

    Background Based on a literature review, the current study aimed to construct mathematical models of lactate production and removal in both muscles and blood during steady state and at varying intensities during whole-body exercise. In order to experimentally test the models in dynamic situations, a cross-country skier performed laboratory tests while treadmill roller skiing, from where work rate, aerobic power and blood lactate concentration were measured. A two-compartment simulation model for blood lactate production and removal was constructed. Results The simulated and experimental data differed less than 0.5 mmol/L both during steady state and varying sub-maximal intensities. However, the simulation model for lactate removal after high exercise intensities seems to require further examination. Conclusions Overall, the simulation models of lactate production and removal provide useful insight into the parameters that affect blood lactate response, and specifically how blood lactate concentration during practical training and testing in dynamical situations should be interpreted. PMID:22413898

  19. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2010-10-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  20. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2011-03-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  1. Effect of exercise intensity on circulating microparticles in men and women.

    PubMed

    Shill, Daniel D; Lansford, Kasey A; Hempel, Hannah K; Call, Jarrod A; Murrow, Jonathan R; Jenkins, Nathan T

    2018-05-01

    What is the central question of this study? What is the effect of exercise intensity on circulating microparticle populations in young, healthy men and women? What is the main finding and its importance? Acute, moderate-intensity continuous exercise and high-intensity interval exercise altered distinct microparticle populations during and after exercise in addition to a sex-specific response in CD62E + microparticles. The microparticles studied contribute to cardiovascular disease progression, regulate vascular function and facilitate new blood vessel formation. Thus, characterizing the impact of intensity on exercise-induced microparticle responses advances our understanding of potential mechanisms underlying the beneficial vascular adaptations to exercise. Circulating microparticles (MPs) are biological vectors of information within the cardiovascular system that elicit both deleterious and beneficial effects on the vasculature. Acute exercise has been shown to alter MP concentrations, probably through a shear stress-dependent mechanism, but evidence is limited. Therefore, we investigated the effect of exercise intensity on plasma levels of CD34 + and CD62E + MPs in young, healthy men and women. Blood samples were collected before, during and after two energy-matched bouts of acute treadmill exercise: interval exercise (10 × 1 min intervals at ∼95% of maximal oxygen uptake V̇O2max) and continuous exercise (65% V̇O2max). Continuous exercise, but not interval exercise, reduced CD62E + MP concentrations in men and women by 18% immediately after exercise (from 914.5 ± 589.6 to 754.4 ± 390.5 MPs μl -1 ; P < 0.05), suggesting that mechanisms underlying exercise-induced CD62E + MP dynamics are intensity dependent. Furthermore, continuous exercise reduced CD62E + MPs in women by 19% (from 1030.6 ± 688.1 to 829.9 ± 435.4 MPs μl -1 ; P < 0.05), but not in men. Although interval exercise did not alter CD62E + MPs per se, the concentrations after interval exercise were higher than those observed after continuous exercise (P < 0.05). Conversely, CD34 + MPs did not fluctuate in response to short-duration acute continuous or interval exercise in men or women. Our results suggest that exercise-induced MP alterations are intensity dependent and sex specific and impact MP populations differentially. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  2. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans

    PubMed Central

    Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-01-01

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556

  3. Metabolic syndrome and hypertension: regular exercise as part of lifestyle management.

    PubMed

    Lackland, Daniel T; Voeks, Jenifer H

    2014-11-01

    The incorporation of physical activity and exercise represents a clinically important aspect in the management of metabolic syndrome, hypertension, and diabetes. While the benefit of exercise and active lifestyles is well documented for prevention and risk reduction of cardiovascular and stroke outcomes, the detailed regiment and recommendations are less clear. The components of a prescribed physical activity include consideration of activity type, frequency of an activity, activity duration, and intensity of a specific physical movement. The exercise parameters prescribed as part of the management of metabolic syndrome, diabetes, and elevated blood pressure are most often proposed as separate documents while the general recommendations are similar. The evidence is strong such that physical activity and exercise recommendations in disease management guidelines are considered high quality. The general recommendations for both blood pressure and glycemic management include a regiment of physical activity with moderate- to high-intensity exercise of 30-min bouts on multiple days with a desired goal of a total of 150 min of exercise per week. While additional research is needed to identify the specific exercise/activity mode, frequencies for exercise training, intensity levels, and duration of exercise that achieve maximal blood pressure and glycemic lowering, this general recommendation showed a consistent and significant benefit in risk reduction. Similarly, the current available evidence also indicates that aerobic exercise, dynamic resistance exercise, and isometric exercises can lower blood pressure and improve glycemic control.

  4. Time-varying analysis of electrodermal activity during exercise

    PubMed Central

    Reljin, Natasa; Mills, Craig; Mills, Ian; Florian, John P.; VanHeest, Jaci L.; Chon, Ki H.

    2018-01-01

    The electrodermal activity (EDA) is a useful tool for assessing skin sympathetic nervous activity. Using spectral analysis of EDA data at rest, we have previously found that the spectral band which is the most sensitive to central sympathetic control is largely confined to 0.045 to 0.25 Hz. However, the frequency band associated with sympathetic control in EDA has not been studied for exercise conditions. Establishing the band limits more precisely is important to ensure the accuracy and sensitivity of the technique. As exercise intensity increases, it is intuitive that the frequencies associated with the autonomic dynamics should also increase accordingly. Hence, the aim of this study was to examine the appropriate frequency band associated with the sympathetic nervous system in the EDA signal during exercise. Eighteen healthy subjects underwent a sub-maximal exercise test, including a resting period, walking, and running, until achieving 85% of maximum heart rate. Both EDA and ECG data were measured simultaneously for all subjects. The ECG was used to monitor subjects’ instantaneous heart rate, which was used to set the experiment’s end point. We found that the upper bound of the frequency band (Fmax) containing the EDA spectral power significantly shifted to higher frequencies when subjects underwent prolonged low-intensity (Fmax ~ 0.28) and vigorous-intensity exercise (Fmax ~ 0.37 Hz) when compared to the resting condition. In summary, we have found shifting of the sympathetic dynamics to higher frequencies in the EDA signal when subjects undergo physical activity. PMID:29856815

  5. Perception of Muscular Effort During Dynamic Elbow Extension in Multiple Sclerosis.

    PubMed

    Heller, Mario; Retzl, Irene; Kiselka, Anita; Greisberger, Andrea

    2016-02-01

    To investigate the perception of muscular effort in individuals with multiple sclerosis (MS) and healthy controls during dynamic contractions. Case-control study. MS day care center. Individuals with MS (n=28) and controls (n=28) (N=56). Not applicable. Perceived muscular effort during dynamic elbow extensions was rated at 9 different weight intensities (10%-90% of 1-repetition maximum) in a single-blind, randomized order using the OMNI-Resistance Exercise Scale. Muscle activity of the triceps brachii muscle (lateral head) was measured via surface electromyography and normalized to maximal voluntary excitation. According to OMNI-level ratings, significant main effects were found for the diagnostic condition (F=27.33, P<.001, η(2)=.11), indicating 0.7 (95% confidence interval [CI], 0.3-1.1) lower mean OMNI-level ratings for MS, and for the intensity level (F=46.81, P<.001, η(2)=.46), showing increased OMNI-level ratings for increased intensity levels for both groups. Furthermore, significant main effects were found for the diagnostic condition (F=16.52, P<.001, η(2)=.07), indicating 7.1% (95% CI, -8.6 to 22.8) higher maximal voluntary excitation values for MS, and for the intensity level (F=33.09, P<.001, η(2)=.36), showing higher relative muscle activities for increasing intensity levels in both groups. Similar to controls, individuals with MS were able to differentiate between different intensities of weight during dynamic elbow extensions when provided in a single-blind, randomized order. Therefore, perceived muscular effort might be considered to control resistance training intensities in individuals with MS. However, training intensity for individuals with MS should be chosen at approximately 1 OMNI level lower than recommended, at least for dynamic elbow extension exercises. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Muscle Activation During Exercise in Severe Acute Hypoxia: Role of Absolute and Relative Intensity

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel

    2014-01-01

    Abstract Torres-Peralta, Rafael, José Losa-Reyna, Miriam González-Izal, Ismael Perez-Suarez, Jaime Calle-Herrero, Mikel Izquierdo, and José A.L. Calbet. Muscle activation during exercise in severe acute hypoxia: Role of absolute and relative intensity. High Alt Med Biol 15:472–482, 2014.—The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIo2=0.21, two tests) or hypoxic gas (FIo2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak Vo2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIo2. No significant FIo2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIo2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIo2. PMID:25225839

  7. Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans

    PubMed Central

    Strange, S

    1999-01-01

    Skeletal muscle blood flow is thought to be determined by a balance between sympathetic vasoconstriction and metabolic vasodilatation. The purpose of this study was to assess the importance of high levels of sympathetic vasoconstrictor activity in control of blood flow to human skeletal muscle during dynamic exercise.Muscle sympathetic nerve activity to the exercising leg was increased by static or static ischaemic arm exercise added to on-going dynamic leg exercise. Ten subjects performed light (20 W) or moderate (40 W) dynamic knee extension for 6 min with one leg alone or concomitant with bilateral static handgrip at 20% of maximal voluntary contraction force with or without forearm muscle ischaemia or post-exercise forearm muscle ischaemia.Muscle sympathetic nerve activity was measured by microneurography (peroneal nerve) and leg muscle blood flow by a constant infusion thermodilution technique (femoral vein).Activation of an exercise pressor reflex from the arms, causing a 2- to 4-fold increase in muscle sympathetic nerve activity and a 15–32% increase in mean arterial blood pressure, did not affect blood flow to the dynamically exercising leg muscles at any level of leg exercise. Leg vascular conductance was reduced in line with the higher perfusion pressure.The results demonstrate that the vasoconstrictor effects of high levels of muscle sympathetic nerve activity does not affect blood flow to human skeletal muscle exercising at moderate intensities. One question remaining is whether the observed decrease in muscle vascular conductance is the result of sympathetic vasoconstriction or metabolic autoregulation of muscle blood flow. PMID:9831733

  8. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans.

    PubMed

    Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-11-15

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.

  9. Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance

    PubMed Central

    Lepers, Romuald; Marcora, Samuele M.

    2016-01-01

    We recently developed a high intensity one leg dynamic exercise (OLDE) protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output) three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s), 20 s (P20) and 40 s (P40) post-exercise. Electromyographic (EMG) signal was analyzed via the root mean square (RMS) for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001). MVC60 and MVC100 recovered between P20 (P < 0.05) and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05). High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion. PMID:27706196

  10. Can HRV be used to evaluate training load in constant load exercises?

    PubMed

    Kaikkonen, Piia; Hynynen, Esa; Mann, Theresa; Rusko, Heikki; Nummela, Ari

    2010-02-01

    The overload principle of training states that training load (TL) must be sufficient to threaten the homeostasis of cells, tissues, organs, and/or body. However, there is no "golden standard" for TL measurement. The aim of this study was to examine if any post-exercise heart rate variability (HRV) indices could be used to evaluate TL in exercises with different intensities and durations. Thirteen endurance-trained males (35 +/- 5 year) performed MODE (moderate intensity, 3 km at 60% of the maximal velocity of the graded maximal test (vVO(2max))), HI (high intensity, 3 km at 85% vVO(2max)), and PRO (prolonged, 14 km at 60% vVO(2max)) exercises on a treadmill. HRV was analyzed with short-time Fourier-transform method during rest, exercise, and 15-min recovery. Rating of perceived exertion (RPE), blood lactate (BLa), and HFP(120) (mean of 0-120 s post-exercise) described TL of these exercises similarly, being different for HI (P < 0.05) and PRO (P < 0.05) when compared with MODE. RPE and BLa also correlated negatively with HFP(120) (r = -0.604, -0.401), LFP(120) (-0.634, -0.601), and TP(120) (-0.691, -0.569). HRV recovery dynamics were similar after each exercise, but the level of HRV was lower after HI than MODE. Increased intensity or duration of exercise decreased immediate HRV recovery, suggesting that post-exercise HRV may enable an objective evaluation of TL in field conditions. The first 2-min recovery seems to give enough information on HRV recovery for evaluating TL.

  11. Association between exercise intensity and renal blood flow evaluated using ultrasound echo.

    PubMed

    Kawakami, Shotaro; Yasuno, Tetsuhiko; Matsuda, Takuro; Fujimi, Kanta; Ito, Ai; Yoshimura, Saki; Uehara, Yoshinari; Tanaka, Hiroaki; Saito, Takao; Higaki, Yasuki

    2018-03-10

    High-intensity exercise reduces renal blood flow (RBF) and may transiently exacerbate renal dysfunction. RBF has previously been measured invasively by administration of an indicator material; however, non-invasive measurement is now possible with technological innovations. This study examined variations in RBF at different exercise intensities using ultrasound echo. Eight healthy men with normal renal function (eGFR cys 114 ± 19 mL/min/1.73 m 2 ) participated in this study. Using a bicycle ergometer, participants underwent an incremental exercise test using a ramp protocol (20 W/min) until exhaustion in Study 1 and the lactate acid breaking point (LaBP) was calculated. Participants underwent a multi-stage test at exercise intensities of 60, 80, 100, 120, and 140% LaBP in Study 2. RBF was measured by ultrasound echo at rest and 5 min after exercise in Study 1 and at rest and immediately after each exercise in Study 2. To determine the mechanisms behind RBF decline, a catheter was placed into the antecubital vein to study vasoconstriction dynamics. RBF after maximum exercise decreased by 51% in Study 1. In Study 2, RBF showed no significant decrease until 80% LaBP, and showed a significant decrease (31%) at 100% LaBP compared with at rest (p < 0.01). The sympathetic nervous system may be involved in this reduction in RBF. RBF showed no significant decrease until 80% LaBP, and decreased with an increase in blood lactate. Reduction in RBF with exercise above the intensity at LaBP was due to decreased cross-sectional area rather than time-averaged flow velocity.

  12. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans.

    PubMed

    Forbes, Sean C; Slade, Jill M; Meyer, Ronald A

    2008-12-01

    Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.

  13. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  14. The roles of the Na+/K+-ATPase, NKCC, and K+ channels in regulating local sweating and cutaneous blood flow during exercise in humans in vivo.

    PubMed

    Louie, Jeffrey C; Fujii, Naoto; Meade, Robert D; Kenny, Glen P

    2016-11-01

    Na + /K + -ATPase has been shown to regulate the sweating and cutaneous vascular responses during exercise; however, similar studies have not been conducted to assess the roles of the Na-K-2Cl co-transporter (NKCC) and K + channels. Additionally, it remains to be determined if these mechanisms underpinning the heat loss responses differ with exercise intensity. Eleven young (24 ± 4 years) males performed three 30-min semirecumbent cycling bouts at low (30% VO 2peak ), moderate (50% VO 2peak ), and high (70% VO 2peak ) intensity, respectively, each separated by 20-min recovery periods. Using intradermal microdialysis, four forearm skin sites were continuously perfused with either: (1) lactated Ringer solution (Control); (2) 6 mmol·L -1 ouabain (Na + /K + -ATPase inhibitor); (3) 10 mmol·L -1 bumetanide (NKCC inhibitor); or (4) 50 mmol·L -1 BaCl 2 (nonspecific K + channel inhibitor); sites at which we assessed local sweat rate (LSR) and cutaneous vascular conductance (CVC). Inhibition of Na + /K + -ATPase attenuated LSR compared to Control during the moderate and high-intensity exercise bouts (both P ˂ 0.01), whereas attenuations with NKCC and K + channel inhibition were only apparent during the high-intensity exercise bout (both P ≤ 0.05). Na + /K + -ATPase inhibition augmented CVC during all exercise intensities (all P ˂ 0.01), whereas CVC was greater with NKCC inhibition during the low-intensity exercise only (P ˂ 0.01) and attenuated with K + channel inhibition during the moderate and high-intensity exercise conditions (both P ˂ 0.01). We show that Na + /K + -ATPase, NKCC and K +  channels all contribute to the regulation of sweating and cutaneous blood flow but their influence is dependent on the intensity of dynamic exercise. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans

    PubMed Central

    Braz, Igor D.

    2015-01-01

    Abstract Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age‐related alterations in cerebral vascular function. During low‐to‐moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10–30%. Beyond ∼60–70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation‐mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial–internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age‐related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age‐related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved. PMID:26435295

  16. Importance of characteristics and modalities of physical activity and exercise in defining the benefits to cardiovascular health within the general population: recommendations from the EACPR (Part I).

    PubMed

    Vanhees, L; De Sutter, J; GeladaS, N; Doyle, F; Prescott, E; Cornelissen, V; Kouidi, E; Dugmore, D; Vanuzzo, D; Börjesson, M; Doherty, P

    2012-08-01

    Over the last decades, more and more evidence is accumulated that physical activity (PA) and exercise interventions are essential components in primary and secondary prevention for cardiovascular disease. However, it is less clear whether and which type of PA and exercise intervention (aerobic exercise, dynamic resistive exercise, or both) or characteristic of exercise (frequency, intensity, time or duration, and volume) would yield more benefit in achieving cardiovascular health. The present paper, as the first of a series of three, will make specific recommendations on the importance of these characteristics for cardiovascular health in the population at large. The guidance offered in this series of papers is aimed at medical doctors, health practitioners, kinesiologists, physiotherapists and exercise physiologists, politicians, public health policy makers, and the individual member of the public. Based on previous and the current literature, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding type, volume, and intensity of PA and exercise.

  17. Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes.

    PubMed

    Orlando, Patrick; Silvestri, Sonia; Galeazzi, Roberta; Antonicelli, Roberto; Marcheggiani, Fabio; Cirilli, Ilenia; Bacchetti, Tiziana; Tiano, Luca

    2018-12-01

    Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise. 21 male young athletes (26 + 5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200 mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed. A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q 10 plasma content decreased significantly in all subjects. Ubiquinol supplementation prevented exercise-induced CoQ deprivation and decrease in paraoxonase activity. Moreover at a cellular level, in peripheral blood mononuclear cells, ubiquinol supplementation was associated with a significant decrease in cytosolic ROS while mitochondrial membrane potential and oxidative DNA damage remained unchanged. Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage.

  18. Exercising upper respiratory videoendoscopic evaluation of 100 nonracing performance horses with abnormal respiratory noise and/or poor performance.

    PubMed

    Davidson, E J; Martin, B B; Boston, R C; Parente, E J

    2011-01-01

    Although well documented in racehorses, there is paucity in the literature regarding the prevalence of dynamic upper airway abnormalities in nonracing performance horses. To describe upper airway function of nonracing performance horses with abnormal respiratory noise and/or poor performance via exercising upper airway videoendoscopy. Medical records of nonracing performance horses admitted for exercising evaluation with a chief complaint of abnormal respiratory noise and/or poor performance were reviewed. All horses had video recordings of resting and exercising upper airway endoscopy. Relationships between horse demographics, resting endoscopic findings, treadmill intensity and implementation of head and neck flexion during exercise with exercising endoscopic findings were examined. Dynamic upper airway obstructions were observed in 72% of examinations. Head and neck flexion was necessary to obtain a diagnosis in 21 horses. Pharyngeal wall collapse was the most prevalent upper airway abnormality, observed in 31% of the examinations. Complex abnormalities were noted in 27% of the examinations. Resting laryngeal dysfunction was significantly associated with dynamic arytenoid collapse and the odds of detecting intermittent dorsal displacement of the soft palate (DDSP) during exercise in horses with resting DDSP was only 7.7%. Exercising endoscopic observations were different from the resting observations in 54% of examinations. Dynamic upper airway obstructions were common in nonracing performance horses with respiratory noise and/or poor performance. Resting endoscopy was only helpful in determining exercising abnormalities with recurrent laryngeal neuropathy. This study emphasises the importance of exercising endoscopic evaluation in nonracing performance horses with abnormal respiratory noise and/or poor performance for accurate assessment of dynamic upper airway function. © 2010 EVJ Ltd.

  19. The Importance of Movement Velocity as a Measure to Control Resistance Training Intensity

    PubMed Central

    González-Badillo, Juan J.; Marques, Mário C.; Sánchez-Medina, Luis

    2011-01-01

    Configuration of the exercise stimulus in resitance training has been traditionally associated with a combination of the so-called ‘acute resistance exercise variables’ (exercise type and order, loading, number of repetitions and sets, rests duration and movement velocity). During typical resistance exercise in isoinertial conditions, and assuming every repetition is performed with maximal voluntary effort, velocity unintentionally declines as fatigue develops. However, few studies analyzing the response to different resitance training schemes have described changes in repetition velocity or power. It thus seems necessary to conduct more research using models of fatigue that analyze the reduction in mechanical variables such as force, velocity and power output over repeated dynamic contractions in actual training or competition settings. Thus, the aim of this paper was to discuss the importance of movement velocity concerning control training intensity. PMID:23487504

  20. A multisession evaluation of an adaptive competitive arm rehabilitation game.

    PubMed

    Goršič, Maja; Cikajlo, Imre; Goljar, Nika; Novak, Domen

    2017-12-06

    People with neurological injuries such as stroke should exercise frequently and intensely to regain their motor abilities, but are generally hindered by lack of motivation. One way to increase motivation in rehabilitation is through competitive exercises, but such exercises have only been tested in single brief sessions and usually did not adapt difficulty to the patient's abilities. We designed a competitive arm rehabilitation game for two players that dynamically adapts its difficulty to both players' abilities. This game was evaluated by two participant groups: 15 participants with chronic arm impairment who exercised at home with an unimpaired friend or relative, and 20 participants in the acute or subacute phase of stroke who exercised in pairs (10 pairs) at a rehabilitation clinic. All participants first played the game against their human opponent for 3 sessions, then played alone (against a computer opponent) in the final, fourth session. In all sessions, participants' subjective experiences were assessed with the Intrinsic Motivation Inventory questionnaire while exercise intensity was measured using inertial sensors built into the rehabilitation device. After the fourth session, a final brief questionnaire was used to compare competition and exercising alone. Participants who played against an unimpaired friend or relative at home tended to prefer competition (only 1 preferred exercising alone), and exhibited higher enjoyment and exercise intensity when competing (first three sessions) than when exercising alone (last session). Participants who played against each other in the clinic, however, did not exhibit significant differences between competition and exercising alone. For both groups, there was no difference in enjoyment or exercise intensity between the first three sessions, indicating no negative effects of habituation or novelty. Competitive exercises have high potential for unsupervised home rehabilitation, as they improve enjoyment and exercise intensity compared to exercising alone. Such exercises could thus improve rehabilitation outcome, but this needs to be tested in long-term clinical trials. It is not clear why participants who competed against each other at the clinic did not exhibit any advantages of competition, and further studies are needed to determine how different factors (environment, nature of opponent etc.) influence patients' experiences with competitive exercises. The study is not a clinical trial. While human subjects are involved, they do not participate in a full rehabilitation intervention, and no health outcomes are examined.

  1. Perceptions of the activity, the social climate, and the self during group exercise classes regulate intrinsic satisfaction.

    PubMed

    Maher, Jaclyn P; Gottschall, Jinger S; Conroy, David E

    2015-01-01

    Engaging in regular physical activity is a challenging task for many adults. Intrinsic satisfaction with exercise classes is thought to promote adherence to physical activity. This study examined the characteristics of exercise classes that impact within-person changes in intrinsic satisfaction over the course of an extended group exercise program. A 30-week physical activity trial was conducted with assessments at the end of each class. Community-living adults (n = 29) were instructed to complete at least six group exercise classes each week and, following each exercise class, complete a questionnaire asking about the characteristics of the class and the participant's evaluation of the class. Intrinsic satisfaction was high, on average, but varied as much within-person from class-to-class as it did between exercisers. Participants reported the greatest intrinsic satisfaction when classes placed greater emphasis on exercisers' involvement with the group task, feelings of competence, and encouragement from the instructor. For the most part, exercise classes that were more intense than usual were perceived by exercisers as less intrinsically satisfying. Some overall characteristics of the exercise classes were also associated with intrinsic satisfaction. The social and motivational characteristics of group exercise classes contribute to exercisers' intrinsic satisfaction with classes and attention to those dynamics, as well as the intensity of the exercise, may improve adherence for exercise regimens.

  2. Central and Peripheral Fatigue During Resistance Exercise - A Critical Review.

    PubMed

    Zając, Adam; Chalimoniuk, Małgorzata; Maszczyk, Adam; Gołaś, Artur; Lngfort, Józef

    2015-12-22

    Resistance exercise is a popular form of conditioning for numerous sport disciplines, and recently different modes of strength training are being evaluated for health benefits. Resistance exercise differs significantly in nature, and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal system of the body. Some modes of resistance training can also be effective in stimulating the cardiovascular system. These variables include exercise selection (general, specific, single or multi joint, dynamic, explosive), type of resistance (free weights, variable resistance, isokinetics), order of exercise (upper and lower body or push and pull exercises), and most of all the training load which includes intensity expressed as % of 1RM, number of repetitions, number of sets and the rest interval between sets. Manipulating these variables allows for specific adaptive changes which may include gains in muscle mass, muscle strength or muscle endurance. It has been well established that during resistance exercise fatigue occurs, regardless of the volume and intensity of work applied. The peripheral mechanisms of fatigue have been studied and explained in more detail than those related to the CNS. This review is an attempt to bring together the latest knowledge regarding fatigue, both peripheral and central, during resistance exercise. The authors of this review concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load.

  3. Exercise in the healthy older adult.

    PubMed

    Karani, R; McLaughlin, M A; Cassel, C K

    2001-01-01

    Habitual exercise provides numerous health benefits to the older adult. While dynamic aerobic activities increase stamina and lung capacity, isometric or resistance training improves muscle strength and endurance. Long-term benefits of continued exercise include a decreased risk of death from heart disease, enhanced balance and mobility, a decreased risk of diabetes, and an improvement in depressive symptoms. While the hazards of exercise relate predominantly to extremes of intensity and duration, all older adults should consult with a physician before beginning a new activity program. A prescription for exercise should include both aerobic and resistance training components, and frequent follow-up to improve adherence is highly recommended. (c)2001 CVRR, Inc.

  4. Maintenance of exercise-induced benefits in physical functioning and bone among elderly women.

    PubMed

    Karinkanta, S; Heinonen, A; Sievänen, H; Uusi-Rasi, K; Fogelholm, M; Kannus, P

    2009-04-01

    This study showed that about a half of the exercise-induced gain in dynamic balance and bone strength was maintained one year after cessation of the supervised high-intensity training of home-dwelling elderly women. However, to maintain exercise-induced gains in lower limb muscle force and physical functioning, continued training seems necessary. Maintenance of exercise-induced benefits in physical functioning and bone structure was assessed one year after cessation of 12-month randomized controlled exercise intervention. Originally 149 healthy women 70-78 years of age participated in the 12-month exercise RCT and 120 (81%) of them completed the follow-up study. Self-rated physical functioning, dynamic balance, leg extensor force, and bone structure were assessed. During the intervention, exercise increased dynamic balance by 7% in the combination resistance and balance-jumping training group (COMB). At the follow-up, a 4% (95% CI: 1-8%) gain compared with the controls was still seen, while the exercise-induced isometric leg extension force and self-rated physical functioning benefits had disappeared. During the intervention, at least twice a week trained COMB subjects obtained a significant 2% benefit in tibial shaft bone strength index compared to the controls. A half of this benefit seemed to be maintained at the follow-up. Exercise-induced benefits in dynamic balance and rigidity in the tibial shaft may partly be maintained one year after cessation of a supervised 12-month multi-component training in initially healthy elderly women. However, to maintain the achieved gains in muscle force and physical functioning, continued training seems necessary.

  5. Evaluating plyometric exercises using time to stabilization.

    PubMed

    Ebben, William P; Vanderzanden, Tyler; Wurm, Bradley J; Petushek, Erich J

    2010-02-01

    Plyometric exercises are frequently used in strength and conditioning and rehabilitation programs because the landing phase of these exercises requires dynamic stabilization. This study examined the differences in landing stability of a variety of plyometric exercises by assessing time to stabilization (TTS), its reliability, and sex differences therein. Forty-nine men and women performed a variety of plyometric exercises thought to represent a continuum of difficulty of dynamic stabilization during landing. Plyometric exercises included line hops, cone hops, squat jumps, tuck jumps, countermovement jumps, dumbbell countermovement jumps, and single leg countermovement jumps, each performed for 3 repetitions on a force platform. A 2-way mixed analysis of covariance with repeated measures for plyometric exercise type was used to evaluate the main effects for plyometric exercise type and the interaction between plyometric exercise type and sex for TTS. Subject jumping ability was evaluated as a covariate. Results revealed significant main effects for plyometric exercise type (p < or = 0.001) and for the interaction between plyometric exercise type and sex (p = 0.002). Bonferroni adjusted post hoc analysis demonstrated differences in TTS between a number of plyometric exercises for men and women. Reliability analysis revealed intraclass correlation coefficients ranging from 0.51 to 0.86 with no significant difference between trials (p > 0.05). Practitioners who use plyometrics to train dynamic stability should create programs that progress the intensity of the exercises based on the results of this study. This study also demonstrated that TTS is moderately to highly reliable for a variety of jumping conditions for both men and women.

  6. Intensity-level assessment of lower body plyometric exercises based on mechanical output of lower limb joints.

    PubMed

    Sugisaki, Norihide; Okada, Junichi; Kanehisa, Hiroaki

    2013-01-01

    The present study aimed to quantify the intensity of lower extremity plyometric exercises by determining joint mechanical output. Ten men (age, 27.3 ± 4.1 years; height, 173.6 ± 5.4 cm; weight, 69.4 ± 6.0 kg; 1-repetition maximum [1RM] load in back squat 118.5 ± 12.0 kg) performed the following seven plyometric exercises: two-foot ankle hop, repeated squat jump, double-leg hop, depth jumps from 30 and 60 cm, and single-leg and double-leg tuck jumps. Mechanical output variables (torque, angular impulse, power, and work) at the lower limb joints were determined using inverse-dynamics analysis. For all measured variables, ANOVA revealed significant main effects of exercise type for all joints (P < 0.05) along with significant interactions between joint and exercise (P < 0.01), indicating that the influence of exercise type on mechanical output varied among joints. Paired comparisons revealed that there were marked differences in mechanical output at the ankle and hip joints; most of the variables at the ankle joint were greatest for two-foot ankle hop and tuck jumps, while most hip joint variables were greatest for repeated squat jump or double-leg hop. The present results indicate the necessity for determining mechanical output for each joint when evaluating the intensity of plyometric exercises.

  7. Physiological mechanisms of dyspnea during exercise with external thoracic restriction: Role of increased neural respiratory drive

    PubMed Central

    Mendonca, Cassandra T.; Schaeffer, Michele R.; Riley, Patrick

    2013-01-01

    We tested the hypothesis that neuromechanical uncoupling of the respiratory system forms the mechanistic basis of dyspnea during exercise in the setting of “abnormal” restrictive constraints on ventilation (VE). To this end, we examined the effect of chest wall strapping (CWS) sufficient to mimic a “mild” restrictive lung deficit on the interrelationships between VE, breathing pattern, dynamic operating lung volumes, esophageal electrode-balloon catheter-derived measures of the diaphragm electromyogram (EMGdi) and the transdiaphragmatic pressure time product (PTPdi), and sensory intensity and unpleasantness ratings of dyspnea during exercise. Twenty healthy men aged 25.7 ± 1.1 years (means ± SE) completed symptom-limited incremental cycle exercise tests under two randomized conditions: unrestricted control and CWS to reduce vital capacity (VC) by 21.6 ± 0.5%. Compared with control, exercise with CWS was associated with 1) an exaggerated EMGdi and PTPdi response; 2) no change in the relationship between EMGdi and each of tidal volume (expressed as a percentage of VC), inspiratory reserve volume, and PTPdi, thus indicating relative preservation of neuromechanical coupling; 3) increased sensory intensity and unpleasantness ratings of dyspnea; and 4) no change in the relationship between increasing EMGdi and each of the intensity and unpleasantness of dyspnea. In conclusion, the increased intensity and unpleasantness of dyspnea during exercise with CWS could not be readily explained by increased neuromechanical uncoupling but likely reflected the awareness of increased neural respiratory drive (EMGdi) needed to achieve any given VE during exercise in the setting of “abnormal” restrictive constraints on tidal volume expansion. PMID:24356524

  8. Perceptions of the activity, the social climate, and the self during group exercise classes regulate intrinsic satisfaction

    PubMed Central

    Maher, Jaclyn P.; Gottschall, Jinger S.; Conroy, David E.

    2015-01-01

    Engaging in regular physical activity is a challenging task for many adults. Intrinsic satisfaction with exercise classes is thought to promote adherence to physical activity. This study examined the characteristics of exercise classes that impact within-person changes in intrinsic satisfaction over the course of an extended group exercise program. A 30-week physical activity trial was conducted with assessments at the end of each class. Community-living adults (n = 29) were instructed to complete at least six group exercise classes each week and, following each exercise class, complete a questionnaire asking about the characteristics of the class and the participant’s evaluation of the class. Intrinsic satisfaction was high, on average, but varied as much within-person from class-to-class as it did between exercisers. Participants reported the greatest intrinsic satisfaction when classes placed greater emphasis on exercisers’ involvement with the group task, feelings of competence, and encouragement from the instructor. For the most part, exercise classes that were more intense than usual were perceived by exercisers as less intrinsically satisfying. Some overall characteristics of the exercise classes were also associated with intrinsic satisfaction. The social and motivational characteristics of group exercise classes contribute to exercisers’ intrinsic satisfaction with classes and attention to those dynamics, as well as the intensity of the exercise, may improve adherence for exercise regimens. PMID:26347696

  9. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P < 0.05) among mild workloads, whereas this was not the case for moderate-intensity exercise. In protocol 2 (n = 13), subjects performed rhythmic dynamic hand-grip exercise at mild and moderate intensities in conditions of matched total work, but muscle fibre recruitment was manipulated. In this protocol, greater muscle fibre recruitment led to significantly greater FBF (152 ± 15 versus 127 ± 13 ml min(-1)) and (20 ± 2 versus 17 ± 2 ml min(-1); both P < 0.05) at mild workloads, and there was a trend for similar responses at the moderate intensity but this was not statistically significant. In both protocols, the ratio of the change in FBF to change in was similar across all exercise intensities and manipulations, and the strongest correlation among all variables was between and blood flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related to metabolic cost ( ) rather than contractile work per se during steady-state exercise in humans.

  10. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus.

    PubMed

    Iscoe, K E; Riddell, M C

    2011-07-01

    Individuals with Type 1 diabetes mellitus are susceptible to hypoglycaemia during and after continuous moderate-intensity exercise, but hyperglycaemia during intermittent high-intensity exercise. The combination of both forms of exercise may have a moderating effect on glycaemia in recovery. The aims of this study were to compare the physiological responses and associated glycaemic changes to continuous moderate-intensity exercise vs. continuous moderate-intensity exercise + intermittent high-intensity exercise in athletes with Type 1 diabetes. Interstitial glucose levels were measured in a blinded fashion in 11 trained athletes with Type 1 diabetes during two sedentary days and during 2 days in which 45 min of afternoon continuous moderate-intensity exercise occurred either with or without intermittent high-intensity exercise. The total amount of work performed and the duration of exercise was identical between sessions. During exercise, heart rate, respiratory exchange ratio, oxygen utilization, ventilation and blood lactate levels were higher during continuous moderate-intensity + intermittent high-intensity exercise vs. continuous moderate-intensity exercise (all P < 0.05). Despite these marked cardiorespiratory differences between trials, there was no difference in the reduction of interstitial glucose or plasma glucose levels between the exercise trials. Nocturnal glucose levels were higher in continuous moderate-intensity + intermittent high-intensity exercise and in sedentary vs. continuous moderate-intensity exercise (P < 0.05). Compared with continuous moderate-intensity exercise alone, continuous moderate-intensity + intermittent high-intensity exercise was associated with less post-exercise hypoglycaemia (5.2 vs. 1.5% of the time spent with glucose < 4.0 mmol/l) and more post-exercise hyperglycaemia (33.8 vs. 20.4% of time > 11.0 mmol/l). Although the decreases in glucose level during continuous moderate-intensity exercise and continuous moderate-intensity + intermittent high-intensity exercise are similar, the latter form of exercise protects against nocturnal hypoglycaemia in athletes with Type 1 diabetes. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  11. Do metaboreceptors alter heat loss responses following dynamic exercise?

    PubMed

    McGinn, Ryan; Swift, Brendan; Binder, Konrad; Gagnon, Daniel; Kenny, Glen P

    2014-01-01

    Metaboreceptor activation during passive heating is known to influence cutaneous vascular conductance (CVC) and sweat rate (SR). However, whether metaboreceptors modulate the suppression of heat loss following dynamic exercise remains unclear. On separate days, before and after 15 min of high-intensity treadmill running in the heat (35°C), eight males underwent either 1) no isometric handgrip exercise (IHG) or ischemia (CON), 2) 1 min IHG (60% of maximum, IHG), 3) 1 min IHG followed by 2 min of ischemia (IHG+OCC), 4) 2 min of ischemia (OCC), or 5) 1 min IHG followed by 2 min of ischemia with application of lower body negative pressure (IHG+LBNP). SR (ventilated capsule), cutaneous blood flow (Laser-Doppler), and mean arterial pressure (Finometer) were measured continuously before and after dynamic exercise. Following dynamic exercise, CVC was reduced with IHG exercise (P < 0.05) and remained attenuated with post-IHG ischemia during IHG+OCC relative to CON (39 ± 2 vs. 47 ± 6%, P < 0.05). Furthermore, the reduction in CVC was exacerbated by application of LBNP during post-IHG ischemia (35 ± 3%, P < 0.05) relative to IHG+OCC. SR increased during IHG exercise (P < 0.05) and remained elevated during post-IHG ischemia relative to CON following dynamic exercise (0.94 ± 0.15 vs. 0.53 ± 0.09 mg·min(-1)·cm(-2), P < 0.05). In contrast, application of LBNP during post-IHG ischemia had no effect on SR (0.93 ± 0.09 mg·min(-1)·cm(-2), P > 0.05) relative to post-IHG ischemia during IHG+OCC. We show that CVC is reduced and that SR is increased by metaboreceptor activation following dynamic exercise. In addition, we show that the metaboreflex-induced loading of the baroreceptors can influence the CVC response, but not the sweating response.

  12. Comparisons of low-intensity versus moderate-intensity combined aerobic and resistance training on body composition, muscle strength, and functional performance in older women.

    PubMed

    Shiotsu, Yoko; Yanagita, Masahiko

    2018-06-01

    This study aimed to examine the effects of exercise order of combined aerobic and low- or moderate-intensity resistance training into the same session on body composition, functional performance, and muscle strength in healthy older women. Furthermore, this study compared the effects of different (low- vs moderate-) intensity combined training. A total of 60 healthy older women (age 61-81 y) were randomly assigned to five groups that performed aerobic exercise before low-intensity resistance training (AR-L, n = 12) or after resistance training (RA-L, n = 12), performed aerobic exercise before moderate-intensity resistance training (AR-M, n = 12) or after resistance training (RA-M, n = 12), or nonintervention control conditions (CON, n = 12). Body composition, functional performance, and muscle strength were evaluated before and after the 10-week training. No effects of exercise order of combined aerobic and low- or moderate-intensity resistance training (AR-L vs RA-L, AR-M vs RA-M) were observed in body composition, functional performance, or muscle strength, whereas the effects of training intensity of combined training (AR-L vs AR-M, RA-L vs RA-M) were observed on functional performance. All combined trainings significantly increased muscle strength and gait ability (P < 0.01, respectively). Functional reach test significantly increased in the AR-M and RA-M groups (P < 0.01, respectively), and there were significant group differences between AR-L and AR-M (P = 0.002), RA-L and RA-M (P = 0.014). Preliminary findings suggest that combined aerobic and low- or moderate-intensity resistance training increases muscle strength and improves gait ability, regardless of the exercise order. Also, greater improvement in dynamic balance capacity, a risk factor associated with falling, is observed in moderate-intensity combined training.

  13. Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells.

    PubMed

    Wilhelm, Eurico N; González-Alonso, José; Parris, Christopher; Rakobowchuk, Mark

    2016-11-01

    The effect of endurance exercise on circulating microvesicle dynamics and their impact on surrounding endothelial cells is unclear. Here we tested the hypothesis that exercise intensity modulates the time course of platelet (PMV) and endothelial-derived (EMV) microvesicle appearance in the circulation through hemodynamic and biochemical-related mechanisms, and that microvesicles formed during exercise would stimulate endothelial angiogenesis in vitro. Nine healthy young men had venous blood samples taken before, during, and throughout the recovery period after 1 h of moderate [46 ± 2% maximal oxygen uptake (V̇o 2max )] or heavy (67 ± 2% V̇o 2max ) intensity semirecumbent cycling and a time-matched resting control trial. In vitro experiments were performed by incubating endothelial cells with rest and exercise-derived microvesicles to examine their effects on cell angiogenic capacities. PMVs (CD41 + ) increased from baseline only during heavy exercise (from 21 ± 1 × 10 3 to 55 ± 8 × 10 3 and 48 ± 6 × 10 3 PMV/μl at 30 and 60 min, respectively; P < 0.05), returning to baseline early in postexercise recovery (P > 0.05), whereas EMVs (CD62E + ) were unchanged (P > 0.05). PMVs were related to brachial artery shear rate (r 2 = 0.43) and plasma norepinephrine concentrations (r 2 = 0.21) during exercise (P < 0.05). Exercise-derived microvesicles enhanced endothelial proliferation, migration, and tubule formation compared with rest microvesicles (P < 0.05). These results demonstrate substantial increases in circulating PMVs during heavy exercise and that exercise-derived microvesicles stimulate human endothelial cells by enhancing angiogenesis and proliferation. This involvement of microvesicles may be considered a novel mechanism through which exercise mediates vascular healing and adaptation. Copyright © 2016 the American Physiological Society.

  14. MRS evidence of adequate O2 supply in human skeletal muscle at the onset of exercise

    PubMed Central

    Richardson, Russell S.; Wary, Claire; Wray, D. Walter; Hoff, Jan; Rossiter, Harry; Layec, Gwenael; Carlier, Pierre G.

    2015-01-01

    Purpose At exercise onset, intramuscular oxidative energy production responds relatively slowly in comparison to the change in ATP demand. To determine if the slow kinetics of oxidative ATP production is due to inadequate O2 supply or metabolic inertia we studied the kinetics of intramyocellular deoxygenation (deoxy-myoglobin, Mb) and metabolism (phosphocreatine, PCr), using proton (1H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) in 6 healthy subjects (33 ± 5 yrs). Methods Specifically, utilizing dynamic plantar flexion exercise, rest to exercise and recovery was assessed at both 60% of maximum work rate (WRmax) (moderate intensity) and 80% of WRmax (heavy intensity). Results At exercise onset [PCr] fell without delay and with a similar time constant (τ) at both exercise intensities (~33 s). In contrast, the increase in deoxy-Mb was delayed at exercise onset by 5–7 s, after which it increased with kinetics (moderate τ = 37 ± 9 s, and heavy τ = 29 ± 6 s) that were not different from τPCr (p > 0.05). At cessation, deoxy-Mb recovered without a time delay and more rapidly (τ ~20 s) than PCr (τ ~33 s) (p < 0.05). Conclusion using a unique combination of in vivo MRS techniques with high time-resolution, this study revealed a delay in intramuscular de-oxygenation at the onset of exercise, and rapid re-oxygenation kinetics upon cessation. Together these data imply that intramuscular substrate-enzyme interactions, and not O2 availability, determine the exercise onset kinetics of oxidative metabolism in healthy human skeletal muscle. PMID:25830362

  15. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise

    PubMed Central

    Froyd, Christian; Millet, Guillaume Y; Noakes, Timothy D

    2013-01-01

    The time course of muscular fatigue that develops during and after an intense bout of self-paced dynamic exercise was characterized by using different forms of electrical stimulation (ES) of the exercising muscles. Ten active subjects performed a time trial (TT) involving repetitive concentric extension/flexion of the right knee using a Biodex dynamometer. Neuromuscular function (NMF), including ES and a 5 s maximal isometric voluntary contraction (MVC), was assessed before the start of the TT and immediately (<5 s) after each 20% of the TT had been completed, as well as 1, 2, 4 and 8 min after TT termination. The TT time was 347 ± 98 s. MVCs were 52% of baseline values at TT termination. Torque responses from ES were reduced to 33–68% of baseline using different methods of stimulation, suggesting that the extent to which peripheral fatigue is documented during exercise depends upon NMF assessment methodology. The major changes in muscle function occurred within the first 40% of exercise. Significant recovery in skeletal muscle function occurs within the first 1–2 min after exercise, showing that previous studies may have underestimated the extent to which peripheral fatigue develops during exercise. PMID:23230235

  16. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  17. CLINICAL AVIATION MEDICINE RESEARCH: COMPARISON OF SIMULTANEOUS MEASUREMENTS OF INTRA-AORTIC AND AUSCULTATORY BLOOD PRESSURES WITH PRESSURE-FLOW DYNAMICS DURING REST AND EXERCISE,

    DTIC Science & Technology

    recorded simultaneously by auscultation of the brachial artery; and (2) to study the pattern of pressure and flow dynamics during bicycle work at moderate...strenuous and maximal intensities. In most instances systolic pressures measured by auscultation were in close agreement with the directly recorded

  18. Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Fadel, P. J.; Ogoh, S.; Watenpaugh, D. E.; Wasmund, W.; Olivencia-Yurvati, A.; Smith, M. L.; Raven, P. B.

    2001-01-01

    We sought to determine whether carotid baroreflex (CBR) control of muscle sympathetic nerve activity (MSNA) was altered during dynamic exercise. In five men and three women, 23.8 +/- 0.7 (SE) yr of age, CBR function was evaluated at rest and during 20 min of arm cycling at 50% peak O(2) uptake using 5-s periods of neck pressure and neck suction. From rest to steady-state arm cycling, mean arterial pressure (MAP) was significantly increased from 90.0 +/- 2.7 to 118.7 +/- 3.6 mmHg and MSNA burst frequency (microneurography at the peroneal nerve) was elevated by 51 +/- 14% (P < 0.01). However, despite the marked increases in MAP and MSNA during exercise, CBR-Delta%MSNA responses elicited by the application of various levels of neck pressure and neck suction ranging from +45 to -80 Torr were not significantly different from those at rest. Furthermore, estimated baroreflex sensitivity for the control of MSNA at rest was the same as during exercise (P = 0.74) across the range of neck chamber pressures. Thus CBR control of sympathetic nerve activity appears to be preserved during moderate-intensity dynamic exercise.

  19. Effect of endurance exercise on respiratory muscle function in patients with cystic fibrosis.

    PubMed

    Reilly, Charles C; Ward, Katie; Jolley, Caroline J; Frank, Lucy A; Elston, Caroline; Moxham, John; Rafferty, Gerrard F

    2012-03-15

    During exercise, patients with cystic fibrosis (CF) dynamically hyperinflate, which imposes both elastic and threshold loads on the inspiratory muscles and places them at a mechanical disadvantage due to muscle shortening. Conversely, dynamic hyperinflation imposes a progressively resistive load and lengthens the expiratory muscles potentially increasing their susceptibility to develop low frequency fatigue (LFF). The aim of the study was to determine whether high intensity endurance exercise leads to the development of LFF in either the diaphragm or expiratory abdominal wall muscles in patients with CF. Ten patients and ten healthy individuals were studied. Twitch transdiaphragmatic pressure (TwP(di)) and twitch abdominal pressure (TwT(10)) were measured before and after exhaustive endurance cycle exercise at 80% of their previously determined maximum work rate. There was no difference in TwP(di) or TwT(10) at 20, 40 or 60 min post exercise compared to pre-exercise resting values in any of the participants, indicating that overt LFF of the respiratory muscles did not develop. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Hartwig, T. D.; Eckberg, D. L.

    1996-01-01

    The occurrence of a sustained vasodilation and hypotension after acute, dynamic exercise suggests that exercise may alter arterial baroreflex mechanisms. Therefore, we assessed systemic hemodynamics, baroreflex regulation of heart rate, and cardiac vagal tone after 60 min of cycling at 60% peak oxygen consumption in 12 healthy, untrained men and women (ages 21-28 yr). We derived sigmoidal carotid-cardiac baroreflex relations by measurement of R-R interval changes induced by ramped, stepwise, R-wave-triggered changes in external neck pressure from 40 to -65 mmHg. We estimated tonic cardiac vagal control with power spectral analysis of R-R interval variability in the respiratory frequency band (0.2-0.3 Hz) during frequency- and tidal volume-controlled breathing. Both mean arterial pressure and total peripheral resistance were reduced postexercise [pressure: from 86 +/- 2 (mean +/- SE) to 81 +/- 2 mmHg; resistance: from 23 +/- 2 to 16 +/- 1 units; both P < 0.05]. Cardiac output was increased postexercise (from 3.9 +/- 0.3 to 5.5 +/- 0.5 l/min, P < 0.05). Both slope and range of the carotid-cardiac baroreflex relation were increased postexercise (slope: from 4.7 +/- 0.7 to 6.1 +/- 0.9 ms/mmHg; range: from 186 +/- 23 to 238 +/- 30 ms, P < 0.05). Respiratory R-R interval variability (cardiac vagal tone) was not changed at any time after exercise, whereas heart rate and plasma norepinephrine levels were elevated. Thus moderate-intensity, dynamic exercise increases heart rate and cardiac output, reduces peripheral vascular resistance, and augments baroreflex responsiveness. Our data suggest that augmented baroreflex heart rate gain restrains rather than contributes to postexercise hypotension, which appears to be mediated predominately by vasodilation.

  1. The effects of water-based exercise in combination with blood flow restriction on strength and functional capacity in post-menopausal women.

    PubMed

    Araújo, Joamira P; Neto, Gabriel R; Loenneke, Jeremy P; Bemben, Michael G; Laurentino, Gilberto C; Batista, Gilmário; Silva, Júlio C G; Freitas, Eduardo D S; Sousa, Maria S C

    2015-12-01

    Water-based exercise and low-intensity exercise in combination with blood flow restriction (BFR) are two methods that have independently been shown to improve muscle strength in those of advancing age. The objective of this study was to assess the long-term effect of water-based exercise in combination with BFR on maximum dynamic strength and functional capacity in post-menopausal women. Twenty-eight women underwent an 8-week water-based exercise program. The participants were randomly allocated to one of the three groups: (a) water exercise only, (b) water exercise + BFR, or (c) a non-exercise control group. Functional capacity (chair stand test, timed up and go test, gait speed, and dynamic balance) and strength testing were tested before and after the 8-week aquatic exercise program. The main findings were as follows: (1) water-based exercise in combination with BFR significantly increased the lower limb maximum strength which was not observed with water-based exercise alone and (2) water-based exercise, regardless of the application of BFR, increased functional performance measured by the timed up and go test over a control group. Although we used a healthy population in the current study, these findings may have important implications for those who may be contraindicated to using traditional resistance exercise. Future research should explore this promising modality in these clinical populations.

  2. The effect of the menstrual cycle and water consumption on physiological responses during prolonged exercise at moderate intensity in hot conditions.

    PubMed

    Hashimoto, Hideki; Ishijima, Toshimichi; Suzuki, Katsuhiko; Higuchi, Mitsuru

    2016-09-01

    Reproductive hormones are likely to be involved in thermoregulation through body fluid dynamics. In the present study, we aimed to investigate the effect of the menstrual cycle and water consumption on physiological responses to prolonged exercise at moderate intensity in hot conditions. Eight healthy young women with regular menstrual cycles performed cycling exercise for 90 minutes at 50% V̇O2peak intensity during the low progesterone (LP) level phase and high progesterone (HP) level phase, with or without water consumption, under hot conditions (30°C, 50% relative humidity). For the water consumption trials, subjects ingested water equivalent to the loss in body weight that occurred in the earlier non-consumption trial. For all four trials, rectal temperature, cardiorespiratory responses, and ratings of perceived exertion (RPE) were measured. Throughout the 90-minute exercise period, rectal temperatures during HP were higher than during LP by an average of 0.4 °C in the non-consumption trial (P<0.01) and 0.2 °C in the water consumption trial (P<0.05). During exercise, water consumption affected the changes in rectal temperature and heat rate (HR) during HP, but it did not exert these effects during LP. Furthermore, we found a negative correlation between estradiol levels and rectal temperature during LP. During prolonged exercise at moderate intensity under hot conditions, water consumption is likely to be useful for suppressing the associated increase in body temperature and HR, particularly during HP, whereas estradiol appears to be useful for suppressing the increase in rectal temperature during LP.

  3. Moms in motion: a group-mediated cognitive-behavioral physical activity intervention.

    PubMed

    Cramp, Anita G; Brawley, Lawrence R

    2006-08-22

    When examining the prevalence of physical inactivity by gender and age, women over the age of 25 are at an increased risk for sedentary behavior. Childbearing and motherhood have been explored as one possible explanation for this increased risk. Post natal exercise studies to date demonstrate promising physical and psychological outcomes, however few physical activity interventions have been theory-driven and tailored to post natal exercise initiates. The purpose of this study was to compare the effects of a group-mediated cognitive behavioral intervention based upon social-cognitive theory and group dynamics (GMCB) to a standard care postnatal exercise program (SE). A randomized, two-arm intervention design was used. Fifty-seven post natal women were randomized to one of two conditions: (1) a standard exercise treatment (SE) and (2) a standard exercise treatment plus group-mediated cognitive behavioral intervention (GMCB). Participants in both conditions participated in a four-week intensive phase where participants received standard exercise training. In addition, GMCB participants received self-regulatory behavioral skills training via six group-mediated counseling sessions. Following the intensive phase, participants engaged in a four-week home-based phase of self-structured exercise. Measures of physical activity, barrier efficacy, and proximal outcome expectations were administered and data were analyzed using ANCOVA procedures. ANCOVA of change scores for frequency, minutes, and volume of physical activity revealed significant treatment effects over the intensive and home-based phases (p's < 0.01). In addition, ANCOVA of change in mean barrier efficacy and proximal outcome expectations at the conclusion of the intensive phase demonstrated that GMCB participants increased their initial level of barrier efficacy and outcome expectations while SE participants decreased (p < 0.05). While both exercise programs resulted in improvements to exercise participation, the GMCB intervention produced greater improvement in overall physical activity, barrier efficacy and proximal outcome expectations.

  4. A system model of the effects of exercise on plasma Interleukin-6 dynamics in healthy individuals: Role of skeletal muscle and adipose tissue.

    PubMed

    Morettini, Micaela; Palumbo, Maria Concetta; Sacchetti, Massimo; Castiglione, Filippo; Mazzà, Claudia

    2017-01-01

    Interleukin-6 (IL-6) has been recently shown to play a central role in glucose homeostasis, since it stimulates the production and secretion of Glucagon-like Peptide-1 (GLP-1) from intestinal L-cells and pancreas, leading to an enhanced insulin response. In resting conditions, IL-6 is mainly produced by the adipose tissue whereas, during exercise, skeletal muscle contractions stimulate a marked IL-6 secretion as well. Available mathematical models describing the effects of exercise on glucose homeostasis, however, do not account for this IL-6 contribution. This study aimed at developing and validating a system model of exercise's effects on plasma IL-6 dynamics in healthy humans, combining the contributions of both adipose tissue and skeletal muscle. A two-compartment description was adopted to model plasma IL-6 changes in response to oxygen uptake's variation during an exercise bout. The free parameters of the model were estimated by means of a cross-validation procedure performed on four different datasets. A low coefficient of variation (<10%) was found for each parameter and the physiologically meaningful parameters were all consistent with literature data. Moreover, plasma IL-6 dynamics during exercise and post-exercise were consistent with literature data from exercise protocols differing in intensity, duration and modality. The model successfully emulated the physiological effects of exercise on plasma IL-6 levels and provided a reliable description of the role of skeletal muscle and adipose tissue on the dynamics of plasma IL-6. The system model here proposed is suitable to simulate IL-6 response to different exercise modalities. Its future integration with existing models of GLP-1-induced insulin secretion might provide a more reliable description of exercise's effects on glucose homeostasis and hence support the definition of more tailored interventions for the treatment of type 2 diabetes.

  5. Validation of Heart Rate Monitor Polar RS800 for Heart Rate Variability Analysis During Exercise.

    PubMed

    Hernando, David; Garatachea, Nuria; Almeida, Rute; Casajús, Jose A; Bailón, Raquel

    2018-03-01

    Hernando, D, Garatachea, N, Almeida, R, Casajús, JA, and Bailón, R. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J Strength Cond Res 32(3): 716-725, 2018-Heart rate variability (HRV) analysis during exercise is an interesting noninvasive tool to measure the cardiovascular response to the stress of exercise. Wearable heart rate monitors are a comfortable option to measure interbeat (RR) intervals while doing physical activities. It is necessary to evaluate the agreement between HRV parameters derived from the RR series recorded by wearable devices and those derived from an electrocardiogram (ECG) during dynamic exercise of low to high intensity. Twenty-three male volunteers performed an exercise stress test on a cycle ergometer. Subjects wore a Polar RS800 device, whereas ECG was also recorded simultaneously to extract the reference RR intervals. A time-frequency spectral analysis was performed to extract the instantaneous mean heart rate (HRM), and the power of low-frequency (PLF) and high-frequency (PHF) components, the latter centered on the respiratory frequency. Analysis was done in intervals of different exercise intensity based on oxygen consumption. Linear correlation, reliability, and agreement were computed in each interval. The agreement between the RR series obtained from the Polar device and from the ECG is high throughout the whole test although the shorter the RR is, the more differences there are. Both methods are interchangeable when analyzing HRV at rest. At high exercise intensity, HRM and PLF still presented a high correlation (ρ > 0.8) and excellent reliability and agreement indices (above 0.9). However, the PHF measurements from the Polar showed reliability and agreement coefficients around 0.5 or lower when the level of the exercise increases (for levels of O2 above 60%).

  6. A Pilot Study Validating Select Research-Grade and Consumer-Based Wearables Throughout a Range of Dynamic Exercise Intensities in Persons With and Without Type 1 Diabetes: A Novel Approach.

    PubMed

    Yavelberg, Loren; Zaharieva, Dessi; Cinar, Ali; Riddell, Michael C; Jamnik, Veronica

    2018-05-01

    The increasing popularity of wearable technology necessitates the evaluation of their accuracy to differentiate physical activity (PA) intensities. These devices may play an integral role in customizing PA interventions for primary prevention and secondary management of chronic diseases. For example, in persons with type 1 diabetes (T1D), PA greatly affects glucose concentrations depending on the intensity, mode (ie, aerobic, anaerobic, mixed), and duration. This variability in glucose responses underscores the importance of implementing dependable wearable technology in emerging avenues such as artificial pancreas systems. Participants completed three 40-minute, dynamic non-steady-state exercise sessions, while outfitted with multiple research (Fitmate, Metria, Bioharness) and consumer (Garmin, Fitbit) grade wearables. The data were extracted according to the devices' maximum sensitivity (eg, breath by breath, beat to beat, or minute time stamps) and averaged into minute-by-minute data. The variables of interest, heart rate (HR), breathing frequency, and energy expenditure (EE), were compared to validated criterion measures. Compared to deriving EE by laboratory indirect calorimetry standard, the Metria activity patch overestimates EE during light-to-moderate PA intensities (L-MI) and moderate-to-vigorous PA intensities (M-VI) (mean ± SD) (0.28 ± 1.62 kilocalories· minute -1 , P < .001, 0.64 ± 1.65 kilocalories· minute -1 , P < .001, respectively). The Metria underestimates EE during vigorous-to-maximal PA intensity (V-MI) (-1.78 ± 2.77 kilocalories · minute -1 , P < .001). Similarly, compared to Polar HR monitor, the Bioharness underestimates HR at L-MI (-1 ± 8 bpm, P < .001) and M-VI (5 ± 11 bpm, P < .001), respectively. A significant difference in EE was observed for the Garmin device, compared to the Fitmate ( P < .001) during continuous L-MI activity. Overall, our study demonstrates that current research-grade wearable technologies operate within a ~10% error for both HR and EE during a wide range of dynamic exercise intensities. This level of accuracy for emerging research-grade instruments is considered both clinically and practically acceptable for research-based or consumer use. In conclusion, research-grade wearable technology that uses EE kilocalories · minute -1 and HR reliably differentiates PA intensities.

  7. Sex differences in the oxygen delivery, extraction, and uptake during moderate-walking exercise transition.

    PubMed

    Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L

    2017-09-01

    Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O 2 ) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O 2 , deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O 2 difference (a-vO 2 diff ) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O 2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O 2 , a-vO 2 diff , HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O 2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O 2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.

  8. Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise.

    PubMed

    Mukaimoto, Takahiro; Ohno, Makoto

    2012-01-01

    The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.

  9. Effect of whole body vibration in energy expenditure and perceived exertion during intense squat exercise.

    PubMed

    Bertucci, William M; Arfaoui, Ahlem; Duc, Sebastien; Letellier, Thierry; Brikci, Abderrahim

    2015-01-01

    The purpose of this study was to investigate the effect of whole body vibration in oxygen uptake during intense squatting exercise with an added weight and whole body vibration compared with the same exercise without vibration. Nine male sub- jects performed three trials of dynamic squatting with an additional load of 50% of their body weight during 3 min. One trial without vibration, one trial with the frequency of 40 Hz and amplitude of 2 mm and one trial with the frequency of 40 Hz and amplitude of 4 mm. The results showed no difference between the three experimental trials in relative and absolute oxygen uptake. However, the metabolic power and energy expended in whole body vibration (2 mm) were significantly different from exercise without vibration. The data analysis also showed a significant difference in rating of perceived exertion with whole body vibration (4 mm) compared with the exercise without vibration. Results showed that the addition of vibration stimulus has an increase in the energy expenditure particularly with 40 Hz and 2 mm amplitude, suggesting that the high metabolic power during heavy resistance training could be increased by the addition of vibration stimulation. Involuntary contractions generated by the vibration can be used by coaches to increase the intensity of heavy resistance training or to increase the energy expended during the workouts if the goal is a decrease of body mass.

  10. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.

    PubMed

    Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J

    2018-01-01

    The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P < 0.0001) but were not different between passive and active cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P < 0.001). MSNA burst frequency and incidence decreased during passive and active cycling ( P < 0.0001), but no differences were detected between exercise modes ( P > 0.05). Reductions in total MSNA were attenuated during the first ( P < 0.0001) and second ( P = 0.0004) minute of active compared with passive cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.

  11. Efficacy and feasibility of a novel tri-modal robust exercise prescription in a retirement community: a randomized, controlled trial.

    PubMed

    Baker, Michael K; Kennedy, David J; Bohle, Philip L; Campbell, Deena S; Knapman, Leona; Grady, Jodie; Wiltshire, James; McNamara, Maria; Evans, William J; Atlantis, Evan; Fiatarone Singh, Maria A

    2007-01-01

    To test the feasibility and efficacy of current guidelines for multimodal exercise programs in older adults. Randomized, controlled trial. Retirement village. Thirty-eight subjects (14 men and 24 women) aged 76.6 +/- 6.1. A wait list control or 10 weeks of supervised exercise consisting of high-intensity (80% of one-repetition maximum (1RM)) progressive resistance training (PRT) 3 days per week, moderate-intensity (rating of perceived exertion 11 to 14/20) aerobic training 2 days per week, and progressive balance training 1 day per week. Blinded assessments of dynamic muscle strength (1RM), balance, 6-minute walk, gait velocity, chair stand, stair climb, depressive symptoms, self-efficacy, and habitual physical activity level. Higher baseline strength and psychological well-being were associated with better functional performance. Strength gains over 10 weeks averaged 39+/-31% in exercise, versus 21+/-24% in controls (P=.10), with greater improvements in hip flexion (P=.01), hip abduction (P=.02), and chest press (P=.04) in the exercise group. Strength adaptations were greatest in exercises in which the intended continuous progressive overload was achieved. Stair climb power (12.3+/-15%, P=.002) and chair stand time (-7.1+/-15%, P=.006) improved significantly and similarly in both groups. Reduction in depressive symptoms was significantly related to compliance (attendance rate r=-0.568, P=.009, PRT progression in loading r=-0.587, P=.02, and total volume of aerobic training r=-0.541, P=.01), as well as improvements in muscle strength (r=-0.498, P=.002). Robust physical and psychological adaptations to exercise are linked, although volumes and intensities of multiple exercise modalities sufficient to cause significant adaptation appear difficult to prescribe and adhere to simultaneously in older adults.

  12. Dynamics of thermographic skin temperature response during squat exercise at two different speeds.

    PubMed

    Formenti, Damiano; Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Michielon, Giovanni; Caumo, Andrea; Alberti, Giampietro

    2016-07-01

    Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1s eccentric/1s concentric phase, 1s; slow speed, 5s eccentric/5s concentric phase, 5s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05Hz before the exercise (to determine basal ST) and for 480s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of a core conditioning intervention on tests of trunk muscular endurance in school-aged children.

    PubMed

    Allen, Brett A; Hannon, James C; Burns, Ryan D; Williams, Skip M

    2014-07-01

    Trunk and core muscular development has been advocated to increase athletic performance and for maintenance of musculoskeletal health, especially related to the prevention of low back pain (LBP). The purpose of this study was to examine the effects of a simple core conditioning routine on tests of trunk and core muscular endurance in school-aged children. Participants included 164 students (86 girls, 78 boys; mean age, 11.5 ± 2.5 years) recruited from a grade school in a metropolitan area located in the southwestern United States. Students performed an equipment-free, moderate-to-high intensity, dynamic core conditioning warm-up routine once a week for a period of 6 weeks during the start of their physical education classes. The intervention consisted of 10 different dynamic core conditioning exercises performed at a 30-second duration per exercise totaling 5 minutes per session. Pre- and post-assessments of muscular endurance consisted of 5 different trunk and core muscular endurance tests: Parallel Roman Chair Dynamic Back Extension, Prone Plank, Lateral Plank, Dynamic Curl-Up, and Static Curl-up. A generalized estimation equation was used to analyze differences in pre- and post-intervention muscular fitness assessments controlling for gender and grade level. Analysis of the data revealed significant increases in muscular fitness test performance for each of the 5 measured outcomes (p < 0.001). Because risk factors of LBP are thought to commence during childhood, results of this study suggest that it may be desirable for children and adolescents to perform moderate-to-high intensity dynamic core exercises during physical education warm-up to improve trunk and core muscular endurance.

  14. What influences acceptability and engagement with a high intensity exercise programme for people with stroke? A qualitative descriptive study.

    PubMed

    Signal, Nada; McPherson, Kathryn; Lewis, Gwyn; Kayes, Nicola; Saywell, Nicola; Mudge, Suzie; Taylor, Denise

    2016-10-14

    Intensity refers to the amount of effort or rate of work undertaken during exercise. People receiving rehabilitation after stroke frequently do not reach the moderate to high intensity exercise recommended to maximise gains. To explore the factors that influence the acceptability of, and engagement with, a high intensity group-based exercise programme for people with stroke. This qualitative descriptive study included 14 people with stroke who had completed a 12-week, high intensity group-based exercise rehabilitation programme. Semi-structured interviews were used to explore the acceptability of high intensity exercise and the barriers and facilitators to engagement. Interviews were recorded, transcribed and analysed using qualitative content analysis. The participants found high intensity exercise rehabilitation acceptable despite describing the exercise intensity as hard and reporting post-exercise fatigue. Participants accepted the fatigue as a normal response to exercise, and it did not appear to negatively influence engagement. The ease with which an individual engaged in high intensity exercise rehabilitation appeared to be mediated by inter-related factors, including: seeing progress, sourcing motivation, working hard, the people involved and the fit with the person and their life. Participants directly related the intensity of their effort to the gains that they made. In this study, people with stroke viewed training at higher intensities as a facilitator, not a barrier, to engagement in exercise rehabilitation. The findings may challenge assumptions about the influence of exercise intensity on engagement.

  15. Stochastic optimization for the detection of changes in maternal heart rate kinetics during pregnancy

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, M. S.; Barakat, R. O.; Cordente Martínez, C. A.; Sampedro Molinuevo, J.

    2011-03-01

    The stochastic optimization method ALOPEX IV has been successfully applied to the problem of detecting possible changes in the maternal heart rate kinetics during pregnancy. For this reason, maternal heart rate data were recorded before, during and after gestation, during sessions of exercises of constant mild intensity; ALOPEX IV stochastic optimization was used to calculate the parameter values that optimally fit a dynamical systems model to the experimental data. The results not only demonstrate the effectiveness of ALOPEX IV stochastic optimization, but also have important implications in the area of exercise physiology, as they reveal important changes in the maternal cardiovascular dynamics, as a result of pregnancy.

  16. Critical load: a novel approach to determining a sustainable intensity during resistance exercise.

    PubMed

    Arakelian, Vivian M; Mendes, Renata G; Trimer, Renata; Rossi Caruso, Flavia C; de Sousa, Nuno M; Borges, Vanessa C; do Valle Gomes Gatto, Camila; Baldissera, Vilmar; Arena, Ross; Borghi-Silva, Audrey

    2017-05-01

    A hyperbolic function as well as a linear relationship between power output and time to exhaustion (Tlim) has been consistently observed during dynamic non-resistive exercises. However, little is known about its concept to resistance exercises (RE), which could be defined as critical load (CL). This study aimed to verify the existence of CL during dynamic RE and to verify the number of workbouts necessary to determine the optimal modeling to achieve it. Fifteen healthy men (23±2.5 yrs) completed 1 repetition maximum test (1RM) on a leg press and 3 (60%, 75% and 90% of 1RM) or 4 (+ 30% of 1RM) workbouts protocols to obtain the CL by hyperbolic and linear regression models between Tlim and load performed. Blood lactate and leg fatigue were also measured. CL was obtained during RE and 3 workbouts protocol estimate it at 53% while 4 tests at 38% of 1 RM. However, based on coefficients of determination, 3 protocols provided a better fit than the 4-parameter model, respectively (R2>0.95 vs. >0.77). Moreover, all intensities increased blood lactate and leg fatigue, however, when corrected by Tlim, were significantly lower at CL. It was possible to determinate CL during dynamic lower limbs RE and that 3 exhaustive workbouts can be used to better estimate the CL, constituting a new concept of determining this threshold during dynamic RE and reducing the physically demanding nature of the protocol. These findings may have important applications for functional performance evaluation and prescription of RE programs.

  17. Dynamic Warm-Up Protocols, With and Without a Weighted Vest, and Fitness Performance in High School Female Athletes

    PubMed Central

    Faigenbaum, Avery D; McFarland, James E; Schwerdtman, Jeff A; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2006-01-01

    Context: Recent authors have not found substantial evidence to support the use of static stretching for improving performance, so interest in dynamic warm-up procedures has risen. Our findings may improve the understanding of the acute effects of different types of pre-exercise protocols on performance and may help clinicians develop effective warm-up protocols for sports practice and competition. Objective: To examine the acute effects of 4 warm-up protocols with and without a weighted vest on anaerobic performance in female high school athletes. Design: Randomized, counterbalanced, repeated-measures design. Setting: High school fitness center. Patients or Other Participants: Eighteen healthy high school female athletes (age = 15.3 ± 1.2 years, height = 166.3 ± 9.1 cm, mass = 61.6 ± 10.4 kg). Intervention(s): After 5 minutes of jogging, subjects performed 4 randomly ordered warm-up protocols: (1) Five static stretches (2 × 30 seconds) (SS), (2) nine moderate-intensity to high-intensity dynamic exercises (DY), (3) the same 9 dynamic exercises performed with a vest weighted with 2% of body mass (DY2), and (4) the same 9 dynamic exercises performed with a vest weighted with 6% of body mass (DY6). Main Outcome Measure(s): Vertical jump, long jump, seated medicine ball toss, and 10-yard sprint. Results: Vertical jump performance was significantly greater after DY (41.3 ± 5.4 cm) and DY2 (42.1 ± 5.2 cm) compared with SS (37.1 ± 5.1 cm), and long jump performance was significantly greater after DY2 (180.5 ± 20.3 cm) compared with SS (160.4 ± 20.8 cm) ( P ≤ .05). No significant differences between trials were observed for the seated medicine ball toss or 10-yard sprint. Conclusions: A dynamic warm-up performed with a vest weighted with 2% of body mass may be the most effective warm-up protocol for enhancing jumping performance in high school female athletes. PMID:17273458

  18. Acute effects of high- and low-intensity exercise bouts on leukocyte counts.

    PubMed

    Neves, Pedro Rogério Da Silva; Tenório, Thiago Ricardo Dos Santos; Lins, Tatiana Acioli; Muniz, Maria Tereza Cartaxo; Pithon-Curi, Tânia Cristina; Botero, João Paulo; Do Prado, Wagner Luiz

    2015-06-01

    It is widely accepted that physical exercise may bring about changes in the immune system. Even acute bouts of exercise can alter the number and function of leukocytes, but the degree of white blood cell trafficking depends on the intensity and duration of exercise. The aim of this study was to analyze the acute and short-term effects of exercise intensity on leukocyte counts and leukocyte subsets. Nine physically healthy, active young males (21.0 ± 1.9 years) underwent three experimental trials: high exercise intensity [80% peak oxygen consumption (VO 2peak )], low exercise intensity (40% VO 2peak ), and the control condition (no exercise). Blood samples were collected prior to exercise, immediately after exercise, and 2 hours after exercise. Two-way analysis of variance for repeated measures was used to evaluate differences between the trials and the time-points, and to compare times within trials. There was a greater increase in the leukocyte count after high-intensity exercise, compared to the control condition ( p  < 0.01) and low-intensity exercise ( p  < 0.01). This effect was still present 2 hours after passive recovery ( p  < 0.01). When the same participants were submitted to different exercise intensities, the acute and short-term effects of exercise on white blood cells were intensity-dependent immediately after exercise (i.e., lymphocytosis and monocytosis) and 2 hours after passive recovery (i.e., neutrophilia).

  19. Acute effect of intensity fluctuation on energy output and substrate utilization.

    PubMed

    Kang, Jie; Mangine, Gerald T; Ratamess, Nicholas A; Faigenbaum, Avery D; Hoffman, Jay R

    2014-08-01

    Exercise routines in which intensity fluctuates, such as Spinning and Treading, are gaining in popularity in fitness industry. However, literature on how this dynamic protocol may affect the exercise metabolism is lacking. The present investigation was undertaken to examine the effect of intensity fluctuation and its magnitude on oxygen uptake and substrate utilization during exercise and recovery. Fifteen men and 15 women were randomly assigned into 1 of the 3 groups consisting of 10 participants of equal gender. Each group performed one of the three 30-minute exercise protocols that yielded the same total power output: (a) cycling at a constant power output of 75 W (P1), (b) cycling with power output alternating between 50 and 100 W every 5 minutes (P2), and (c) cycling with power output alternating between 25 and 125 W every 5 minutes (P3). Each exercise session was followed by a 25-minute recovery. Oxygen uptake (VO2), carbon dioxide production (VCO2), and respiratory exchanged ratio were measured at rest and during exercise and recovery. Rates of carbohydrate (COX) and fat oxidation (FOX) were calculated based on VO2 and VCO2 using the stoichiometric equations. VO2 in ml·kg-1·min-1 did not differ across the 3 protocols during exercise, but was higher (p ≤ 0.05) in P2 (4.92 ± 0.51) or P3 (4.94 ± 0.24) than P1 (4.17 ± 0.19) during recovery. COX in mg·kg-1·min-1 was higher (p ≤ 0.05) in P3 (17.68 ± 1.30) than in P1 (12.22 ± 1.55) or P2 (12.06 ± 1.47) during exercise and higher in P3 (4.17 ± 0.45) than in P1 (2.60 ± 0.36) during recovery. FOX in mg·kg-1·min-1 was lower (p ≤ 0.05) in P3 (2.61 ± 0.47) than in P1 (4.30 ± 0.60) or P2 (4.22 ± 0.47) during exercise but remained similar across the 3 protocols during recovery. These data indicate that intensity fluctuation of sufficient magnitude can alter exercise metabolism independent of the total power output or overall intensity. The 2 variable intensity protocols used in the study (i.e., P2 and P3) are equally effective in augmenting postexercise V[Combining Dot Above]O2, but the protocol with a greater magnitude of fluctuation also elicits greater COX coupled with reduced FOX during exercise.

  20. Exercise intensity and oxygen uptake kinetics in African-American and Caucasian women.

    PubMed

    Lai, Nicola; Tolentino-Silva, Fatima; Nasca, Melita M; Silva, Marco A; Gladden, L Bruce; Cabrera, Marco E

    2012-03-01

    The effect of exercise intensity on the on- and off-transient kinetics of oxygen uptake (VO(2)) was investigated in African American (AA) and Caucasian (C) women. African American (n = 7) and Caucasian (n = 6) women of similar age, body mass index and weight, performed an incremental test and bouts of square-wave exercise at moderate, heavy and very heavy intensities on a cycle ergometer. Gas exchange threshold (LT(GE)) was lower in AA (13.6 ± 2.3 mL kg(-1) min(-1)) than C (18.6 ± 5.6 mL kg(-1) min(-1)). The dynamic exercise and recovery VO(2) responses were characterized by mathematical models. There were no significant differences in (1) peak oxygen uptake (VO(2peak)) between AA (28.5 ± 5 mL kg(-1) min(-1)) and C (31.1 ± 6.6 mL kg(-1) min(-1)) and (2) VO(2) kinetics at any exercise intensity. At moderate exercise, the on- and off- VO(2) kinetics was described by a monoexponential function with similar time constants τ (1,on) (39.4 ± 12.5; 38.8 ± 15 s) and τ (1,off) (52.7 ± 10.1; 40.7 ± 4.4 s) for AA and C, respectively. At heavy and very heavy exercise, the VO(2) kinetics was described by a double-exponential function. The parameter values for heavy and very heavy exercise in the AA group were, respectively: τ (1,on) (47.0 ± 10.8; 44.3 ± 10 s), τ (2,on) (289 ± 63; 219 ± 90 s), τ (1,off) (45.9 ± 6.2; 50.7 ± 10 s), τ (2,off) (259 ± 120; 243 ± 93 s) while in the C group were, respectively: τ (1,on) (41 ± 12; 43.2 ± 15 s); τ (2, on) (277 ± 81; 215 ± 36 s), τ (1,off) (40.2 ± 3.4; 42.3 ± 7.2 s), τ (2,off) (215 ± 133; 228 ± 64 s). The on- and off-transients were symmetrical with respect to model order and dependent on exercise intensity regardless of race. Despite similar VO(2) kinetics, LT(GE) and gain of the VO(2) on-kinetics at moderate intensity were lower in AA than C. However, generalization to the African American and Caucasian populations is constrained by the small subject numbers.

  1. Dose-response relationships between exercise intensity, cravings, and inhibitory control in methamphetamine dependence: An ERPs study.

    PubMed

    Wang, Dongshi; Zhou, Chenglin; Zhao, Min; Wu, Xueping; Chang, Yu-Kai

    2016-04-01

    The present study integrated behavioral and neuroelectric approaches for determining the dose-response relationships between exercise intensity and methamphetamine (MA) craving and between exercise intensity and inhibitory control in individuals with MA dependence. Ninety-two individuals with MA dependence were randomly assigned to an exercise group (light, moderate, or vigorous intensity) or to a reading control group. The participants then completed a craving self-report at four time points: before exercise, during exercise, immediately after exercise, and 50 min after exercise. Event-related potentials were also recorded while the participants completed a standard Go/NoGo task and an MA-related Go/NoGo task approximately 20 min after exercise cessation. The reduction in self-reported MA craving scores of the moderate and vigorous intensity groups was greater than that of the light intensity and control groups during acute exercise as well as immediately and 50 min following exercise termination. Additionally, an inverted-U-shaped relationship between exercise intensity and inhibitory control was generally observed for the behavioral and neuroelectric indices, with the moderate intensity group exhibiting shorter Go reaction times, increased NoGo accuracy, and larger NoGo-N2 amplitudes. Acute exercise may provide benefits for MA-associated craving and inhibitory control in MA-dependent individuals, as revealed by behavioral and neuroelectric measures. Moderate-intensity exercise may be associated with more positive effects, providing preliminary evidence for the establishment of an exercise prescription regarding intensity for MA dependence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Endurance exercise intensity determination in the rehabilitation of coronary artery disease patients: a critical re-appraisal of current evidence.

    PubMed

    Hansen, Dominique; Stevens, An; Eijnde, Bert O; Dendale, Paul

    2012-01-01

    In the care of coronary artery disease (CAD) patients, the benefits of exercise therapy are generally established. Even though the selected endurance exercise intensity might affect medical safety, therapy adherence and effectiveness in the rehabilitation of CAD patients in how to determine endurance exercise intensity properly remains difficult. The aim of this review is to describe the available methods for endurance exercise intensity determination in the rehabilitation of CAD patients, accompanied with their (dis)advantages, validity and reproducibility. In general, endurance exercise intensity can objectively be determined in CAD patients by calculating a fraction of maximal exercise tolerance and/or determining ventilatory threshold after execution of a cardiopulmonary exercise test with ergospirometry. This can be translated to a corresponding training heart rate (HR) or workload. In the absence of ergospirometry equipment, target exercise HR can be calculated directly by different ways (fraction of maximal HR and/or Karvonen formula), and/or anaerobic threshold can be determined. However, the use of HR for determining exercise intensity during training sessions seems complicated, because many factors/conditions affect the HR. In this regard, proper standardization of the exercise sessions, as well as exercise testing, might be required to improve the accuracy of exercise intensity determination. Alternatively, subjective methods for the determination of endurance exercise intensity in CAD patients, such as the Borg ratings of perceived exertion and the talk test, have been developed. However, these methods lack proper validity and reliability to determine endurance exercise intensity in CAD patients. In conclusion, a practical and systematic approach for the determination of endurance exercise intensity in CAD patients is presented in this article.

  3. Oscillation of tissue oxygen index in non-exercising muscle during exercise.

    PubMed

    Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T

    2015-09-01

    The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo(2)peak) for 12 min and with exercise intensity of 70% Vo(2)peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo(2)peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo(2)peak and the exercise with 30% Vo(2)peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.

  4. Exercise intensity-dependent changes in the inflammatory response in sedentary women: role of neuroendocrine parameters in the neutrophil phagocytic process and the pro-/anti-inflammatory cytokine balance.

    PubMed

    Giraldo, E; Garcia, J J; Hinchado, M D; Ortega, E

    2009-01-01

    It is still not really known what is the optimal level of exercise that improves, but does not impair or overstimulate the innate immune function. This is especially the case in women, who have higher basal levels of 'inflammatory markers' than men. The aim of this work was to evaluate differences in the magnitude of the stimulation of the innate/inflammatory response following a single bout of moderate or intense exercise in sedentary women, all of them in the follicular phase of their menstrual cycle. Changes in stress and sexual hormones were also evaluated. Changes induced by exercise (45 min at 55% VO(2) max vs. 1 h at 70% VO(2) max on a cycle ergometer) in the phagocytic process (chemotaxis, phagocytosis, and microbicide capacity against Candida albicans) and in serum concentrations of IL-1beta, IL-2, IFN-gamma, IL-12, IL-6, and IL-4 (ELISA) were evaluated. Parallel determinations were also made of serum or plasma concentrations of catecholamines (HPLC) and cortisol, oestradiol, and progesterone (electrochemiluminescence immunoassay). Both exercise intensities increased chemotaxis, phagocytosis, and microbicide capacity of the neutrophils. However, the increase in chemotaxis was greater after moderate exercise. All the cytokines assayed were affected by exercise intensity. IFN-gamma increased significantly only immediately after the intense exercise; IL-1beta increased following both exercise intensities, although at 24 h it only remained elevated after the intense exercise; IL-12 only increased 24 h after the intense exercise, and IL-2 only showed a significant decrease following the moderate exercise. IL-6 increased immediately after both exercise intensities, but more so after moderate exercise. While IL-4 (an anti-inflammatory cytokine) increased following the moderate exercise, it decreased after the intense exercise. Both moderate and intense exercise increased norepinephrine and decreased cortisol, both of which returned to basal levels after 24 h. Only the intense exercise affected the epinephrine, oestradiol, and progesterone concentrations, with increases in epinephrine and oestradiol immediately after exercise, and a decrease in progesterone after 24 h. Both moderate and intense exercise stimulate the phagocytic process of neutrophils in sedentary women, but the profile of pro-/anti-inflammatory cytokine release seems to be better following the moderate exercise. The possible participation of stress (catecholamines and cortisol) and sex (oestradiol and progesterone) hormones in these intensity-dependent immune changes is discussed. Copyright 2009 S. Karger AG, Basel.

  5. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  6. Is heart rate variability a feasible method to determine anaerobic threshold in progressive resistance exercise in coronary artery disease?

    PubMed

    Sperling, Milena P R; Simões, Rodrigo P; Caruso, Flávia C R; Mendes, Renata G; Arena, Ross; Borghi-Silva, Audrey

    2016-01-01

    Recent studies have shown that the magnitude of the metabolic and autonomic responses during progressive resistance exercise (PRE) is associated with the determination of the anaerobic threshold (AT). AT is an important parameter to determine intensity in dynamic exercise. To investigate the metabolic and cardiac autonomic responses during dynamic resistance exercise in patients with Coronary Artery Disease (CAD). Twenty men (age = 63±7 years) with CAD [Left Ventricular Ejection Fraction (LVEF) = 60±10%] underwent a PRE protocol on a leg press until maximal exertion. The protocol began at 10% of One Repetition Maximum Test (1-RM), with subsequent increases of 10% until maximal exhaustion. Heart Rate Variability (HRV) indices from Poincaré plots (SD1, SD2, SD1/SD2) and time domain (rMSSD and RMSM), and blood lactate were determined at rest and during PRE. Significant alterations in HRV and blood lactate were observed starting at 30% of 1-RM (p<0.05). Bland-Altman plots revealed a consistent agreement between blood lactate threshold (LT) and rMSSD threshold (rMSSDT) and between LT and SD1 threshold (SD1T). Relative values of 1-RM in all LT, rMSSDT and SD1T did not differ (29%±5 vs 28%±5 vs 29%±5 Kg, respectively). HRV during PRE could be a feasible noninvasive method of determining AT in CAD patients to plan intensities during cardiac rehabilitation.

  7. The progression of paraspinal muscle recruitment intensity in localized and global strength training exercises is not based on instability alone.

    PubMed

    Colado, Juan C; Pablos, Carlos; Chulvi-Medrano, Ivan; Garcia-Masso, Xavier; Flandez, Jorgez; Behm, David G

    2011-11-01

    To evaluate electromyographic activity of several paraspinal muscles during localized stabilizing exercises and multijoint or global stabilizing exercises. Cross-sectional counterbalanced repeated measures. Research laboratory. Volunteers (N=25) without low-back pain. Subjects performed (1) localized stabilizing exercises (callisthenic exercises with only body weight as resistance): static lumbar extension, stable (on floor) and unstable static unipedal forward flexion, stable dynamic unipedal forward flexion, and unstable supine bridge; and (2) global stabilizing exercises (70% of maximum voluntary isometric contraction [MVIC]): dead lift and lunge. Mean and maximum amplitude of the electromyographic RMS of the lumbar and thoracic multifidus spinae and erector spinae. Electromyographic signals were normalized to the MVIC achieved during a back-extension exercise. Normalizing to the MVIC, paraspinal muscles were significantly (P<.05) most active, with mean and peak amplitudes of 88.1% and 113.4% during the dynamic stable dead lift at 70% of MVIC, respectively. The supine bridge on the unstable surface obtained the significantly lowest values of 29.03% and 30.3%, respectively. The other exercises showed intermediate values that ranged from 35.4% to 61.6%. Findings from this study may be helpful to strength trainers and physical therapists in their choice of exercises for strengthening paraspinal muscles. Our results suggest that in asymptomatic young experienced subjects, the dead lift at 70% of MVIC provides higher levels of mean and peak electromyographic signals than localized stabilizing exercises and other types of global stabilizing exercises. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. High intensity exercise or conventional exercise for patients with rheumatoid arthritis? Outcome expectations of patients, rheumatologists, and physiotherapists

    PubMed Central

    Munneke, M; de Jong, Z; Zwinderman, A; Ronday, H; van den Ende, C H M; Vliet, V; Hazes, J

    2004-01-01

    Objective: To examine the outcome expectations of RA patients, rheumatologists, and physiotherapists regarding high intensity exercise programmes compared with conventional exercise programmes. Methods: An exercise outcome expectations questionnaire was administered to 807 RA patients, 153 rheumatologists, and 624 physiotherapists. The questionnaire consisted of four statements regarding positive and negative outcomes of high intensity exercise programmes and four similar statements for conventional exercise programmes. A total expectation score for both conventional and high intensity exercise was calculated, ranging from –2 (very negative expectation) to 2 (very positive expectation). Results: The questionnaire was returned by 662 RA patients (82%), 132 rheumatologists (86%), and 467 physiotherapists (75%). The mean (95% confidence interval) scores for high intensity exercise programmes were 0.30 (0.25 to 0.34), 0.68 (0.62 to 0.74), and –0.06 (–0.15 to 0.02), and for conventional exercise programmes were 0.99 (0.96 to 1.02), 1.13 (1.09 to 1.17), and 1.27 (1.21 to 1.34) for RA patients, rheumatologists, and physiotherapists, respectively. In all three respondent groups, the outcome expectations of high intensity exercise were significantly less positive than those of conventional exercise programme. Conclusions: Despite the existing evidence regarding the effectiveness and safety of high intensity exercise programmes, RA patients, rheumatologists, and physiotherapists have more positive expectations of conventional exercise programmes than of high intensity exercise programmes. Physiotherapists were the least positive about outcomes of high intensity exercise programmes while rheumatologists were the most positive. To help the implementation of new insights in the effectiveness of physical therapy modalities in rheumatology, the need for continuous education of patients, rheumatologists and physiotherapists is emphasised. PMID:15194575

  9. Influence of Exercise Intensity for Improving Depressed Mood in Depression: A Dose-Response Study.

    PubMed

    Meyer, Jacob D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B

    2016-07-01

    Exercise effectively improves mood in major depressive disorder (MDD), but the optimal exercise stimulus to improve depressed mood is unknown. To determine the dose-response relationship of acute exercise intensity with depressed mood responses to exercise in MDD. We hypothesized that the acute response to exercise would differ between light, moderate, and hard intensity exercise with higher intensities yielding more beneficial responses. Once weekly, 24 women (age: 38.6±14.0) diagnosed with MDD underwent a 30-minute session at one of three steady-state exercise intensities (light, moderate, hard; rating of perceived exertion 11, 13 or 15) or quiet rest on a stationary bicycle. Depressed mood was evaluated with the Profile of Mood States before, 10 and 30 minutes post-exercise. Exercise reduced depressed mood 10 and 30 minutes following exercise, but this effect was not influenced by exercise intensity. Participants not currently taking antidepressants (n=10) had higher baseline depression scores, but did not demonstrate a different antidepressant response to exercise compared to those taking antidepressants. To acutely improve depressed mood, exercise of any intensity significantly improved feelings of depression with no differential effect following light, moderate, or hard exercise. Pharmacological antidepressant usage did not limit the mood-enhancing effect of acute exercise. Acute exercise should be used as a symptom management tool to improve mood in depression, with even light exercise an effective recommendation. These results need to be replicated and extended to other components of exercise prescription (e.g., duration, frequency, mode) to optimize exercise guidelines for improving depression. Copyright © 2016. Published by Elsevier Ltd.

  10. High-intensity exercise training induces morphological and biochemical changes in skeletal muscles.

    PubMed

    Toti, L; Bartalucci, A; Ferrucci, M; Fulceri, F; Lazzeri, G; Lenzi, P; Soldani, P; Gobbi, P; La Torre, A; Gesi, M

    2013-12-01

    IN THE PRESENT STUDY WE INVESTIGATED THE EFFECT OF TWO DIFFERENT EXERCISE PROTOCOLS ON FIBRE COMPOSITION AND METABOLISM OF TWO SPECIFIC MUSCLES OF MICE: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.

  11. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II.

    PubMed

    Vanhees, L; Geladas, N; Hansen, D; Kouidi, E; Niebauer, J; Reiner, Z; Cornelissen, V; Adamopoulos, S; Prescott, E; Börjesson, M; Bjarnason-Wehrens, B; Björnstad, H H; Cohen-Solal, A; Conraads, V; Corrado, D; De Sutter, J; Doherty, P; Doyle, F; Dugmore, D; Ellingsen, Ø; Fagard, R; Giada, F; Gielen, S; Hager, A; Halle, M; Heidbüchel, H; Jegier, A; Mazic, S; McGee, H; Mellwig, K P; Mendes, M; Mezzani, A; Pattyn, N; Pelliccia, A; Piepoli, M; Rauch, B; Schmidt-Trucksäss, A; Takken, T; van Buuren, F; Vanuzzo, D

    2012-10-01

    In a previous paper, as the first of a series of three on the importance of characteristics and modalities of physical activity (PA) and exercise in the management of cardiovascular health within the general population, we concluded that, in the population at large, PA and aerobic exercise capacity clearly are inversely associated with increased cardiovascular disease risk and all-cause and cardiovascular mortality and that a dose–response curve on cardiovascular outcome has been demonstrated in most studies. More and more evidence is accumulated that engaging in regular PA and exercise interventions are essential components for reducing the severity of cardiovascular risk factors, such as obesity and abdominal fat, high BP, metabolic risk factors, and systemic inflammation. However, it is less clear whether and which type of PA and exercise intervention (aerobic exercise, dynamic resistive exercise, or both) or characteristic of exercise (frequency, intensity, time or duration, and volume) would yield more benefit for each separate risk factor. The present paper, therefore, will review and make recommendations for PA and exercise training in the management of cardiovascular health in individuals with cardiovascular risk factors. The guidance offered in this series of papers is aimed at medical doctors, health practitioners, kinesiologists, physiotherapists and exercise physiologists, politicians, public health policy makers, and individual members of the public. Based on previous and the current literature overviews, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding type, volume, and intensity of PA and regarding appropriate risk evaluation during exercise in individuals with cardiovascular risk factors.

  12. An Evidence-Based Approach To Exercise Prescriptions on ISS

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This presentation describes current exercise countermeasures and exercise equipment for astronauts onboard the ISS. Additionally, a strategy for evaluating evidence supporting spaceflight exercise is described and a new exercise prescription is proposed. The current exercise regimen is not fully effective as the ISS exercise hardware does not allow for sufficient exercise intensity, the exercise prescription is adequate and crew members are noncompliant with the prescription. New ISS hardware is proposed, Advanced Resistance Exercise Device (ARED), which allows additional exercises, is instrumented for data acquisition and offers improved loading. The new T2 hardware offers a better harness and subject loading system, is instrumented to allow ground reaction force data, and offers improved speed. A strategy for developing a spaceflight exercise prescription is described and involves identifying exercise training programs that have been shown to maximize adaptive benefits of people exercising in both 0 and 1 g environments. Exercise intensity emerged as an important factor in maintaining physiologic adaptations in the spaceflight environment and interval training is suggested. New ISS exercise hardware should allow for exercise at intensities high enough to elicit adaptive responses. Additionally, new exercise prescriptions should incorporate higher intensity exercises and seek to optimize intensity, duration and frequency for greater efficiency.

  13. Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction

    PubMed Central

    Barrett-O'Keefe, Zachary; Lee, Joshua F.; Berbert, Amanda; Witman, Melissa A. H.; Nativi-Nicolau, Jose; Stehlik, Josef; Richardson, Russell S.

    2014-01-01

    To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population. PMID:25260608

  14. Evidence for cognitive-behavioral strategies improving dyspnea and related distress in COPD.

    PubMed

    Norweg, Anna; Collins, Eileen G

    2013-01-01

    Dyspnea is a complex, prevalent, and distressing symptom of chronic obstructive pulmonary disease (COPD) associated with decreased quality of life, significant disability, and increased mortality. It is a major reason for referral to pulmonary rehabilitation. We reviewed 23 COPD studies to examine the evidence for the effectiveness of cognitive-behavioral strategies for relieving dyspnea in COPD. Preliminary evidence from randomized controlled trials exists to support cognitive- behavioral strategies, used with or without exercise, for relieving sensory and affective components of dyspnea in COPD. Small to moderate treatment effects for relieving dyspnea were noted for psychotherapy (effect size [ES] = 0.08-0.25 for intensity; 0.26-0.65 for mastery) and distractive auditory stimuli (ES = 0.08-0.33 for intensity; 0.09 to -0.61 for functional burden). Small to large dyspnea improvements resulted from yoga (ES = 0.2-1.21 for intensity; 0.67 for distress; 0.07 for mastery; and -8.37 for functional burden); dyspnea self-management education with exercise (ES = -0.14 to -1.15 for intensity; -0.62 to -0.69 for distress; 1.04 for mastery; 0.14-0.35 for self-efficacy); and slow-breathing exercises (ES = -0.34 to -0.83 for intensity; -0.61 to -0.80 for distress; and 0.62 for self-efficacy). Cognitive-behavioral interventions may relieve dyspnea in COPD by (1) decreasing sympathetic nerve activity, dynamic hyperinflation, and comorbid anxiety, and (2) promoting arterial oxygen saturation, myelinated vagus nerve activity, a greater exercise training effect, and neuroplasticity. While evidence is increasing, additional randomized controlled trials are needed to evaluate the effectiveness of psychosocial and self-management interventions in relieving dyspnea, in order to make them more available to patients and to endorse them in official COPD, dyspnea, and pulmonary rehabilitation practice guidelines. By relieving dyspnea and related anxiety, such interventions may promote adherence to exercise programs and adaptive lifestyle change.

  15. Can previously sedentary females use the feeling scale to regulate exercise intensity in a gym environment? an observational study.

    PubMed

    Hamlyn-Williams, Charlotte C; Tempest, Gavin; Coombs, Sarah; Parfitt, Gaynor

    2015-01-01

    Recent research suggests that the Feeling Scale (FS) can be used as a method of exercise intensity regulation to maintain a positive affective response during exercise. However, research to date has been carried out in laboratories and is not representative of natural exercise environments. The purpose of this study was to evaluate whether sedentary women can self-regulate their exercise intensity using the FS to experience positive affective responses in a gym environment using their own choice of exercise mode; cycling or treadmill. Fourteen females (24.9 years ± 5.2; height 166.7 ± 5.7 cm; mass 66.3 ± 13.4 kg; BMI 24.1 ± 5.5)) completed a submaximal exercise test and each individual's ventilatory threshold ([Formula: see text]) was identified. Following this, three 20 min gym-based exercise trials, either on a bike or treadmill were performed at an intensity that was self-selected and perceived to correspond to the FS value of +3 (good). Oxygen uptake, heart rate (HR) and ratings of perceived exertion (RPE) were measured during exercise at the participants chosen intensity. Results indicated that on average participants worked close to their [Formula: see text] and increased their exercise intensity during the 20-min session. Participants worked physiologically harder during cycling exercise. Consistency of oxygen uptake, HR and RPE across the exercise trials was high. The data indicate that previously sedentary women can use the FS in an ecological setting to regulate their exercise intensity and that regulating intensity to feel 'good' should lead to individuals exercising at an intensity that would result in cardiovascular gains if maintained.

  16. Glucose response to exercise in the post-prandial period is independent of exercise intensity.

    PubMed

    Shambrook, P; Kingsley, M I; Wundersitz, D W; Xanthos, P D; Wyckelsma, V L; Gordon, B A

    2018-03-01

    This study investigated the acute glucose response to low-intensity, moderate-intensity, and high-intensity interval exercise compared to no-exercise in healthy insufficiently active males using a four-arm, randomized, crossover design. Ten males (age: 37.3 ± 7.3 years, BMI: 29.3 ± 6.5 kg·m -2 ) completed four 30-minute interventions at weekly intervals comprising low-intensity exercise (LIE) at ~35% V˙O 2 R, moderate-intensity exercise (MIE) at ~50% V˙O 2 R, high-intensity interval exercise (HIIE) at ~80% V˙O 2 R, and a no-exercise control. Participants performed cycle ergometer exercise 30 minutes after finishing breakfast. Glucose response was assessed using a continuous glucose monitor under free-living conditions with dietary intake replicated. A significant effect for intensity on energy expenditure was identified (P < .001) with similar energy cost in MIE (mean ± SD: 869 ± 148 kJ) and HIIE (806 ± 145 kJ), which were both greater than LIE (633 ± 129 kJ). The pattern of glucose response between the interventions over time was different (P = .02). Glucose was lower 25 minutes into each of the HIIE, MIE and LIE trials respectively (mean difference ± SD: -0.7 ± 1.1; -0.9 ± 1.1; -0.6 ± 0.9 mmol·L -1 ; P < .05) than in the no-exercise trial. Glucose response was not different between exercise intensities (P > .05). Twenty-four-hour AUC was not affected by exercise intensity (P = .75). There was a significant effect for exercise enjoyment (P = .02), with LIE (69 ± 4) preferred less than HIIE (mean ± SD: 84 ± 14; P = .02), MIE (73 ± 5; P = .03), and no-exercise (75 ± 4; P = .03). Exercise at any intensity 30 minutes after a meal affects glycemic regulation equally in insufficiently active males. Moderate to vigorous exercise intensities were preferred, and therefore, the exercise guidelines appear appropriate for the prevention of cardiometabolic disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Neoagarotetraose protects mice against intense exercise induced stress by modulating gut microbial composition and function

    USDA-ARS?s Scientific Manuscript database

    Exhaustive exercise stress has emerged as an important health issue, and gastrointestinal problems are a common concern during intense exercise. In this study, we investigated potential anti-fatigue effects of neoagarotetraose (NAT) in mice under intense exercise stress. Exhaustive exercise stress s...

  18. Inhibition of α-adrenergic vasoconstriction in exercising human thigh muscles

    PubMed Central

    Wray, D Walter; Fadel, Paul J; Smith, Michael L; Raven, Peter; Sander, Mikael

    2004-01-01

    The mechanisms underlying metabolic inhibition of sympathetic responses within exercising skeletal muscle remain incompletely understood. The aim of the present study was to test whether α2-adrenoreceptor-mediated vasoconstriction was more sensitive to metabolic inhibition than α1-vasoconstriction during dynamic knee-extensor exercise. We studied healthy volunteers using two protocols: (1) wide dose ranges of the α-adrenoreceptor agonists phenylephrine (PE, α1 selective) and BHT-933 (BHT, α2 selective) were administered intra-arterially at rest and during 27 W knee-extensor exercise (n = 13); (2) flow-adjusted doses of PE (0.3 μg kg−1 l−1) and BHT (15 μg kg−1 l−1) were administered at rest and during ramped exercise (7 W to 37 W; n= 10). Ultrasound Doppler and thermodilution techniques provided direct measurements of femoral blood flow (FBF). PE (0.8 μg kg−1) and BHT (40 μg kg−1) produced comparable maximal reductions in FBF at rest (−58 ± 6 versus−64 ± 4%). Despite increasing the doses, PE (1.6 μg kg−1 min−1) and BHT (80 μg kg−1 min−1) caused significantly smaller changes in FBF during 27 W exercise (−13 ± 4 versus−3 ± 5%). During ramped exercise, significant vasoconstriction at lower intensities (7 and 17 W) was seen following PE (−16 ± 5 and −16 ± 4%), but not BHT (−2 ± 4 and −4 ± 5%). At the highest intensity (37 W), FBF was not significantly changed by either drug. Collectively, these data demonstrate metabolic inhibition of α-adrenergic vasoconstriction in large postural muscles of healthy humans. Both α1- and α2-adrenoreceptor agonists produce comparable vasoconstriction in the resting leg, and dynamic thigh exercise attenuates α1- and α2-mediated vasoconstriction similarly. However, α2-mediated vasoconstriction appears more sensitive to metabolic inhibition, because α2 is completely inhibited even at low workloads, whereas α1 becomes progressively inhibited with increasing workloads. PMID:14694145

  19. Can Self-Reported Preference for Exercise Intensity Predict Physiologically Defined Self-Selected Exercise Intensity?

    ERIC Educational Resources Information Center

    Ekkekakis, Panteleimon; Lind, Erik; Joens-Matre, Roxane R.

    2006-01-01

    Exercise prescription guidelines emphasize the importance of individual preferences for different intensities, but such preferences have not been studied systematically. This study examined the hypothesis that the preference scale of the Preference for and Tolerance of the Intensity of Exercise Questionnaire would predict self-selected exercise…

  20. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus.

    PubMed

    Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok

    2015-10-01

    [Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus.

  1. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus

    PubMed Central

    Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok

    2015-01-01

    [Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. PMID:26644644

  2. Energy cost of isolated resistance exercises across low- to high-intensities

    PubMed Central

    Garrido, Nuno Domingos; Vianna, Jeferson; Sousa, Ana Catarina; Alves, José Vilaça; Marques, Mário Cardoso

    2017-01-01

    This study aimed to estimate the energy cost across various intensities at eight popular resistance exercises: half squat, 45° inclined leg press, leg extension, horizontal bench press, 45° inclined bench press, lat pull down, triceps extension and biceps curl. 58 males (27.5 ± 4.9 years, 1.78 ± 0.06 m height, 78.67 ± 10.7 kg body mass and 11.4 ± 4.1% estimated body fat) were randomly divided into four groups of 14 subjects each. For each group, two exercises were randomly assigned and on different days, they performed four bouts of 5-min constant-intensity for each of the two assigned exercises: 12%, 16%, 20% and 24% 1-RM. Later, the subjects performed exhaustive bouts at 80% 1-RM in the same two exercises. The mean values of VO2 at the last 30s of exercise at 12, 16, 20 and 24% 1-RM bouts were plotted against relative intensity (% 1-RM) in a simple linear regression mode. The regressions were then used to predict O2 demand for the higher intensity (80% 1-RM). Energy cost rose linearly with exercise intensity in every exercise with the lowest mean values were found in biceps curl and the highest in half squat exercise (p<0.001). Half squat exercise presented significant (p<0.001) higher values of energy cost in all intensities, when compared with the remaining exercises. This study revealed that low-intensity resistance exercise provides energy cost comprised between 3 and 10 kcal∙min-1. Energy cost rose past 20 kcal∙min-1 at 80% 1-RM in leg exercise. In addition, at 80% 1-RM, it was found that upper body exercises are less anaerobic than lower-body exercises. PMID:28742112

  3. Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit?

    PubMed

    Iwasaki, Ken-Ichi; Zhang, Rong; Zuckerman, Julie H; Levine, Benjamin D

    2003-10-01

    Occupational or recreational exercise reduces mortality from cardiovascular disease. The potential mechanisms for this reduction may include changes in blood pressure (BP) and autonomic control of the circulation. Therefore, we conducted the present long-term longitudinal study to quantify the dose-response relationship between the volume and intensity of exercise training, and regulation of heart rate (HR) and BP. We measured steady-state hemodynamics and analyzed dynamic cardiovascular regulation by spectral and transfer function analysis of cardiovascular variability in 11 initially sedentary subjects during 1 yr of progressive endurance training sufficient to allow them to complete a marathon. From this, we found that 1) moderate exercise training for 3 mo decreased BP, HR, and total peripheral resistance, and increased cardiovascular variability and arterial baroreflex sensitivity; 2) more prolonged and intense training did not augment these changes further; and 3) most of these changes returned to control values at 12 mo despite markedly increased training duration and intensity equivalent to that routinely observed in competitive athletes. In conclusion, increases in R-wave-R-wave interval and cardiovascular variability indexes are consistent with an augmentation of vagal modulation of HR after exercise training. It appears that moderate doses of training for 3 mo are sufficient to achieve this response as well as a modest hypotensive effect from decreasing vascular resistance. However, more prolonged and intense training does not necessarily lead to greater enhancement of circulatory control and, therefore, may not provide an added protective benefit via autonomic mechanisms against death by cardiovascular disease.

  4. Isometric exercise: cardiovascular responses in normal and cardiac populations.

    PubMed

    Hanson, P; Nagle, F

    1987-05-01

    Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training regimens currently utilized by international class and professional athletes should stimulate longitudinal studies of physiologic and pathophysiologic outcomes of intense isometric exercise training programs.

  5. Neural control of blood flow during exercise in human metabolic syndrome.

    PubMed

    Limberg, Jacqueline K; Morgan, Barbara J; Sebranek, Joshua J; Proctor, Lester T; Eldridge, Marlowe W; Schrage, William G

    2014-09-01

    α-Adrenergic-mediated vasoconstriction is greater during simulated exercise in animal models of metabolic syndrome (MetSyn) when compared with control animals. In an attempt to translate such findings to humans, we hypothesized that adults with MetSyn (n = 14, 35 ± 3 years old) would exhibit greater α-adrenergic responsiveness during exercise when compared with age-matched healthy control subjects (n = 16, 31 ± 3 years old). We measured muscle sympathetic nerve activity (MSNA; microneurography) and forearm blood flow (Doppler ultrasound) during dynamic forearm exercise (15% of maximal voluntary contraction). α-Adrenergic agonists (phenylephrine and clonidine) and an antagonist (phentolamine) were infused intra-arterially to assess α-adrenergic receptor responsiveness and restraint, respectively. Resting MSNA was ∼35% higher in adults with MetSyn (P < 0.05), but did not change in either group with dynamic exercise. Clonidine-mediated vasoconstriction was greater in adults with MetSyn (P < 0.01). Group differences in vascular responses to phenylephrine and phentolamine were not detected (P > 0.05). Interestingly, exercise-mediated vasodilatation was greater in MetSyn (P < 0.05). Adults with MetSyn exhibit greater resting MSNA and clonidine-mediated vasoconstriction, yet preserved functional sympatholysis and higher exercise blood flow during low-intensity hand-grip exercise when compared with age-matched healthy control subjects. These results suggest that adults with MetSyn exhibit compensatory vascular control mechanisms capable of preserving blood flow responses to exercise in the face of augmented sympathetic adrenergic activity. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  6. Effects of increasing and decreasing physiological arousal on anticipation timing performance during competition and practice.

    PubMed

    Duncan, Michael J; Smith, Mike; Bryant, Elizabeth; Eyre, Emma; Cook, Kathryn; Hankey, Joanne; Tallis, Jason; Clarke, Neil; Jones, Marc V

    2016-01-01

    The aim of this study was to investigate if the effects of changes in physiological arousal on timing performance can be accurately predicted by the catastrophe model. Eighteen young adults (8 males, 10 females) volunteered to participate in the study following ethical approval. After familiarisation, coincidence anticipation was measured using the Bassin Anticipation Timer under four incremental exercise conditions: Increasing exercise intensity and low cognitive anxiety, increasing exercise intensity and high cognitive anxiety, decreasing exercise intensity and low cognitive anxiety and decreasing exercise intensity and high cognitive anxiety. Incremental exercise was performed on a treadmill at intensities of 30%, 50%, 70% and 90% heart rate reserve (HRR) respectively. Ratings of cognitive anxiety were taken at each intensity using the Mental Readiness Form 3 (MRF3) followed by performance of coincidence anticipation trials at speeds of 3 and 8 mph. Results indicated significant condition × intensity interactions for absolute error (AE; p = .0001) and MRF cognitive anxiety intensity scores (p = .05). Post hoc analysis indicated that there were no statistically significant differences in AE across exercise intensities in low-cognitive anxiety conditions. In high-cognitive anxiety conditions, timing performance AE was significantly poorer and cognitive anxiety higher at 90% HRR, compared to the other exercise intensities. There was no difference in timing responses at 90% HRR during competitive trials, irrespective of whether exercise intensity was increasing or decreasing. This study suggests that anticipation timing performance is negatively affected when physiological arousal and cognitive anxiety are high.

  7. Is heart rate variability a feasible method to determine anaerobic threshold in progressive resistance exercise in coronary artery disease?

    PubMed Central

    Sperling, Milena P. R.; Simões, Rodrigo P.; Caruso, Flávia C. R.; Mendes, Renata G.; Arena, Ross; Borghi-Silva, Audrey

    2016-01-01

    ABSTRACT Background Recent studies have shown that the magnitude of the metabolic and autonomic responses during progressive resistance exercise (PRE) is associated with the determination of the anaerobic threshold (AT). AT is an important parameter to determine intensity in dynamic exercise. Objectives To investigate the metabolic and cardiac autonomic responses during dynamic resistance exercise in patients with Coronary Artery Disease (CAD). Method Twenty men (age = 63±7 years) with CAD [Left Ventricular Ejection Fraction (LVEF) = 60±10%] underwent a PRE protocol on a leg press until maximal exertion. The protocol began at 10% of One Repetition Maximum Test (1-RM), with subsequent increases of 10% until maximal exhaustion. Heart Rate Variability (HRV) indices from Poincaré plots (SD1, SD2, SD1/SD2) and time domain (rMSSD and RMSM), and blood lactate were determined at rest and during PRE. Results Significant alterations in HRV and blood lactate were observed starting at 30% of 1-RM (p<0.05). Bland-Altman plots revealed a consistent agreement between blood lactate threshold (LT) and rMSSD threshold (rMSSDT) and between LT and SD1 threshold (SD1T). Relative values of 1-RM in all LT, rMSSDT and SD1T did not differ (29%±5 vs 28%±5 vs 29%±5 Kg, respectively). Conclusion HRV during PRE could be a feasible noninvasive method of determining AT in CAD patients to plan intensities during cardiac rehabilitation. PMID:27556384

  8. Does Physical Loading Affect The Speed and Accuracy of Tactical Decision-Making in Elite Junior Soccer Players?

    PubMed

    Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír

    2016-06-01

    A soccer player's capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players' motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key pointsDifferent exercise intensity modes did not affect the accuracy of motor response.Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise.Further research should focus on the assessment of VMRT from a player's real - field position view rather than a perspective view.

  9. Mechanical ventilatory constraints during incremental cycle exercise in human pregnancy: implications for respiratory sensation

    PubMed Central

    Jensen, Dennis; Webb, Katherine A; Davies, Gregory A L; O'Donnell, Denis E

    2008-01-01

    The aim of this study was to identify the physiological mechanisms of exertional respiratory discomfort (breathlessness) in pregnancy by comparing ventilatory (breathing pattern, airway function, operating lung volumes, oesophageal pressure (Poes)-derived indices of respiratory mechanics) and perceptual (breathlessness intensity) responses to incremental cycle exercise in 15 young, healthy women in the third trimester (TM3; between 34 and 38 weeks gestation) and again 4–5 months postpartum (PP). During pregnancy, resting inspiratory capacity (IC) increased (P < 0.01) and end-expiratory lung volume decreased (P < 0.001), with no associated change in total lung capacity (TLC) or static respiratory muscle strength. This permitted greater tidal volume (VT) expansion throughout exercise in TM3, while preserving the relationship between contractile respiratory muscle effort (tidal Poes swing expressed as a percentage of maximum inspiratory pressure (PImax)) and thoracic volume displacement (VT expressed as a percentage of vital capacity) and between breathlessness and ventilation (V̇E). At the highest equivalent work rate (HEWR = 128 ± 5 W) in TM3 compared with PP: V̇E, tidal Poes/PImax and breathlessness intensity ratings increased by 10.2 l min−1 (P < 0.001), 8.8%PImax (P < 0.05) and 0.9 Borg units (P < 0.05), respectively. Pulmonary resistance was not increased at rest or during exercise at the HEWR in TM3, despite marked increases in mean tidal inspiratory and expiratory flow rates, suggesting increased bronchodilatation. Dynamic mechanical constraints on VT expansion (P < 0.05) with associated increased breathlessness intensity ratings (P < 0.05) were observed near peak exercise in TM3 compared with PP. In conclusion: (1) pregnancy-induced increases in exertional breathlessness reflected the normal awareness of increased V̇E and contractile respiratory muscle effort; (2) mechanical adaptations of the respiratory system, including recruitment of resting IC and increased bronchodilatation, accommodated the increased VT while preserving effort–displacement and breathlessness–V̇E relationships; and (3) dynamic mechanical ventilatory constraints contributed to respiratory discomfort near the limits of tolerance in late gestation. PMID:18687714

  10. Video game-based coordinative training improves ataxia in children with degenerative ataxia.

    PubMed

    Ilg, Winfried; Schatton, Cornelia; Schicks, Julia; Giese, Martin A; Schöls, Ludger; Synofzik, Matthis

    2012-11-13

    Degenerative ataxias in children present a rare condition where effective treatments are lacking. Intensive coordinative training based on physiotherapeutic exercises improves degenerative ataxia in adults, but such exercises have drawbacks for children, often including a lack of motivation for high-frequent physiotherapy. Recently developed whole-body controlled video game technology might present a novel treatment strategy for highly interactive and motivational coordinative training for children with degenerative ataxias. We examined the effectiveness of an 8-week coordinative training for 10 children with progressive spinocerebellar ataxia. Training was based on 3 Microsoft Xbox Kinect video games particularly suitable to exercise whole-body coordination and dynamic balance. Training was started with a laboratory-based 2-week training phase and followed by 6 weeks training in children's home environment. Rater-blinded assessments were performed 2 weeks before laboratory-based training, immediately prior to and after the laboratory-based training period, as well as after home training. These assessments allowed for an intraindividual control design, where performance changes with and without training were compared. Ataxia symptoms were significantly reduced (decrease in Scale for the Assessment and Rating of Ataxia score, p = 0.0078) and balance capacities improved (dynamic gait index, p = 0.04) after intervention. Quantitative movement analysis revealed improvements in gait (lateral sway: p = 0.01; step length variability: p = 0.01) and in goal-directed leg placement (p = 0.03). Despite progressive cerebellar degeneration, children are able to improve motor performance by intensive coordination training. Directed training of whole-body controlled video games might present a highly motivational, cost-efficient, and home-based rehabilitation strategy to train dynamic balance and interaction with dynamic environments in a large variety of young-onset neurologic conditions. This study provides Class III evidence that directed training with Xbox Kinect video games can improve several signs of ataxia in adolescents with progressive ataxia as measured by SARA score, Dynamic Gait Index, and Activity-specific Balance Confidence Scale at 8 weeks of training.

  11. Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality.

    PubMed

    Myllymäki, Tero; Rusko, Heikki; Syväoja, Heidi; Juuti, Tanja; Kinnunen, Marja-Liisa; Kyröläinen, Heikki

    2012-03-01

    Acute physical exercise may affect cardiac autonomic modulation hours or even days during the recovery phase. Although sleep is an essential recovery period, the information on nocturnal autonomic modulation indicated by heart rate variability (HRV) after different exercises is mostly lacking. Therefore, this study investigated the effects of exercise intensity and duration on nocturnal HR, HRV, HR, and HRV-based relaxation, as well as on actigraphic and subjective sleep quality. Fourteen healthy male subjects (age 36 ± 4 years, maximal oxygen uptake 49 ± 4 ml/kg/min) performed five different running exercises on separate occasions starting at 6 p.m. with HR guidance at home. The effect of intensity was studied with 30 min of exercises at intensities corresponding to HR level at 45% (easy), 60% (moderate) and 75% (vigorous) of their maximal oxygen uptake. The effect of duration was studied with 30, 60, and 90 min of moderate exercises. Increased exercise intensity elevated nocturnal HR compared to control day (p < 0.001), but it did not affect nocturnal HRV. Nocturnal HR was greater after the day with 90- than 30- or 60-min exercises (p < 0.01) or control day (p < 0.001). Nocturnal HRV was lower after the 90-min exercise day compared to control day (p < 0.01). Neither exercise intensity nor duration had any impact on actigraphic or subjective sleep quality. The results suggest that increased exercise intensity and/or duration cause delayed recovery of nocturnal cardiac autonomic modulation, although long exercise duration was needed to induce changes in nocturnal HRV. Increased exercise intensity or duration does not seem to disrupt sleep quality.

  12. The effect of exercise intensity on postresistance exercise hypotension in trained men.

    PubMed

    Duncan, Michael J; Birch, Samantha L; Oxford, Samuel W

    2014-06-01

    The occurrence of postresistance exercise hypotension (PEH) after resistance exercise remains unknown. This study examined blood pressure and heart rate (HR) responses to an acute bout of low- and high-intensity resistance exercise, matched for total work, in trained males. Sixteen resistance-trained males (23.1 ± 5.9 years) performed an acute bout of low- (40% of 1 repetition maximum [1RM]) and high-intensity resistance exercise (80% 1RM), matched for total work, separated by 7 days and performed in a counterbalanced order. Systolic blood pressure (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), and HR were assessed before exercise, after completion of each exercise resistance exercise (3 sets of back squat, bench press, and deadlift) and every 10 minutes after resistance exercise for a period of 60 minutes. Results indicated a significant intensity × time interaction for SBP (p = 0.034, partial η(2) = 0.122) and MAP (p = 0.047, partial η(2) = 0.116) whereby SBP and MAP at 50-minute recovery and 60-minute recovery were significantly lower after high-intensity exercise (p = 0.01 for SBP and p = 0.05 for MAP in both cases) compared with low-intensity exercise. There were no significant main effects or interactions in regard to DBP (all p > 0.05). Heart rate data indicated a significant main effect for time (F(9, 135) = 2.479, p = 0.0001, partial η(2) = 0.344). Post hoc multiple comparisons indicated that HR was significantly higher after squat, bench press, and deadlift exercise compared with resting HR and HR at 40-, 50-, and 60-minute recovery (all p = 0.03). The present findings suggest that an acute bout of high intensity, but not low intensity, resistance exercise using compound movements can promote PEH in trained men.

  13. Objective and subjective measures of exercise intensity during thermo-neutral and hot yoga.

    PubMed

    Boyd, Corinne N; Lannan, Stephanie M; Zuhl, Micah N; Mora-Rodriguez, Ricardo; Nelson, Rachael K

    2018-04-01

    While hot yoga has gained enormous popularity in recent years, owing in part to increased environmental challenge associated with exercise in the heat, it is not clear whether hot yoga is more vigorous than thermo-neutral yoga. Therefore, the aim of this study was to determine objective and subjective measures of exercise intensity during constant intensity yoga in a hot and thermo-neutral environment. Using a randomized, crossover design, 14 participants completed 2 identical ∼20-min yoga sessions in a hot (35.3 ± 0.8 °C; humidity: 20.5% ± 1.4%) and thermo-neutral (22.1 ± 0.2 °C; humidity: 27.8% ± 1.6%) environment. Oxygen consumption and heart rate (HR) were recorded as objective measures (percentage of maximal oxygen consumption and percentage of maximal HR (%HRmax)) and rating of perceived exertion (RPE) was recorded as a subjective measure of exercise intensity. There was no difference in exercise intensity based on percentage of maximal oxygen consumption during hot versus thermo-neutral yoga (30.9% ± 2.3% vs. 30.5% ± 1.8%, p = 0.68). However, exercise intensity was significantly higher during hot versus thermo-neutral yoga based on %HRmax (67.0% ± 2.3% vs. 60.8% ± 1.9%, p = 0.01) and RPE (12 ± 1 vs. 11 ± 1, p = 0.04). According to established exercise intensities, hot yoga was classified as light-intensity exercise based on percentage of maximal oxygen consumption but moderate-intensity exercise based on %HRmax and RPE while thermo-neutral yoga was classified as light-intensity exercise based on percentage of maximal oxygen uptake, %HRmax, and RPE. Despite the added hemodynamic stress and perception that yoga is more strenuous in a hot environment, we observed similar oxygen consumption during hot versus thermo-neutral yoga, classifying both exercise modalities as light-intensity exercise.

  14. Decline in Executive Control during Acute Bouts of Exercise as a Function of Exercise Intensity and Fitness Level

    ERIC Educational Resources Information Center

    Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis

    2013-01-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…

  15. Study in Parkinson Disease of Exercise (SPARX): Translating high-intensity exercise from animals to humans

    PubMed Central

    Moore, Charity G.; Schenkman, Margaret; Kohrt, Wendy M.; Delitto, Anthony; Hall, Deborah A.; Corcos, Daniel

    2013-01-01

    A burgeoning literature suggests that exercise has a therapeutic benefit in persons with Parkinson disease (PD) and in animal models of PD, especially when animals exercise at high intensity. If exercise is to be prescribed as “first-line” or “add-on” therapy in patients with PD, we must demonstrate its efficacy and dose-response effects through testing phases similar to those used in the testing of pharmacologic agents. The SPARX Trial is a multicenter, randomized, controlled, single-blinded, Phase II study that we designed to test the feasibility of using high-intensity exercise to modify symptoms of PD and to simultaneously test the nonfutility of achieving a prespecified change in patients’ motor scores on the Unified Parkinson Disease Rating Scale (UPDRS). The trial began in May 2102 and is in the process of screening, enrolling, and randomly assigning 126 patients with early-stage PD to 1 of 3 groups: usual care (wait-listed controls), moderate-intensity exercise (4 days/week at 60%–65% maximal heart rate [HRmax]), or high-intensity exercise (4 days/week at 80%–85% HRmax). At 6-month follow-up, the trial is randomly reassigning usual care participants to a moderate-intensity or high-intensity exercise group for the remaining 6 months. The goals of the Phase II trial are to determine if participants can exercise at moderate and high intensities; to determine if either exercise yields benefits consistent with meaningful clinical change (nonfutility); and to document safety and attrition. The advantage of using a non-futility approach allows us to efficiently determine if moderate- or high-intensity exercise warrants further large-scale investigation in PD. PMID:23770108

  16. High-intensity exercise interventions in cancer survivors: a systematic review exploring the impact on health outcomes.

    PubMed

    Toohey, Kellie; Pumpa, Kate; McKune, Andrew; Cooke, Julie; Semple, Stuart

    2018-01-01

    There is an increasing body of evidence underpinning high-intensity exercise as an effective and time-efficient intervention for improving health in cancer survivors. The aim of this study was to, (1) evaluate the efficacy and (2) the safety of high-intensity exercise interventions in improving selected health outcomes in cancer survivors. Design Systematic review. Data sources Google Scholar and EBSCO, CINAHL Plus, Computers and Applied Sciences Complete, Health Source-Consumer Edition, Health Source: Nursing/Academic Edition, MEDLINE, Web of Science and SPORTDiscuss from inception up until August 2017. Eligibility criteria Randomized controlled trials of high-intensity exercise interventions in cancer survivors (all cancer types) with health-related outcome measures. The guidelines adopted for this review were the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). The search returned 447 articles, of which nine articles (n = 531 participants mean, age 58 ± 9.5 years) met the eligibility criteria. Exercise interventions of between 4 and 18 weeks consisting of high-intensity interval bouts of up to 4-min were compared with a continuous moderate intensity (CMIT) intervention or a control group. High-intensity exercise interventions elicited significant improvements in VO 2 max, strength, body mass, body fat and hip and waist circumference compared with CMIT and/or control groups. The studies reviewed showed low risk in participating in supervised high-intensity exercise interventions. Mixed mode high-intensity interventions which included both aerobic and resistance exercises were most effective improving the aerobic fitness levels of cancer survivors by 12.45-21.35%, from baseline to post-intervention. High-intensity exercise interventions improved physical and physiological health-related outcome measures such as cardiovascular fitness and strength in cancer survivors. Given that high-intensity exercise sessions require a shorter time commitment, it may be a useful modality to improve health outcomes in those who are time poor. The risk of adverse events associated with high-intensity exercise was low.

  17. Comparable Neutrophil Responses for Arm and Intensity-matched Leg Exercise.

    PubMed

    Leicht, Christof A; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C

    2017-08-01

    Arm exercise is performed at lower absolute intensities than lower body exercise. This may impact on intensity-dependent neutrophil responses, and it is unknown whether individuals restricted to arm exercise experience the same changes in the neutrophil response as found for lower body exercise. Therefore, we aimed to investigate the importance of exercise modality and relative exercise intensity on the neutrophil response. Twelve moderately trained men performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak arms) and cycling (V˙O2peak legs): 1) arm cranking exercise at 60% V˙O2peak arms, 2) moderate cycling at 60% V˙O2peak legs, and 3) easy cycling at 60% V˙O2peak arms. Neutrophil numbers in the circulation increased for all exercise trials, but were significantly lower for easy cycling when compared with arm exercise (P = 0.009), mirroring the blunted increase in HR and epinephrine during easy cycling. For all trials, exercising HR explained some of the variation of the neutrophil number 2 h postexercise (R = 0.51-0.69), epinephrine explaining less of this variation (R = 0.21-0.34). The number of neutrophils expressing CXCR2 decreased in the recovery from exercise in all trials (P < 0.05). Arm and leg exercise elicits the same neutrophil response when performed at the same relative intensity, implying that populations restricted to arm exercise might achieve a similar exercise induced neutrophil response as those performing lower body exercise. A likely explanation for this is the higher sympathetic activation and cardiac output for arm and relative intensity-matched leg exercise when compared with easy cycling, which is partly reflected in HR. This study further shows that the downregulation of CXCR2 may be implicated in exercise-induced neutrophilia.

  18. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability.

    PubMed

    Cornelissen, V A; Verheyden, B; Aubert, A E; Fagard, R H

    2010-03-01

    We aimed to investigate the effects of endurance training intensity (1) on systolic blood pressure (SBP) and heart rate (HR) at rest before exercise, and during and after a maximal exercise test; and (2) on measures of HR variability at rest before exercise and during recovery from the exercise test, in at least 55-year-old healthy sedentary men and women. A randomized crossover study comprising three 10-week periods was performed. In the first and third period, participants exercised at lower or higher intensity (33% or 66% of HR reserve) in random order, with a sedentary period in between. Training programmes were identical except for intensity, and were performed under supervision thrice for 1 h per week. The results show that in the three conditions, that is, at rest before exercise, during exercise and during recovery, we found endurance training at lower and higher intensity to reduce SBP significantly (P<0.05) and to a similar extent. Further, SBP during recovery was, on average, not lower than at rest before exercise, and chronic endurance training did not affect the response of SBP after an acute bout of exercise. The effect of training on HR at rest, during exercise and recovery was more pronounced (P<0.05) with higher intensity. Finally, endurance training had no significant effect on sympathovagal balance. In conclusion, in participants at higher age, both training programmes exert similar effects on SBP at rest, during exercise and during post-exercise recovery, whereas the effects on HR are more pronounced after higher intensity training.

  19. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals-A Review.

    PubMed

    Michael, Scott; Graham, Kenneth S; Davis, Glen M

    2017-01-01

    Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the "reactivity hypothesis" suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. "Modality" has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key determining factor. Concurrent monitoring of HRV and STI may be a valuable non-invasive approach to investigate autonomic stress reactivity; however, this integrative approach has not yet been applied with regards to exercise stressors.

  20. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals—A Review

    PubMed Central

    Michael, Scott; Graham, Kenneth S.; Davis, Glen M.

    2017-01-01

    Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the “reactivity hypothesis” suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. “Modality” has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key determining factor. Concurrent monitoring of HRV and STI may be a valuable non-invasive approach to investigate autonomic stress reactivity; however, this integrative approach has not yet been applied with regards to exercise stressors. PMID:28611675

  1. Sympathetic adaptations to one-legged training

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  2. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise.

    PubMed

    Walser, Buddy; Stebbins, Charles L

    2008-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance.

  3. Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests.

    PubMed

    Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D

    2017-10-15

    Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle. Wave energy decreased during Valsalva manoeuvre (by ∼45%) and handgrip exercise (by ∼27%) with unaffected wave speed. Moreover, the reservoir and excess pressures decreased during Valsalva manoeuvre but remained unaltered during handgrip exercise. In conclusion, reservoir-excess pressure analysis applied to the pulmonary artery revealed distinctive differences between controls and PAH patients. Variations in the ventricular preload and afterload influence pulmonary arterial wave propagation as demonstrated by changes in wave energy during spontaneous respiration and dynamic stress tests. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  4. Psychobiological Responses to Preferred and Prescribed Intensity Exercise in Major Depressive Disorder.

    PubMed

    Meyer, Jacob D; Ellingson, Laura D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B

    2016-11-01

    Exercise acutely improves mood in major depressive disorder (MDD). However, it is unknown whether benefits differ depending on whether exercise intensity is self-selected or prescribed. This study aimed to compare psychological and biological responses to preferred and prescribed steady-state exercise intensities to a patient-selected preferred intensity. Female adults (N = 24, age = 38.6 ± 14.0 yr) diagnosed with MDD completed four 30-min sessions of cycling exercise at three prescribed intensities (RPE of 11, 13, and 15) and one session with a self-selected intensity (preferred). Order was randomized and counterbalanced. Depressed mood (DM) was evaluated before, 10 min, and 30 min postexercise using the Profile of Mood States. Serum brain-derived neurotrophic factor (BDNF) was measured before and within 10 min postexercise. Changes in BDNF and DM for the preferred session were compared with the following prescribed sessions: 1) performed at the most similar intensity (matched on RPE; closest) and 2) with the greatest improvement in DM (greatest). Compared with the preferred session, improvement in DM was significantly larger after the greatest session (30 min postexercise: -11.8 ± 7.4 vs -3.4 ± 4.8), and the BDNF response was significantly greater after the closest session (5.4 ± 6.9 vs -1.4 ± 9.8 ng·mL). Permitting patients to select their own exercise intensity did not maximize improvements in mood. Further, preferred intensity exercise was also associated with a smaller BDNF response. Overall, the results suggest that exercise undertaken to improve mood should be prescribed on an individual basis in MDD and not necessarily based on the patient's preferred intensity. Clinicians, psychologists, and other practitioners should consider providing clear exercise intensity recommendations for symptom management in depression rather than allowing patients to self-select their intensity.

  5. Optimizing the "priming" effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance.

    PubMed

    Bailey, Stephen J; Vanhatalo, Anni; Wilkerson, Daryl P; Dimenna, Fred J; Jones, Andrew M

    2009-12-01

    It has been suggested that a prior bout of high-intensity exercise has the potential to enhance performance during subsequent high-intensity exercise by accelerating the O(2) uptake (Vo(2)) on-response. However, the optimal combination of prior exercise intensity and subsequent recovery duration required to elicit this effect is presently unclear. Eight male participants, aged 18-24 yr, completed step cycle ergometer exercise tests to 80% of the difference between the preestablished gas exchange threshold and maximal Vo(2) (i.e., 80%Delta) after no prior exercise (control) and after six different combinations of prior exercise intensity and recovery duration: 40%Delta with 3 min (40-3-80), 9 min (40-9-80), and 20 min (40-20-80) of recovery and 70%Delta with 3 min (70-3-80), 9 min (70-9-80), and 20 min (70-20-80) of recovery. Overall Vo(2) kinetics were accelerated relative to control in all conditions except for 40-9-80 and 40-20-80 conditions as a consequence of a reduction in the Vo(2) slow component amplitude; the phase II time constant was not significantly altered with any prior exercise/recovery combination. Exercise tolerance at 80%Delta was improved by 15% and 30% above control in the 70-9-80 and 70-20-80 conditions, respectively, but was impaired by 16% in the 70-3-80 condition. Prior exercise at 40%Delta did not significantly influence exercise tolerance regardless of the recovery duration. These data demonstrate that prior high-intensity exercise ( approximately 70%Delta) can enhance the tolerance to subsequent high-intensity exercise provided that it is coupled with adequate recovery duration (>or=9 min). This combination presumably optimizes the balance between preserving the effects of prior exercise on Vo(2) kinetics and providing sufficient time for muscle homeostasis (e.g., muscle phosphocreatine and H(+) concentrations) to be restored.

  6. Preferred Exertion across Three Common Modes of Exercise Training.

    ERIC Educational Resources Information Center

    Glass, Stephen C.; Chvala, Angela M.

    2001-01-01

    Examined the influence of exercise mode on self-selected exercise intensities. Participants performed three types of intensity tests. Researchers collected data on VO2 values continuously and recorded 1-minute averages several times for each submaximal test. Participants allowed to self-select exercise intensity chose work rates within the…

  7. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    PubMed

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO 2max , Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  8. High-intensity exercise training for the prevention of type 2 diabetes mellitus.

    PubMed

    Rynders, Corey A; Weltman, Arthur

    2014-02-01

    Aerobic exercise training and diet are recommended for the primary prevention of type 2 diabetes mellitus and cardiovascular disease. The American Diabetes Association (ADA) recommends that adults with prediabetes engage in ≥ 150 minutes per week of moderate activity and target a 7% weight loss. However, traditional moderate-intensity (MI) exercise training programs are often difficult to sustain for prediabetic adults; a commonly cited barrier to physical activity in this population is the "lack of time" to exercise. When matched for total energy expenditure, high-intensity (HI) exercise training has a lower overall time commitment compared with traditional low-intensity (LI) or MI exercise training. Several recent studies comparing HI exercise training with LI and MI exercise training reported that HI exercise training improves skeletal muscle metabolic control and cardiovascular function in a comparable and/or superior way relative to LI and MI exercise training. Although patients can accrue all exercise benefits by performing LI or MI activities such as walking, HI activities represent a time-efficient alternative to meeting physical activity guidelines. High-intensity exercise training is a potent tool for improving cardiometabolic risk for prediabetic patients with limited time and may be prescribed when appropriate.

  9. Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise.

    PubMed

    Hofmann, Peter

    2018-01-31

    There is ample evidence that regular moderate to vigorous aerobic physical activity is related to a reduced risk for various forms of cancer to suggest a causal relationship. Exercise is associated with positive changes in fitness, body composition, and physical functioning as well as in patient-reported outcomes such as fatigue, sleep quality, or health-related quality of life. Emerging evidence indicates that exercise may also be directly linked to the control of tumour biology through direct effects on tumour-intrinsic factors. Beside a multitude of effects of exercise on the human body, one underscored effect of exercise training is to target the specific metabolism of tumour cells, namely the Warburg-type highly glycolytic metabolism. Tumour metabolism as well as the tumour⁻host interaction may be selectively influenced by single bouts as well as regularly applied exercise, dependent on exercise intensity, duration, frequency and mode. High-intensity anaerobic exercise was shown to inhibit glycolysis and some studies in animals showed that effects on tumour growth might be stronger compared with moderate-intensity aerobic exercise. High-intensity exercise was shown to be safe in patients; however, it has to be applied carefully with an individualized prescription of exercise.

  10. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    PubMed

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Cardiovascular Benefits of Moderate Exercise Training in Marfan Syndrome: Insights From an Animal Model.

    PubMed

    Mas-Stachurska, Aleksandra; Siegert, Anna-Maria; Batlle, Monsterrat; Gorbenko Del Blanco, Darya; Meirelles, Thayna; Rubies, Cira; Bonorino, Fabio; Serra-Peinado, Carla; Bijnens, Bart; Baudin, Julio; Sitges, Marta; Mont, Lluís; Guasch, Eduard; Egea, Gustavo

    2017-09-25

    Marfan syndrome (MF) leads to aortic root dilatation and a predisposition to aortic dissection, mitral valve prolapse, and primary and secondary cardiomyopathy. Overall, regular physical exercise is recommended for a healthy lifestyle, but dynamic sports are strongly discouraged in MF patients. Nonetheless, evidence supporting this recommendation is lacking. Therefore, we studied the role of long-term dynamic exercise of moderate intensity on the MF cardiovascular phenotype. In a transgenic mouse model of MF ( Fbn1 C1039G/+ ), 4-month-old wild-type and MF mice were subjected to training on a treadmill for 5 months; sedentary littermates served as controls for each group. Aortic and cardiac remodeling was assessed by echocardiography and histology. The 4-month-old MF mice showed aortic root dilatation, elastic lamina rupture, and tunica media fibrosis, as well as cardiac hypertrophy, left ventricular fibrosis, and intramyocardial vessel remodeling. Over the 5-month experimental period, aortic root dilation rate was significantly greater in the sedentary MF group, compared with the wild-type group (∆mm, 0.27±0.07 versus 0.13±0.02, respectively). Exercise significantly blunted the aortic root dilation rate in MF mice compared with sedentary MF littermates (∆mm, 0.10±0.04 versus 0.27±0.07, respectively). However, these 2 groups were indistinguishable by aortic root stiffness, tunica media fibrosis, and elastic lamina ruptures. In MF mice, exercise also produced cardiac hypertrophy regression without changes in left ventricular fibrosis. Our results in a transgenic mouse model of MF indicate that moderate dynamic exercise mitigates the progression of the MF cardiovascular phenotype. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. Does Physical Loading Affect The Speed and Accuracy of Tactical Decision-Making in Elite Junior Soccer Players?

    PubMed Central

    Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír

    2016-01-01

    A soccer player’s capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players’ motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key points Different exercise intensity modes did not affect the accuracy of motor response. Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise. Further research should focus on the assessment of VMRT from a player’s real - field position view rather than a perspective view. PMID:27274671

  13. Hormetic effects by exercise on hippocampal neurogenesis with glucocorticoid signaling

    PubMed Central

    Okamoto, Masahiro; Yamamura, Yuhei; Liu, Yu-Fan; Min-Chul, Lee; Matsui, Takashi; Shima, Takeru; Soya, Mariko; Takahashi, Kanako; Soya, Shingo; McEwen, Bruce S.; Soya, Hideaki

    2015-01-01

    Abstract Exercise enhances adult hippocampal neurogenesis (AHN), although the exact nature of how this happens remains controversial. The beneficial effects of exercise vary depending upon the exercise condition, especially intensity. Most animal studies, however, have used wheel running, which only evaluates running distance (exercise volume) and does not consider intensity. In our rat model, we have found that exercise-induced neurogenesis varies depending on the intensity of the exercise and have found that exercise-enhanced neurogenesis is more pronounced with mild exercise than with moderate and/or intense exercise. This may be due, at least in part, to increased glucocorticoid (CORT) secretion. To test this hypothesis, we used our special exercise model in mice, with and without a stress response, based on the lactate threshold (LT) in which moderate exercise above the LT increases lactate and adrenocorticotropic hormone (ACTH) release, while mild exercise does not. Adult male C57BL/6J mice were subjected to two weeks of exercise training and AHN was measured with a 5-Bromo-2-deoxyuridine (BrdU) pre-injection and immunohistochemistry. The role of glucocorticoid signaling was examined using intrapertioneal injections of antagonists for the glucocorticoid receptor (GR), mifepristone, and the mineralocorticoid receptor (MR), spironolactone. We found that, while mild exercise increased AHN without elevating CORT blood levels, both MR and GR antagonists abolished mild-exercise-induced AHN, but did not affect AHN under intense exercise. This suggests a facilitative, permissive role of glucocorticoid and mineralocorticoid receptors in AHN during mild exercise (234/250)

  14. The Effect of Music on Exercise Intensity among Children with Autism Spectrum Disorder: A Pilot Study

    PubMed Central

    Woodman, Ashley C.; Breviglia, Emily; Mori, Yumiko; Golden, Rebecca; Maina, John; Wisniewski, Hannah

    2018-01-01

    Children with autism spectrum disorder (ASD) are at risk for obesity, commonly have sleep disorders, and exhibit stereotypic behaviors that disrupt their learning. Vigorous levels of exercise have been shown to ameliorate these issues in children with ASD, but little research exists to provide techniques for motivating children with ASD to engage in exercise. The present study examined the effect of music on exercise intensity in a group of 13 elementary school students with ASD. Data were collected across six days during structured (e.g., verbal and physical prompts) and unstructured (e.g., minimal prompting) exercise periods. During these exercise periods, three music conditions were randomized: no music, slow-tempo music, and fast-tempo music. Exercise intensity, measured in Metabolic Equivalent of Tasks by triaxial accelerometers, was greatest during the structured exercise periods and during the slow music condition. Student characteristics moderated the impact of music condition on exercise intensity, such that students with high levels of adaptive behavior or lower levels of maladaptive behavior displayed greater exercise intensity during the fast music condition. PMID:29495354

  15. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate-intensity exercise in human skeletal muscle.

    PubMed

    Vigelsø, A; Gram, M; Dybboe, R; Kuhlman, A B; Prats, C; Greenhaff, P L; Constantin-Teodosiu, D; Birk, J B; Wojtaszewski, J F P; Dela, F; Helge, J W

    2016-04-15

    This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate-intensity exercise. Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two-legged dynamic knee-extensor moderate-intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise. Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise. Using a combined whole-leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate-intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl-CoA carboxylase 2 and AMP-activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane-associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole-leg and molecular differences in fatty acid mobilization could explain the age- and immobilization-induced IMTG accumulation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate‐intensity exercise in human skeletal muscle

    PubMed Central

    Gram, M.; Dybboe, R.; Kuhlman, A. B.; Prats, C.; Greenhaff, P. L.; Constantin‐Teodosiu, D.; Birk, J. B.; Wojtaszewski, J. F. P.; Dela, F.; Helge, J. W.

    2016-01-01

    Key points This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate‐intensity exercise.Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two‐legged dynamic knee‐extensor moderate‐intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise.Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise.Using a combined whole‐leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Abstract Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate‐intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two‐legged isolated knee‐extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl‐CoA carboxylase 2 and AMP‐activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane‐associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole‐leg and molecular differences in fatty acid mobilization could explain the age‐ and immobilization‐induced IMTG accumulation. PMID:26801521

  17. Physiological Tolerance to Uncompensable Heat Stress: Effects of Exercise Intensity, Protective Clothing, and Climate

    DTIC Science & Technology

    1994-01-01

    Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing , and climate SCOTT J. MONTAIN, MICHAEL N...effects of exercise 26), there remains little information to predict the inci- intensity, protective clothing , and climate. J. AppL PhysioL dence of...that pre- exercise intensity, protective clothing level, and climate on dict the physiological responses and work capability dur- physiological tolerance

  18. The relation between exercise and glaucoma in a South Korean population-based sample.

    PubMed

    Lin, Shuai-Chun; Wang, Sophia Y; Pasquale, Louis R; Singh, Kuldev; Lin, Shan C

    2017-01-01

    To investigate the association between exercise and glaucoma in a South Korean population-based sample. Population-based, cross-sectional study. A total of 11,246 subjects, 40 years and older who underwent health care assessment as part of the 2008-2011 Korean National Health and Nutrition Examination Survey. Variables regarding the duration (total minutes per week), frequency (days per week), and intensity of exercise (vigorous, moderate exercise and walking) as well as glaucoma prevalence were ascertained for 11,246 survey participants. Demographic, comorbidity, and health-related behavior information was obtained via interview. Multivariable logistic regression analyses were performed to determine the association between the exercise-related parameters and odds of a glaucoma diagnosis. Glaucoma defined by International Society for Geographical and Epidemiological Ophthalmology criteria. Overall, 336 (2.7%) subjects met diagnostic criteria for glaucomatous disease. After adjustment for potential confounding variables, subjects engaged in vigorous exercise 7 days per week had higher odds of having glaucoma compared with those exercising 3 days per week (Odds Ratio [OR] 3.33, 95% confidence interval [CI] 1.16-9.54). High intensity of exercise, as categorized by the guidelines of the American College of Sports Medicine (ACSM), was also associated with greater glaucoma prevalence compared with moderate intensity of exercise (OR 1.55, 95% CI 1.03-2.33). There was no association between other exercise parameters including frequency of moderate exercise, walking, muscle strength exercise, flexibility training, or total minutes of exercise per week, and the prevalence of glaucoma. In sub-analyses stratifying by gender, the association between frequency of vigorous exercise 7 days per week and glaucoma diagnosis remained significant in men (OR 6.05, 95% CI 1.67-21.94) but not in women (OR 0.96 95% CI: 0.23-3.97). A U-shaped association between exercise intensity and glaucoma prevalence was noted in men (OR 1.71, 95% CI 1.09-2.69 for low intensity versus moderate intensity; OR 2.19, 95% CI 1.25-3.85 for high intensity versus moderate intensity). In a South Korean population sample, daily vigorous exercise was associated with higher glaucoma prevalence. In addition, the intensity of exercise was positively associated with glaucoma diagnosis in men but not women.

  19. The relation between exercise and glaucoma in a South Korean population-based sample

    PubMed Central

    Lin, Shuai-Chun; Wang, Sophia Y.; Pasquale, Louis R.; Singh, Kuldev; Lin, Shan C.

    2017-01-01

    Purpose To investigate the association between exercise and glaucoma in a South Korean population-based sample. Design Population-based, cross-sectional study. Participants A total of 11,246 subjects, 40 years and older who underwent health care assessment as part of the 2008–2011 Korean National Health and Nutrition Examination Survey. Methods Variables regarding the duration (total minutes per week), frequency (days per week), and intensity of exercise (vigorous, moderate exercise and walking) as well as glaucoma prevalence were ascertained for 11,246 survey participants. Demographic, comorbidity, and health-related behavior information was obtained via interview. Multivariable logistic regression analyses were performed to determine the association between the exercise-related parameters and odds of a glaucoma diagnosis. Main outcome measure(s) Glaucoma defined by International Society for Geographical and Epidemiological Ophthalmology criteria. Results Overall, 336 (2.7%) subjects met diagnostic criteria for glaucomatous disease. After adjustment for potential confounding variables, subjects engaged in vigorous exercise 7 days per week had higher odds of having glaucoma compared with those exercising 3 days per week (Odds Ratio [OR] 3.33, 95% confidence interval [CI] 1.16–9.54). High intensity of exercise, as categorized by the guidelines of the American College of Sports Medicine (ACSM), was also associated with greater glaucoma prevalence compared with moderate intensity of exercise (OR 1.55, 95% CI 1.03–2.33). There was no association between other exercise parameters including frequency of moderate exercise, walking, muscle strength exercise, flexibility training, or total minutes of exercise per week, and the prevalence of glaucoma. In sub-analyses stratifying by gender, the association between frequency of vigorous exercise 7 days per week and glaucoma diagnosis remained significant in men (OR 6.05, 95% CI 1.67–21.94) but not in women (OR 0.96 95% CI: 0.23–3.97). A U-shaped association between exercise intensity and glaucoma prevalence was noted in men (OR 1.71, 95% CI 1.09–2.69 for low intensity versus moderate intensity; OR 2.19, 95% CI 1.25–3.85 for high intensity versus moderate intensity). Conclusion In a South Korean population sample, daily vigorous exercise was associated with higher glaucoma prevalence. In addition, the intensity of exercise was positively associated with glaucoma diagnosis in men but not women. PMID:28187143

  20. The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme.

    PubMed

    Ligtenberg, Antoon J M; Brand, Henk S; van den Keijbus, Petra A M; Veerman, Enno C I

    2015-11-01

    Saliva secretion is regulated by the autonomic nervous system. Parasympathic stimuli increase the secretion of water and mucin MUC5B, whereas sympathetic stimuli such as physical exercise increase the secretion of amylase and other proteins. In the present study we investigated the effect of physical exercise, as a sympathetic stimulus, on salivary flow rate and output of MUC5B, amylase, lysozyme and total protein. Unstimulated whole saliva was collected before exercise (1), after 10 min exercise with moderate intensity by running with a heart rate around 130 beats per minute (2), followed by 10 min exercise with high intensity by running to exhaustion (3) and after 30 min recovery (4). Salivary flow rate, protein and MUC5B concentration, and amylase and lysozyme activity were determined. Saliva protein composition was analysed using SDS-PAGE and immunoblotting. Salivary flow rate, protein and lysozyme secretion increased after exercise with moderate intensity and increased further after exercise with high intensity (p<0.01). Amylase and MUC5B increased after exercise with moderate intensity (p<0.0001), but did not differ significantly between moderate and high exercise intensity. SDS-PAGE analysis and immunoblotting showed that, especially after exercise with high intensity, the concentrations of several other salivary proteins, including MUC7, albumin, and extra-parotid glycoprotein, also increased. Exercise may not only lead to the anticipated increase in amylase and protein secretion, but also to an increase in salivary flow rate and MUC5B secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The effects of exercise program on burnout and metabolic syndrome components in banking and insurance workers.

    PubMed

    Tsai, Han Hui; Yeh, Ching Ying; Su, Chien Tien; Chen, Chiou Jong; Peng, Shu Mei; Chen, Ruey Yu

    2013-01-01

    To explore the effectiveness of exercise program for banking and insurance workers and clarify the association between exercise, burnout, and metabolic syndrome components. In the process of the study, a practicable worksite exercise program was developed for bank and insurance enterprises. A three-month (12-wk) exercise course was conducted, and its benefits evaluated. Levels of burnout and metabolic syndrome components were analyzed after exercise intervention. After intervention, the indicators of burnout and metabolic syndrome components were significantly improved in both low and high intensity groups, and the improvement were expressed in reduction of waist circumference, systolic blood pressure, person burnout and work-related burnout. A dose-response of burnouts and metabolic syndrome components with exercise intensity are shown (p<0.05). Metabolic syndrome components were independently associated with burnout and exercise intensity in the crude model. After adjustment for potential confounders, waist circumference and systolic blood pressure differences showed significant associations with exercise intensity (p<0.05). This study demonstrated an effective approach to worksite exercise intervention and exercise intensity played an important role to alleviate damage between burnouts and metabolic syndrome components.

  2. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients.

    PubMed

    Hansen, D; Dendale, P; Jonkers, R A M; Beelen, M; Manders, R J F; Corluy, L; Mullens, A; Berger, J; Meeusen, R; van Loon, L J C

    2009-09-01

    Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Fifty male obese type 2 diabetes patients (age 59 +/- 8 years, BMI 32 +/- 4 kg/m(2)) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake (VO(2)peak (low to moderate intensity) or 40 min at 75% of VO(2)peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO(2)peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p < 0.05). No differences were observed between the groups training at low to moderate or moderate to high intensity. When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. ISRCTN32206301 None.

  3. Intensity of Leisure-Time Exercise and Risk of Depressive Symptoms Among Japanese Workers: A Cohort Study.

    PubMed

    Kuwahara, Keisuke; Honda, Toru; Nakagawa, Tohru; Yamamoto, Shuichiro; Hayashi, Takeshi; Mizoue, Tetsuya

    2018-02-05

    Data on the effect of physical activity intensity on depression is scarce. We investigated the prospective association between intensity of leisure-time exercise and risk of depressive symptoms among Japanese workers. The participants were 29,052 employees (24,653 men and 4,399 women) aged 20 to 64 years without psychiatric disease including depressive symptoms at health checkup in 2006-2007 and were followed up until 2014-2015. Details of leisure-time exercise were ascertained via a questionnaire. Depressive states were assessed using a 13-item questionnaire. Multivariable-adjusted hazard ratio of depressive symptoms was estimated using Cox regression analysis. During a mean follow-up of 5.8 years with 168,203 person-years, 6,847 workers developed depressive symptoms. Compared with workers who engaged in no exercise during leisure-time (0 MET-hours per week), hazard ratios (95% confidence intervals) associated with >0 to <7.5, 7.5 to <15.0, and ≥15.0 MET-hours of leisure-time exercise were 0.88 (0.82-0.94), 0.85 (0.76-0.94), and 0.78 (0.68-0.88) among workers who engaged in moderate-intensity exercise alone; 0.93 (0.82-1.06), 0.82 (0.68-0.98), and 0.83 (0.71-0.98) among workers who engaged in vigorous-intensity exercise alone; and 0.96 (0.80-1.15), 0.80 (0.67-0.95), and 0.76 (0.66-0.87) among workers who engaged in both moderate- and vigorous-intensity exercise with adjustment for age, sex, lifestyles, work-related and socioeconomic factors, and body mass index. Additional adjustment for baseline depression score attenuated the inverse association, especially among those who engaged in moderate-intensity exercise alone. The results suggest that vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise would prevent depressive symptoms among Japanese workers.

  4. Plasma Irisin Modestly Increases during Moderate and High-Intensity Afternoon Exercise in Obese Females

    PubMed Central

    Winn, Nathan C.; Grunewald, Zachary I.; Liu, Ying; Heden, Timothy D.; Nyhoff, Lauren M.; Kanaley, Jill A.

    2017-01-01

    Background and Purpose Irisin is an exercise-responsive myokine that has been proposed to exert anti-obesity benefits; yet its response during exercise in obese women is not described. This study characterized plasma irisin levels during a single bout of afternoon isocaloric-exercise of different intensities (moderate- vs high-intensity) in obese females. Methods Eleven obese females participated in 3 randomized study days beginning at 1600h: 1) no exercise (NoEx), 2) moderate exercise (ModEx; 55%VO2max) and 3) high intensity interval exercise (IntEx; 4 min (80%VO2max)/3 min (50% VO2max). Frequent blood samples were analyzed for glucose and lactate (whole-blood), and insulin, c-peptide, glucagon, and irisin (plasma) throughout 190 min of testing. Results Plasma irisin increased above baseline during ModEx and IntEx (P<0.05), but not NoEx (P>0.05). Peak irisin levels during ModEx and IntEx exercise were 11.9± 3.4% and 12.3 ± 4.1% relative to baseline (P<0.05), respectively, with no differences between exercise intensities (P>0.05). Irisin levels remained elevated above resting for 125 minutes post-exercise during ModEx, whereas levels returned to baseline within 15 minutes post-exercise during IntEx. Similarly, no associations were found between plasma irisin levels and circulating lactate, glucose, insulin, c-peptide, or glucagon among study days (P>0.05). However, there was an inverse association between basal irisin and lean mass (r = -0.70, P = 0.01). Conclusion A single bout of moderate and high intensity afternoon exercise induces modest increases in circulating irisin concentrations during exercise; however the regulation post-exercise appears to be dimorphic between exercise intensity in obese females. Future studies are needed to compare morning and afternoon exercise on irisin secretion. PMID:28125733

  5. The anaerobic threshold: over-valued or under-utilized? A novel concept to enhance lipid optimization!

    PubMed

    Connolly, Declan A J

    2012-09-01

    The purpose of this article is to assess the value of the anaerobic threshold for use in clinical populations with the intent to improve exercise adaptations and outcomes. The anaerobic threshold is generally poorly understood, improperly used, and poorly measured. It is rarely used in clinical settings and often reserved for athletic performance testing. Increased exercise participation within both clinical and other less healthy populations has increased our attention to optimizing exercise outcomes. Of particular interest is the optimization of lipid metabolism during exercise in order to improve numerous conditions such as blood lipid profile, insulin sensitivity and secretion, and weight loss. Numerous authors report on the benefits of appropriate exercise intensity in optimizing outcomes even though regulation of intensity has proved difficult for many. Despite limited use, selected exercise physiology markers have considerable merit in exercise-intensity regulation. The anaerobic threshold, and other markers such as heart rate, may well provide a simple and valuable mechanism for regulating exercising intensity. The use of the anaerobic threshold and accurate target heart rate to regulate exercise intensity is a valuable approach that is under-utilized across populations. The measurement of the anaerobic threshold can be simplified to allow clients to use nonlaboratory measures, for example heart rate, in order to self-regulate exercise intensity and improve outcomes.

  6. Moderating influence of dominant attentional style and exercise intensity on responses to asynchronous music.

    PubMed

    Hutchinson, Jasmin C; Karageorghis, Costas I

    2013-12-01

    We examined independent and combined influences of asynchronous music and dominant attentional style (DAS) on psychological and psychophysical variables during exercise using mixed methods. Participants (N = 34) were grouped according to DAS and completed treadmill runs at three intensities (low, moderate, high) crossed with three music conditions (motivational, oudeterous, no-music control). State attentional focus shifted from dissociative to associative with increasing intensity and was most aligned with DAS during moderate-intensity exercise. Both music conditions facilitated dissociation at low-to-moderate intensities. At high exercise intensity, both music conditions were associated with reduced RPE among participants with an associative DAS. Dissociators reported higher RPE overall during moderate and high intensities. Psychological responses were most positive in the motivational condition, followed by oudeterous and control. Findings illustrate the relevance of individual differences in DAS as well as task intensity and duration when selecting music for exercise.

  7. Self-selected music-induced reduction of perceived exertion during moderate-intensity exercise does not interfere with post-exercise improvements in inhibitory control.

    PubMed

    Tanaka, Daichi; Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao

    2018-05-26

    Acute aerobic exercise improves inhibitory control (IC). This improvement is often associated with increases in perceived exertion during exercise. However, listening to music during aerobic exercise mitigates an exercise-induced increase in perceived exertion. Thus, it is hypothesized that such effects of music may interfere with exercise-induced improvements in IC. To test this hypothesis, we examined the effect of music on post-exercise IC improvements that were induced by moderate-intensity exercise. Fifteen healthy young men performed cycle ergometer exercise with music or non-music. The exercise was performed using a moderate-intensity of 60% of VO 2 peak for 30 min. The music condition was performed while listening to self-selected music. The non-music condition involved no music. To evaluate IC, the Stroop task was administered before exercise, immediately after exercise, and during the 30-min post-exercise recovery period. The rate of perceived exertion immediately before moderate-intensity exercise completed was significantly lower in music condition than in non-music condition. The IC significantly improved immediately after exercise and during the post-exercise recovery period compared to before exercise in both music and non-music conditions. The post-exercise IC improvements did not significantly differ between the two conditions. These findings indicate that self-selected music-induced mitigation of the increase in perceived exertion during moderate-intensity exercise dose not interfere with exercise-induced improvements in IC. Therefore, we suggest that listening to music may be a beneficial strategy in mitigating the increase in perceived exertion during aerobic exercise without decreasing the positive effects on IC. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Effects of Exercise on Arrhythmia (and Viceversa): Lesson from the Greek Mythology.

    PubMed

    Lambiase, Caterina; Macerola, Silvia; Bosco, Giovanna; Messina, Elisa; Franciosa, Pasquale

    2017-01-01

    Exercise represents an important lifestyle factor in all human ages when felt in harmony with other psycho-physical and environmental variables that affect individual life (e. g. quality of interest, affections, environment, diet and food). Consequently, in addition to the training level, the amount, intensity and modality of exercise (ana-/aerobic, isometric/isotonic), need to be personalized, considering the underlying diseases, which may benefit from it or worsening.Greek mythology gives us good examples of the exercise concept's evolution.From Discus-thrower to Spear-carrier the idea of physical activity is more effectively expressed. The Myron Discobolus displays the enduring pattern of athletic energy translated into the dynamic force given by the exercise. In Doryphoros instead, the physical activity is oriented to the achievement of the required psyco-physical harmony, who's the concept is aimed of being expressed by the sculpture.As outlined below, even in the field of arrhythmia, scientific evidence as well as clinical experience, supports the same concept: physical activity may be important while safely managed and personalized.

  9. Psychophysiological Responses to Group Exercise Training Sessions: Does Exercise Intensity Matter?

    PubMed

    Vandoni, Matteo; Codrons, Erwan; Marin, Luca; Correale, Luca; Bigliassi, Marcelo; Buzzachera, Cosme Franklim

    2016-01-01

    Group exercise training programs were introduced as a strategy for improving health and fitness and potentially reducing dropout rates. This study examined the psychophysiological responses to group exercise training sessions. Twenty-seven adults completed two group exercise training sessions of moderate and vigorous exercise intensities in a random and counterbalanced order. The %HRR and the exertional and arousal responses to vigorous session were higher than those during the moderate session (p<0.05). Consequently, the affective responses to vigorous session were less pleasant than those during moderate session (p<0.05). These results suggest that the psychophysiological responses to group exercise training sessions are intensity-dependent. From an adherence perspective, interventionists are encouraged to emphasize group exercise training sessions at a moderate intensity to maximize affective responses and to minimize exertional responses, which in turn may positively affect future exercise behavior.

  10. The Effect of Acute Exercise on Affect and Arousal in Inpatient Mental Health Consumers.

    PubMed

    Stanton, Robert; Reaburn, Peter; Happell, Brenda

    2016-09-01

    Acute exercise performed at a self-selected intensity improves affect and may improve long-term adherence. Similarly, in people with severe depression, acute aerobic exercise performed at self-selected intensity improves affect and arousal. However, the relationship between changes in affect and arousal and perceived exercise intensity in people with mental illness has not been evaluated. Affect and arousal were assessed immediately prior to, and immediately following, a group exercise program performed at a self-selected intensity in 40 inpatient mental health consumers who received a diagnosis of anxiety or bipolar or depressive disorders. Exercise intensity was assessed immediately after exercise. Postexercise affect was significantly improved for people with bipolar and depressive disorders but not for people with anxiety disorders. For the group as a whole, results showed a significant curvilinear relationship between ratings of perceived exertion and postexercise affect. These data will inform the development and delivery of future exercise interventions for inpatient mental health consumers.

  11. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise.

    PubMed

    Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole

    2015-12-15

    Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P < 0.001), with HIT reaching higher BDNF levels than CON (P = 0.035) (experiment 2). These results suggest that shorter bouts of high intensity exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.

  12. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy.

    PubMed

    Lucero, Adam A; Addae, Gifty; Lawrence, Wayne; Neway, Beemnet; Credeur, Daniel P; Faulkner, James; Rowlands, David; Stoner, Lee

    2018-01-01

    What is the central question of this study? Continuous-wave near-infrared spectroscopy, coupled with venous and arterial occlusions, offers an economical, non-invasive alternative to measuring skeletal muscle blood flow and oxygen consumption, but its reliability during exercise has not been established. What is the main finding and its importance? Continuous-wave near-infrared spectroscopy devices can reliably assess local skeletal muscle blood flow and oxygen consumption from the vastus lateralis in healthy, physically active adults. The patterns of response exhibited during exercise of varying intensity agree with other published results using similar methodologies, meriting potential applications in clinical diagnosis and therapeutic assessment. Near-infrared spectroscopy (NIRS), coupled with rapid venous and arterial occlusions, can be used for the non-invasive estimation of resting local skeletal muscle blood flow (mBF) and oxygen consumption (mV̇O2), respectively. However, the day-to-day reliability of mBF and mV̇O2 responses to stressors such as incremental dynamic exercise has not been established. The aim of this study was to determine the reliability of NIRS-derived mBF and mV̇O2 responses from incremental dynamic exercise. Measurements of mBF and mV̇O2 were collected in the vastus lateralis of 12 healthy, physically active adults [seven men and five women; 25 (SD 6) years old] during three non-consecutive visits within 10 days. After 10 min rest, participants performed 3 min of rhythmic isotonic knee extension (one extension every 4 s) at 5, 10, 15, 20, 25 and 30% of maximal voluntary contraction (MVC), before four venous occlusions and then two arterial occlusions. The mBF and mV̇O2 increased proportionally with intensity [from 0.55 to 7.68 ml min -1  (100 ml) -1 and from 0.05 to 1.86 ml O 2  min -1  (100 g) -1 , respectively] up to 25% MVC, where they began to plateau at 30% MVC. Moreover, an mBF/mV̇O2 muscle oxygen consumption ratio of ∼5 was consistent for all exercise stages. The intraclass correlation coefficient for mBF indicated high to very high reliability for 10-30% MVC (0.82-0.9). There was very high reliability for mV̇O2 across all exercise stages (intraclass correlation coefficient 0.91-0.96). In conclusion, NIRS can reliably assess muscle blood flow and oxygen consumption responses to low- to moderate-intensity exercise, meriting potential applications in clinical diagnosis and therapeutic assessment. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  13. Contributions of Astronauts Aerobic Exercise Intensity and Time on Change in VO2peak during Spaceflight

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Buxton, Roxanne; Moore, Alan; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori

    2014-01-01

    There is considerable variability among astronauts with respect to changes in maximal aerobic capacity (VO2peak) during International Space Station (ISS) missions, ranging from a 5% increase to 30% decline. Individual differences may be due to in-flight aerobic exercise time and intensity. PURPOSE: To evaluate the effects of in-flight aerobic exercise time and intensity on change in VO2peak during ISS missions. METHODS: Astronauts (N=11) performed peak cycle tests approx 60 days before flight (L-60), on flight day (FD) approx 14, and every approx 30 days thereafter. Metabolic gas analysis and heart rate (HR) were measured continuously during the test using the portable pulmonary function system. HR and duration of each in-flight cycle ergometer and treadmill (TM) session were recorded and averaged in time segments corresponding to each peak test. Mixed effects linear regression with exercise mode (TM or cycle) as a categorical variable was used to assess the contributions of exercise intensity (%time >70% peak HR or %time >90% peak HR) and time (min/wk), adjusted for body weight, on %change in VO2peak during the mission, and incorporating the repeated-measures experimental design. RESULTS: 110 observations were included in the model (4-6 peak cycle tests per astronaut, 2 exercise devices). VO2peak was reduced from preflight throughout the mission (FD14: 13+/-13% and FD 105: 8+/-10%). Exercise intensity (%peak HR: FD14=66+/-14; FD105=75+/-8) and time (min/wk: FD14=82+/-46; FD105=158+/-40) increased during flight. The models showed main effects for exercise time and intensity with no interactions between time, intensity, and device (70% peak HR: time [z-score=2.39; P=0.017], intensity [z-score=3.51; P=0.000]; 90% peak HR: time [zscore= 3.31; P=0.001], intensity [z-score=2.24; P=0.025]). CONCLUSION: Exercise time and intensity independently contribute to %change in VO2peak during ISS missions, indicating that there are minimal values for exercise time and intensity required to maintain VO2peak. As the FD105 average exercise intensity and time did not prevent a decline in VO2peak from preflight, astronauts' exercise prescriptions should target at least 160 min of weekly aerobic exercise at an average above 75% peak HR with increased time at intensities above 90% of peak HR starting early in the mission.

  14. Evidence for cognitive–behavioral strategies improving dyspnea and related distress in COPD

    PubMed Central

    Norweg, Anna; Collins, Eileen G

    2013-01-01

    Background Dyspnea is a complex, prevalent, and distressing symptom of chronic obstructive pulmonary disease (COPD) associated with decreased quality of life, significant disability, and increased mortality. It is a major reason for referral to pulmonary rehabilitation. Methods We reviewed 23 COPD studies to examine the evidence for the effectiveness of cognitive–behavioral strategies for relieving dyspnea in COPD. Results Preliminary evidence from randomized controlled trials exists to support cognitive– behavioral strategies, used with or without exercise, for relieving sensory and affective components of dyspnea in COPD. Small to moderate treatment effects for relieving dyspnea were noted for psychotherapy (effect size [ES] = 0.08–0.25 for intensity; 0.26–0.65 for mastery) and distractive auditory stimuli (ES = 0.08–0.33 for intensity; 0.09 to −0.61 for functional burden). Small to large dyspnea improvements resulted from yoga (ES = 0.2–1.21 for intensity; 0.67 for distress; 0.07 for mastery; and −8.37 for functional burden); dyspnea self-management education with exercise (ES = −0.14 to −1.15 for intensity; −0.62 to −0.69 for distress; 1.04 for mastery; 0.14–0.35 for self-efficacy); and slow-breathing exercises (ES = −0.34 to −0.83 for intensity; −0.61 to −0.80 for distress; and 0.62 for self-efficacy). Cognitive–behavioral interventions may relieve dyspnea in COPD by (1) decreasing sympathetic nerve activity, dynamic hyperinflation, and comorbid anxiety, and (2) promoting arterial oxygen saturation, myelinated vagus nerve activity, a greater exercise training effect, and neuroplasticity. Conclusion While evidence is increasing, additional randomized controlled trials are needed to evaluate the effectiveness of psychosocial and self-management interventions in relieving dyspnea, in order to make them more available to patients and to endorse them in official COPD, dyspnea, and pulmonary rehabilitation practice guidelines. By relieving dyspnea and related anxiety, such interventions may promote adherence to exercise programs and adaptive lifestyle change. PMID:24106423

  15. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training.

    PubMed

    Wyckelsma, Victoria L; Levinger, Itamar; McKenna, Michael J; Formosa, Luke E; Ryan, Michael T; Petersen, Aaron C; Anderson, Mitchell J; Murphy, Robyn M

    2017-06-01

    Ageing is associated with an upregulation of mitochondrial dynamics proteins mitofusin 2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) in human skeletal muscle with the increased abundance of Mfn2 being exclusive to type II muscle fibres. These changes occur despite a similar content of mitochondria, as measured by COXIV, NDUFA9 and complexes in their native states (Blue Native PAGE). Following 12 weeks of high-intensity training (HIT), older adults exhibit a robust increase in mitochondria content, while there is a decline in Mfn2 in type II fibres. We propose that the upregulation of Mfn2 and MiD49 with age may be a protective mechanism to protect against mitochondrial dysfunction, in particularly in type II skeletal muscle fibres, and that exercise may have a unique protective effect negating the need for an increased turnover of mitochondria. Mitochondrial dynamics proteins are critical for mitochondrial turnover and maintenance of mitochondrial health. High-intensity interval training (HIT) is a potent training modality shown to upregulate mitochondrial content in young adults but little is known about the effects of HIT on mitochondrial dynamics proteins in older adults. This study investigated the abundance of protein markers for mitochondrial dynamics and mitochondrial content in older adults compared to young adults. It also investigated the adaptability of mitochondria to 12 weeks of HIT in older adults. Both older and younger adults showed a higher abundance of mitochondrial respiratory chain subunits COXIV and NDUFA9 in type I compared with type II fibres, with no difference between the older adults and young groups. In whole muscle homogenates, older adults had higher mitofusin-2 (Mfn2) and mitochondrial dynamics protein 49 (MiD49) contents compared to the young group. Also, older adults had higher levels of Mfn2 in type II fibres compared with young adults. Following HIT in older adults, MiD49 and Mfn2 levels were not different in whole muscle and Mfn2 content decreased in type II fibres. Increases in citrate synthase activity (55%) and mitochondrial respiratory chain subunits COXIV (37%) and NDUFA9 (48%) and mitochondrial respiratory chain complexes (∼70-100%) were observed in homogenates and/or single fibres. These findings reveal (i) a similar amount of mitochondria in muscle from young and healthy older adults and (ii) a robust increase of mitochondrial content following 12 weeks of HIT exercise in older adults. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  16. Post-plyometric exercise hypotension and heart rate in normotensive individuals: influence of exercise intensity.

    PubMed

    Arazi, Hamid; Asadi, Abbas; Rahimzadeh, Mehdi; Moradkhani, Amir-Hossein

    2013-12-01

    The purpose of this study was to compare the effects of high, moderate and low intensity plyometric exercise on the post-exercise systolic and diastolic blood pressure and heart rate responses. Ten healthy normotensive men (age, 21.1±0.9 years; height, 175.8±6 cm; and body mass, 69.1±13.6 kg) volunteered to participate in this study and were evaluated for three non-consecutive days in depth jump exercise from 20-cm box (low intensity [LI]), 40-cm box (moderate intensity [MI]) and 60-cm box (high intensity [HI]) for 5 sets of 20 repetitions. After each exercise session, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured every 10 min for a period of 90 min. No significant differences were observed among post-exercise SBP, DBP and HR when the protocols (LI, MI and HI) were compared. The LI and HI protocols showed greater reduction in SBP at 40(th)-70(th) min of post-exercise (~9%), whereas the LI and MI protocols indicated greater reduction in DBP at 10(th)-50(th) min of post exercise (~10%). In addition, the change in the DBP for HI was not significant and the increases in the HR were similar for all intensities. It can be concluded that a plyometric exercise (PE) can reduce SBP and DBP post-exercise and therefore we can say that PE has significant effects for reducing BP and HR or post-exercise hypotension.

  17. Exercise intensity modulates the change in cerebral blood flow following aerobic exercise in chronic stroke.

    PubMed

    Robertson, Andrew D; Crane, David E; Rajab, A Saeed; Swardfager, Walter; Marzolini, Susan; Shirzadi, Zahra; Middleton, Laura E; MacIntosh, Bradley J

    2015-08-01

    The mechanisms supporting functional improvement by aerobic exercise following stroke remain incompletely understood. This study investigated how cycling intensity and aerobic fitness influence cerebral blood flow (CBF) following a single exercise session. Thirteen community-living stroke survivors performed 20 min of semi-recumbent cycling at low and moderate intensities (40-50 and 60-70 % of heart rate reserve, respectively) as determined from an exercise stress test. CBF was quantified by arterial spin labeling MRI at baseline, as well as 30 and 50 min post-exercise. An intensity-dependent effect was observed in the right post-central and supramarginal gyri up to 50 min after exercise (uncorrected p < 0.005, cluster size ≥10). Regional CBF was increased 18 ± 17 % and reduced 8 ± 12 % following moderate- and low-intensity cycling, respectively. In contrast, CBF changes were similar between sessions in the right lentiform nucleus and mid-frontal gyrus, as well as the left temporal and parietal gyri. Aerobic fitness was directly related to posterior cingulate and thalamic CBF, and inversely related to precuneal CBF at rest (R (2) ≥ 0.75); however, no relationship between fitness and the post-exercise change in CBF was observed. Divergent changes in regional CBF were observed in the right parietal cortex following low- and moderate-intensity exercise, which suggests that intensity of prescribed exercise may be useful in optimizing rehabilitation.

  18. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise.

  19. How should COPD patients exercise during respiratory rehabilitation? Comparison of exercise modalities and intensities to treat skeletal muscle dysfunction

    PubMed Central

    Puhan, M; Schunemann, H; Frey, M; Scharplatz, M; Bachmann, L

    2005-01-01

    Background: Physical exercise is an important component of respiratory rehabilitation because it reverses skeletal muscle dysfunction, a clinically important manifestation of COPD associated with reduced health-related quality of life (HRQL) and survival. However, there is controversy regarding the components of the optimal exercise protocol. A study was undertaken to systematically evaluate and summarise randomised controlled trials (RCTs) comparing different exercise protocols for COPD patients. Methods: Six electronic databases, congress proceedings and bibliographies of included studies were searched without imposing language restrictions. Two reviewers independently screened all records and extracted data on study samples, interventions and methodological characteristics of included studies. Results: The methodological quality of the 15 included RCTs was low to moderate. Strength exercise led to larger improvements of HRQL than endurance exercise (weighted mean difference for Chronic Respiratory Questionnaire 0.27, 95% CI 0.02 to 0.52). Interval exercise seems to be of similar effectiveness as continuous exercise, but there are few data on clinically relevant outcomes. One small RCT which included patients with mild COPD compared the effect of high and low intensity exercise (at 80% and 40% of the maximum exercise capacity, respectively) and found larger physiological training effects from high intensity exercise. Conclusions: Strength exercise should be routinely incorporated in respiratory rehabilitation. There is insufficient evidence to recommend high intensity exercise for COPD patients and investigators should conduct larger high quality trials to evaluate exercise intensities in patients with moderate to severe COPD. PMID:15860711

  20. Evidence based exercise - clinical benefits of high intensity interval training.

    PubMed

    Shiraev, Tim; Barclay, Gabriella

    2012-12-01

    Aerobic exercise has a marked impact on cardiovascular disease risk. Benefits include improved serum lipid profiles, blood pressure and inflammatory markers as well as reduced risk of stroke, acute coronary syndrome and overall cardiovascular mortality. Most exercise programs prescribed for fat reduction involve continuous, moderate aerobic exercise, as per Australian Heart Foundation clinical guidelines. This article describes the benefits of exercise for patients with cardiovascular and metabolic disease and details the numerous benefits of high intensity interval training (HIIT) in particular. Aerobic exercise has numerous benefits for high-risk populations and such benefits, especially weight loss, are amplified with HIIT. High intensity interval training involves repeatedly exercising at a high intensity for 30 seconds to several minutes, separated by 1-5 minutes of recovery (either no or low intensity exercise). HIT is associated with increased patient compliance and improved cardiovascular and metabolic outcomes and is suitable for implementation in both healthy and 'at risk' populations. Importantly, as some types of exercise are contraindicated in certain patient populations and HIIT is a complex concept for those unfamiliar to exercise, some patients may require specific assessment or instruction before commencing a HIIT program.

  1. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial.

    PubMed

    Schenkman, Margaret; Moore, Charity G; Kohrt, Wendy M; Hall, Deborah A; Delitto, Anthony; Comella, Cynthia L; Josbeno, Deborah A; Christiansen, Cory L; Berman, Brian D; Kluger, Benzi M; Melanson, Edward L; Jain, Samay; Robichaud, Julie A; Poon, Cynthia; Corcos, Daniel M

    2018-02-01

    Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the moderate-intensity group (P < .001). The mean change in Unified Parkinson's Disease Rating Scale motor score in the high-intensity group was 0.3 (95% CI, -1.7 to 2.3) compared with 3.2 (95% CI, 1.4 to 5.1) in the usual care group (P = .03). The high-intensity group, but not the moderate-intensity group, reached the predefined nonfutility threshold compared with the control group. Anticipated adverse musculoskeletal events were not severe. High-intensity treadmill exercise may be feasible and prescribed safely for patients with Parkinson disease. An efficacy trial is warranted to determine whether high-intensity treadmill exercise produces meaningful clinical benefits in de novo Parkinson disease. clinicaltrials.gov Identifier: NCT01506479.

  2. Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Song, Gaoqing

    2010-02-01

    The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.

  3. Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Song, Gaoqing

    2009-10-01

    The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.

  4. Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats.

    PubMed

    Shih, Pei-Cheng; Yang, Yea-Ru; Wang, Ray-Yau

    2013-01-01

    Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO) procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed), low-intensity exercise (Low-Ex), or high-intensity exercise (High-Ex) group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF), synapsin-I, postsynaptic density protein 95 (PSD-95), and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be considered during exercise training.

  5. Effect of local cooling on short-term, intense exercise.

    PubMed

    Kwon, Young S; Robergs, Robert A; Schneider, Suzanne M

    2013-07-01

    The widespread belief that local cooling impairs short-term, strenuous exercise performance is controversial. Eighteen original investigations involving cooling before and intermittent cooling during short-term, intensive exercise are summarized in this review. Previous literature examining short-term intensive exercise and local cooling primarily has been limited to the effects on muscle performance immediately or within minutes following cold application. Most previous cooling studies used equal and longer than 10 minutes of pre-cooling, and found that cooling reduced strength, performance and endurance. Because short duration, high intensity exercise requires adequate warm-up to prepare for optimal performance, prolonged pre-cooling is not an effective method to prepare for this type of exercise. The literature related to the effect of acute local cooling immediately before short duration, high intensity isotonic exercise such as weight lifting is limited. However, local intermittent cooling during short-term, high intense exercise may provide possible beneficial effects; first, by pain reduction, caused by an "irritation effect" from hand thermal receptors which block pain sensation, or second, by a cooling effect, whereby stimulation of hand thermal receptors or a slight lowering of blood temperature might alter central fatigue.

  6. Effects of Exercise on Physiological and Psychological Variables in Cancer Survivors.

    ERIC Educational Resources Information Center

    Burnham, Timothy; Wilcox, Anthony

    2002-01-01

    Investigated the effect of aerobic exercise on physiological and psychological function in people rehabilitating from cancer treatment. Data on people participating in control, moderate-intensity exercise, and low-intensity exercise groups indicated that both exercise programs were equally effective in improving physiological function,…

  7. Can high-intensity exercise be more pleasant?: attentional dissociation using music and video.

    PubMed

    Jones, Leighton; Karageorghis, Costas I; Ekkekakis, Panteleimon

    2014-10-01

    Theories suggest that external stimuli (e.g., auditory and visual) may be rendered ineffective in modulating attention when exercise intensity is high. We examined the effects of music and parkland video footage on psychological measures during and after stationary cycling at two intensities: 10% of maximal capacity below ventilatory threshold and 5% above. Participants (N = 34) were exposed to four conditions at each intensity: music only, video only, music and video, and control. Analyses revealed main effects of condition and exercise intensity for affective valence and perceived activation (p < .001), state attention (p < .05), and exercise enjoyment (p < .001). The music-only and music-and-video conditions led to the highest valence and enjoyment scores during and after exercise regardless of intensity. Findings indicate that attentional manipulations can exert a salient influence on affect and enjoyment even at intensities slightly above ventilatory threshold.

  8. Effect of Exercise Intensity and Duration on Postexercise Executive Function.

    PubMed

    Tsukamoto, Hayato; Takenaka, Saki; Suga, Tadashi; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2017-04-01

    The effect of exercise volume represented by exercise intensity and duration on postexercise executive function (EF) improvement remains unclear. In the present study, involving two volume-controlled evaluations, we aimed to compare acute exercise protocols with differing intensities and durations to establish an effective exercise protocol for improving EF. In study 1, 12 healthy male subjects performed cycle ergometer exercise, based on a low-intensity (LI) protocol for 20 min (LI20), moderate-intensity (MI) protocol for 20 min (MI20), and MI20 volume-matched LI protocol for 40 min (LI40). The exercise intensities for the LI and MI were set at 30% and 60% of peak oxygen consumption, respectively. In study 2, 15 healthy male subjects performed MI exercise for 10 min (MI10), MI20, and 40 min (MI40). To evaluate the EF, the color-word Stroop task was administrated before exercise, immediately after exercise, and during the 30-min postexercise recovery. In study 1, postexercise EF improvement was sustained for a longer duration after MI20 than after LI40 and was sustained for a longer duration after LI40 than after LI20. In study 2, although there was no significant difference in post-MI exercise EF improvement, the magnitude of difference in the EF between preexercise and 30-min postexercise recovery period was moderately larger in MI40, but not in MI10 and MI20, indicating that the EF improvement during postexercise recovery could be sustained after MI40. The present findings showed that postexercise EF improvement could be prolonged after MI exercise with a moderate duration compared with volume-matched LI exercise with a longer duration. In addition, MI exercise with a relatively long duration may slightly prolong the postexercise EF improvement.

  9. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    NASA Astrophysics Data System (ADS)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  10. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.

    PubMed

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2017-11-01

    The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation.

    PubMed

    Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter

    2015-01-01

    Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student's t-test. The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs.

  12. Usefulness of a Perceived Exertion Scale for Monitoring Exercise Intensity in Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Stanish, Heidi I.; Aucoin, Michael

    2007-01-01

    In order to gain physical fitness and health, exercise must be performed at a sufficient level of intensity. Exercise intensity can be monitored with rated perceived exertion (RPE) scales to promote safe and effective programming. The usefulness of the Children's OMNI Scale as a subjective measure of intensity for adults with intellectual…

  13. Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination

    PubMed Central

    So, Ji H.; Huang, Chao; Ge, Minyan; Cai, Guangyao; Zhang, Lanqiu; Lu, Yisheng; Mu, Yangling

    2017-01-01

    Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal’s ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons. PMID:28197080

  14. Exercise Prescriptions for Training and Rehabilitation in Patients with Heart and Lung Disease.

    PubMed

    Palermo, Pietro; Corrà, Ugo

    2017-07-01

    Rehabilitation in patients with advanced cardiac and pulmonary disease has been shown to increase survival and improve quality of life, among many other benefits. Exercise training is the fundamental ingredient in these rehabilitation programs. However, determining the amount of exercise is not straightforward or uniform. Most rehabilitation and training programs fix the time of exercise and set the exercise intensity to the goals of the rehabilitation program and the exercise-related hurdles of the individual. The exercise training intensity prescription must balance the desired gain in conditioning with safety. Symptom-limited cardiopulmonary exercise testing is the fundamental tool to identify the exercise intensity and define the appropriate training. In addition, cardiopulmonary exercise testing provides an understanding of the systems involved in oxygen transport and utilization, making it possible to identify the factors limiting exercise capacity in individual patients.

  15. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    PubMed

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.

  16. Affect-regulated exercise intensity: does training at an intensity that feels 'good' improve physical health?

    PubMed

    Parfitt, Gaynor; Alrumh, Amnah; Rowlands, Alex V

    2012-11-01

    Affect-regulated exercise to feel 'good' can be used to control exercise intensity amongst both active and sedentary individuals and should support exercise adherence. It is not known, however, whether affect-regulated exercise training can lead to physical health gains. The aim of this study was to examine if affect-regulated exercise to feel 'good' leads to improved fitness over the course of an 8-week training programme. A repeated measures design (pretest-posttest) with independent groups (training and control). 20 sedentary females completed a submaximal graded exercise test and were then allocated to either a training group or control group. The training group completed two supervised sessions and one unsupervised session per week for 8 weeks. Exercise intensity was affect-regulated to feel 'good'. Following the 8 weeks of training, both groups completed a second submaximal graded exercise test. Repeated measures analyses of variance indicated a significant increase in the time to reach ventilatory threshold in the training group (318 ± 23.7s) compared to control (248 ± 16.9s). Overall compliance to training was high (>92%). Participants in the training group exercised at intensities that would be classified as being in the lower range of the recommended guidelines (≈ 50% V˙O(2) max) for cardiovascular health. Affect-regulated exercise to feel 'good' can be used in a training programme to regulate exercise intensity. This approach led to a 19% increase in time to reach ventilatory threshold, which is indicative of improved fitness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Post-Plyometric Exercise Hypotension and Heart Rate in Normotensive Individuals: Influence of Exercise Intensity

    PubMed Central

    Arazi, Hamid; Asadi, Abbas; Rahimzadeh, Mehdi; Moradkhani, Amir-Hossein

    2013-01-01

    Purpose The purpose of this study was to compare the effects of high, moderate and low intensity plyometric exercise on the post-exercise systolic and diastolic blood pressure and heart rate responses. Methods Ten healthy normotensive men (age, 21.1±0.9 years; height, 175.8±6 cm; and body mass, 69.1±13.6 kg) volunteered to participate in this study and were evaluated for three non-consecutive days in depth jump exercise from 20-cm box (low intensity [LI]), 40-cm box (moderate intensity [MI]) and 60-cm box (high intensity [HI]) for 5 sets of 20 repetitions. After each exercise session, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured every 10 min for a period of 90 min. Results No significant differences were observed among post-exercise SBP, DBP and HR when the protocols (LI, MI and HI) were compared. The LI and HI protocols showed greater reduction in SBP at 40th-70th min of post-exercise (~9%), whereas the LI and MI protocols indicated greater reduction in DBP at 10th-50th min of post exercise (~10%). In addition, the change in the DBP for HI was not significant and the increases in the HR were similar for all intensities. Conclusion It can be concluded that a plyometric exercise (PE) can reduce SBP and DBP post-exercise and therefore we can say that PE has significant effects for reducing BP and HR or post-exercise hypotension. PMID:24799997

  18. Acute psychological benefits of aerobic exercise: a field study into the effects of exercise characteristics.

    PubMed

    Rendi, Mária; Szabo, Attila; Szabó, Tamás; Velenczei, Attila; Kovács, Arpád

    2008-03-01

    Eighty volunteers were tested in their natural exercise environment consisting of a fitness centre they regularly attended. Half of the sample exercised on a stationary bicycle, the other half on a treadmill. All participants filled in the Exercise-Induced Feeling Inventory before and after their 20 min of exercise that was performed at self-selected workload. The results revealed that exercise intensity and the other parallel measures like heart rate, perceived exercise intensity and estimates of burned calories were higher in participants who ran in contrast to those who cycled. There were no differences in self-reports of enjoyment of the exercise sessions and in the psychological improvements from pre- to post-exercise between the groups. It is concluded that significant psychological improvements occur even after a 20-min bout of exercise and these changes are independent of the workload or exercise intensity.

  19. Development of a risk-screening tool for cancer survivors to participate in unsupervised moderate- to vigorous-intensity exercise: results from a survey study.

    PubMed

    Brown, Justin C; Ko, Emily M; Schmitz, Kathryn H

    2015-02-01

    The health benefits of exercise increase in dose-response fashion among cancer survivors. However, it is unclear how to identify cancer survivors who may require a pre-exercise evaluation before they progress from the common recommendation of walking to unsupervised moderate- to vigorous-intensity exercise. To clarify how to identify cancer survivors who should undergo a pre-exercise evaluation before they progress from the common recommendation of walking to unsupervised moderate- to vigorous-intensity exercise. Electronic survey. Forty-seven (n = 47) experts in the field of exercise physiology, rehabilitation medicine, and cancer survivorship. Not applicable. We synthesized peer-reviewed guidelines for exercise and cancer survivorship and identified 82 health factors that may warrant a pre-exercise evaluation before a survivor engages in unsupervised moderate- to vigorous-intensity exercise. The 82 health factors were classified into 3 domains: (1) clinical health factors; (2) comorbidity and device health factors; and (3) medications. We surveyed a sample of experts asking them to identify which of the 82 health factors among cancer survivors would indicate the need for a pre-exercise evaluation before they engaged in moderate- to vigorous-intensity exercise. The response rate to our survey was 75% (n = 47). Across the 3 domains of health factors, acute symptoms, comorbidities, and medications related to cardiovascular disease were agreed on to indicate a pre-exercise evaluation for survivors before they engaged in unsupervised moderate- to vigorous-intensity exercise. Other health factors in the survey included hematologic, musculoskeletal, systemic, gastrointestinal, pulmonary, and neurological symptoms and comorbidities. Eighteen experts (38%) said it was difficult to provide absolute answers because no 2 patients are alike, and their decisions are made on a case-by-case basis. The results from this expert survey will help to identify which cancer survivors should undergo a pre-exercise evaluation before they engage in unsupervised moderate- to vigorous-intensity exercise. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  20. Role of muscle mass and mode of contraction in circulatory responses to exercise

    NASA Technical Reports Server (NTRS)

    Lewis, S. F.; Snell, P. G.; Pettinger, W. A.; Blomqvist, C. G.; Taylor, W. F.; Hamra, M.; Graham, R. M.

    1985-01-01

    The roles of the mode of contraction (dynamic or static) and active muscle mass in determining the cardiovascular response to exercise has been investigated experimentally in six normal men. Exercise consisted of static handgrip and dynamic handgrip exercise, and static and dynamic knee extension for a period of six minutes. Observed increases in mean arterial pressure after exercise were similar for each mode of contraction, but larger for knee extension than handgrip exercise. Cardiac output increased more for dynamic than for static exercise and for each mode more for knee exercise than for handgrip exercise. Systemic resistance was found to be lower for dynamic than for static exercise, and to decrease from resisting levels by about one third during dynamic knee extension. It is shown that the magnitude of cardiovascular response is related to active muscle mass, but is independent of the contraction mode. Equalization of cardiovascular response was achieved by proportionately larger increases in cardiac output during dynamic exercise. The complete experimental results are given in a table.

  1. Inhaled fentanyl citrate improves exercise endurance during high-intensity constant work rate cycle exercise in chronic obstructive pulmonary disease.

    PubMed

    Jensen, Dennis; Alsuhail, Abdullah; Viola, Raymond; Dudgeon, Deborah J; Webb, Katherine A; O'Donnell, Denis E

    2012-04-01

    Activity limitation and dyspnea are the dominant symptoms of chronic obstructive pulmonary disease (COPD). Traditionally, efforts to alleviate these symptoms have focused on improving ventilatory mechanics, reducing ventilatory demand, or both of these in combination. Nevertheless, many patients with COPD remain incapacitated by dyspnea and exercise intolerance despite optimal therapy. To determine the effect of single-dose inhalation of nebulized fentanyl citrate (a μ-opioid agonist drug) on exercise tolerance and dyspnea in COPD. In a randomized, double-blind, placebo-controlled, crossover study, 12 stable patients with COPD (mean ± standard error of the mean post-β(2)-agonist forced expiratory volume in one second [FEV(1)] and FEV(1) to forced vital capacity ratio of 69% ± 4% predicted and 49% ± 3%, respectively) received either nebulized fentanyl citrate (50 mcg) or placebo on two separate days. After each treatment, patients performed pulmonary function tests and a symptom-limited constant work rate cycle exercise test at 75% of their maximum incremental work rate. There were no significant postdose differences in spirometric parameters or plethysmographic lung volumes. Neither the intensity nor the unpleasantness of perceived dyspnea was, on average, significantly different at isotime (5.0 ± 0.6 minutes) or at peak exercise after treatment with fentanyl citrate vs. placebo. Compared with placebo, fentanyl citrate was associated with 1) increased exercise endurance time by 1.30 ± 0.43 minutes or 25% ± 8% (P=0.01); 2) small but consistent increases in dynamic inspiratory capacity by ∼0.10 L at isotime and at peak exercise (both P≤0.03); and 3) no concomitant change in ventilatory demand, breathing pattern, pulmonary gas exchange, and/or cardiometabolic function during exercise. The mean rate of increase in dyspnea intensity (1.2 ± 0.3 vs. 2.9 ± 0.8 Borg units/minute, P=0.03) and unpleasantness ratings (0.5 ± 0.2 vs. 2.9 ± 1.3 Borg units/minute, P=0.06) between isotime and peak exercise was less after treatment with fentanyl citrate vs. placebo. Single-dose inhalation of fentanyl citrate was associated with significant and potentially clinically important improvements in exercise tolerance in COPD. These improvements were accompanied by a delay in the onset of intolerable dyspnea during exercise near the limits of tolerance. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  2. Study protocol for the FITR Heart Study: Feasibility, safety, adherence, and efficacy of high intensity interval training in a hospital-initiated rehabilitation program for coronary heart disease.

    PubMed

    Taylor, Jenna; Keating, Shelley E; Leveritt, Michael D; Holland, David J; Gomersall, Sjaan R; Coombes, Jeff S

    2017-12-01

    For decades, moderate intensity continuous training (MICT) has been the cornerstone of exercise prescription for cardiac rehabilitation (CR). High intensity interval training (HIIT) is now recognized in CR exercise guidelines as an appropriate and efficient modality for improving cardiorespiratory fitness, a strong predictor of mortality. However, the clinical application of HIIT in a real world CR setting, in terms of feasibility, safety, and long-term adherence, needs further investigation to address ongoing reservations. Furthermore, studies using objective measures of exercise intensity (such as heart rate; HR) have produced variable outcomes. Therefore we propose investigating the use of subjective measures (such as rating of perceived exertion (RPE)) for prescribing exercise intensity. One hundred adults with coronary artery disease (CAD) attending a hospital-initiated CR program will be randomized to 1) HIIT: 4 × 4 min high intensity intervals at 15-18 RPE interspersed with 3-min active recovery periods or 2) MICT: usual care exercise including 40 min continuous exercise at a moderate intensity corresponding to 11-13 RPE. Primary outcome is change in exercise capacity (peak VO 2 ) following 4 weeks of exercise training. Secondary outcome measures are: feasibility, safety, exercise adherence, body composition, vascular function, inflammatory markers, intrahepatic lipid, energy intake, and dietary behavior over 12-months; and visceral adipose tissue (VAT) following 12 weeks of exercise training. This study aims to address the ongoing concerns regarding the practicality and safety of HIIT in CR programs. We anticipate study findings will lead to the development of a standardized protocol to facilitate CR programs to incorporate HIIT as a standard exercise option for appropriate patients.

  3. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy.

    PubMed

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S; Madsen, Karen L; Hansen, Jonas B; Madsen, Mads; Vissing, John

    2013-12-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies. Fourteen patients with Becker (BMD), facioscapulohumeral (FSHD), or limb-girdle type 2 (LGMD2) muscular dystrophy, and 8 healthy subjects performed 5 cycling tests: an incremental max test, and tests at 65%, 75%, 85%, and 95% of maximal oxygen uptake (VO2max ). Heart rate and oxygen consumption were measured during the tests, and plasma CK was measured before, immediately after, and 24 hours after exercise. All subjects were able to perform high-intensity exercise at the different levels. In patients with LGMD2 and FSHD, CK normalized 24 hours after exercise compared with the pre-exercise value, whereas those with BMD and healthy controls had elevated CK values 24 hours after exercise. The findings suggest that high-intensity exercise is generally well tolerated in patients with LGMD2 and FSHD, whereas those with BMD may be more prone to exercise-induced damage. Copyright © 2013 Wiley Periodicals, Inc.

  4. Effects of Pilates Exercise on Salivary Secretory Immunoglobulin A Levels in Older Women.

    PubMed

    Hwang, Yoonyoung; Park, Jonghoon; Lim, Kiwon

    2016-07-01

    We examined the effects of a Pilates exercise program on the mucosal immune function in older women. The study population comprised 12 older women who were divided into a Pilates group (PG, n = 6) and a control group (CG, n = 6). Saliva samples were obtained from both groups before and after the experimental period for salivary secretory immunoglobulin A level measurement. In addition, acute high-intensity exercises were performed before and after the three-month Pilates exercise program. After three months, salivary flow was significantly higher in the PG than in the CG. After the acute high-intensity exercises were performed following the three-month Pilates exercise program, the salivary flow rate was significantly higher at all time points. The S-IgA secretion rate significantly increased 30 min after acute high-intensity exercise performed following the three-month Pilates exercise program. This study suggests that regular participation in a moderate-intensity Pilates exercise program can increase salivary flow rate and S-IgA secretion in older women.

  5. Exercise-induced shear stress is associated with changes in plasma von Willebrand factor in older humans.

    PubMed

    Gonzales, Joaquin U; Thistlethwaite, John R; Thompson, Benjamin C; Scheuermann, Barry W

    2009-07-01

    Shear stress is the frictional force of blood against the endothelium, a stimulus for endothelial activation and the release of von Willebrand factor (vWF). This study tested the hypothesis that the increase in shear stress associated with exercise correlates with plasma vWF. Young (n = 14, 25.7 +/- 5.4 years) and older (n = 13, 65.6 +/- 10.7 years) individuals participated in 30 min of dynamic handgrip exercise at a moderate intensity. Brachial artery diameter and blood flow were measured using ultrasound Doppler and blood samples were collected before, immediately after, and following 30 min of recovery from exercise with plasma levels of vWF. Plasma levels of vWF increased (P < 0.05) by 6 +/- 2% in young individuals and 4 +/- 1% in older individuals immediately after exercise. The change in plasma vWF was linearly correlated with the increase in shear stress during exercise in older individuals (post-exercise: r = 0.78, 30 min recovery: r = 0.77, P < 0.01), but no association was found in the young individuals. These changes in plasma levels of vWF in humans suggest that aging influences endothelial activation and hemostasis.

  6. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats.

    PubMed

    Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam

    2017-05-15

    Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Exercise training modalities in chronic heart failure: does high intensity aerobic interval training make the difference?

    PubMed

    Giallauria, Francesco; Smart, Neil Andrew; Cittadini, Antonio; Vigorito, Carlo

    2016-10-14

    Exercise training (ET) is strongly recommended in patients with chronic heart failure (CHF). Moderate-intensity aerobic continuous ET is the best established training modality in CHF patients. In the last decade, however, high-intensity interval exercise training (HIIT) has aroused considerable interest in cardiac rehabilitation community. Basically, HIIT consists of repeated bouts of high-intensity exercise alternated with recovery periods. In CHF patients, HIIT exerts larger improvements in exercise capacity compared to moderate-continuous ET. These results are intriguing, mostly considering that better functional capacity translates into an improvement of symptoms and quality of life. Notably, HIIT did not reveal major safety issues; although CHF patients should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and appropriate supervision and monitoring during and after the exercise session are mandatory. The impact of HIIT on cardiac dimensions and function and on endothelial function remains uncertain. HIIT should not replace other training modalities in heart failure but should rather complement them. Combining and tailoring different ET modalities according to each patient's baseline clinical characteristics (i.e. exercise capacity, personal needs, preferences and goals) seem the most astute approach to exercise prescription.

  8. Imagery use and affective responses during exercise: an examination of cerebral hemodynamics using near-infrared spectroscopy.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2013-10-01

    Imagery, as a cognitive strategy, can improve affective responses during moderate-intensity exercise. The effects of imagery at higher intensities of exercise have not been examined. Further, the effect of imagery use and activity in the frontal cortex during exercise is unknown. Using a crossover design (imagery and control), activity of the frontal cortex (reflected by changes in cerebral hemodynamics using near-infrared spectroscopy) and affective responses were measured during exercise at intensities 5% above the ventilatory threshold (VT) and the respiratory compensation point (RCP). Results indicated that imagery use influenced activity of the frontal cortex and was associated with a more positive affective response at intensities above VT, but not RCP to exhaustion (p < .05). These findings provide direct neurophysiological evidence of imagery use and activity in the frontal cortex during exercise at intensities above VT that positively impact affective responses.

  9. Repeated high-intensity exercise in professional rugby union.

    PubMed

    Austin, Damien; Gabbett, Tim; Jenkins, David

    2011-07-01

    The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union.

  10. Blood lactate clearance after maximal exercise depends on active recovery intensity.

    PubMed

    Devlin, J; Paton, B; Poole, L; Sun, W; Ferguson, C; Wilson, J; Kemi, O J

    2014-06-01

    High-intensity exercise is time-limited by onset of fatigue, marked by accumulation of blood lactate. This is accentuated at maximal, all-out exercise that rapidly accumulates high blood lactate. The optimal active recovery intensity for clearing lactate after such maximal, all-out exercise remains unknown. Thus, we studied the intensity-dependence of lactate clearance during active recovery after maximal exercise. We constructed a standardized maximal, all-out treadmill exercise protocol that predictably lead to voluntary exhaustion and blood lactate concentration>10 mM. Next, subjects ran series of all-out bouts that increased blood lactate concentration to 11.5±0.2 mM, followed by recovery exercises ranging 0% (passive)-100% of the lactate threshold. Repeated measurements showed faster lactate clearance during active versus passive recovery (P<0.01), and that active recovery at 60-100% of lactate threshold was more efficient for lactate clearance than lower intensity recovery (P<0.05). Active recovery at 80% of lactate threshold had the highest rate of and shortest time constant for lactate clearance (P<0.05), whereas the response during the other intensities was graded (100%=60%>40%>passive recovery, P<0.05). Active recovery after maximal all-out exercise clears accumulated blood lactate faster than passive recovery in an intensity-dependent manner, with maximum clearance occurring at active recovery of 80% of lactate threshold.

  11. The flying classroom - a cost effective integrated approach to learning and teaching flight dynamics

    NASA Astrophysics Data System (ADS)

    Bromfield, Michael A.; Belberov, Aleksandar

    2017-11-01

    In the UK, the Royal Aeronautical Society recommends the inclusion of practical flight exercises for accredited undergraduate aerospace engineering programmes to enhance learning and student experience. The majority of academic institutions teaching aerospace in the UK separate the theory and practice of flight dynamics with students attending a series of lectures supplemented by an intensive one-day flight exercise. Performance and/or handling qualities flight tests are performed in a dedicated aircraft fitted with specialist equipment for the recording and presentation of flight data. This paper describes an innovative approach to better integrate theory and practice and the use of portable Commercial-off-The-Shelf (COTS) technologies to enable a range of standard, unmodified aircraft to be used. The integration of theory and practice has enriched learning and teaching, improved coursework grades and the student experience. The use of COTS and unmodified aircraft has reduced costs and enabled increased student participation.

  12. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  13. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy.

    PubMed

    Morrison, Steven; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I

    2014-01-01

    For older adults with type 2 diabetes (T2DM), declines in balance and walking ability are risk factors for falls, and peripheral neuropathy magnifies this risk. Exercise training may improve balance, gait and reduce the risk of falling. This study investigated the effects of 12weeks of aerobic exercise training on walking, balance, reaction time and falls risk metrics in older T2DM individuals with/without peripheral neuropathy. Adults with T2DM, 21 without (DM; age 58.7±1.7years) and 16 with neuropathy (DM-PN; age 58.9±1.9years), engaged in either moderate or intense supervised exercise training thrice-weekly for 12weeks. Pre/post-training assessments included falls risk (using the physiological profile assessment), standing balance, walking ability and hand/foot simple reaction time. Pre-training, the DM-PN group had higher falls risk, slower (hand) reaction times (232 vs. 219ms), walked at a slower speed (108 vs. 113cm/s) with shorter strides compared to the DM group. Following training, improvements in hand/foot reaction times and faster walking speed were seen for both groups. While falls risk was not significantly reduced, the observed changes in gait, reaction time and balance metrics suggest that aerobic exercise of varying intensities is beneficial for improving dynamic postural control in older T2DM adults with/without neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Effect of Movement Velocity During Resistance Training on Dynamic Muscular Strength: A Systematic Review and Meta-Analysis.

    PubMed

    Davies, Timothy B; Kuang, Kenny; Orr, Rhonda; Halaki, Mark; Hackett, Daniel

    2017-08-01

    Movement velocity is an acute resistance-training variable that can be manipulated to potentially optimize dynamic muscular strength development. However, it is unclear whether performing faster or slower repetitions actually influences dynamic muscular strength gains. We conducted a systematic review and meta-analysis to examine the effect of movement velocity during resistance training on dynamic muscular strength. Five electronic databases were searched using terms related to movement velocity and resistance training. Studies were deemed eligible for inclusion if they met the following criteria: randomized and non-randomized comparative studies; published in English; included healthy adults; used isotonic resistance-exercise interventions directly comparing fast or explosive training to slower movement velocity training; matched in prescribed intensity and volume; duration ≥4 weeks; and measured dynamic muscular strength changes. A total of 15 studies were identified that investigated movement velocity in accordance with the criteria outlined. Fast and moderate-slow resistance training were found to produce similar increases in dynamic muscular strength when all studies were included. However, when intensity was accounted for, there was a trend for a small effect favoring fast compared with moderate-slow training when moderate intensities, defined as 60-79% one repetition maximum, were used (effect size 0.31; p = 0.06). Strength gains between conditions were not influenced by training status and age. Overall, the results suggest that fast and moderate-slow resistance training improve dynamic muscular strength similarly in individuals within a wide range of training statuses and ages. Resistance training performed at fast movement velocities using moderate intensities showed a trend for superior muscular strength gains as compared to moderate-slow resistance training. Both training practices should be considered for novice to advanced, young and older resistance trainers targeting dynamic muscular strength.

  15. Effect of exercise intensity on albuminuria in adolescents with Type 1 diabetes mellitus.

    PubMed

    Kornhauser, C; Malacara, J-M; Macías-Cervantes, M-H; Rivera-Cisneros, A-E

    2012-01-01

    Exercise may be useful to detect patients with diabetes prone to develop persistent microalbuminuria. We studied the relationship between exercise intensity, measured as maximal oxygen consumption (VO(2)max), and microalbuminuria in patients with Type 1 diabetes mellitus patients. We studied 10 patients, age range 10-18 years, with Type 1 diabetes who were normotensive and normoalbuminuric, with less than 10 years since diagnosis. Patients had normal renal function, without infections or clinical evidence of complications. Metabolic control was intensively adjusted in all patients. They underwent three consecutive physical exercise tests, reaching 100, 80 and 60% of the maximal cardiac frequency response. Eight patients had adequate to regular metabolic control. All patients had lower than predicted VO(2)max values. At 60%, only three patients showed microalbuminuria in excess of 20 μg/min, two of them had inadequate metabolic control. Post-exercise microalbuminuria exceeded normal values in nine, seven and three patients when submitted to 100, 80 and 60% of exercise intensity, respectively. Microalbuminuria increased with exercise intensity. Sex, body composition and VO(2)max were the main factors associated with microalbuminuria. The prognostic significance of albuminuria induced by intense exercise in these subjects with Type 1 diabetes is not yet known. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  16. Morning bright light exposure has no influence on self-chosen exercise intensity and mood in overweight individuals - A randomized controlled trial.

    PubMed

    Knaier, Raphael; Klenk, Christopher; Königstein, Karsten; Hinrichs, Timo; Rossmeissl, Anja; Infanger, Denis; Cajochen, Christian; Schmidt-Trucksäss, Arno

    2018-04-01

    Overweight is a worldwide increasing public health issue. Physical exercise is a useful countermeasure. Overweight individuals choose rather low exercise intensities, but especially high exercise intensities lead to higher energy expenditure and show beneficial health effects compared to lower exercise intensities. However, especially in the morning higher exercise intensities are likely to be avoided due to higher subjective effort. Bright light exposure has shown to increase maximum performance. The aim of this study was to investigate if bright light exposure can also increase self-chosen exercise intensity. We hypothesized that morning bright light exposure increases self-chosen exercise intensity of subsequent exercise through increased mood and reduced sleepiness in overweight individuals. In this randomized controlled single-blind parallel group design, 26 overweight individuals (11 males, 15 females; age 25 ± 5.7 years; body mass index 28.9 ± 2.1 kg/m 2 ) underwent three measurement appointments. On the first appointment, subjects performed a cardiopulmonary exercise test to measure maximum oxygen uptake (VO2max). Two days later a 30-min exercise session with self-chosen exercise intensity was performed for familiarization. Then subjects were randomly allocated to bright light (~4400 lx) or a control light (~230 lx) condition. Three to seven days later, subjects were exposed to light for 30 min starting at 8:00 am, immediately followed by a 30-min exercise session with persisting light exposure. Multidimensional mood questionnaires were filled out before and after the light exposure and after the exercise session. The primary outcome was the mean power output during the exercise session and the secondary outcome the rating on the three domains (i.e. good-bad; awake-tired; calm-nervous) of the multidimensional mood questionnaire. Mean power output during the exercise session was 92 ± 19 W in bright light and 80 ± 37 W in control light, respectively. In the multivariate analysis adjusted for VO2max, the mean power output during the exercise session was 8.5 W higher (95% confidence interval -12.7, 29.7; p = 0.416) for participants in bright light compared to control light. There were no significant differences between the groups for any of the three domains of the questionnaire at any time point. This is in contrast to longer lasting intervention studies that show positive influences on mood and suggests that bright light therapy requires repetitive sessions to improve mood in overweight individuals. In conclusion bright light exposure does not acutely increase self-chosen exercise intensity or improve mood in a 30-min exercise session starting at 08:30. However, regarding the fact that overweight is a worldwide and rapidly increasing public health issue even small increases in exercise intensity may be relevant. The trend toward superiority of bright light over control light implicates that further studies may be conducted in a larger scale. VO2max: maximum oxygen uptake; 95% CI: 95% confidence interval; SD: standard deviation.

  17. Attentional bias to emotional stimuli is altered during moderate- but not high-intensity exercise.

    PubMed

    Tian, Qu; Smith, J Carson

    2011-12-01

    Little is known regarding how attention to emotional stimuli is affected during simultaneously performed exercise. Attentional biases to emotional face stimuli were assessed in 34 college students (17 women) using the dot-probe task during counterbalanced conditions of moderate- (heart rate at 45% peak oxygen consumption) and high-intensity exercise (heart rate at 80% peak oxygen consumption) compared with seated rest. The dot-probe task consisted of 1 emotional face (pleasant or unpleasant) paired with a neutral face for 1,000 ms; 256 trials (128 trials for each valence) were presented during each condition. Each condition lasted approximately 10 min. Participants were instructed to perform each trial of the dot-probe task as quickly and accurately as possible during the exercise and rest conditions. During moderate-intensity exercise, participants exhibited significantly greater attentional bias scores to pleasant compared with unpleasant faces (p < .01), whereas attentional bias scores to emotional faces did not differ at rest or during high-intensity exercise (p > .05). In addition, the attentional bias to unpleasant faces was significantly reduced during moderate-intensity exercise compared with that during rest (p < .05). These results provide behavioral evidence that during exercise at a moderate intensity, there is a shift in attention allocation toward pleasant emotional stimuli and away from unpleasant emotional stimuli. Future work is needed to determine whether acute exercise may be an effective treatment approach to reduce negative bias or enhance positive bias in individuals diagnosed with mood or anxiety disorders, or whether attentional bias during exercise predicts adherence to exercise. (c) 2011 APA, all rights reserved.

  18. Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures

    PubMed Central

    Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.

    2015-01-01

    Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413

  19. Mouth rinsing with a carbohydrate solution attenuates exercise-induced decline in executive function.

    PubMed

    Konishi, Kana; Kimura, Tetsuya; Yuhaku, Atsushi; Kurihara, Toshiyuki; Fujimoto, Masahiro; Hamaoka, Takafumi; Sanada, Kiyoshi

    2017-01-01

    A decline in executive function could have a negative influence on the control of actions in dynamic situations, such as sports activities. Mouth rinsing with a carbohydrate solution could serve as an effective treatment for preserving the executive function in exercise. The purpose of this study was to examine the effects of mouth rinsing with a carbohydrate solution on executive function after sustained moderately high-intensity exercise. Eight young healthy participants completed 65 min of running at 75% V̇O 2 max with two mouth-rinsing conditions: with a carbohydrate solution (CHO) or with water (CON). Executive function was assessed before and after exercise by using the incongruent task of the Stroop Color and Word Test. The levels of blood glucose; and plasma adrenocorticotropic hormone (ACTH), epinephrine, and norepinephrine (NE) were evaluated. A two-way repeated-measures ANOVA, with condition (CHO and CON) and time (pre-exercise and post-exercise) as factors, was used to examine the main and interaction effects on the outcome measures. The reaction time in the incongruent condition of the Stroop test significantly increased after exercise in CON (pre-exercise 529 ± 45 ms vs. post-exercise 547 ± 60 ms, P  = 0.029) but not in CHO (pre-exercise 531 ± 54 ms vs. post-exercise 522 ± 80 ms), which resulted in a significant interaction (condition × time) on the reaction time ( P  = 0.028). The increased reaction time in CON indicates a decline in the executive function, which was attenuated in CHO. Increases in plasma epinephrine and NE levels demonstrated a trend toward attenuation accompanying CHO ( P  < 0.085), which appeared to be associated with the preservation of executive function. The blood glucose concentration showed neither significant interactions nor main effects of condition. These findings indicate that mouth rinsing with a carbohydrate solution attenuated the decline in executive function induced by sustained moderately high-intensity exercise, and that such attenuation seems to be unrelated to carbohydrate metabolic pathway but rather attributed, in part, to the inhibition of the excessive release of stress hormones.

  20. Effects of exercise at individual anaerobic threshold and maximal fat oxidation intensities on plasma levels of nesfatin-1 and metabolic health biomarkers.

    PubMed

    Mohebbi, Hamid; Nourshahi, Maryam; Ghasemikaram, Mansour; Safarimosavi, Saleh

    2015-03-01

    Exercise is recognized as an effective method of weight management and short-term appetite regulation tool. The effect of different exercise intensities on appetite regulation hormones in healthy overweight participants has not been intensively studied. The aim of this study was to examine the influence of exercise at individual anaerobic threshold (IAT) and maximal fat oxidation (Fatmax) intensities on the nesfatin-1 response and metabolic health biomarkers in overweight men. Nine healthy overweight males (age, 23.1 ± 1.1 years) volunteered in this study in a counterbalanced order. Blood samples were obtained before, immediately after, and following the first 45 min of recovery for measuring plasma variables. There was significant decrease in plasma levels of nesfatin-1 and leptin after exercise at the IAT intensity which remained lower than baseline following 45 min of recovery. However, nesfatin-1 and leptin levels did not change significantly in any time courses of Fatmax intensity (P > 0.09). Plasma interleukin-6 (IL-6) concentration increased during exercise in both intensities (P < 0.05), whereas changes in free fatty acids (FFAs) and epinephrine concentrations were significant only at the IAT. In addition, a significant correlation was found among nesfatin-1 levels with insulin (r = 0.39, P < 0.05) and glucose (r = 0.41, P < 0.05) at basal and in response to exercise. These results indicate that IAT has a greater exercise-induced appetite regulation effect compared with Fat(max). Based on these data, the intensity of exercise may have an important role in changes of nesfatin-1, leptin, FFA, and epinephrine concentrations even though this was not the case for IL-6 and insulin resistance.

  1. Effect of exercise intensity and mode on acute appetite control in men and women.

    PubMed

    Panissa, Valéria Leme Gonçalves; Julio, Ursula Ferreira; Hardt, Felipe; Kurashima, Carolina; Lira, Fábio Santos; Takito, Monica Yuri; Franchini, Emerson

    2016-07-07

    The aim of this study was to compare the effects of exercise intensity on appetite control: relative energy intake (energy intake minus the energy expenditure of exercise; REI), hunger scores, and appetite-regulating hormones in men and women. Eleven men and 9 women were submitted to 4 experimental sessions: high-intensity intermittent all-out exercise (HIIE-A) for 60 × 8 s interspersed by 12 s of passive recovery; high-intensity intermittent exercise (HIIE) at 100% of maximal load attained in incremental test; steady-state exercise at 60% of maximal load, matched by work done; and a control session. Exercise was performed 1.5 h after a standardized breakfast, and an ad libitum lunch was offered 4 h after breakfast. Blood concentration of insulin, cortisol, acylated ghrelin, peptideYY 3-36 , glucose, and hunger scores were measured when fasting, and at 1.5, 2, 3.25, and 4 h of experiment. REI was lower in all exercises than in the control, without differences between exercises and sex showing no compensation in energy intake because of any exercise; the hunger scores were lower only in the exercises performed at higher intensity (HIIE and HIIE-A) compared with the control. The area under the curve of acylated ghrelin was lower in the HIIE-A when compared with the control. PeptideYY 3-36 was higher in men than women and cortisol higher in women than men independently of the condition. Although high-intensity exercises promoted a little more pronounced effects in the direction of suppressing the appetite, no differences were observed in REI, demonstrating that these modifications were not sufficient to affect energy intake.

  2. Does exercise motivation predict engagement in objectively assessed bouts of moderate-intensity exercise? A self-determination theory perspective.

    PubMed

    Standage, Martyn; Sebire, Simon J; Loney, Tom

    2008-08-01

    This study examined the utility of motivation as advanced by self-determination theory (Deci & Ryan, 2000) in predicting objectively assessed bouts of moderate intensity exercise behavior. Participants provided data pertaining to their exercise motivation. One week later, participants wore a combined accelerometer and heart rate monitor (Actiheart; Cambridge Neurotechnology Ltd) and 24-hr energy expenditure was estimated for 7 days. After controlling for gender and a combined marker of BMI and waist circumference, results showed autonomous motivation to positively predict moderate-intensity exercise bouts of >or=10 min, or=20 min, and an accumulation needed to meet public health recommendations for moderate intensity activity (i.e., ACSM/AHA guidelines). The present findings add bouts of objectively assessed exercise behavior to the growing body of literature that documents the adaptive consequences of engaging in exercise for autonomous reasons. Implications for practice and future work are discussed.

  3. Effect of single-session aerobic exercise with varying intensities on lipid peroxidation and muscle-damage markers in sedentary males.

    PubMed

    Moflehi, Daruosh; Kok, Lian-Yee; Tengku-Kamalden, Tengku-Fadilah; Amri, Saidon

    2012-05-23

    This study was conducted to evaluate the effect of the different intensity levels of single-session aerobic exercise on serum levels of lipid peroxidation and muscle damage markers in sedentary males. Fifty one sedentary healthy males aged 21.76±1.89 years were randomly divided into four groups, with one control (n=10) and three treatment groups that attended single-session aerobic exercise with low (n=14), moderate (n=14), and high (n=13) intensities. The serum levels of malondialdehyde (MDA) and creatine kinase (CK) were measured. Data analysis revealed a significant effect by the intensity levels of aerobic exercise on MDA (P=0.001) and CK (P=0.003) post-test when the participants in the treatment groups were compared with the control. When the intensity of aerobic exercise was increased, the amount of MDA and CK was also found to be increased. Single-session aerobic exercise can increase the amount of MDA and CK, suggesting that low intensity level of aerobic exercise should be utilized for more adaptation, and to prevent lipid peroxidation and muscle damage in sedentary males.

  4. Cardiovascular and Affective Outcomes of Active Gaming: Using the Nintendo Wii as a Cardiovascular Training Tool

    PubMed Central

    Naugle, Keith E.; Naugle, Kelly M.; Wikstrom, Erik A.

    2014-01-01

    Naugle, KE, Naugle, KM, and Wikstrom, EA. Cardiovascular and affective outcomes of active gaming: Using the Nintendo Wii as a cardiovascular training tool. J Strength Cond Res 28(2): 443–451, 2014–Active-video gaming is purported to produce similar cardiovascular responses as aerobic fitness activities. This study compared the emotional and cardiovascular effects of Wii games with those of traditional exercise in college-aged adults with different exercise backgrounds. Specifically, the percentage of heart rate reserve, rate of perceived exertion (RPE), level of enjoyment, and Positive and Negative Affect Schedule scores were compared between subjects who reported exercising frequently at high intensities (high-intensity exerciser group: age = 20.18 years [0.87]; Height = 165.23 cm [9.97]; Mass = 62.37 kg [11.61]), N = 11 and those who exercise more often at lower intensities (low-intensity exercisers group: age = 20.72 years [1.19]; Height = 164.39 cm [8.05]; Mass = 68.04 kg [10.71]), N = 11. The subjects completed six 20-minute exercises sessions: treadmill walking, stationary cycling, and Wii's Tennis, Boxing, Cycling, and Step. The low-intensity exerciser group achieved a greater percentage of heart rate reserve (a) during traditional exercise compared with that during Wii boxing, (b) playing Wii boxing compared with that for Wii tennis, and (c) playing Wii boxing compared with that when the high-intensity exercisers group played any Wii games (p < 0.05). The RPE was greater for boxing and cycling compared with that for tennis and step (p < 0.05). Ratings of enjoyment and the increase in positive emotion were greater for boxing and for tennis compared with those for traditional exercises (p < 0.05). Results suggest that Wii boxing shows the greatest potential as a cardiovascular fitness tool among the Wii games, particularly for individuals who typically exercise at lower intensities. PMID:23660574

  5. The impact of exercise intensity on the release of cardiac biomarkers in marathon runners.

    PubMed

    Legaz-Arrese, Alejandro; George, Keith; Carranza-García, Luis Enrique; Munguía-Izquierdo, Diego; Moros-García, Teresa; Serrano-Ostáriz, Enrique

    2011-12-01

    We sought to determine the influence of exercise intensity on the release of cardiac troponin I (cTnI) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in amateur marathon runners. Fourteen runners completed three exercise trials of the same duration but at exercise intensities corresponding to: (a) a competitive marathon [mean ± SD: heart rate 159 ± 7 beat min(-1), finish time 202 ± 14 min]; (b) 95% of individual anaerobic threshold [heart rate 144 ± 6 beat min(-1)] and; (c) 85% of individual anaerobic threshold [heart rate 129 ± 5 beat min(-1)]. cTnI and NT-proBNP were assayed from blood samples collected before, 30 min and 3 h post-exercise for each trial. cTnI and NT-proBNP were not different at baseline before each trial. After exercise at 85% of individual anaerobic threshold cTnI was not significantly elevated. Conversely, cTnI was elevated after exercise at 95% of individual anaerobic threshold (0.016 μg L(-1)) and to an even greater extent after exercise at competition intensity (0.054 μg L(-1)). Peak post-exercise values of NT-proBNP were elevated to a similar extent after all exercise trials (P < 0.05). The upper reference limit for cTnI (0.04 μg L(-1)) was exceeded in six subjects at competition intensity. No data for NT-proBNP surpassed its upper reference limit. Peak post-exercise values for cTnI and NT-proBNP were correlated with their respective baseline values. These data suggest exercise intensity influences the release of cTnI, but not NT-proBNP, and that competitive marathon running intensity is required for cTnI to be elevated over its upper reference limit.

  6. Submaximal exercise intensity modulates acute post-exercise heart rate variability.

    PubMed

    Michael, Scott; Jay, Ollie; Halaki, Mark; Graham, Kenneth; Davis, Glen M

    2016-04-01

    This study investigated whether short-term heart rate variability (HRV) can be used to differentiate between the immediate recovery periods following three different intensities of preceding exercise. 12 males cycled for 8 min at three intensities: LOW (40-45 %), MOD (75-80 %) and HIGH (90-95 %) of heart rate (HR) reserve. HRV was assessed during exercise and throughout 10-min seated recovery. 1-min HR recovery was reduced following greater exercise intensities when expressed as R-R interval (RRI, ms) (p < 0.001), but not b min(-1) (p = 0.217). During exercise, the natural logarithm of root mean square of successive differences (Ln-RMSSD) was higher during LOW (1.66 ± 0.47 ms) relative to MOD (1.14 ± 0.32 ms) and HIGH (1.30 ± 0.25 ms) (p ≤ 0.037). Similar results were observed for high-frequency spectra (Ln-HF-LOW: 2.9 ± 1.0; MOD: 1.6 ± 0.6; HIGH: 1.6 ± 0.3 ms(2), p < 0.001). By 1-min recovery, higher preceding exercise intensities resulted in lower HRV amongst all three intensities for Ln-RMSSD (LOW: 3.45 ± 0.58; MOD: 2.34 ± 0.81; HIGH: 1.66 ± 0.78 ms, p < 0.001) and Ln-HF (LOW: 6.0 ± 1.0; MOD: 4.3 ± 1.4; HIGH: 2.8 ± 1.4 ms(2), p < 0.001). Similarly, by 1-min recovery 'HR-corrected' HRV (Ln-RMSSD: RRI × 10(3)) was different amongst all three intensities (LOW: 3.64 ± 0.49; MOD: 2.90 ± 0.65; HIGH: 2.40 ± 0.67, p < 0.001). These differences were maintained throughout 10-min recovery (p ≤ 0.027). Preceding exercise intensity has a graded effect on recovery HRV measures reflecting cardiac vagal activity, even after correcting for the underlying HR. The immediate recovery following exercise is a potentially useful period to investigate autonomic activity, as multiple levels of autonomic activity can be clearly differentiated between using HRV. When investigating post-exercise HRV it is critical to account for the relative exercise intensity.

  7. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning.

    PubMed

    Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S

    2017-10-01

    Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Relationship between blood oxygenation and lactate in human skeletal muscle revealed by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Luo, Qingming; Ge, Xinfa; Gong, Hui; Zeng, Shaoqun

    2002-04-01

    Near-infrared spectroscopy (NIRS) is a focus of attention in the research field of biomedical photonics. The concentration of HbO2 in human skeletal muscle has been measured noninvasive NIRS using a portable tissue oximeter continuously when the subjects did incremental exercises on a power bicycle. Blood lactate is one of traditional physical research subjects which is applied most widely. We study blood volume in the tissue of sportsmen when they are subjected by the incremental physical load, simultaneously detecting some parameters such as the heart rate, maximal oxygen absorption and the concentration of blood lactate. As the intensity of exercises was heightened, the concentration of blood lactate and blood volume in tissue increased, while the concentration of HbO2 decreased. Thus the rudimental characteristics of energy consumption and supply during hypoxia and aerobic exercises are investigated. By discovering the relationship between blood lactate in human skeletal muscle and blood oxygenation, a novel approach for measuring blood lactate noninvasively and assessing the sports ability could be provided. Furthermore, it is possible to assess the fatigue state with tissue oximeter to monitor the human sports intensity noninvasively and dynamically.

  9. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation

    PubMed Central

    Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter

    2015-01-01

    Background Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Methods Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student’s t-test. Results The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Conclusion Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs. PMID:26170726

  10. Effect of Exercise Intensity on Neurotrophic Factors and Blood-Brain Barrier Permeability Induced by Oxidative-Nitrosative Stress in Male College Students.

    PubMed

    Roh, Hee-Tae; Cho, Su-Youn; Yoon, Hyung-Gi; So, Wi-Young

    2017-06-01

    We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p < .05). At 60MAE, ROS concentration was higher following HI (2.5 ± 1.2 mM) than after LI (1.5 ± 0.5 mM) and MI (1.4 ± 0.3 mM) conditions (p < .05). Plasma NO IAE increased significantly after MI and HI exercise (p < .05). Serum BDNF, NGF, and S-100b levels were significantly higher IAE following MI and HI exercise (p < .05). BDNF and S-100b were higher IAE following MI (29.6 ± 3.4 ng/mL and 87.1 ± 22.8 ng/L, respectively) and HI (31.4 ± 3.8 ng/mL and 100.6 ± 21.2 ng/L, respectively) than following LI (26.5 ± 3.0 ng/mL and 64.8 ± 19.2 ng/L, respectively) exercise (p < .05). 60MAE, S-100b was higher following HI (71.1 ± 14.5 ng/L) than LI (56.2 ± 14.7 ng/L) exercise (p < .05). NSE levels were not significantly different among all intensity conditions and time points (p > .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.

  11. An Impact Study of the Design of Exergaming Parameters on Body Intensity from Objective and Gameplay-Based Player Experience Perspectives, Based on Balance Training Exergame

    PubMed Central

    2013-01-01

    Kinect-based exergames allow players to undertake physical exercise in an interactive manner with visual stimulation. Previous studies focused on investigating physical fitness based on calories or heart rate to ascertain the effectiveness of exergames. However, designing an exergame for specific training purposes, with intensity levels suited to the needs and skills of the players, requires the investigation of motion performance to study player experience. This study investigates how parameters of a Kinect-based exergame, combined with balance training exercises, influence the balance control ability and intensity level the player can tolerate, by analyzing both objective and gameplay-based player experience, and taking enjoyment and difficulty levels into account. The exergame tested required participants to maintain their balance standing on one leg within a posture frame (PF) while a force plate evaluated the player's balance control ability in both static and dynamic gaming modes. The number of collisions with the PF depended on the frame's travel time for static PFs, and the leg-raising rate and angle for dynamic PFs. In terms of center of pressure (COP) metrics, significant impacts were caused by the frame's travel time on MDIST-AP for static PFs, and the leg-raising rate on MDIST-ML and TOTEX for dynamic PFs. The best static PF balance control performance was observed with a larger frame offset by a travel time of 2 seconds, and the worst performance with a smaller frame and a travel time of 1 second. The best dynamic PF performance was with a leg-raising rate of 1 second at a 45-degree angle, while the worst performance was with a rate of 2 seconds at a 90-degree angle. The results demonstrated that different evaluation methods for player experience could result in different findings, making it harder to study the design of those exergames with training purposes based on player experience. PMID:23922716

  12. Comparison of affective responses during and after low volume high-intensity interval exercise, continuous moderate- and continuous high-intensity exercise in active, untrained, healthy males.

    PubMed

    Niven, Ailsa; Thow, Jacqueline; Holroyd, Jack; Turner, Anthony P; Phillips, Shaun M

    2018-09-01

    This study compared affective responses to low volume high-intensity interval exercise (HIIE), moderate-intensity continuous exercise (MICE) and high-intensity continuous exercise (HICE). Twelve untrained males ([Formula: see text] 48.2 ± 6.7 ml·kg -1 ·min -1 ) completed MICE (30 min cycle at 85% of ventilatory threshold (VT)), HICE (cycle at 105% of VT matched with MICE for total work), and HIIE (10 x 6 s cycle sprints with 60 s recovery). Affective valence and perceived activation were measured before exercise, post warm-up, every 20% of exercise time, and 1, 5, 10, and 15 min post-exercise. Affective valence during exercise declined by 1.75 ± 2.42, 1.17 ± 1.99, and 0.42 ± 1.38 units in HICE, HIIE, and MICE, respectively, but was not statistically influenced by trial (P = 0.35), time (P = 0.06), or interaction effect (P = 0.08). Affective valence during HICE and HIIE was consistently less positive than MICE. Affective valence post-exercise was not statistically influenced by trial (P = 0.10) and at 5 min post-exercise exceeded end-exercise values (P = 0.048). Circumplex profiles showed no negative affect in any trial. Affective responses to low volume HIIE are similar to HICE but remain positive and rebound rapidly, suggesting it may be a potential alternative exercise prescription.

  13. Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.

    PubMed

    Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I

    2014-09-01

    There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.

  14. Serratus anterior and lower trapezius muscle activities during multi-joint isotonic scapular exercises and isometric contractions.

    PubMed

    Tsuruike, Masaaki; Ellenbecker, Todd S

    2015-02-01

    Proper scapular function during humeral elevation, such as upward rotation, external rotation, and posterior tilting of the scapula, is necessary to prevent shoulder injury. However, the appropriate intensity of rehabilitation exercise for the periscapular muscles has yet to be clarified. To identify the serratus anterior, lower trapezius, infraspinatus, and posterior deltoid muscle activities during 2 free-motion exercises using 3 intensities and to compare these muscle activities with isometric contractions during quadruped shoulder flexion and external rotation and abduction of the glenohumeral joint. Cross-sectional study. Health Science Laboratory. A total of 16 uninjured, healthy, active, male college students (age = 19.5 ± 1.2 years, height = 173.1 ± 6.5 cm, weight = 68.8 ± 6.6 kg). Mean electromyographic activity normalized by the maximal voluntary isometric contraction was analyzed across 3 intensities and 5 exercises. Intraclass correlation coefficients were calculated for electromyographic activity of the 4 muscles in each free-motion exercise. Significant interactions in electromyographic activity were observed between intensities and exercises (P < .05). The quadruped shoulder-flexion exercise activated all 4 muscles compared with other exercises. Also, the modified robbery free-motion exercise activated the serratus anterior, lower trapezius, and infraspinatus compared with the lawn-mower free-motion exercise. However, neither exercise showed a difference in posterior deltoid electromyographic activity. Three intensities exposed the nature of the periscapular muscle activities across the different exercises. The free-motion exercise in periscapular muscle rehabilitation may not modify serratus anterior, lower trapezius, and infraspinatus muscle activities unless knee-joint extension is limited.

  15. A Probability Model of Decompression Sickness at 4.3 Psia after Exercise Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Gernhardt, Michael L.; Powell, Michael R.; Pollock, Neal

    2004-01-01

    Exercise PB can reduce the risk of decompression sickness on ascent to 4.3 psia when performed at the proper intensity and duration. Data are from seven tests. PB times ranged from 90 to 150 min. High intensity, short duration dual-cycle ergometry was done during the PB. This was done alone, or combined with intermittent low intensity exercise or periods of rest for the remaining PB. Nonambulating men and women performed light exercise from a semi-recumbent position at 4.3 psia for four hrs. The Research Model with age tested the probability that DCS increases with advancing age. The NASA Model with gender hypothesized that the probability of DCS increases if gender is female. Accounting for exercise and rest during PB with a variable half-time compartment for computed tissue N2 pressure advances our probability modeling of hypobaric DCS. Both models show that a small increase in exercise intensity during PB reduces the risk of DCS, and a larger increase in exercise intensity dramatically reduces risk. These models support the hypothesis that aerobic fitness is an important consideration for the risk of hypobaric DCS when exercise is performed during the PB.

  16. Muscle performance following an acute bout of plyometric training combined with low or high intensity weight exercise.

    PubMed

    Beneka, Anastasia G; Malliou, Paraskevi K; Missailidou, Victoria; Chatzinikolaou, Athanasios; Fatouros, Ioannis; Gourgoulis, Vassilios; Georgiadis, Elias

    2013-01-01

    To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90-95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.

  17. Synergistic effects of low-intensity exercise conditioning and β-blockade on cardiovascular and autonomic adaptation in pre- and postmenopausal women with hypertension.

    PubMed

    Goldie, Catherine L; Brown, C Ann; Hains, Sylvia M J; Parlow, Joel L; Birtwhistle, Richard

    2013-10-01

    The effects of a 12-week low-intensity exercise conditioning program (walking) on blood pressure (BP), heart rate (HR), rate-pressure product (RPP), and cardiac autonomic function were measured in 40 sedentary women with hypertension. Women were assigned to either an exercise group (n = 20) or a control group (n = 20), matched for β-blockade treatment. They underwent testing at the beginning and at the end of the 12-week study period in three conditions: supine rest, standing, and low-intensity steady state exercise. The exercise group participated in a 12-week, low-intensity walking program, while the control group continued with usual sedentary activity. Compared with the control group, women in the exercise group showed reductions in systolic and diastolic BP and RPP (i.e., the estimated cardiac workload). β-Blockers increased baroreflex sensitivity and lowered BP and HR in all participants; however, those in the exercise group showed the effects of both treatments: a greater reduction in HR and RPP. The combination of exercise training and β-blockade produces cardiac and autonomic adaptations that are not observed with either treatment alone, suggesting that β-blockade enhances the conditioning effects of low-intensity exercise in women with hypertension.

  18. Moderate intensity exercise as an adjunct to standard smoking cessation treatment for women: a pilot study.

    PubMed

    Williams, David M; Whiteley, Jessica A; Dunsiger, Shira; Jennings, Ernestine G; Albrecht, Anna E; Ussher, Michael H; Ciccolo, Joseph T; Parisi, Alfred F; Marcus, Bess H

    2010-06-01

    Previous randomized controlled trials have not supported moderate intensity exercise as an efficacious adjunct to smoking cessation treatments for women; however, compliance with exercise programs in these studies has been poor. The purpose of this pilot study was to estimate the effects of moderate intensity exercise on smoking cessation outcomes under optimal conditions for exercise program compliance. Sixty previously sedentary, healthy, female smokers were randomized to an 8-week program consisting of brief baseline smoking cessation counseling and the nicotine patch plus either 150 min/week of moderate intensity exercise or contact control. Participants attended a median of 86.4% and 95.5% of prescribed exercise/control sessions, respectively. There was a moderate, though statistically nonsignificant, effect of exercise at post-treatment for objectively verified 7-day point prevalence abstinence (48.3% vs. 23.3%; OR = 3.07, 95% CI: 0.89-11.07) and prolonged abstinence (34.5% vs. 20.0%; OR = 2.11, 95% CI: 0.56-8.32). Effects were attenuated when controlling for potential confounders, and after a 1-month, no-treatment period. The findings provide a preliminary indication that, given adequate compliance, moderate intensity exercise may enhance short-term smoking cessation outcomes for women; however, a larger trial is warranted. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  19. Skeletal muscle fatigue precedes the slow component of oxygen uptake kinetics during exercise in humans.

    PubMed

    Cannon, Daniel T; White, Ailish C; Andriano, Melina F; Kolkhorst, Fred W; Rossiter, Harry B

    2011-02-01

    The mechanisms determining exercise intolerance are poorly understood. A reduction in work efficiency in the form of an additional energy cost and oxygen requirement occurs during high-intensity exercise and contributes to exercise limitation. Muscle fatigue and subsequent recruitment of poorly efficient muscle fibres has been proposed to mediate this decline. These data demonstrate in humans, that muscle fatigue, generated in the initial minutes of exercise, is correlated with the increasing energy demands of high-intensity exercise. Surprisingly, however, while muscle fatigue reached a plateau, oxygen uptake continued to increase throughout 8 min of exercise. This suggests that additional recruitment of inefficient muscle fibres may not be the sole mechanism contributing to the decline in work efficiency during high-intensity exercise.

  20. Chronotropic and pressor effects of water ingestion at rest and in response to incremental dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Teixeira, Micael S; Heffernan, Kevin S; Fernhall, Bo

    2013-06-01

    Ingestion of water attenuates the chronotropic response to submaximal exercise. However, it is not known whether this effect is equally manifested during dynamic exercise below and above the ventilatory threshold (VT). We explored the effects of water ingestion on the heart rate response to an incremental cycle-ergometer protocol. In a randomized fashion, 19 healthy adults (10 men and nine women, age 20.9 ± 1.8 years) ingested 50 and 500 ml of water before completing a cycle-ergometer protocol on two separate days. The heart rate and oxygen uptake ( ) responses to water ingestion were analysed both at rest and during exercise performed below and above the VT. The effects of water intake on brachial blood pressure were measured only at rest. Resting mean arterial pressure increased and resting heart rate decreased, but only after 500 ml of water (P < 0.05). Compared with that seen after 50 ml of water, the 500 ml volume elicited an overall decrease in submaximal heart rate (P < 0.05). In contrast, drinking 500 ml of water did not affect submaximal . The participants' maximal heart rate, maximal and VT were similar between conditions. Our results therefore indicate that, owing to its effects on submaximal heart rate over a broad spectrum of intensities, the drinking of water should be recognized as a potential confounder in cardiovascular exercise studies. However, by showing no differences between conditions for submaximal , they also suggest that the magnitude of heart rate reduction after drinking 500 ml of water may be of minimal physiological significance for exercise cardiorespiratory capacity.

  1. The effects of senior brain health exercise program on basic physical fitness, cognitive function and BDNF of elderly women - a feasibility study.

    PubMed

    Byun, Jung-Eun; Kang, Eun-Bum

    2016-06-01

    This study was to investigate the impacts of senior brain heath exercise (SBHE) program for 12 weeks to basic active physical fitness, cognitive function and brain derived neurotrophic factor (BDNF) in elderly women. Subject of this study is total of 24 women in the age of 65-79 who can conduct normal daily activity and communication but have not participated in regular exercise in recent 6 months. The study groups were divided into an exercise group (EG, n=13) and a control group (CG, n=11). The exercise program was consisted of SBHE, and training frequency was 4 times weekly, of which training time was a total of 50 minutes each time in level of intensity of 9-14 by rating of perceived exertion (RPE). First, 12-week SBHE program has shown statistical increase in basic physical fitness in the EG comparing with the CG, such as lower body strength, upper body strength and aerobic endurance, but not in flexibility, agility and dynamic balance. Second, in the case of Mini-mental state examination Korean version (MMSE-K) and BDNF, it showed that there was a statistically significant increase in the EG comparing with the CG. In this study, 12-week SBHE program has resulted in positive effect on change of basic physical fitness (strength and aerobic endurance), cognitive function and BDNF. If above program adds movements that can enhance flexibility, dynamic balance and agility, this can be practical exercise program to help seniors maintain overall healthy lifestyle.

  2. Virtual and live social facilitation while exergaming: competitiveness moderates exercise intensity.

    PubMed

    Snyder, Amanda L; Anderson-Hanley, Cay; Arciero, Paul J

    2012-04-01

    Grounded in social facilitation theory, this study compared the impact on exercise intensity of a virtual versus a live competitor, when riding a virtual reality-enhanced stationary bike ("cybercycle"). It was hypothesized that competitiveness would moderate effects. Twenty-three female college students were exposed to three conditions on a cybercycle: solo training, virtual competitor, and live competitor. After training without a competitor (solo condition for familiarization with equipment), participants competed against a virtual avatar or live rider (random order of presentation). A repeated-measures analysis revealed a significant condition (virtual/live) by competitiveness (high/low) interaction for exercise intensity (watts). More competitive participants exhibited significantly greater exercise intensity when competing against a live versus virtual competitor. The implication is that live competitors can have an added social facilitation effect and influence exercise intensity, although competitiveness moderates this effect.

  3. Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial.

    PubMed

    Slentz, Cris A; Bateman, Lori A; Willis, Leslie H; Granville, Esther O; Piner, Lucy W; Samsa, Gregory P; Setji, Tracy L; Muehlbauer, Michael J; Huffman, Kim M; Bales, Connie W; Kraus, William E

    2016-10-01

    Although the Diabetes Prevention Program (DPP) established lifestyle changes (diet, exercise and weight loss) as the 'gold standard' preventive therapy for diabetes, the relative contribution of exercise alone to the overall utility of the combined diet and exercise effect of DPP is unknown; furthermore, the optimal intensity of exercise for preventing progression to diabetes remains very controversial. To establish clinical efficacy, we undertook a study (2009 to 2013) to determine: how much of the effect on measures of glucose homeostasis of a 6 month programme modelled after the first 6 months of the DPP is due to exercise alone; whether moderate- or vigorous-intensity exercise is better for improving glucose homeostasis; and to what extent amount of exercise is a contributor to improving glucose control. The primary outcome was improvement in fasting plasma glucose, with improvement in plasma glucose AUC response to an OGTT as the major secondary outcome. The trial was a parallel clinical trial. Sedentary, non-smokers who were 45-75 year old adults (n = 237) with elevated fasting glucose (5.28-6.94 mmol/l) but without cardiovascular disease, uncontrolled hypertension, or diabetes, from the Durham area, were studied at Duke University. They were randomised into one of four 6 month interventions: (1) low amount (42 kJ kg body weight(-1) week(-1) [KKW])/moderate intensity: equivalent of expending 42 KKW (e.g. walking ∼16 km [8.6 miles] per week) with moderate-intensity (50% [Formula: see text]) exercise; (2) high amount (67 KKW)/moderate intensity: equivalent of expending 67 KKW (∼22.3 km [13.8 miles] per week) with moderate-intensity exercise; (3) high amount (67 KKW)/vigorous intensity: equivalent to group 2, but with vigorous-intensity exercise (75% [Formula: see text]); and (4) diet + 42 KKW moderate intensity: same as group 1 but with diet and weight loss (7%) to mimic the first 6 months of the DPP. Computer-generated randomisation lists were provided by our statistician (G. P. Samsa). The randomisation list was maintained by L. H. Willis and C. A. Slentz with no knowledge of or input into the scheduling, whereas all scheduling was done by L. A. Bateman, with no knowledge of the randomisation list. Subjects were automatically assigned to the next group listed on the randomisation sheet (with no ability to manipulate the list order) on the day that they came in for the OGTT, by L. H. Willis. All plasma analysis was done blinded by the individuals doing the measurements (i.e. lipids, glucose, insulin). Subjects and research staff (other than individuals analysing the blood) were not blinded to the group assignments. Number randomised, completers and number analysed with complete OGTT data for each group were: low-amount/moderate-intensity (61, 43, 35); high-amount/moderate-intensity (61, 44, 40); high-amount/vigorous-intensity (61, 43, 38); diet/exercise (54, 45, 37), respectively. Only the diet and exercise group experienced a decrease in fasting glucose (p < 0.001). The means and 95% CIs for changes in fasting glucose (mmol/l) for each group were: high-amount/moderate-intensity -0.07 (-0.20, 0.06); high-amount/vigorous 0.06 (-0.07, 0.19); low-amount/moderate 0.05 (-0.05, 0.15); and diet/exercise -0.32 (-0.46, -0.18). The effects sizes for each group (in the same order) were: 0.17, 0.15, 0.18 and 0.71, respecively. For glucose tolerance (glucose AUC of OGTT), similar improvements were observed for the diet and exercise (8.2% improvement, effect size 0.73) and the 67 KKW moderate-intensity exercise (6.4% improvement, effect size 0.60) groups; moderate-intensity exercise was significantly more effective than the same amount of vigorous-intensity exercise (p < 0.0207). The equivalent amount of vigorous-intensity exercise alone did not significantly improve glucose tolerance (1.2% improvement, effect size 0.21). Changes in insulin AUC, fasting plasma glucose and insulin did not differ among the exercise groups and were numerically inferior to the diet and exercise group. In the present clinical efficacy trial we found that a high amount of moderate-intensity exercise alone was very effective at improving oral glucose tolerance despite a relatively modest 2 kg change in body fat mass. These data, combined with numerous published observations of the strong independent relation between postprandial glucose concentrations and prediction of future diabetes, suggest that walking ∼18.2 km (22.3 km prescribed with 81.6% adherence in the 67 KKW moderate-intensity group) per week may be nearly as effective as a more intensive multicomponent approach involving diet, exercise and weight loss for preventing the progression to diabetes in prediabetic individuals. These findings have important implications for the choice of clinical intervention to prevent progression to type 2 diabetes for those at high risk. ClinicalTrials.gov NCT00962962 FUNDING: The study was funded by National Institutes for Health National Institute of Diabetes and Digestive and Kidney Diseases (NIH-NDDK) (R01DK081559).

  4. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue

    PubMed Central

    Cimen, Behzat; Uz, Ali; Cetin, Ihsan; Cimen, Leyla; Cetin, Aysun

    2017-01-01

    Background Regular physical exercises may help people to be more resistant to everyday problems; however, how acute and intense exercises affect the heart tissues functioning with maximum capacity and how melatonin changes the effect of acute and intense exercises are still not obvious. We aimed to comprehend whether melatonin intravenous injection supports the oxidative/antioxidative conditions and energy charge in heart tissues of rats exposed to acute swimming exercise. Methods Thirty Wistar-albino male rats were categorized into 3 groups with equal number of subjects. Control group performed no application, and acute intensive swimming exercise group were subjected to acute intensive swimming exercise for 30 minutes, and melatonin group were applied 25 mg/kg single dose melatonin administration prior to 30 minutes acute intensive swimming exercise. The levels of malondialdehyde (MDA), and superoxide dismutase, catalase and glutathione peroxidase activities were measured by spectrophotometric method; and the levels of 3-nitrotyrosine (3-NT) and energy charge were determined by a high performance liquid chromatography. Results Tissue MDA and 3-NT levels of the acute intensive exercise group were found to be higher than the control group. It was also found that the melatonin administration increased the energy charge and antioxidant activities, while decreased tissue MDA and 3-NT levels in heart tissues. Our results provide evidence for melatonin that can exert potent protective effects on oxidative stress and energy charge for heart tissues in acute swimming exercise. Conclusions These findings suggest that the direct beneficial effects of melatonin could be potentially applied on prevention of oxidative stress and energy deficit. PMID:28959107

  5. Intense physical exercise potentiates glucose inhibitory effect over food intake of male Wistar rats.

    PubMed

    Cavalcanti-de-Albuquerque, Joao Paulo; Kincheski, Grasielle Clotildes; Louzada, Ruy Andrade; Galina, Antônio; Pierucci, Anna Paola Trindade Rocha; Carvalho, Denise P

    2018-06-12

    What is the central question of this study? Physical exercise has emerged as a non-pharmacological treatment for obesity by promoting changes in energy balance. Despite the accumulated knowledge about exercise effects on energy expenditure, the central question of this study is to understand how an acute session of exercise might affect food intake of male Wistar rats. What is the main finding? The main finding of this work is that food intake in male Wistar rats is decreased in the first hour after physical exercise independent of the intensity. Moreover, high-intensity exercise potentiates the anorexic effect of peripheral glucose administration. Obesity has emerged as a critical metabolic disorder in modern society. An adequate lifestyle with good-oriented programs of diet and physical exercise (PE) can prevent or potentially even cure obesity. Additionally, PE might lead to weight loss by increasing energy expenditure and decreasing hunger perception. In this manuscript, we hypothesize that an acute exercise session with different intensities would potentiate the glucose inhibitory effects on food intake in male Wistar rats. Our data show that moderate- (MOD) or high-intensity (HIGH) PE significantly decreased food intake, although no changes in the expression of feeding-related neuropeptide in the arcuate nucleus of the hypothalamus were found. Exercised animals demonstrated a reduced glucose tolerance and increased blood insulin concentration. Intraperitoneal administration of glucose decreased food intake in control animals. In the animals submitted to MOD, the decrease in food intake promoted by glucose was similar to controls; however, an interaction was observed when glucose was injected in the HIGH group, in which food intake was significantly lower than the effect produced by glucose alone. A different pattern of expression was observed for the monocarboxylate transporter isoforms (MCT1, 2 and 4) and the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKBP3) in the hypothalamus, which was dependent on the exercise intensity. In conclusion, PE decreases food intake independently of the intensity. However, an interaction between PE and the anorexic effect of glucose is only observed when a high-intensity exercise is performed. These data show an essential role of exercise intensity in the modulation of glucose inhibitory effect on food intake. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Subjective Measures of Exercise Intensity to Gauge Substrate Partitioning in Persons With Paraplegia

    PubMed Central

    Kressler, Jochen; Cowan, Rachel E.; Ginnity, Kelly; Nash, Mark S.

    2012-01-01

    Background: The Borg Rating of Perceived Exertion (RPE) Scale and talk test (TT) are commonly recommended for persons to gauge exercise intensity. It is not known whether they are suitable to estimate substrate partitioning between carbohydrate and fat in persons with SCI. Objective: Investigate substrate partitioning/utilization patterns associated with RPE and TT. Methods: Twelve participants with chronic paraplegia underwent 2 arm crank exercise tests on nonconsecutive days within 2 weeks. Test 1 was a graded exercise test (GXT) to volitional exhaustion. Test 2 was a 15-minute self-selected steady state (SS) voluntary arm exercise bout simulating a brief, yet typical exercise session. Results: For the GXT, very light intensity exercise (RPE < 9) and TT stage before last positive were associated with highest contribution of fat oxidation (~35%-50%) to total energy expenditure (TEE). Fat oxidation was low at all stages, with the highest rate (0.13 ± 0.07 g/min) occurring at stage 1 (10 W). Corresponding average RPE was 7 ± 2 and the TT was positive for all participants at this stage. For the SS, fuel partitioning throughout exercise was dominated by carbohydrate oxidation (1.47 ± 0.08 g/min), accounting for almost all (~94%) of TEE with only a minute contribution from fat oxidation (0.02 ± 0.004 g/min). A positive TT was associated with an average contribution of fat oxidation of ~10%. Conclusions: RPE but not the TT appears suitable to predict exercise intensities associated with the highest levels of fat oxidation. However, such intensities are below authoritative intensity thresholds for cardiorespiratory fitness promotion, and therefore the applicability of such a prediction for exercise prescriptions is likely limited to individuals with low exercise tolerance. PMID:23459243

  7. Effect of high-intensity interval exercise on lipid oxidation during postexercise recovery.

    PubMed

    Malatesta, Davide; Werlen, Catherine; Bulfaro, Stefano; Chenevière, Xavier; Borrani, Fabio

    2009-02-01

    The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.

  8. Impact of aerobic exercise intensity on craving and reactivity to smoking cues.

    PubMed

    Janse Van Rensburg, Kate; Elibero, Andrea; Kilpatrick, Marcus; Drobes, David J

    2013-06-01

    Aerobic exercise can acutely reduce cigarette cravings during periods of nicotine deprivation. The primary aim of this study was to assess the differential effects of light and vigorous intensity aerobic exercise on cigarette cravings, subjective and physiological reactivity to smoking cues, and affect after overnight nicotine deprivation. A secondary aim was to examine cortisol change as a mediator of the effects of exercise on smoking motivation. 162 (55 female, 107 male) overnight nicotine-deprived smokers were randomized to one of three exercise conditions: light intensity, vigorous intensity, or a passive control condition. After each condition, participants engaged in a standardized cue reactivity assessment. Self-reported urges to smoke, affect, and salivary cortisol were assessed at baseline (i.e., before each condition), immediately after each condition, and after the cue reactivity assessment. Light and vigorous exercise significantly decreased urges to smoke and increased positive affect, relative to the control condition. In addition, those in the vigorous exercise condition demonstrated suppressed appetitive reactivity to smoking cues, as indexed by the startle eyeblink reflex. Although exercise intensity was associated with expected changes in cortisol concentration, these effects were not related to changes in craving or cue reactivity. Both light and vigorous exercise can reduce general cravings to smoke, whereas vigorous exercise appears especially well-suited for reducing appetitive reactions to cues that may precede smoking. Results did not support exercise-induced cortisol release as a mechanism for these effects. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Cardiorespiratory fitness modulates the acute flow-mediated dilation response following high-intensity but not moderate-intensity exercise in elderly men.

    PubMed

    Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Russell, Fraser; Golledge, Jonathan; Green, Daniel J; Askew, Christopher D

    2017-05-01

    Impaired endothelial function is observed with aging and in those with low cardiorespiratory fitness (V̇o 2peak ). Improvements in endothelial function with exercise training are somewhat dependent on the intensity of exercise. While the acute stimulus for this improvement is not completely understood, it may, in part, be due to the flow-mediated dilation (FMD) response to acute exercise. We examined the hypothesis that exercise intensity alters the brachial (systemic) FMD response in elderly men and is modulated by V̇o 2peak Forty-seven elderly men were stratified into lower (V̇o 2peak = 24.3 ± 2.9 ml·kg -1 ·min -1 ; n = 27) and higher fit groups (V̇o 2peak = 35.4 ± 5.5 ml·kg -1 ·min -1 ; n = 20) after a test of cycling peak power output (PPO). In randomized order, participants undertook moderate-intensity continuous exercise (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO) or no-exercise control. Brachial FMD was assessed at rest and 10 and 60 min after exercise. FMD increased after MICE in both groups {increase of 0.86% [95% confidence interval (CI), 0.17-1.56], P = 0.01} and normalized after 60 min. In the lower fit group, FMD was reduced after HIIE [reduction of 0.85% (95% CI, 0.12-1.58), P = 0.02] and remained decreased at 60 min. In the higher fit group, FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52% (95% CI, 0.41-2.62), P < 0.01, which was correlated with V̇o 2peak , r = 0.41; P < 0.01]. In the no-exercise control, FMD was reduced in both groups after 60 min ( P = 0.05). Exercise intensity alters the acute FMD response in elderly men and V̇o 2peak modulates the FMD response following HIIE but not MICE. The sustained decrease in FMD in the lower fit group following HIIE may represent a signal for vascular adaptation or endothelial fatigue. NEW & NOTEWORTHY This study is the first to show that moderate-intensity continuous cycling exercise increased flow-mediated dilation (FMD) transiently before normalization of FMD after 1 h, irrespective of cardiorespiratory fitness level in elderly men. Interestingly, we show increased FMD after high-intensity cycling exercise in higher fit men, with a sustained reduction in FMD in lower fit men. The prolonged reduction in FMD after high-intensity cycling exercise may be associated with future vascular adaptation but may also reflect a period of increased cardiovascular risk in lower fit elderly men. Copyright © 2017 the American Physiological Society.

  10. Effect of long-term exercise training on blood viscosity during endurance exercise at an anaerobic threshold intensity.

    PubMed

    Adachi, H; Sakurai, S; Tanehata, M; Oshima, S; Taniguchi, K

    2000-11-01

    Blood viscosity (etaB) is low in athletes, but the effect of exercise training on etaB during endurance exercise at an anaerobic threshold (AT) intensity in non-athletes is not well known, although it is known that exercise training sometimes induces the hyperviscosity syndrome. Fourteen subjects were recruited and divided into 2 groups: those who trained at an AT intensity for 30 min/day, 3 times weekly for 1 year (Group T, n=8), and sedentary subjects (Group C, n=6). The test protocol consisted of a single 30-min treadmill exercise at each individual's AT intensity, which was determined in advance. The etaB, plasma viscosity (etaP), and hematocrit were measured just before and at the end of the treadmill exercise. The subjects were not allowed to drink any water before exercise. In the Group C subjects, the hematocrit and etaP increased significantly and the etaB tended to increase. However, in the Group T subjects, the hematocrit and etaP did not increase and the etaB decreased significantly. These data indicate that long-term exercise training attenuates the increase in blood viscosity during exercise.

  11. Blood Pressure Response to Exercise and Cardiovascular Disease.

    PubMed

    Schultz, Martin G; La Gerche, Andre; Sharman, James E

    2017-10-18

    This review aimed to provide a clinical update on exercise blood pressure (BP) and its relationship to cardiovascular disease (CVD), outlining key determinants of abnormal exercise BP responses. We also highlight current evidence gaps that need addressing in order to optimise the relevance of exercise BP as clinical CVD risk factor. Abnormal exercise BP manifests as either exercise hypotension (low BP response) or as exaggerated exercise BP (high BP response). Exercise hypotension is an established sign of existing and likely severe CVD, but exaggerated exercise BP also carries elevated CVD risk due to its association with sub-clinical hypertension. Although exaggerated exercise BP is related to heightened CVD risk at any exercise intensity, recent data suggest that the BP response to submaximal intensity exercise holds greater prognostic and clinical significance than BP achieved at peak/maximal intensity exercise. Cardiorespiratory fitness is a strong modifier of the exercise BP response, and should be taken into consideration when assessing the association with CVD. Both exercise hypotension and exaggerated exercise BP serve as markers that should prompt evaluation for potential underlying CVD. However, the clinical utility of these markers is currently inhibited by the lack of consensus informing the definitions and thresholds for abnormalities in exercise BP.

  12. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence.

    PubMed

    Bartlett, Jonathan D; Close, Graeme L; MacLaren, Don P M; Gregson, Warren; Drust, Barry; Morton, James P

    2011-03-01

    The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average VO(2) (71 ± 6 vs. 73 ± 4%VO(2max)), total VO(2) (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.

  13. Practical Approaches to Prescribing Physical Activity and Monitoring Exercise Intensity.

    PubMed

    Reed, Jennifer L; Pipe, Andrew L

    2016-04-01

    Regular physical activity helps to prevent heart disease, and reduces the risk of first or subsequent cardiovascular events. It is recommended that Canadian adults accumulate at least 150 minutes of moderate- to vigorous-intensity aerobic exercise per week, in bouts of 10 minutes or more, and perform muscle- and bone-strengthening activities at least 2 days per week. Individual exercise prescriptions can be developed using the frequency, intensity, time, and type principles. Increasing evidence suggests that high-intensity interval training is efficacious for a broad spectrum of heart health outcomes. Several practical approaches to prescribing and monitoring exercise intensity exist including: heart rate monitoring, the Borg rating of perceived exertion scale, the Talk Test, and, motion sensors. The Borg rating of perceived exertion scale matches a numerical value to an individual's perception of effort, and can also be used to estimate heart rate. The Talk Test, the level at which simple conversation is possible, can be used to monitor desired levels of moderate- to vigorous-intensity exercise. Motion sensors can provide users with practical and useful exercise training information to aid in meeting current exercise recommendations. These approaches can be used by the public, exercise scientists, and clinicians to easily and effectively guide physical activity in a variety of settings. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  14. Two-dimensional strain echocardiography technology for evaluation of myocardial strain in swimming athletes after high-intensity exercise.

    PubMed

    Liang, Chen; Ma, Yun; Gao, Can; Zhang, Jianhong; Yang, Min; Chen, Gen; Fu, Shan; Zhu, Tiangang

    2017-02-01

    The aim of this study was to investigate the change in myocardial strain in swimming athletes before and after high-intensity exercise using two-dimensional strain echocardiography (2DSE) technology. To assess whether the local and overall myocardial function and myocardial injury are accurately measured using 2DSE technology, 15 swimming athletes were selected as research objects. We applied 2DSE technology to track the 2D ultrasound images of the apical four chambers, the apical two chambers, and the apical long axis before and after high-intensity, increasing-load exercise. We recorded indices such as the left ventricular global strain (GS) and the left ventricular segmental wall longitudinal peak systolic strain (PS) in 18 systoles and analyzed the myocardial strain change before and after exercise. After high-intensity exercise, the overall myocardial strain decreased, especially the strain of the posterior wall, posterior divider, lateral wall, lower wall, and the basal and middle segments of the anterior wall. The influence of exercise on myocardial strain was greater on the basal and middle segments than on the apical segment. One-time intensive exercise negatively affected the myocardial muscle. Myocardial muscles in the apical segment and the myocardial wall were more sensitive to intensive exercise. The 2DSE technology can precisely position the motion-sensitive areas and help locate myocardial injury. © 2017, Wiley Periodicals, Inc.

  15. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    PubMed

    Graham, Ryan B; Wachowiak, Mark P; Gurd, Brendon J

    2015-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in muscle acidosis. This should be explored in future research using further combinations of EMG and muscle biochemistry and histology.

  16. End-exercise ΔHHb/ΔVO2 and post-exercise local oxygen availability in relation to exercise intensity.

    PubMed

    Stöcker, F; Von Oldershausen, C; Paternoster, F K; Schulz, T; Oberhoffer, R

    2017-07-01

    Increased local blood supply is thought to be one of the mechanisms underlying oxidative adaptations to interval training regimes. The relationship of exercise intensity with local blood supply and oxygen availability has not been sufficiently evaluated yet. The aim of this study was to examine the effect of six different intensities (40-90% peak oxygen uptake, VO 2peak ) on relative changes in oxygenated, deoxygenated and total haemoglobin (ΔO 2 Hb, ΔHHb, ΔTHb) concentration after exercise as well as end-exercise ΔHHb/ΔVO 2 as a marker for microvascular O 2 distribution. Seventeen male subjects performed an experimental protocol consisting of 3 min cycling bouts at each exercise intensity in randomized order, separated by 5 min rests. ΔO 2 Hb and ΔHHb were monitored with near-infrared spectroscopy of the vastus lateralis muscle, and VO 2 was assessed. ΔHHb/ΔVO 2 increased significantly from 40% to 60% VO 2 peak and decreased from 60% to 90% VO 2 peak. Post-exercise ΔTHb and ΔO 2 Hb showed an overshoot in relation to pre-exercise values, which was equal after 40-60% VO 2peak and rose significantly thereafter. A plateau was reached following exercise at ≥80% VO 2peak . The results suggest that there is an increasing mismatch of local O 2 delivery and utilization during exercise up to 60% VO 2peak . This insufficient local O 2 distribution is progressively improved above that intensity. Further, exercise intensities of ≥80% VO 2peak induce highest local post-exercise O 2 availability. These effects are likely due to improved microvascular perfusion by enhanced vasodilation, which could be mediated by higher lactate production and the accompanying acidosis. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  17. Measuring stroke patients' exercise preferences using a discrete choice experiment.

    PubMed

    Geidl, Wolfgang; Knocke, Katja; Schupp, Wilfried; Pfeifer, Klaus

    2018-03-30

    Physical activity post stroke improves health, yet physical inactivity is highly prevalent. Tailored exercise programs considering physical activity preferences are a promising approach to promote physical activity. Therefore, this study seeks to measure exercise preferences of stroke survivors. Stroke survivors conducted a discrete choice experiment (DCE). DCE was presented in a face-to-face interview where patients had to choose eight times between two different exercise programs. Exercise programs differed by characteristics, with the six attributes under consideration being social situation, location, type of exercise, intensity, frequency, and duration. Utilities of the exercise attributes were estimated with a logit choice model. Stroke survivors (n=103, mean age: 67, SD=13.0; 60% male) show significant differences in the rated utilities of the exercise attributes (P<0.001). Participants had strong preferences for light and moderate intense physical activity and favored shorter exercise sessions. Stroke survivors have remarkable exercise preferences especially for intensity and duration of exercise. Results contribute to the tailoring of physical activity programs after stroke thereby facilitating maintenance of physical activity.

  18. No Effect of Exercise Intensity on Appetite in Highly-Trained Endurance Women

    PubMed Central

    Howe, Stephanie M.; Hand, Taryn M.; Larson-Meyer, D. Enette; Austin, Kathleen J.; Alexander, Brenda M.; Manore, Melinda M.

    2016-01-01

    In endurance-trained men, an acute bout of exercise is shown to suppress post-exercise appetite, yet limited research has examined this response in women. The purpose of this study was to investigate the effect of exercise intensity on appetite and gut hormone responses in endurance-trained women. Highly-trained women (n = 15, 18–40 years, 58.4 ± 6.4 kg, VO2MAX = 55.2 ± 4.3 mL/kg/min) completed isocaloric bouts (500 kcals or 2093 kJ) of moderate-intensity (MIE, 60% VO2MAX) and high-intensity (HIE, 85% VO2MAX) treadmill running at the same time of day, following a similar 48-h diet/exercise period, and at least 1-week apart. Blood was drawn pre-exercise (baseline), immediately post-exercise and every 20-min for the next 60-min. Plasma concentrations of acylated ghrelin, PYY3–36, GLP-1 and subjective appetite ratings via visual analog scale (VAS) were assessed at each time point. Acylated ghrelin decreased (p = 0.014) and PYY3–36 and GLP-1 increased (p = 0.036, p < 0.0001) immediately post-exercise, indicating appetite suppression. VAS ratings of hunger and desire to eat decreased immediately post-exercise (p = 0.0012, p = 0.0031, respectively), also indicating appetite suppression. There were no differences between exercise intensities for appetite hormones or VAS. Similar to males, post-exercise appetite regulatory hormones were altered toward suppression in highly-trained women and independent of energy cost of exercise. Results are important for female athletes striving to optimize nutrition for endurance performance. PMID:27096869

  19. Comparison of Methods for Determining Aerobic Exercise Intensity Using Heart Rate in Acute Leukemia Patients Prior to Induction Chemotherapy

    PubMed Central

    Story, Christina; Bryant, Ashley Leak; Phillips, Brett; Bailey, Charlotte; Shields, Edgar W.; Battaglini, Claudio

    2018-01-01

    Introduction Cardiopulmonary exercise testing (CPET), the gold standard of cardiopulmonary evaluation, is used to determine VO2 levels at different aerobic exercise training intensities; however, it may not be feasible to conduct CPET in all clinical settings. Aims To compare the heart rate reserve (HRR) and percent of 220-age methods for prescribing cycle ergometry exercise intensity using heart rate (HR) against the HRs obtained during a CPET in adults undergoing treatment for acute leukemia (AL). Methods In this exploratory study, part of a larger randomized controlled trial, 14 adults with AL completed CPET on a cycle ergometer with indirect calorimetry within 96 hr of admission to a cancer hospital to determine VO2peak and HR corresponding to low (40% VO2peak), moderate (60% VO2peak), and high (75% VO2peak) exercise intensities. Analyses of variance were used to compare estimated HR for each intensity level using the HRR and percent of 220-age methods with HR determined via VO2peak. Results HR corresponding to low-intensity exercise differed significantly across all three methods (p ≤ .05). No significant differences were observed between HR estimated via the percent of 220-age method and determined via VO2peak at moderate (100 ± 8 and 113 ± 24 bpm, p = .122) or high intensities (125 ± 10 and 123 ± 25 bpm, p = .994). Conclusion In adults with AL, HR-based methods for defining aerobic exercise intensities should be used with caution. At low intensity, neither should be used, while at moderate and high intensities, the percent of 220-age equation might serve as an adequate substitute for CPET. PMID:26933148

  20. Leisure time physical activity patterns in Odisha, India.

    PubMed

    Ganesh, G Shankar; Patel, Rishee; Dwivedi, Vikram; Chhabra, Deepak; Balakishore, P; Dakshinamoorthy, Anandhi; Kaur, Parminder

    2018-05-01

    The World Health Organization has recommended a moderate intensity physical activity of 150min, or 75min vigorous-intensity physical activity per week to achieve optimal health benefits. It is not known if Indian populations who indulge in leisure time physical exercises satisfy these recommendations. This study used a questionnaire to obtain data regarding demographic details, current engagement in leisure time physical activities, and dosages of these exercises from participants between 18 and 64 years of age. Data was collected from a total of 390 participants (231 males and 159 females). 50.76% and 34.35% of the participants reported exercising voluntarily and for health benefits respectively. Most participants (94.61%) indicated exercising without prescription. 55.38% and 12.82% of the participants under and above 38 years of age perform moderate to vigorous intensity exercises respectively. The over-all results of this study indicate that the participants' choices of leisure time physical exercises are based on their personal choices and beliefs. The exercise intensities undertaken do not meet the global recommended intensities, especially in those above 38 years of age. Professionals and facilities to engage the public in the WHO recommended intensities of physical activity needs to be established. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  1. The differential effects of prolonged exercise upon executive function and cerebral oxygenation.

    PubMed

    Tempest, Gavin D; Davranche, Karen; Brisswalter, Jeanick; Perrey, Stephane; Radel, Rémi

    2017-04-01

    The acute-exercise effects upon cognitive functions are varied and dependent upon exercise duration and intensity, and the type of cognitive tasks assessed. The hypofrontality hypothesis assumes that prolonged exercise, at physiologically challenging intensities, is detrimental to executive functions due to cerebral perturbations (indicated by reduced prefrontal activity). The present study aimed to test this hypothesis by measuring oxygenation in prefrontal and motor regions using near-infrared spectroscopy during two executive tasks (flanker task and 2-back task) performed while cycling for 60min at a very low intensity and an intensity above the ventilatory threshold. Findings revealed that, compared to very low intensity, physiologically challenging exercise (i) shortened reaction time in the flanker task, (ii) impaired performance in the 2-back task, and (iii) initially increased oxygenation in prefrontal, but not motor regions, which then became stable in both regions over time. Therefore, during prolonged exercise, not only is the intensity of exercise assessed important, but also the nature of the cognitive processes involved in the task. In contrast to the hypofrontality hypothesis, no inverse pattern of oxygenation between prefrontal and motor regions was observed, and prefrontal oxygenation was maintained over time. The present results go against the hypofrontality hypothesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Muscle pain perception and sympathetic nerve activity to exercise during opioid modulation

    NASA Technical Reports Server (NTRS)

    Cook, D. B.; O'Connor, P. J.; Ray, C. A.

    2000-01-01

    The purpose of this experiment was to examine the effects of the endogenous opioid system on forearm muscle pain and muscle sympathetic nerve activity (MSNA) during dynamic fatiguing exercise. Twelve college-age men (24 +/- 4 yr) performed graded (1-min stages; 30 contractions/min) handgrip to fatigue 1 h after the ingestion of either 60 mg codeine, 50 mg naltrexone, or placebo. Pain (0-10 scale) and exertion (0-10 and 6-20 scales) intensities were measured during the last 15 s of each minute of exercise and every 15 s during recovery. MSNA was measured continuously from the peroneal nerve in the left leg. Pain threshold occurred earlier [1.8 +/- 1, 2. 2 +/- 1, 2.2 +/- 1 J: codeine, naltrexone, and placebo, respectively] and was associated with a lower rating of perceived exertion (RPE) (2.7 +/- 2, 3.6 +/- 2, 3.8 +/- 2: codeine, naltrexone, and placebo, respectively) in the codeine condition compared with either the naltrexone or placebo conditions. There were no main effects (i.e., drugs) or interaction (i.e., drugs x time) for either forearm muscle pain or RPE during exercise [pain: F (2, 22) = 0.69, P = 0.51]. There was no effect of drug on MSNA, heart rate, or blood pressure during baseline, exercise, or recovery. Peak exercise MSNA responses were 21 +/- 1, 21 +/- 2.0, and 21 +/- 2.0 bursts/30 s for codeine, naltrexone, and placebo conditions, respectively. Peak mean arterial pressure responses were 135 +/- 4, 131 +/- 3, and 132 +/- 4 mmHg for codeine, naltrexone, and placebo conditions, respectively. It is concluded that neither 60 mg codeine nor 50 mg naltrexone has an effect on forearm muscle pain, exertion, or MSNA during high- intensity handgrip to fatigue.

  3. Effects of acute exercise on attenuated vagal baroreflex function during bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.

    1992-01-01

    We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.

  4. Acute ethanol and taurine intake affect absolute alpha power in frontal cortex before and after exercise.

    PubMed

    Paulucio, Dailson; da Costa, Bruno M; Santos, Caleb G; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Cagy, Mauricio; Alvarenga, Renato L; Pompeu, Fernando A M S

    2017-09-14

    Taurine and alcohol has been popularly ingested through energy drinks. Reports from both compounds shows they are active on nervous system but little is known about the acute effect of these substances on the frontal cortex in an exercise approach. The aim of this study was to determine the effects of 0,6mldL -1 of ethanol (ET), 6g of taurine (TA), and taurine with ethanol (TA+ET) intake on absolute alpha power (AAP) in the frontal region, before and after exercise. Nine participants were recruited, five women (22±3years) and four men (26±5years), for a counterbalanced experimental design. For each treatment, the tests were performed considering three moments: "baseline", "peak" and "post-exercise". In the placebo treatment (PL), the frontal areas showed AAP decrease at the post-exercise. However, in the TA, AAP decreased at peak and increased at post-exercise. In the ET treatment, AAP increased at the peak moment for the left frontal electrodes. In the TA+ET treatment, an AAP increase was observed at peak, and it continued after exercise ended. These substances were able to produce electrocortical activity changes in the frontal regions after a short duration and low intensity exercise. Left and right regions showed different AAP dynamics during peak and post-exercise moments when treatments were compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Physiological adaptations to interval training and the role of exercise intensity.

    PubMed

    MacInnis, Martin J; Gibala, Martin J

    2017-05-01

    Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Physiological adaptations to interval training and the role of exercise intensity

    PubMed Central

    MacInnis, Martin J.

    2016-01-01

    Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956

  7. Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome.

    PubMed

    Kuwahara, Keisuke; Honda, Toru; Nakagawa, Tohru; Yamamoto, Shuichiro; Akter, Shamima; Hayashi, Takeshi; Mizoue, Tetsuya

    2016-09-01

    Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30-64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for <7.5, 7.5 to <16.5, and ≥16.5 metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

  8. Effects of exercise amount and intensity on abdominal obesity and glucose tolerance in obese adults: a randomized trial.

    PubMed

    Ross, Robert; Hudson, Robert; Stotz, Paula J; Lam, Miu

    2015-03-03

    Exercise reduces obesity and related glucose tolerance, but whether increasing exercise intensity offers additional benefit at fixed exercise amounts is unknown. To determine the separate effects of exercise amount and intensity on abdominal obesity and glucose tolerance. 24-week, single-center, parallel-group trial from 2009 to 2013. (ClinicalTrials.gov: NCT00955071). Kingston, Ontario, Canada. 300 abdominally obese adults. Control (no exercise) (n = 75) or 5 weekly sessions of low-amount, low-intensity exercise (LALI) (180 and 300 kcal/session for women and men, respectively, at 50% of maximum oxygen consumption [V̇o2peak]) (n = 73); high-amount, low-intensity exercise (HALI) (360 and 600 kcal/session, respectively, at 50% of V̇o2peak) (n = 76); or high-amount, high-intensity exercise (HAHI) (360 and 600 kcal/session, respectively, at 75% of V̇o2peak) (n = 76). Daily unsupervised physical activity and sedentary time were measured by accelerometer. Waist circumference and 2-hour glucose level (primary outcomes) and cardiorespiratory fitness and measures of insulin action (secondary measurements). 217 participants (72.3%) completed the intervention. Mean exercise time in minutes per session was 31 (SD, 4.4) for LALI, 58 (SD, 7.6) for HALI, and 40 (SD, 6.2) for HAHI. Daily unsupervised physical activity and sedentary time did not change in any exercise group versus control (P > 0.33). After adjustment for age and sex in a linear mixed model, reductions in waist circumference were greater in the LALI (-3.9 cm [95% CI, -5.6 to -2.3 cm]; P < 0.001), HALI (-4.6 cm [CI, -6.2 to -3.0 cm]; P < 0.001), and HAHI (-4.6 cm [CI, -6.3 to -2.9 cm]; P < 0.001) groups than the control group but did not differ among the exercise groups (P > 0.43). After adjustment for covariates, reductions in 2-hour glucose level were greater in the HAHI group (-0.7 mmol/L [-12.5 mg/dL] [CI, -1.3 to -0.1 mmol/L {-23.5 to -1.5 mg/dL}]; P = 0.027) than the control group but did not differ for the LALI or HALI group versus the control group (P > 0.159). Weight loss was greater in all exercise groups than the control group (P < 0.001); however, reduction in body weight did not differ among the exercise groups (P > 0.182). The clinical importance of reducing 2-hour glucose level in nondiabetic adults remains undetermined. Fixed amounts of exercise independent of exercise intensity resulted in similar reductions in abdominal obesity. Reduction in 2-hour glucose level was restricted to high-intensity exercise.

  9. The effect of exercise mode and intensity of sub-maximal physical activities on salivary testosterone to cortisol ratio and α-amylase in young active males

    PubMed Central

    AZARBAYJANI, MOHAMMAD ALI; FATOLAHI, HOSEYN; RASAEE, MOHAMMAD JAVAD; PEERI, MAGHSOD; BABAEI, ROHOLAH

    2011-01-01

    We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F5, 45=3.15, P=0.02). However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate (t=2.94, P=0.02) and 85% maximum heart rate (t=0.53, P=0.03). Salivary α-amylase significantly varied among exercise sessions (F5, 45=3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill (t=3.55, P=0.006) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed. PMID:27182369

  10. The effect of exercise mode and intensity of sub-maximal physical activities on salivary testosterone to cortisol ratio and α-amylase in young active males.

    PubMed

    Azarbayjani, Mohammad Ali; Fatolahi, Hoseyn; Rasaee, Mohammad Javad; Peeri, Maghsod; Babaei, Roholah

    We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F 5, 45 =3.15, P=0.02) . However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate ( t=2.94, P=0.02 ) and 85% maximum heart rate ( t=0.53, P=0.03 ). Salivary α-amylase significantly varied among exercise sessions (F 5, 45 =3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill ( t=3.55, P=0.006 ) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed.

  11. Serratus Anterior and Lower Trapezius Muscle Activities During Multi-Joint Isotonic Scapular Exercises and Isometric Contractions.

    PubMed

    Tsuruike, Masaaki; Ellenbecker, Todd

    2014-11-14

    Context :  Proper scapular function during humeral elevation, such as upward rotation, external rotation, and posterior tilting of the scapula, is necessary to prevent shoulder injury. However, the appropriate intensity of rehabilitation exercise for the periscapular muscles has yet to be clarified. Objective :  To identify the serratus anterior, lower trapezius, infraspinatus, and posterior deltoid muscle activities during 2 free-motion exercises using 3 intensities and to compare these muscle activities with isometric contractions during quadruped shoulder flexion and external rotation and abduction of the glenohumeral joint. Design :  Cross-sectional study. Setting :  Health Science Laboratory. Patients or Other Participants :  A total of 16 uninjured, healthy, active, male college students (age = 19.5 ± 1.2 years, height = 173.1 ± 6.5 cm, weight = 68.8 ± 6.6 kg). Main Outcome Measure(s) :  Mean electromyographic activity normalized by the maximal voluntary isometric contraction was analyzed across 3 intensities and 5 exercises. Intraclass correlation coefficients were calculated for electromyographic activity of the 4 muscles in each free-motion exercise. Results :  Significant interactions in electromyographic activity were observed between intensities and exercises (P < .05). The quadruped shoulder-flexion exercise activated all 4 muscles compared with other exercises. Also, the modified robbery free-motion exercise activated the serratus anterior, lower trapezius, and infraspinatus compared with the lawn-mower free-motion exercise. However, neither exercise showed a difference in posterior deltoid electromyographic activity. Conclusions :  Three intensities exposed the nature of the periscapular muscle activities across the different exercises. The free-motion exercise in periscapular muscle rehabilitation may not modify serratus anterior, lower trapezius, and infraspinatus muscle activities unless knee-joint extension is limited.

  12. Serratus Anterior and Lower Trapezius Muscle Activities During Multi-Joint Isotonic Scapular Exercises and Isometric Contractions

    PubMed Central

    Tsuruike, Masaaki; Ellenbecker, Todd S.

    2015-01-01

    Context: Proper scapular function during humeral elevation, such as upward rotation, external rotation, and posterior tilting of the scapula, is necessary to prevent shoulder injury. However, the appropriate intensity of rehabilitation exercise for the periscapular muscles has yet to be clarified. Objective: To identify the serratus anterior, lower trapezius, infraspinatus, and posterior deltoid muscle activities during 2 free-motion exercises using 3 intensities and to compare these muscle activities with isometric contractions during quadruped shoulder flexion and external rotation and abduction of the glenohumeral joint. Design: Cross-sectional study. Setting: Health Science Laboratory. Patients or Other Participants: A total of 16 uninjured, healthy, active, male college students (age = 19.5 ± 1.2 years, height = 173.1 ± 6.5 cm, weight = 68.8 ± 6.6 kg). Main Outcome Measure(s): Mean electromyographic activity normalized by the maximal voluntary isometric contraction was analyzed across 3 intensities and 5 exercises. Intraclass correlation coefficients were calculated for electromyographic activity of the 4 muscles in each free-motion exercise. Results: Significant interactions in electromyographic activity were observed between intensities and exercises (P < .05). The quadruped shoulder-flexion exercise activated all 4 muscles compared with other exercises. Also, the modified robbery free-motion exercise activated the serratus anterior, lower trapezius, and infraspinatus compared with the lawn-mower free-motion exercise. However, neither exercise showed a difference in posterior deltoid electromyographic activity. Conclusions: Three intensities exposed the nature of the periscapular muscle activities across the different exercises. The free-motion exercise in periscapular muscle rehabilitation may not modify serratus anterior, lower trapezius, and infraspinatus muscle activities unless knee-joint extension is limited. PMID:25689561

  13. Effect of exercise intensity on abdominal fat loss during calorie restriction in overweight and obese postmenopausal women: a randomized, controlled trial1234

    PubMed Central

    Nicklas, Barbara J; Wang, Xuewen; You, Tongjian; Lyles, Mary F; Demons, Jamehl; Easter, Linda; Berry, Michael J; Lenchik, Leon; Carr, J Jeffrey

    2009-01-01

    Background: Exercise intensity may affect the selective loss of abdominal adipose tissue. Objective: This study showed whether aerobic exercise intensity affects the loss of abdominal fat and improvement in cardiovascular disease risk factors under conditions of equal energy deficit in women with abdominal obesity. Design: This was a randomized trial in 112 overweight and obese [body mass index (in kg/m2): 25–40; waist circumference >88 cm], postmenopausal women assigned to one of three 20-wk interventions of equal energy deficit: calorie restriction (CR only), CR plus moderate-intensity aerobic exercise (CR + moderate-intensity), or CR plus vigorous-intensity exercise (CR + vigorous-intensity). The diet was a controlled program of underfeeding during which meals were provided at individual calorie levels (≈400 kcal/d). Exercise (3 d/wk) involved treadmill walking at an intensity of 45–50% (moderate-intensity) or 70–75% (vigorous-intensity) of heart rate reserve. The primary outcome was abdominal visceral fat volume. Results: Average weight loss for the 95 women who completed the study was 12.1 kg (±4.5 kg) and was not significantly different across groups. Maximal oxygen uptake (O2max) increased more in the CR + vigorous-intensity group than in either of the other groups (P < 0.05). The CR-only group lost relatively more lean mass than did either exercise group (P < 0.05). All groups showed similar decreases in abdominal visceral fat (≈25%; P < 0.001 for all). However, changes in visceral fat were inversely related to increases in O2max (P < 0.01). Changes in lipids, fasting glucose or insulin, and 2-h glucose and insulin areas during the oral-glucose-tolerance test were similar across treatment groups. Conclusion: With a similar amount of total weight loss, lean mass is preserved, but there is not a preferential loss of abdominal fat when either moderate- or vigorous-intensity aerobic exercise is performed during caloric restriction. This trial was registered at clinicaltrials.gov as NCT00664729. PMID:19211823

  14. The effect of exercise mode on the acute response of satellite cells in old men.

    PubMed

    Nederveen, J P; Joanisse, S; Séguin, C M L; Bell, K E; Baker, S K; Phillips, S M; Parise, G

    2015-12-01

    A dysregulation of satellite cells may contribute to the progressive loss of muscle mass that occurs with age; however, older adults retain the ability to activate and expand their satellite cell pool in response to exercise. The modality of exercise capable of inducing the greatest acute response is unknown. We sought to characterize the acute satellite cell response following different modes of exercise in older adults. Sedentary older men (n = 22; 67 ± 4 years; 27 ± 2.6 kg*m(-2) ) were randomly assigned to complete an acute bout of either resistance exercise, high-intensity interval exercise on a cycle ergometer or moderate-intensity aerobic exercise. Muscle biopsies were obtained before, 24 and 48 h following each exercise bout. The satellite cell response was analysed using immunofluorescent microscopy of muscle cross sections. Satellite cell expansion associated with type I fibres was observed 24 and 48 h following resistance exercise only (P ˂ 0.05), while no expansion of type II-associated satellite cells was observed in any group. There was a greater number of activated satellite cells 24 h following resistance exercise (pre: 1.3 ± 0.1, 24 h: 4.8 ± 0.5 Pax7 + /MyoD+cells/100 fibres) and high-intensity interval exercise (pre: 0.7 ± 0.3, 24 h: 3.1 ± 0.3 Pax7 + /MyoD+cells/100 fibres) (P ˂ 0.05). The percentage of type I-associated SC co-expressing MSTN was reduced only in the RE group 24 h following exercise (pre: 87 ± 4, 24 h: 57 ± 5%MSTN+ type I SC) (P < 0.001). Although resistance exercise is the most potent exercise type to induce satellite cell pool expansion, high-intensity interval exercise was also more potent than moderate-intensity aerobic exercise in inducing satellite cell activity. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. High-intensity interval training using whole-body exercises: training recommendations and methodological overview.

    PubMed

    Machado, Alexandre F; Baker, Julien S; Figueira Junior, Aylton J; Bocalini, Danilo S

    2017-05-04

    HIIT whole body (HWB)-based exercise is a new calisthenics exercise programme approach that can be considered an effective and safe method to improve physical fitness and body composition. HWB is a method that can be applied to different populations and ages. The purpose of this study was to describe possible methodologies for performing physical training based on whole-body exercise in healthy subjects. The HWB sessions consist of a repeated stimulus based on high-intensity exercise that also include monitoring time to effort, time to recuperation and session time. The exercise intensity is related to the maximal number of movements possible in a given time; therefore, the exercise sessions can be characterized as maximal. The intensity can be recorded using ratings of perceived exertion. Weekly training frequency and exercise selection should be structured according to individual subject functional fitness. Using this simple method, there is potential for greater adherence to physical activity which can promote health benefits to all members of society. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. High- and low-intensity exercise do not improve cognitive function after stroke: A randomized controlled trial.

    PubMed

    Tang, Ada; Eng, Janice J; Krassioukov, Andrei V; Tsang, Teresa S M; Liu-Ambrose, Teresa

    2016-11-11

    To determine the effects of high versus low-intensity exercise on cognitive function following stroke. Secondary analysis from a randomized controlled trial with blinded assessors. 50-80 years old, living in the community, > 1 year post-stroke. Participants were randomized into a high-intensity Aerobic Exercise or low-intensity non-aerobic Balance/Flexibility program. Both programs were 6 months long, with 3 60-min sessions/week. Verbal item and working memory, selective attention and conflict resolution, set shifting were assessed before and after the program. Forty-seven participants completed the study (22/25 in Aerobic Exercise group, 25/25 in Balance/Flexibility group). There was an improvement in verbal item memory in both groups (time effect p = 0.04), and no between-group differences in improvement in the other outcomes (p > 0.27). There was no association between pre-exercise cognitive function and post-exercise improvement. In contrast to a small body of previous research suggesting positive benefits of exercise on cognition post-stroke, the current study found that 6 months of high or low intensity exercise was not effective in improving cognitive function, specifically executive functions. Further research in this area is warranted to establish the effectiveness of post-stroke exercise programs on cognition, and examine the mechanisms that underlie these changes.

  17. Effect of exercise intensity on postprandial lipemia, markers of oxidative stress, and endothelial function after a high-fat meal.

    PubMed

    Lopes Krüger, Renata; Costa Teixeira, Bruno; Boufleur Farinha, Juliano; Cauduro Oliveira Macedo, Rodrigo; Pinto Boeno, Francesco; Rech, Anderson; Lopez, Pedro; Silveira Pinto, Ronei; Reischak-Oliveira, Alvaro

    2016-12-01

    The aim of this study was to compare the effects of 2 different exercise intensities on postprandial lipemia, oxidative stress markers, and endothelial function after a high-fat meal (HFM). Eleven young men completed 2-day trials in 3 conditions: rest, moderate-intensity exercise (MI-Exercise) and heavy-intensity exercise (HI-Exercise). Subjects performed an exercise bout or no exercise (Rest) on the evening of day 1. On the morning of day 2, an HFM was provided. Blood was sampled at fasting (0 h) and every hour from 1 to 5 h during the postprandial period for triacylglycerol (TAG), thiobarbituric acid reactive substance (TBARS), and nitrite/nitrate (NOx) concentrations. Flow-mediated dilatation (FMD) was also analyzed. TAG concentrations were reduced in exercise conditions compared with Rest during the postprandial period (P < 0.004). TAG incremental area under the curve (iAUC) was smaller after HI-Exercise compared with Rest (P = 0.012). TBARS concentrations were reduced in MI-Exercise compared with Rest (P < 0.041). FMD was higher in exercise conditions than Rest at 0 h (P < 0.02) and NOx concentrations were enhanced in MI-Exercise compared with Rest at 0 h (P < 0.01). These results suggest that acute exercise can reduce lipemia after an HFM. However, HI-Exercise showed to be more effective in reducing iAUC TAG, which might suggest higher protection against postprandial TAG enhancement. Conversely, MI-Exercise can be beneficial to attenuate the susceptibility of oxidative damage induced by an HFM and to increase endothelial function in the fasted state compared with Rest.

  18. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.

  19. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  20. Influence of Disease Severity and Exercise Limitation on Exercise Training Intensity and Load and Health Benefits From Pulmonary Rehabilitation in Patients with COPD: AN EXPLORATORY STUDY.

    PubMed

    Huynh, Virginia C; Fuhr, Desi P; Byers, Bradley W; Selzler, Anne-Marie; Moore, Linn E; Stickland, Michael K

    2018-04-11

    Some patients with chronic obstructive pulmonary disease (COPD) fail to achieve health benefits with pulmonary rehabilitation (PR). Exercise intensity and load represent stimulus for adaptation but it is unclear whether inappropriate exercise intensity and/or load are affected by severity of COPD, which may affect health benefits. The purpose was to determine whether COPD severity and/or the severity of pulmonary limitation to exercise (PLE) impacted exercising intensity or load and whether resultant intensity/load affected health outcomes derived from PR. Patients with COPD (n = 58, age = 67 ± 7 y, forced expiratory volume in the first second of expiration [FEV1] % predicted = 52 ± 21%) were recruited upon referral to PR. Primary health outcomes evaluated were 6-min walk distance and St George's Respiratory Questionnaire. Patients were stratified for disease severity using Global Initiative for Obstructive Lung Disease (GOLD) staging and PLE severity by change in inspiratory capacity during exercise. Exercise intensity and load were calculated from daily exercise records. Participants achieved comparable training duration and load regardless of GOLD severity. Patients with more severe PLE achieved greater training duration (more severe: 546 ± 143 min., less severe: 451 ± 109 min., P = .036), and relative training load (more severe: 2200.8 ± 595.3 kcal, less severe: 1648.3 ± 597.8 kcal, P = .007). Greater overall training load was associated with greater improvements in 6-min walk distance (r = 0.24, P = .035). No significant relationships were observed between PLE, GOLD severity, training parameters, and St George's Respiratory Questionnaire response. Improvements in exercise tolerance can be explained by achieving greater training loads, demonstrating the importance of appropriate training load to maximize health outcomes in PR.

  1. Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on-kinetics

    PubMed Central

    Jones, Andrew M; Krustrup, Peter; Wilkerson, Daryl P; Berger, Nicolas J; Calbet, José A; Bangsbo, Jens

    2012-01-01

    Following the start of low-intensity exercise in healthy humans, it has been established that the kinetics of skeletal muscle O2 delivery is faster than, and does not limit, the kinetics of muscle O2 uptake (). Direct data are lacking, however, on the question of whether O2 delivery might limit kinetics during high-intensity exercise. Using multiple exercise transitions to enhance confidence in parameter estimation, we therefore investigated the kinetics of, and inter-relationships between, muscle blood flow (), a– difference and following the onset of low-intensity (LI) and high-intensity (HI) exercise. Seven healthy males completed four 6 min bouts of LI and four 6 min bouts of HI single-legged knee-extension exercise. Blood was frequently drawn from the femoral artery and vein during exercise and , a– difference and were calculated and subsequently modelled using non-linear regression techniques. For LI, the fundamental component mean response time (MRTp) for kinetics was significantly shorter than kinetics (mean ± SEM, 18 ± 4 vs. 30 ± 4 s; P < 0.05), whereas for HI, the MRTp for and was not significantly different (27 ± 5 vs. 29 ± 4 s, respectively). There was no difference in the MRTp for either or between the two exercise intensities; however, the MRTp for a– difference was significantly shorter for HI compared with LI (17 ± 3 vs. 28 ± 4 s; P < 0.05). Excess O2, i.e. oxygen not taken up (×), was significantly elevated within the first 5 s of exercise and remained unaltered thereafter, with no differences between LI and HI. These results indicate that bulk O2 delivery does not limit kinetics following the onset of LI or HI knee-extension exercise. PMID:22711961

  2. Ergogenic effects of beetroot juice supplementation during severe-intensity exercise in obese adolescents.

    PubMed

    Rasica, Letizia; Porcelli, Simone; Marzorati, Mauro; Salvadego, Desy; Vezzoli, Alessandra; Agosti, Fiorenza; De Col, Alessandra; Tringali, Gabriella; Jones, Andrew M; Sartorio, Alessandro; Grassi, Bruno

    2018-04-25

    Previous studies showed a higher O 2 cost of exercise, and therefore a reduced exercise tolerance, in obese patients during constant work rate (CWR) exercise compared to healthy subjects. Among the ergogenic effects of dietary nitrate (NO 3 -) supplementation in sedentary healthy subjects, a reduced O 2 cost and enhanced exercise tolerance have often been demonstrated. The aim of this study was to evaluate the effects of beetroot juice supplementation, rich in NO 3 -, on physiological variables associated with exercise tolerance in obese adolescents. In a double-blind, randomized, crossover study, ten obese adolescents (8F, 2M; age=16{plus minus}1 yr; BMI=35.2{plus minus}5.0 kg.m -2 ) were tested after 6 days of supplementation with beetroot juice (5 mmol NO 3 - per day) (BR) or placebo (PLA). Following each supplementation period, patients carried out two repetitions of 6-min moderate-intensity CWR exercise and one severe-intensity CWR exercise until exhaustion. Plasma NO 3 - concentration was significantly higher in BR vs. PLA (108{plus minus}37 vs. 15{plus minus}5 μM, P<0.0001). The O 2 cost of moderate-intensity exercise was not different in BR vs. PLA (13.3{plus minus}1.7 vs. 12.9{plus minus}1.1 mL.min -1 .W -1 , P=0.517). During severe-intensity exercise, signs of a reduced amplitude of the O 2 uptake slow component were observed in BR, in association with a significantly longer time to exhaustion (561{plus minus}198 s in BR vs. 457{plus minus}101 s in PLA, P=0.0143). In obese adolescents, short-term dietary NO 3 - supplementation is effective in improving exercise tolerance during severe-intensity exercise. This may prove to be useful in contrasting early fatigue and reduced physical activity in this at-risk population.

  3. Exercise Guidelines to Promote Cardiometabolic Health in Spinal Cord Injured Humans: Time to Raise the Intensity?

    PubMed

    Nightingale, Tom E; Metcalfe, Richard S; Vollaard, Niels B; Bilzon, James L

    2017-08-01

    Spinal cord injury (SCI) is a life-changing event that, as a result of paralysis, negatively influences habitual levels of physical activity and hence cardiometabolic health. Performing regular structured exercise therefore appears extremely important in persons with SCI. However, exercise options are mainly limited to the upper body, which involves a smaller activated muscle mass compared with the mainly leg-based activities commonly performed by nondisabled individuals. Current exercise guidelines for SCI focus predominantly on relative short durations of moderate-intensity aerobic upper-body exercise, yet contemporary evidence suggests this is not sufficient to induce meaningful improvements in risk factors for the prevention of cardiometabolic disease in this population. As such, these guidelines and their physiological basis require reappraisal. In this special communication, we propose that high-intensity interval training (HIIT) may be a viable alternative exercise strategy to promote vigorous-intensity exercise and prevent cardiometabolic disease in persons with SCI. Supplementing the limited data from SCI cohorts with consistent findings from studies in nondisabled populations, we present strong evidence to suggest that HIIT is superior to moderate-intensity aerobic exercise for improving cardiorespiratory fitness, insulin sensitivity, and vascular function. The potential application and safety of HIIT in this population is also discussed. We conclude that increasing exercise intensity could offer a simple, readily available, time-efficient solution to improve cardiometabolic health in persons with SCI. We call for high-quality randomized controlled trials to examine the efficacy and safety of HIIT in this population. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Effects of Different Intensities of Exercise on Intraocular Pressure

    ERIC Educational Resources Information Center

    Rowe, Deryl; And Others

    1976-01-01

    The decrease in intraocular pressure during exercise and the first few minutes of recovery is related to a decrease in blood pH and an increase in blood lactate concentration, not to the intensity of the exercise. (MB)

  5. Randomized controlled trial of the effects of high intensity and low-to-moderate intensity exercise on physical fitness and fatigue in cancer survivors: results of the Resistance and Endurance exercise After ChemoTherapy (REACT) study.

    PubMed

    Kampshoff, Caroline S; Chinapaw, Mai J M; Brug, Johannes; Twisk, Jos W R; Schep, Goof; Nijziel, Marten R; van Mechelen, Willem; Buffart, Laurien M

    2015-10-29

    International evidence-based guidelines recommend physical exercise to form part of standard care for all cancer survivors. However, at present, the optimum exercise intensity is unclear. Therefore, we aimed to evaluate the effectiveness of a high intensity (HI) and low-to-moderate intensity (LMI) resistance and endurance exercise program compared with a wait list control (WLC) group on physical fitness and fatigue in a mixed group of cancer survivors who completed primary cancer treatment, including chemotherapy. Overall, 277 cancer survivors were randomized to 12 weeks of HI exercise (n = 91), LMI exercise (n = 95), or WLC (n = 91). Both interventions were identical with respect to exercise type, duration and frequency, and only differed in intensity. Measurements were performed at baseline (4-6 weeks after primary treatment) and post-intervention. The primary outcomes were cardiorespiratory fitness (peakVO2), muscle strength (grip strength and 30-second chair-stand test), and self-reported fatigue (Multidimensional Fatigue Inventory; MFI). Secondary outcomes included health-related quality of life, physical activity, daily functioning, body composition, mood, and sleep disturbances. Multilevel linear regression analyses were performed to estimate intervention effects using an intention-to-treat principle. In the HI and LMI groups, 74 % and 70 % of the participants attended more than 80 % of the prescribed exercise sessions, respectively (P = 0.53). HI (β = 2.2; 95 % CI, 1.2-3.1) and LMI (β = 1.3; 95 % CI, 0.3-2.3) exercise showed significantly larger improvements in peakVO2 compared to WLC. Improvements in peakVO2 were larger for HI than LMI exercise (β = 0.9; 95 % CI, -0.1 to 1.9), but the difference was not statistically significant (P = 0.08). No intervention effects were found for grip strength and the 30-second chair-stand test. HI and LMI exercise significantly reduced general and physical fatigue and reduced activity (MFI subscales) compared to WLC, with no significant differences between both interventions. Finally, compared to WLC, we found benefits in global quality of life and anxiety after HI exercise, improved physical functioning after HI and LMI exercise, and less problems at work after LMI exercise. Shortly after completion of cancer treatment, both HI and LMI exercise were safe and effective. There may be a dose-response relationship between exercise intensity and peakVO2, favoring HI exercise. HI and LMI exercise were equally effective in reducing general and physical fatigue. This study was registered at the Netherlands Trial Register [ NTR2153 ] on the 5th of January 2010.

  6. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.

    PubMed

    Jones, Andrew M; Vanhatalo, Anni

    2017-03-01

    The curvilinear relationship between power output and the time for which it can be sustained is a fundamental and well-known feature of high-intensity exercise performance. This relationship 'levels off' at a 'critical power' (CP) that separates power outputs that can be sustained with stable values of, for example, muscle phosphocreatine, blood lactate, and pulmonary oxygen uptake ([Formula: see text]), from power outputs where these variables change continuously with time until their respective minimum and maximum values are reached and exercise intolerance occurs. The amount of work that can be done during exercise above CP (the so-called W') is constant but may be utilized at different rates depending on the proximity of the exercise power output to CP. Traditionally, this two-parameter CP model has been employed to provide insights into physiological responses, fatigue mechanisms, and performance capacity during continuous constant power output exercise in discrete exercise intensity domains. However, many team sports (e.g., basketball, football, hockey, rugby) involve frequent changes in exercise intensity and, even in endurance sports (e.g., cycling, running), intensity may vary considerably with environmental/course conditions and pacing strategy. In recent years, the appeal of the CP concept has been broadened through its application to intermittent high-intensity exercise. With the assumptions that W' is utilized during work intervals above CP and reconstituted during recovery intervals below CP, it can be shown that performance during intermittent exercise is related to four factors: the intensity and duration of the work intervals and the intensity and duration of the recovery intervals. However, while the utilization of W' may be assumed to be linear, studies indicate that the reconstitution of W' may be curvilinear with kinetics that are highly variable between individuals. This has led to the development of a new CP model for intermittent exercise in which the balance of W' remaining ([Formula: see text]) may be calculated with greater accuracy. Field trials of athletes performing stochastic exercise indicate that this [Formula: see text] model can accurately predict the time at which W' tends to zero and exhaustion is imminent. The [Formula: see text] model potentially has important applications in the real-time monitoring of athlete fatigue progression in endurance and team sports, which may inform tactics and influence pacing strategy.

  7. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity - A randomized trial.

    PubMed

    Winn, Nathan C; Liu, Ying; Rector, R Scott; Parks, Elizabeth J; Ibdah, Jamal A; Kanaley, Jill A

    2018-01-01

    Exercise training is commonly prescribed for individuals diagnosed with nonalcoholic fatty liver disease (NAFLD); however, consensus regarding the volume and intensity of exercise for optimal benefits is lacking. Thus, we determined whether high intensity interval exercise training (HIIT) produced greater reductions in intrahepatic lipid (IHL) content and NAFLD risk factors compared with energy-matched moderate intensity continuous exercise training (MICT) in obese adults with liver steatosis. Eighteen obese adults were randomized to either 4weeks of HIIT (4min 80% VO 2 peak/3min, 50% VO 2 peak) or MICT (55% VO 2 peak, ~60min), matched for energy expenditure (~400kcal/session) and compared to five non-exercising age-matched control subjects. IHL was measured by 1 H-MRS and frequent blood samples were analyzed for glucose, insulin, c-peptide, and NEFA levels during a liquid meal test (180min) to characterize metabolic phenotype. Baseline body weight, visceral abdominal adiposity, and fasting insulin concentrations were greater in the MICT vs HIIT group (P<0.05), while IHL was tightly matched between MICT and HIIT subjects (P>0.05), albeit higher than control subjects (P<0.01). Visceral abdominal adiposity, body mass, liver aminotransferases (ALT, AST), and hepatic apoptotic/inflammatory markers (cytokeratin 18 and fetuin a) were not reduced with either exercise training intervention (P>0.05). Both HIIT and MICT lowered IHL (HIIT, -37.0±12.4%; MICT, -20.1±6.6%, P<0.05); however, the reduction in IHL was not statistically different between exercise intensities (P=0.25). Furthermore, exercise training decreased postprandial insulin, c-peptide, and lipid peroxidation levels (iAUC, P<0.05). Collectively, these findings indicate that energy-matched high intensity and moderate intensity exercise are effective at decreasing IHL and NAFLD risk that is not contingent upon reductions in abdominal adiposity or body mass. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Physiologic responses during indoor cycling.

    PubMed

    Battista, Rebecca A; Foster, Carl; Andrew, Jessica; Wright, Glenn; Lucia, Alejandro; Porcari, John P

    2008-07-01

    During the last decade, there has been active interest in indoor cycling (e.g., spinning) as a method of choreographed group exercise. Recent studies have suggested that exercise intensity during indoor cycling may be quite high and may transiently exceed Vo2max. This study sought to confirm these findings, as the apparent high intensity of indoor cycling has implications for both the efficacy and the risk of indoor cycling as an exercise method. Twenty healthy female students performed an incremental exercise test to define Vo2max and performed 2 videotaped indoor exercise classes lasting 45 minutes and 35 minutes. Vo2, heart rate (HR), and rating of perceived exertion (RPE) were measured during the indoor cycling classes, with Vo2 data integrated in 30-second intervals. The mean %Vo2max during the indoor cycling classes was modest (74 +/- 14% Vo2max and 66 +/- 14%Vo2max, respectively). However, 52% and 35% of the time during the 45- and 35-minute classes was spent at intensities greater than the ventilatory threshold (VT). The HR response indicated that 35% and 38% of the session time was above the HR associated with VT. In 10 of the 40 exercise sessions, there were segments in which the momentary Vo2 exceeded Vo2max observed during incremental testing, and the cumulative time with exercise intensity greater than Vo2max ranged from 0.5 to 14.0 minutes. It can be concluded that although the intensity of indoor cycling in healthy, physically active women is moderate, there are frequent observations of transient values of Vo2 exceeding Vo2max, and a substantial portion of the exercise bouts at intensities greater than VT. As such, the data suggest that indoor cycling must be considered a high-intensity exercise mode of exercise training, which has implications for both efficacy and risk.

  9. Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles

    PubMed Central

    TILLER, NICHOLAS B.; CAMPBELL, IAN G.; ROMER, LEE M.

    2017-01-01

    ABSTRACT Purpose Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Methods Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg−1·min−1) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Results Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min−1 (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min−1 (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5–15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25–35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. Conclusions High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax. PMID:28288012

  10. Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles.

    PubMed

    Tiller, Nicholas B; Campbell, Ian G; Romer, Lee M

    2017-07-01

    Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg·min) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5-15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25-35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax.

  11. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial.

    PubMed

    Voorn, Eric L; Koopman, Fieke S; Brehm, Merel A; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H L; Nollet, Frans

    2016-01-01

    To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. A process evaluation using data from an RCT. Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60-70% heart rate reserve). The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Netherlands National Trial Register NTR1371.

  12. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (Part III).

    PubMed

    Vanhees, L; Rauch, B; Piepoli, M; van Buuren, F; Takken, T; Börjesson, M; Bjarnason-Wehrens, B; Doherty, P; Dugmore, D; Halle, M

    2012-12-01

    The beneficial effect of exercise training and exercise-based cardiac rehabilitation on symptom-free exercise capacity,cardiovascular and skeletal muscle function, quality of life, general healthy lifestyle, and reduction of depressive symptoms and psychosocial stress is nowadays well recognized. However, it remains largely obscure, which characteristics of physical activity (PA) and exercise training--frequency, intensity, time (duration), type (mode), and volume (dose: intensity x duration) of exercise--are the most effective. The present paper, therefore, will deal with these exercise characteristics in the management of individuals with cardiovascular disease, i.e. coronary artery disease and chronic heart failure patients, but also in patients with congenital or valvular heart disease. Based on the current literature, and if sufficient evidence is available, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding frequency, intensity, time and type of PA, and safety aspects during exercise inpatients with cardiovascular disease. This paper is the third in a series of three papers, all devoted to the same theme: the importance of the exercise characteristics in the management of cardiovascular health. Part I is directed to the general population and Part II to individuals with cardiovascular risk factors. In general, PA recommendations and exercise training programmes for patients with coronary artery disease or chronic heart failure need to be tailored to the individual's exercise capacity and risk profile, with the aim to reach and maintain the individually highest fitness level possible and to perform endurance exercise training 30–60 min daily (3–5 days per week) in combination with resistance training 2–3 times a week. Because of the frequently reported dose–response relationship between training effect and exercise intensity, one should seek sufficiently high training intensities, although more scientific evidence on effect sizes and safety is warranted. At present, there is insufficient data to give more specific recommendations on type, dosage, and intensity of exercise in some other cardiovascular diseases, such as congenital heart disease, valve disease, cardiomyopathies, channelopathies, and patients with implanted devices.

  13. Effects of exercise on craving and cigarette smoking in the human laboratory.

    PubMed

    Kurti, Allison N; Dallery, Jesse

    2014-06-01

    Exercise is increasingly being pursued as a treatment to reduce cigarette smoking. The efficacy of clinical, exercise-based cessation interventions may be enhanced by conducting laboratory studies to determine maximally effective conditions for reducing smoking, and the mechanisms through which the effects on smoking are achieved. The main purpose of this study was to assess whether the effects of exercise on two components of craving (anticipated reward from smoking, anticipated relief from withdrawal) mediated the relationship between exercise and delay (in min) to ad libitum smoking. Experiment 1 (N=21) assessed the effects of exercise intensity (inactivity, low, moderate) on craving components up to 60 min post-exercise. Because moderate-intensity exercise most effectively reduced craving on the reward component, all participants exercised at a moderate intensity in Experiment 2. Using an ABAB within-subjects design, Experiment 2 (N=20) evaluated whether the effects of moderate-intensity exercise on reward and relief components of craving mediated the relationship between exercise and participants' delays (in min) to ad libitum smoking. Delays were significantly longer after exercise (M=21 min) versus inactivity (M=4 min), and the effects of exercise on delay were mediated through the reward component of craving. Future research should continue to explore the mechanisms through which exercise influences behavioral indices of smoking in the human laboratory. Additionally, given the benefits uniquely afforded by exercise-based cessation interventions (e.g., improving mood and other health outcomes), implementing these interventions in clinical settings may contribute substantially to improving public health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα

    PubMed Central

    Aschar-Sobbi, Roozbeh; Izaddoustdar, Farzad; Korogyi, Adam S.; Wang, Qiongling; Farman, Gerrie P.; Yang, FengHua; Yang, Wallace; Dorian, David; Simpson, Jeremy A.; Tuomi, Jari M.; Jones, Douglas L.; Nanthakumar, Kumaraswamy; Cox, Brian; Wehrens, Xander H.T.; Dorian, Paul; Backx, Peter H.

    2015-01-01

    Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF. PMID:25598495

  15. Smartphone-Based Cardiac Rehabilitation Program: Feasibility Study.

    PubMed

    Chung, Heewon; Ko, Hoon; Thap, Tharoeun; Jeong, Changwon; Noh, Se-Eung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We introduce a cardiac rehabilitation program (CRP) that utilizes only a smartphone, with no external devices. As an efficient guide for cardiac rehabilitation exercise, we developed an application to automatically indicate the exercise intensity by comparing the estimated heart rate (HR) with the target heart rate zone (THZ). The HR is estimated using video images of a fingertip taken by the smartphone's built-in camera. The introduced CRP app includes pre-exercise, exercise with intensity guidance, and post-exercise. In the pre-exercise period, information such as THZ, exercise type, exercise stage order, and duration of each stage are set up. In the exercise with intensity guidance, the app estimates HR from the pulse obtained using the smartphone's built-in camera and compares the estimated HR with the THZ. Based on this comparison, the app adjusts the exercise intensity to shift the patient's HR to the THZ during exercise. In the post-exercise period, the app manages the ratio of the estimated HR to the THZ and provides a questionnaire on factors such as chest pain, shortness of breath, and leg pain during exercise, as objective and subjective evaluation indicators. As a key issue, HR estimation upon signal corruption due to motion artifacts is also considered. Through the smartphone-based CRP, we estimated the HR accuracy as mean absolute error and root mean squared error of 6.16 and 4.30bpm, respectively, with signal corruption due to motion artifacts being detected by combining the turning point ratio and kurtosis.

  16. Smartphone-Based Cardiac Rehabilitation Program: Feasibility Study

    PubMed Central

    Chung, Heewon; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We introduce a cardiac rehabilitation program (CRP) that utilizes only a smartphone, with no external devices. As an efficient guide for cardiac rehabilitation exercise, we developed an application to automatically indicate the exercise intensity by comparing the estimated heart rate (HR) with the target heart rate zone (THZ). The HR is estimated using video images of a fingertip taken by the smartphone’s built-in camera. The introduced CRP app includes pre-exercise, exercise with intensity guidance, and post-exercise. In the pre-exercise period, information such as THZ, exercise type, exercise stage order, and duration of each stage are set up. In the exercise with intensity guidance, the app estimates HR from the pulse obtained using the smartphone’s built-in camera and compares the estimated HR with the THZ. Based on this comparison, the app adjusts the exercise intensity to shift the patient’s HR to the THZ during exercise. In the post-exercise period, the app manages the ratio of the estimated HR to the THZ and provides a questionnaire on factors such as chest pain, shortness of breath, and leg pain during exercise, as objective and subjective evaluation indicators. As a key issue, HR estimation upon signal corruption due to motion artifacts is also considered. Through the smartphone-based CRP, we estimated the HR accuracy as mean absolute error and root mean squared error of 6.16 and 4.30bpm, respectively, with signal corruption due to motion artifacts being detected by combining the turning point ratio and kurtosis. PMID:27551969

  17. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.

    PubMed

    Nyberg, S K; Berg, O K; Helgerud, J; Wang, E

    2017-04-01

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite utilizing only a fraction of cardiac output, blood flow reached a plateau at 80% of maximal work rate and regulated peak oxygen uptake. Furthermore, the results revealed that muscle contractions dictated bulk oxygen delivery and yielded three times higher peak blood flow in the relaxation phase compared with mean values. Copyright © 2017 the American Physiological Society.

  18. Physical Activity Assessment Between Consumer- and Research-Grade Accelerometers: A Comparative Study in Free-Living Conditions.

    PubMed

    Dominick, Gregory M; Winfree, Kyle N; Pohlig, Ryan T; Papas, Mia A

    2016-09-19

    Wearable activity monitors such as Fitbit enable users to track various attributes of their physical activity (PA) over time and have the potential to be used in research to promote and measure PA behavior. However, the measurement accuracy of Fitbit in absolute free-living conditions is largely unknown. To examine the measurement congruence between Fitbit Flex and ActiGraph GT3X for quantifying steps, metabolic equivalent tasks (METs), and proportion of time in sedentary activity and light-, moderate-, and vigorous-intensity PA in healthy adults in free-living conditions. A convenience sample of 19 participants (4 men and 15 women), aged 18-37 years, concurrently wore the Fitbit Flex (wrist) and ActiGraph GT3X (waist) for 1- or 2-week observation periods (n=3 and n=16, respectively) that included self-reported bouts of daily exercise. Data were examined for daily activity, averaged over 14 days and for minutes of reported exercise. Average day-level data included steps, METs, and proportion of time in different intensity levels. Minute-level data included steps, METs, and mean intensity score (0 = sedentary, 3 = vigorous) for overall reported exercise bouts (N=120) and by exercise type (walking, n=16; run or sports, n=44; cardio machine, n=20). Measures of steps were similar between devices for average day- and minute-level observations (all P values > .05). Fitbit significantly overestimated METs for average daily activity, for overall minutes of reported exercise bouts, and for walking and run or sports exercises (mean difference 0.70, 1.80, 3.16, and 2.00 METs, respectively; all P values < .001). For average daily activity, Fitbit significantly underestimated the proportion of time in sedentary and light intensity by 20% and 34%, respectively, and overestimated time by 3% in both moderate and vigorous intensity (all P values < .001). Mean intensity scores were not different for overall minutes of exercise or for run or sports and cardio-machine exercises (all P values > .05). Fitbit Flex provides accurate measures of steps for daily activity and minutes of reported exercise, regardless of exercise type. Although the proportion of time in different intensity levels varied between devices, examining the mean intensity score for minute-level bouts across different exercise types enabled interdevice comparisons that revealed similar measures of exercise intensity. Fitbit Flex is shown to have measurement limitations that may affect its potential utility and validity for measuring PA attributes in free-living conditions.

  19. Exercise Effects on Fitness and Bone Mineral Density in Early Postmenopausal Women: 1-Year EFOPS Results.

    ERIC Educational Resources Information Center

    Kemmler, Wolfgang; Engelke, Klaus; Lauber, Dirk; Weineck, Juergen; Hensen, Johannes; Kalender, Willi A.

    2002-01-01

    Investigated the effect of intense exercise training on physical fitness, coronary heart disease, bone mineral density (BMD), and parameters related to quality of life in early postmenopausal women with osteopenia. Data on woman in control and exercise training groups indicated that the intense exercise training program was effective in improving…

  20. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains

    PubMed Central

    Black, Matthew I.; Jones, Andrew M.; Blackwell, Jamie R.; Bailey, Stephen J.; Wylie, Lee J.; McDonagh, Sinead T. J.; Thompson, Christopher; Kelly, James; Sumners, Paul; Mileva, Katya N.; Bowtell, Joanna L.

    2017-01-01

    Lactate or gas exchange threshold (GET) and critical power (CP) are closely associated with human exercise performance. We tested the hypothesis that the limit of tolerance (Tlim) during cycle exercise performed within the exercise intensity domains demarcated by GET and CP is linked to discrete muscle metabolic and neuromuscular responses. Eleven men performed a ramp incremental exercise test, 4–5 severe-intensity (SEV; >CP) constant-work-rate (CWR) tests until Tlim, a heavy-intensity (HVY; GET) CWR test until Tlim, and a moderate-intensity (MOD; 0.05) muscle metabolic milieu (i.e., low pH and [PCr] and high [lactate]) was attained at Tlim (approximately 2–14 min) for all SEV exercise bouts. The muscle metabolic perturbation was greater at Tlim following SEV compared with HVY, and also following SEV and HVY compared with MOD (all P < 0.05). The normalized M-wave amplitude for the vastus lateralis (VL) muscle decreased to a similar extent following SEV (−38 ± 15%), HVY (−68 ± 24%), and MOD (−53 ± 29%), (P > 0.05). Neural drive to the VL increased during SEV (4 ± 4%; P < 0.05) but did not change during HVY or MOD (P > 0.05). During SEV and HVY, but not MOD, the rates of change in M-wave amplitude and neural drive were correlated with changes in muscle metabolic ([PCr], [lactate]) and blood ionic/acid-base status ([lactate], [K+]) (P < 0.05). The results of this study indicate that the metabolic and neuromuscular determinants of fatigue development differ according to the intensity domain in which the exercise is performed. NEW & NOTEWORTHY The gas exchange threshold and the critical power demarcate discrete exercise intensity domains. For the first time, we show that the limit of tolerance during whole-body exercise within these domains is characterized by distinct metabolic and neuromuscular responses. Fatigue development during exercise greater than critical power is associated with the attainment of consistent “limiting” values of muscle metabolites, whereas substrate availability and limitations to muscle activation may constrain performance at lower intensities. PMID:28008101

  1. Effects of exercise on the desire to smoke and physiological responses to temporary smoking abstinence: a crossover trial.

    PubMed

    Roberts, Vaughan; Gant, Nicholas; Sollers, John J; Bullen, Chris; Jiang, Yannan; Maddison, Ralph

    2015-03-01

    Exercise has been shown to attenuate cigarette cravings during temporary smoking abstinence; however, the mechanisms of action are not clearly understood. The objectives of the study were to compare the effects of three exercise intensities on desire to smoke and explore potential neurobiological mediators of desire to smoke. Following overnight abstinence, 40 participants (25 males, 18-59 years) completed three 15 min sessions of light-, moderate-, or vigorous-intensity exercise on a cycle ergometer in a randomized crossover design. Ratings of desire to smoke were self-reported pre- and post-exercise and heart rate variability was measured throughout. Saliva and blood were analyzed for cortisol and noradrenaline in a sub-sample. Exercise influenced desire to smoke (F [2, 91] = 7.94, p < 0.01), with reductions greatest immediately after vigorous exercise. There were also significant time x exercise intensity interaction effects for heart rate variability and plasma noradrenaline (F [8, 72] = 2.23, p = 0.03), with a bias in noradrenaline occurring between light and vigorous conditions (adjusted mean difference [SE] = 2850 ng/ml [592], p < 0.01) at 5 min post-exercise. There was no interaction of time x exercise intensity for plasma and salivary cortisol levels. These findings support the use of vigorous exercise to reduce cigarette cravings, showing potential alterations in a noradrenergic marker.

  2. Irisin in response to exercise in humans with and without metabolic syndrome.

    PubMed

    Huh, Joo Young; Siopi, Aikaterina; Mougios, Vassilis; Park, Kyung Hee; Mantzoros, Christos S

    2015-03-01

    Irisin is a recently identified exercise-induced myokine. However, the circulating levels of irisin in response to different types of exercise in subjects with metabolic syndrome are unknown. This study aimed to study the levels of irisin in healthy males and subjects with metabolic syndrome at baseline and in response to exercise. Each individual completed high-intensity interval exercise (HIIE), continuous moderate-intensity exercise (CME), and resistance exercise (RE) sessions in a random, crossover design. Percentage change in circulating irisin levels was examined. Two different irisin assays were used to compare the results of the RE study. Circulating irisin increased immediately after HIIE, CME, and RE and declined 1 hour later. The increase was greater in response to resistance compared with either high-intensity intermittent exercise or CME. Change in irisin in response to exercise did not differ between individuals with and without metabolic syndrome. Exercise is able to increase circulating irisin levels in individuals with the metabolic syndrome as well as healthy individuals. Whether this increase may contribute to the beneficial effects of exercise on patients with the metabolic syndrome remains to be studied further.

  3. Effects of Exercise Intervention on Preventing Letrozole-Exposed Rats From Polycystic Ovary Syndrome.

    PubMed

    Cao, Si-Fan; Hu, Wen-Long; Wu, Min-Min; Jiang, Li-Yan

    2017-03-01

    Polycystic ovary syndrome (PCOS) is a prevalent endocrinological disorder in reproductive-age women and is often associated with a metabolic syndrome. To investigate whether exercise intervention promotes PCOS prevention, a rat model was used. Polycystic ovary syndrome was induced by letrozole administration, and animals presented with obesity, sex hormone disorder, no ovulation, large cystic follicles, and increasing fasting insulin (FINS) and leptin levels. The intervention was set at 3 different intensities of swimming exercise: low (0.5 h/d), moderate (1 h/d), and high (2 h/d), and compared with a PCOS model group (letrozole administration without exercise intervention) and a control group. The exercise intervention in the low-intensity group did not produce changes in obesity, testosterone, progesterone (P), and follicle-stimulating hormone (FSH) levels. Moderate-intensity exercise reduced body weight, retained ovulation, and P levels were increased but remained lower than those in the control group. The FSH levels were significantly higher, and FINS and leptin levels were lower than in the model group ( P < 0.05) but not in the control group. The high-intensity group demonstrated the greatest effect of PCOS prevention. Testosterone, luteinizing hormone, FINS, and leptin levels were significantly lower in the high-intensity group, and FSH and P levels were higher compared with the model group. These results suggest that high-intensity exercise intervention can effectively prevent PCOS development.

  4. Differences in the Intensity and Duration of Adolescents' Sports and Exercise across Physical and Social Environments

    ERIC Educational Resources Information Center

    Dunton, Genevieve Fridlund; Berrigan, David; Ballard-Barbash, Rachel; Perna, Frank; Graubard, Barry I.; Atienza, Audie A.

    2012-01-01

    We used data from the American Time Use Survey (years 2003-06) to analyze whether the intensity and duration of high school students' (ages 15-18 years) sports and exercise bouts differed across physical and social environments. Boys' sports and exercise bouts were more likely to reach a vigorous intensity when taking place at school and with…

  5. Within-session responses to high-intensity interval training in spinal cord injury.

    PubMed

    Astorino, Todd Anthony; Thum, Jacob S

    2018-02-01

    Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.

  6. High Intensity Interval Training for Maximizing Health Outcomes.

    PubMed

    Karlsen, Trine; Aamot, Inger-Lise; Haykowsky, Mark; Rognmo, Øivind

    Regular physical activity and exercise training are important actions to improve cardiorespiratory fitness and maintain health throughout life. There is solid evidence that exercise is an effective preventative strategy against at least 25 medical conditions, including cardiovascular disease, stroke, hypertension, colon and breast cancer, and type 2 diabetes. Traditionally, endurance exercise training (ET) to improve health related outcomes has consisted of low- to moderate ET intensity. However, a growing body of evidence suggests that higher exercise intensities may be superior to moderate intensity for maximizing health outcomes. The primary objective of this review is to discuss how aerobic high-intensity interval training (HIIT) as compared to moderate continuous training may maximize outcomes, and to provide practical advices for successful clinical and home-based HIIT. Copyright © 2017. Published by Elsevier Inc.

  7. Exercise and Self-Reported Limitations in Patients with Inflammatory Bowel Disease.

    PubMed

    DeFilippis, Ersilia M; Tabani, Saniya; Warren, Ryan U; Christos, Paul J; Bosworth, Brian P; Scherl, Ellen J

    2016-01-01

    Limited evidence suggests that exercise may have beneficial, anti-inflammatory effects in patients with inflammatory bowel disease (IBD). The purpose of this study was to evaluate the prevalence of exercise in patients with IBD and the limitations they experience secondary to their disease. Two hundred and fifty IBD patients were prospectively enrolled in this study at an academic medical center at the time of their outpatient visits between March and October 2013. Subjects were asked to complete a one-time survey that asks questions about medical and surgical history, exercise frequency and intensity, and the limitations and barriers they experience. Two hundred and twenty-seven patients (148 female patients) completed the survey. Crohn's disease was present in 140 patients (61.5 %), while 87 had ulcerative colitis. Forty-one patients (16.4 %) never exercised, 82 patients (32.8 %) exercised 1-2 times per week, 59 (23.6 %) exercised 3-4 times per week, and 45 (18.0 %) exercised more than four times per week. Of the 186 who regularly exercise, 95 (51 %) reported moderate exercise intensity, 61 (33 %) reported light intensity, and 30 (16 %) reported vigorous intensity. Ninety-nine patients (44 %) reported that their IBD limited their exercise for reasons including fatigue (n = 81), joint pain (n = 37), embarrassment (n = 23), weakness (n = 21), and others. Although they may benefit from exercise, IBD patients experience considerable barriers to regular exercise secondary to the relapsing and remitting nature of IBD. Larger studies are needed to determine the effects of exercise on disease symptomatology and activity.

  8. Kinetic Analysis of Horizontal Plyometric Exercise Intensity.

    PubMed

    Kossow, Andrew J; Ebben, William P

    2018-05-01

    Kossow, AJ, DeChiara, TG, Neahous, SM, and Ebben, WP. Kinetic analysis of horizontal plyometric exercise intensity. J Strength Cond Res 32(5): 1222-1229, 2018-Plyometric exercises are frequently performed as part of a strength and conditioning program. Most studies assessed the kinetics of plyometric exercises primarily performed in the vertical plane. The purpose of this study was to evaluate the multiplanar kinetic characteristics of a variety of plyometric exercises, which have a significant horizontal component. This study also sought to assess sex differences in the intensity progression of these exercises. Ten men and 10 women served as subjects. The subjects performed a variety of plyometric exercises including the double-leg hop, standing long jump, single-leg standing long jump, bounding, skipping, power skipping, cone hops, and 45.72-cm hurdle hops. Subjects also performed the countermovement jump for comparison. All plyometric exercises were evaluated using a force platform. Dependent variables included the landing rate of force development and landing ground reaction forces for each exercise in the vertical, frontal, and sagittal planes. A 2-way mixed analysis of variance with repeated-measures for plyometric exercise type demonstrated main effects for exercise type for all dependent variables (p ≤ 0.001). There was no significant interaction between plyometric exercise type and sex for any of the variable assessed. Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the dependent variables assessed (p ≤ 0.05). These findings should be used to guide practitioners in the progression of plyometric exercise intensity, and thus program design, for those who require significant horizontal power in their sport.

  9. Strength and Cardiorespiratory Exercise Rehabilitation for Severely Burned Patients During Intensive Care Units: A Survey of Practice.

    PubMed

    Cambiaso-Daniel, Janos; Parry, Ingrid; Rivas, Eric; Kemp-Offenberg, Jennifer; Sen, Soman; Rizzo, Julie A; Serghiou, Michael A; Kowalske, Karen; Wolf, Steven E; Herndon, David N; Suman, Oscar E

    2018-03-22

    Minimizing the deconditioning of burn injury through early rehabilitation programs (RP) in the intensive care unit (ICU) is of importance for improving the recovery time. The aim of this study was to assess current standard of care (SOC) for early ICU exercise programs in major burn centers. We designed a survey investigating exercise RP on the ICU for burn patients with >30% total burned surface area. The survey was composed of 23 questions and submitted electronically via SurveyMonkey® to six major (pediatric and adult) burn centers in Texas and California. All centers responded and reported exercise as part of their RP on the ICU. The characteristics of exercises implemented were not uniform. All centers reported to perform resistive and aerobic exercises but only 83% reported isotonic and isometric exercises. Determination of intensity of exercise varied with 50% of centers using patient tolerance and 17% using vital signs. Frequency of isotonic, isometric, aerobic, and resistive exercise was reported as daily by 80%, 80%, 83%, and 50% of centers, respectively. Duration for all types of exercises was extremely variable. Mobilization was used as a form of exercise by 100% of burn centers. Our results demonstrate that although early RP seem to be integral during burn survivor's ICU stay, no SOC exists. Moreover, early RP are inconsistently administered and large variations exist in frequency, intensity, duration, and type of exercise. Thus, future prospective studies investigating the various components of exercise interventions are needed to establish a SOC and determine how and if early exercise benefits the burn survivor.

  10. Physical activity in the prevention and amelioration of osteoporosis in women : interaction of mechanical, hormonal and dietary factors.

    PubMed

    Borer, Katarina T

    2005-01-01

    Osteoporosis is a serious health problem that diminishes quality of life and levies a financial burden on those who fear and experience bone fractures. Physical activity as a way to prevent osteoporosis is based on evidence that it can regulate bone maintenance and stimulate bone formation including the accumulation of mineral, in addition to strengthening muscles, improving balance, and thus reducing the overall risk of falls and fractures. Currently, our understanding of how to use exercise effectively in the prevention of osteoporosis is incomplete. It is uncertain whether exercise will help accumulate more overall peak bone mass during childhood, adolescence and young adulthood. Also, the consistent effectiveness of exercise to increase bone mass, or at least arrest the loss of bone mass after menopause, is also in question. Within this framework, section 1 introduces mechanical characteristics of bones to assist the reader in understanding their responses to physical activity. Section 2 reviews hormonal, nutritional and mechanical factors necessary for the growth of bones in length, width and mineral content that produce peak bone mass in the course of childhood and adolescence using a large sample of healthy Caucasian girls and female adolescents for reference. Effectiveness of exercise is evaluated throughout using absolute changes in bone with the underlying assumption that useful exercise should produce changes that approximate or exceed the absolute magnitude of bone parameters in a healthy reference population. Physical activity increases growth in width and mineral content of bones in girls and adolescent females, particularly when it is initiated before puberty, carried out in volumes and at intensities seen in athletes, and accompanied by adequate caloric and calcium intakes. Similar increases are seen in young women following the termination of statural growth in response to athletic training, but not to more limited levels of physical activity characteristic of longitudinal training studies. After 9-12 months of regular exercise, young adult women often show very small benefits to bone health, possibly because of large subject attrition rates, inadequate exercise intensity, duration or frequency, or because at this stage of life accumulation of bone mass may be at its natural peak. The important influence of hormones as well as dietary and specific nutrient abundance on bone growth and health are emphasised, and premature bone loss associated with dietary restriction and estradiol withdrawal in exercise-induced amenorrhoea is described. In section 3, the same assessment is applied to the effects of physical activity in postmenopausal women. Studies of postmenopausal women are presented from the perspective of limitations of the capacity of the skeleton to adapt to mechanical stress of exercise due to altered hormonal status and inadequate intake of specific nutrients. After menopause, effectiveness of exercise to increase bone mineral depends heavily on adequate availability of dietary calcium. Relatively infrequent evidence that physical activity prevents bone loss or increases bone mineral after menopause may be a consequence of inadequate calcium availability or low intensity of exercise in training studies. Several studies with postmenopausal women show modest increases in bone mineral toward the norm seen in a healthy population in response to high-intensity training. Physical activities continue to stimulate increases in bone diameter throughout the lifespan. These exercise-stimulated increases in bone diameter diminish the risk of fractures by mechanically counteracting the thinning of bones and increases in bone porosity. Seven principles of bone adaptation to mechanical stress are reviewed in section 4 to suggest how exercise by human subjects could be made more effective. They posit that exercise should: (i) be dynamic, not static; (ii) exceed a threshold intensity; (iii) exceed a threshold strain frequency; (iv) be relatively brief but intermittent; (v) impose an unusual loading pattern on the bones; (vi) be supported by unlimited nutrient energy; and (vii) include adequate calcium and cholecalciferol (vitamin D3) availability.

  11. Do 'mind over muscle' strategies work? Examining the effects of attentional association and dissociation on exertional, affective and physiological responses to exercise.

    PubMed

    Lind, Erik; Welch, Amy S; Ekkekakis, Panteleimon

    2009-01-01

    Despite the well established physical and psychological benefits derived from leading a physically active life, rates of sedentary behaviour remain high. Dropout and non-compliance are major contributors to the problem of physical inactivity. Perceptions of exertion, affective responses (e.g. displeasure or discomfort), and physiological stress could make the exercise experience aversive, particularly for beginners. Shifting one's attentional focus towards environmental stimuli (dissociation) instead of one's body (association) has been theorized to enhance psychological responses and attenuate physiological stress. Research evidence on the effectiveness of attentional focus strategies, however, has been perplexing, covering the entire gamut of possible outcomes (association and dissociation having been shown to be both effective and ineffective). This article examines the effects of manipulations of attentional focus on exertional and affective responses, as well as on exercise economy and tolerance. The possible roles of the characteristics of the exercise stimulus (intensity, duration) and the exercise participants, methodological issues, and limitations of experimental designs are discussed. In particular, the critical role of exercise intensity is emphasized. Dissociative strategies may be more effective in reducing perceptions of exertion and enhancing affective responses at low to moderate exercise intensities, but their effectiveness may be diminished at higher and near-maximal levels, at which physiological cues dominate. Conversely, associative strategies could enable the exerciser to regulate intensity to avoid injury or overexertion. Thus, depending on intensity, both strategies have a place in the 'toolbox' of the public health or exercise practitioner as methods of enhancing the exercise experience and promoting long-term compliance.

  12. Understanding the factors that effect maximal fat oxidation.

    PubMed

    Purdom, Troy; Kravitz, Len; Dokladny, Karol; Mermier, Christine

    2018-01-01

    Lipids as a fuel source for energy supply during submaximal exercise originate from subcutaneous adipose tissue derived fatty acids (FA), intramuscular triacylglycerides (IMTG), cholesterol and dietary fat. These sources of fat contribute to fatty acid oxidation (FAox) in various ways. The regulation and utilization of FAs in a maximal capacity occur primarily at exercise intensities between 45 and 65% VO 2max , is known as maximal fat oxidation (MFO), and is measured in g/min. Fatty acid oxidation occurs during submaximal exercise intensities, but is also complimentary to carbohydrate oxidation (CHOox). Due to limitations within FA transport across the cell and mitochondrial membranes, FAox is limited at higher exercise intensities. The point at which FAox reaches maximum and begins to decline is referred to as the crossover point. Exercise intensities that exceed the crossover point (~65% VO 2max ) utilize CHO as the predominant fuel source for energy supply. Training status, exercise intensity, exercise duration, sex differences, and nutrition have all been shown to affect cellular expression responsible for FAox rate. Each stimulus affects the process of FAox differently, resulting in specific adaptions that influence endurance exercise performance. Endurance training, specifically long duration (>2 h) facilitate adaptations that alter both the origin of FAs and FAox rate. Additionally, the influence of sex and nutrition on FAox are discussed. Finally, the role of FAox in the improvement of performance during endurance training is discussed.

  13. Muscle metabolic responses during high-intensity intermittent exercise measured by 31P-MRS: relationship to the critical power concept

    PubMed Central

    Chidnok, Weerapong; DiMenna, Fred J.; Fulford, Jonathan; Bailey, Stephen J.; Skiba, Philip F.; Vanhatalo, Anni

    2013-01-01

    We investigated the responses of intramuscular phosphate-linked metabolites and pH (as assessed by 31P-MRS) during intermittent high-intensity exercise protocols performed with different recovery-interval durations. Following estimation of the parameters of the power-duration relationship, i.e., the critical power (CP) and curvature constant (W′), for severe-intensity constant-power exercise, nine male subjects completed three intermittent exercise protocols to exhaustion where periods of high-intensity constant-power exercise (60 s) were separated by different durations of passive recovery (18 s, 30 s and 48 s). The tolerable duration of exercise was 304 ± 68 s, 516 ± 142 s, and 847 ± 240 s for the 18-s, 30-s, and 48-s recovery protocols, respectively (P < 0.05). The work done >CP (W>CP) was significantly greater for all intermittent protocols compared with the subjects' W′, and this difference became progressively greater as recovery-interval duration was increased. The restoration of intramuscular phosphocreatine concentration during recovery was greatest, intermediate, and least for 48 s, 30 s, and 18 s of recovery, respectively (P < 0.05). The W>CP in excess of W′ increased with greater durations of recovery, and this was correlated with the mean magnitude of muscle phosphocreatine reconstitution between work intervals (r = 0.61; P < 0.01). The results of this study show that during intermittent high-intensity exercise, recovery intervals allow intramuscular homeostasis to be restored, with the degree of restoration being related to the duration of the recovery interval. Consequently, and consistent with the intermittent CP model, the ability to perform W>CP during intermittent high-intensity exercise and, therefore, exercise tolerance, increases when recovery-interval duration is extended. PMID:24068048

  14. Intensive walking exercise for lower extremity peripheral arterial disease: A systematic review and meta-analysis.

    PubMed

    Lyu, Xiafei; Li, Sheyu; Peng, Shifeng; Cai, Huimin; Liu, Guanjian; Ran, Xingwu

    2016-05-01

    Supervised treadmill exercise is the recommended therapy for peripheral arterial disease (PAD) patients with intermittent claudication (IC). However, most PAD patients do not exhibit typical symptoms of IC. The aim of the present study was to explore the efficacy and safety of intensive walking exercise in PAD patients with and without IC. The PubMed, Embase and Cochrane Library databases were systematically searched. Randomized controlled trials comparing the effects of intensive walking exercise with usual care in patients with PAD were included for systematic review and meta-analysis. Eighteen trials with 1200 patients were eligible for the present analysis. Compared with usual care, intensive walking exercise significantly improved the maximal walking distance (MWD), pain-free walking distance, and the 6-min walking distance in patients with PAD (P < 0.00001 for all). Subgroup analyses indicated that a lesser improvement in MWD was observed in the subgroup with more diabetes patients, and that the subgroup with better baseline walking ability exhibited greater improvement in walking performance. In addition, similar improvements in walking performance were observed for exercise programs of different durations and modalities. No significant difference was found in adverse events between the intensive walking and usual care groups (relative risk 0.84; 95% confidence interval 0.51, 1.39; P = 0.50). Regardless of exercise length and modality, regularly intensive walking exercise improves walking ability in PAD patients more than usual care. The presence of diabetes may attenuate the improvements in walking performance in patients with PAD following exercise. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  15. Exercise Dynamics in Secondary Mitral Regurgitation: Pathophysiology and Therapeutic Implications

    PubMed Central

    Bertrand, Philippe B.; Schwammenthal, Ehud; Levine, Robert A.; Vandervoort, Pieter M.

    2016-01-01

    Secondary mitral valve regurgitation (MR) remains a challenging problem in the diagnostic work-up and treatment of heart failure patients. Although secondary MR is characteristically dynamic in nature and sensitive to changes in ventricular geometry and loading, current therapy is mainly focused on resting conditions. Exercise-induced increase in secondary MR, however, is associated with impaired exercise capacity and increased mortality. In an era where a multitude of percutaneous solutions are emerging for the treatment of HF patients it becomes important to address the dynamic component of secondary MR during exercise as well. A critical reappraisal of the underlying disease mechanisms, and in particular of the dynamic component during exercise is of timely importance. This review summarizes the pathophysiologic mechanisms involved in the dynamic deterioration of secondary MR during exercise, its functional and prognostic impact, and the way current treatment options affect the dynamic lesion and exercise hemodynamics in general. PMID:28093494

  16. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?

    PubMed

    Kenny, Glen P; Gagnon, Daniel; Jay, Ollie; McInnis, Natalie H; Journeay, W Shane; Reardon, Francis D

    2008-08-01

    Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p

  17. Blood flow patterns during incremental and steady-state aerobic exercise.

    PubMed

    Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N

    2017-05-30

    Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). Retrograde blood flow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). These results support the hypothesis that exercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.

  18. The effect of exercise intensity and excess postexercise oxygen consumption on postprandial blood lipids in physically inactive men.

    PubMed

    Littlefield, Laurel A; Papadakis, Zacharias; Rogers, Katie M; Moncada-Jiménez, José; Taylor, J Kyle; Grandjean, Peter W

    2017-09-01

    Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg -1 ·min -1 ; body mass index, 31.8 ± 4.5 kg/m 2 ) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%-50% oxygen uptake reserve (LI), high-intensity exercise at 70%-80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p < 0.05) with no differences between the exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.

  19. Effects of Different Exercise Intensities with Isoenergetic Expenditures on C-Reactive Protein and Blood Lipid Levels

    ERIC Educational Resources Information Center

    Tsao, Te Hung; Yang, Chang Bin; Hsu, Chin Hsing

    2012-01-01

    We investigated the effects of different exercise intensities on C-reactive protein (CRP), and whether changes in CRP levels correlated with blood lipid levels. Ten men exercised at 25%, 65%, and 85% of their maximum oxygen consumption rates. Participants' blood was analyzed for CRP and blood lipid levels before and after the exercise sessions.…

  20. Efficacy of Carbohydrate Ingestion on CrossFit Exercise Performance

    PubMed Central

    Rountree, Jaden A.; Krings, Ben M.; Peterson, Timothy J.; Thigpen, Adam G.; McAllister, Matthew J.; Holmes, Megan E.

    2017-01-01

    The efficacy of carbohydrate (CHO) ingestion during high-intensity strength and conditioning type exercise has yield mixed results. However, little is known about shorter duration high-intensity exercise such as CrossFit. The purpose of this study was to investigate the performance impact of CHO ingestion during high-intensity exercise sessions lasting approximately 30 min. Eight healthy males participated in a total of four trials; two familiarizations, a CHO trial, and a similarly flavored, non-caloric placebo (PLA) trial. CrossFit’s “Fight Gone Bad Five” (FGBF) workout of the day was the exercise model which incorporated five rounds of maximal repetition exercises, wall throw, box jump, sumo deadlift high pull, push press, and rowing, followed by one minute of rest. Total repetitions and calories expended were summated from each round to quantify total work (FGBF score). No difference was found for the total work between CHO (321 ± 51) or PLA (314 ± 52) trials (p = 0.38). There were also no main effects (p > 0.05) for treatment comparing exercise performance across rounds. Based on the findings of this study, it does not appear that ingestion of CHO during short duration, high-intensity CrossFit exercise will provide a beneficial performance effect.

  1. Oxidative stress does not influence local sweat rate during high-intensity exercise.

    PubMed

    Meade, Robert D; Fujii, Naoto; Poirier, Martin P; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2018-02-01

    What is the central question of this study? We evaluated whether oxidative stress attenuates the contribution of nitric oxide to sweating during high-intensity exercise. What is the main finding and its importance? In contrast to our previous report of an oxidative stress-mediated reduction in nitric oxide-dependent cutaneous vasodilatation in this cohort during intense exercise, we demonstrated no influence of local ascorbate administration on the sweating response during moderate- (∼51% peak oxygen uptake) or high-intensity exercise (∼72% peak oxygen uptake). These new findings provide important mechanistic insight into how exercise-induced oxidative stress impacts sudomotor activity. Nitric oxide (NO)-dependent sweating is diminished during high- but not moderate-intensity exercise. We evaluated whether this impairment stems from increased oxidative stress during high-intensity exercise. On two separate days, 11 young (24 ± 4 years) men cycled in the heat (35°C) at a moderate [500 W; 52 ± 6% peak oxygen uptake (V̇O2 peak )] or high (700 W; 71 ± 5% V̇O2 peak ) rate of metabolic heat production. Each session included two 30 min exercise bouts separated by a 20 min recovery period. Local sweat rate was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with the following: (i) lactated Ringer solution (Control); (ii) 10 mm ascorbate (Ascorbate; non-selective antioxidant); (iii) 10 mm N G -nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor); or (iv) 10 mm ascorbate plus 10 mm l-NAME (Ascorbate + l-NAME). During moderate exercise, sweat rate was attenuated at the l-NAME and Ascorbate + l-NAME sites (both ∼1.0 mg min -1  cm -2 ; all P < 0.05) but not at the Ascorbate site (∼1.1 mg min -1  cm -2 ; both P ≥ 0.28) in comparison to the Control site (∼1.1 mg min -1  cm -2 ). However, no differences were observed between treatment sites (∼1.4 mg min -1  cm -2 ; P = 0.75) during high-intensity exercise. We conclude that diminished NO-dependent sweating during intense exercise occurs independent of oxidative stress. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  2. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity.

    PubMed

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2017-08-01

    Systolic time intervals (STIs) provide noninvasive insights into cardiac sympathetic neural activity (cSNA). As the effect of exercise intensity on postexercise STI recovery is unclear, this study investigated the STI recovery profile after different exercise intensities. Eleven healthy males cycled for 8 min at 3 separate intensities: LOW (40%-45%), MOD (75%-80%), and HIGH (90%-95%) of heart-rate (HR) reserve. Bio-impedance cardiography was used to assess STIs - primarily pre-ejection period (PEP; inversely correlated with cSNA), as well as left ventricular ejection time (LVET) and PEP:LVET - during 10 min seated recovery immediately postexercise. Heart-rate variability (HRV), i.e., natural-logarithm of root mean square of successive differences (Ln-RMSSD), was calculated as an index of cardiac parasympathetic neural activity (cPNA). Higher preceding exercise intensity elicited a slower recovery of HR and Ln-RMSSD (p < 0.001), and these measures did not return to baseline by 10 min following any intensity (p ≤ 0.009). Recovery of STIs was also slower following higher intensity exercise (p ≤ 0.002). By 30 s postexercise, higher preceding intensity resulted in a lower PEP (98 ± 14 ms, 75 ± 6 ms, 66 ± 5 ms for LOW, MOD, and HIGH, respectively, p < 0.001). PEP recovered to baseline (143 ± 11 ms) by 5 min following LOW (139 ± 13 ms, p = 0.590) and by 10 min following MOD (145 ± 17 ms, p = 0.602), but was still suppressed at 10 min following HIGH (123 ± 21 ms, p = 0.012). Higher preceding exercise intensity attenuated the recovery of indices for cSNA (from STIs) and cPNA (from HRV) in a graded dose-response fashion. While exercise intensity must be considered, acute recovery may be a valuable period during which to concurrently monitor these noninvasive indices, to identify potentially abnormal cardiac autonomic responses.

  3. The Effects of Different Passive Static Stretching Intensities on Recovery from Unaccustomed Eccentric Exercise - A Randomized Controlled Trial.

    PubMed

    Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S

    2018-03-12

    Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.

  4. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.

    PubMed

    Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E

    1976-12-01

    Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.

  5. The influence of exercise intensity on heat acclimation in trained subjects.

    PubMed

    Houmard, J A; Costill, D L; Davis, J A; Mitchell, J B; Pascoe, D D; Robergs, R A

    1990-10-01

    Low-intensity exercise (less than or equal to 50% VO2max) has been demonstrated to produce heat acclimation (HA) in trained subjects. The purpose of this study was to determine whether shorter-duration, moderate-intensity exercise would also result in HA. Nine trained runners performed two 9-d exercise heat-stress protocols. Each protocol consisted of a 90-min heat tolerance test on days 1 (HTT1) and 9 (HTT2). On days 2-8 the subjects exercised at 50% VO2max for 60 min.d-1 (T50) or at 75% VO2max for 30-35 min.d-1 (T75). Final HTT2 heart rate and rectal temperature (Tr) were significantly (P less than 0.001) reduced, as compared to HTT1, with no differences between T50 and T75. Both protocols resulted in significant (P less than 0.05) reductions in HTT2 pre-exercise Tr and total exercising caloric expenditure, both of which are known to contribute to HA. No changes in resting plasma volume, osmolality, protein, post-HTT aldosterone, and exercising sweat rate were observed. These results demonstrate that equal levels of HA were obtained with T50 and T75, which suggests that moderate-intensity, short-duration exercise in the heat can produce HA in trained subjects.

  6. Revisiting the relationship between exercise heart rate and music tempo preference.

    PubMed

    Karageorghis, Costas I; Jones, Leighton; Priest, David-Lee; Akers, Rose I; Clarke, Adam; Perry, Jennifer M; Reddick, Benjamin T; Bishop, Daniel T; Lim, Harry B T

    2011-06-01

    In the present study, we investigated a hypothesized quartic relationship (meaning three inflection points) between exercise heart rate (HR) and preferred music tempo. Initial theoretical predictions suggested a positive linear relationship (Iwanaga, 1995a, 1995b); however, recent experimental work has shown that as exercise HR increases, step changes and plateaus that punctuate the profile of music tempo preference may occur (Karageorghis, Jones, & Stuart, 2008). Tempi bands consisted of slow (95-100 bpm), medium (115-120 bpm), fast (135-140 bpm), and very fast (155-160 bpm) music. Twenty-eight active undergraduate students cycled at exercise intensities representing 40, 50, 60, 70, 80, and 90% of their maximal HR reserve while their music preference was assessed using a 10-point scale. The Exercise Intensity x Music Tempo interaction was significant, F(6.16, 160.05) = 7.08, p < .001, 7,2 = .21, as was the test for both cubic and quartic trajectories in the exercise HR-preferred-music-tempo relationship (p < .001). Whereas slow tempo music was not preferred at any exercise intensity, preference for fast tempo increased, relative to medium and very fast tempo music, as exercise intensity increased. The implications for the prescription of music in exercise and physical activity contexts are discussed.

  7. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study.

    PubMed

    Heinrich, Katie M; Patel, Pratik M; O'Neal, Joshua L; Heinrich, Bryan S

    2014-08-03

    Understanding exercise participation for overweight and obese adults is critical for preventing comorbid conditions. Group-based high-intensity functional training (HIFT) provides time-efficient aerobic and resistance exercise at self-selected intensity levels which can increase adherence; behavioral responses to HIFT are unknown. This study examined effects of HIFT as compared to moderate-intensity aerobic and resistance training (ART) on exercise initiation, enjoyment, adherence, and intentions. A stratified, randomized two-group pre-test posttest intervention was conducted for eight weeks in 2012 with analysis in 2013. Participants (n = 23) were stratified by median age (< or ≥ 28) and body mass index (BMI; < or ≥ 30.5). Participants were physically inactive with an average BMI of 31.1 ± 3.5 kg/m2, body fat percentage of 42.0 ± 7.4%, weight of 89.5 ± 14.2 kg, and ages 26.8 ± 5.9 years. Most participants were white, college educated, female, and married/engaged. Both groups completed 3 training sessions per week. The ART group completed 50 minutes of moderate aerobic exercise each session and full-body resistance training on two sessions per week. The HIFT group completed 60-minute sessions of CrossFit™ with actual workouts ranging from 5-30 minutes. Participants completed baseline and posttest questionnaires indicating reasons for exercise initiation (baseline), exercise enjoyment, and exercise intentions (posttest). Adherence was defined as completing 90% of exercise sessions. Daily workout times were recorded. Participants provided mostly intrinsic reasons for exercise initiation. Eighteen participants adhered (ART = 9, 81.8%; HIFT = 9, 75%). HIFT dropouts (p = .012) and ART participants (p = .009) reported lower baseline exercise enjoyment than HIFT participants, although ART participants improved enjoyment at posttest (p = .005). More HIFT participants planned to continue the same exercise than ART participants (p = .002). No significant changes in BMI or body composition were found. Workouts were shorter for HIFT than ART (p < .001). HIFT participants spent significantly less time exercising per week, yet were able to maintain exercise enjoyment and were more likely to intend to continue. High-intensity exercise options should be included in public health interventions. ClinicalTrials.gov Identifier: http://NCT02185872. Registered 9 July 2014.

  8. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2016-03-01

    Aerobic moderate-intensity continuous exercise (MCE) can improve executive function (EF) acutely, potentially through the activation of both physiological and psychological factors. Recently, high-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than MCE. Factors for EF improvement can potentially be more enhanced by HIIE than by MCE; but the effects of HIIE on EF remain unknown. Therefore, we aimed to examine to what extent HIIE impacts post-exercise EF immediately after exercise and during post-exercise recovery, compared with traditional MCE. Twelve healthy male subjects performed cycle ergometer exercise based on either HIIE or MCE protocols in a randomized and counterbalanced order. The HIIE protocol consisted of four 4-min bouts at 90% of peak VO2 with 3-min active recovery at 60% of peak VO2. A volume-matched MCE protocol was applied at 60% of peak VO2. To evaluate EF, a color-words Stroop task was performed pre- and post-exercise. Improvement in EF immediately after exercise was the same for the HIIE and MCE protocols. However, the improvement of EF by HIIE was sustained during 30 min of post-exercise recovery, during which MCE returned to the pre-exercise level. The EF response in the post-exercise recovery was associated with changes in physiological and psychological responses. The present findings showed that HIIE and MCE were capable of improving EF. Moreover, HIIE could prolong improvement in EF during post-exercise recovery. For the first time, we suggest that HIIE may be more effective strategy than MCE for improving EF. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Respiratory muscle endurance, oxygen saturation index in vastus lateralis and performance during heavy exercise.

    PubMed

    Oueslati, Ferid; Boone, Jan; Ahmaidi, Said

    2016-06-15

    The purpose of this study was to investigate the relationships between respiratory muscle endurance, tissue oxygen saturation index dynamics of leg muscle (TSI) and the time to exhaustion (TTE) during high intensity exercise. Eleven males performed a respiratory muscle endurance test, a maximal incremental running field test (8 km h(-1)+0.5 km h(-1) each 60s) and a high-intensity constant speed field test at 90% VO2max. The TSI in vastus lateralis was monitored with near-infrared spectroscopy. The TSI remained steady between 20 and 80% of TTE. Between 80 and 100% of TTE (7.5 ± 6.1%, p<0.05), a significant drop in TSI concomitant with a minute ventilation increase (16 ± 10 l min(-1)) was observed. Moreover, the increase of ventilation was correlated to the drop in TSI (r=0.70, p<0.05). Additionally, respiratory muscle endurance was significantly correlated to TSI time plateau (20-80% TTE) (r=0.83, p<0.05) and to TTE (r=0.95, p<0.001). The results of the present study show that the tissue oxygen saturation plateau might be affected by ventilatory work and that respiratory muscle endurance could be considered as a determinant of performance during heavy exercise. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evaluation of anaerobic threshold in non-pregnant and pregnant rats.

    PubMed

    Netto, Aline Oliveira; Macedo, Nathália C D; Gallego, Franciane Q; Sinzato, Yuri K; Volpato, Gustavo T; Damasceno, Débora C

    2017-01-01

    Several studies present different methodologies and results about intensity exercise, and many of them are performed in male rats. However, the impact of different type, intensity, frequency and duration of exercise on female rats needs more investigation. From the analysis of blood lactate concentration during lactate minimum test (LacMin) in the swimming exercise, the anaerobic threshold (AT) was identified, which parameter is defined as the transition point between aerobic and anaerobic metabolism. LacMin test is considered a good indicator of aerobic conditioning and has been used in prescription of training in different exercise modalities. However, there is no evidence of LacMin test in female rats. The objective was to determine AT in non-pregnant and pregnant Wistar rats. The LacMin test was performed and AT defined for mild exercise intensity was from a load equivalent to 1% of body weight (bw), moderate exercise as carrying 4% bw and severe intensity as carrying 7% bw. In pregnant rats, the AT was reached at a lower loading from 5.0% to 5.5% bw, while in non-pregnant the load was from 5.5% to 6.0% bw. Thus, this study was effective to identify exercise intensities in pregnant and non-pregnant rats using anaerobic threshold by LacMin test.

  11. The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias.

    PubMed

    Binayi, Fateme; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Karimi, Ali; Abdollahi, Farzane; Masumi, Yaser

    2016-01-01

    We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality.

  12. Translation of incremental talk test responses to steady-state exercise training intensity.

    PubMed

    Lyon, Ellen; Menke, Miranda; Foster, Carl; Porcari, John P; Gibson, Mark; Bubbers, Terresa

    2014-01-01

    The Talk Test (TT) is a submaximal, incremental exercise test that has been shown to be useful in prescribing exercise training intensity. It is based on a subject's ability to speak comfortably during exercise. This study defined the amount of reduction in absolute workload intensity from an incremental exercise test using the TT to give appropriate absolute training intensity for cardiac rehabilitation patients. Patients in an outpatient rehabilitation program (N = 30) performed an incremental exercise test with the TT given every 2-minute stage. Patients rated their speech comfort after reciting a standardized paragraph. Anything other than a "yes" response was considered the "equivocal" stage, while all preceding stages were "positive" stages. The last stage with the unequivocally positive ability to speak was the Last Positive (LP), and the preceding stages were (LP-1 and LP-2). Subsequently, three 20-minute steady-state training bouts were performed in random order at the absolute workload at the LP, LP-1, and LP-2 stages of the incremental test. Speech comfort, heart rate (HR), and rating of perceived exertion (RPE) were recorded every 5 minutes. The 20-minute exercise training bout was completed fully by LP (n = 19), LP-1 (n = 28), and LP-2 (n = 30). Heart rate, RPE, and speech comfort were similar through the LP-1 and LP-2 tests, but the LP stage was markedly more difficult. Steady-state exercise training intensity was easily and appropriately prescribed at intensity associated with the LP-1 and LP-2 stages of the TT. The LP stage may be too difficult for patients in a cardiac rehabilitation program.

  13. Therapeutic physical exercise in neural injury: friend or foe?

    PubMed

    Park, Kanghui; Lee, Seunghoon; Hong, Yunkyung; Park, Sookyoung; Choi, Jeonghyun; Chang, Kyu-Tae; Kim, Joo-Heon; Hong, Yonggeun

    2015-12-01

    [Purpose] The intensity of therapeutic physical exercise is complex and sometimes controversial in patients with neural injuries. This review assessed whether therapeutic physical exercise is beneficial according to the intensity of the physical exercise. [Methods] The authors identified clinically or scientifically relevant articles from PubMed that met the inclusion criteria. [Results] Exercise training can improve body strength and lead to the physiological adaptation of skeletal muscles and the nervous system after neural injuries. Furthermore, neurophysiological and neuropathological studies show differences in the beneficial effects of forced therapeutic exercise in patients with severe or mild neural injuries. Forced exercise alters the distribution of muscle fiber types in patients with neural injuries. Based on several animal studies, forced exercise may promote functional recovery following cerebral ischemia via signaling molecules in ischemic brain regions. [Conclusions] This review describes several types of therapeutic forced exercise and the controversy regarding the therapeutic effects in experimental animals versus humans with neural injuries. This review also provides a therapeutic strategy for physical therapists that grades the intensity of forced exercise according to the level of neural injury.

  14. Perceptual Responses to High- and Moderate-Intensity Interval Exercise in Adolescents.

    PubMed

    Malik, Adam A; Williams, Craig A; Weston, Kathryn L; Barker, Alan R

    2018-05-01

    Continuous high-intensity exercise is proposed to evoke unpleasant sensations as predicted by the dual-mode theory and may negatively impact on future exercise adherence. Previous studies support unpleasant sensations in affective responses during continuous high-intensity exercise, but the affect experience during high-intensity interval exercise (HIIE) involving brief bursts of high-intensity exercise separated by low-intensity activity is poorly understood in adolescents. We examined the acute affective, enjoyment, and perceived exertion responses to HIIE compared with moderate-intensity interval exercise (MIIE) in adolescents. Thirteen adolescent boys (mean ± SD: age, 14.0 ± 0.5 yr) performed two counterbalanced exercise conditions: 1) HIIE: 8 × 1-min work intervals at 90% maximal aerobic speed; and 2) MIIE: between 9 and 12 × 1-min work intervals at 90% ventilatory threshold where the number of intervals performed were distance-matched to HIIE. HIIE and MIIE work intervals were interspersed with 75 s active recovery at 4 km·h. Affect, enjoyment, and RPE were recorded before, during, and after exercise. Affect responses declined in both conditions but the fall was greater in HIIE than MIIE (P < 0.025, effect size [ES], 0.64 to 0.81). Affect remained positive at the end-work interval for both conditions (MIIE, 2.62 ± 1.50; HIIE, 1.15 ± 2.08 on feeling scale). No enjoyment differences were evident during HIIE and MIIE (P = 0.32), but HIIE elicited greater postexercise enjoyment compared with MIIE (P = 0.01, ES = 0.47). RPE was significantly higher during HIIE than MIIE across all work intervals (all P < 0.03, ES > 0.64). Despite elevated RPE, HIIE did not elicit prominent unpleasant feelings as predicted by the dual-mode theory and was associated with greater postexercise enjoyment responses than MIIE. This study demonstrates the feasibility of the application of HIIE as an alternative form of physical activity in adolescents.

  15. Changes in ventilatory threshold with exercise training in a sedentary population: the HERITAGE Family Study.

    PubMed

    Gaskill, S E; Walker, A J; Serfass, R A; Bouchard, C; Gagnon, J; Rao, D C; Skinner, J S; Wilmore, J H; Leon, A S

    2001-11-01

    The purpose of this study was to evaluate the effect of exercise training intensity relative to the ventilatory threshold (VT) on changes in work (watts) and VO2 at the ventilatory threshold and at maximal exercise in previously sedentary participants in the HERITAGE Family Study. We hypothesized that those who exercised below their VT would improve less in VO2 at the ventilatory threshold (VO2vt) and VO2max than those who trained at an intensity greater than their VT. Supervised cycle ergometer training was performed at the 4 participating clinical centers, 3 times a week for 20 weeks. Exercise training progressed from the HR corresponding to 55% VO2max for 30 minutes to the HR associated with 75% VO2max for 50 minutes for the final 6 weeks. VT was determined at baseline and after exercise training using standardized methods. 432 sedentary white and black men (n = 224) and women (n = 208), aged 17 to 65 years, were retrospectively divided into groups based on whether exercise training was initiated below, at, or above VT. 1) Training intensity (relative to VT) accounting for about 26% of the improvement in VO2vt (R2 = 0.26, p < 0.0001). 2) The absolute intensity of training in watts (W) accounted for approximately 56% of the training effect at VT (R2 = 0.56, p < 0.0001) with post-training watts at VT (VT(watts)) being not significantly different than W during training (p > 0.70). 3) Training intensity (relative to VT) had no effect on DeltaVO2max. These data clearly show that as a result of aerobic training both the VO2 and W associated with VT respond and become similar to the absolute intensity of sustained (3 x /week for 50 min) aerobic exercise training. Higher intensities of exercise, relative to VT, result in larger gains in VO2vt but not in VO2max.

  16. Changes in transverse relaxation time of quadriceps femoris muscles after active recovery exercises with different intensities.

    PubMed

    Mukaimoto, Takahiro; Semba, Syun; Inoue, Yosuke; Ohno, Makoto

    2014-01-01

    The purpose of this study was to examine the changes in the metabolic state of quadriceps femoris muscles using transverse relaxation time (T2), measured by muscle functional magnetic resonance (MR) imaging, after inactive or active recovery exercises with different intensities following high-intensity knee-extension exercise. Eight healthy men performed recovery sessions with four different conditions for 20 min after high-intensity knee-extension exercise on separate days. During the recovery session, the participants conducted a light cycle exercise for 20 min using a cycle (50%, 70% and 100% of the lactate threshold (LT), respectively: active recovery), and inactive recovery. The MR images of quadriceps femoris muscles were taken before the trial and after the recovery session every 30 min for 120 min. The percentage changes in T2 for the rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT were significantly lower than those in either inactive recovery or 100% LT. There were no significant differences in those for vastus lateralis and vastus intermedius muscles among the four trials. The percentage changes in T2 of rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in either inactive recovery or 100% LT. Those of vastus lateralis and vastus intermedius muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in 100% LT. Although the changes in T2 after active recovery exercises were not uniform in exercised muscles, the results of this study suggest that active recovery exercise with the intensities below LT are more effective to recover the metabolic state of quadriceps femoris muscles after intense exercise than with either intensity at LT or inactive recovery.

  17. Early exercise in critically ill patients enhances short-term functional recovery.

    PubMed

    Burtin, Chris; Clerckx, Beatrix; Robbeets, Christophe; Ferdinande, Patrick; Langer, Daniel; Troosters, Thierry; Hermans, Greet; Decramer, Marc; Gosselink, Rik

    2009-09-01

    : To investigate whether a daily exercise session, using a bedside cycle ergometer, is a safe and effective intervention in preventing or attenuating the decrease in functional exercise capacity, functional status, and quadriceps force that is associated with prolonged intensive care unit stay. A prolonged stay in the intensive care unit is associated with muscle dysfunction, which may contribute to an impaired functional status up to 1 yr after hospital discharge. No evidence is available concerning the effectiveness of an early exercise training intervention to prevent these detrimental complications. : Randomized controlled trial. : Medical and surgical intensive care unit at University Hospital Gasthuisberg. : Ninety critically ill patients were included as soon as their cardiorespiratory condition allowed bedside cycling exercise (starting from day 5), given they still had an expected prolonged intensive care unit stay of at least 7 more days. : Both groups received respiratory physiotherapy and a daily standardized passive or active motion session of upper and lower limbs. In addition, the treatment group performed a passive or active exercise training session for 20 mins/day, using a bedside ergometer. : All outcome data are reflective for survivors. Quadriceps force and functional status were assessed at intensive care unit discharge and hospital discharge. Six-minute walking distance was measured at hospital discharge. No adverse events were identified during and immediately after the exercise training. At intensive care unit discharge, quadriceps force and functional status were not different between groups. At hospital discharge, 6-min walking distance, isometric quadriceps force, and the subjective feeling of functional well-being (as measured with "Physical Functioning" item of the Short Form 36 Health Survey questionnaire) were significantly higher in the treatment group (p < .05). : Early exercise training in critically ill intensive care unit survivors enhanced recovery of functional exercise capacity, self-perceived functional status, and muscle force at hospital discharge.

  18. Flavanol-rich cocoa consumption enhances exercise-induced executive function improvements in humans.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Ishibashi, Aya; Takenaka, Saki; Tanaka, Daichi; Hirano, Yoshitaka; Hamaoka, Takafumi; Goto, Kazushige; Ebi, Kumiko; Isaka, Tadao; Hashimoto, Takeshi

    2018-02-01

    Aerobic exercise is known to acutely improve cognitive functions, such as executive function (EF) and memory function (MF). Additionally, consumption of flavanol-rich cocoa has been reported to acutely improve cognitive function. The aim of this study was to determine whether high cocoa flavanol (CF; HCF) consumption would enhance exercise-induced improvement in cognitive function. To test this hypothesis, we examined the combined effects of HCF consumption and moderate-intensity exercise on EF and MF during postexercise recovery. Ten healthy young men received either an HCF (563 mg of CF) or energy-matched low CF (LCF; 38 mg of CF) beverage 70 min before exercise in a single-blind counterbalanced manner. The men then performed moderate-intensity cycling exercise at 60% of peak oxygen uptake for 30 min. The participants performed a color-word Stroop task and face-name matching task to evaluate EF and MF, respectively, during six time periods throughout the experimental session. EF significantly improved immediately after exercise compared with before exercise in both conditions. However, EF was higher after HCF consumption than after LCF consumption during all time periods because HCF consumption improved EF before exercise. In contrast, HCF consumption and moderate-intensity exercise did not improve MF throughout the experiment. The present findings demonstrated that HCF consumption before moderate-intensity exercise could enhance exercise-induced improvement in EF, but not in MF. Therefore, we suggest that the combination of HCF consumption and aerobic exercise may be beneficial for improving EF. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sinusoidal high-intensity exercise does not elicit ventilatory limitation in chronic obstructive pulmonary disease.

    PubMed

    Porszasz, Janos; Rambod, Mehdi; van der Vaart, Hester; Rossiter, Harry B; Ma, Shuyi; Kiledjian, Rafi; Casaburi, Richard

    2013-06-01

    During exercise at critical power (CP) in chronic obstructive pulmonary disease (COPD) patients, ventilation approaches its maximum. As a result of the slow ventilatory dynamics in COPD, ventilatory limitation during supramaximal exercise might be escaped using rapid sinusoidal forcing. Nine COPD patients [age, 60.2 ± 6.9 years; forced expiratory volume in the first second (FEV(1)), 42 ± 17% of predicted; and FEV(1)/FVC, 39 ± 12%] underwent an incremental cycle ergometer test and then four constant work rate cycle ergometer tests; tolerable duration (t(lim)) was recorded. Critical power was determined from constant work rate testing by linear regression of work rate versus 1/t(lim). Patients then completed fast (FS; 60 s period) and slow (SS; 360 s period) sinusoidally fluctuating exercise tests with mean work rate at CP and peak at 120% of peak incremental test work rate, and one additional test at CP; each for a 20 min target. The value of t(lim) did not differ between CP (19.8 ± 0.6 min) and FS (19.0 ± 2.5 min), but was shorter in SS (13.2 ± 4.2 min; P < 0.05). The sinusoidal ventilatory amplitude was minimal (37.4 ± 34.9 ml min(-1) W(-1)) during FS but much larger during SS (189.6 ± 120.4 ml min(-1) W(-1)). The total ventilatory response in SS reached 110 ± 8.0% of the incremental test peak, suggesting ventilatory limitation. Slow components in ventilation during constant work rate and FS exercises were detected in most subjects and contributed appreciably to the total response asymptote. The SS exercise was associated with higher mid-exercise lactate concentrations (5.2 ± 1.7, 7.6 ± 1.7 and 4.5 ± 1.3 mmol l(-1) in FS, SS and CP). Large-amplitude, rapid sinusoidal fluctuation in work rate yields little fluctuation in ventilation despite reaching 120% of the incremental test peak work rate. This high-intensity exercise strategy might be suitable for programmes of rehabilitative exercise training in COPD.

  20. Pulmonary Gas Exchange Abnormalities in Mild Chronic Obstructive Pulmonary Disease. Implications for Dyspnea and Exercise Intolerance.

    PubMed

    Elbehairy, Amany F; Ciavaglia, Casey E; Webb, Katherine A; Guenette, Jordan A; Jensen, Dennis; Mourad, Sahar M; Neder, J Alberto; O'Donnell, Denis E

    2015-06-15

    Several studies in mild chronic obstructive pulmonary disease (COPD) have shown a higher than normal ventilatory equivalent for carbon dioxide ([Formula: see text]e/[Formula: see text]co2) during exercise. Our objective was to examine pulmonary gas exchange abnormalities and the mechanisms of high [Formula: see text]e/[Formula: see text]co2 in mild COPD and its impact on dyspnea and exercise intolerance. Twenty-two subjects (11 patients with GOLD [Global Initiative for Chronic Obstructive Lung Disease] grade 1B COPD, 11 age-matched healthy control subjects) undertook physiological testing and a symptom-limited incremental cycle exercise test with arterial blood gas collection. Patients (post-bronchodilator FEV1: 94 ± 10% predicted; mean ± SD) had evidence of peripheral airway dysfunction and reduced peak oxygen uptake compared with control subjects (80 ± 18 vs. 113 ± 24% predicted; P<0.05). Arterial blood gases were within the normal range and effective alveolar ventilation was not significantly different from control subjects throughout exercise. The alveolar-arterial O2 tension gradient was elevated at rest and throughout exercise in COPD (P<0.05). [Formula: see text]e/[Formula: see text]co2, dead space to tidal volume ratio (Vd/Vt), and arterial to end-tidal CO2 difference were all higher (P<0.05) in patients with COPD than in control subjects during exercise. In patients with COPD versus control subjects, there was significant dynamic hyperinflation and greater tidal volume constraints (P<0.05). Standardized dyspnea intensity ratings were also higher (P<0.05) in patients with COPD versus control subjects in association with higher ventilatory requirements. Within all subjects, Vd/Vt correlated with the [Formula: see text]e/[Formula: see text]co2 ratio during submaximal exercise (r=0.780, P<0.001). High Vd/Vt was the most consistent gas exchange abnormality in smokers with only mild spirometric abnormalities. Compensatory increases in minute ventilation during exercise maintained alveolar ventilation and arterial blood gas homeostasis but at the expense of earlier dynamic mechanical constraints, greater dyspnea, and exercise intolerance in mild COPD.

  1. Risk Factors for Osteoporosis are Associated with Stress Fracture in Young Women

    DTIC Science & Technology

    1989-08-01

    underweight were also more likely to have a history of amenorrhea , but these factors appear to be only loosely associated. Exercise serves as the stimalus...eumenorrheic exercising women were 11 unremarka.le (5). Intense exercise may be involved in amenorrhea , as evidenced by the return of menses in some...amenorrheic women who reduce their exercise (27), but amenorrhea is not a necessary consequence of intense exercise (28). Similarly, low weight (or low body

  2. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial

    PubMed Central

    Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans

    2016-01-01

    Objective To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. Design A process evaluation using data from an RCT. Patients Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Methods Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60–70% heart rate reserve). Results The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Conclusion Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Trial Registration Netherlands National Trial Register NTR1371 PMID:27419388

  3. Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet.

    PubMed

    Brandou, F; Savy-Pacaux, A M; Marie, J; Bauloz, M; Maret-Fleuret, I; Borrocoso, S; Mercier, J; Brun, J F

    2005-09-01

    We assessed the effect of two programs combining a hypocaloric diet with low-intensity (LI) or high-intensity (HI) exercise training, during two months, on substrate utilization at exercise in obese children. Fifteen obese boys participated in a combined program of exercise and caloric restriction-induced weight loss (diet starting two weeks before the training program). The maximal fat oxidation point (Lipox max) was determined to individualize exercise training. Training consisted of cycling at either LI (Lipox max) for seven children or HI (Lipoxmax+40% Lipox max) for eight children. All children exhibited a decrease in weight (LI: -5.2 kg +/- 0.7 (P<0.01), HI: -7 kg +/- 0.7 (P<0.01)). While in the LI group, both fat and CHO oxidation were unchanged after training, HI group oxidize less fat and more CHO after training when exercising at 20% and 30% Wmax th (P = 0.02). While a LI exercise training program maintains (but does not improve) the ability to oxidize fat at exercise, HI training actually shifts towards CHO the balance of substrate oxidation during exercise. Thus, a low intensity training protocol seems to counteract to some extent the decline in lipid oxidation at exercise that occurs after a hypocaloric diet, and is thus likely to be synergistic to diet in the weight lowering strategy.

  4. Risks and Benefits of Exercise Training in Adults With Congenital Heart Disease.

    PubMed

    Chaix, Marie-A; Marcotte, François; Dore, Annie; Mongeon, François-Pierre; Mondésert, Blandine; Mercier, Lise-Andrée; Khairy, Paul

    2016-04-01

    Exercise capacity in adults with various forms of congenital heart disease is substantially lower than that of the general population. Although the underlying congenital heart defect, and its sequelae, certainly contribute to observed exercise limitations, there is evidence suggesting that deconditioning and a sedentary lifestyle are important implicated factors. The prevalence of acquired cardiovascular comorbidities is on the increase in the aging population with congenital heart disease, such that obesity and a sedentary lifestyle confer increased risk. Health fears and misconceptions are common barriers to regular physical activity in adults with congenital heart disease, despite evidence linking lower functional capacity to poor outcomes, and data supporting the safety and efficacy of exercise in bestowing numerous physical and psychosocial rewards. With few exceptions, adults with congenital heart disease should be counselled to exercise regularly. In this contemporary review, we provide a practical approach to assessing adults with congenital heart disease before exercise training. We examine available evidence supporting the safety and benefits of exercise training. Risks associated with exercise training in adults with congenital heart disease are discussed, particularly with regard to sudden cardiac death. Finally, recommendations for exercise training are provided, with consideration for the type of congenital heart disease, the nature (ie, static vs dynamic) and intensity (ie, low, medium, high) of the physical activity, and associated factors such as systemic ventricular dysfunction and residual defects. Further research is required to determine optimal exercise regimens and to identify effective strategies to implement exercise training as a key determinant of healthy living. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.

    PubMed

    Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S

    2018-05-15

    Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  6. A comprehensive review of 46 exercise treatment studies in fibromyalgia (1988–2005)

    PubMed Central

    Jones, Kim Dupree; Adams, Dianne; Winters-Stone, Kerri; Burckhardt, Carol S

    2006-01-01

    The purpose of this review was to: (1) locate all exercise treatment studies of fibromyalgia (FM) patients from 1988 through 2005, (2) present in tabular format the key details of each study and (3) to provide a summary and evaluation of each study for exercise and health outcomes researchers. Exercise intervention studies in FM were retrieved through Cochrane Collaboration Reviews and key word searches of the medical literature, conference proceedings and bibliographies. Studies were reviewed for inclusion using a standardized process. A table summarizing subject characteristics, exercise mode, timing, duration, frequency, intensity, attrition and outcome variables was developed. Results, conclusions and comments were made for each study. Forty-six exercise treatment studies were found with a total of 3035 subjects. The strongest evidence was in support of aerobic exercise a treatment prescription for fitness and symptom and improvement. In general, the greatest effect and lowest attrition occurred in exercise programs that were of lower intensity than those of higher intensity. Exercise is a crucial part of treatment for people with FM. Increased health and fitness, along with symptom reduction, can be expected with exercise that is of appropriate intensity, self-modified, and symptom-limited. Exercise and health outcomes researchers are encouraged to use the extant literature to develop effective health enhancing programs for people with FM and to target research to as yet understudied FM subpopulations, such as children, men, older adults, ethnic minorities and those with common comorbidities of osteoarthritis and obesity. PMID:16999856

  7. Mild aerobic exercise blocks elastin fiber fragmentation and aortic dilatation in a mouse model of Marfan syndrome associated aortic aneurysm.

    PubMed

    Gibson, Christine; Nielsen, Cory; Alex, Ramona; Cooper, Kimbal; Farney, Michael; Gaufin, Douglas; Cui, Jason Z; van Breemen, Cornelis; Broderick, Tom L; Vallejo-Elias, Johana; Esfandiarei, Mitra

    2017-07-01

    Regular low-impact physical activity is generally allowed in patients with Marfan syndrome, a connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene. However, being above average in height encourages young adults with this syndrome to engage in high-intensity contact sports, which unfortunately increases the risk for aortic aneurysm and rupture, the leading cause of death in Marfan syndrome. In this study, we investigated the effects of voluntary (cage-wheel) or forced (treadmill) aerobic exercise at different intensities on aortic function and structure in a mouse model of Marfan syndrome. Four-week-old Marfan and wild-type mice were subjected to voluntary and forced exercise regimens or sedentary lifestyle for 5 mo. Thoracic aortic tissue was isolated and subjected to structural and functional studies. Our data showed that exercise improved aortic wall structure and function in Marfan mice and that the beneficial effect was biphasic, with an optimum at low intensity exercise (55-65% V̇o 2max ) and tapering off at a higher intensity of exercise (85% V̇o 2max ). The mechanism underlying the reduced elastin fragmentation in Marfan mice involved reduction of the expression of matrix metalloproteinases 2 and 9 within the aortic wall. These findings present the first evidence of potential beneficial effects of mild exercise on the structural integrity of the aortic wall in Marfan syndrome associated aneurysm. Our finding that moderate, but not strenuous, exercise protects aortic structure and function in a mouse model of Marfan syndrome could have important implications for the medical care of young Marfan patients. NEW & NOTEWORTHY The present study provides conclusive scientific evidence that daily exercise can improve aortic health in a mouse model of Marfan syndrome associated aortic aneurysm, and it establishes the threshold for the exercise intensity beyond which exercise may not be as protective. These findings establish a platform for a new focus on promoting regular exercise in Marfan patients at an optimum intensity and create a paradigm shift in clinical care of Marfan patients suffering from aortic aneurysm complications. Copyright © 2017 the American Physiological Society.

  8. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    PubMed

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Experiences of older people with dementia participating in a high-intensity functional exercise program in nursing homes: "While it's tough, it's useful"

    PubMed Central

    Lundin-Olsson, Lillemor; Skelton, Dawn A.; Lundman, Berit; Rosendahl, Erik

    2017-01-01

    The objective of the study was to describe the views and experiences of participation in a high-intensity functional exercise (HIFE) program among older people with dementia in nursing homes. The study design was a qualitative interview study with 21 participants (15 women), aged 74–96, and with a Mini-Mental State Examination score of 10–23 at study start. The HIFE-program comprises exercises performed in functional weight-bearing positions and including movements used in everyday tasks. The exercise was individually designed, supervised in small groups in the nursing homes and performed during four months. Interviews were performed directly after exercise sessions and field notes about the sessions were recorded. Qualitative content analysis was used for analyses. The analysis revealed four themes: Exercise is challenging but achievable; Exercise gives pleasure and strength; Exercise evokes body memories; and Togetherness gives comfort, joy, and encouragement. The intense and tailored exercise, adapted to each participant, was perceived as challenging but achievable, and gave pleasure and improvements in mental and bodily strength. Memories of previous physical activities aroused and participants rediscovered bodily capabilities. Importance of individualized and supervised exercise in small groups was emphasized and created feelings of encouragement, safety, and coherence. The findings from the interviews reinforces the positive meaning of intense exercise to older people with moderate to severe dementia in nursing homes. The participants were able to safely adhere to and understand the necessity of the exercise. Providers of exercise should consider the aspects valued by participants, e.g. supervision, individualization, small groups, encouragement, and that exercise involved joy and rediscovery of body competencies. PMID:29149198

  10. Physiological parameter values in greyhounds before and after high-intensity exercise.

    PubMed

    Pellegrino, Francisco Javier; Risso, Analía; Vaquero, Pablo G; Corrada, Yanina A

    2018-01-01

    Dog sports competitions have greatly expanded. The availability of reference values for each type of activity could help assess fitness accurately. Heart rate (HR), blood lactate (BL) and rectal temperature (RT) are relevant physiological parameters to determine the dogs response to effort. Previous studies in greyhounds have reported the effect of high-intensity exercise on many physiological parameters immediately after completing different racing distances and recovery times. However, there are no studies concerning physiological changes over shorter racing distances. We therefore assessed the effect of sprint exercise on HR, BL and RT in nine greyhounds performing sprint exercise over a 100-m distance chasing a lure. After the exercise, dogs underwent a passive 10-min recovery phase. Before the exercise, immediately after it and at 5 and 10 min during recovery, HR and RT were assessed and blood samples were collected for BL determination. HR, BL and RT values increased significantly after the exercise (P<0.01). Whereas HR returned to pre-exercise values at 10 min during the recovery phase (P>0.1), BL concentration and RT remained increased (P<0.01). The abrupt increase in HR, BL and RT values observed immediately after the exercise indicates the high intensity of the effort performed. Similarly, BL concentration after the exercise exceeded the 4 mmol/L lactate threshold, suggesting a predominant anaerobic metabolism during effort. Although HR returned to pre-exercise values 10 min after the exercise, a more extensive recovery phase would be necessary for a total return to resting values, particularly for BL and RT. In greyhounds subjected to high-intensity exercise, HR, BL and RT were reliable physiological parameters to accurately assess the physiological response to effort. The use of sprint exercises over short racing distances could be useful for appropriately monitoring fitness in sporting dogs.

  11. Experiences of older people with dementia participating in a high-intensity functional exercise program in nursing homes: "While it's tough, it's useful".

    PubMed

    Lindelöf, Nina; Lundin-Olsson, Lillemor; Skelton, Dawn A; Lundman, Berit; Rosendahl, Erik

    2017-01-01

    The objective of the study was to describe the views and experiences of participation in a high-intensity functional exercise (HIFE) program among older people with dementia in nursing homes. The study design was a qualitative interview study with 21 participants (15 women), aged 74-96, and with a Mini-Mental State Examination score of 10-23 at study start. The HIFE-program comprises exercises performed in functional weight-bearing positions and including movements used in everyday tasks. The exercise was individually designed, supervised in small groups in the nursing homes and performed during four months. Interviews were performed directly after exercise sessions and field notes about the sessions were recorded. Qualitative content analysis was used for analyses. The analysis revealed four themes: Exercise is challenging but achievable; Exercise gives pleasure and strength; Exercise evokes body memories; and Togetherness gives comfort, joy, and encouragement. The intense and tailored exercise, adapted to each participant, was perceived as challenging but achievable, and gave pleasure and improvements in mental and bodily strength. Memories of previous physical activities aroused and participants rediscovered bodily capabilities. Importance of individualized and supervised exercise in small groups was emphasized and created feelings of encouragement, safety, and coherence. The findings from the interviews reinforces the positive meaning of intense exercise to older people with moderate to severe dementia in nursing homes. The participants were able to safely adhere to and understand the necessity of the exercise. Providers of exercise should consider the aspects valued by participants, e.g. supervision, individualization, small groups, encouragement, and that exercise involved joy and rediscovery of body competencies.

  12. Alterations in Aerobic Exercise Performance and Gait Economy Following High-Intensity Dynamic Stepping Training in Persons With Subacute Stroke.

    PubMed

    Leddy, Abigail L; Connolly, Mark; Holleran, Carey L; Hennessy, Patrick W; Woodward, Jane; Arena, Ross A; Roth, Elliot J; Hornby, T George

    2016-10-01

    Impairments in metabolic capacity and economy (O2cost) are hallmark characteristics of locomotor dysfunction following stroke. High-intensity (aerobic) training has been shown to improve peak oxygen consumption in this population, with fewer reports of changes in O2cost. However, particularly in persons with subacute stroke, inconsistent gains in walking function are observed with minimal associations with gains in metabolic parameters. The purpose of this study was to evaluate changes in aerobic exercise performance in participants with subacute stroke following high-intensity variable stepping training as compared with conventional therapy. A secondary analysis was performed on data from a randomized controlled trial comparing high-intensity training with conventional interventions, and from the pilot study that formed the basis for the randomized controlled trial. Participants 1 to 6 months poststroke received 40 or fewer sessions of high-intensity variable stepping training (n = 21) or conventional interventions (n = 12). Assessments were performed at baseline (BSL), posttraining, and 2- to 3-month follow-up and included changes in submaximal (Equation is included in full-text article.)O2 ((Equation is included in full-text article.)O2submax) and O2cost at fastest possible treadmill speeds and peak speeds at BSL testing. Significant improvements were observed in (Equation is included in full-text article.)O2submax with less consistent improvements in O2cost, although individual responses varied substantially. Combined changes in both (Equation is included in full-text article.)O2submax and (Equation is included in full-text article.)O2 at matched peak BSL speeds revealed stronger correlations to improvements in walking function as compared with either measure alone. High-intensity stepping training may elicit significant improvements in (Equation is included in full-text article.)O2submax, whereas changes in both peak capacity and economy better reflect gains in walking function. Providing high-intensity training to improve locomotor and aerobic exercise performance may increase the efficiency of rehabilitation sessions.Video Abstract available for more insights from the authors (see Supplemental Digital Content, http://links.lww.com/JNPT/A142).

  13. Design of the Resistance and Endurance exercise After ChemoTherapy (REACT) study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of exercise interventions after chemotherapy on physical fitness and fatigue.

    PubMed

    Kampshoff, Caroline S; Buffart, Laurien M; Schep, Goof; van Mechelen, Willem; Brug, Johannes; Chinapaw, Mai J M

    2010-11-30

    Preliminary studies suggest that physical exercise interventions can improve physical fitness, fatigue and quality of life in cancer patients after completion of chemotherapy. Additional research is needed to rigorously test the effects of exercise programmes among cancer patients and to determine optimal training intensity accordingly. The present paper presents the design of a randomized controlled trial evaluating the effectiveness and cost-effectiveness of a high intensity exercise programme compared to a low-to-moderate intensity exercise programme and a waiting list control group on physical fitness and fatigue as primary outcomes. After baseline measurements, cancer patients who completed chemotherapy are randomly assigned to either a 12-week high intensity exercise programme or a low-to-moderate intensity exercise programme. Next, patients from both groups are randomly assigned to immediate training or a waiting list (i.e. waiting list control group). After 12 weeks, patients of the waiting list control group start with the exercise programme they have been allocated to.Both interventions consist of equal bouts of resistance and endurance interval exercises with the same frequency and duration, but differ in training intensity. Additionally, patients of both exercise programmes are counselled to improve compliance and achieve and maintain an active lifestyle, tailored to their individual preferences and capabilities.Measurements will be performed at baseline (t = 0), 12 weeks after randomization (t = 1), and 64 weeks after randomization (t = 2). The primary outcome measures are cardiorespiratory fitness and muscle strength assessed by means of objective performance indicators, and self-reported fatigue. Secondary outcome measures include health-related quality of life, self-reported physical activity, daily functioning, body composition, mood and sleep disturbances, and return to work. In addition, compliance and satisfaction with the interventions will be evaluated. Potential moderation by pre- and post-illness lifestyle, health and exercise-related attitudes, beliefs and motivation will also be assessed. Finally, the cost-effectiveness of both exercise interventions will be evaluated. This randomized controlled trial will be a rigorous test of effects of exercise programmes for cancer patients after chemotherapy, aiming to contribute to evidence-based practice in cancer rehabilitation programmes. This study is registered at the Netherlands Trial Register (NTR2153).

  14. Misremembering Past Affect Predicts Adolescents' Future Affective Experience During Exercise.

    PubMed

    Karnaze, Melissa M; Levine, Linda J; Schneider, Margaret

    2017-09-01

    Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents' feelings during exercise. During the 1st semester of the school year, we assessed 6th-grade students' (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test and recalled their affect during the fitness test later that semester. During the 2nd semester, the same participants rated their affect during a moderate-intensity exercise task. Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences.

  15. Misremembering Past Affect Predicts Adolescents’ Future Affective Experience during Exercise

    PubMed Central

    Karnaze, Melissa M.; Levine, Linda J.; Schneider, Margaret

    2018-01-01

    Purpose Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents’ feelings during exercise. Method During the first semester of the school year, we assessed sixth grade students’ (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test, and recalled their affect during the fitness test later that semester. During the second semester, the same participants rated their affect during a moderate-intensity exercise task. Results Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise, and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. Conclusion These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences. PMID:28494196

  16. Benefits of exercise training and the correlation between aerobic capacity and functional outcomes and quality of life in elderly patients with coronary artery disease.

    PubMed

    Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long

    2014-10-01

    Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.

  17. Acute recovery from exercise in people with multiple sclerosis: an exploratory study on the effect of exercise intensities.

    PubMed

    Collett, Johnny; Meaney, Andy; Howells, Ken; Dawes, Helen

    2017-03-01

    Purpose A better understanding of how people with multiple sclerosis (pwMS) recover from exercise may help inform interventions. Methods We explored physiological and perceptual responses following exercise of different intensities, using a crossover exposure-response design, in 14 adults with multiple sclerosis (MS) and 9 controls. A cycling exercise test determined maximum capacity (Wpeak). Participants then performed 20-min exercise sessions relative to Wpeak (random order separated by 7 days): (1) 45% and (2) 60% continuous cycling and (3) 90% intermittent cycling (30 s cycling, 30 s rest). During a 45-min recovery period, tympanic temperature (Temp°C), exertion in breathing (RPEbr) and legs (RPEleg), and cortical excitability (MEParea) were measured. Results Eleven pwMS and eight controls completed the study. Controls performed better on the exercise test (p < 0.05), thus more absolute work during subsequent sessions. PwMS took longer to recover RPEleg with recovery time increasing with intensity (45%-6 min; 60%-15 min; 90%-35 min) and correlating with Temp°C. MEParea was significantly depressed in both groups at 45% and 60% (p < 0.001), in the MS group this also correlated with RPEleg. Conclusions Feelings of leg exertion may persist after exercise in some pwMS, especially at high intensities. This may relate to body temperature and, after continuous exercise, cortical excitability. These results support considering the recovery period post exercise and provide an insight into potential correlates of post-exercise fatigue. Implications for Rehabilitation A better understanding of how pwMS recover following exercise may help inform exercise prescription a long side fatigue management. This study showed that, in pwMS, the time taken to recover from feelings of leg fatigue increased with the intensity of the exercise session rather that total work performed and was related to increase in body temperature. The results of this relatively small study support the need to consider a recovery period after exercise and provide an insight into potential physiological correlates.

  18. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    PubMed

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  19. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms.

    PubMed

    Hazell, Tom J; Islam, Hashim; Townsend, Logan K; Schmale, Matt S; Copeland, Jennifer L

    2016-03-01

    The physiological control of appetite regulation involves circulating hormones with orexigenic (appetite-stimulating) and anorexigenic (appetite-inhibiting) properties that induce alterations in energy intake via perceptions of hunger and satiety. As the effectiveness of exercise to induce weight loss is a controversial topic, there is considerable interest in the effect of exercise on the appetite-regulating hormones such as acylated ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and pancreatic polypeptide (PP). Research to date suggests short-term appetite regulation following a single exercise session is likely affected by decreases in acylated ghrelin and increases in PYY, GLP-1, and PP. Further, this exercise-induced response may be intensity-dependent. In an effort to guide future research, it is important to consider how exercise alters the circulating concentrations of these appetite-regulating hormones. Potential mechanisms include blood redistribution, sympathetic nervous system activity, gastrointestinal motility, cytokine release, free fatty acid concentrations, lactate production, and changes in plasma glucose and insulin concentrations. This review of relevant research suggests blood redistribution during exercise may be important for suppressing ghrelin, while other mechanisms involving cytokine release, changes in plasma glucose and insulin concentrations, SNS activity, and muscle metabolism likely mediate changes in the anorexigenic signals PYY and GLP-1. Overall, changes in appetite-regulating hormones following acute exercise appear to be intensity-dependent, with increasing intensity leading to a greater suppression of orexigenic signals and greater stimulation of anorexigenic signals. However, there is less research on how exercise-induced responses in appetite-regulating hormones differ between sexes or different age groups. A better understanding of how exercise intensity and workload affect appetite across the sexes and life stages will be a powerful tool in developing more successful strategies for managing weight. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Recovery of damaged skeletal muscle in mdx mice through low-intensity endurance exercise.

    PubMed

    Frinchi, M; Macaluso, F; Licciardi, A; Perciavalle, V; Coco, M; Belluardo, N; Morici, G; Mudò, G

    2014-01-01

    The lack of dystrophin in mdx mice leads to cycles of muscle degeneration and regeneration processes. Various strategies have been proposed in order to reduce the muscle-wasting component of muscular dystrophy, including implementation of an exercise programme. The aim of this study was to examine how low-intensity endurance exercise affects the degeneration-regeneration process in dystrophic muscle of male mdx mice. Mice were subjected to low-intensity endurance exercise by running on a motorized Rota-Rod for 5 days/week for 6 weeks. Histomorphological analysis showed a significant reduction of measured inflammatory-necrotic areas in both gastrocnemius and quadriceps muscle of exercised mdx mice as compared to matched sedentary mdx mice. The degenerative-regenerative process was also evaluated by examining the protein levels of connexin 39 (Cx39), a specific gene expressed in injured muscles. Cx39 was not detected in sedentary wild type mice, whereas it was found markedly increased in sedentary mdx mice, revealing active muscle degeneration-regeneration process. These Cx39 protein levels were significantly reduced in muscles of mdx mice exercised for 30 and 40 days, revealing together with histomorphological analysis a strong reduction of degeneration process in mice subjected to low-intensity endurance exercise. Muscles of exercised mdx mice did not show significant changes in force and fatigue resistance as compared to sedentary mdx mice. Overall in this study we found that specific low-intensity endurance exercise induces a beneficial effect probably by reducing the degeneration of dystrophic muscle. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The effect of midday moderate-intensity exercise on postexercise hypoglycemia risk in individuals with type 1 diabetes.

    PubMed

    Davey, Raymond J; Howe, Warwick; Paramalingam, Nirubasini; Ferreira, Luis D; Davis, Elizabeth A; Fournier, Paul A; Jones, Timothy W

    2013-07-01

    Exercise increases the risk of hypoglycemia in type 1 diabetes. Recently we reported a biphasic increase in glucose requirements to maintain euglycemia after late-afternoon exercise, suggesting a unique pattern of delayed risk for nocturnal hypoglycemia. This study examined whether this pattern of glucose requirements occurs if exercise is performed earlier in the day. Ten adolescents with type 1 diabetes underwent a hyperinsulinemic euglycemic glucose clamp on 2 different occasions during which they either rested or performed 45 minutes of moderate-intensity exercise at midday. Glucose was infused to maintain euglycemia for 17 hours after exercise. The glucose infusion rate (GIR) to maintain euglycemia, glucose rates of appearance and disappearance, and levels of counterregulatory hormones were compared between conditions. GIRs to maintain euglycemia were not significantly different between groups at baseline (9.8 ± 1.4 and 9.5 ± 1.6 g/h before the exercise and rest conditions, respectively) and did not change in the rest condition throughout the study. In contrast, GIR increased more than 3-fold during exercise (from 9.8 ± 1.4 to 30.6 ± 4.7 g/h), fell within the first hour of recovery, but remained elevated until 11 hours after exercise before returning to baseline levels. The pattern of glucose requirements to maintain euglycemia in response to moderate-intensity exercise performed at midday suggests that the risk of exercise-mediated hypoglycemia increases during and for several hours after moderate-intensity exercise, with no evidence of a biphasic pattern of postexercise risk of hypoglycemia.

  2. Intensive Cardiorespiratory Exercise (ICE) to Remediate Mild Traumatic Brain Injury in Active Duty Service Members

    DTIC Science & Technology

    2018-03-01

    Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT AEx is a well-documented pathway to health and resilience, especially in ADSM. Regular... physical fitness testing. To monitor safety, AEx dynamics, and adherence throughout the intervention, ADSM will perform monthly a standard US Army...effect of ICE as an intervention. In this clinical trial, ADSM will be randomly assigned to either physical training enhanced with ICE (n=67) or usual

  3. Calcineurin-NFAT Signaling and Neurotrophins Control Transformation of Myosin Heavy Chain Isoforms in Rat Soleus Muscle in Response to Aerobic Treadmill Training.

    PubMed

    Liu, Wenfeng; Chen, Gan; Li, Fanling; Tang, Changfa; Yin, Dazhong

    2014-12-01

    This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC) isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neutrophin-3 (NT-3) in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD) rats were randomly divided into three groups: Control group (Con, n = 8), moderate-intensity aerobic exercise group (M-Ex, n = 8) and high-intensity aerobic exercise group (H-Ex, n = 8). We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01), while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01). In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01), with a more pronounced upregulation in the M-Ex group (p < 0.05). Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01), with the most significant increase in the H-Ex group (p < 0.01). In the rat soleus muscle, (1) CaN-NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2) Neurotrophins NGF, BDNF and NT-3 might play a role in the conversion of MyHC II isoform in response to high-intensity treadmill exercise. Key pointsEight weeks of moderate-intensity treadmill training induces the transformation MyHC IIA and MyHC IIB to MyHC IIX and MyHC I in the soleus muscles, while high-intensity exercise leads to transformation of MyHC IIX to MyHC IIA, MyHC IIB and MyHC I.MyHC I conversion in response to moderate-intensity aerobic exercise is mediated by calcineurin-NFATcl signaling.Eight weeks of moderate- and high-ntensity aerobic exercise induces the expression of NGF, BDNF and NT-3 in expression noted in rats subjected to high-intensity training. NGF and NT-3 expression in the striatum is lower than in the soleus muscle, while BDNF levels are similar. Neurotrophins may be involved in mediating MyHC II conversion in response to high-intensity aerobic exercise.

  4. Dedicated cardiac rehabilitation wearable sensor and its clinical potential.

    PubMed

    Lee, Hooseok; Chung, Heewon; Ko, Hoon; Jeong, Changwon; Noh, Se-Eung; Kim, Chul; Lee, Jinseok

    2017-01-01

    We describe a wearable sensor developed for cardiac rehabilitation (CR) exercise. To effectively guide CR exercise, the dedicated CR wearable sensor (DCRW) automatically recommends the exercise intensity to the patient by comparing heart rate (HR) measured in real time with a predefined target heart rate zone (THZ) during exercise. The CR exercise includes three periods: pre-exercise, exercise with intensity guidance, and post-exercise. In the pre-exercise period, information such as THZ, exercise type, exercise stage order, and duration of each stage are set up through a smartphone application we developed for iPhones and Android devices. The set-up information is transmitted to the DCRW via Bluetooth communication. In the period of exercise with intensity guidance, the DCRW continuously estimates HR using a reflected pulse signal in the wrist. To achieve accurate HR measurements, we used multichannel photo sensors and increased the chances of acquiring a clean signal. Subsequently, we used singular value decomposition (SVD) for de-noising. For the median and variance of RMSEs in the measured HRs, our proposed method with DCRW provided lower values than those from a single channel-based method and template-based multiple-channel method for the entire exercise stage. In the post-exercise period, the DCRW transmits all the measured HR data to the smartphone application via Bluetooth communication, and the patient can monitor his/her own exercise history.

  5. Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance.

    PubMed

    Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2016-04-01

    The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p < 0.001) and similarly in both groups after training. Muscle power also increased with training (≈27 %; p < 0.05), with no difference between groups. Both groups also improved their functional performance after training period (≈13 %; p < 0.001), with no difference between groups. The present study showed that TRT and PT using RPE scale to control intensity were significantly and similarly effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.

  6. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes?

    PubMed

    Gondin, Julien; Cozzone, Patrick J; Bendahan, David

    2011-10-01

    We aimed at providing an overview of the currently acknowledged benefits and limitations of neuromuscular electrical stimulation (NMES) training programs in both healthy individuals and in recreational and competitive athletes regarding muscle performance. Typical NMES resistance exercises are performed under isometric conditions and involve the application of electrical stimuli delivered as intermittent high frequencies trains (>40-50 Hz) through surface electrodes. NMES has been acknowledged as an efficient modality leading to significant improvements in isometric maximal voluntary strength. However, the resulting changes in dynamic strength, motor performance skills and explosive movements (i.e., jump performance, sprint ability) are still ambiguous and could only be obtained when NMES is combined with voluntary dynamic exercise such as plyometrics. Additionally, the effects of NMES on muscle fatigability are still poorly understood and required further investigations. While NMES effectiveness could be partially related to several external adjustable factors such as training intensity, current characteristics (e.g., intensity, pulse duration…) or the design of training protocols (number of contractions per session, number of sessions per week…), anatomical specificities (e.g., morphological organization of the axonal branches within the muscle) appear as the main factor accounting for the differences in NMES response. Overall, NMES cannot be considered as a surrogate training method, but rather as an adjunct to voluntary resistance training. The combination of these two training modalities should optimally improve muscle function.

  7. Effects of dynamic exercise intensity on the activation of hormone-sensitive lipase in human skeletal muscle

    PubMed Central

    Watt, Matthew J; Heigenhauser, George J F; Spriet, Lawrence L

    2003-01-01

    It has been proposed that hormone-sensitive lipase (HSL) regulates intramuscular triacylglycerol hydrolysis in skeletal muscle. The primary purpose of this study was to examine the early activation of HSL and the changes in the putative intramuscular and hormonal regulators of HSL activity at various aerobic exercise intensities. Eight male subjects cycled for 10 min at power outputs corresponding to 30, 60 and 90 % peak oxygen uptake (V̇O2,peak). Muscle samples were obtained at rest and following 1 and 10 min of exercise. Intramuscular triacylglycerol (mean ±s.e.m.: 24.3 ± 2.3 mmol (kg dry mass (DM))-1), long-chain fatty acyl CoA (13.9 ± 1.4 µmol (kg DM)-1) and HSL activity (1.87 ± 0.07 mmol min-1 (kg DM)-1)) were not different between trials at rest. HSL activity increased at 1 min of exercise at 30 and 60 % V̇O2,peak, and to a greater extent at 90 % V̇O2,peak. HSL activity remained elevated after 10 min of exercise at 30 and 60 % V̇O2,peak, and decreased at 90 % V̇O2,peak from the rates observed at 1 min (1 min: 3.41 ± 0.3 mmol min-1 (kg DM)-1; 10 min: 2.92 ± 0.26 mmol min-1 (kg DM)-1), P < 0.05). There were no effects of exercise power output or time on long-chain fatty acyl CoA content. At 90 % V̇O2,peak, skeletal muscle contents of ATP and phosphocreatine were decreased (P < 0.05), and free ADP and free AMP were increased (P < 0.05) during exercise. No changes in these metabolites occurred at 30 % V̇O2,peak and only modest changes were observed at 60 % V̇O2,peak. Plasma adrenaline increased (P < 0.05) during exercise at 90 % V̇O2,peak only. These data suggest that a factor related to the onset of exercise (e.g. Ca2+) activates HSL early in exercise. Given the activation of HSL early in exercise, at a time when intramuscular triacylglycerol hydrolysis and fat oxidation are considered to be negligible, we propose that the control of intramuscular triacylglycerol hydrolysis is not solely related to the level of HSL activation, but must also be regulated by postactivational factors. PMID:12562895

  8. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task

    PubMed Central

    Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.

    2016-01-01

    Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning. PMID:26901664

  9. Optimizing Cardiovascular Benefits of Exercise: A Review of Rodent Models

    PubMed Central

    Davis, Brittany; Moriguchi, Takeshi; Sumpio, Bauer

    2013-01-01

    Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health. PMID:24436579

  10. Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship

    PubMed Central

    Jandačka, Daniel; Beremlijski, Petr

    2011-01-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484

  11. Determination of strength exercise intensities based on the load-power-velocity relationship.

    PubMed

    Jandačka, Daniel; Beremlijski, Petr

    2011-06-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.

  12. Benefits of different intensity of aerobic exercise in modulating body composition among obese young adults: a pilot randomized controlled trial.

    PubMed

    Chiu, Chih-Hui; Ko, Ming-Chen; Wu, Long-Shan; Yeh, Ding-Peng; Kan, Nai-Wen; Lee, Po-Fu; Hsieh, Jenn-Woei; Tseng, Ching-Yu; Ho, Chien-Chang

    2017-08-24

    The aim of present study was to compare the effects of different aerobic exercise intensities and energy expenditures on the body composition of sedentary obese college students in Taiwan. Forty-eight obese participants [body mass index (BMI) ≥ 27 kg/m 2 , age 18-26 years] were randomized into four equal groups (n = 12): light-intensity training group (LITG), 40%-50% heart rate reserve (HRR); middle-intensity training group (MITG), 50%-70% HRR; high-intensity training group (HITG), 70%-80% HRR; and control group (CG). The aerobic exercise training program was conducted for 60 min per day on a treadmill 3 days per week for 12 weeks. All participant anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, the anthropometric indices did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG and MITG had significantly more changes in body weight, waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) than the LITG. The changes in BMI and body fat percentage differed among all four groups (p < 0.05). A 12-week high-intensity exercise intervention with high energy expenditure can considerably reduce body weight, body fat, WC, WHR, and WHtR, whereas a light-intensity exercise intervention can significantly reduce body weight and body fat. Current Controlled Trials TPECTR09831410900 , registered on 24 th Dec 2009.

  13. Book Analysis of Arms and Insecurity in the Persian Gulf.

    DTIC Science & Technology

    1988-04-01

    AND P. Exercise induced changes in blood ammonia levels in humans. Eur. VANAmEE. Respiratory alkalosis accompanying ammonia toxicity. J. AppL PhysioL...HA. to ensure uniform exercise intensity. Respiratory gas exchange and ventilation during ex- Submaximal Exercise ercise were measured using a...BTPS, 02 consumption (Vo 2) and CO2 group. Relative exercise intensity (%Vo, mx) was not production converted to STPD, and respiratory exchange

  14. A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes.

    PubMed

    Bussau, V A; Ferreira, L D; Jones, T W; Fournier, P A

    2007-09-01

    We investigated whether a 10-s maximal sprint effort performed immediately prior to moderate-intensity exercise provides another means to counter the rapid fall in glycaemia associated with moderate-intensity exercise in individuals with type 1 diabetes. Seven complication-free type 1 diabetic males (21.6 +/- 3.6 years; mean+/-SD) with HbA(1c) levels of 7.4 +/- 0.7% injected their normal morning insulin dose and ate their usual breakfast. When post-meal glycaemia fell to approximately 11 mmol/l, participants were asked to perform a 10-s all-out sprint (sprint trial) or to rest (control trial) immediately before cycling at 40% of peak rate of oxygen consumption for 20 min, with both trials conducted in a random counterbalanced order. Sprinting did not affect the rapid fall in glycaemia during the subsequent bout of moderate-intensity exercise (2.9 +/- 0.4 mmol/l in 20 min; p = 0.00; mean+/-SE). However, during the following 45 min of recovery, glycaemia in the control trial decreased by 1.23 +/- 0.60 mmol/l (p = 0.04) while remaining stable in the sprint trial, subsequently decreasing in this latter trial at a rate similar to that in the control trial. The large increase in noradrenaline (norepinephrine) (p = 0.005) and lactate levels (p = 0.0005) may have contributed to the early post-exercise stabilisation of glycaemia in the sprint trial. During recovery, adrenaline (epinephrine) and NEFA levels increased marginally in the sprint trial, but other counter-regulatory hormones did not change significantly (p < 0.05). A 10-s sprint performed immediately prior to moderate-intensity exercise prevents glycaemia from falling during early recovery from moderate-intensity exercise in individuals with type 1 diabetes.

  15. Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue.

    PubMed

    Mohr, Magni; Nordsborg, Nikolai; Nielsen, Jens Jung; Pedersen, Lasse Danneman; Fischer, Christian; Krustrup, Peter; Bangsbo, Jens

    2004-07-01

    Accumulation of K+ in skeletal muscle interstitium during intense exercise has been suggested to cause fatigue in humans. The present study examined interstitial K+ kinetics and fatigue during repeated, intense, exhaustive exercise in human skeletal muscle. Ten subjects performed three repeated, intense (61.6+/-4.1 W; mean+/-SEM), one-legged knee extension exercise bouts (EX1, EX2 and EX3) to exhaustion separated by 10-min recovery periods. Interstitial [K+] ([K+]interst) in the vastus lateralis muscle were determined using microdialysis. Time-to-fatigue decreased progressively (P<0.05) during the protocol (5.1+/-0.4, 4.2+/-0.3 and 3.2+/-0.2 min for EX1, EX2 and EX3 respectively). Prior to these bouts, [K+]interst was 4.1+/-0.2, 4.8+/-0.2 and 5.2+/-0.2 mM, respectively. During the initial 1.5 min of exercise the accumulation rate of interstitial K+ was 85% greater (P<0.05) in EX1 than in EX3. At exhaustion [K+]interst was 11.4+/-0.8 mM in EX1, which was not different from that in EX2 (10.4+/-0.8 mM), but higher (P<0.05) than in EX3 (9.1+/-0.3 mM). The study demonstrated that the rate of accumulation of K+ in the muscle interstitium declines during intense repetitive exercise. Furthermore, whilst [K+]interst at exhaustion reached levels high enough to impair performance, the concentration decreased with repeated exercise, suggesting that accumulation of interstitial K+ per se does not cause fatigue when intense exercise is repeated.

  16. Acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation.

    PubMed

    Trombold, Justin R; Christmas, Kevin M; Machin, Daniel R; Kim, Il-Young; Coyle, Edward F

    2013-03-15

    Acute exercise has been shown to attenuate postprandial plasma triglyceride elevation (PPTG). However, the direct contribution of exercise intensity is less well understood. The purpose of this study was to examine the effects of exercise intensity on PPTG and postprandial fat oxidation. One of three experimental treatments was performed in healthy young men (n = 6): nonexercise control (CON), moderate-intensity exercise (MIE; 50% Vo2peak for 60 min), or isoenergetic high-intensity exercise (HIE; alternating 2 min at 25% and 2 min at 90% Vo2peak). The morning after the exercise, a standardized meal was provided (16 kcal/kg BM, 1.02 g fat/kg, 1.36 g CHO/kg, 0.31 g PRO/kg), and measurements of plasma concentrations of triglyceride (TG), glucose, insulin, and β-hydroxybutyrate were made in the fasted condition and hourly for 6 h postprandial. Indirect calorimetry was used to determine fat oxidation in the fasted condition and 2, 4, and 6 h postprandial. Compared with CON, both MIE and HIE significantly attenuated PPTG [incremental AUC; 75.2 (15.5%), P = 0.033, and 54.9 (13.5%), P = 0.001], with HIE also significantly lower than MIE (P = 0.03). Postprandial fat oxidation was significantly higher in MIE [83.3 (10.6%) of total energy expenditure] and HIE [89.1 (9.8) %total] compared with CON [69.0 (16.1) %total, P = 0.039, and P = 0.018, respectively], with HIE significantly greater than MIE (P = 0.012). We conclude that, despite similar energy expenditure, HIE was more effective than MIE for lowering PPTG and increasing postprandial fat oxidation.

  17. Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over Pedometers.

    PubMed

    Miyauchi, Masaaki; Toyoda, Masao; Kaneyama, Noriko; Miyatake, Han; Tanaka, Eitaro; Kimura, Moritsugu; Umezono, Tomoya; Fukagawa, Masafumi

    2016-01-01

    We compared the efficacy of activity monitor (which displays exercise intensity and number of steps) versus that of pedometer in exercise therapy for patients with type 2 diabetes. The study subjects were divided into the activity monitor group ( n = 92) and pedometer group ( n = 95). The primary goal was improvement in hemoglobin A1c (HbA1c). The exercise target was set at 8,000 steps/day and 20 minutes of moderate-intensity exercise (≥3.5 metabolic equivalents). The activity monitor is equipped with a triple-axis accelerometer sensor capable of measuring medium-intensity walking duration, number of steps, walking distance, calorie consumption, and total calorie consumption. The pedometer counts the number of steps. Blood samples for laboratory tests were obtained during the visits. The first examination was conducted at the start of the study and repeated at 2 and 6 months. A significant difference in the decrease in HbA1c level was observed between the two groups at 2 months. The results suggest that the use of activity level monitor that displays information on exercise intensity, in addition to the number of steps, is useful in exercise therapy as it enhances the concept of exercise therapy and promotes lowering of HbA1c in diabetic patients.

  18. Acute post-exercise energy and macronutrient intake in lean and obese youth: a systematic review and meta-analysis.

    PubMed

    Thivel, D; Rumbold, P L; King, N A; Pereira, B; Blundell, J E; Mathieu, M-E

    2016-10-01

    This review aims to determine if acute exercise affects subsequent energy and macronutrients intake in obese and non-obese children and adolescents. Databases were searched between January 2015 and December 2015 for studies reporting energy and/or macronutrients intake immediately after an acute exercise and control condition, in children and adolescents. From the initial 118 references found, 14 were included for subsequent analysis after screening representing 31 acute exercise conditions that varied in intensity, duration and modality. One study found increased energy intake after exercise, seven decreased and 23 revealed no change. The meta-analysis revealed a significant effect of acute exercise on intake in obese but not in lean youth by a mean difference of -0.430 (95% confidence interval=-0.703 to -0.157, P=0.002) displaying low heterogeneity (I 2 =0.000; Q=5.875; d f =9, P=0.752). The analysis showed that intense exercise only reduces intake in obese children (no intensity effect in lean). Unchanged macronutrients intake was reported in nine studies as opposed to three which found modified lipids, protein and/or carbohydrate intake. Although acute exercise does not affect energy intake in lean, it appears to reduced food intake in obese youth when intense, without altering the macronutrients composition of the meal.

  19. Association of von Willebrand factor blood levels with exercise hypertension.

    PubMed

    Nikolic, Sonja B; Adams, Murray J; Otahal, Petr; Edwards, Lindsay M; Sharman, James E

    2015-05-01

    A hypertensive response to moderate intensity exercise (HRE) is associated with increased cardiovascular risk. The mechanisms of an HRE are unclear, although previous studies suggest this may be due to haemostatic and/or haemodynamic factors. We investigated the relationships between an HRE with haemostatic and hemodynamic indices. Sixty-four participants (57 ± 10 years, 71 % male) with indication for exercise stress testing underwent cardiovascular assessment at rest and during moderate intensity exercise, from which 20 participants developed an HRE (defined as moderate exercise systolic BP ≥ 170 mmHg/men and ≥ 160 mmHg/women). Rest, exercise and post-exercise blood samples were analysed for haemostatic markers, including von Willebrand factor (vWf), and haemodynamic measures of brachial and central blood pressure (BP), aortic stiffness and systemic vascular resistance index (SVRi). HRE participants had higher rest vWf compared with normotensive response to exercise (NRE) participants (1,927 mU/mL, 95 % CI 1,240-2,615, vs. 1,129 mU/mL, 95 % CI 871-1,386; p = 0.016). vWf levels significantly decreased from rest to post-exercise in HRE participants (p = 0.005), whereas vWf levels significantly increased from rest to exercise in NRE participants (p = 0.030). HRE participants also had increased triglycerides, rest BP, aortic stiffness and exercise SVRi (p < 0.05 for all). Rest vWf predicted exercise brachial systolic BP (β = 0.220, p = 0.043; adjusted R (2) = 0.451, p < 0.001) independent of age, sex, body mass index, triglycerides, rest brachial systolic BP and aortic stiffness. Increased rest blood levels of vWf are independently associated with moderate intensity exercise systolic BP. These findings implicate abnormalities in haemostasis as a possible factor contributing to HRE at moderate intensity.

  20. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.

    PubMed

    Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R

    2018-03-01

    The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.

  1. The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency.

    PubMed

    Gutmann, B; Zimmer, P; Hülsdünker, T; Lefebvre, J; Binnebößel, S; Oberste, M; Bloch, W; Strüder, H K; Mierau, A

    2018-03-06

    Acute physical exercise (APE) induces an increase in the individual alpha peak frequency (iAPF), a cortical parameter associated with neural information processing speed. The aim of this study was to further scrutinize the influence of different APE intensities on post-exercise iAPF as well as its time course after exercise cessation. 95 healthy young (18-35 years) subjects participated in two randomized controlled experiments (EX1 and EX2). In EX1, all participants completed a graded exercise test (GXT) until exhaustion and were randomly allocated into different delay groups (immediately 0, 30, 60 and 90 min after GXT). The iAPF was determined before, immediately after as well as after the group-specific delay following the GXT. In EX2, participants exercised for 35 min at either 45-50%, 65-70% or 85-90% of their maximum heart rate (HR max ). The iAPF was determined before, immediately after as well as 20 min after exercise cessation. In EX1, the iAPF was significantly increased immediately after the GXT in all groups. This effect was not any more detectable after 30 min following exercise cessation. In EX2, a significant increase of the iAPF was found only after high-intensity (85-90% HR max ) exercise. The results indicate intense or exhaustive physical exercise is required to induce a transient increase in the iAPF that persists about 30 min following exercise cessation. Based on these findings, further research will have to scrutinize the behavioral implications associated with iAPF modulations following exercise. Copyright © 2018. Published by Elsevier B.V.

  2. Kinetic quantification of plyometric exercise intensity.

    PubMed

    Ebben, William P; Fauth, McKenzie L; Garceau, Luke R; Petushek, Erich J

    2011-12-01

    Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.

  3. An exploratory analysis of changes in mood, anxiety and craving from pre- to post-single sessions of exercise, over 12 weeks, among patients with alcohol dependence.

    PubMed

    Brown, Richard A; Prince, Mark A; Minami, Haruka; Abrantes, Ana M

    2016-10-01

    Aerobic exercise is currently being studied as a relapse prevention strategy for individuals with alcohol use disorders. Negative affect and cravings predict relapse. The acute effects of moderate-intensity exercise have been shown to improve mood and reduce craving. The current study examined the acute effects of exercise on changes in mood, anxiety, and craving from pre- to post-exercise at each week of a 12-week moderate intensity exercise intervention with sedentary alcohol dependent adults. Twenty-six participants in the exercise condition of a larger randomized clinical trial (Brown et al., 2014) exercised in small groups at moderate intensity for 20 to 40 minutes per session. Participants rated mood, anxiety, and cravings in the present moment before and after each exercise session over the course of the 12-week intervention. Data analyses focused on effect size and interval estimation. Joinpoint analysis was used to model longitudinal trends. Increases in mood and decreases in anxiety and craving were apparent at every session. Effect size estimates revealed that average change from pre- to post-exercise was in the small to medium range with some individual sessions reaching the large range. Joinpoint analyses revealed that the pre-post exercise changes in mood increased, anxiety remained stable, and craving diminished across the 12 weeks. This study provides provisional support for a change in mood, anxiety and alcohol cravings for the role of exercise in the early recovery period for alcohol dependence. Acute single bouts of moderate-intensity exercise may help individuals with alcohol dependence manage mood, anxiety, and craving thereby reducing relapse risk, but further research is needed with a more rigorous study design.

  4. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults

    PubMed Central

    Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  5. The effects of aerobic exercise for persons with migraine and co-existing tension-type headache and neck pain. A randomized, controlled, clinical trial.

    PubMed

    Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Linde, Mattias; Gard, Gunvor; Jensen, Rigmor Højland

    2018-01-01

    Aim To evaluate aerobic exercise in migraine and co-existing tension-type headache and neck pain. Methods Consecutively recruited persons with migraine and co-existing tension-type headache and neck pain were randomized into an exercise group or control group. Aerobic exercise consisted of bike/cross-trainer/brisk walking for 45 minutes, three times/week. Controls continued usual daily activities. Pain frequency, intensity, and duration; physical fitness, level of physical activity, well-being and ability to engage in daily activities were assessed at baseline, after treatment and at follow-up. Results Fifty-two persons completed the study. Significant between-group improvements for the exercise group were found for physical fitness, level of physical activity, migraine burden and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Within the exercise group, significant reduction was found for migraine frequency, pain intensity and duration, neck pain intensity, and burden of migraine; an increase in physical fitness and well-being. Conclusions Exercise significantly reduced the burden of migraine and the ability to engage in physical activity because of reduced impact of tension-type headache and neck pain. Exercise also reduced migraine frequency, pain intensity and duration, although this was not significant compared to controls. These results emphasize the importance of regular aerobic exercise for reduction of migraine burden.

  6. Plasma ghrelin levels during exercise - effects of intensity and duration.

    PubMed

    Erdmann, Johannes; Tahbaz, Rana; Lippl, Florian; Wagenpfeil, Stefan; Schusdziarra, Volker

    2007-10-04

    Ghrelin, a recently discovered hormone of gastric origin has been shown to stimulate appetite and food intake. In man it is considered to play a role in energy homeostasis and regulation of somatropic function. As exercise affects hunger/satiety sensations and food intake, at least under some experimental conditions, we investigated the effect of exercise intensity and duration on ghrelin release and subsequent ad libitum food intake in normal weight subjects. Bicycle exercise on an ergometer for 30 min at 50 W which was below the aerob-anaerobic threshold led to an increase of ghrelin which remained unchanged during the higher intensity at 100 W. Respective hunger/satiety ratings and subsequent food intake and postprandial ghrelin suppression were identical and not different from controls. In a second group 7 subjects cycled at 50 W for 30, 60 and 120 min, respectively. Ghrelin concentrations rose significantly by 50-70 pg/ml above baseline for the respective period of exercise. While postexercise premeal ghrelin levels were not significantly different subsequent food intake after 120 min of cycling was significantly greater compared to control, 30 min and 60 min exercise, respectively. The present data suggest that low rather than high-intensity exercise stimulates ghrelin levels independent of exercise duration. Stimulation of food intake during prolonged exercise is most likely not due to changes of ghrelin.

  7. Moderate intensity sports and exercise is associated with glycaemic control in women with gestational diabetes.

    PubMed

    Ehrlich, S F; Hedderson, M M; Brown, S D; Sternfeld, B; Chasan-Taber, L; Feng, J; Adams, J; Ching, J; Crites, Y; Quesenberry, C P; Ferrara, A

    2017-10-01

    To assess the association of regular, unsupervised sports and exercise during pregnancy, by intensity level, with glycaemic control in women with gestational diabetes (GDM). Prospective cohort study of 971 women who, shortly after being diagnosed with GDM, completed a Pregnancy Physical Activity Questionnaire assessing moderate and vigorous intensity sports and exercise in the past 3 months. Self-monitored capillary glucose values were obtained for the 6-week period following the questionnaire, with optimal glycaemic control defined≥80% values meeting the targets<5.3mmol/L for fasting and <7.8mmol/L 1-hour after meals. Logistic regression estimated the odds of achieving optimal control; linear regression estimated activity level-specific least square mean glucose, as well as between-level mean glucose differences. For volume of moderate intensity sports and exercise ([MET×hours]/week), the highest quartile, compared to the lowest, had significantly increased odds of optimal control (OR=1.82 [95% CI: 1.06-3.14] P=0.03). There were significant trends for decreasing mean 1-hour post breakfast, lunch and dinner glycaemia with increasing quartile of moderate activity (all P<0.05). Any participation in vigorous intensity sports and exercise was associated with decreased mean 1-hour post breakfast and lunch glycaemia (both P<0.05). No associations were observed for fasting. Higher volumes of moderate intensity sports and exercise, reported shortly after GDM diagnosis, were significantly associated with increased odds of achieving glycaemic control. Clinicians should be aware that unsupervised moderate intensity sports and exercise performed in mid-pregnancy aids in subsequent glycaemic control among women with GDM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Potential Universal Application of High-intensity Interval Training from Athletes and Sports Lovers to Patients.

    PubMed

    Azuma, Koichiro; Matsumoto, Hideo

    2017-06-25

    Recently, high-intensity interval training (HIIT) has received much attention as a promising exercise option not only to improve aerobic fitness, but also to prevent and improve lifestyle-related diseases. Epidemiological studies have shown that the exercise volume, as determined by the product of exercise intensity, duration, and frequency, has been shown to be important for improvements in muscle mitochondrial activity and subsequent improvements in aerobic fitness, insulin sensitivity, and metabolic variables. Therefore, continuous moderate-intensity training has been widely recommended. On the other hand, the main contributor of HIIT to improvements in aerobic fitness and metabolic variables is its high-intensity nature, and many recent studies have shown results favoring HIIT when compared with conventional continuous training, despite its shorter exercise duration and smaller exercise volume. In this review, we aim to show the possible universal application of HIIT in a hospital setting, where athletes, sports lovers, and patients have sought medical advice and have the opportunity to undergo detailed evaluations, including an exercise stress test. For athletes, HIIT is mandatory to achieve further improvements in aerobic fitness. For patients, though higher levels of motivation and careful evaluation are required, the time constraints of HIIT are smaller and both aerobic and resistance training can be expected to yield favorable results because of the high-intensity nature of HIIT.

  9. Anterior cerebral blood velocity and end-tidal CO2 responses to exercise differ in children and adults.

    PubMed

    Ellis, Lindsay A; Ainslie, Philip N; Armstrong, Victoria A; Morris, Laura E; Simair, Ryan G; Sletten, Nathan R; Tallon, Christine M; McManus, Ali M

    2017-06-01

    Little is known about the response of the cerebrovasculature to acute exercise in children and how these responses might differ with adults. Therefore, we compared changes in middle cerebral artery blood velocity (MCAV mean ), end-tidal Pco 2 ([Formula: see text]), blood pressure, and minute ventilation (V̇e) in response to incremental exercise between children and adults. Thirteen children [age: 9 ± 1 (SD) yr] and thirteen sex-matched adults (age: 25 ± 4 yr) completed a maximal exercise test, during which MCAV mean , [Formula: see text], and V̇e were measured continuously. These variables were measured at rest, at exercise intensities specific to individual ventilatory thresholds, and at maximum. Although MCAV mean was higher at rest in children compared with adults, there were smaller increases in children (1-12%) compared with adults (12-25%) at all exercise intensities. There were alterations in [Formula: see text] with exercise intensity in an age-dependent manner [ F (2.5,54.5) = 7.983, P < 0.001; η 2 = 0.266], remaining stable in children with increasing exercise intensity (37-39 mmHg; P > 0.05) until hyperventilation-induced reductions following the respiratory compensation point. In adults, [Formula: see text] increased with exercise intensity (36-45 mmHg, P < 0.05) until the ventilatory threshold. From the ventilatory threshold to maximum, adults showed a greater hyperventilation-induced hypocapnia than children. These findings show that the relative increase in MCAV mean during exercise was attenuated in children compared with adults. There was also a weaker relationship between MCAV mean and [Formula: see text] during exercise in children, suggesting that cerebral perfusion may be regulated by different mechanisms during exercise in the child. NEW & NOTEWORTHY These findings provide the first direct evidence that exercise increases cerebral blood flow in children to a lesser extent than in adults. Changes in end-tidal CO 2 parallel changes in cerebral perfusion in adults but not in children, suggesting age-dependent regulatory mechanisms of cerebral blood flow during exercise. Copyright © 2017 the American Physiological Society.

  10. Acute resistance exercise with blood flow restriction in elderly hypertensive women: haemodynamic, rating of perceived exertion and blood lactate.

    PubMed

    Pinto, Roberta R; Karabulut, Murat; Poton, Roberto; Polito, Marcos D

    2018-01-01

    This study aimed to compare haemodynamic, rating of perceived exertion and blood lactate responses during resistance exercise with blood flow restriction (BFR) compared with traditional high-intensity resistance exercise in hypertensive older women. Eighteen hypertensive women (age = 67·0 ± 1·7 years.) undertook three random sessions: (i) three sets; 10 repetitions; 20% of one repetition maximum (1RM) with BFR; (ii) three sets; 10 repetitions; 65% of 1RM; without BFR; and (iii) no-exercise with BFR. The exercise sessions were performed on knee extension equipment. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV) and cardiac output (CO) were significantly higher (P<0·05) in all sets of exercise sessions than the control. No statistically significant differences were detected between exercise sessions. However, SBP, DBP and systemic vascular resistance were higher (P<0·05) and SV and CO were lower (P<0·05) during the rest intervals in the session with BFR. The perceived exertion was significantly higher (P<0·01) in the 1st (4·8 ± 0·4 versus 3·1 ± 0·3), 2nd (7·3 ± 0·4 versus 5·7 ± 0·4) and 3rd sets (8·6 ± 0·5 versus 7·5 ± 0·4) of the traditional high-intensity resistance exercise compared with the exercise with BFR. Blood lactate was higher (P<0·05) in the traditional high-intensity resistance exercise (6·2 ± 0·7 mmol) than in the exercise with BFR (4·5 ± 0·4 mmol). In comparison with high-intensity resistance exercise, low-intensity resistance exercise with BFR can elicit: (i) same haemodynamic values during exercise; (ii) lower rating of perceived exertion; (iii) lower blood lactate; (iv) higher haemodynamic demand during the rest intervals. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Influence of exercise on nutritional requirements.

    PubMed

    Pendergast, D R; Meksawan, K; Limprasertkul, A; Fisher, N M

    2011-03-01

    There is no consensus on the best diet for exercise, as many variables influence it. We propose an approach that is based on the total energy expenditure of exercise and the specific macro- and micronutrients used. di Prampero quantified the impact of intensity and duration on the energy cost of exercise. This can be used to determine the total energy needs and the balance of fats and carbohydrates (CHO). There are metabolic differences between sedentary and trained persons, thus the total energy intake to prevent overfeeding of sedentary persons and underfeeding athletes is important. During submaximal sustained exercise, fat oxidation (FO) plays an important role. This role is diminished and CHO's role increases as exercise intensity increases. At super-maximal exercise intensities, anaerobic glycolysis dominates. In the case of protein and micronutrients, specific recommendations are required. We propose that for submaximal exercise, the balance of CHO and fat favors fat for longer exercise and CHO for shorter exercise, while always maintaining the minimal requirements of each (CHO: 40% and fat: 30%). A case for higher protein (above 15%) as well as creatine supplementation for resistance exercise has been proposed. One may also consider increasing bicarbonate intake for exercise that relies on anaerobic glycolysis, whereas there appears to be little support for antioxidant supplementation. Insuring minimal levels of substrate will prevent exercise intolerance, while increasing some components may increase exercise tolerance.

  12. Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity.

    PubMed

    Goršič, Maja; Cikajlo, Imre; Novak, Domen

    2017-03-23

    People with chronic arm impairment should exercise intensely to regain their abilities, but frequently lack motivation, leading to poor rehabilitation outcome. One promising way to increase motivation is through interpersonal rehabilitation games, which allow patients to compete or cooperate together with other people. However, such games have mainly been evaluated with unimpaired subjects, and little is known about how they affect motivation and exercise intensity in people with chronic arm impairment. We designed four different arm rehabilitation games that are played by a person with arm impairment and their unimpaired friend, relative or occupational therapist. One is a competitive game (both people compete against each other), two are cooperative games (both people work together against the computer) and one is a single-player game (played only by the impaired person against the computer). The games were played by 29 participants with chronic arm impairment, of which 19 were accompanied by their friend or relative and 10 were accompanied by their occupational therapist. Each participant played all four games within a single session. Participants' subjective experience was quantified using the Intrinsic Motivation Inventory questionnaire after each game, as well as a final questionnaire about game preferences. Their exercise intensity was quantified using wearable inertial sensors that measured hand velocity in each game. Of the 29 impaired participants, 12 chose the competitive game as their favorite, 12 chose a cooperative game, and 5 preferred to exercise alone. Participants who chose the competitive game as their favorite showed increased motivation and exercise intensity in that game compared to other games. Participants who chose a cooperative game as their favorite also showed increased motivation in cooperative games, but not increased exercise intensity. Since both motivation and intensity are positively correlated with rehabilitation outcome, competitive games have high potential to lead to functional improvement and increased quality of life for patients compared to conventional rehabilitation exercises. Cooperative games do not increase exercise intensity, but could still increase motivation of patients who do not enjoy competition. However, such games need to be tested in longer, multisession studies to determine whether the observed increases in motivation and exercise intensity persist over a longer period of time and whether they positively affect rehabilitation outcome. The study is not a clinical trial. While human subjects are involved, they participate in a single-session evaluation of a rehabilitation game rather than a full rehabilitation intervention, and no health outcomes are examined.

  13. Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note

    PubMed Central

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Kujach, Sylwester; Kato, Morimasa; Soya, Hideaki

    2014-01-01

    [Purpose] Functional near-infrared spectroscopy (fNIRS) provides functional imaging of cortical activations by measuring regional oxy- and deoxy-hemoglobin (Hb) changes in the forehead during a cognitive task. There are, however, potential problems regarding NIRS signal contamination by non-cortical hemodynamic (NCH) variables such as skin blood flow, middle cerebral artery blood flow, and heart rate (HR), which are further complicated during acute exercise. It is thus necessary to determine the appropriate post-exercise timing that allows for valid NIRS assessment during a task without any increase in NCH variables. Here, we monitored post-exercise changes in NCH parameters with different intensities of exercise. [Methods] Fourteen healthy young participants cycled 30, 50 and 70% of their peak oxygen uptake (Vo2peak) for 10 min per intensity, each on different days. Changes in skin blood flow velocity (SBFv), middle cerebral artery mean blood velocity (MCA Vmean) and HR were monitored before, during, and after the exercise. [Results] Post-exercise levels of both SBFv and HR in contrast to MCA Vmean remained high compared to basal levels and the times taken to return to baseline levels for both parameters were delayed (2-8 min after exercise), depending upon exercise intensity. [Conclusion] These results indicate that the delayed clearance of NCH variables of up to 8 min into the post-exercise phase may contaminate NIRS measurements, and could be a limitation of NIRS-based neuroimaging studies. PMID:25671198

  14. Nandrolone Plus Moderate Exercise Increases the Susceptibility to Lethal Arrhythmias

    PubMed Central

    Ghorbani Baravati, Hamideh; Joukar, Siyavash; Fathpour, Hossein; Kordestani, Zeinab

    2015-01-01

    Background: Until now, no experimental study has directly assessed the arrhythmogenesis of chronic consumption of anabolic androgenic steroids along with moderate-intensity endurance exercise. Objectives: We evaluated the influence of integration of anabolic androgenic steroids along with moderate-intensity endurance exercise on susceptibility to lethal ventricular arrhythmias in rat. Materials and Methods: The animal groups were as follows: control group (CTL); exercise group (EX) which were under 6 weeks of treadmill exercise; nandrolone group (Nan) which received 5 mg/kg of nandrolone decanoate twice a week; vehicle group (Arach) which received Arachis oil (solvent of nandrolone); trained vehicle group (Arach + Ex); and trained nandrolone group (Nan + Ex). One day after ending of the intervention period, arrhythmia was inducted by intravenous infusion of aconitine and ventricular arrhythmias were recorded. Then malondialdehyde (MDA) and glutathione peroxidase (GPX) of heart tissue were measured. Results: Nandrolone, exercise, and their combination were associated with heart hypertrophy. Exercise could prevent the incremental effect of nandrolone on MDA/GPX ratio. Chronic administration of nandrolone with moderate-intensity endurance exercise had no significant effect on blood pressure, heart rate, and basal electrocardiographic parameters. Combination of nandrolone and exercise significantly increased the incidence of ventricular fibrillation (VF) and reduced the VF latency (P < 0.05). Conclusions: The findings suggest that chronic coadministration of nandrolone with moderate-intensity endurance exercise facilitates the VF occurrence in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality. PMID:26396972

  15. Patterning of physiological and affective responses in older active adults during a maximal graded exercise test and self-selected exercise.

    PubMed

    Smith, Ashleigh E; Eston, Roger; Tempest, Gavin D; Norton, Belinda; Parfitt, Gaynor

    2015-09-01

    The American College of Sports Medicine has highlighted the importance of considering the physiological and affective responses to exercise when setting exercise intensity. Here, we examined the relationship between exercise intensity and physiological and affective responses in active older adults. Eighteen participants (60-74 years; 64.4 ± 3.9; 8 women) completed a maximal graded exercise test (GXT) on a treadmill. Since time to exhaustion in the GXT differed between participants, heart rate (HR), oxygen consumption (VO2), affective valence (affect) and rating of perceived exertion (RPE) were expressed relative to the individually determined ventilatory threshold (%atVT). During the GXT, VO2, HR and RPE increased linearly (all P < 0.01). Affect declined initially (but remained positive) (P = 0.03), stabilised around VT (still positive) (P > 0.05) and became negative towards the end of the test (P < 0.01). In a subsequent session, participants completed a 20-min bout of self-selected exercise (at a preferred intensity). Initially, participants chose to exercise below VT (88.2 ± 17.4 %VO2atVT); however, the intensity was adjusted to work at, or above VT (107.7 ± 19.9 %VO2atVT) after 10 min (P < 0.001), whilst affect remained positive. Together, these findings indicate that exercise around VT, whether administered during an exercise test, or self-selected by the participant, is likely to result in positive affective responses in older adults.

  16. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    PubMed

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  17. Trunk muscle exercises as a means of improving postural stability in people with Parkinson's disease: a protocol for a randomised controlled trial.

    PubMed

    Hubble, Ryan P; Naughton, Geraldine A; Silburn, Peter A; Cole, Michael H

    2014-12-31

    Exercise has been shown to improve clinical measures of strength, balance and mobility, and in some cases, has improved symptoms of tremor and rigidity in people with Parkinson's disease (PD). However, to date, no research has examined whether improvements in trunk control can remedy deficits in dynamic postural stability in this population. The proposed randomised controlled trial aims to establish whether a 12-week exercise programme aimed at improving dynamic postural stability in people with PD; (1) is more effective than education; (2) is more effective when training frequency is increased; and (3) provides greater long-term benefits than education. Forty-five community-dwelling individuals diagnosed with idiopathic PD with a falls history will be recruited. Participants will complete baseline assessments including tests of cognition, vision, disease severity, fear of falling, mobility and quality of life. Additionally, participants will complete a series of standing balance tasks to evaluate static postural stability, while dynamic postural control will be measured during walking using head and trunk-mounted three-dimensional accelerometers. Following baseline testing, participants will be randomly-assigned to one of three intervention groups, who will receive either exercise once per week, exercise 3 days/week, or education. Participants will repeat the same battery of tests conducted at baseline after the 12-week intervention and again following a further 12-week sustainability period. This study has the potential to show that low-intensity and progressive trunk exercises can provide a non-invasive and effective means for maintaining or improving postural stability for people with PD. Importantly, if the programme is noted to be effective, it could be easily performed by patients within their home environment or under the guidance of available allied health professionals. The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12613001175763). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. From Static Stretching to Dynamic Exercises: Changing the Warm-Up Paradigm

    ERIC Educational Resources Information Center

    Young, Shawna

    2010-01-01

    In the United States, pre-exercise static stretching seems to have become common practice and routine. However, research suggests that it is time for a paradigm shift--that pre-exercise static stretching be replaced with dynamic warm-up exercises. Research indicates that a dynamic warm-up elevates body temperature, decreases muscle and joint…

  19. The relationship between aerobic fitness and recovery from high-intensity exercise in infantry soldiers.

    PubMed

    Hoffman, J R

    1997-07-01

    The relationship between aerobic fitness and recovery from high-intensity exercise was examined in 197 infantry soldiers. Aerobic fitness was determined by a maximal-effort, 2,000-m run (RUN). High-intensity exercise consisted of three bouts of a continuous 140-m sprint with several changes of direction. A 2-minute passive rest separated each sprint. A fatigue index was developed by dividing the mean time of the three sprints by the fastest time. Times for the RUN were converted into standardized T scores and separated into five groups (group 1 had the slowest run time and group 5 had the fastest run time). Significant differences in the fatigue index were seen between group 1 (4.9 +/- 2.4%) and groups 3 (2.6 +/- 1.7%), 4 (2.3 +/- 1.6%), and 5 (2.3 +/- 1.3%). It appears that recovery from high-intensity exercise is improved at higher levels of aerobic fitness (faster time for the RUN). However, as the level of aerobic fitness improves above the population mean, no further benefit in the recovery rate from high-intensity exercise is apparent.

  20. Benefits of Moderate-Intensity Exercise during a Calorie-Restricted Low-Fat Diet

    ERIC Educational Resources Information Center

    Apekey, Tanefa A.; Morris, A. E. J.; Fagbemi, S.; Griffiths, G. J.

    2012-01-01

    Objective: Despite the health benefits, many people do not undertake regular exercise. This study investigated the effects of moderate-intensity exercise on cardiorespiratory fitness (lung age, blood pressure and maximal aerobic power, VO[subscript 2]max), serum lipids concentration and body mass index (BMI) in sedentary overweight/obese adults…

  1. Effect of maximal-intensity exercise on systemic nitro-oxidative stress in men and women.

    PubMed

    Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Szygula, Zbigniew

    2017-07-01

    The aim of this study was to test the hypotheses: (1) there is a negative correlation between protein and lipid oxidative damage following maximal-intensity exercise, and oxygen uptake and work intensity (%VO 2max ) at the respiratory compensation point (RCP) in women and men; (2) nitro-oxidative stress following maximal-intensity exercise results from the intensification of anaerobic processes and muscle fibre micro-damage. Study participants comprised 20 women (21.34±1.57 years) and 20 men (21.97±1.41 years) who performed a treadmill incremental test (IT); VO 2max : 45.08 ± 0.91 and 57.38 ± 1.22 mL kg -1  min -1 for women and men, respectively. The oxidized low-density lipoprotein (ox-LDL), 3-nitrotyrosine (3-NT) concentration and creatine kinase (CK) as well as lactate dehydrogenase (LDH) activity were measured in the blood serum, and total antioxidative capacity (TAC) and lactate concentration (Lac) were determined in blood plasma before and after IT. After the IT, increases in ox-LDL, 3-NT, CK, and LDH were seen in both groups (P < 0.05). After the IT, an increase in the TAC was only observed in women (P < 0.05). The post-exercise-induced increase in Lac was significantly higher in men than in women. Only in the group of women was a positive correlation (P < 0.05) between the post-exercise increase in TAC and changes in CK activity and LDH found. The gain of ox-LDL and 3-NT following maximal-intensity exercise is independent of VO 2max , oxygen consumption and exercise intensity at RCP. This increase of ox-LDL and 3-NT is indicative of similar lipid and protein damage in women and men. A significant increase in TAC in women following maximal-intensity exercise is the result of muscle fibre micro-injuries.

  2. Electric motor assisted bicycle as an aerobic exercise machine.

    PubMed

    Nagata, T; Okada, S; Makikawa, M

    2012-01-01

    The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise.

  3. [Performance enhancement by carbohydrate intake during sport: effects of carbohydrates during and after high-intensity exercise].

    PubMed

    Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C

    2015-01-01

    Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h).

  4. The effectiveness of an exercise programme on dynamic balance in patients with medial knee osteoarthritis: A pilot study.

    PubMed

    Al-Khlaifat, Lara; Herrington, Lee C; Tyson, Sarah F; Hammond, Alison; Jones, Richard K

    2016-10-01

    Dynamic balance and quiet standing balance are decreased in knee osteoarthritis (OA), with dynamic balance being more affected. This study aimed to investigate the effectiveness of a group exercise programme of lower extremity muscles integrated with education on dynamic balance using the Star Excursion Balance test (SEBT) in knee OA. Experimental before-and-after pilot study design. Nineteen participants with knee OA attended the exercise sessions once a week for six weeks, in addition to home exercises. Before and after the exercise programme, dynamic balance was assessed using the SEBT in the anterior and medial directions in addition to hip and knee muscle strength, pain, and function. Fourteen participants completed the study. Dynamic balance on the affected side demonstrated significant improvements in the anterior and medial directions (p=0.02 and p=0.01, respectively). The contralateral side demonstrated significant improvements in dynamic balance in the anterior direction (p<0.001). However, balance in the medial direction did not change significantly (p=0.07). Hip and knee muscle strength, pain, and function significantly improved (p<0.05) after the exercise programme. This is the first study to explore the effect of an exercise programme on dynamic balance using the SEBT in knee OA. The exercise programme was effective in improving dynamic balance which is required in different activities of daily living where the patients might experience the risk of falling. This might be attributed to the improvement in muscle strength and pain after the exercise programme. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    NASA Astrophysics Data System (ADS)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  6. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity.

    PubMed

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature (T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures (T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  7. Comparative effects of proprioceptive and isometric exercises on pain intensity and difficulty in patients with knee osteoarthritis: A randomised control study.

    PubMed

    Ojoawo, Adesola O; Olaogun, Matthew O B; Hassan, Mariam A

    2016-11-14

    The study compared the effects of isometric quadriceps exercise and proprioceptive exercise on pain, joint stiffness and physical difficulties of patients with knee osteoarthritis. Forty-five patients with history of knee osteoarthritis were randomly allocated into two groups; A with 23 subjects and B with 22 subjects. All subjects received infrared radiation for 20 minutes and kneading massage with methyl salicylate ointment. Group A underwent proprioceptive exercises while Group B had isometric quadriceps exercise. Each exercise session lasted for 10 minutes according to standard protocol, twice in a week for six weeks. Pre-treatment, 3rd week and 6th week pain intensity, joint stiffness and physical difficulties were assessed using Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) questionnaire. Statistical package for social sciences (SPSS) version 17 was used to analyse the data while descriptive and inferential statistics were used to summarise the result. Proprioceptive exercises reduced pain intensity significantly (F = 4.76; p = 0.00) at 6th week with effect size of 2.79, and physical difficulty (F = 3.69; p < 0.04) with effect size of 7.53 better than isometric exercises. There was a significant reduction in the pain intensity (F = 12.08; p < 0.001), and physical difficulties (F = 3.69, p = 0.04) in pre-treatment, 3rd week and 6th week in both Group A and B. Both exercises are effective but proprioceptive exercises may be more effective in the management of patients with knee osteoarthritis (KOA) than isometric exercises.

  8. Anxiety Sensitivity as a Mediator of the Relationship between Moderate-Intensity Exercise and Coping-Oriented Marijuana Use Motives

    PubMed Central

    Smits, Jasper A. J.; Bonn-Miller, Marcel O.; Tart, Candyce D.; Irons, Jessica G.; Zvolensky, Michael J.

    2011-01-01

    The present study examined the working hypothesis that moderate-intensity exercise is associated with coping-oriented marijuana use motives through its association with the fear of somatic arousal (i.e., anxiety sensitivity). Using data from 146 young adult current marijuana users we found evidence consistent with this hypothesis. Specifically, moderate-intensity exercise was associated with coping-oriented use motives, even after controlling for frequency of current marijuana use and other co-occurring marijuana use motives. This relationship became non-significant after entering anxiety sensitivity as an additional predictor variable, denoting a putative mediational role for this cognitve factor. These findings extend previous work and offer support for the potential utility of moderate-intensity aerobic exercise for the treatment of marijuana use problems. PMID:21314753

  9. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress.

    PubMed

    Wilhelm, Eurico N; González-Alonso, José; Chiesa, Scott T; Trangmar, Steven J; Kalsi, Kameljit K; Rakobowchuk, Mark

    2017-11-01

    Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise-independent and exercise-dependent shear stress using systemic heat stress with localized single-leg cooling (low shear) followed by single-leg knee extensor exercise with the cooled or heated leg (Study 1, n  = 8) and whole-body passive heat stress followed by cycling (Study 2, n  = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV-CD41 + ) and endothelial microvesicles (EMV-CD62E + ). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] ( P  ≥ 0.05). Single-leg knee extensor exercise increased active leg SRs by ~12-fold and increased arterial and venous [PMVs] by two- to threefold, even in the nonexercising contralateral leg ( P  < 0.05). In Study 2, moderate whole-body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV . μ L -1. 10 3 , P  < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV . μ L -1. 10 3 during cycling with heat stress, P  < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole-body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Effects of aerobic exercise intensity on ambulatory blood pressure and vascular responses in resistant hypertension: a crossover trial.

    PubMed

    Santos, Lucas P; Moraes, Ruy S; Vieira, Paulo J C; Ash, Garrett I; Waclawovsky, Gustavo; Pescatello, Linda S; Umpierre, Daniel

    2016-07-01

    Resistant hypertension often exposes patients to poor blood pressure (BP) control, resulting in clinical vulnerability, possible need for device-based procedures (denervation) and increased therapy costs. Regular exercise markedly benefits patients with hypertension, including resistant patients. However, little is known about short-term exercise effects in resistant hypertension. To evaluate acute hemodynamic effects of exercise in resistant hypertension. After maximal exercise testing, 20 patients (54.0 ± 5.7 years, 30.2 ± 4.9 kg/m) with resistant hypertension participated in three crossover interventions, in random order, and on separate days: control (45' of rest), and light intensity and moderate intensity (45' of aerobic exercise at 50 and 75% of maximum heart rate, respectively). Ambulatory BP, forearm blood flow (with subsequent calculation of vascular resistance), and reactive hyperemia were measured before and after interventions trough venous occlusion plethysmography. Compared with control, both exercise intensities reduced ambulatory systolic pressure over 5 h (light: -7.7 ± 2.4 mmHg and moderate: -9.4 ± 2.8 mmHg, P < 0.01), whereas only light intensity reduced diastolic pressure (-5.7 ± 2.2 mmHg, P < 0.01). Light intensity also lowered systolic and diastolic pressures over 10-h daytime (-3.8 ± 1.3 and -4.0 ± 1.3 mmHg, respectively, P < 0.02), night-time (-6.0 ± 2.4 and -6.1 ± 1.6 mmHg, respectively, P < 0.05), and diastolic pressure over 19 h (-4.8 ± 1.2 mmHg, P < 0.01). Forearm blood flow changed (decreased) compared with baseline only at 50 min after light intensity (P < 0.05). After the control and light intensity sessions, vascular resistance increased at the end of 1 h, and after moderate intensity, it decreased only at the moment (∼2 min) immediately after intervention (P < 0.05). A single session of light or moderate aerobic exercise acutely reduces ambulatory BP in resistant hypertension, although benefits persist longer following light intensity.

  11. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke.

    PubMed

    Nepveu, Jean-Francois; Thiel, Alexander; Tang, Ada; Fung, Joyce; Lundbye-Jensen, Jesper; Boyd, Lara A; Roig, Marc

    2017-08-01

    One bout of high-intensity cardiovascular exercise performed immediately after practicing a motor skill promotes changes in the neuroplasticity of the motor cortex and facilitates motor learning in nondisabled individuals. To determine if a bout of exercise performed at high intensity is sufficient to induce neuroplastic changes and improve motor skill retention in patients with chronic stroke. Twenty-two patients with different levels of motor impairment were recruited. On the first session, the effects of a maximal graded exercise test on corticospinal and intracortical excitability were assessed from the affected and unaffected primary motor cortex representational area of a hand muscle with transcranial magnetic stimulation. On the second session, participants were randomly assigned to an exercise or a nonexercise control group. Immediately after practicing a motor task, the exercise group performed 15 minutes of high-intensity interval training while the control group rested. Twenty-four hours after motor practice all participants completed a test of the motor task to assess skill retention. The graded exercise test reduced interhemispheric imbalances in GABA A -mediated short-interval intracortical inhibition but changes in other markers of excitability were not statistically significant. The group that performed high-intensity interval training showed a better retention of the motor skill. The performance of a maximal graded exercise test triggers only modest neuroplastic changes in patients with chronic stroke. However, a single bout of high-intensity interval training performed immediately after motor practice improves skill retention, which could potentially accelerate motor recovery in these individuals.

  12. A preliminary, randomized trial of aerobic exercise for alcohol dependence

    PubMed Central

    Brown, Richard A.; Abrantes, Ana M.; Minami, Haruka; Read, Jennifer P.; Marcus, Bess H.; Jakicic, John M.; Strong, David R.; Dubreuil, Mary Ella; Gordon, Alan A.; Ramsey, Susan E.; Kahler, Christopher W.; Stuart, Gregory L.

    2015-01-01

    Interventions targeting physical activity may be valuable as an adjunct to alcohol treatment, but have been relative untested. In the current study, alcohol dependent, physically sedentary patients were randomized to: a 12-week moderate-intensity, group aerobic exercise intervention (AE; n = 25) or a brief advice to exercise intervention (BA-E; n=23). Results showed that individuals in AE reported significantly fewer drinking and heavy drinking days, relative to BA-E during treatment. Furthermore adherence to AE strengthened the beneficial effect of intervention on alcohol use outcomes. While high levels of moderate-intensity exercise appeared to facilitate alcohol recovery regardless of intervention arm, attending the group-based AE intervention seemed to further enhance the positive effects of exercise on alcohol use. Study findings indicate that a moderate intensity, group aerobic exercise intervention is an efficacious adjunct to alcohol treatment. Improving adherence to the intervention may enhance its beneficial effects on alcohol use. PMID:24666811

  13. Atypical blood glucose response to continuous and interval exercise in a person with type 1 diabetes: a case report.

    PubMed

    Moser, Othmar; Tschakert, Gerhard; Mueller, Alexander; Groeschl, Werner; Pieber, Thomas R; Koehler, Gerd; Eckstein, Max L; Bracken, Richard M; Hofmann, Peter

    2017-06-30

    Therapy must be adapted for people with type 1 diabetes to avoid exercise-induced hypoglycemia caused by increased exercise-related glucose uptake into muscles. Therefore, to avoid hypoglycemia, the preexercise short-acting insulin dose must be reduced for safety reasons. We report a case of a man with long-lasting type 1 diabetes in whom no blood glucose decrease during different types of exercise with varying exercise intensities and modes was found, despite physiological hormone responses. A Caucasian man diagnosed with type 1 diabetes for 24 years performed three different continuous high-intensity interval cycle ergometer exercises as part of a clinical trial (ClinicalTrials.gov identifier NCT02075567). Intensities for both modes of exercises were set at 5% below and 5% above the first lactate turn point and 5% below the second lactate turn point. Short-acting insulin doses were reduced by 25%, 50%, and 75%, respectively. Measurements taken included blood glucose, blood lactate, gas exchange, heart rate, adrenaline, noradrenaline, cortisol, glucagon, and insulin-like growth factor-1. Unexpectedly, no significant blood glucose decreases were observed during all exercise sessions (start versus end, 12.97 ± 2.12 versus 12.61 ± 2.66 mmol L -1 , p = 0.259). All hormones showed the expected response, dependent on the different intensities and modes of exercises. People with type 1 diabetes typically experience a decrease in blood glucose levels, particularly during low- and moderate-intensity exercises. In our patient, we clearly found no decline in blood glucose, despite a normal hormone response and no history of any insulin insensitivity. This report indicates that there might be patients for whom the recommended preexercise therapy adaptation to avoid exercise-induced hypoglycemia needs to be questioned because this could increase the risk of severe hyperglycemia and ketosis.

  14. The Acute Effect of Exercise Intensity on Vascular Function in Adolescents.

    PubMed

    Bond, Bert; Hind, Siobhan; Williams, Craig A; Barker, Alan R

    2015-12-01

    Impairments in vascular function are present in asymptomatic youths with risk factors for cardiovascular disease. Exercise can promote vascular health in youth, but the effects of exercise intensity and the time course in response to acute exercise are unknown. Twenty adolescents (10 male, 14.1 ± 0.3 yr) performed the following on separate days in a counterbalanced order: 1) cycling at 90% of the gas exchange threshold (moderate-intensity exercise (MIE)) and 2) 8 × 1-min cycling at 90% peak power with 75-s recovery (high-intensity interval exercise (HIIE)). The duration of MIE (25.8 ± 2.1 min) was work-matched to HIIE (23.0 min). Macro- and microvascular functions were assessed before, immediately after, and 1 and 2 h after exercise by flow-mediated dilation (FMD) and laser Doppler imaging (total reactive hyperemia). FMD was attenuated immediately after HIIE (P < 0.001, effect size (ES) = 1.20) but not after MIE (P = 0.28, ES = 0.26). Compared with that before exercise, FMD was elevated 1 and 2 h after HIIE (P < 0.001, ES = 1.33; P < 0.001, ES = 1.36) but unchanged in MIE (P = 0.67, ES = 0.10; P = 0.72, ES = 0.08). Changes in FMD were unrelated to shear or baseline arterial diameter. Compared with that in preexercise, total reactive hyperemia was always greater after MIE (P < 0.02, ES > 0.60 for all) and HIIE (P < 0.001, ES > 1.18 for all). Total reactive hyperemia was greater in HIIE compared with that in MIE immediately after (P = 0.03, ES = 0.67) and 1 h after (P = 0.01, ES = 0.62) exercise, with a trend to be greater 2 h after (P = 0.06, ES = 0.45). Exercise intensity is positively associated with macro- and microvascular function 1 and 2 h after exercise. Performing HIIE may provide superior vascular benefits than MIE in adolescents.

  15. Comparison between Nintendo Wii Fit aerobics and traditional aerobic exercise in sedentary young adults.

    PubMed

    Douris, Peter C; McDonald, Brittany; Vespi, Frank; Kelley, Nancy C; Herman, Lawrence

    2012-04-01

    Exergaming is becoming a popular recreational activity for young adults. The purpose was to compare the physiologic and psychological responses of college students playing Nintendo Wii Fit, an active video game console, vs. an equal duration of moderate-intensity brisk walking. Twenty-one healthy sedentary college-age students (mean age 23.2 ± 1.8 years) participated in a randomized, double cross-over study, which compared physiologic and psychological responses to 30 minutes of brisk walking exercise on a treadmill vs. 30 minutes playing Nintendo Wii Fit "Free Run" program. Physiologic parameters measured included heart rate, rate pressure product, respiratory rate, and rating of perceived exertion. Participants' positive well-being, psychological distress, and level of fatigue associated with each exercise modality were quantified using the Subjective Exercise Experience Scale. The mean maximum heart rate (HRmax) achieved when exercising with Wii Fit (142.4 ± 20.5 b·min(-1)) was significantly greater (p = 0.001) compared with exercising on the treadmill (123.2 ± 13.7 b·min(-1)). Rate pressure product was also significantly greater (p = 0.001) during exercise on the Wii Fit. Participants' rating of perceived exertion when playing Wii Fit (12.7 ± 3.0) was significantly greater (p = 0.014) when compared with brisk walking on the treadmill (10.1 ± 3.3). However, psychologically when playing Wii Fit, participants' positive well-being decreased significantly (p = 0.018) from preexercise to postexercise when compared with exercising on the treadmill. College students have the potential to surpass exercise intensities achieved when performing a conventional standard for moderate-intensity exercise when playing Nintendo Wii Fit "Free Run" with a self-selected intensity. We concluded that Nintendo Wii Fit "Free Run" may act as an alternative to traditional moderate-intensity aerobic exercise in fulfilling the American College of Sports Medicine requirements for physical activity.

  16. Haemolysis caused by alterations of alpha- and beta-spectrin after 10 to 35 min of severe exercise.

    PubMed

    Beneke, Ralph; Bihn, Detlef; Hütler, Matthias; Leithäuser, Renate M

    2005-10-01

    The pathophysiology of exercise related haemolysis is not thoroughly understood. We investigated whether exercise related haemolysis (1) is associated with alterations of red blood cell (RBC) membrane proteins similar to those found in inherited anaemic diseases, (2) can be induced with a non-running exercise mode, (3) is related to exercise intensity, and (4) coincides with indicators of oxidative stress. In ten triathletes [median (P25/P75-percentiles) age: 28.0 (26.3/28.5) years, height: 1.84 (1.78/1.87) m, body mass: 78.5 (74.8/80.8) kg, maximal oxygen uptake: 60.0 (57.3/64.8) ml kg(-1) min(-1)], haptoglobin, alpha- and beta-spectrin bands, malondialdehyde (MDA) and H2O2-induced chemiluminescence (H2O2-Chem) were determined immediately pre- and post-both, a 35 min low intensity and a high intensity cycling exercise [240 (218/253) vs 290 (270/300) W, P<0.05) requiring similar amounts of metabolic energy [28.3 (25.9/29.9) vs 24.9 (18.4/30.5) kJ kg(-1), P>0.05]. At high exercise intensity haptoglobin [1.10 (0.81/2.53) vs 1.01 (0.75/2.00) g l(-1)] decreased (P<0.05) whilst MDA [2.80 (2.65/3.20) vs 3.13 (2.78/3.31) nmol ml(-1)] and H2O2-Chem [29.70 (22.55/37.10) vs 37.25 (35.20/52.63) rel. U min] increased (P<0.05), coinciding with the disappearance of the spectrin bands in six out of ten gels. No corresponding changes were found at low intensity exercise. Ten to 35 min of non-running exercise in a regularly used intensity domain causes intra-vascular haemolysis associated with alterations in the RBC membrane proteins similar to those found after in vitro oxidative stress and in inherited anaemic diseases like Sphaerocytosis and Fanconi's anaemia.

  17. The effect of endothelin A and B receptor blockade on cutaneous vascular and sweating responses in young men during and following exercise in the heat.

    PubMed

    Fujii, Naoto; Singh, Maya S; Halili, Lyra; Louie, Jeffrey C; Kenny, Glen P

    2016-12-01

    During exercise, cutaneous vasodilation and sweating responses occur, whereas these responses rapidly decrease during postexercise recovery. We hypothesized that the activation of endothelin A (ET A ) receptors, but not endothelin B (ET B ) receptors, attenuate cutaneous vasodilation during high-intensity exercise and contribute to the subsequent postexercise suppression of cutaneous vasodilation. We also hypothesized that both receptors increase sweating during and following high-intensity exercise. Eleven men (24 ± 4 yr) performed an intermittent cycling protocol consisting of two 30-min bouts of moderate- (40% V̇o 2peak ) and high-intensity (75% V̇o 2peak ) exercise in the heat (35°C), each separated by a 20- and 40-min recovery period, respectively. Cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal microdialysis skin sites: 1) lactated Ringer (control), 2) 500 nM BQ123 (a selective ET A receptor blocker), 3) 300 nM BQ788 (a selective ET B receptor blocker), or 4) a combination of BQ123 + BQ788. There were no between-site differences in CVC during each exercise bout (all P > 0.05); however, CVC following high-intensity exercise was greater at BQ123 (56 ± 9%max) and BQ123 + BQ788 (55 ± 14%max) sites relative to the control site (43 ± 12%max) (all P ≤ 0.05). Sweat rate did not differ between sites throughout the protocol (all P > 0.05). We show that neither ET A nor ET B receptors modulate cutaneous vasodilation and sweating responses during and following moderate- and high-intensity exercise in the heat, with the exception that ET A receptors may partly contribute to the suppression of cutaneous vasodilation following high-intensity exercise. Copyright © 2016 the American Physiological Society.

  18. Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorous-intensity exercise in the exercise intensity-affect continuum.

    PubMed

    Jung, Mary E; Bourne, Jessica E; Little, Jonathan P

    2014-01-01

    Affect experienced during an exercise session is purported to predict future exercise behaviour. Compared to continuous moderate-intensity exercise (CMI), the affective response to continuous vigorous-intensity exercise (CVI) has consistently been shown to be more aversive. The affective response, and overall tolerability to high-intensity interval training (HIT), is less studied. To date, there has yet to be a comparison between HIT, CVI, and CMI. The purpose of this study was to compare the tolerability and affective responses during HIT to CVI and CMI. This study utilized a repeated measures, randomized, counter-balanced design. Forty-four participants visited the laboratory on four occasions. Baseline fitness testing was conducted to establish peak power output in Watts (W peak). Three subsequent visits involved a single bout of a) HIT, corresponding to 1-minute at ∼ 100% W peak and 1-minute at ∼ 20% W peak for 20 minutes, b) CMI, corresponding to ∼ 40% W peak for 40 minutes, and c) CVI, corresponding to ∼ 80% W peak for 20 minutes. The order of the sessions was randomized. Affective responses were measured before, during and after each session. Task self-efficacy, intentions, enjoyment and preference were measured after sessions. Participants reported greater enjoyment of HIT as compared to CMI and CVI, with over 50% of participants reporting a preference to engage in HIT as opposed to either CMI or CVI. HIT was considered more pleasurable than CVI after exercise, but less pleasurable than CMI at these times. Despite this participants reported being just as confident to engage in HIT as they were CMI, but less confident to engage in CVI. This study highlights the utility of HIT in inactive individuals, and suggests that it may be a viable alternative to traditionally prescribed continuous modalities of exercise for promoting self-efficacy and enjoyment of exercise.

  19. Where Does HIT Fit? An Examination of the Affective Response to High-Intensity Intervals in Comparison to Continuous Moderate- and Continuous Vigorous-Intensity Exercise in the Exercise Intensity-Affect Continuum

    PubMed Central

    Jung, Mary E.; Bourne, Jessica E.; Little, Jonathan P.

    2014-01-01

    Affect experienced during an exercise session is purported to predict future exercise behaviour. Compared to continuous moderate-intensity exercise (CMI), the affective response to continuous vigorous-intensity exercise (CVI) has consistently been shown to be more aversive. The affective response, and overall tolerability to high-intensity interval training (HIT), is less studied. To date, there has yet to be a comparison between HIT, CVI, and CMI. The purpose of this study was to compare the tolerability and affective responses during HIT to CVI and CMI. This study utilized a repeated measures, randomized, counter-balanced design. Forty-four participants visited the laboratory on four occasions. Baseline fitness testing was conducted to establish peak power output in Watts (Wpeak). Three subsequent visits involved a single bout of a) HIT, corresponding to 1-minute at ∼100% Wpeak and 1-minute at ∼20% Wpeak for 20 minutes, b) CMI, corresponding to ∼40% Wpeak for 40 minutes, and c) CVI, corresponding to ∼80% Wpeak for 20 minutes. The order of the sessions was randomized. Affective responses were measured before, during and after each session. Task self-efficacy, intentions, enjoyment and preference were measured after sessions. Participants reported greater enjoyment of HIT as compared to CMI and CVI, with over 50% of participants reporting a preference to engage in HIT as opposed to either CMI or CVI. HIT was considered more pleasurable than CVI after exercise, but less pleasurable than CMI at these times. Despite this participants reported being just as confident to engage in HIT as they were CMI, but less confident to engage in CVI. This study highlights the utility of HIT in inactive individuals, and suggests that it may be a viable alternative to traditionally prescribed continuous modalities of exercise for promoting self-efficacy and enjoyment of exercise. PMID:25486273

  20. Maternal Perceptions of Infant Exercise in the Neonatal Intensive Care Unit

    PubMed Central

    Gravem, Dana; Lakes, Kimberley D.; Teran, Lorena; Rich, Julia; Cooper, Dan; Olshansky, Ellen

    2013-01-01

    Objective To identify important factors that influence mothers’ perceptions of engaging in exercise with their preterm infants. Design Qualitative, semistructured individual interviews. Setting Neonatal Intensive Care Unit. Participants Thirteen mothers of preterm infants who were in the Neonatal Intensive Care Unit. Methods Two researchers conducted interviews with mothers in English or Spanish. Interviews were recorded, transcribed, and analyzed. Results Mothers tended to view infant exercise as beneficial but feared for the safety of their infants. They perceived nurses as experts who could safely exercise their infants but feared that they themselves might harm their infants. Factors that influenced their beliefs included previous experiences with infant exercise and views regarding the fragility or the strength of their own infants. Mothers identified nurses, doctors, family members, and research studies as trusted sources of information on exercise efficacy and safety. Conclusion Understanding and addressing mothers’ perceptions is a crucial component of a nursing intervention that teaches parents to do assisted exercises at home with their preterm infants. PMID:19883474

  1. An acute bout of localized resistance exercise can rapidly improve inhibitory control

    PubMed Central

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Takeuchi, Tatsuya; Tanaka, Daichi; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao

    2017-01-01

    The positive effect of acute resistance exercise on executive function, such as inhibitory control (IC), is poorly understood. Several previous studies have demonstrated this effect using whole-body resistance exercise. However, it remains unclear whether localized resistance exercise performed using only limited muscle groups could also acutely improve IC. Thus, the present study examined the effect of an acute bout of localized resistance exercise on IC. Twelve healthy men performed a color-word Stroop task (CWST) before and immediately after the experimental conditions, which consisted of 2 resistance exercises and a resting control (CON). Bilateral knee extension was used to create 2 resistance exercise conditions: light-intensity resistance exercise (LRE) and high-intensity resistance exercise (HRE) conditions, which were 40% and 80% of one-repetition maximum, respectively. The resistance exercise session was programmed for 6 sets with 10 repetitions per set. The CWST-measured IC was significantly improved immediately after both LRE and HRE, but it did not improve immediately after CON. However, the improved IC was significantly greater in HRE than in LRE. The present findings showed that IC could be rapidly improved by an acute bout of localized resistance exercise, especially with high-intensity. Therefore, we suggest that in addition to whole-body resistance exercise, localized resistance exercise performed using limited muscle groups may be sufficient for improving IC. PMID:28877232

  2. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise

    PubMed Central

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J.

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, V˙O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of V˙O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results. PMID:27100099

  3. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise.

    PubMed

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.

  4. The Positive Effects of Priming Exercise on Oxygen Uptake Kinetics and High-Intensity Exercise Performance Are Not Magnified by a Fast-Start Pacing Strategy in Trained Cyclists

    PubMed Central

    Caritá, Renato Aparecido Corrêa; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2014-01-01

    The purpose of this study was to determine both the independent and additive effects of prior heavy-intensity exercise and pacing strategies on the VO2 kinetics and performance during high-intensity exercise. Fourteen endurance cyclists (VO2max  = 62.8±8.5 mL.kg−1.min−1) volunteered to participate in the present study with the following protocols: 1) incremental test to determine lactate threshold and VO2max; 2) four maximal constant-load tests to estimate critical power; 3) six bouts of exercise, using a fast-start (FS), even-start (ES) or slow-start (SS) pacing strategy, with and without a preceding heavy-intensity exercise session (i.e., 90% critical power). In all conditions, the subjects completed an all-out sprint during the final 60 s of the test as a measure of the performance. For the control condition, the mean response time was significantly shorter (p<0.001) for FS (27±4 s) than for ES (32±5 s) and SS (32±6 s). After the prior exercise, the mean response time was not significantly different among the paced conditions (FS = 24±5 s; ES = 25±5 s; SS = 26±5 s). The end-sprint performance (i.e., mean power output) was only improved (∼3.2%, p<0.01) by prior exercise. Thus, in trained endurance cyclists, an FS pacing strategy does not magnify the positive effects of priming exercise on the overall VO2 kinetics and short-term high-intensity performance. PMID:24740278

  5. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    PubMed

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Exploiting significance of physical exercise in prevention of gastrointestinal disorders.

    PubMed

    Bilski, Jan; Mazur-Bialy, Agnieszka; Magierowski, Marcin; Kwiecien, Slawomir; Wojcik, Dagmara; Ptak-Belowska, Agata; Surmiak, Marcin; Targosz, Aneta; Magierowska, Katarzyna; Brzozowski, Tomasz

    2018-05-21

    Physical activity can be involved in the prevention of gastrointestinal (GI)-tract diseases, however, the results regarding the volume and the intensity of exercise considered as beneficial for protection of gastrointestinal organs are conflicting. The main objective of this review is to provide a comprehensive and updated overview on the beneficial and harmful effects of physical activity on the gastrointestinal tract. We attempted to discuss recent evidence regarding the association between different modes and intensity levels of exercise and physiological functions of the gut and gut pathology. The regular, moderate exercise can exert a beneficial effect on GI-tract disorders such as reflux esophagitis, peptic ulcers, cholelithiasis, constipation and inflammatory bowel disease (IBD) leading to the attenuation of the symptoms. This voluntary exercise has been shown to reduce the risk of colorectal cancer. On the other hand, there is considerable evidence that the high-intensity training or prolonged endurance training can exert a negative influence on GI-tract resulting in the exacerbation of symptoms. Physical activity can exhibit a beneficial effect on a variety of gastrointestinal diseases, however, this effect depends upon the exercise mode, duration and intensity. The accumulated evidence indicate that management of gastrointestinal problems and their relief by the exercise seems to be complicated and require adjustments of physical activity training, dietary measures and medical monitoring of symptoms. More experimental and clinical studies on the effects of physical activity on GI-tract disorders are warranted. Especially, the association between the exercise intensity and data addressing the underlying mechanism(s) of the exercise as the complementary therapy in the treatment of gastrointestinal disorders, require further determination in animal models and humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Effects of high-intensity exercise and protein supplement on muscle mass in ADL dependent older people with and without malnutrition: a randomized controlled trial.

    PubMed

    Carlsson, M; Littbrand, H; Gustafson, Y; Lundin-Olsson, L; Lindelöf, N; Rosendahl, E; Håglin, L

    2011-08-01

    Loss of muscle mass is common among old people living in institutions but trials that evaluate interventions aimed at increasing the muscle mass are lacking. Objective, participants and intervention: This randomized controlled trial was performed to evaluate the effect of a high-intensity functional exercise program and a timed protein-enriched drink on muscle mass in 177 people aged 65 to 99 with severe physical or cognitive impairments, and living in residential care facilities. Three-month high-intensity exercise was compared with a control activity and a protein-enriched drink was compared with a placebo drink. A bioelectrical impedance spectrometer (BIS) was used in the evaluation. The amount of muscle mass and body weight (BW) were followed-up at three and six months and analyzed in a 2 x 2 factorial ANCOVA, using the intention to treat principle, and controlling for baseline values. At 3-month follow-up there were no differences in muscle mass and BW between the exercise and the control group or between the protein and the placebo group. No interaction effects were seen between the exercise and nutritional intervention. Long-term negative effects on muscle mass and BW was seen in the exercise group at the 6-month follow-up. A three month high-intensity functional exercise program did not increase the amount of muscle mass and an intake of a protein-enriched drink immediately after the exercise did not induce any additional effect on muscle mass. There were negative long-term effects on muscle mass and BW, indicating that it is probably necessary to compensate for an increased energy demand when offering a high-intensity exercise program.

  8. Effects of active recovery on autonomic and haemodynamic responses after aerobic exercise.

    PubMed

    Soares, Antonio H G; Oliveira, Tiago P; Cavalcante, Bruno R; Farah, Breno Q; Lima, Aluísio H R A; Cucato, Gabriel G; Cardoso, Crivaldo G; Ritti-Dias, Raphael M

    2017-01-01

    The aim of this study was to examine the effect of active recovery on autonomic and haemodynamic responses after exercise in healthy adults. Nineteen healthy young male individuals underwent two experimental sessions: exercise with active recovery (AR) and exercise with passive recovery (PR). The exercise sessions comprised three phases: warm-up (5 min), exercise phase (cycle ergometer, 30 min, intensity between 60 and 70% of the heart rate reserve) and recovery (5 min). In the AR, the subjects remained cycling in the recovery phase at intensity between 30% and 35% of heart rate reserve, while in the PR, the subjects stopped the exercise after finishing the exercise phase. Blood pressure and heart rate were measured before and over the 30 min after the interventions. There were no differences for systolic and diastolic blood pressures, heart rate and rate pressure product between active and passive recovery sessions. Also, all heart rate variability parameters changed similarly after exercise with passive or active recovery sessions. In summary, exercise with active recovery does not affect the autonomic and haemodynamic responses after moderate-intensity aerobic exercise in healthy young male individuals. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. Ergogenic effects of caffeine and sodium bicarbonate supplementation on intermittent exercise performance preceded by intense arm cranking exercise.

    PubMed

    Marriott, Matthaus; Krustrup, Peter; Mohr, Magni

    2015-01-01

    Caffeine and sodium bicarbonate ingestion have been suggested to improve high-intensity intermittent exercise, but it is unclear if these ergogenic substances affect performance under provoked metabolic acidification. To study the effects of caffeine and sodium bicarbonate on intense intermittent exercise performance and metabolic markers under exercise-induced acidification, intense arm-cranking exercise was performed prior to intense intermittent running after intake of placebo, caffeine and sodium bicarbonate. Male team-sports athletes (n = 12) ingested sodium bicarbonate (NaHCO3; 0.4 g.kg(-1) b.w.), caffeine (CAF; 6 mg.kg(-1) b.w.) or placebo (PLA) on three different occasions. Thereafter, participants engaged in intense arm exercise prior to the Yo-Yo intermittent recovery test level-2 (Yo-Yo IR2). Heart rate, blood lactate and glucose as well as rating of perceived exertion (RPE) were determined during the protocol. CAF and NaHCO3 elicited a 14 and 23% improvement (P < 0.05), respectively, in Yo-Yo IR2 performance, post arm exercise compared to PLA. The NaHCO3 trial displayed higher [blood lactate] (P < 0.05) compared to CAF and PLA (10.5 ± 1.9 vs. 8.8 ± 1.7 and 7.7 ± 2.0 mmol.L(-1), respectively) after the Yo-Yo IR2. At exhaustion CAF demonstrated higher (P < 0.05) [blood glucose] compared to PLA and NaHCO3 (5.5 ± 0.7 vs. 4.2 ± 0.9 vs. 4.1 ± 0.9 mmol.L(-1), respectively). RPE was lower (P < 0.05) during the Yo-Yo IR2 test in the NaHCO3 trial in comparison to CAF and PLA, while no difference in heart rate was observed between trials. Caffeine and sodium bicarbonate administration improved Yo-Yo IR2 performance and lowered perceived exertion after intense arm cranking exercise, with greater overall effects of sodium bicarbonate intake.

  10. Exercise countermeasures for long-duration spaceflight: muscle- and intensity-specific considerations

    NASA Astrophysics Data System (ADS)

    Trappe, Todd

    2012-07-01

    On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.

  11. Acute effects of aerobic exercise on mood and hunger feelings in male obese adolescents: a crossover study.

    PubMed

    Lofrano-Prado, Mara Cristina; Hill, James O; Silva, Humberto José Gomes; Freitas, Camila Rodrigues Menezes; Lopes-de-Souza, Sandra; Lins, Tatiana Acioli; do Prado, Wagner Luiz

    2012-04-03

    The aim of this study was to determine the acute effects of exercise intensity on anxiety, mood states and hunger in obese adolescents. Subjects were eight male obese adolescents (age 15.44 ± 2.06 y; BMI 33.06 ± 4.78 kg/m2). Each subject underwent three experimental trials: (1) Control, seated for 30 min; (2) Low intensity exercise (LIE)--exercise at 10% below ventilatory threshold (VT); (3) High intensity exercise (HIE)--exercise at 10% above VT. Anxiety (STAI Trait/State), mood (POMS) and hunger (VAS) were assessed before and immediately after the experimental sessions. Comparisons between trials and times were assessed using Kruskal-Wallis and Wilcoxon tests, respectively. Associations between variables were described using a Spearman test. The largest increase in hunger was observed after LEI (914.22%). Both exercise sessions increased anxiety, fatigue and decreased vigor (p < 0.05). Acute exercise bouts are associated with negative changes in anxiety and mood, and with increases in hunger in obese adolescents.

  12. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    PubMed

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.

  13. The function of androgen/androgen receptor and insulin growth factor‑1/insulin growth factor‑1 receptor on the effects of Tribulus terrestris extracts in rats undergoing high intensity exercise.

    PubMed

    Wu, Yin; Yang, Hongfang; Wang, Xiaohui

    2017-09-01

    Our previous study demonstrated that treatment with Tribulus terrestris (TT) extracts (120 mg/kg) promoted the muscle weight gain and performance of rats undergoing high intensity exercise. The present study was designed to explore the mechanisms underlying the effect of treatment with TT extracts and the involvement of androgens, the androgen receptor (AR), insulin growth factor‑1 (IGF‑1) and the IGF‑1 receptor (IGF‑1R). A total of 32 Sprague‑Dawley rats were randomly divided into groups as follows: Control; TT, treated with TT extracts, E, high intensity exercise; E+TT, high intensity exercise plus TT treatment. The rats of the E and E+TT groups underwent high intensity exercise with a progressively increasing load for 5 weeks, and TT extracts were intragastrically administered in the TT and E+TT rats 30 min prior to training. TT extract composition was analyzed using ultra‑high performance liquid chromatography‑quadrupole‑time of flight mass spectrometry. Testosterone and IGF‑1 plasma levels and AR, IGF‑1R and myosin heavy chain (MHC) protein levels in muscles were determined by ELISA and western blotting, respectively. The saponins tigogenin and diosgenin comprised ~71.35% of the total peak area. Compared with the E group, TT extracts increased the testosterone and IGF‑1 plasma levels, and AR, IGF‑1R and MHC protein levels in the gastrocnemius of rats undergoing high intensity exercise, accompanied with increased body weight and gastrocnemius weight. In conclusion, the effect of TT extracts on the performance of high intensity exercise rats may be attributed to increased levels of circulating testosterone and IGF‑1 and increased AR and IGF‑1R protein expression levels in the gastrocnemius, resulting in increased muscle weight and increased MHC in the gastrocnemius. The present study provided preliminary evidence supporting the use of TT extracts as a dietary supplement for the promotion of skeletal muscle mass increase and the enhancement of athletic performance in humans performing high intensity exercise.

  14. The Role of Macronutrients in Exercise.

    ERIC Educational Resources Information Center

    Arterberry, Christopher M.

    2002-01-01

    Explores the role of macronutrients in exercise, examining research pertaining to exercise intensity, exercise duration, macronutrient intake, and mode of exercise as they pertain to both athletes and recreational exercisers. The paper explains that coaches and trainers must interpret and apply research findings to individual exercisers,…

  15. Influence of Goal Contents on Exercise Addiction: Analysing the Mediating Effect of Passion for Exercise

    PubMed Central

    Sicilia, Álvaro; Alcaraz-Ibáñez, Manuel; Lirola, María-Jesús; Burgueño, Rafael

    2017-01-01

    Abstract Based on the self-determination theory (Deci and Ryan, 1985, 2000), the purpose of this study was to examine the effects of exercise goal contents on exercise addiction, taking into account the mediating effects of passion for exercise. A total of 384 university students (284 men and 100 women; Mage = 20.31, SD = 3.10) completed a questionnaire that measured exercise frequency and intensity, exercise goal contents (e.g. intrinsic: social affiliation, health management, skill development; extrinsic: image and social recognition), passion for exercise (e.g. harmonious and obsessive), and exercise addiction. After controlling the exercise frequency and intensity effects, results showed that goal contents did not directly predict exercise addiction. However, mediation analysis showed that goal contents predicted addiction through passion for exercise. These results support a motivational sequence in which extrinsic versus intrinsic goals influence exercise addiction because such goals are positively associated with obsessive passion for exercise and negatively associated with harmonious passion. PMID:29134055

  16. Influence of Goal Contents on Exercise Addiction: Analysing the Mediating Effect of Passion for Exercise.

    PubMed

    Sicilia, Álvaro; Alcaraz-Ibáñez, Manuel; Lirola, María-Jesús; Burgueño, Rafael

    2017-10-01

    Based on the self-determination theory (Deci and Ryan, 1985, 2000), the purpose of this study was to examine the effects of exercise goal contents on exercise addiction, taking into account the mediating effects of passion for exercise. A total of 384 university students (284 men and 100 women; M age = 20.31, SD = 3.10) completed a questionnaire that measured exercise frequency and intensity, exercise goal contents (e.g. intrinsic: social affiliation, health management, skill development; extrinsic: image and social recognition), passion for exercise (e.g. harmonious and obsessive), and exercise addiction. After controlling the exercise frequency and intensity effects, results showed that goal contents did not directly predict exercise addiction. However, mediation analysis showed that goal contents predicted addiction through passion for exercise. These results support a motivational sequence in which extrinsic versus intrinsic goals influence exercise addiction because such goals are positively associated with obsessive passion for exercise and negatively associated with harmonious passion.

  17. Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses.

    PubMed

    Rivero, José-Luis L; Ruz, Antonio; Martí-Korff, Silvia; Estepa, José-Carlos; Aguilera-Tejero, Escolástico; Werkman, Jutta; Sobotta, Mathias; Lindner, Arno

    2007-05-01

    This study examined the effects of the intensity and duration of exercise on the nature and magnitude of training adaptations in muscle of adolescent (2-3 yr old) racehorses. Six thoroughbreds that had been pretrained for 2 mo performed six consecutive conditioning programs of varying lactate-guided intensities [velocities eliciting blood lactate concentrations of 2.5 mmol/l (v2.5) and 4 mmol/l (v4), respectively] and durations (5, 15, 25 min). Pre- and posttraining gluteus muscle biopsies were analyzed for myosin heavy chain content, fiber-type composition, fiber size, capillarization, and fiber histochemical oxidative and glycolytic capabilities. Although training adaptations were similar in nature, they varied greatly in magnitude among the different training protocols. Overall, the use of v4 as the exercise intensity for 25 min elicited the most consistent training adaptations in muscle, whereas the minimal training stimulus that evoked any significant change was identified with exercises of 15 min at v2.5. Within this range, muscular adaptations showed significant trends to be proportional to the exercise load of specific training programs. Taken together, these data suggest that muscular adaptations to training in horses occur on a continuum that is based on the exercise intensity and duration of training. The practical implications of this study are that exercises for 15 to 25 min/day at velocities between v2.5 and v4 can improve in the short term (3 wk) the muscular stamina in thoroughbreds. However, exercises of 5-15 min at v4 are necessary to enhance muscular features related to strength (hypertrophy).

  18. My gut feeling says rest: Increased intestinal permeability contributes to chronic diseases in high-intensity exercisers.

    PubMed

    Van Houten, Jason M; Wessells, Robert J; Lujan, Heidi L; DiCarlo, Stephen E

    2015-12-01

    Chronic diseases are the leading cause of death and disability worldwide, and many of these conditions are linked to chronic inflammation. One potential cause of chronic inflammation is an increased intestinal epithelial permeability. Recent studies have demonstrated that parasympathetic stimulation via the efferent abdominal vagus nerve increases the expression and proper localization of tight junction proteins and decreases intestinal epithelial permeability. This finding may provide a novel approach for treating and preventing many chronic conditions. Importantly, physical activity is associated with increased resting parasympathetic (vagal) activity and lower risk of chronic diseases. However, high intensity long duration exercise can be harmful to overall health. Specifically, individuals who frequently exercise strenuously and for longer time intervals have the same mortality rates as sedentary individuals. This may be explained, in part, by longer periods of reduced vagal activity as vagal activity is markedly reduced both during and after intense exercise. We hypothesize that one mechanism by which exercise provides its health benefits is by increasing resting vagal activity and decreasing intestinal epithelial permeability, thus decreasing chronic inflammation. Additionally, we hypothesize that long periods of reduced vagal activity in individuals who exercise at high intensities and for longer durations, decrease the integrity of the intestinal barrier, putting them at greater risk of chronic inflammation and a host of chronic diseases. Thus, this hypothesis provides a conceptual link between the well-established benefits of frequent exercise and the paradoxical deleterious effects of prolonged, high-intensity exercise without adequate rest. Copyright © 2015. Published by Elsevier Ltd.

  19. Impact of a carbohydrate-electrolyte drink on ingestive behaviour, affect and self-selected intensity during recreational exercise after 24-h fluid restriction.

    PubMed

    Peacock, Oliver J; Thompson, Dylan; Stokes, Keith A

    2013-01-01

    This study examined the effects of a carbohydrate-electrolyte drink on voluntary fluid intake, affect and self-selected intensity during recreational exercise after fluid restriction. In a randomised counterbalanced design, ten physically active adults were dehydrated via a 24-h period of fluid restriction before completing two 20-min bouts of cardiovascular exercise, 20-min of resistance exercise and 20 min on a cycle ergometer at a self-selected intensity with ad libitum access to water (W) or a carbohydrate-electrolyte solution (CES). Fluid restriction induced hypohydration of ∼1.2% initial body mass. Fluid intake during exercise was greater with CES (2105 ± 363 vs. 1470 ± 429 mL; P<0.01) and resulted in more adequate hydration (-0.03 ± 0.65 vs. -1.26 ± 0.80%; P<0.01). Plasma glucose concentrations (4.48 ± 0.40 vs. 4.28 ± 0.32 mmol L(-1); P<0.01) and pleasure ratings (2.63 ± 1.17 vs. 1.81 ± 1.37; P<0.01) were greater with CES than W. Mean power output during exercise performed at a self-selected intensity was 5.6% greater with CES (171 ± 63 vs. 162 ± 60 W; P<0.05). In physically active adults performing a 'real-life' recreational exercise simulation, CES resulted in more adequate hydration and an enhanced affective experience that corresponded with an increase in self-selected exercise intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Back Pain and Endurance Training of Back Muscles: Justification for Further Study in Helicopter Pilots.

    DTIC Science & Technology

    1997-05-29

    osteopenic women. J Am Geriatr Soc 1996 Jul;44(7):756-762. 12. Chaffin DB. Human strength capability and low-back pain. J Occup Med 1974 Apr;16(4... geriatric hospital. Scand J Rehabil Med 1978;10(4):201-209. 16. Donchin M, Woolf O, Kaplan L, Floman Y. Secondary prevention of low-back pain. A...FR, Bendix T, Skov P, Jensen CV, Kristensen JH, Krohn L, Schoeler H. Intensive, dynamic back-muscle exercises, conventional physiotherapy , or

  1. Impaired Skeletal Muscle Vasodilation during Exercise in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Lee, Joshua F.; Barrett-O’Keefe, Zachary; Nelson, Ashley D.; Garten, Ryan S.; Ryan, John J.; Nativi-Nicolau, Jose N.; Richardson, Russell S.; Wray, D. Walter

    2016-01-01

    Background Exercise intolerance is a hallmark symptom of heart failure patients with preserved ejection fraction (HFpEF), which may be related to an impaired ability to appropriately increase blood flow to the exercising muscle. Methods We evaluated leg blood flow (LBF, ultrasound Doppler), heart rate (HR), stroke volume (SV), cardiac output (CO), and mean arterial blood pressure (MAP, photoplethysmography) during dynamic, single leg knee-extensor (KE) exercise in HFpEF patients (n = 21; 68 ± 2 yrs) and healthy controls (n = 20; 71 ± 2 yrs). Results HFpEF patients exhibited a marked attrition during KE exercise, with only 60% able to complete the exercise protocol. In participants who completed all exercise intensities (0-5-10-15W; HFpEF, n = 13; Controls, n = 16), LBF was not different at 0W and 5W, but was 15-25% lower in HFpEF compared to controls at 10W and 15W (P < 0.001). Likewise, leg vascular conductance (LVC), an index of vasodilation, was not different at 0W and 5W, but was 15-20% lower in HFpEF compared to controls at 10W and 15W (P < 0.05). In contrast to these peripheral deficits, exercise-induced changes in central variables (HR, SV, CO), as well as MAP, were similar between groups. Conclusions These data reveal a marked reduction in LBF and LVC in HFpEF patients during exercise that cannot be attributed to a disease-related alteration in central hemodynamics, suggesting that impaired vasodilation in the exercising skeletal muscle vasculature may play a key role in the exercise intolerance associated with this patient population. PMID:26970959

  2. Protection of Lotus Seedpod Proanthocyanidins on Organs and Tissues under High-intensity Excercise

    PubMed Central

    Mengyan, Zhang

    2015-01-01

    Lotus seedpod proanthocyanidins (LSPC) as a kind of polyphenols is widely used in medicines, cosmetics, health products. High-intensity exercise can cause damage to the body's organs and tissues. Different doses of LSPC is given to mice to check the function of protect effect to the body's organs and tissues under high-intensity exercise. The hemoglobin (HB) content, red blood cell (RBC) number and white blood cell (WBC) number were tested for mice after exercise. The activity of superoxide dismutase (SOD) and the contents of glutathione (GSH) and malondialdehyde (MDA) in muscle and viscera were evaluated. The result showed that LSPC can effectively reduce inflammation reaction in the body of mice with high intensity exercise, alleviate oxidative stress-induced injury of tissues and organs, and execute protective function on skeletal muscle and cardiac muscle. And the LSPC could enhance myocardial anti-oxygen and enzymatic activity which suggests the protective effects of resveratrol against exercise-induced myocardial damage in mice. PMID:26998176

  3. Recurrent exercise-induced rhabdomyolysis due to low intensity fitness exercise in a healthy young patient

    PubMed Central

    Karre, Premnath Reddy; Gujral, Jeetinder

    2011-01-01

    Rhabdomyolysis is an uncommon but life threatening condition that develops due to breakdown of muscle and release of intracellular components into the circulation. A 24-year-old man otherwise healthy was admitted to our hospital because of muscle aches and weakness as well as cola coloured urine developed 3 days after carrying out the low intensity exercise. Diagnosis of rhabdomyolysis was made with creatine kinase (CK) levels of 214 356 U/l. He was treated for a similar condition at age 21. A muscle biopsy was done and the findings were normal. Rhabdomyolysis can develop with low intensity exercise; thus, it be considered in healthy young people. Young people with recurrent rhabdomyolysis due to low intensity exercise, in the absence of obvious medical and physical causes, should be evaluated further to rule out uncommon metabolic diseases. Our case demonstrates that complications especially renal failure in patients with rhabdomyolysis do not correspond to CK levels. PMID:22700603

  4. Recurrent exercise-induced rhabdomyolysis due to low intensity fitness exercise in a healthy young patient.

    PubMed

    Karre, Premnath Reddy; Gujral, Jeetinder

    2011-04-01

    Rhabdomyolysis is an uncommon but life threatening condition that develops due to breakdown of muscle and release of intracellular components into the circulation. A 24-year-old man otherwise healthy was admitted to our hospital because of muscle aches and weakness as well as cola coloured urine developed 3 days after carrying out the low intensity exercise. Diagnosis of rhabdomyolysis was made with creatine kinase (CK) levels of 214 356 U/l. He was treated for a similar condition at age 21. A muscle biopsy was done and the findings were normal. Rhabdomyolysis can develop with low intensity exercise; thus, it be considered in healthy young people. Young people with recurrent rhabdomyolysis due to low intensity exercise, in the absence of obvious medical and physical causes, should be evaluated further to rule out uncommon metabolic diseases. Our case demonstrates that complications especially renal failure in patients with rhabdomyolysis do not correspond to CK levels.

  5. Impact of high-intensity interval training and moderate-intensity continuous training on resting and postexercise cardiac troponin T concentration.

    PubMed

    Nie, Jinlei; Zhang, Haifeng; Kong, Zhaowei; George, Keith; Little, Jonathan P; Tong, Tomas K; Li, Feifei; Shi, Qingde

    2018-03-01

    What is the central question of this study? Does exercise training impact resting and postexercise cardiac troponin T (cTnT) concentration? What is the main finding and its importance? This randomized controlled intervention study demonstrated that 12 weeks of either high-intensity interval training or moderate-intensity continuous training largely abolished the exercise-induced elevation in cTnT when exercise was performed at the same absolute intensity. There was no impact of training on resting cTnT or postexercise appearance of cTnT when exercise was performed at the same relative intensity. These findings provide new information that might help clinicians with decision-making in relationship to basal and postexercise values of cTnT in individuals with different training status. We evaluated the influence of 12 weeks of high-intensity interval training [HIIT; repeated 4 min cycling at 90% of maximal oxygen uptake (V̇O2max) interspersed with 3 min rest, 200-300 kJ per session, 3 or 4 days each week] and work-equivalent moderate-intensity continuous training (MICT; continuous cycling at 60% V̇O2max) on resting cardiac troponin T (cTnT) and the appearance of exercise-induced cTnT. Forty-eight sedentary obese young women were randomly assigned to HIIT, MICT or a control group. The V̇O2max and body composition were measured before and after training. At baseline, cTnT was assessed using a high-sensitivity assay at rest and immediately, 2 and 4 h after 45 min cycling at 60% V̇O2max. After a 12 week training period, cTnT was assessed before and after 45 min cycling at the same relative and absolute intensities as before training. Training led to higher V̇O2max and lower fat mass in both HIIT and MICT groups (all P < 0.05). Before training, cTnT was significantly elevated in all three groups (by 35-118%, all P < 0.05) with acute exercise. After training, both resting and postexercise cTnT concentrations (same relative intensity) were similar to pretraining values. In contrast, postexercise cTnT (same absolute intensity, which represented a smaller exercise stimulus) was not elevated from rest in both HIIT and MICT groups. In conclusion, 12 weeks of either HIIT or MICT largely abolished the postexercise elevation of cTnT concentration when exercise was performed at the same absolute intensity. There was, however, no impact of training on resting cTnT or postexercise appearance of cTnT for exercise performed at the same relative intensity. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  6. [The stakes of force perseverance training and muscle structure training in rehabilitation. Recommendations of the German Federation for Prevention and Rehabilitation of Heart-Circulatory Diseases e.v].

    PubMed

    Bjarnason-Wehrens, B; Mayer-Berger, W; Meister, E R; Baum, K; Hambrecht, R; Gielen, S

    2004-05-01

    While aerobic endurance training has been a substantial part of international recommendations for cardiac rehabilitation during the last 30 years, there is still a rather reserved attitude of the medical community to resistance exercise in this field. Careful recommendations for resistance exercise in cardiac patients was only published a few years ago. It has been taken for granted that strength exercise elicits a substantial increase in blood pressure and thus imposes, especially in cardiac patients, a risk of potentially fatal cardiovascular complications. Results of the latest studies show that the existing recommended overcaution is not justified. Strength exercise can indeed result in extreme increases of blood pressure, but this is not the case for all loads of this kind. The actual blood pressure response to strength exercise depends on the isometric component, the exercise intensity (load or resistance used), muscle mass activated, the number of repetitions in the set and/or the duration of the contraction as well as involvement of Valsalva maneuver. Intra arterially performed blood pressure measurements during resistance exercise in patients with heart disease showed that strength training carried out at low intensities (40-60% of MVC) and with high numbers of repetitions (15-20) only evokes a moderate increase of blood pressure comparable with blood pressure measures induced by moderate endurance training. If used properly and performed accurately, individually dosed, medically supervised and controlled through experienced sport therapists, a dynamic resistance exercise is-at least for a certain group of patients-not associated with higher risks than an aerobic endurance training and can in addition to endurance training improve muscle force and endurance, have a positive influence on cardiovascular function, metabolism, cardiovascular risk factors as well as psychosocial well-being and overall quality of life. However, with respect to currently available data, resistance exercise cannot be generally recommended for all groups of patients. The appropriate kind and execution of training is highly dependent on current clinical status, cardiac capacity as well as possible accompanying diseases of the patient. Most of the studies carried out up to date included small samples of middle-aged male patients with almost normal levels of aerobic endurance performance and good left ventricular function. Data is missing for risk groups, older patients and women. Therefore, an integration of dynamic resistance exercises in cardiac rehabilitation can only be recommended without hesitation for CHD patients with high physical capacity (good myocardial function, revascularized). Since patients with myocardial ischemia and/or low left ventricular functioning might develop wall motion disturbances and/or dangerous ventricular arrhythmia when performing resistance exercises, prevalence of the following conditions is recommend: moderate to high LV-function, high physical performance (>5-6 metabolic equivalents= >1.4 watts/kg body weight) in absence of angina pectoris symptoms or ST-depression, by maintained current medication. In the proposed recommendations, a classification of risks for resistance training in cardiac rehabilitation is being made based on current data and is complemented by specific recommendations for particular groups of patients and detailed guidelines for setup and completion of the therapy program.

  7. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity. Previous results from HR-95 ("Dynamics of footward force and leg intramuscular pressure during exercise against supine LBNP and upright standing in normal gravity") indicate that supine plantar-/dorsiflexion exercise in LBNP at 100 mm Hg produces similar ground reaction forces, musculoskeletal stress, and VO2 to those during upright exercise against Earth's gravity. However, elevations of leg volume and heart rate indicate that cardiovascular stress during 100 mm Hg LBNP exercise exceeds that during 1 g exercise. Therefore, the need arose to reduce the cardiovascular stress of LBNP, while maintaining LBNP-induced reaction forces. To this end, we determined that mild plantar-/dorsiflexion exercise during LBNP significantly improves tolerance to LBNP via musculovenous pumping and sympathoexcitation; more intense exercise such as walking and running may further improve LBNP tolerance. In addition, two methodological advances have permited us to simulate upright 1 g exercise better with supine LBNP exercise. First, a newly-designed waist seal allows decreased levels of LBNP (50-60 mm Hg) to produce a footward force equaling one body weight

  8. The higher exercise intensity and the presence of allele I of ACE gene elicit a higher post-exercise blood pressure reduction and nitric oxide release in elderly women: an experimental study.

    PubMed

    Santana, Hugo A P; Moreira, Sérgio R; Neto, Willson B; Silva, Carla B; Sales, Marcelo M; Oliveira, Vanessa N; Asano, Ricardo Y; Espíndola, Foued S; Nóbrega, Otávio T; Campbell, Carmen S G; Simões, Herbert G

    2011-12-02

    The absence of the I allele of the angiotensin converting enzyme (ACE) gene has been associated with higher levels of circulating ACE, lower nitric oxide (NO) release and hypertension. The purposes of this study were to analyze the post-exercise salivary nitrite (NO2-) and blood pressure (BP) responses to different exercise intensities in elderly women divided according to their ACE genotype. Participants (n = 30; II/ID = 20 and DD = 10) underwent three experimental sessions: incremental test - IT (15 watts workload increase/3 min) until exhaustion; 20 min exercise 90% anaerobic threshold (90% AT); and 20 min control session without exercise. Volunteers had their BP and NO2- measured before and after experimental sessions. Despite both intensities showed protective effect on preventing the increase of BP during post-exercise recovery compared to control, post-exercise hypotension and increased NO2- release was observed only for carriers of the I allele (p < 0.05). Genotypes of the ACE gene may exert a role in post-exercise NO release and BP response.

  9. Effects of exercise on functional aerobic capacity in adults with fibromyalgia syndrome: A systematic review of randomized controlled trials.

    PubMed

    García-Hermoso, Antonio; Saavedra, Jose M; Escalante, Yolanda

    2015-01-01

    Patients with fibromyalgia present a reduced capacity of upper and lower limb physical performance and affect their independence in performing everyday activities. The purpose of the present systematic review was to summarize evidence for the effectiveness and structure of exercise programs on functional aerobic capacity in patients with fibromyalgia syndrome. Keyword searches were made of seven databases. The systematic review was limited to English language studies of people with FM that evaluated the effects of exercise programs on functional aerobic capacity (6-minute walk test). The criteria for inclusion were satisfied by 12 randomized controlled trial (RCT) studies. The main cumulative evidence indicates that the programs based on aerobic exercise alone and on aquatic exercises have large (effect size = 0.85) and moderate (effect size = 0.44) effects. Aerobic and aquatic exercises at the proper intensity favour the increased functional aerobic capacity of fibromyalgia patients; however, most works do not adequately detail the intensity of the exercises. Moderate intensity exercise (aerobic and aquatic exercise) performed at least two times per week and 30-60 minutes a day is effective for increasing functional aerobic capacity, favouring the daily activities of daily living in this population.

  10. Integrating Pilates Exercise into an Exercise Program for 65+ Year-Old Women to Reduce Falls

    PubMed Central

    Irez, Gonul Babayigit; Ozdemir, Recep Ali; Evin, Ruya; Irez, Salih Gokhan; Korkusuz, Feza

    2011-01-01

    The purpose of this study was to determine if Pilates exercise could improve dynamic balance, flexibility, reaction time and muscle strength in order to reduce the number of falls among older women. 60 female volunteers over the age of 65 from a residential home in Ankara participated in this study. Participants joined a 12-week series of 1-hour Pilates sessions three times per week. Dynamic balance, flexibility, reaction time and muscle strength were measured before and after the program. The number of falls before and during the 12-week period was also recorded. Dynamic balance, flexibility, reaction time and muscle strength improved (p < 0. 05) in the exercise group when compared to the non-exercise group. In conclusion, Pilates exercises are effective in improving dynamic balance, flexibility, reaction time, and muscle strength as well as decreasing the propensity to fall in older women. Key points Pilates-based exercises improve dynamic balance, reaction time and muscle strength in the elderly. Pilates exercise may reduce the number of falls in elderly women by increasing these fitness parameters. PMID:24149302

  11. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients.

    PubMed

    Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard

    2003-11-01

    Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.

  12. Critical Power: An Important Fatigue Threshold in Exercise Physiology

    PubMed Central

    Poole, David C.; Burnley, Mark; Vanhatalo, Anni; Rossiter, Harry B.; Jones, Andrew M.

    2016-01-01

    The hyperbolic form of the power-duration relationship is rigorous and highly conserved across species, forms of exercise and individual muscles/muscle groups. For modalities such as cycling, the relationship resolves to two parameters, the asymptote for power (critical power, CP) and the so-called W′ (work doable above CP), which together predict the tolerable duration of exercise above CP. Crucially, the CP concept integrates sentinel physiological profiles - respiratory, metabolic and contractile - within a coherent framework that has great scientific and practical utility. Rather than calibrating equivalent exercise intensities relative to metabolically distant parameters such as the lactate threshold or V̇O2 max, setting the exercise intensity relative to CP unifies the profile of systemic and intramuscular responses and, if greater than CP, predicts the tolerable duration of exercise until W′ is expended, V̇O2 max is attained, and intolerance is manifested. CP may be regarded as a ‘fatigue threshold’ in the sense that it separates exercise intensity domains within which the physiological responses to exercise can (CP) be stabilized. The CP concept therefore enables important insights into 1) the principal loci of fatigue development (central vs. peripheral) at different intensities of exercise, and 2) mechanisms of cardiovascular and metabolic control and their modulation by factors such as O2 delivery. Practically, the CP concept has great potential application in optimizing athletic training programs and performance as well as improving the life quality for individuals enduring chronic disease. PMID:27031742

  13. Critical Power: An Important Fatigue Threshold in Exercise Physiology.

    PubMed

    Poole, David C; Burnley, Mark; Vanhatalo, Anni; Rossiter, Harry B; Jones, Andrew M

    2016-11-01

    : The hyperbolic form of the power-duration relationship is rigorous and highly conserved across species, forms of exercise, and individual muscles/muscle groups. For modalities such as cycling, the relationship resolves to two parameters, the asymptote for power (critical power [CP]) and the so-called W' (work doable above CP), which together predict the tolerable duration of exercise above CP. Crucially, the CP concept integrates sentinel physiological profiles-respiratory, metabolic, and contractile-within a coherent framework that has great scientific and practical utility. Rather than calibrating equivalent exercise intensities relative to metabolically distant parameters such as the lactate threshold or V˙O2max, setting the exercise intensity relative to CP unifies the profile of systemic and intramuscular responses and, if greater than CP, predicts the tolerable duration of exercise until W' is expended, V˙O2max is attained, and intolerance is manifested. CP may be regarded as a "fatigue threshold" in the sense that it separates exercise intensity domains within which the physiological responses to exercise can (CP) be stabilized. The CP concept therefore enables important insights into 1) the principal loci of fatigue development (central vs. peripheral) at different intensities of exercise and 2) mechanisms of cardiovascular and metabolic control and their modulation by factors such as O2 delivery. Practically, the CP concept has great potential application in optimizing athletic training programs and performance as well as improving the life quality for individuals enduring chronic disease.

  14. Repeated high-intensity exercise modulates Ca(2+) sensitivity of human skeletal muscle fibers.

    PubMed

    Gejl, K D; Hvid, L G; Willis, S J; Andersson, E; Holmberg, H-C; Jensen, R; Frandsen, U; Hansen, J; Plomgaard, P; Ørtenblad, N

    2016-05-01

    The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether contractile function was affected by alterations in the redox balance. Eleven elite cross-country skiers performed four maximal bouts of 1300 m treadmill skiing with 45 min recovery. Contractile function of chemically skinned single fibers from triceps brachii was examined before the first and following the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC I (17%, P < 0.05) and MHC II (15%, P < 0.05) fibers. This potentiation was not present after incubation of fibers with DTT. Specific force of both MHC I and MHC II fibers was unaffected by exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II fibers. This effect was not observed in a reducing environment indicative of an exercise-induced oxidation of the human contractile apparatus. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Immediate effects of different types of stretching exercises on badminton jump smash.

    PubMed

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, P<0.01, ES=0.98; dynamic stretching: 30.1%, P<0.01, ES=1.49; resistance dynamic stretching: 17.7%, P=0.03, ES=0.98) and velocities of jump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  16. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress

    PubMed Central

    McClean, Conor; Harris, Ryan A.; Brown, Malcolm; Brown, John C.; Davison, Gareth W.

    2015-01-01

    Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild); 20 minutes at 75% V˙O2max (moderate); or 5 minutes at 100% V˙O2max (maximal) in random order. Brachial artery flow-mediated dilation (FMD) was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1), lipid hydroperoxides (LOOHs), and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P < 0.05). ET-1 was higher immediately after exercise and 3 hours after exercise in the mild trial compared to maximal one (P < 0.05). Transient decreases were detected for ΔFMD/ShearAUC from baseline following maximal exercise, but it normalised at 3 hours after exercise (P < 0.05). Shear rate was higher immediately after exercise in the maximal trial compared to mild exercise (P < 0.05). No changes in baseline diameter, peak diameter, absolute change in diameter, or FMD were observed following any of the exercise trials (P > 0.05). Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD. PMID:26583061

  17. Are the oxygen uptake and heart rate off-kinetics influenced by the intensity of prior exercise?

    PubMed

    do Nascimento Salvador, Paulo Cesar; de Aguiar, Rafael Alves; Teixeira, Anderson Santiago; Souza, Kristopher Mendes de; de Lucas, Ricardo Dantas; Denadai, Benedito Sérgio; Guglielmo, Luiz Guilherme Antonacci

    2016-08-01

    The aim of this study was to investigate the effect of prior exercise on the heart rate (HR) and oxygen uptake (VO2) off-kinetics after a subsequent high-intensity running exercise. Thirteen male futsal players (age 22.8±6.1years) performed a series of high-intensity bouts without prior exercise (control), preceded by a prior same intensity continuous exercise (CE+CE) and a prior sprint exercise (SE+CE). The magnitude of excess post-exercise oxygen consumption (EPOCm-4.25±0.19 vs. 3.69±0.20Lmin(-1) in CE+CE and 3.62±0.18Lmin(-1) in control; p<0.05) and the parasympathetic reactivation (HRR60s-33±3 vs. 37±3bpm in CE+CE and 42±3 bpm in control; p<0.05) in the SE+CE were higher and slower, compared with another two conditions. The EPOCτ (time to attain 63% of total response; 53±2s) and the heart rate time-course (HRτ-86±5s) were significantly longer after the SE+CE condition than control transition (48±2s and 69±5s, respectively; p<0.05). The SE+CE induce greater stress on the metabolic function, respiratory system and autonomic nervous system regulation during post-exercise recovery than CE, highlighting that the inclusion of sprint-based exercises can be an effective strategy to increase the total energy expenditure following an exercise session. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance

    PubMed Central

    Dempsey, Jerome A

    2012-01-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward ‘central command’ mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal ‘tonic’ activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O2 transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes – probably acting in concert with feedforward central command – contribute significantly to preserving O2 transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development. PMID:22826128

  19. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome.

    PubMed

    Larsen, I; Welde, B; Martins, C; Tjønna, A E

    2014-06-01

    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P < 0.001) between 4-AIT, CME, and 1-AIT. Total EPOC was highest after 4-AIT. These data suggest that exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions.

    PubMed

    Bailey, Daniel P; Smith, Lindsey R; Chrismas, Bryna C; Taylor, Lee; Stensel, David J; Deighton, Kevin; Douglas, Jessica A; Kerr, Catherine J

    2015-06-01

    This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: (1) MIE-normoxia, (2) MIE-hypoxia, (3) HIIE-normoxia, and (4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake (V˙O2max) and during HIIE performed 6 × 3 min running at 90% V˙O2max interspersed with 6 × 3 min active recovery at 50% V˙O2max with a 7 min warm-up and cool-down at 70% V˙O2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants' daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p <0.05). Plasma acylated ghrelin concentrations were lower in hypoxia than normoxia post-exercise and for the full 2.6 h trial period (p <0.05). PYY concentrations were higher in HIIE than MIE under hypoxic conditions during exercise (p = 0.042). No differences in GLP-1 were observed between conditions (p > 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sprint-based exercise and cognitive function in adolescents.

    PubMed

    Cooper, Simon B; Bandelow, Stephan; Nute, Maria L; Dring, Karah J; Stannard, Rebecca L; Morris, John G; Nevill, Mary E

    2016-12-01

    Moderate intensity exercise has been shown to enhance cognition in an adolescent population, yet the effect of high-intensity sprint-based exercise remains unknown and was therefore examined in the present study. Following ethical approval and familiarisation, 44 adolescents (12.6 ± 0.6 y) completed an exercise (E) and resting (R) trial in a counter-balanced, randomised crossover design. The exercise trial comprised of 10 × 10 s running sprints, interspersed by 50 s active recovery (walking). A battery of cognitive function tests (Stroop, Digit Symbol Substitution (DSST) and Corsi blocks tests) were completed 30 min pre-exercise, immediately post-exercise and 45 min post-exercise. Data were analysed using mixed effect models with repeated measures. Response times on the simple level of the Stroop test were significantly quicker 45 min following sprint-based exercise (R: 818 ± 33 ms, E: 772 ± 26 ms; p = 0.027) and response times on the complex level of the Stroop test were quicker immediately following the sprint-based exercise (R: 1095 ± 36 ms, E: 1043 ± 37 ms; p = 0.038), while accuracy was maintained. Sprint-based exercise had no immediate or delayed effects on the number of items recalled on the Corsi blocks test (p = 0.289) or substitutions made during the DSST (p = 0.689). The effect of high intensity sprint-based exercise on adolescents' cognitive function was dependant on the component of cognitive function examined. Executive function was enhanced following exercise, demonstrated by improved response times on the Stroop test, whilst visuo-spatial memory and general psycho-motor speed were unaffected. These data support the inclusion of high-intensity sprint-based exercise for adolescents during the school day to enhance cognition.

  2. Anxiety sensitivity as a mediator of the relationship between moderate-intensity exercise and coping-oriented marijuana use motives.

    PubMed

    Smits, Jasper A J; Bonn-Miller, Marcel O; Tart, Candyce D; Irons, Jessica G; Zvolensky, Michael J

    2011-01-01

    The present study examined the working hypothesis that moderate-intensity exercise is associated with coping-oriented marijuana use motives through its association with the fear of somatic arousal (ie, anxiety sensitivity). Using data from 146 young adult current marijuana users, we found evidence consistent with this hypothesis. Specifically, moderate-intensity exercise was associated with coping-oriented use motives, even after controlling for frequency of current marijuana use and other co-occurring marijuana use motives. This relationship became nonsignificant after entering anxiety sensitivity as an additional predictor variable, denoting a putative mediational role for this cognitive factor. These findings extend previous work and offer support for the potential utility of moderate-intensity aerobic exercise for the treatment of marijuana use problems. © American Academy of Addiction Psychiatry.

  3. Analysis of muscle activation in each body segment in response to the stimulation intensity of whole-body vibration.

    PubMed

    Lee, Dae-Yeon

    2017-02-01

    [Purpose] The purpose of this study was to investigate the effects of a whole-body vibration exercise, as well as to discuss the scientific basis to establish optimal intensity by analyzing differences between muscle activations in each body part, according to the stimulation intensity of the whole-body vibration. [Subjects and Methods ] The study subjects included 10 healthy men in their 20s without orthopedic disease. Representative muscles from the subjects' primary body segments were selected while the subjects were in upright positions on exercise machines; electromyography electrodes were attached to the selected muscles. Following that, the muscle activities of each part were measured at different intensities. No vibration, 50/80 in volume, and 10/25/40 Hz were mixed and applied when the subjects were on the whole-vibration exercise machines in upright positions. After that, electromyographic signals were collected and analyzed with the root mean square of muscular activation. [Results] As a result of the analysis, it was found that the muscle activation effects had statistically meaningful differences according to changes in exercise intensity in all 8 muscles. When the no-vibration status was standardized and analyzed as 1, the muscle effect became lower at higher frequencies, but became higher at larger volumes. [Conclusion] In conclusion, it was shown that the whole-body vibration stimulation promoted muscle activation across the entire body part, and the exercise effects in each muscle varied depending on the exercise intensities.

  4. The association between pregame snacks and exercise intensity, stress, and fatigue in children.

    PubMed

    Sacheck, Jennifer M; Rasmussen, Helen M; Hall, Meghan M; Kafka, Tamar; Blumberg, Jeffrey B; Economos, Christina D

    2014-05-01

    To investigate the association between pregame snacks varying in macronutrient content and exercise intensity, physiological stress, and fatigue in young soccer players. One hour before a 50-min soccer game, children (n = 79; 9.1 ± 0.8 y) were randomly assigned to consume a raisin-, peanut-butter-, or cereal-based snack. Body mass index, blood glucose, and salivary measures of stress (cortisol and immunoglobulin A-IgA) were measured pre- and post-game. Exercise intensity was measured by accelerometry. Self-administered questionnaires were used to assess diet quality and fatigue. Analysis of covariance was used to examine the relationship between pregame snacks and biochemical outcomes. Postgame glucose and cortisol increased [12.9 ± 21.3 mg/dL (p < .001) and 0.04 ± 0.10 μg/dL (p < .05), respectively] and IgA decreased (-2.3 ± 9.6 μg/mL; p < .001) from pregame values. The pregame snack was not associated with exercise intensity or post-game outcome; however, children consuming the cereal-based (high-sugar and high-glycemic index (GI)) snack exercised more intensely than the 2 lower-GI snack groups (p < .05). Children who consumed the high-sugar, high-GI snack also reported more symptoms of fatigue (p < .05). A high-sugar, high-GI pregame snack was associated with exercise intensity and fatigue but not changes in blood sugar or stress biomarkers following a soccer game in children.

  5. Intermittent, moderate-intensity aerobic exercise for only eight weeks reduces arterial stiffness: evaluation by measurement of stiffness parameter and pressure-strain elastic modulus by use of ultrasonic echo tracking.

    PubMed

    Tanaka, Midori; Sugawara, Motoaki; Ogasawara, Yasuo; Izumi, Tadafumi; Niki, Kiyomi; Kajiya, Fumihiko

    2013-04-01

    Aerobic exercise has been reported to be associated with reduced arterial stiffness. However, the intensity, duration, and frequency of aerobic exercise required to improve arterial stiffness have not been established. In addition, most reports base their conclusions on changes in pulse wave velocity, which is an indirect index of arterial stiffness. We studied the effects of short-term, intermittent, moderate-intensity exercise training on arterial stiffness based on measurements of the stiffness parameter (β) and pressure-strain elastic modulus (E p), which are direct indices of regional arterial stiffness. A total of 25 young healthy volunteers (18 men) were recruited. By use of ultrasonic diagnostic equipment we measured β and E p of the carotid artery before and after 8 weeks of exercise training. After exercise training, systolic pressure (P s), diastolic pressure (P d), pulse pressure, systolic arterial diameter (D s), and diastolic arterial diameter (D d) did not change significantly. However, the pulsatile change in diameter ((D s - D d)/D d) increased significantly, and β and E p decreased significantly. For healthy young subjects, β and E p were reduced by intermittent, moderate-intensity exercise training for only 8 weeks.

  6. Physical dose of therapeutic exercises in institutional neck rehabilitation.

    PubMed

    Wasenius, Niko; Karapalo, Teppo; Sjögren, Tuulikki; Pekkonen, Mika; Mälkiä, Esko

    2013-03-01

    To determine the intensity and volume of therapeutic exercises during a standard 13-day inpatient neck rehabilitation course in relation to overall physical activity in rehabilitation and everyday life. Cross-sectional study. Subjects (n = 19; 16 women and 3 men; mean age 48.6 years, standard deviation (SD) 6.6) with chronic non-specific neck pain were recruited from two inpatient neck rehabilitation courses. Intensity and volume of therapeutic exercises and physical activity were measured in metabolic equivalents (METs) with an objective measurement device and all-time recall questionnaire. Maximum oxygen uptake was determined in METs (METc) by direct maximal cycle ergometer. Subjects' mean METc was 7.2 METs (SD 1.4) or 25.3 ml/kg/min (SD 4.8). Intensity of all therapeutic exercises was 1.9 METs or 27 %METc (SD 5.1) and volume 7.7 MET-hours/week. Intensity of specific neck and shoulder exercises was 2.0 METs or 28 %METc (SD 5.4) and volume 2.5 MET-hours/week. In addition, subjects were more active in everyday life than in inpatient rehabilitation. The therapeutic exercise dose failed to reach previously reported target values for pain relief. The dose of therapeutic exercises and confounding physical activity should be carefully controlled in pain rehabilitation programmes.

  7. Active play exercise intervention in children with asthma: a PILOT STUDY

    PubMed Central

    Westergren, Thomas; Fegran, Liv; Nilsen, Tonje; Haraldstad, Kristin; Kittang, Ole Bjørn; Berntsen, Sveinung

    2016-01-01

    Objective Increased physical activity (PA) may be beneficial for children with asthma. Knowledge about how to intervene and encourage children with asthma to be physically active is required. In the present study, we aimed to pilot a 6-week exercise intervention designed as active play and examine attendance rate, exercise intensity and children's perceptions of participating. Methods 6 children with asthma (4 boys, 2 girls) aged 10–12 years, participated in 60 min of active play exercise twice weekly. A mixed-methods design was applied. The data analysed included attendance rate, exercise intensity assessed by heart rate (HR) monitoring during exercise sessions, registration and description of the active play exercise programme, 3 semistructured focus groups, field observations of 5 exercise sessions, and preintervention and postintervention testing. Findings The average attendance rate was 90%. Intensity ≥80% of maximal HR (HRmax) was recorded for a median (IQR) time of 22 (8) out of 60 min per session. Median (IQR) HR during the sessions was 146 (9; 74% of HRmax) bpm. Children reported increased health-related quality of life (HRQoL) post-test compared with baseline. Children enjoyed participating and reported no limitations by asthma or serious asthma attacks. Instead, they perceived that their asthma and fitness had improved after the programme. The instructors created an inclusive atmosphere that was characterised by easy-to-master games, fair competition, humour and mutual participation. Conclusions The exercise intervention pilot focusing on active play had a high attendance rate, relatively high exercise intensity, and satisfaction; the children perceived that their fitness and asthma had improved, and reported increased HRQoL. A randomised controlled trial of active play exercise including children with asthma should be conducted to evaluate effect on PA level, physical fitness, asthma control and HRQoL. PMID:26733570

  8. Long-lasting effects of fluoxetine and/or exercise augmentation on bio-behavioural markers of depression in pre-pubertal stress sensitive rats.

    PubMed

    Schoeman, Jacobus C; Steyn, Stephanus F; Harvey, Brian H; Brink, Christiaan B

    2017-04-14

    Juvenile depression is of great concern with only limited treatment currently approved. Delayed onset of action, low remission and high relapse rates, and potential long-lasting consequences further complicates treatment and highlights the need for new treatment options. Studies reporting on long-lasting effects of early-life treatment have reported conflicting results, with the pre-adolescent period mostly overlooked. The anti-depressive effect of exercise, as a possible treatment option or augmentation strategy, is dependent on age and exercise intensity. We investigated the immediate (i.e. postnatal day 35 (PND35)) and lasting (PND60 to PND61) effects of pre-pubertal (PND21 to PND34) fluoxetine and/or exercise on bio-behavioural markers of depression and oxidative stress in stress sensitive Flinders Sensitive Line rats. Low, but not moderate, intensity exercise or 5, but not 10, mg/kg/day fluoxetine displayed anti-depressant-like properties at PND35. Pre-pubertal treatment with 5mg/kg/day fluoxetine or low intensity exercise exerted lasting anti-depressive-like effects into adulthood, whereas the combination of these two treatments did not. Furthermore, the combination of fluoxetine plus exercise reduced hippocampal BDNF levels as compared to exercise alone, which may explain the latter findings. In all treatment groups hippocampal SOD activity was significantly increased at PND61, suggesting an increased anti-oxidant capacity in adulthood. In conclusion, the data confirm the anti-depressant-like properties of both early-life fluoxetine and exercise in a genetic animal model of depression. However, optimal lasting effects of early-life interventions may require adjustment of antidepressant dose and/or exercise intensity to developmental age, and that a combination of antidepressant and exercise may not necessarily be augmentative. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The effect of low and moderate intensity aerobic exercises on sleep quality in men older adults.

    PubMed

    Akbari Kamrani, Ahmad Ali; Shams, Amir; Shamsipour Dehkordi, Parvaneh; Mohajeri, Robabeh

    2014-03-01

    Sleep is an active and complex rhythmic state that may be affected by the aging process. The purpose of present research was to investigate the effect of low and moderate intensity aerobic exercises on sleep quality in older adults. The research method is quasi-experimental with pre-test and post-test design. The statistical sample included 45 volunteer elderly men with age range of 60-70 years-old that divided randomly in two experimental groups (aerobic exercise with low and moderate intensity) and one control group. In each group selected 15 older adults based on inclusion and exclusion criteria (such as, without sleep apnea, not smoking, and no taking hypnotic drugs). First, all subjects were evaluated by a doctor to confirm their physical and mental health. Also, the maximum heart rate (MaxHR) of subjects was obtained by subtracting one's age from 220. Furthermore, based on aerobic exercise type (40-50% MaxHR for low intensity group and 60-70% MaxHR for moderate intensity group) the target MaxHR was calculated for each subject. The exercise protocol consisted of 8 weeks aerobic exercises (2 sessions in per-week) based on Rockport one-mile walking/running test and the control group continued their daily activities. All subjects in per-test and post-test stages completed the Petersburg Sleep Quality Index (PSQI). In pre-test stage, results showed that there were no significant differences between control and experimental groups in sleep quality and its components (P>0.05). On the other hand, results in post-test stage showed that there were significant differences between control and experimental groups in these variables (P<0.05). Also, the Tukey Post Hoc showed that the moderate intensity group scores in total sleep quality and its components were better than other groups (P<0.05). Finally, the low intensity group scores in total sleep quality and its components were better than control group (P<0.05). Generally, the present research showed that the aerobic exercises with moderate intensity (60-70% MaxHR) have a positive and significant effect on sleep quality and its components. Thus, based on these findings, the aerobic exercises with moderate intensity is a useful to improve the sleep quality and its components among community older adults were recommended.

  10. [Cardiovascular clearance for competitive sport in aging people].

    PubMed

    Carré, François

    2013-06-01

    The regular sport practice slows the physiological deleterious effects of aging. However, during intense exercise, the hazard of acute cardiovascular event is significantly increased. Whatever their cardiovascular risk factors are, aging people are more prone to coronary acute event during intense exertion than a young one. Cardiovascular exam, with resting ECG and maximal exercise test, is needed to give clearance for competitive sport in aging people (>65 y.o.). The limited value to evaluate the individual risk of acute cardiac event during intense exercise must be clearly explained to Master athletes. They must be aware to the necessity to consult their physician in case of abnormal symptom during exercise. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Simulated Partners and Collaborative Exercise (SPACE) to boost motivation for astronauts: study protocol.

    PubMed

    Feltz, Deborah L; Ploutz-Snyder, Lori; Winn, Brian; Kerr, Norbert L; Pivarnik, James M; Ede, Alison; Hill, Christopher; Samendinger, Stephen; Jeffery, William

    2016-11-14

    Astronauts may have difficulty adhering to exercise regimens at vigorous intensity levels during long space missions. Vigorous exercise is important for aerobic and musculoskeletal health during space missions and afterwards. A key impediment to maintaining vigorous exercise is motivation. Finding ways to motivate astronauts to exercise at levels necessary to mitigate reductions in musculoskeletal health and aerobic capacity have not been explored. The focus of Simulated Partners and Collaborative Exercise (SPACE) is to use recently documented motivation gains in task groups to heighten the exercise experience for participants, similar in age and fitness to astronauts, for vigorous exercise over a 6-month exercise regimen. A secondary focus is to determine the most effective features in simulated exercise partners for enhancing enjoyment, self-efficacy, and social connectedness. The aims of the project are to (1) Create software-generated (SG) exercise partners and interface software with a cycle ergometer; (2) Pilot test design features of SG partners within a video exercise game (exergame), and (3) Test whether exercising with an SG partner over 24-week time period, compared to exercising alone, leads to greater work effort, aerobic capacity, muscle strength, exercise adherence, and enhanced psychological parameters. This study was approved by the Institutional Review Board (IRB). Chronic exercisers, between the ages 30 and 62, were asked to exercise on a cycle ergometer 6 days per week for 24 weeks using a routine consisting of alternating between moderate-intensity continuous and high-intensity interval sessions. Participants were assigned to one of three conditions: no partner (control), always faster SG partner, or SG partner who was not always faster. Participants were told they could vary cycle ergometer output to increase or decrease intensity during the sessions. Mean change in cycle ergometer power (watts) from the initial continuous and 4 min. interval sessions was the primary dependent variable reflecting work effort. Measures of physiological, strength, and psychological parameters were also taken. This paper describes the rationale, development, and methods of the SPACE exergame. We believe this will be a viable intervention that can be disseminated for astronaut use and adapted for use by other populations.

  12. A pilot study on quantification of training load: The use of HRV in training practice.

    PubMed

    Saboul, Damien; Balducci, Pascal; Millet, Grégoire; Pialoux, Vincent; Hautier, Christophe

    2016-01-01

    Recent laboratory studies have suggested that heart rate variability (HRV) may be an appropriate criterion for training load (TL) quantification. The aim of this study was to validate a novel HRV index that may be used to assess TL in field conditions. Eleven well-trained long-distance male runners performed four exercises of different duration and intensity. TL was evaluated using Foster and Banister methods. In addition, HRV measurements were performed 5 minutes before exercise and 5 and 30 minutes after exercise. We calculated HRV index (TLHRV) based on the ratio between HRV decrease during exercise and HRV increase during recovery. HRV decrease during exercise was strongly correlated with exercise intensity (R = -0.70; p < 0.01) but not with exercise duration or training volume. TLHRV index was correlated with Foster (R = 0.61; p = 0.01) and Banister (R = 0.57; p = 0.01) methods. This study confirms that HRV changes during exercise and recovery phase are affected by both intensity and physiological impact of the exercise. Since the TLHRV formula takes into account the disturbance and the return to homeostatic balance induced by exercise, this new method provides an objective and rational TL index. However, some simplification of the protocol measurement could be envisaged for field use.

  13. [Effects of exercise therapy at the intensity of anaerobic threshold for exercise tolerance in patients with chronic stable coronary artery disease].

    PubMed

    Che, Lin; Gong, Zhu; Jiang, Jin-fa; Xu, Wen-jun; Deng, Bing; Xu, Jia-hong; Yan, Wen-wen; Zhang, Qi-ping; Wang, Le-min

    2011-06-28

    To investigate the effects of exercise therapy at the intensity of anaerobic threshold (AT) for exercise tolerance in patients with chronic stable coronary artery disease. Forty-three patients with chronic stable coronary artery disease (3 patients after coronary arterial bypass graft (CABG) surgery, 22 patients with old myocardial infarction and 18 unstable angina pectoris undergoing successful percutaneous coronary intervention (PCI) finished twice cardiopulmonary exercise test (CPET) and followed their rehabilitation program for 3 months. Thirty-two patients finished their aerobic exercise therapy based on their individual anaerobic thresholds while 11 patients had no exercise therapy. The heart rate at AT intensity (97 ± 9/min) was lower than their traditional minimal target heart rate (112 ± 7/min) and lower than heart rate (115 ± 11/min) at ischemic threshold post-CPET. The O(2) consumption (10.7 ± 2.4 to 12.6 ± 2.9 ml×min(-1)×kg(-1)) (P = 0.04) and workload (37 ± 18 to 47 ± 13 J/s) (P = 0.04) at AT level and the O(2) consumption (15.3 ± 3.1 to 20.6 ± 4.2 ml×min(-1)×kg(-1), P = 0.02) and workload(68 ± 12 and 87 ± 14 J/s, P = 0.01) at peak level markedly increased after 3 months in the exercise group. And the O(2) consumption (15.3 ± 2.9 to 16.2 ± 3.1 ml×min(-1)×kg(-1)) and workload (65 ± 13 to 73 ± 16 J/s) at peak level mild increased after 3 months in the non-exercise group, but their O(2) consumption (11.0 ± 2.7 to 11.3 ± 2.8 ml×min(-1)×kg(-1)) and workload (38 ± 11 to 37 ± 9 J/s) at AT level had no obvious change. AT exercise intensity was lower than ischemic threshold post-CPET. Exercise therapy at the intensity of anaerobic threshold can improve oxygen capacity and exercise tolerance.

  14. The impact of brief high-intensity exercise on blood glucose levels.

    PubMed

    Adams, O Peter

    2013-01-01

    Moderate-intensity exercise improves blood glucose (BG), but most people fail to achieve the required exercise volume. High-intensity exercise (HIE) protocols vary. Maximal cycle ergometer sprint interval training typically requires only 2.5 minutes of HIE and a total training time commitment (including rest and warm up) of 25 minutes per session. The effect of brief high-intensity exercise on blood glucose levels of people with and without diabetes is reviewed. HIE (≥80% maximal oxygen uptake, VO2max) studies with ≤15 minutes HIE per session were reviewed. Six studies of nondiabetics (51 males, 14 females) requiring 7.5 to 20 minutes/week of HIE are reviewed. Two weeks of sprint interval training increased insulin sensitivity up to 3 days postintervention. Twelve weeks near maximal interval running (total exercise time 40 minutes/week) improved BG to a similar extent as running at 65% VO2max for 150 minutes/week. Eight studies of diabetics (41 type 1 and 22 type 2 subjects) were reviewed. Six were of a single exercise session with 44 seconds to 13 minutes of HIE, and the others were 2 and 7 weeks duration with 20 and 2 minutes/week HIE, respectively. With type 1 and 2 diabetes, BG was generally higher during and up to 2 hours after HIE compared to controls. With type 1 diabetics, BG decreased from midnight to 6 AM following HIE the previous morning. With type 2 diabetes, a single session improved postprandial BG for 24 hours, while a 2-week program reduced the average BG by 13% at 48 to 72 hours after exercise and also increased GLUT4 by 369%. Very brief HIE improves BG 1 to 3 days postexercise in both diabetics and non-diabetics. HIE is unlikely to cause hypoglycemia during and immediately after exercise. Larger and longer randomized studies are needed to determine the safety, acceptability, long-term efficacy, and optimal exercise intensity and duration.

  15. Long-term lifestyle intervention with optimized high-intensity interval training improves body composition, cardiometabolic risk, and exercise parameters in patients with abdominal obesity.

    PubMed

    Gremeaux, Vincent; Drigny, Joffrey; Nigam, Anil; Juneau, Martin; Guilbeault, Valérie; Latour, Elise; Gayda, Mathieu

    2012-11-01

    The aim of this study was to study the impact of a combined long-term lifestyle and high-intensity interval training intervention on body composition, cardiometabolic risk, and exercise tolerance in overweight and obese subjects. Sixty-two overweight and obese subjects (53.3 ± 9.7 yrs; mean body mass index, 35.8 ± 5 kg/m(2)) were retrospectively identified at their entry into a 9-mo program consisting of individualized nutritional counselling, optimized high-intensity interval exercise, and resistance training two to three times a week. Anthropometric measurements, cardiometabolic risk factors, and exercise tolerance were measured at baseline and program completion. Adherence rate was 97%, and no adverse events occurred with high-intensity interval exercise training. Exercise training was associated with a weekly energy expenditure of 1582 ± 284 kcal. Clinically and statistically significant improvements were observed for body mass (-5.3 ± 5.2 kg), body mass index (-1.9 ± 1.9 kg/m(2)), waist circumference (-5.8 ± 5.4 cm), and maximal exercise capacity (+1.26 ± 0.84 metabolic equivalents) (P < 0.0001 for all parameters). Total fat mass and trunk fat mass, lipid profile, and triglyceride/high-density lipoprotein ratio were also significantly improved (P < 0.0001). At program completion, the prevalence of metabolic syndrome was reduced by 32.5% (P < 0.05). Independent predictors of being a responder to body mass and waist circumference loss were baseline body mass index and resting metabolic rate; those for body mass index decrease were baseline waist circumference and triglyceride/high-density lipoprotein cholesterol ratio. A long-term lifestyle intervention with optimized high-intensity interval exercise improves body composition, cardiometabolic risk, and exercise tolerance in obese subjects. This intervention seems safe, efficient, and well tolerated and could improve adherence to exercise training in this population.

  16. Effect of moderate- and high-intensity acute exercise on appetite in obese individuals.

    PubMed

    Martins, Catia; Stensvold, Dorthe; Finlayson, Graham; Holst, Jens; Wisloff, Ulrik; Kulseng, Bård; Morgan, Linda; King, Neil A

    2015-01-01

    The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous cycling (MICC) or short-duration HIIC (S-HIIC) (125 kcal) and a resting control condition on the appetite hormone responses, subjective feelings of appetite, energy intake (EI), and food reward in overweight/obese individuals. This study is a randomized crossover study on 12 overweight/obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin, polypeptide YY3-36, and glucagon-like peptide 1 and subjective feelings of appetite were measured every 30 min for 3 h. Nutrient and taste preferences were measured at the beginning and end of each condition using the Leeds Food Preference Questionnaire. Insulin levels were significantly reduced, and glucagon-like peptide 1 levels significantly increased during all exercise bouts compared with those during rest. Acylated ghrelin plasma levels were lower in the MICC and HIIC, but not in S-HIIC, compared with those in control. There were no significant differences for polypeptide YY3-36 plasma levels, hunger or fullness ratings, EI, or food reward. Our findings suggest that, in overweight/obese individuals, isocaloric bouts of moderate- or high-intensity exercise lead to a similar appetite response. This strengthens previous findings in normal-weight individuals that acute exercise, even at high intensity, does not induce any known physiological adaptation that would lead to increased EI.

  17. Psychophysiological effects of music on acute recovery from high-intensity interval training.

    PubMed

    Jones, Leighton; Tiller, Nicholas B; Karageorghis, Costas I

    2017-03-01

    Numerous studies have examined the multifarious effects of music applied during exercise but few have assessed the efficacy of music as an aid to recovery. Music might facilitate physiological recovery via the entrainment of respiratory rhythms with music tempo. High-intensity exercise training is not typically associated with positive affective responses, and thus ways of assuaging negative affect warrant further exploration. This study assessed the psychophysiological effects of music on acute recovery and prevalence of entrainment in between bouts of high-intensity exercise. Thirteen male runners (M age =20.2±1.9years; BMI=21.7±1.7; V̇O 2 max=61.6±6.1mL·kg·min -1 ) completed three exercise sessions comprising 5×5-min bouts of high-intensity intervals interspersed with 3-min periods of passive recovery. During recovery, participants were administered positively-valenced music of a slow-tempo (55-65bpm), fast-tempo (125-135bpm), or a no-music control. A range of measures including affective responses, RPE, cardiorespiratory indices (gas exchange and pulmonary ventilation), and music tempo-respiratory entrainment were recorded during exercise and recovery. Fast-tempo, positively-valenced music resulted in higher Feeling Scale scores throughout recovery periods (p<0.01, η p 2 =0.38). There were significant differences in HR during initial recovery periods (p<0.05, η p 2 =0.16), but no other music-moderated differences in cardiorespiratory responses. In conclusion, fast-tempo, positively-valenced music applied during recovery periods engenders a more pleasant experience. However, there is limited evidence that music expedites cardiorespiratory recovery in between bouts of high-intensity exercise. These findings have implications for athletic training strategies and individuals seeking to make high-intensity exercise sessions more pleasant. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The effect of low and high-intensity cycling in diesel exhaust on flow-mediated dilation, circulating NOx, endothelin-1 and blood pressure

    PubMed Central

    Tebbutt, Scott J.; Carlsten, Christopher; Koehle, Michael S.

    2018-01-01

    Introduction Exposure to air pollution impairs aspects of endothelial function such as flow-mediated dilation (FMD). Outdoor exercisers are frequently exposed to air pollution, but how exercising in air pollution affects endothelial function and how these effects are modified by exercise intensity are poorly understood. Objectives Therefore, the purpose of this study was to determine the effects of low-intensity and high-intensity cycling with diesel exhaust (DE) exposure on FMD, blood pressure, plasma nitrite and nitrate (NOx) and endothelin-1. Methods Eighteen males performed 30-minute trials of low or high-intensity cycling (30% and 60% of power at VO2peak) or a resting control condition. For each subject, each trial was performed once while breathing filtered air (FA) and once while breathing DE (300ug/m3 of PM2.5, six trials in total). Preceding exposure, immediately post-exposure, 1 hour and 2 hours post-exposure, FMD, blood pressure and plasma endothelin-1 and NOx concentrations were measured. Data were analyzed using repeated-measures ANOVA and linear mixed model. Results Following exercise in DE, plasma NOx significantly increased and was significantly greater than FA (p<0.05). Two hours following DE exposure, endothelin-1 was significantly less than FA (p = 0.037) but exercise intensity did not modify this response. DE exposure did not affect FMD or blood pressure. Conclusion Our results suggest that exercising in DE did not adversely affect plasma NOX, endothelin-1, FMD and blood pressure. Therefore, recommendations for healthy individuals to moderate or avoid exercise during bouts of high pollution appear to have no acute protective effect. PMID:29466393

  19. Individual preferences for physical exercise as secondary prevention for non-specific low back pain: A discrete choice experiment

    PubMed Central

    Hagberg, Jan; Axén, Iben; Kwak, Lydia; Lohela-Karlsson, Malin; Skillgate, Eva; Dahlgren, Gunilla; Jensen, Irene

    2017-01-01

    Background Exercise is effective in improving non-specific low back pain (LBP). Certain components of physical exercise, such as the type, intensity and frequency of exercise, are likely to influence participation among working adults with non-specific LBP, but the value and relative importance of these components remain unknown. The study’s aim was to examine such specific components and their influence on individual preferences for exercise for secondary prevention of non-specific LBP among working adults. Methods In a discrete choice experiment, working individuals with non-specific LBP answered a web-based questionnaire. Each respondent was given ten pairs of hypothetical exercise programs and asked to choose one option from each pair. The choices comprised six attributes of exercise (i.e., type of training, design, intensity, frequency, proximity and incentives), each with either three or four levels. A conditional logit regression that reflected the random utility model was used to analyze the responses. Results The final study population consisted of 112 participants. The participants’ preferred exercise option was aerobic (i.e., cardiovascular) rather than strength training, group exercise with trainer supervision, rather than individual or unsupervised exercise. They also preferred high intensity exercise performed at least once or twice per week. The most popular types of incentive were exercise during working hours and a wellness allowance rather than coupons for sports goods. The results show that the relative value of some attribute levels differed between young adults (age ≤ 44 years) and older adults (age ≥ 45 years) in terms of the level of trainer supervision required, exercise intensity, travel time to exercise location and financial incentives. For active study participants, exercise frequency (i.e., twice per week, 1.15; CI: 0.25; 2.06) influenced choice of exercise. For individuals with more than one child, travel time (i.e., 20 minutes, -0.55; CI: 0.65; 3.26) was also an influential attribute for choice of exercise, showing that people with children at home preferred to exercise close to home. Conclusions This study adds to our knowledge about what types of exercise working adults with back pain are most likely to participate in. The exercise should be a cardiovascular type of training carried out in a group with trainer supervision. It should also be of high intensity and preferably performed twice per week during working hours. Coupons for sports goods do not appear to motivate physical activity among workers with LBP. The findings of the study could have a substantial impact on the planning and development of exercise provision and promotion strategies to improve non-specific LBP. Providers and employers may be able to improve participation in exercise programs for adults with non-specific LBP by focusing on the exercise components which are the most attractive. This in turn would improve satisfaction and adherence to exercise interventions aimed at preventing recurrent non-specific LBP. PMID:29244841

  20. Individual preferences for physical exercise as secondary prevention for non-specific low back pain: A discrete choice experiment.

    PubMed

    Aboagye, Emmanuel; Hagberg, Jan; Axén, Iben; Kwak, Lydia; Lohela-Karlsson, Malin; Skillgate, Eva; Dahlgren, Gunilla; Jensen, Irene

    2017-01-01

    Exercise is effective in improving non-specific low back pain (LBP). Certain components of physical exercise, such as the type, intensity and frequency of exercise, are likely to influence participation among working adults with non-specific LBP, but the value and relative importance of these components remain unknown. The study's aim was to examine such specific components and their influence on individual preferences for exercise for secondary prevention of non-specific LBP among working adults. In a discrete choice experiment, working individuals with non-specific LBP answered a web-based questionnaire. Each respondent was given ten pairs of hypothetical exercise programs and asked to choose one option from each pair. The choices comprised six attributes of exercise (i.e., type of training, design, intensity, frequency, proximity and incentives), each with either three or four levels. A conditional logit regression that reflected the random utility model was used to analyze the responses. The final study population consisted of 112 participants. The participants' preferred exercise option was aerobic (i.e., cardiovascular) rather than strength training, group exercise with trainer supervision, rather than individual or unsupervised exercise. They also preferred high intensity exercise performed at least once or twice per week. The most popular types of incentive were exercise during working hours and a wellness allowance rather than coupons for sports goods. The results show that the relative value of some attribute levels differed between young adults (age ≤ 44 years) and older adults (age ≥ 45 years) in terms of the level of trainer supervision required, exercise intensity, travel time to exercise location and financial incentives. For active study participants, exercise frequency (i.e., twice per week, 1.15; CI: 0.25; 2.06) influenced choice of exercise. For individuals with more than one child, travel time (i.e., 20 minutes, -0.55; CI: 0.65; 3.26) was also an influential attribute for choice of exercise, showing that people with children at home preferred to exercise close to home. This study adds to our knowledge about what types of exercise working adults with back pain are most likely to participate in. The exercise should be a cardiovascular type of training carried out in a group with trainer supervision. It should also be of high intensity and preferably performed twice per week during working hours. Coupons for sports goods do not appear to motivate physical activity among workers with LBP. The findings of the study could have a substantial impact on the planning and development of exercise provision and promotion strategies to improve non-specific LBP. Providers and employers may be able to improve participation in exercise programs for adults with non-specific LBP by focusing on the exercise components which are the most attractive. This in turn would improve satisfaction and adherence to exercise interventions aimed at preventing recurrent non-specific LBP.

  1. Negative Affect as a Mediator of the Relationship between Vigorous-Intensity Exercise and Smoking

    PubMed Central

    Tart, Candyce D.; Leyro, Teresa M.; Richter, Ashley; Zvolensky, Michael J.; Rosenfield, David; Smits, Jasper A. J.

    2010-01-01

    The present cross-sectional study evaluated whether people who engage in vigorous-intensity exercise are better able to regulate negative affective states, thereby changing core maintenance factors of smoking. Participants were a community sample of adults (n = 270) who completed self-report measures of physical activity, cigarette smoking, anxiety sensitivity, and negative affect. Consistent with hypothesis, vigorous-intensity exercise was related to lower levels of cigarette smoking, accounting for 10% of the variance in smoking. Additionally, negative affect mediated the relationship between vigorous-intensity physical activity and cigarette smoking, accounting for about 12% of this relation. Furthermore, these relationships were stronger for individuals with high anxiety sensitivity than for those with low anxiety sensitivity; including anxiety sensitivity as a moderator of the mediated relationship increased the amount of variance accounted for by negative affect to 17%. The findings are discussed in relation to developing further scientific insight into the mechanisms and pathways relevant to understanding the association among vigorous-intensity exercise, smoking, and emotional vulnerability. PMID:20171786

  2. Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: effects of a single exercise session.

    PubMed

    Feoli, Ana Maria Pandolfo; Macagnan, Fabrício Edler; Piovesan, Carla Haas; Bodanese, Luiz Carlos; Siqueira, Ionara Rodrigues

    2014-01-01

    The main goal of the present study was to investigate the xanthine oxidase (XO) activity in metabolic syndrome in subjects submitted to a single exercise session. We also investigated parameters of oxidative and inflammatory status. A case-control study (9 healthy and 8 MS volunteers) was performed to measure XO, superoxide dismutase (SOD), glutathione peroxidase activities, lipid peroxidation, high-sensitivity C-reactive protein (hsCRP) content, glucose levels, and lipid profile. Body mass indices, abdominal circumference, systolic and diastolic blood pressure, and TG levels were also determined. The exercise session consisted of 3 minutes of stretching, 3 minutes of warm-up, 30 minutes at a constant dynamic workload at a moderate intensity, and 3 minutes at a low speed. The blood samples were collected before and 15 minutes after the exercise session. Serum XO activity was higher in MS group compared to control group. SOD activity was lower in MS subjects. XO activity was correlated with SOD, abdominal circumference, body mass indices, and hsCRP. The single exercise session reduced the SOD activity in the control group. Our data support the association between oxidative stress and risk factors for cardiovascular diseases and suggest XO is present in the pathogenesis of metabolic syndrome.

  3. Advances in the Evaluation of Respiratory Pathophysiology during Exercise in Chronic Lung Diseases

    PubMed Central

    O'Donnell, Denis E.; Elbehairy, Amany F.; Berton, Danilo C.; Domnik, Nicolle J.; Neder, J. Alberto

    2017-01-01

    Dyspnea and exercise limitation are among the most common symptoms experienced by patients with various chronic lung diseases and are linked to poor quality of life. Our understanding of the source and nature of perceived respiratory discomfort and exercise intolerance in chronic lung diseases has increased substantially in recent years. These new mechanistic insights are the primary focus of the current review. Cardiopulmonary exercise testing (CPET) provides a unique opportunity to objectively evaluate the ability of the respiratory system to respond to imposed incremental physiological stress. In addition to measuring aerobic capacity and quantifying an individual's cardiac and ventilatory reserves, we have expanded the role of CPET to include evaluation of symptom intensity, together with a simple “non-invasive” assessment of relevant ventilatory control parameters and dynamic respiratory mechanics during standardized incremental tests to tolerance. This review explores the application of the new advances in the clinical evaluation of the pathophysiology of exercise intolerance in chronic obstructive pulmonary disease (COPD), chronic asthma, interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH). We hope to demonstrate how this novel approach to CPET interpretation, which includes a quantification of activity-related dyspnea and evaluation of its underlying mechanisms, enhances our ability to meaningfully intervene to improve quality of life in these pathologically-distinct conditions. PMID:28275353

  4. Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events.

    PubMed

    Eijsvogels, Thijs M H; Molossi, Silvana; Lee, Duck-Chul; Emery, Michael S; Thompson, Paul D

    2016-01-26

    Habitual physical activity and regular exercise training improve cardiovascular health and longevity. A physically active lifestyle is, therefore, a key aspect of primary and secondary prevention strategies. An appropriate volume and intensity are essential to maximally benefit from exercise interventions. This document summarizes available evidence on the relationship between the exercise volume and risk reductions in cardiovascular morbidity and mortality. Furthermore, the risks and benefits of moderate- versus high-intensity exercise interventions are compared. Findings are presented for the general population and cardiac patients eligible for cardiac rehabilitation. Finally, the controversy of excessive volumes of exercise in the athletic population is discussed. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Heart Rate Variability: Effect of Exercise Intensity on Postexercise Response

    ERIC Educational Resources Information Center

    James, David V. B.; Munson, Steven C.; Maldonado-Martin, Sara; De Ste Croix, Mark B. A.

    2012-01-01

    The purpose of the present study was to investigate the influence of two exercise intensities (moderate and severe) on heart rate variability (HRV) response in 16 runners 1 hr prior to (-1 hr) and at +1 hr, +24 hr, +48 hr, and +72 hr following each exercise session. Time domain indexes and a high frequency component showed a significant decrease…

  6. Comparison of Interstitial Fluid pH, PCO2, PO2 with Venous Blood Values During Repetitive Handgrip Exercise

    NASA Technical Reports Server (NTRS)

    Hagan, Ronald Donald; Soller, Babs R.; Shear, Michael; Walz, Matthias; Landry, Michelle; Heard, Stephen

    2006-01-01

    We evaluated the use of a small, fiber optic sensor to measure pH, PCO2 and PO2 from forearm muscle interstitial fluid (IF) during handgrip dynamometry. PURPOSE: Compare pH, PCO2 and PO2 values obtained from venous blood with those from the IF of the flexor digitorum superficialis (FDS) during three levels of exercise intensity. METHODS: Six subjects (5M/1F), average age 29+/-5 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space and a fiber optic sensor (Paratrend, Diametrics Medical, Inc.) was placed through a 22 G catheter into the FDS muscle under ultrasound guidance. After a 45 min rest period, subjects performed three 5-min bouts of repetitive handgrip exercise (2s contraction/1 s relaxation) at attempted levels of 15%, 30% and 45% of maximal voluntary contraction. The order of the exercise bouts was random with the second and third bouts started after blood lactate had returned to baseline. Venous blood was sampled every minute during exercise and analyzed with an I-Stat CG-4+ cartridge, while IF fiber optic sensor measurements were obtained every 2 s. Change from pre-exercise baseline to end of exercise was computed for pH, PCO2 and PO2. Blood and IF values were compared with a paired t-test. RESULTS: Baseline values for pH, PCO2 and PO2 were 7.37+/-0.02, 46+/-4 mm Hg, and 36+/-6 mm Hg respectively in blood and 7.39+/-0.02, 44+/-6 mm Hg, and 35+/-14 mm Hg in IF. Average changes over all exercise levels are noted in the Table below. For each parameter the exercise-induced change was at least twice as great in IF as in blood. In blood and IF, pH and PCO2 increases were directly related to exercise intensity. Change in venous PO2 was unrelated to exercise intensity, while IF PO2 decreased with increases in exercise intensity. CONCLUSIONS: Measurement of IF pH, PCO2 and PO2 is more sensitive to exercise intensity than measurement of the same parameters in venous blood and provides continuous assessment during and after exercise.

  7. Cardiac parasympathetic reactivation following exercise: implications for training prescription.

    PubMed

    Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin

    2013-12-01

    The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24-48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.

  8. Exercise and end-stage kidney disease: functional exercise capacity and cardiovascular outcomes.

    PubMed

    Parsons, Trisha L; King-Vanvlack, Cheryl E

    2009-11-01

    This review examined published reports of the impact of extradialytic and intradialytic exercise programs on physiologic aerobic exercise capacity, functional exercise endurance, and cardiovascular outcomes in individuals with ESKD. Studies spanning 30 years from the first published report of exercise in the ESKD population were reviewed. Studies conducted in the first half of the publication record focused on the efficacy of exercise training programs performed "off"-dialysis with respect to the modification of traditional cardiovascular risk factors, aerobic capacity, and its underlying determinants. In the latter half of the record, there had been a shift to include other client-centered goals such as physical function and quality of life. There is evidence that both intra- and extradialytic programs can significantly enhance aerobic exercise capacity, but moderate-intensity extradialytic programs may result in greater gains in those individuals who initially have extremely poor aerobic capacity. Functionally, substantive improvements in exercise endurance in excess of the minimum clinical significant difference can occur following either low- or moderate-intensity exercise regardless of the initial level of performance. Reductions in blood pressure and enhanced vascular functioning reported after predominantly intradialytic exercise programs suggest that either low- or moderate-intensity exercise programs can confer cardiovascular benefit. Regardless of prescription model, there was an overall lack of evidence regarding the impact of exercise-induced changes in exercise capacity, endurance, and cardiovascular function on a number of relevant health outcomes (survival, morbidity, and cardiovascular risk), and, more importantly, there is no evidence on the long-term impact of exercise and/or physical activity interventions on these health outcomes.

  9. Effects of Different Heavy-Resistance Exercise Protocols on Plasma Beta-Endorphin Concentrations

    DTIC Science & Technology

    1993-01-01

    of O-EP and cortisol. forms of high-intensity exercise, which is performed well above the level that produces V02 .. but uses multi- anaerobic ; opioid...utilizing the Borg CR- ing the rest period length (i.e., from I to 3 min; or in- 10 scale designed to accommodate primarily anaerobic creasing the resistance...O-EP in response to though short-term anaerobic exercise to exhaustion has high-intensity exercise remain unknown, it has been sug- been shown to

  10. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest

    NASA Technical Reports Server (NTRS)

    Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.

    1976-01-01

    Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.

  11. Use of the Frank-Starling mechanism during exercise is linked to exercise-induced changes in arterial load

    PubMed Central

    Chantler, Paul D.; Melenovsky, Vojtech; Schulman, Steven P.; Gerstenblith, Gary; Becker, Lewis C.; Ferrucci, Luigi; Fleg, Jerome L.; Najjar, Samer S.

    2012-01-01

    Effective arterial elastance(EA) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in EA during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined EA and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive EA[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). EA varied with exercise intensity: the ΔEA between rest and peak exercise along with its determinants, differed among individuals and ranged from −44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔEAI. Individuals with the largest increase in ΔEA(group 3;ΔEA≥0.98 mmHg.m2/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔEA<0.22 mmHg.m2/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise. PMID:22003052

  12. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.

    PubMed

    Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.

  13. A randomized comparison study regarding the impact of short-duration, high-intensity exercise and traditional exercise on anthropometric and body composition measurement changes in post-menopausal women--A pilot study.

    PubMed

    Grossman, Joan A Cebrick; Payne, Ellen K

    2016-03-01

    The mode and duration of exercise necessary to change body composition and reduce weight remains debatable. Menopause results in hormonal changes that preclude weight loss. This randomized pilot study compared the effects of short-duration, high-intensity interval training and traditional exercise on anthropometric and body composition measurement changes in post-menopausal women. To compare the effects of short-duration, high-intensity interval training and traditional methods of exercise (walking) on anthropometric, body composition and body weight change over a 12-week period. Subjects (N = 18) were post-menopausal, sedentary female volunteers, randomly assigned into one of two exercise groups. Both groups exercised five out of seven days for 12 weeks. The resistance group (n = 8) (54.3 ± 7.3 years; BMI = 28.0 ± 2.1 kg/m(2); mean ± SD) exercised for 15.0 ± 3.5 min, which consisted of five different exercise routines including upper and lower extremity, a cardio segment, yoga and abdominal exercises. The walkers (n = 10) (56.6 ± 5.2 years; BMI = 29.2 ± 2.6 kg/m(2); mean ± SD) exercised for 40.0 ± 5.0 min at 65% of their age-predicted maximum heart rate. Relative (%) body fat was measured via DEXA scan, along with five anthropometric measurements, all of which were taken prior to and after 12 weeks. Independent sample t-tests were probed for differences, p ≤ 0.05. No statistically significant changes were determined between the groups for pre-and post-measurements. The outcomes of this study provide a foundation for future comparisons of short-duration high-intensity interval training exercise and traditional exercise, or walking, on anthropometric and body composition measurement changes in sedentary, overweight, post-menopausal females over a 12-week period. © The Author(s) 2016.

  14. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers.

    PubMed

    Sawant, Abhishek C; Te Riele, Anneline S J M; Tichnell, Crystal; Murray, Brittney; Bhonsale, Aditya; Tandri, Harikrishna; Judge, Daniel P; Calkins, Hugh; James, Cynthia A

    2016-01-01

    Endurance exercise is associated with adverse outcomes in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Exercise recommendations for family members remain undetermined. The purposes of this study were to determine if (1) endurance exercise (Bethesda class C) and exercise intensity (metabolic equivalent hours per year [MET-Hr/year]) increase the likelihood of fulfilling 2010 Task Force Criteria and ventricular arrhythmias/implantable cardioverter-defibrillator shock (ventricular tachycardia/ventricular fibrillation [VT/VF]), and (2) exercise restriction to the American Heart Association (AHA)-recommended minimum for healthy adults is associated with favorable outcomes of at-risk family members. Twenty-eight family members of 10 probands inheriting a PKP2 mutation were interviewed about exercise from age 10. Exercise threshold to maintain overall health was based on the 2007 AHA guidelines of a minimum 390 to 650 MET-Hr/year. After adjustment for age, sex, and family membership, both participation in endurance athletics (odds ratio [OR] 7.4, P = .03) and higher-intensity exercise (OR = 4.2, P = .004) were associated with diagnosis (n = 13). Endurance athletes were also significantly more likely to develop VT/VF (n = 6, P = .02). Family members who restricted exercise at or below the upper bound of the AHA goal (≤650 MET-Hr/year) were significantly less likely to be diagnosed (OR = 0.07, P = .002) and had no VT/VF. At diagnosis and first VT/VF, family members had accumulated 2.8-fold (P = .002) and 3.5-fold (P = .03), respectively, greater MET-Hr exercise than the AHA-recommended minimum. Those who developed VT/VF had performed particularly high-intensity exercise in adolescence compared to unaffected family members (age 10-14: P = .04; age 14-19: P = .02). The results of this study suggest restricting unaffected desmosomal mutation carriers from endurance and high-intensity athletics but potentially not from AHA-recommended minimum levels of exercise for healthy adults. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis.

    PubMed

    Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S

    2016-05-01

    The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.

  16. Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.

    PubMed

    Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C

    2016-06-01

    The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.

  17. The effects of light emitting diode therapy following high intensity exercise.

    PubMed

    Denis, Romain; O'Brien, Christopher; Delahunt, Eamonn

    2013-05-01

    To determine the effects of light emitting diode therapy (LEDT) irradiation on blood lactate concentration ([La]) clearance, peak power output and fatigue index (FI) following high intensity fatiguing exercise. Single-blinded randomised cross-over placebo controlled trial. University College Dublin, Institute for Sport and Health, Human performance laboratory. Eighteen healthy male athletes were recruited from field-based sports (including soccer, hockey and rugby union) and participated in the present study. Dependent variables were the peak power output elicited during the Wingate Anaerobic Test (WAnT), FI and [La] before and after each exercise. WAnT performance was measured prior to high intensity fatiguing exercise (Yo-Yo IR2), prior to LEDT or placebo, and following LEDT or placebo. [La] was measured at baseline, immediately after the Yo-Yo IR2, and in the 3rd, 9th, and 15th min following LEDT or placebo condition. No significant group by treatment interactions were observed for any outcome measures (P > 0.05). We conclude that LEDT irradiation applied following high intensity exercise was not effective and has no immediate effect on [La] clearance, peak power and FI, and thus has no significant effect on muscle recovery in athletes at the intensity and irradiation parameters used in the present study. Further research using different parameters is required to determine how LEDT may contribute to post-exercise recovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes

    PubMed Central

    Thomassen, Martin; Gunnarsson, Thomas P.; Christensen, Peter M.; Pavlovic, Davor; Shattock, Michael J.

    2016-01-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10–12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4–5 × 3–4 min at 90–95% of peak aerobic power output) 1–2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na+/K+ pump activity and muscle K+ homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca2+ handling. PMID:26791827

  19. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes.

    PubMed

    Thomassen, Martin; Gunnarsson, Thomas P; Christensen, Peter M; Pavlovic, Davor; Shattock, Michael J; Bangsbo, Jens

    2016-04-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10-12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na(+)/K(+) pump activity and muscle K(+) homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca(2+) handling. Copyright © 2016 the American Physiological Society.

  20. Social Bonds and Exercise: Evidence for a Reciprocal Relationship

    PubMed Central

    Davis, Arran; Taylor, Jacob; Cohen, Emma

    2015-01-01

    In two experimental studies, we investigated mechanisms hypothesized to underpin two pervasive and interrelated phenomena: that certain forms of group movement and exercise lead to social bonding and that social bonding can lead to enhanced exercise performance. In Study 1, we manipulated synchrony and exercise intensity among rowers and found that, compared with low intensity exercise, moderate intensity exercise led to significantly higher levels of cooperation in an economic game; no effect of synchrony vs. non-synchrony was found. In Study 2, we investigated the effects of bonding on performance, using synchrony as a cue of existing supportive social bonds among participants. An elite, highly bonded team of rugby players participated in solo, synchronized, and non-synchronized warm-up sessions; participants' anaerobic performance significantly improved after the brief synchronous warm-up relative to the non-synchronous warm-up. The findings substantiate claims concerning the reciprocal links between group exercise and social bonding, and may help to explain the ubiquity of collective physical activity across cultural domains as varied as play, ritual, sport, and dance. PMID:26317514

  1. A preliminary, randomized trial of aerobic exercise for alcohol dependence.

    PubMed

    Brown, Richard A; Abrantes, Ana M; Minami, Haruka; Read, Jennifer P; Marcus, Bess H; Jakicic, John M; Strong, David R; Dubreuil, Mary Ella; Gordon, Alan A; Ramsey, Susan E; Kahler, Christopher W; Stuart, Gregory L

    2014-07-01

    Interventions targeting physical activity may be valuable as an adjunct to alcohol treatment, but have been relatively untested. In the current study, alcohol dependent, physically sedentary patients were randomized to: a 12-week moderate-intensity, group aerobic exercise intervention (AE; n=25) or a brief advice to exercise intervention (BA-E; n=23). Results showed that individuals in AE reported significantly fewer drinking and heavy drinking days, relative to BA-E during treatment. Furthermore adherence to AE strengthened the beneficial effect of intervention on alcohol use outcomes. While high levels of moderate-intensity exercise appeared to facilitate alcohol recovery regardless of intervention arm, attending the group-based AE intervention seemed to further enhance the positive effects of exercise on alcohol use. Study findings indicate that a moderate intensity, group aerobic exercise intervention is an efficacious adjunct to alcohol treatment. Improving adherence to the intervention may enhance its beneficial effects on alcohol use. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Remotely controlled biking is associated with improved adherence to prescribed cycling speed.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2015-01-01

    Individuals with mobility impairment may benefit from passive exercise mode which can be subsequently enhanced by an active exercise program. However, it is unclear which exercise mode promotes higher adherence to prescribed exercise intensity. The goal of this project was to compare adherence to prescribed speed during passive and active cycling exercise. We used cross-over study design in which subjects followed the same cycling intensity prescription for passive and active exercise modes in a random sequence. Coefficient of variation (CV) and speed differences were used to estimate extent of deviation from the prescribed trajectory. CV varied from 5.2% to 20.4% for the active mode and from 2.8% to 4.5% for the passive mode respectively. Though the CV differences did not reach statistical significance, analysis of cycling speed adherence of 120-second periods showed significantly higher cycling adherence during passive mode for each target cycling speed. Our results indicated that the passive mode may promote exercise safety and efficacy by helping patients who have safety concerns such as the frail elderly, patients with cardiovascular conditions or people with other contraindications for excessive exertion during exercise, in following the optimal intensity trajectory prescribed by their provider.

  3. Leisure-time, occupational, and commuting physical activity and risk of type 2 diabetes in Japanese workers: a cohort study.

    PubMed

    Honda, Toru; Kuwahara, Keisuke; Nakagawa, Tohru; Yamamoto, Shuichiro; Hayashi, Takeshi; Mizoue, Tetsuya

    2015-10-02

    Physical activity has been suggested to reduce the risk of type 2 diabetes. However, evidence is limited regarding whether vigorous-intensity activity yields the same benefits in preventing type 2 diabetes compared with an equivalent dose of moderate-intensity activity as well as other type of physical activity. We examined the risk of type 2 diabetes associated with exercise intensity during leisure and occupational and commuting physical activity among Japanese individuals. Participants included 26,628 workers (23,207 men and 3,421 women) aged 30 to 64 years without diabetes at baseline. There was 6 years of follow-up maximum. Leisure-time exercise, occupational physical activity, and duration of walking to and from work were self-reported. Diabetes was diagnosed by using HbA1c, fasting or random blood glucose, and self-report. We used Cox regression analysis to estimate the hazard ratio (HR) and the 95% confidence interval (CI) of incident diabetes. During a mean follow-up of 5.2 years, 1,770 participants developed type 2 diabetes. Compared with individuals who engaged in no exercise, the HRs (95% CIs) for <7.5, 7.5 to <15.0, and ≥15.0 MET-hours per week of exercise were 0.94 (0.81, 1.08), 1.07 (0.88, 1.30), and 0.90 (0.67, 1.21), respectively, among individuals who engaged in moderate-intensity exercise alone; 0.68 (0.44, 1.06), 0.86 (0.54, 1.34), and 0.89 (0.56, 1.41), respectively, among individuals who engaged in vigorous-intensity exercise alone; and 0.70 (0.44, 1.11), 0.57 (0.37, 0.90), and 0.76 (0.52, 1.11), respectively, among individuals who engaged in the two intensities, with adjustments for potential confounders and the total volume of exercise. Occupational physical activity and walking to and from work were not associated with diabetes. The results suggest that vigorous-intensity exercise can reduce the risk of type 2 diabetes among Japanese workers.

  4. [Effect of high-intensity interval training on the reduction of glycosylated hemoglobin in type-2 diabetic adult patients].

    PubMed

    Aguilera Eguía, Raúl Alberto; Russell Guzmán, Javier Antonio; Soto Muñoz, Marcelo Enrique; Villegas González, Bastián Eduardo; Poblete Aro, Carlos Emilio; Ibacache Palma, Alejandro

    2015-03-05

    Type 2 diabetes mellitus is one of the major non-communicable chronic diseases in the world. Its prevalence in Chile is significant, and complications associated with this disease involve great costs, which is why prevention and treatment of this condition are essential. Physical exercise is an effective means for prevention and treatment of type 2 diabetes mellitus. The emergence of new forms of physical training, such as "high intensity interval training", presents novel therapeutic alternatives for patients and health care professionals. To assess the validity and applicability of the results regarding the effectiveness of high intensity interval training in reducing glycosylated hemoglobin in adult patients with type 2 diabetes mellitus and answer the following question: In subjects with type 2 diabetes, can the method of high intensity interval training compared to moderate intensity exercise decrease glycosylated hemoglobin? We performed a critical analysis of the article "Feasibility and preliminary effectiveness of high intensity interval training in type 2 diabetes". We found no significant differences in the amount of glycosylated hemoglobin between groups of high intensity interval training and moderate-intensity exercise upon completion of the study (p>0.05). In adult patients with type 2 diabetes mellitus, high intensity interval training does not significantly improve glycosylated hemoglobin levels. Despite this, the high intensity interval training method shows as much improvement in body composition and physical condition as the moderate intensity exercise program.

  5. Effects of Indoor Horseback Riding and Virtual Reality Exercises on the Dynamic Balance Ability of Normal Healthy Adults

    PubMed Central

    Lee, Daehee; Lee, Sangyong; Park, Jungseo

    2014-01-01

    [Purpose] The objective of this study was to determine the effect of indoor horseback riding and virtual reality exercises on the dynamic balance ability of normal adults. [Subjects] This study enrolled 24 normal adults and divided them into two groups: an indoor horseback riding exercise group (IHREG, n = 12) and a virtual reality exercise group (VREG, n = 12). [Methods] IHREG exercised on indoor horseback riding equipment and VREG exercised using the Nintendo Wii Fit three times a week for six weeks. The Biodex Balance System was used to analyze dynamic balance as measured by the overall stability index (OSI), anteroposterior stability index (APSI), and mediolateral stability index (MLSI). [Results] In the within-group comparison, IHREG and VERG both showed significant decreases in the dynamic balance indexes of OSI, APSI, and MLSI after the intervention, but no significant difference was found between the groups. [Conclusion] Both indoor horseback riding and virtual reality exercises were effective at improving the subjects’ dynamic balance ability as measured by OSI, APSI, and MLSI, and can be used as additional exercises for patients with conditions affecting postural control. PMID:25540494

  6. The acute effect of moderate intensity aquatic exercise on coagulation factors in haemophiliacs.

    PubMed

    Beltrame, Luis Gustavo Normanton; Abreu, Laurinda; Almeida, Jussara; Boullosa, Daniel Alexandre

    2015-05-01

    The objective of this cross-sectional study was to analyse the acute effect of aquatic exercise on haemostasis in persons with haemophilia. Ten adult haemophiliacs (8 type A, 2 type B) familiarized with aquatic training performed a 20-min exercise session in a swimming pool at an intensity of ~70% maximum heart rate (HR). Blood samples were collected immediately after the training session. The haemostatic parameters selected for analyses were factor VIII (FVIII), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen. There were unclear effects of the exercise bout on FVIII and APTT, with a possibly beneficial effect on PT (-11·4%; 90% confidence interval: -26·1;3·3%), and a trivial change on fibrinogen levels. It was found an association between the mean rise in HR during exercise and the decrement in PT after exercise (r = 0·729; P = 0·026). The greater changes were observed in the patients diagnosed with a moderate level of haemophilia. It is concluded that a short bout of moderate intensity of aquatic exercise may have a positive influence on PT in adults with haemophilia with greater changes in those individuals exhibiting a greater rise in HR during exercise. This may be an important issue to the haemostatic control of haemophiliacs in clinical settings. Further studies are warranted for testing the influence of different aquatic exercise intensities on haemostasis. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. Acute physiological responses to recreational in-line skating in young adults.

    PubMed

    Orepic, Paula; Mikulic, Pavle; Soric, Maroje; Ruzic, Lana; Markovic, Goran

    2014-01-01

    We examined the physiological responses to in-line skating exercise at self-selected paces in recreationally trained adults. Seven men and 10 women performed in-line skating exercise during which oxygen uptake (VO2) and heart rate (HR) were recorded continuously. Ratings of perceived exertion (RPE) and blood lactate concentration were also obtained at the end of exercise. Furthermore, subjects' peak VO2, peak HR, RPE and gas-exchange thresholds were determined in laboratory settings. The average exercise intensity during in-line skating was 90% of peak HR, 67% of peak VO2, 84% of HR reserve and 64% of VO2 reserve. When expressed as RPE and as metabolic equivalents (METs), the average exercise intensity was 13.1 RPE and 9.4 METs. Overall, these indicators of exercise intensity categorise in-line skating at self-selected paces as a vigorous physical activity. Notably, at similar VO2 values, significantly higher HR (174 ± 16 vs. 156 ± 6 bpm; p<0.001) and RPE (13.1 ± 1.4 vs. 11.7 ± 1.4; p=0.019) were observed for in-line skating compared with treadmill running. We conclude that 1. recreational in-line skating induces physiological responses that are sufficient for improving and maintaining cardiovascular fitness in healthy adults, 2. HR- and RPE-based methods for quantifying the exercise intensity during in-line skating may overestimate the actual metabolic load and 3. the derivation of exercise prescriptions for in-line skating should be preferably based on specific (i.e. in-line skating) graded exhaustive exercise test.

  8. Exercise and the Regulation of Immune Functions.

    PubMed

    Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel

    2015-01-01

    Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.

  9. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men.

    PubMed

    Shimano, Tomoko; Kraemer, William J; Spiering, Barry A; Volek, Jeff S; Hatfield, Disa L; Silvestre, Ricardo; Vingren, Jakob L; Fragala, Maren S; Maresh, Carl M; Fleck, Steven J; Newton, Robert U; Spreuwenberg, Luuk P B; Häkkinen, Keijo

    2006-11-01

    Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p < 0.05) intensity x exercise interaction. More repetitions were performed during the back squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.

  10. Effects of myofascial release after high-intensity exercise: a randomized clinical trial.

    PubMed

    Arroyo-Morales, Manuel; Olea, Nicolas; Martinez, Manuel; Moreno-Lorenzo, Carmen; Díaz-Rodríguez, Lourdes; Hidalgo-Lozano, Amparo

    2008-03-01

    The usefulness of massage as a recovery method after high-intensity exercise has yet to be established. We aimed to investigate the effects of whole-body massage on heart rate variability (HRV) and blood pressure (BP) after repeated high-intensity cycling exercise under controlled and standardized pretest conditions. The study included 62 healthy active individuals. After baseline measurements, the subjects performed standardized warm-up exercises followed by three 30-second Wingate tests. After completing the exercise protocol, the subjects were randomly assigned to a massage (myofascial release) or placebo (sham treatment with disconnected ultrasound and magnetotherapy equipment) group for a 40-minute recovery period. Holter recording and BP measurements were taken after exercise protocol and after the intervention. After the exercise protocol, both groups showed a significant decrease in normal-to-normal interval, HRV index, diastolic BP (P > .001), and low-frequency domain values (P = .006). After the recovery period, HRV index (P = .42) and high-frequency (HF) (P = .94) values were similar to baseline levels in the massage group, whereas the HRV index tended (P = .05) to be lower and the HF was significantly (P < .01) lower vs baseline values in the placebo group, which also showed a tendency (P = .06) for HF to be lower than after the exercise. Likewise, diastolic BP returned to baseline levels in the massage group (P = .45) but remained lower in the placebo group (P = .02). Myofascial release massage favors the recovery of HRV and diastolic BP after high-intensity exercise (3 Wingate tests) to preexercise levels.

  11. An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass.

    PubMed

    Asahara, Ryota; Endo, Kana; Liang, Nan; Matsukawa, Kanji

    2018-05-31

    We have reported using near-infrared spectroscopy that an increase in prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) at the start of cycling exercise has relation to central command, defined as a feedforward signal descending from higher brain centers. The final output of central command evokes the exercise effort-dependent cardiovascular responses. If the prefrontal cortex may output the final signal of central command toward the autonomic nervous system, the prefrontal oxygenation should increase depending on exercise effort. To test the hypothesis, we investigated the effects of exercise intensity and muscle mass on prefrontal oxygenation in 13 subjects. The subjects performed one- or two-legged cycling at various relative intensities for 1 min. The prefrontal Oxy-Hb and cardiovascular variables were simultaneously measured during exercise. The increase in cardiac output and the decrease in total peripheral resistance at the start of one- and two-legged cycling were augmented in proportion to exercise intensity and muscle mass recruitment. The prefrontal Oxy-Hb increased at the start of voluntary cycling, while such increase was not developed during passive cycling. Mental imagery of cycling also increased the prefrontal Oxy-Hb, concomitantly with peripheral muscle vasodilatation. However, the increase in prefrontal Oxy-Hb at the start of voluntary cycling seemed independent of exercise intensity and muscle mass recruitment. It is likely that the increased prefrontal activity at the start of cycling exercise is not representative of the final output signal of central command itself toward the autonomic nervous system but may trigger neuronal activity in the caudal brain responsible for the generation of central command.

  12. Bovine colostrum supplementation's lack of effect on immune variables during short-term intense exercise in well-trained athletes.

    PubMed

    Carol, Arnoud; Witkamp, Renger F; Wichers, Harry J; Mensink, Marco

    2011-04-01

    The purpose of this study was to investigate the potential of bovine colostrum to attenuate postexercise decline in immune function. The authors evaluated the time course of a number of immune variables after short-term intense exercise in 9 male athletes after 10 d of supplementation with either colostrum or skim-milk powder. To increase the stress on the immune system subjects performed a glycogen-depletion trial the evening before the endurance trial (90 min at 50% Wmax). Blood samples were taken before the glycogen-depletion trial, before and after the endurance trial, and the next morning, ~22 hr after cessation of the exercise. Plasma cortisol levels increased over time, reaching the highest level directly after exercise, and were still elevated ~22 hr after exercise compared with baseline values (p < .001). Neutrophil cell count was increased after exercise and dropped below starting values 22 hr after exercise (time effect p < .001). Circulating immunoglobulins did not change over time. A significant time effect was seen for interleukin (IL)-6, IL-10, IL-1-receptor agonist, and C-reactive protein, with levels being higher directly after exercise (p < .05). Other cytokines (interferon-γ, IL-1a, IL-8, tumor necrosis factor-a) did not show a time effect. No differences were seen between colostrum and skim-milk powder in any of the investigated variables. Our results are consistent with the hypothesis that intense exercise affects several variables of the immune system. Colostrum did not alter any of the postexercise immune variables compared with skim-milk powder, suggesting no role for bovine colostrum supplementation in preventing postexercise immune suppression after short-term intense exercise.

  13. An investigation into the exercise behaviours of regionally based Australian pregnant women.

    PubMed

    Hayman, Melanie; Short, Camille; Reaburn, Peter

    2016-08-01

    Regular exercise during pregnancy is a recommended prenatal care strategy with short and long-term health benefits to mother and child. Unfortunately, most pregnant women are insufficiently active to obtain health benefits and there is evidence that activity levels decrease overall during pregnancy. Physical activity among regionally based women is lower than that of urban-based women within Australia. However, little is currently known about exercise behaviours of regionally based Australian pregnant women. To successfully promote exercise among regionally based pregnant women, a greater understanding of exercise behaviours must first be explored. This study investigated exercise behaviours in a sample of regionally based Australian pregnant women. Regionally based Australian pregnant women (n=142) completed a modified version of the Godin Leisure-Time Exercise Questionnaire examining exercise behaviours before and during pregnancy. Women self-reported their exercise behaviours, including exercise frequency, intensity, time and type, before and during pregnancy. Chi-square analysis revealed significantly less (χ(2)=31.66, p<0.05) women participated in exercise during pregnancy (61%) compared to before pregnancy (87%). During pregnancy, respondents exercised at a significantly lower frequency (χ(2)=111.63, p<0.05), intensity (χ(2)=67.41, p<0.05), shorter time/duration (χ(2)=114.33, p<0.05), and significantly less (χ(2)=8.55, p<0.05) women (8%) are meeting 'exercise during pregnancy' guidelines compared to women before pregnancy (49%) meeting physical activity guidelines. Exercise during pregnancy decreases to levels significantly lower than what is currently recommended. Public health initiatives that promote exercise among Australian pregnant women should aim to increase frequency, intensity, time and type of exercise to be undertaken during pregnancy. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Training Performed Above Lactate Threshold Decreases p53 and Shelterin Expression in Mice.

    PubMed

    de Carvalho Cunha, Verusca Najara; Dos Santos Rosa, Thiago; Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Deus, Lysleine Alves; Simoes, Herbert Gustavo; de Andrade, Rosangela Vieira

    2018-06-26

    Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor ( Chk2 and p53 , respectively), shelterin telomere repeat binding 1 and 2 ( Trf1 / Trf2 ), DNA repair ( Xrcc5 ), telomerase reverse transcriptase ( mTERT ) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Effect of exercise on cognitive function in chronic disease patients: a meta-analysis and systematic review of randomized controlled trials.

    PubMed

    Cai, Hong; Li, Guichen; Hua, Shanshan; Liu, Yufei; Chen, Li

    2017-01-01

    The purpose of this study was to conduct a meta-analysis and systematic review to assess the effect of exercise on cognitive function in people with chronic diseases. PubMed, Web of Science, Embase, the Cochrane Library, CINAHL, PsycINFO, and three Chinese databases were electronically searched for papers that were published until September 2016. This meta-analysis and systematic review included randomized controlled trials that evaluated the effect of exercise on cognitive function compared with control group for people with chronic diseases. Totally, 35 studies met the inclusion criteria, with 3,113 participants. The main analysis revealed a positive overall random effect of exercise intervention on cognitive function in patients with chronic diseases. The secondary analysis revealed that aerobic exercise interventions and aerobic included exercise interventions had a positive effect on cognition in patients with chronic diseases. The intervention offering low frequency had a positive effect on cognitive function in patients with chronic diseases. Finally, we found that interventions offered at both low exercise intensity and moderate exercise intensity had a positive effect on cognitive function in patients with chronic diseases. The secondary analysis also revealed that exercise interventions were beneficial in Alzheimer's disease patients when grouped by disease type. This meta-analysis and systematic review suggests that exercise interventions positively influence cognitive function in patients with chronic diseases. Beneficial effect was independent of the type of disease, type of exercise, frequency, and the intensity of the exercise intervention.

  16. Acute psychological benefits of exercise performed at self-selected workloads: implications for theory and practice.

    PubMed

    Szabo, Attila

    2003-09-01

    Given that most studies to date examined the connection between exercise and affect without considering the participants' preferred exercise workload, in this research the affective-benefits of jogging or running at a participant-selected pace were investigated in a pilot field and a laboratory experiment. Ninety-six male and female students (19.5 yrs) took part in the pilot field experiment whereas 32 women (20.3 yrs) completed the laboratory experiment. In both experiments, the participants ran/jogged for 20 minutes at a self-selected pace. They completed an abbreviated version of a 'right now form' of the Profile of Mood States (POMS - Grove and Prapavessis, 1992) inventory before and after exercise. In both experiments all dependent measures changed significantly from pre- to post-exercise, except 'fatigue' and 'vigor' that did not change in the laboratory. Total mood disturbance (TMD) decreased significantly in both experiments (68% and 89%). No significant correlations were found between exercise intensity (expressed as percent (%) of maximal heart rate reserve) and the magnitude of changes seen in the dependent measures. It is concluded that exercising at a self-selected workload yields positive changes in affect that are unrelated to exercise intensity. These results suggest that the physiological theories linking exercise with positive changes in affect, in which exercise intensity is instrumental, could not account for the acute affective benefits of exercise. It is proposed that a 'cognitive appraisal hypothesis' may be more appropriate in explaining the acute affective benefits of exercise.

  17. Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance.

    PubMed

    Astokorki, Ali H Y; Mauger, Alexis R

    2017-03-01

    Muscle pain is a natural consequence of intense and prolonged exercise and has been suggested to be a limiter of performance. Transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) have been shown to reduce both chronic and acute pain in a variety of conditions. This study sought to ascertain whether TENS and IFC could reduce exercise-induced pain (EIP) and whether this would affect exercise performance. It was hypothesised that TENS and IFC would reduce EIP and result in an improved exercise performance. In two parts, 18 (Part I) and 22 (Part II) healthy male and female participants completed an isometric contraction of the dominant bicep until exhaustion (Part I) and a 16.1 km cycling time trial as quickly as they could (Part II) whilst receiving TENS, IFC, and a SHAM placebo in a repeated measures, randomised cross-over, and placebo-controlled design. Perceived EIP was recorded in both tasks using a validated subjective scale. In Part I, TENS significantly reduced perceived EIP (mean reduction of 12%) during the isometric contraction (P = 0.006) and significantly improved participants' time to exhaustion by a mean of 38% (P = 0.02). In Part II, TENS significantly improved (P = 0.003) participants' time trial completion time (~2% improvement) through an increased mean power output. These findings demonstrate that TENS can attenuate perceived EIP in a healthy population and that doing so significantly improves endurance performance in both submaximal isometric single limb exercise and whole-body dynamic exercise.

  18. Minimal Intensity Physical Activity (Standing and Walking) of Longer Duration Improves Insulin Action and Plasma Lipids More than Shorter Periods of Moderate to Vigorous Exercise (Cycling) in Sedentary Subjects When Energy Expenditure Is Comparable

    PubMed Central

    Duvivier, Bernard M. F. M.; Schaper, Nicolaas C.; Bremers, Michelle A.; van Crombrugge, Glenn; Menheere, Paul P. C. A.; Kars, Marleen; Savelberg, Hans H. C. M.

    2013-01-01

    Background Epidemiological studies suggest that excessive sitting time is associated with increased health risk, independent of the performance of exercise. We hypothesized that a daily bout of exercise cannot compensate the negative effects of inactivity during the rest of the day on insulin sensitivity and plasma lipids. Methodology/Principal Findings Eighteen healthy subjects, age 21±2 year, BMI 22.6±2.6 kgm−2 followed randomly three physical activity regimes for four days. Participants were instructed to sit 14 hr/day (sitting regime); to sit 13 hr/day and to substitute 1 hr of sitting with vigorous exercise 1 hr (exercise regime); to substitute 6 hrs sitting with 4 hr walking and 2 hr standing (minimal intensity physical activity (PA) regime). The sitting and exercise regime had comparable numbers of sitting hours; the exercise and minimal intensity PA regime had the same daily energy expenditure. PA was assessed continuously by an activity monitor (ActivPAL) and a diary. Measurements of insulin sensitivity (oral glucose tolerance test, OGTT) and plasma lipids were performed in the fasting state, the morning after the 4 days of each regime. In the sitting regime, daily energy expenditure was about 500 kcal lower than in both other regimes. Area under the curve for insulin during OGTT was significantly lower after the minimal intensity PA regime compared to both sitting and exercise regimes 6727.3±4329.4 vs 7752.0±3014.4 and 8320.4±5383.7 mU•min/ml, respectively. Triglycerides, non-HDL cholesterol and apolipoprotein B plasma levels improved significantly in the minimal intensity PA regime compared to sitting and showed non-significant trends for improvement compared to exercise. Conclusions One hour of daily physical exercise cannot compensate the negative effects of inactivity on insulin level and plasma lipids if the rest of the day is spent sitting. Reducing inactivity by increasing the time spent walking/standing is more effective than one hour of physical exercise, when energy expenditure is kept constant. PMID:23418444

  19. Effect of Exercise Intensity on Percent Body Fat Determined by Leg-to-Leg and Segmental Bioelectrical Impedance Analyses in Adults

    ERIC Educational Resources Information Center

    Andreacci, Joseph L.; Nagle, Trisha; Fitzgerald, Elise; Rawson, Eric S.; Dixon, Curt B.

    2013-01-01

    Purpose: We examined the impact that cycle ergometry exercise had on percent body fat (%BF) estimates when assessed using either leg-to-leg or segmental bioelectrical impedance analysis (LBIA; SBIA) and whether the intensity of the exercise bout impacts the %BF magnitude of change. Method: Seventy-four college-aged adults participated in this…

  20. Differential Effects of Differing Intensities of Acute Exercise on Speed and Accuracy of Cognition: A Meta-Analytical Investigation

    ERIC Educational Resources Information Center

    McMorris, Terry; Hale, Beverley J.

    2012-01-01

    The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g = 0.14, p less than 0.01) on cognition. Examination of the comparison between speed and…

Top