Science.gov

Sample records for intense ion acoustic

  1. Low intensity dust ion-acoustic shock waves due to dust charge fluctuation in a nonextensive dusty plasma

    SciTech Connect

    Alinejad, H.; Shahmansory, M.

    2012-08-15

    The properties of low intensity dust ion acoustic shock waves are studied in a charge varying dusty plasma with nonextensive electrons. Owing to the departure from the Maxwellian electron distribution to a nonextensive one, the modified electrostatic charging of a spherical dust particle in plasma with ion streaming speed is considered. Based on the weakly nonlinear analysis, a new relationship between the low intensity localized disturbances and nonextensive electrons is derived. It is found that both strength and steepness of shock structures arise as the electrons evolve far from their thermodynamic equilibrium in such plasma with parameter ranges corresponding to Saturn's rings. It is also shown that the ion temperature and population of electrons reduce the possibility of the formation of the shock profile.

  2. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  3. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics.

    PubMed

    Pushkarev, A I; Isakova, Yu I; Yu, Xiao; Khailov, I P

    2013-08-01

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250-300 kV). The beam is composed of C(+) ions (85%) and protons, the beam energy density is 0.5-5 J∕cm(2) (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1-2 J∕cm(2). The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10(3) pulses∕s.

  4. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  5. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  6. Ion heating via turbulent ion acoustic waves.

    NASA Technical Reports Server (NTRS)

    Taylor, R. J.; Coroniti, F. V.

    1972-01-01

    The ion acoustic turbulence in the turbulent-heating experiment reported is excited by the ion-ion beam instability. Graphs are presented, showing the spatial evolution of the parallel ion beam energy and the spatial evolution of the ion acoustic turbulent wave spectrum. The observed characteristics of test waves in a turbulent beam-plasma imply that wave saturation is a dynamic balance between the emission of waves by the beam and the destruction or damping of wave coherence by the turbulent diffusion of particle orbits.

  7. Ion Acoustic Waves in Ultracold Neutral Plasmas

    SciTech Connect

    Castro, J.; McQuillen, P.; Killian, T. C.

    2010-08-06

    We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.

  8. Ion acoustic traveling waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Burrows, R. H.; Ao, X.; Zank, G. P.; Zank

    2014-04-01

    Models for traveling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the traveling waves can be reduced to a single first-order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron-proton or an electron-positron plasma). Besides its intrinsic interest, the integral equation solution provides a useful analytical test for numerical codes that include a proton-electron mass ratio as a fundamental constant, such as for particle in cell (PIC) codes. The integral equation is used to delineate the physical characteristics of ion acoustic traveling waves consisting of hot electron and cold proton fluids.

  9. Compressive and rarefactive ion acoustic solitons in a magnetized two-ion component plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.; Aman-ur-Rehman

    2014-10-01

    The formation of compressive (hump) and rarefactive (dip) ion acoustic solitons is studied in magnetized O+- H+- e and O+- H-- e plasmas. The hydrodynamics equations are described for cold heavy (oxygen) ions, warm light (hydrogen) ions and isothermal Boltzmann distributed electrons along with Poisson equations in the presence of a magnetic field. The reductive perturbation method is used to derive the nonlinear Zakharov-Kuznetsov (ZK) equation for an ion acoustic wave in magnetized two-ion component plasma. It is found that two modes of ion acoustic waves with fast and slow speeds can propagate in the linear limit in such a plasma. It is noticed that, in the case of positively charged light hydrogen ions O+- H+- e plasmas, the slow ion acoustic wave solitons formed both potential hump as well as dip structures, while fast ion acoustic wave solitons give only hump structures. However in the case of negatively charged light hydrogen ions O+- H-- e plasmas, the slow ion acoustic wave solitons formed potential hump structures while fast ion acoustic wave solitons produce dip structures. The variations in the amplitude and width of the nonlinear slow and fast ion acoustic wave structures with density, temperature of light ions and magnetic field intensity are obtained in magnetized two-ion component plasmas. The magnetic field has its effect only on the width of the nonlinear ion acoustic wave structures in two-ion component plasmas.

  10. Development of an accelerometer-based underwater acoustic intensity sensor.

    PubMed

    Kim, Kang; Gabrielson, Thomas B; Lauchle, Gerald C

    2004-12-01

    An underwater acoustic intensity sensor is described. This sensor derives acoustic intensity from simultaneous, co-located measurement of the acoustic pressure and one component of the acoustic particle acceleration vector. The sensor consists of a pressure transducer in the form of a hollow piezoceramic cylinder and a pair of miniature accelerometers mounted inside the cylinder. Since this sensor derives acoustic intensity from measurement of acoustic pressure and acoustic particle acceleration, it is called a p-a intensity probe. The sensor is ballasted to be nearly neutrally buoyant. It is desirable for the accelerometers to measure only the rigid body motion of the assembled probe and for the effective centers of the pressure sensor and accelerometer to be coincident. This is achieved by symmetric disposition of a pair of accelerometers inside the ceramic cylinder. The response of the intensity probe is determined by comparison with a reference hydrophone in a predominantly reactive acoustic field.

  11. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ata-ur-Rahman, Ali, S.; Mirza, Arshad M.; Qamar, A.

    2013-04-01

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  12. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  13. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  14. Ion acoustic solitons in a plasma with finite temperature drifting ions: Limit on ion drift velocity

    SciTech Connect

    Malik, H.K.; Singh, S.; Dahiya, R.P. )

    1994-05-01

    Propagation of ion acoustic solitons in a plasma consisting of finite temperature drifting ions and nondrifting electrons has been studied. It is shown that in addition to the electron inertia and weak relativistic effects, the ion temperature also modifies the soliton behavior. By including the finite ion temperature, limit for the ion drift velocity [ital u][sub 0] for which the ion acoustic solitons are possible, is obtained. The solitons can exist for [ital v][sub [ital Te

  15. Modal analysis and intensity of acoustic radiation of the kettledrum.

    PubMed

    Tronchin, Lamberto

    2005-02-01

    The acoustical features of kettledrums have been analyzed by means of modal analysis and acoustic radiation (p/v ratio) measurements. Modal analysis of two different kettledrums was undertaken, exciting the system both by a hammer and a shaker. Up to 15 vibrational modes were clearly identified. Acoustic radiation was studied using two ways. Based on previous experiments of other researchers, a new parameter, called intensity of acoustic radiation (IAR), has been defined and measured. Results show a strict relationship between IAR and the frequency response function (FRF, which is the v/F ratio), and IAR also strongly relates the modal pattern to acoustic radiation. Finally, IAR is proposed for vibro-acoustical characterization of kettledrums and other musical instruments such as strings, pianos, and harpsichords. PMID:15759711

  16. Ion acoustic waves in a multi-ion plasma.

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; White, R. B.; Samec, T. K.

    1971-01-01

    An exact treatment of the multispecies ion acoustic dispersion relation is given for an argon/helium plasma. Phase velocity and damping are obtained as a function of ion-electron temperature ratio and relative densities of the two species. There are two important modes in the plasma, with quite different phase velocities, which are referred to as principal heavy ion mode and principal light ion mode. Which of these is dominant depends on the relative densities of the two components, but, in general, the light ion mode becomes important for surprisingly small light ion contamination. Approximate analytic expressions are derived from damping rates and phase velocities and their domains of validity are investigated. Relevance of the results for the investigation of collisionless shocks is discussed.

  17. Turbulence in electrostatic ion acoustic shocks

    NASA Technical Reports Server (NTRS)

    Means, R. W.; Coroniti, F. V.; Wong, A. Y.; White, R. B.

    1973-01-01

    Three types of collisionless electrostatic ion acoustic shocks are investigated using a double plasma (DP) device: (1) laminar shocks; (2) small amplitude turbulent shocks in which the turbulence is confined to be upstream of the shock potential jump; and (3) large amplitude turbulent shocks in which the wave turbulence occurs throughout the shock transition. The wave turbulence is generated by ions which are reflected from the shock potential; linear theory spatial growth increments agree with experimental values. The experimental relationship between the shock Mach number and the shock potential is shown to be inconsistent with theoretical shock models which assume that the electrons are isothermal. Theoretical calculations which assume a trapped electron equation of a state and a turbulently flattened velocity distrubution function for the reflected ions yields a Mach number vs potential relationship in agreement with experiment.

  18. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  19. Measurements of ion-ion collisional broadening of ion acoustic modes

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Benage, J. F.; Montgomery, D. S.; Murillo, M. S.; Wysocki, F. J.; Rostoker, N.

    2002-10-01

    Although collisional plasmas are often encountered in inertial confinement fusion, dense plasma experiments and astrophysics, very few experiments have looked at the effects produced by the presence of these collisions. Ion-acoustic modes are predicted to broaden due to ion-ion collisions when the ion-ion mean free path, λ_ii, becomes comparable to the ion-acoustic wavelength, λ_iaw. This paper presents the first quantitative data of ion-acoustic wave broadening in moderately ion-ion collisional (0.05ion-acoustic modes was observed using collective Thomson scattering and analyzed using a collisional model that includes, ion and electron Landau, inhomogeneity and instrumental broadening. The results indicate that standard collisional models do not adequately predict the degree of ion-acoustic damping when 0.1

  20. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  1. Acoustic intensity simulations for regulatory compliance

    NASA Astrophysics Data System (ADS)

    Daft, Chris M. W.; Leue, William M.; Thomenius, Kai E.; Odegaard, Lars A.; MacDonald, Michael C.; Meyers, Alan S.

    1999-06-01

    Ensuring that an ultrasound imager complies with all aspects of the FDA 510(k) regulations is a complex task, because there are hundreds of thousands of discrete operating conditions available to the sonographer. Accurate measurements require `peaking' of the hydrophone in azimuth and elevation, and acquiring data as a function of range. Thus it is necessary to characterize the acoustic field in 3 dimensions. It is simply impossible to measure the imager's output under each condition, so algorithmic means are needed to reduce the dimensionality of the problem. Even when simple linear dependencies (such as pulse repetition frequency) are taken into account, the time to obtain Thermal and Mechanical Indices for a new probe is formidable. We must also repeat the experiment each time changes are made to the transmitter hardware, or its waveforms. In this paper, we explore how to speed the acquisition of data used for estimation of the output labeling parameters by guiding the water-tank measurements with a beam simulator.

  2. Direct acoustic phonon excitation by intense and ultrashort terahertz pulses

    NASA Astrophysics Data System (ADS)

    Manceau, J.-M.; Loukakos, P. A.; Tzortzakis, S.

    2010-12-01

    We report on the direct and resonant excitation of acoustic phonons in an AlGaAs intrinsic semiconductor using intense coherent and single cycle terahertz pulses created by two-color femtosecond laser pulse filamentation in air. While the electrons are left unperturbed, we follow the lattice dynamics with time-delayed optical photons tuned to the interband transition.

  3. Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.

    2015-12-01

    Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.

  4. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  5. Ion Acoustic Modes in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hartley, Nicholas; Monaco, Guilio; White, Thomas; Gregori, Gianluca; Graham, Peter; Fletcher, Luke; Appel, Karen; Tschentscher, Thomas; Lee, Hae Ja; Nagler, Bob; Galtier, Eric; Granados, Eduardo; Heimann, Philip; Zastrau, Ulf; Doeppner, Tilo; Gericke, Dirk; Lepape, Sebastien; Ma, Tammy; Pak, Art; Schropp, Andreas; Glenzer, Siegfried; Hastings, Jerry

    2015-06-01

    We present results that, for the first time, show scattering from ion acoustic modes in warm dense matter, representing an unprecedented level of energy resolution in the study of dense plasmas. The experiment was carried out at the LCLS facility in California on an aluminum sample at 7 g/cc and 5 eV. Using an X-ray probe at 8 keV, shifted peaks at +/-150 meV were observed. Although the energy shifts from interactions with the acoustic waves agree with predicted values from DFT-MD models, a central (elastic) peak was also observed, which did not appear in modelled spectra and may be due to the finite timescale of the simulation. Data fitting with a hydrodynamic form has proved able to match the observed spectrum, and provide measurements of some thermodynamic properties of the system, which mostly agree with predicted values. Suggest for further experiments to determine the cause of the disparity are also given.

  6. An acoustic intensity-based method and its aeroacoustic applications

    NASA Astrophysics Data System (ADS)

    Yu, Chao

    Aircraft noise prediction and control is one of the most urgent and challenging tasks worldwide. A hybrid approach is usually considered for predicting the aerodynamic noise. The approach separates the field into aerodynamic source and acoustic propagation regions. Conventional CFD solvers are typically used to evaluate the flow field in the source region. Once the sound source is predicted, the linearized Euler Equations (LEE) can be used to extend the near-field CFD solution to the mid-field acoustic radiation. However, the far-field extension is very time consuming and always prohibited by the excessive computer memory requirements. The FW-H method, instead, predicts the far-field radiation using the flow-field quantities on a closed control surface (that encloses the entire aerodynamic source region) if the wave equation is assumed outside. The surface integration, however, has to be carried out for each far-field location. This would be still computationally intensive for a practical 3D problem even though the intensity in terms of the CPU time has been much decreased compared with that required by the LEE methods. For an accurate far-field prediction, the other difficulty of using the FW-H method is that the complete control surface may be infeasible to accomplish for most practical applications. Motivated by the need for the accurate and efficient far-field prediction techniques, an Acoustic Intensity-Based Method (AIBM) has been developed based on an acoustic input from an OPEN control surface. The AIBM assumes that the sound propagation is governed by the modified Helmholtz equation on and outside a control surface that encloses all the nonlinear effects and noise sources. The prediction of the acoustic radiation field is carried out by the inverse method with an input of acoustic pressure derivative and its simultaneous, co-located acoustic pressure. The reconstructed acoustic radiation field using the AIBM is unique due to the unique continuation theory

  7. Modulational instability of ion-acoustic wave envelopes in magnetized quantum electron-positron-ion plasmas

    SciTech Connect

    Bains, A. S.; Gill, T. S.; Misra, A. P.; Saini, N. S.

    2010-01-15

    The amplitude modulation of quantum ion-acoustic waves (QIAWs) along an external magnetic field is studied in a quantum electron-positron-ion (e-p-i) magnetoplasma. Reductive perturbation technique is used to derive the three-dimensional nonlinear Schroedinger equation which governs the slow modulation of QIAW packets. Accounting for the effects of the electron to ion number density ratio (mu), the normalized ion-cyclotron frequency (omega{sub c}) as well as the ratio (H) of the 'plasmonic energy density' to the Fermi energy, new regimes for the modulational instability of QIAWs are obtained and analyzed. In contrast to one-dimensional unmagnetized e-p-i plasmas, the instability growth rate is shown to suppress with increasing mu or decreasing the values of H. The predicted results could be important for understanding the salient features of modulated QIAW packets in dense astrophysical plasmas as well as to the next generation intense laser solid density plasma experiments.

  8. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  9. Ion Injectors for High-Intensity Accelerators

    NASA Astrophysics Data System (ADS)

    Stockli, Martin P.; Nakagawa, Takahide

    2014-02-01

    There are a growing number of applications for ion accelerators, with increasingly complex beam requirements and progressively higher beam intensities. The performance of the ion injector is critical to the success of these projects. First, there is the ion source that has to produce the desired ion species, with a large variety of desired species requiring vastly different ion sources. In addition, the ion source has to produce those ions with the desired rate and without debilitating impurities, as well as with the desired duty factor. Several examples will show that very successful ion sources can fail when the duty factor is increased because their lifetime becomes too short or their failure rate too high. Equally important is the extraction of those ions and their transport to the next stage of acceleration, because the slow ion velocities pose a serious challenge to increasing the intensity. As the beam intensity is increased, its emittance, stability and controllability become more important. This article cannot cover this subject in depth. It tries to provide a flavor of the complexities and serve as an introduction to further reading and studies.

  10. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  11. Comparison of Two High Intensity Acoustic Test Facilities

    NASA Astrophysics Data System (ADS)

    Launay, A.; Tadao Sakita, M.; Kim, Youngkey K.

    2004-08-01

    In two different countries, at the same period of time, the institutes in charge of the development of space activities have decided to extend their satellite integration and test center, and to implement a reverberant acoustic chamber. In Brazil the INPE laboratory (LIT : Laboratorio de Integracao e Testes) and in South Korea the KARI laboratory (SITC : Satellite Integration and Test Center) started their projects in July 2000 for the RATF (Reverberant Acoustic Test Facility) and in May 2001 for the HIAC (High Intensity Acoustic Chamber) respectively, writing the technical specifications. The kick-off meetings took place in December 2000 and in February 2002 and the opening ceremonies in December 19, 2002 in Brazil and in August 22, 2003 in Korea. This paper compares the two projects in terms of design choices, manufacturing processes, equipment installed and technical final characteristics.

  12. Improving Plating by Use of Intense Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Denofrio, Charles

    2003-01-01

    An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

  13. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  14. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  15. Acoustic intensity near a high-powered military jet aircraft.

    PubMed

    Stout, Trevor A; Gee, Kent L; Neilsen, Tracianne B; Wall, Alan T; James, Michael M

    2015-07-01

    The spatial variation in vector acoustic intensity has been calculated between 100 and 3000 Hz near a high-performance military aircraft. With one engine of a tethered F-22A Raptor operating at military power, a tetrahedral intensity probe was moved to 27 locations in the geometric near and mid-fields to obtain the frequency-dependent intensity vector field. The angles of the maximum intensity region rotate from aft to sideline with increasing frequency, becoming less directional above 800 Hz. Between 100 and 400 Hz, which are principal radiation frequencies, the ray-traced dominant source region rapidly contracts and moves upstream, approaching nearly constant behavior by 1000 Hz. PMID:26233049

  16. Acoustic intensity near a high-powered military jet aircraft.

    PubMed

    Stout, Trevor A; Gee, Kent L; Neilsen, Tracianne B; Wall, Alan T; James, Michael M

    2015-07-01

    The spatial variation in vector acoustic intensity has been calculated between 100 and 3000 Hz near a high-performance military aircraft. With one engine of a tethered F-22A Raptor operating at military power, a tetrahedral intensity probe was moved to 27 locations in the geometric near and mid-fields to obtain the frequency-dependent intensity vector field. The angles of the maximum intensity region rotate from aft to sideline with increasing frequency, becoming less directional above 800 Hz. Between 100 and 400 Hz, which are principal radiation frequencies, the ray-traced dominant source region rapidly contracts and moves upstream, approaching nearly constant behavior by 1000 Hz.

  17. Ion acoustic shocks in magneto rotating Lorentzian plasmas

    SciTech Connect

    Hussain, S.; Akhtar, N.; Hasnain, H.

    2014-12-15

    Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.

  18. Underwater Acoustic Propagation in the Philippine Sea: Intensity Fluctuations

    NASA Astrophysics Data System (ADS)

    White, Andrew W.

    In the spring of 2009, broadband transmissions from a ship-suspended source with a 284 Hz center frequency were received on a moored and navigated vertical array of hydrophones over a range of 107 km in the Philippine Sea. During a 60-hour period over 19 000 transmissions were carried out. The observed wavefront arrival structure reveals four distinct purely refracted acoustic paths: one with a single upper turning point near 80 m depth, two with a pair of upper turning points at a depth of roughly 300 m, and one with three upper turning points at 420 m. Individual path intensity, defined as the absolute square of the center frequency Fourier component for that arrival, was estimated over the 60-hour duration and used to compute scintillation index and log-intensity variance. Monte Carlo parabolic equation simulations using internal-wave induced sound speed perturbations obeying the Garrett-Munk internal-wave en- ergy spectrum were in agreement with measured data for the three deeper-turning paths but differed by as much as a factor of four for the near surface-interacting path. Estimates of the power spectral density and temporal autocorrelation function of intensity were attempted, but were complicated by gaps in the measured time-series. Deep fades in intensity were observed in the near surface-interacting path. Hypothesized causes for the deep fades were examined through further acoustic propagation modeling and analysis of various available oceanographic measurements.

  19. Acoustic intensity in the interaction region of a parametric source

    NASA Astrophysics Data System (ADS)

    Lauchle, G. C.; Gabrielson, T. B.; van Tol, D. J.; Kottke, N. F.; McConnell, J. A.

    2003-10-01

    The goal of this project was to measure acoustic intensity in the strong interaction region of a parametric source in order to obtain a clear definition of the source-generation region and to separate the local generation (the reactive field) from propagation (the real or active field). The acoustic intensity vector was mapped in the interaction region of a parametric projector at Lake Seneca. The source was driven with primary signals at 22 kHz and 27 kHz. Receiving sensors were located 8.5 meters from the projector. At that range, the secondary at 5 kHz was between 40 and 45 dB below either primary. For the primary levels used, the plane-wave shock inception distance would have been at least 14 meters. Furthermore, the Rayleigh distance for the projector was about 4 meters so the measurements at 8.5 meters were in the strong interaction region but not in saturation. Absorption was negligible over these ranges. The intensity measurements were made at fixed range but varying azimuth angle and varying depth thus developing a two-dimensional cross-section of the secondary beam. Measurements of both the active and reactive intensity vectors will be presented along with a discussion of measurement error. [Work supported by ONR Code 321SS.

  20. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  1. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  2. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  3. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  4. Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Poria, Swarup; Narayan Ghosh, Uday; Roychoudhury, Rajkumar

    2012-05-01

    The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.

  5. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  6. Ion acoustic shock wave in collisional equal mass plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-01

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  7. Beam ion losses due to energetic particle geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Fisher, R. K.; Pace, D. C.; Kramer, G. J.; Van Zeeland, M. A.; Nazikian, R.; Heidbrink, W. W.; García-Muñoz, M.

    2012-12-01

    We report the first experimental observations of fast-ion loss in a tokamak due to energetic particle driven geodesic acoustic modes (EGAMs). A fast-ion loss detector installed on the DIII-D tokamak observes bursts of beam ion losses coherent with the EGAM frequency. The EGAM activity results in a significant loss of beam ions, comparable to the first orbit losses. The pitch angles and energies of the measured fast-ion losses agree with predictions from a full orbit simulation code SPIRAL, which includes scattering and slowing-down.

  8. Generation of terahertz radiation via an electromagnetically induced transparency at ion acoustic frequency region in laser-produced dense plasmas.

    PubMed

    Nakagawa, Makoto; Kodama, Ryosuke; Higashiguchi, Takeshi; Yugami, Noboru

    2009-08-01

    Electromagnetically induced transparency is a well-known quantum phenomena that electromagnetic wave controls the refractive index of medium. It enables us to create a passband for low-frequency electromagnetic wave in a dense plasma even if the plasma is opaque for the electromagnetic wave. This technique can be used to prove the ion acoustic wave because the ion acoustic frequency is lower than the plasma frequency. We have investigated a feasibility of electromagnetic radiation at THz region corresponding to the ion acoustic frequency from a dense plasma. We confirmed that the passband is created at about 7.5 THz corresponding to the ion acoustic frequency in the electron plasma density of 10(21) cm(-3) with a Ti:Sapphire laser with the wavelength of 800 nm and the laser intensity of 10(17) W/cm(2). The estimated radiation power is around 1 MW, which is expected to be useful for nonlinear THz science and applications.

  9. Ion acoustic solitons in Earth's upward current region

    SciTech Connect

    Main, D. S.; Scholz, C.; Newman, D. L.; Ergun, R. E.

    2012-07-15

    The formation and evolution of ion acoustic solitons in Earth's auroral upward current region are studied using one- and two-dimensional (2D) electrostatic particle-in-cell simulations. The one-dimensional simulations are confined to processes that occur in the auroral cavity and include four plasma populations: hot electrons, H{sup +} and O{sup +} anti-earthward ion beams, and a hot H{sup +} background population. Ion acoustic solitons are found to form for auroral-cavity ion beams consistent with acceleration through double-layer (DL) potentials measured by FAST. A simplified one-dimensional model simulation is then presented in order to isolate the mechanisms that lead to the formation of the ion acoustic soliton. Results of a two-dimensional simulation, which include both the ionosphere and the auroral cavity, separated by a low-altitude DL, are then presented in order to confirm that the soliton forms in a more realistic 2D geometry. The 2D simulation is initialized with a U-shaped potential structure that mimics the inferred shape of the low altitude transition region based on observations. In this simulation, a soliton localized perpendicular to the geomagnetic field is observed to form and reside next to the DL. Finally, the 2D simulation results are compared with FAST data and it is found that certain aspects of the data can be explained by assuming the presence of an ion acoustic soliton.

  10. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  11. Kinetic study of ion-acoustic plasma vortices

    SciTech Connect

    Khan, S. A.; Aman-ur-Rehman; Mendonca, J. T.

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  12. Ion acoustic and dust acoustic waves at finite size of plasma particles

    SciTech Connect

    Andreev, Pavel A. Kuz'menkov, L. S.

    2015-03-15

    We consider the influence of the finite size of ions on the properties of classic plasmas. We focus our attention at the ion acoustic waves for electron-ion plasmas. We also consider the dusty plasmas where we account the finite size of ions and particles of dust and consider the dispersion of dust acoustic waves. The finite size of particles is a classical effect as well as the Coulomb interaction. The finite size of particles considerably contributes to the properties of the dense plasmas in the small wavelength limit. Low temperature dense plasmas, revealing the quantum effects, are also affected by the finite size of plasma particles. Consequently, it is important to consider the finite size of ions in the quantum plasmas as well.

  13. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-15

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions {beta} and the concentration of the negatively charged dust particles {delta}.

  14. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    NASA Astrophysics Data System (ADS)

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-01

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions β and the concentration of the negatively charged dust particles δ.

  15. Tail formation by nonresonant interaction of ions with ion-acoustic turbulence

    NASA Astrophysics Data System (ADS)

    Appert, K.; Vaclavik, J.

    1981-09-01

    The quasilinear evolution of ion-acoustic turbulence induced by a constant current in a two-temperature plasma (with electron temperature much greater than ion temperature) is considered. The pertinent equations, which include both resonant and nonresonant wave-particle interactions, are discretized by a finite element method and solved numerically. If is shown first that the nonresonant interaction provides a powerful mechanism for ion tail formation. It is then shown that linear Landau damping on the high-energy ion tail so formed may quench the ion-acoustic instability as proposed by Dum et al. (1974) when interpreting their particle-in-cell simulation results.

  16. Acoustic agglomeration of fine particles based on a high intensity acoustical resonator

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Zeng, Xinwu; Tian, Zhangfu

    2015-10-01

    Acoustic agglomeration (AA) is considered to be a promising method for reducing the air pollution caused by fine aerosol particles. Removal efficiency and energy consuming are primary parameters and generally have a conflict with each other for the industry applications. It was proved that removal efficiency is increased with sound intensity and optimal frequency is presented for certain polydisperse aerosol. As a result, a high efficiency and low energy cost removal system was constructed using acoustical resonance. High intensity standing wave is generated by a tube system with abrupt section driven by four loudspeakers. Numerical model of the tube system was built base on the finite element method, and the resonance condition and SPL increase were confirmd. Extensive tests were carried out to investigate the acoustic field in the agglomeration chamber. Removal efficiency of fine particles was tested by the comparison of filter paper mass and particle size distribution at different operating conditions including sound pressure level (SPL), and frequency. The experimental study has demonstrated that agglomeration increases with sound pressure level. Sound pressure level in the agglomeration chamber is between 145 dB and 165 dB from 500 Hz to 2 kHz. The resonance frequency can be predicted with the quarter tube theory. Sound pressure level gain of more than 10 dB is gained at resonance frequency. With the help of high intensity sound waves, fine particles are reduced greatly, and the AA effect is enhanced at high SPL condition. The optimal frequency is 1.1kHz for aerosol generated by coal ash. In the resonace tube, higher resonance frequencies are not the integral multiplies of the first one. As a result, Strong nonlinearity is avoided by the dissonant characteristic and shock wave is not found in the testing results. The mechanism and testing system can be used effectively in industrial processes in the future.

  17. Modulational instability of ion-acoustic wave envelopes in magnetized quantum electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Bains, A. S.; Misra, A. P.; Saini, N. S.; Gill, T. S.

    2010-01-01

    The amplitude modulation of quantum ion-acoustic waves (QIAWs) along an external magnetic field is studied in a quantum electron-positron-ion (e-p-i) magnetoplasma. Reductive perturbation technique is used to derive the three-dimensional nonlinear Schrödinger equation which governs the slow modulation of QIAW packets. Accounting for the effects of the electron to ion number density ratio (μ), the normalized ion-cyclotron frequency (ωc) as well as the ratio (H) of the "plasmonic energy density" to the Fermi energy, new regimes for the modulational instability of QIAWs are obtained and analyzed. In contrast to one-dimensional unmagnetized e-p-i plasmas, the instability growth rate is shown to suppress with increasing μ or decreasing the values of H. The predicted results could be important for understanding the salient features of modulated QIAW packets in dense astrophysical plasmas as well as to the next generation intense laser solid density plasma experiments.

  18. Planning the acoustic environment of a neonatal intensive care unit.

    PubMed

    Philbin, M Kathleen

    2004-06-01

    This article addresses general principles of designing a quiet neonatal intensive care unit (NICU) and describes basic aspects of room acoustics as these apply to the NICU. Recommended acoustical criteria for walls, background noise, vibration, and reverberation are included as appendices. Crowding in open, multiple-bed NICUs is the major factor in designs that inevitably produce noisy nurseries with limited space for parents. Quiet infant spaces with appropriate sound sources rely on isolation of the infant from facility and operational noise sources (eg, adult work spaces, supply delivery, and travel paths) and extended contact with family members.However, crowding has been an important influence on the clinical practice and social context of neonatology. It allows clinicians to rely on wide visual and auditory access to many patients for monitoring their well-being. It also allows immediate social contact with other adults, both staff and families. Giving up this wide access and relying on other forms of communication in order to provide for increased quiet and privacy for staff, infants, and parents is a challenge for some design teams. Studies of the effects of various nursery designs on infants, parents, clinicians, and the delivery of services are proposed as a means of advancing the field of design.

  19. Nonplanar ion-acoustic two-soliton systems in quantum electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mandal, Pankaj Kumar; Ghorui, Malay Kumar; Saha, Asit; Chatterjee, Prasanta

    2015-01-01

    The basic features of planar and nonplanar time dependent ion-acoustic two-soliton systems have been studied in a three component unmagnetized, collisionless quantum plasma consisting of inertialess electrons and positrons. Using the reductive perturbation technique (RPT), we have derived the Korteweg-de Vries equation for our model. The effects of several parameters on the properties of ion-acoustic two-soliton systems in quantum electron-positron-ion plasmas have been discussed in planar and nonplanar geometries. It has been shown that the properties of ion-acoustic two-soliton systems are affected significantly due to cylindrical and spherical geometries. The amplitude of the cylindrical two-soliton system is smaller than that of the spherical two-soliton system for small values of | τ|. The propagation of ion-acoustic two-soliton systems is quite different from the propagation of ion-acoustic two-soliton systems in a nonplanar geometry. The present investigation may have relevance in the study of the propagation of ion-acoustic two-soliton systems in space and laboratory plasmas.

  20. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    SciTech Connect

    Chawla, J. K.; Mishra, M. K.

    2010-10-15

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,{sigma}), where p and {sigma} are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  1. Dressed ion-acoustic solitons in magnetized dusty plasmas

    SciTech Connect

    El-Labany, S. K.; El-Shamy, E. F.; El-Warraki, S. A.

    2009-01-15

    In the present research paper, the characteristics of ion acoustic solitary waves are investigated in hot magnetized dusty plasmas consisting of negatively charged dust grains, positively charged ion fluid, and isothermal electrons. Applying a reductive perturbation theory, a nonlinear Korteweg-de Vries (KdV) equation for the first-order perturbed potential and a linear inhomogeneous KdV-type equation for the second-order perturbed potentials are derived. Stationary solutions of these coupled equations are obtained using a renormalization method. The effects of the external oblique magnetic field, hot ion fluid, and higher-order nonlinearity on the nature of the ion acoustic solitary waves are discussed. The results complement and provide new insights into previously published results on this problem [R. S. Tiwari and M. K. Mishra, Phys. Plasmas 13, 062112 (2006)].

  2. Ion-acoustic vortices in inhomogeneous and dissipative electron-positron-ion quantum magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.; Nargis, Shahida; Ayub, M.

    2009-04-01

    Linear and nonlinear properties of quantum ion-acoustic waves are studied in a nonuniform, dissipative quantum plasma (composed of electrons, positrons, and ions) with sheared ion flow parallel to the ambient magnetic field, using the quantum hydrodynamic model. It is shown that the shear ion flow parallel to the external magnetic field can drive the quantum ion-acoustic wave unstable provided ∣S∣ky>kz. Stationary solutions of the nonlinear equations that govern the quantum ion-acoustic waves are also obtained. It is found that electrostatic monopolar, dipolar, and vortex street-type solutions can appear in such a plasma. It is observed that the inclusion of positron, quantum statistical, and Bohm potential terms significantly modifies the scale lengths of these nonlinear structures. The relevance of the present investigation with regard to the dense astrophysical environments is also pointed out.

  3. Ion-acoustic solitary waves in relativistic plasmas

    SciTech Connect

    Das, G.C.; Paul, S.N.

    1985-03-01

    This is a sequel to our earlier study on ion-acoustic waves studied through the augmentation to a modified Korteweg--deVries (K--dV) equation. We have derived a K--dV equation in a plasma, taking account of weakly relativistic effects, and the result shows that the solitary wave does exhibit the relativistic effect in the presence of ion streaming.

  4. Quantum ion acoustic solitary waves in electron ion plasmas: A Sagdeev potential approach

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Mushtaq, A.

    2008-05-01

    Linear and nonlinear ion acoustic waves are studied in unmagnetized electron-ion quantum plasmas. Sagdeev potential approach is employed to describe the nonlinear quantum ion acoustic waves. It is found that density dips structures are formed in the subsonic region in a electron-ion quantum plasma case. The amplitude of the nonlinear structures remains constant and the width is broadened with the increase in the quantization of the system. However, the nonlinear wave amplitude is reduced with the increase in the wave Mach number. The numerical results are also presented.

  5. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  6. Weakly dissipative dust-ion acoustic wave modulation

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Mahdavi, M.; Shahmansouri, M.

    2016-02-01

    The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

  7. Current density compression of intense ion beams

    NASA Astrophysics Data System (ADS)

    Sefkow, Adam Bennett

    Current density compression of intense ion beams in space and time is required for heavy ion fusion, in order to achieve the necessary intensities to implode an inertial confinement fusion target. Longitudinal compression to high current in a short pulse is achieved by imposing a velocity tilt upon the space-charge-dominated charge bunch, and a variety of means exist for simultaneous transverse focusing to a coincident focal plane. Compression to the desired levels requires sufficient neutralization of the beam by a pre-formed plasma during final transport. The physics of current density compression is studied in scaled experiments relevant for the operating regime of a heavy ion driver, and related theory and advanced particle-in-cell simulations provide valuable insight into the physical and technological limitations involved. A fast Faraday cup measures longitudinal compression ratios greater than 50 with pulse durations less than 5 ns, in excellent agreement with reduced models and sophisticated simulations, which account for many experimental parameters and effects. The detailed physics of achieving current density compression in the laboratory is reviewed. Quantitative examples explore the dependency of longitudinal compression on effects such as the finite-size acceleration gap, voltage waveform accuracy, variation in initial beam temperature, pulse length, intended fractional velocity tilt, and energy uncertainty, as well as aberration within focusing elements and plasma neutralization processes. In addition, plasma evolution in experimental sources responsible for the degree of beam neutralization is studied numerically, since compression stagnation occurs under inadequate neutralization conditions, which may excite nonlinear collective excitations due to beam-plasma interactions. The design of simultaneous focusing experiments using both existing and upgraded hardware is provided, and parametric variations important for compression physics are

  8. Dynamics of intense upstream ion events

    SciTech Connect

    Wibberenz, G.; Zoellich, F.; Fischer, H.M.; Keppler, E.

    1985-01-01

    We study temporal structures, energy spectra, and spatial gradients of 25--70 keV protons during four intense upstream ion events observed on December 3, 1977, by the medium-energy particle telescope (KED) on ISEE 2. The strong role of the bow shock connection time in controlling the absolute intensity and spectral shape of the upstream ions is confirmed. The path along which the convected magnetic field is carried on the bow shock surface has no observable influence. During the plateau phases, we determine a field-aligned gradient pointing toward the bow shock with an e-folding distance L = 6.5 +- 1.5 R/sub E/ for roughly-equal30 keV protons. The combination with anisotropy data leads to a direct determination of the mean free path lambda/sub parallel/ = 2.6 +- 0.6 R/sub E/. A gradient perpendicular to the magnetic field points toward the nose of the bow shock with a north-south component of about 6%/R/sub E/. Its conversion to a spatial scale allows to estimate the perpendicular diffusion coefficient. We conclude that lateral diffusion is not the main escape mechanism which determines the exponential energy spectrum. The control of the acceleration efficiency by local characteristics of the bow shock is suggested by various observations: (1) fluctuations on a temporal scale of about 20 min and with a peak-to-peak amplitude of about 50% superimposed on the plateau phases; (2) structured onsets of events during smoothly improving connection conditions; (3) strong intensity modulation during marginal acceleration conditions when the connection time is of the order 10 to 12 min; (4) convection of differently populated field lines across the observer.

  9. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  10. Quantum ion-acoustic double layers in unmagnetized dense electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Mahmood, S.; Ali, S.

    2009-04-01

    The existence of small amplitude quantum ion-acoustic double layers is studied in an unmagnetized dense electron-positron-ion plasma. For this purpose, the quantum hydrodynamic model is employed to derive a deformed Korteweg-de Vries (dKdV) equation. The steady state double layer solution of dKdV equation is obtained and its dependence on various parameters is discussed. It is found that only compressive double layers can exist in such plasmas. The analytical and numerical studies reveal that the quantum ion-acoustic double layer structures strongly depend on quantum diffraction effects and positron number density.

  11. Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Khan, S. A.; Masood, W.

    2008-06-15

    The linear and nonlinear quantum ion-acoustic waves propagating obliquely in two dimensions in superdense, magnetized electron-positron-ion quantum plasma are investigated on the basis of quantum hydrodynamic model. It is found in linear analysis that the quantum corrections of diffraction are important in the very short wavelength regime that may be found in dense astrophysical plasmas. To investigate the solitary waves, the Zakharov-Kuznetsov equation is derived and the solution is presented in the small amplitude limit. By numerical analysis, it is found that the soliton structure of the ion acoustic wave depends upon quantum pressure, concentration of positrons, strength of magnetic field, and the propagation angle.

  12. Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Masood, W.

    2008-06-01

    The linear and nonlinear quantum ion-acoustic waves propagating obliquely in two dimensions in superdense, magnetized electron-positron-ion quantum plasma are investigated on the basis of quantum hydrodynamic model. It is found in linear analysis that the quantum corrections of diffraction are important in the very short wavelength regime that may be found in dense astrophysical plasmas. To investigate the solitary waves, the Zakharov-Kuznetsov equation is derived and the solution is presented in the small amplitude limit. By numerical analysis, it is found that the soliton structure of the ion acoustic wave depends upon quantum pressure, concentration of positrons, strength of magnetic field, and the propagation angle.

  13. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  14. Ion-Acoustic Waves in Self-Gravitaing Dusty Plasma

    SciTech Connect

    Kumar, Nagendra; Kumar, Vinod; Kumar, Anil

    2008-09-07

    The propagation and damping of low frequency ion-acoustic waves in steady state, unmagnetised, self-gravitating dusty plasma are studied taking into account two important damping mechanisms creation damping and Tromso damping. It is found that imaginary part of wave number is independent of frequency in case of creation damping. But when we consider the case of creation and Tromso damping together, an additional contribution to damping appears with the increase in frequency attributed to Tromso effect.

  15. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  16. Ion acoustic waves and related plasma observations in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    The paper presents a study of the relationship between the interplanetary ion acoustic waves detected by Helios and the macroscopic and microscopic characteristics of the solar wind plasma. Two major mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. The results provide support to both mechanisms for generating the solar wind ion acoustic waves, although each mechanism has problems under certain conditions.

  17. Ion acoustic shock waves in weakly relativistic multicomponent quantum plasma

    NASA Astrophysics Data System (ADS)

    Gill, T. S.; Bains, A. S.; Bedi, C.

    2010-02-01

    Ion acoustic Shock waves (IASWs) are studied in an collisionless unmagnetized relativistic quantum electron-positron-ion(e-p-i) plasma employing the quantum hydro -dynamic(QHD) model. Korteweg-deVries- Burger equation(KdVB) is derived using small amplitude perturbation expansion method to study the nonlinear propagation of the quantum IASWs. It is found that the coefficients of the KdVB equation are significantely modified by the positron density p, relativistic factor(Ur), temperatures σ, kinematic viscosity η and quantum factor(H).

  18. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, W. J.; Pintz, A.; Lewicki, D. G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  19. Ion chambers simplify absolute intensity measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Sampson, J. A. R.

    1966-01-01

    Single or double ion chamber technique measures absolute radiation intensities in the extreme vacuum ultraviolet region of the spectrum. The ion chambers use rare gases as the ion carrier. Photon absorbed by the gas creates one ion pair so a measure of these is a measure of the number of incident photons.

  20. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-08-01

    This paper proposes a new method for microscopic acoustic imaging that utilizes the cross sectional acoustic impedance of biological soft tissues. In the system, a focused acoustic beam with a wide band frequency of 30-100 MHz is transmitted across a plastic substrate on the rear side of which a soft tissue object is placed. By scanning the focal point along the surface, a 2-D reflection intensity profile is obtained. In the paper, interpretation of the signal intensity into a characteristic acoustic impedance is discussed. Because the acoustic beam is strongly focused, interpretation assuming vertical incidence may lead to significant error. To determine an accurate calibration curve, a numerical sound field analysis was performed. In these calculations, the reflection intensity from a target with an assumed acoustic impedance was compared with that from water, which was used as a reference material. The calibration curve was determined by changing the assumed acoustic impedance of the target material. The calibration curve was verified experimentally using saline solution, of which the acoustic impedance was known, as the target material. Finally, the cerebellar tissue of a rat was observed to create an acoustic impedance micro profile. In the paper, details of the numerical analysis and verification of the observation results will be described.

  1. Nonplanar Ion-Acoustic Solitons in Electron-Positron-Ion Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Khan A., S.; Mahmood, S.; Arshad, Mirza M.

    2009-04-01

    The propagation of nonplanar quantum ion-acoustic solitary waves in a dense, unmagnetized electron-positronion (e-p-i) plasma are studied by using the Korteweg-de Vries (KdV) model. The quantum hydrodynamic (QHD) equations are used taking into account the quantum diffraction and quantum statistics corrections. The analytical and numerical solutions of KdV equation reveal that the nonplanar ion-acoustic solitons are modified significantly with quantum corrections and positron concentration, and behave differently in different geometries.

  2. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  3. Ion Acoustic Wave Broadening Observations in Moderately Coupled, Moderately Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Benage, J. F.; Montgomery, D. S.; Murillo, M. S.; Wysocki, F. J.; Johnson, R. P.

    2002-11-01

    Weakly coupled scattering theory breaks down as the ratio of Coulomb interaction energy to thermal kinetic energy, Γ _ii =(Ze)^2/a _iikT, approaches unity and/or as collisions become more frequent. Accurate modeling is required in order to fit collective Thomson scattering features from ion acoustic waves and determine plasma parameters Z, Te and Ti. The Trident Laser was used to produce Al, CH, CH2 laser-plasmas, where ne ˜ 10^20 cm-3, T_e ˜ 75-150 eV, Γ _ii ˜ 0.1-0.75 and N _D ˜ 100-500. A separate 351-nm beam was used as a low intensity probe for Thomson scattering. The scattered light was recorded by an imaging spectrograph to provide temporally and spatially -resolved spectral profiles of thermal ion acoustic waves and Langmuir waves. Ion acoustic waves are observed to be broadened to near the frequency shift, dω _ia/ω _ia ˜ 0.75-1.25. Using a collisionless model, we show that plasma inhomogeneities and instruments produce only ˜50% of the broadening. We conclude that collisions and/or coupling cannot be ignored in modeling of collective modes in warm dense plasmas.

  4. Ion acoustic shock waves in electron-positron-ion quantum plasma

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.; Hanif, M.

    2008-07-01

    Ion acoustic shock waves (IASWs) are studied in an unmagnetized quantum plasma consisting of electrons, positrons, and ions employing the quantum hydrodynamic (QHD) model. Nonlinear quantum IASWs are investigated by deriving the Korteweg-deVries-Burger equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. The temporal evolution of the shock for a quantum e-p-i plasma in a spherical geometry is also investigated. It is found that the strength and the steepness of the quantum ion acoustic shock wave increases with decreasing stretched time coordinate (representing slow time scale) |τ|. It is also found that an increase in the quantum Bohm potential decreases the strength as well as the steepness of the shock. The temporal evolution of the quantum ion acoustic solitons in an e-p-i plasma for cylindrical and spherical geometries is also explored by substituting the dissipative coefficient C equal to zero. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.

  5. Ion acoustic shock waves in electron-positron-ion quantum plasma

    SciTech Connect

    Masood, W.; Mirza, Arshad M.; Hanif, M.

    2008-07-15

    Ion acoustic shock waves (IASWs) are studied in an unmagnetized quantum plasma consisting of electrons, positrons, and ions employing the quantum hydrodynamic (QHD) model. Nonlinear quantum IASWs are investigated by deriving the Korteweg-deVries-Burger equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. The temporal evolution of the shock for a quantum e-p-i plasma in a spherical geometry is also investigated. It is found that the strength and the steepness of the quantum ion acoustic shock wave increases with decreasing stretched time coordinate (representing slow time scale) |{tau}|. It is also found that an increase in the quantum Bohm potential decreases the strength as well as the steepness of the shock. The temporal evolution of the quantum ion acoustic solitons in an e-p-i plasma for cylindrical and spherical geometries is also explored by substituting the dissipative coefficient C equal to zero. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.

  6. Acoustic solitons in inhomogeneous pair-ion plasmas

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2010-12-15

    The acoustic solitons are investigated in inhomogeneous unmagnetized pair ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients is deduced by employing reductive perturbation technique. It is noticed that pair-ion plasma system is conducive for the propagation of compressive as well as rarefactive solitons. The increase in the temperature ratio causes the amplitude of the rarefactive soliton to decrease. However, the amplitude of the compressive solitons is found to be increased as the temperature ratio of ions is enhanced. The amplitude of both compressive and rarefactive solitons is found to be increased as the density gradient parameter is increased. The equlibrium density profile is assumed to be exponential. The numerical results are shown for illustration.

  7. Ion acoustic solitary waves in magneto-rotating plasmas

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.

    2010-08-01

    Propagation of an ion acoustic wave (IAW) in a magnetized electron-ion plasma, which is rotating around an axis at an angle θ with the direction of magnetic field, is studied by incorporating the effects of trapped and untrapped electron distributions. Employing the perturbation scheme, Korteweg-deVries and Schamel's modified KdV equations are derived for the small angle θ which may support the nonlinear IAW on a slow time scale of ion motion. The amplitude and width of the solitary wave in both cases (trapped and untrapped electrons) have been discussed with the effects of oblique rotation and external magnetic field. It is shown that the nonlinear effects considerably influence the propagation of waves in rotating plasmas.

  8. Planar and non-planar ion acoustic shock waves in electron positron ion plasmas

    NASA Astrophysics Data System (ADS)

    Masood, Waqas; Jehan, Nusrat; Mirza, Arshad M.; Sakanaka, P. H.

    2008-06-01

    Ion acoustic shock waves (IASW's) are studied in an unmagnetized plasma consisting of electrons, positrons and adiabatically hot positive ions. This is done by deriving the Kortweg-deVries-Burger (KdVB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration, ratio of ion to electron temperature, and the plasma kinematic viscosity significantly modifies the shock structure. Finally, it is found that the temporal evolution of the non-planar IASW's is quite different by comparison with the planar geometry. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.

  9. Effect of ion viscosity on dust ion-acoustic shock waves in a nonextensive magnetoplasma

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.

    2016-08-01

    The nonlinear features of dust ion-acoustic shock waves (DIASWs) in a magnetoplasma containing cold positive ions, nonextensive electrons, and immobile negatively charged dust grains taking into account the cold ion kinematic viscosity are investigated. The reductive perturbation technique is used to derive a Zakharov-Kuznetsov-Burgers (ZK-Burgers). It is found that the fundamental properties of the DIASWs are significantly modified by the different system parameters such as the nonextensive parameter, the ion gyrofrequency, the dust concentration, the viscosity parameter, and the direction cosines. Also, the polarities (positive and negative shocks) of the potential are found to exist in the plasma under consideration. The implications of our results may be used in understanding the acoustic shock waves propagation in laboratory and space plasmas.

  10. Time fractional effect on ion acoustic shock waves in ion-pair plasma

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.; Mahmoud, A. A.

    2016-06-01

    The nonlinear properties of ion acoustic shock waves are studied. The Burgers equation is derived and converted into the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, shock wave solutions of the time fractional Burgers equation are constructed. The effect of the time fractional parameter on the shock wave properties in ion-pair plasma is investigated. The results obtained may be important in investigating the broadband electrostatic shock noise in D- and F-regions of Earth's ionosphere.

  11. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect

    Mukherjee, Abhik; Janaki, M. S.; Bose, Anirban

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  12. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  13. Ion Acoustic Solitons and Double Layers in the Solar Wind Having Kappa Distributed Electrons

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.; Singh, S. V.

    2015-12-01

    It is shown that two types of, slow and fast, ion-acoustic solitary waves can occur in a solar wind plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having k- distribution. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. The slow ion-acoustic mode can exist even when the relative streaming, U0, between alphas and protons is zero, provided alpha temperature, Ti, is not exactly equal to 4 times the proton temperature, Tp. An increase of the k- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The model can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft in terms of slow ion-acoustic double layers. It is proposed that both slow and fast ion-acoustic solitons may be responsible for the ion- acoustic like wave activity in the solar wind.

  14. High-intensity sources for light ions

    SciTech Connect

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.

  15. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman

    2013-06-15

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  16. Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.

    2016-09-01

    The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.

  17. Linear and nonlinear coupled drift and ion acoustic waves in collisional pair ion-electron magnetoplasma

    SciTech Connect

    Mushtaq, A.; Saeed, R.; Haque, Q.

    2011-04-15

    Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.

  18. Reflection of ion acoustic solitons in a plasma having negative ions

    SciTech Connect

    Chauhan, S.S.; Malik, H.K.; Dahiya, R.P.

    1996-11-01

    Reflection of compressive and rarefactive ion acoustic solitons propagating in an inhomogeneous plasma in the presence of negative ions is investigated. Modified Korteweg{endash}deVries equations for incident and reflected solitons are derived and solved. The amplitude of incident and reflected solitons increases with negative to positive ion density ratio. With increasing density ratio, reflection of rarefactive solitons is reinforced whereas that of compressive solitons weakened. The rarefactive solitons are found to undergo stronger reflection than the compressive ones. {copyright} {ital 1996 American Institute of Physics.}

  19. Intense geodesic acousticlike modes driven by suprathermal ions in a tokamak plasma.

    PubMed

    Nazikian, R; Fu, G Y; Austin, M E; Berk, H L; Budny, R V; Gorelenkov, N N; Heidbrink, W W; Holcomb, C T; Kramer, G J; McKee, G R; Makowski, M A; Solomon, W M; Shafer, M; Strait, E J; Zeeland, M A Van

    2008-10-31

    Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. The modes appear at nearly half the ideal geodesic acoustic mode frequency, in plasmas with comparable electron and ion temperatures and elevated magnetic safety factor (q_{min}>or=2). Strong bursting and frequency chirping are observed, concomitant with large (10%-15%) drops in the neutron emission. Large electron density fluctuations (n[over ]_{e}/n_{e} approximately 1.5%) are observed with no detectable electron temperature fluctuations, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory. The observed mode frequency is consistent with a recent theoretical prediction for the energetic-particle-driven geodesic acoustic mode.

  20. Intense Geodesic Acousticlike Modes Driven by Suprathermal Ions in a Tokamak Plasma

    SciTech Connect

    Nazikian, R.; Fu, G. Y.; Budny, R. V.; Gorelenkov, N. N.; Kramer, G. J.; Solomon, W. M.; Austin, M. E.; Berk, H. L.; Heidbrink, W. W.; Holcomb, C. T.; Makowski, M. A.; McKee, G. R.; Shafer, M.; Strait, E. J.; Van Zeeland, M. A.

    2008-10-31

    Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. The modes appear at nearly half the ideal geodesic acoustic mode frequency, in plasmas with comparable electron and ion temperatures and elevated magnetic safety factor (q{sub min}{>=}2). Strong bursting and frequency chirping are observed, concomitant with large (10%-15%) drops in the neutron emission. Large electron density fluctuations (n-tilde{sub e}/n{sub e}{approx_equal}1.5%) are observed with no detectable electron temperature fluctuations, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory. The observed mode frequency is consistent with a recent theoretical prediction for the energetic-particle-driven geodesic acoustic mode.

  1. Large amplitude ion-acoustic solitons in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-08-01

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW2), are discussed in detail

  2. Large amplitude ion-acoustic solitons in dusty plasmas

    SciTech Connect

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-08-15

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW{sup 2} of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW{sup 2}), are discussed in detail.

  3. Ion-acoustic cnoidal wave and associated non-linear ion flux in dusty plasma

    SciTech Connect

    Jain, S. L.; Tiwari, R. S.; Mishra, M. K.

    2012-10-15

    Using reductive perturbation method with appropriate boundary conditions, coupled evolution equations for first and second order potentials are derived for ion-acoustic waves in a collisionless, un-magnetized plasma consisting of hot isothermal electrons, cold ions, and massive mobile charged dust grains. The boundary conditions give rise to renormalization term, which enable us to eliminate secular contribution in higher order terms. Determining the non secular solution of these coupled equations, expressions for wave phase velocity and averaged non-linear ion flux associated with ion-acoustic cnoidal wave are obtained. Variation of the wave phase velocity and averaged non-linear ion flux as a function of modulus (k{sup 2}) dependent wave amplitude are numerically examined for different values of dust concentration, charge on dust grains, and mass ratio of dust grains with plasma ions. It is found that for a given amplitude, the presence of positively (negatively) charged dust grains in plasma decreases (increases) the wave phase velocity. This behavior is more pronounced with increase in dust concentrations or increase in charge on dust grains or decrease in mass ratio of dust grains. The averaged non-linear ion flux associated with wave is positive (negative) for negatively (positively) charged dust grains in the plasma and increases (decreases) with modulus (k{sup 2}) dependent wave amplitude. For given amplitude, it increases (decreases) as dust concentration or charge of negatively (positively) charged dust grains increases in the plasma.

  4. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Kaladze, T.; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  5. Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions

    SciTech Connect

    Mishra, M. K.; Tiwari, R. S.; Chawla, J. K.

    2012-06-15

    Ion-acoustic solitons in a warm positive and negative ion species with different masses, concentrations, and charge states with two electron temperature distributions are studied. Using reductive perturbation method, Korteweg de-Vries (KdV) and modified-KdV (m-KdV) equations are derived for the system. The soliton solution of the KdV and m-KdV equations is discussed in detail. It is found that if the ions have finite temperatures, then there exist two types of modes, namely slow and fast ion-acoustic modes. It is also investigated that the parameter determining the nature of soliton (i.e., whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode, the parameter is the relative temperature of the two ion species; whereas for the fast mode, it is the relative concentration of the two ion species. At a critical concentration of negative ions, both compressive and rarefactive solitons coexist. The amplitude and width of the solitons are discussed in detail at critical concentration for m-KdV solitons. The effect of the relative temperature of the two-electron and cold-electron concentration on the characteristics of the solitons are also discussed.

  6. Dust-acoustic solitary waves in dusty plasmas with non-thermal ions

    SciTech Connect

    Asgari, H.; Muniandy, S. V.; Wong, C. S.

    2013-02-15

    Most studies on dusty plasmas have assumed that electrons and ions follow Maxwellian distributions. However, in the presence of energetic ions, the distribution of ions tends to be non-Maxwellian. It is shown here that the existence of non-thermal ions would increase the phase velocity of a dust-acoustic wave. It is also found that the change in the phase velocity profoundly affects the characteristics of a dust-acoustic solitary wave.

  7. Time evolution of ion-acoustic double layers in an unmagnetized plasma

    SciTech Connect

    Bharuthram, R.; Momoniat, E.; Mahomed, F.; Singh, S. V.; Islam, M. K.

    2008-08-15

    Ion-acoustic double layers are examined in an unmagnetized, three-component plasma consisting of cold ions and two temperature electrons. Both of the electrons are considered to be Boltzmann distributed and the ions follow the usual fluid dynamical equations. Using the method of characteristics, a time-dependent solution for ion-acoustic double layers is obtained. Results of the findings may have important consequences for the real time satellite observations in the space environment.

  8. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  9. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    SciTech Connect

    Saleem, H.; Haque, Q.

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  10. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Ali, S.; Haque, Q.

    2015-08-01

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Koeteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  11. Ion-Acoustic Shock Waves in Nonextensive Multi-Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2015-10-01

    The nonlinear propagation of ion-acoustic (IA) shock waves (SHWs) in a nonextensive multi-ion plasma system (consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation. The basic properties (polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc. It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters. The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.

  12. Cylindrical and Spherical Ion-Acoustic Shock Waves in a Relativistic Degenerate Multi-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Nahar, L.; Mamun, A. A.

    2014-12-01

    A rigorous theoretical investigation has been made to study the existence and basic features of the ion-acoustic (IA) shock structures in an unmagnetized, collisionless multi-ion plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged ions, and arbitrarily charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The reductive perturbation technique has been employed to derive the modified Burgers equation. The solution of this equation has been numerically examined to study the basic properties of shock structures. The basic features (speed, amplitude, width, etc.) of these electrostatic shock structures have been briefly discussed. The basic properties of the IA shock waves are found to be significantly modified by the effects of arbitrarily charged static heavy ions and the plasma particle number densities. The implications of our results in space and interstellar compact objects like white dwarfs, neutron stars, black holes, and so on have been briefly discussed.

  13. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  14. An analytical and numerical investigation of ion acoustic waves in a two-ion plasma

    SciTech Connect

    Vu, H.X.; Wallace, J.M.; Bezzerides, B. )

    1994-11-01

    The ion acoustic dispersion relation for a plasma containing two distinct ion species is investigated over a wide range of plasma conditions. An approximate general analytic solution to the dispersion relation has been found, and is shown, by comparison to accurate numerical solutions of the individual modes, to be remarkably precise. This solution provides for the first time a systematic account of the totality of ion acoustic modes of the two-ion system. It has been found that ion acoustic modes consist of two types of modes: (a) at least one, and, at most, two weakly damped modes for which [vert bar][omega][sub I]/[omega][sub R][vert bar][much lt]1, and (b) an infinity of critically damped modes for which [omega][sub I]/[omega][sub R][congruent][minus]1. The critically damped modes are organized into two distinct categories: (a) modes for which [vert bar][omega][vert bar]/[sub K][gt][sub V][sub F] ([sub V][sub F] is the thermal speed of the fast ion species); and (b) modes for which [sub V][sub S][lt][vert bar][omega][vert bar]/[sub K][lt][sub V][sub F] ([sub V][sub S] is the thermal speed of the slow ion species). The critically damped modes with [vert bar][omega][vert bar]/[sub K][gt][sub V][sub F] are further organized into three distinct classes: (1) modes with phase speeds characterized by [sub V][sub F], (2) modes with phase speeds characterized by [sub V][sub F][sub S]/[radical][sub V] [sup 2][sub F][minus][sub V][sup 2][sub S], and (3) modes with phase speeds characterized by [sub V][sub S]. The critically damped modes with [sub V][sub S][lt][vert bar][omega][vert bar]/[sub K][lt][sub V][sub F] belong to a single class, and are characterized by [sub V][sub S]. Generally, it is found that there are one, or, at most, two modes with relatively small damping, while most of the remaining modes are too strongly damped to be physically realized. It has also been found possible to maximize ion acoustic damping by a wise choice of relative ion concentrations.

  15. Development of anticavitation hydrophone using a titanium front plate: Effect of the titanium front plate in high-intensity acoustic field with generation of acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Shiiba, Michihisa; Okada, Nagaya; Kurosawa, Minoru; Takeuchi, Shinichi

    2016-07-01

    Novel anticavitation hydrophones were fabricated by depositing a hydrothermally synthesized lead zirconate titanate polycrystalline film at the back of a titanium front plate. These anticavitation hydrophones were not damaged by the measurement of the acoustic field formed by a high-intensity focused ultrasound (HIFU) device. Their sensitivity was improved by approximately 20 dB over that of the conventional anticavitation hydrophone by modifying their basic structure and materials. The durability of the anticavitation hydrophone that we fabricated was compared by exposing it to a high-intensity acoustic field at the focal point of the HIFU field and in the water tank of an ultrasound cleaner. Therefore, the effect of the surface of the titanium front plate on acoustic cavitation was investigated by exposing such a surface to the high-intensity acoustic field. We found that the fabricated anticavitation hydrophone was robust and was not damaged easily, even in the focused acoustic field where acoustic cavitation occurs.

  16. Solenoid Transport of an Intense Ion Beam

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Henestroza, E.; Roy, P. K.; Waldron, W. L.; Armijo, J.; Baca, D.; Seidl, P. A.; Haber, I.; Sharp, W. M.; Vay, J. L.; Welch, D. R.

    2006-10-01

    Future WDM and HEDP experiments may use solenoids for transverse focusing of low energy, space-charge dominated ion beams during acceleration. An experiment to transport a 10 μs long, singly charged potassium ion bunch at an ion energy of 0.3 MeV and current of 45 mA through a solenoid lattice (STX) has been commissioned at LBNL. The beam should establish a Brillouin-flow condition, particle rotation at the Larmor frequency, with fields greater than 2T. The principal objectives of the STX are to match and transport the space-charge dominated ion beam and to study mechanisms that would degrade beam quality such as focusing-field aberrations, beam halo, spacing of lattice elements, and electron-cloud and gas effects. A qualitative comparison of experimental and calculated results are presented, which include time resolved transverse phase-space of the beam at different diagnostic planes throughout the focusing lattice, beam current density and beam-induced gas desorption, ionization and electron effects. (This work was supported by the U.S. D.O.E. under DE-AC02-05H11231)

  17. Solar wind implication on dust ion acoustic rogue waves

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Abd El-Razek, H. N.; Moslem, W. M.; El-Labany, S. K.

    2016-06-01

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  18. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  19. Ion source and injection line for high intensity medical cyclotron

    NASA Astrophysics Data System (ADS)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  20. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  1. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-01

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equation has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.

  2. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    SciTech Connect

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-15

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equation has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.

  3. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  4. Arbitrary amplitude quantum dust ion-acoustic solitary waves

    SciTech Connect

    Tribeche, Mouloud; Ghebache, Siham; Aoutou, Kamel; Zerguini, Taha Houssine

    2008-03-15

    The one-dimensional quantum hydrodynamic model for a three-species quantum plasma is used to study the quantum counterpart of the well known dust ion-acoustic (DIA) wave. Two cases of physical interest are investigated, namely positive and negative dust charge. It is shown that only rarefactive solitary potentials associated with nonlinear quantum DIA (QDIA) waves involving electron density deeps can exist. The QDIA soliton experiences a spreading and the quantum effects tend to make it wider. Under certain conditions, the soliton enlarges and its pulse shape evolves into a broad central flat-bottomed (or table-bottomed) soliton as a limiting-amplitude member of the QDIA soliton family. Linear stability analysis as well as quasineutral solutions are succinctly outlined. The investigation could be of relevance to astrophysical quantum dusty plasmas.

  5. Arbitrary amplitude quantum dust ion-acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Ghebache, Siham; Aoutou, Kamel; Zerguini, Taha Houssine

    2008-03-01

    The one-dimensional quantum hydrodynamic model for a three-species quantum plasma is used to study the quantum counterpart of the well known dust ion-acoustic (DIA) wave. Two cases of physical interest are investigated, namely positive and negative dust charge. It is shown that only rarefactive solitary potentials associated with nonlinear quantum DIA (QDIA) waves involving electron density deeps can exist. The QDIA soliton experiences a spreading and the quantum effects tend to make it wider. Under certain conditions, the soliton enlarges and its pulse shape evolves into a broad central flat-bottomed (or table-bottomed) soliton as a limiting-amplitude member of the QDIA soliton family. Linear stability analysis as well as quasineutral solutions are succinctly outlined. The investigation could be of relevance to astrophysical quantum dusty plasmas.

  6. A microsecond-pulsewidth, intense, light-ion beam accelerator

    SciTech Connect

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Greenly, J.B.; Waganaar, W.J.

    1993-07-01

    A relatively long-pulsewidth (0.1-1 {mu}s) intense ion beam accelerator has been built for materials processing applications. An applied-B{sub r}, magnetically-insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2-MV, 300-kJ Marx generator. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse-shaping.

  7. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  8. Heavy-Ion-Acoustic Solitary and Shock Waves in an Adiabatic Multi-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Rahman, M. M.; Hossen, M. R.; Mamun, A. A.

    2015-08-01

    The standard reductive perturbation method has been employed to derive the Korteweg-deVries (K-dV) and Burgers (BG) equations to investigate the basic properties of heavy-ion-acoustic (HIA) waves in a plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The HIA solitary and shock structures are found to exist with either positive or negative potential. It is found that the effects of adiabaticity of inertial heavy ions, nonthermality of electrons, and number densities of plasma components significantly modify the basic properties of the HIA solitary and shock waves. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments.

  9. Ion heating in a dusty plasma due to the dust/ion acoustic instability

    SciTech Connect

    Winske, D.; Gary, S.P.; Jones, M.E.

    1995-08-01

    The drift of plasma ions relative to charged grains in a dusty plasma can give rise to a dust/ion acoustic instability. The authors investigate the linear properties of the instability by numerically solving an appropriate linear dispersion equation and examine the nonlinear behavior through one-dimensional electrostatic particle simulations, in which the plasma and dust ions are treated as discrete particles and the electrons are modeled as a Boltzmann fluid. The instability is slightly weaker when the dust particles have a range of sizes, and corresponding range of charges and masses. It is argued that due to dust particles that comprise planetary rings, this process can contribute to ion heating and diffusion observed in the linear magnetosphere of Saturn. 14 refs., 4 figs.

  10. Acoustic intensity methods and their applications to vector sensor use and design

    NASA Astrophysics Data System (ADS)

    Naluai, Nathan Kahikina

    Applications of acoustic intensity processing methods to vector sensor output signals are investigated for three specific cases: acoustic intensity scattering, spatial correlations of intensities, and conceptual design of a high frequency inertial vector sensor with a novel suspension. An overview of intensity processing is presented and the concept of a complex intensity is illustrated. Measurement techniques for determining the complex intensity spectra from the signals received by a standard acoustic vector sensor are demonstrated. Acoustic intensity processing of signals from SSQ-53D sonobuoys is used to enhance the detection of submerged bodies in bi-static sonar applications. Deep water experiments conducted at Lake Pend Oreille in northern Idaho are described. A submerged body is located between a source and a number of SSQ-53D sonobuoy receivers. Scalar pressure measurements change by less than 0.5 dB when the scattering body is inserted in the field. The phase of the orthogonal intensity component shows repeatable and strong variations of nearly 55°. The classical solution for the spatial correlation of the pressure field is presented. The derivation techniques are expanded to derive previously unsolved analytic forms for the spatial correlations of separated intensity field components based on combinations of the solutions for various pressure and velocity components. Experimental validation of these correlation solutions are performed computationally and in an underwater environment. The computational experiments are designed to test highly controlled variations to the idealized case (e.g. sound field content, transducer phasing issues, additive output noise, etc.) Additional verification is provided from physical tests measuring the correlations between a pair of acoustic vector sensors in a large reverberant tank which is excited acoustically with broadband noise. The results successfully corroborate the derivation methods for correlations of

  11. Nonplanar ion-acoustic solitary waves with superthermal electrons in warm plasma

    SciTech Connect

    Eslami, Parvin; Mottaghizadeh, Marzieh; Pakzad, Hamid Reza

    2011-07-15

    In this paper, we consider an unmagnetized plasma consisting of warm adiabatic ions, superthermal electrons, and thermal positrons. Nonlinear cylindrical and spherical modified Korteweg-de Vries (KdV) equations are derived for ion acoustic waves by using reductive perturbation technique. It is observed that an increasing positron concentration decreases the amplitude of the waves. Furthermore, the effects of the superthermal parameter (k) on the ion acoustic waves are found.

  12. Dust-ion-acoustic wave oscillation in metallic multiwalled carbon nanotubes

    SciTech Connect

    Fathalian, Ali; Nikjo, Shahram

    2010-10-15

    In this paper, a charged multiwalled carbon nanotube (MWCNT), which is surrounded by charged nanoparticles, is modeled as a cylindrical shell of electron-ion-dust plasma. By employing the classical electrodynamics formulations and linearized hydrodynamic model, the dispersion relation of the dust-ion-acoustic wave oscillations in the composed system is investigated. We obtain a new low-frequency electrostatic excitation in the MWCNTs, i.e., dust-ion-acoustic wave oscillations.

  13. Characteristics of ion acoustic solitary waves in a negative ion plasma with superthermal electrons

    SciTech Connect

    Rouhani, M. R.; Ebne Abbasi, Z.

    2012-11-15

    The behavior of ion acoustic solitons in a plasma including positive and negative ions and kappa distributed electrons is studied, using both small amplitude and arbitrary amplitude approaches. The existence regions of compressive and rarefactive solitons will depend on negative to positive ion density ratio ({nu}) and kappa parameter as well as positive to negative ion mass ratio (Q). The numerical analysis of Sagdeev potential shows that for a chosen plasma with fixed Q, the existence regime of compressive solitons is decreased (increased) by increasing density ratio (kappa parameter), while for rarefactive solitons these conditions are quite opposite. Additionally, the possibility of propagation of both compressive and rarefactive subsonic solitons is investigated. It is found that by increasing negative ions, the existence domains of subsonic solitons are decreased, so that in excess of negative ions subsonic solitons will not propagate even at the presence of superthermal electrons. Indeed, there is a critical negative ion density ratio for all values of kappa, above that only supersonic solitons are observed. Furthermore, in addition to the previous results based on Cairns-distributed electrons [R. A. Cairns et al., Geophys. Res. Lett. 22, 2709 (1995)], which predicted that both compressive and rarefactive solitons can coexist simultaneously, we have also found the regions of {nu} and {kappa} in which either positive or negative potentials are permitted (i.e., not together). This research will be helpful in understanding the properties of space and laboratory plasmas containing negative ions with energetic electrons.

  14. Surface acoustical intensity measurements on a diesel engine

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.; Crocker, M. J.

    1980-01-01

    The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.

  15. Ion-acoustic solitons, double layers and supersolitons in a plasma with two ion- and two electron species

    SciTech Connect

    Olivier, C. P. Maharaj, S. K.; Bharuthram, R.

    2015-08-15

    The polarity of ion-acoustic solitons that arise in a plasma with two (same mass, different temperature) ion species and two (different temperature) electron species is investigated. Two different fluid models are compared. The first model treats all species as adiabatic fluids, while the second model treats the ion species as adiabatic, and the electron species as isothermal. Nonlinear structures are analysed via the reductive perturbation analysis and pseudo-potential analysis. Each model supports both slow and fast ion-acoustic solitons, associated with the two (slow and fast) ion-acoustic speeds. The models support both positive and negative polarity solitons associated with the slow ion-acoustic speed. Moreover, results are in good agreement, and both models support positive and negative polarity double layers. For the fast ion-acoustic speed, the first model supports only positive polarity solitons, while the second model supports solitons of both polarity, coexistence of positive and negative polarity solitons, double layers and supersolitons. A novel feature of our analysis is the evaluation of nonlinear structures at critical number densities where polarity changes occur. This analysis shows that solitons that occur at the acoustic speed are neither a necessary nor a sufficient condition for the phenomenon of coexistence. The relationship between the existence regions of supersolitons and soliton polarity is also discussed.

  16. Materials Processing with Intense Pulsed Ion Beams*

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Johnson, D. J.; Friedmann, T. A.; Provencio, P. P.; Thompson, M. O.; Sanders, P. G.; Kasuya, K.; Kishimoto, N.

    1999-11-01

    Materials applications are being investigated on the 700 kV RHEPP-1 facility at Sandia National Laboratories. Surface modification for property improvement is possible in the fluence range 1-5 J/cm^2, with ablation and thin-film synthesis at 5-20 J/cm^2 fluences. Differences from previous efforts include selectability of accelerating ions (H, He, C, N, Ne, Ar, and Xe), and repetitive pulsing of the MAP (Magnetically Confined Anode Plasma) gas-breakdown ion source. Surface modification using melt-resolidification cycles has led to improvement in hardness and corrosion resistance of various metals. Mixing of pre-applied thin-films into the bulk has led to even greater performance improvements. Characterization is ongoing to determine the microstructural basis for these improvements. We have characterized liquid-phase diffusion of implanted elements in Ti and Si during the power pulse. Experiments with Si device processing and polymer modification are also ongoing. Thin-films are being formed from graphite, YBCO, and ZnO targets for various applications, including hard-coatings and optical coatings. Surface topography, stoichiometry, and optical and infrared absorption measurements have been made. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., under US DOE Contract DE-AC04-94AL85000.

  17. Loudness Change in Response to Dynamic Acoustic Intensity

    ERIC Educational Resources Information Center

    Olsen, Kirk N.; Stevens, Catherine J.; Tardieu, Julien

    2010-01-01

    Three experiments investigate psychological, methodological, and domain-specific characteristics of loudness change in response to sounds that continuously increase in intensity (up-ramps), relative to sounds that decrease (down-ramps). Timbre (vowel, violin), layer (monotone, chord), and duration (1.8 s, 3.6 s) were manipulated in Experiment 1.…

  18. Effect of ion temperature on arbitrary amplitude ion acoustic solitary waves in quantum electron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Chatterjee, Prasanta; Roy, Kaushik; Muniandy, Sithi V.; Yap, S. L.; Wong, C. S.

    2009-04-01

    Using Sagdeev's pseudopotential technique, the effect of ion temperature on the arbitrary amplitude ion acoustic solitary waves in quantum electron-ion plasma is studied. In addition, the effect of ion temperature on the region of existence, as well as on the shape of the solitary waves, is also investigated extensively. It is shown that for large amplitude solitary wave, quantum parameter H does not play any role in determining the region of existence and on the amplitude of the solitary waves. However, H has a significant effect on the width of the solitary wave. It is worth noting that our results are in agreement with previous investigations when the effect of ion temperature is neglected.

  19. Excitation of nonlinear ion acoustic waves in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Xiao, C. Z.; Wang, Q.; He, X. T.

    2016-08-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number k λ D e increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of T i / T e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with k λ D e increasing. When k λ D e is not large, such as k λ D e = 0.1 , 0.3 , 0.5 , the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when k λ D e is large, such as k λ D e = 0.7 , the linear frequency cannot be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.

  20. A Schamel equation for ion acoustic waves in superthermal plasmas

    SciTech Connect

    Williams, G. Kourakis, I.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  1. Ion-acoustic dressed solitons in a dusty plasma

    SciTech Connect

    Tiwari, R.S.; Mishra, M.K.

    2006-06-15

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived.

  2. Ion acoustic solitons in a solar wind magnetoplasma with Kappa distributed electrons

    NASA Astrophysics Data System (ADS)

    Devanandhan, Selvaraj; Singh, Satyavir; Singh Lakhina, Gurbax; Sreeraj, T.

    2016-07-01

    In many space plasma environments, the velocity distribution of particles often deviates from Maxwellian and is well-modelled by a kappa distribution function. We have analyzed the ion acoustic soliton in a magnetized consisting of plasma Protons, Helium ions, an electron beam and superthermal hot electrons following kappa distribution function. Under the assumption of weak nonlinearity, the ion-acoustic solitons are described by the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation. The solution of KdV-ZK equation is used to model the characteristics of the ion acoustic solitary waves in a solar wind magnetoplasma observed at 1 AU. We have found both slow and fast ion acoustic solitons in our study. It is found that the superthermality of hot electrons greatly influence the existence regime of the solitary waves. The numerical results of this study to explain solar wind observations will be discussed in detail.

  3. Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Dudnikova, G. I.; Vshivkov, V. A.; Malkov, M. A.

    2015-10-01

    > Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.

  4. Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

    PubMed Central

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

  5. Acoustic intensity-based method for sound radiations in a uniform flow.

    PubMed

    Yu, Chao; Zhou, Zhengfang; Zhuang, Mei

    2009-11-01

    An acoustic intensity-based method (AIBM) is extended and verified for predicting sound radiation in a subsonic uniform flow. The method assumes that the acoustic propagation is governed by the modified Helmholtz equation on and outside of a control surface, which encloses all the noise sources and nonlinear effects. With acoustic pressure derivative and its co-located acoustic pressure as input from an open control surface, the unique solution of the modified Helmholtz equation is obtained by solving the least squares problem. The AIBM is coupled with near-field Computational Fluid Dynamics (CFD)/Computational Aeroacoustics (CAA) methods to predict sound radiation of model aeroacoustic problems. The effectiveness of this hybrid approach has been demonstrated by examples of both tonal and broadband noise. Since the AIBM method is stable and accurate based on the input acoustic data from an open surface in a radiated field, it is therefore advantageous for the far-field prediction of aerodynamics noise propagation when an acoustic input from a closed control surface, like the Ffowcs Williams-Hawkings surface, is not available [Philos. Trans. R. Soc. London, Ser. A 264, 321-342 (1969)]. PMID:19894800

  6. Modulational instability and envelope excitation of ion-acoustic waves in quantum electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Misra, A. P.; Bhowmik, C.; Shukla, P. K.

    2009-07-01

    The theoretical study of modulational instability (MI) and localized envelope excitations of finite amplitude ion-acoustic waves (IAWs) is revisited in an unmagnetized quantum electron-positron-ion plasma. For this purpose, a one-dimensional nonlinear Schrödinger equation, which governs the slow modulation of IAW packets, is derived by using the standard reductive perturbations technique. Two parameters, defining the ratio of the electron to ion number density (μ) and the quantum coupling parameter (H) describing the ratio of the "plasmonic energy density" to the Fermi energy density, are shown to play crucial roles in determining the modulational stability/MI domains, as well as for the existence of both bright and dark envelope solitons. It is found that the stability region increases (decreases) with increasing μ(H ), whereas the MI region for the IAW mode shifts to larger (smaller) wave number k as the value of μ(H ) increases. Moreover, the parameter H is shown to suppress the MI growth rate of the IAWs. The present results may be relevant to dense astrophysical plasmas (e.g., white dwarfs, where the electron-positron annihilation can be important, and where the particle density is of the order of 1034-1035 m-3) as well as to the next generation intense laser solid density plasma experiments.

  7. Dust ion acoustic soliton in pair-ion plasmas with non-isothermal electrons

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Nasir Khattak, M.; Ahmad, Zulfiqar; Qamar, A.

    2012-04-01

    Dust ion acoustic (DIA) solitons in an unmagnetized pair-ion (PI) plasmas with adiabatic pair-ions, non-isothermal electrons, and negatively charged background dust are investigated, using both small and arbitrary amplitude techniques. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated. The effects of dust concentration, resonant electrons, and ion temperatures on the profiles of the Sagdeev potential and corresponding solitary waves are studied. The related Schamel-Korteweg-de Vries (S-KdV) equation with mixed-nonlinearity is derived by expanding the Sagdeev potential. Asymptotic solutions for different orders of nonlinearity are discussed for DIA solitary waves. The present work is applicable to understand the wave phenomena and associated nonlinear electrostatic perturbations in the doped pair ion plasmas, not completely filtered e.g., pair ion-electron plasmas, enriched with an extra massive charged component (e.g., dust defects), which may be academic for the moment but might be of interest for forthcoming experiments in laboratory (space) plasmas.

  8. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    SciTech Connect

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-08-15

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r{sub c}, has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0r{sub c} have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r{sub c}. A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results.

  9. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

    SciTech Connect

    Dubinov, A. E.; Kolotkov, D. Yu.; Sazonkin, M. A.

    2011-01-15

    A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli's pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

  10. Direct measurement of transmission loss of aircraft structures using the acoustic intensity approach

    NASA Technical Reports Server (NTRS)

    Wang, Y. S.; Crocker, M. J.

    1982-01-01

    A measurement technique is developed in order to obtain the sound transmission loss of an aircraft fuselage which obviates the need for the two-room transmission suite. The sound transmission paths were determined in tests on a light aircraft fuselage using a two-microphone acoustic intensity method for measuring the acoustic intensity transmitted to the interior when the fuselage was exposed to an external random incidence sound-field. The intensity transmitted through different sections of the fuselage can be estimated accurately using this new technique. Results of these tests show that the plexiglass window is the major transmission path in the high frequency range. In addition, the transmission losses through a single and a double layer window were predicted theoretically by using the Statistical Energy Analysis Model. Very good agreement is found between the predictions and the measurements.

  11. Acoustical studies of the steelpan and HANG: Phase-sensitive holography and sound intensity measurements

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew C. H.

    The Caribbean steelpan and an instrument closely related, the HANG, are two of the most, interesting acoustic musical instruments developed in the last century. Although simple in design, the acoustic properties of the steelpan and HANG are surprisingly complicated. Holographic interferometry was used to determine the resonances of a low tenor steelpan and a pentatonic HANG. Placement of a vibrating mirror in the optical path of the reference beam expands the capabilities of the holography system to include phase measurements. Phase maps and phase response curves of several low resonances of notes on a steelpan and HANG are shown. Sound intensity measurements were acquired to explore the relationship between the resonances and the radiated sound field. The instruments were placed in an anechoic chamber, and selected notes were excited electromagnetically with a swept sinusoid signal. A two-microphone probe was used to gather sound intensity measurements. Sound intensity reaps of the first three harmonics are shown for notes on both instruments.

  12. Ion-acoustic enhancements generated by beam-plasma instability in an auroral cavity

    NASA Astrophysics Data System (ADS)

    Ziebell, L. F.; Yoon, P. H.; Pavan, J.; Gaelzer, R.

    2011-03-01

    This article demonstrates the generation of enhanced ion-acoustic waves by beam-plasma instability in a density cavity. The self-consistent equations of weak turbulence theory that include quasi-linear, decay, and scattering processes as well as convective and dispersive effects are numerically solved for a one-dimensional density cavity. It is shown that significant enhancements of ion-acoustic waves occur in the presence of counterstreaming electron beams and that the enhanced ion-acoustic waves are initially localized near the center of the density cavity at large wavelengths. Later in the evolution, the enhancement in the spectrum of ion-acoustic waves spreads out toward the edges of the cavity, with a shift to smaller wavelengths, while the enhancement near the center of the cavity tends to decrease in magnitude. The significance of the present findings is discussed.

  13. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  14. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  15. Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.; El-Depsy, A.; El-Shamy, E. F.

    2015-12-01

    Properties of nonlinear ion-acoustic travelling waves propagating in a three-dimensional multicomponent magnetoplasma system composed of positive ions, negative ions and superthermal electrons are considered. Using the reductive perturbation technique (RPT), the Zkharov-Kuznetsov (ZK) equation is derived. The bifurcation theory of planar dynamical systems is applied to investigate the existence of the solitary wave solutions and the periodic travelling wave solutions of the resulting ZK equation. It is found that both compressive and rarefactive nonlinear ion-acoustic travelling waves strongly depend on the external magnetic field, the unperturbed positive-to-negative ions density ratio, the direction cosine of the wave propagation vector with the Cartesian coordinates, as well as the superthermal electron parameter. The present model may be useful for describing the formation of nonlinear ion-acoustic travelling wave in certain astrophysical scenarios, such as the D and F-regions of the Earth's ionosphere.

  16. Dynamics of the ion-ion acoustic instability in the thermalization of ion beams

    SciTech Connect

    Han, J.H.; Horton, W. . Inst. for Fusion Studies); Leboeuf, J.N. )

    1992-07-01

    Particle simulation using a nonlinear adiabatic electron response with two streaming ion species and nonlinear theory are used to study the collisionless thermalization of ion beams in a hot electron plasma. The slow beam or subsonic regime is investigated and the criterion for the transition from predominantly light ion to predominantly heavy ion heating is developed. Long-lived ion hole structures a-re observed in the final state.

  17. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    SciTech Connect

    Niknam, A. R.; Haghtalab, T.; Khorashadizadeh, S. M.

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  18. A future, intense source of negative hydrogen ions

    NASA Technical Reports Server (NTRS)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  19. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2016-07-01

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg-deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  20. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons. PMID:25871222

  1. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    NASA Astrophysics Data System (ADS)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  2. Stimulated scattering of a whistler wave off ion-cyclotron and ion-acoustic modes in a dusty plasma

    SciTech Connect

    Annou, R.; Tripathi, V.K.

    1998-01-01

    A whistler wave propagating through a magnetized dusty plasma undergoes stimulated Brillioun scattering off ion-cyclotron and ion-acoustic modes. The dust has little effect on nonlinear coupling. However, it reduces the growth rate by introducing linear damping on the low-frequency modes. {copyright} {ital 1998 American Institute of Physics.}

  3. Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma

    NASA Astrophysics Data System (ADS)

    Ali, S.; Moslem, W. M.; Shukla, P. K.; Schlickeiser, R.

    2007-08-01

    The linear and nonlinear properties of the ion-acoustic waves (IAWs) are investigated by using the quantum hydrodynamic equations together with the Poisson equation in a three-component quantum electron-positron-ion plasma. For this purpose, a linear dispersion relation, a Korteweg-de Vries equation and an energy equation containing quantum corrections are derived. Computational investigations have been performed to examine the quantum mechanical effects on the linear and nonlinear waves. It is found that both the linear and nonlinear properties of the IAWs are significantly affected by the inclusion of the quantum corrections. The relevance of the present investigation to dense white dwarfs (where the electron-positron annihilation can be unimportant) is discussed.

  4. Nonlinear ion acoustic excitations in relativistic degenerate, astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-Ur; Ali, S.; Mushtaq, A.; Qamar, A.; Qamar

    2013-10-01

    The dynamics and propagation of ion acoustic (IA) waves are considered in an unmagnetized collisionless plasma, whose constituents are the relativistically degenerate electrons and positrons as well as the inertial cold ions. At a first step, a linear dispersion relation for IA waves is derived and analysed numerically. For nonlinear analysis, the reductive perturbation technique is used to derive a Korteweg-deVries equation, which admits a localized wave solution in the presence of relativistic degenerate electrons and positrons. It is shown that only compressive IA solitary waves can propagate, whose amplitude, width and phase velocity are significantly modified due to the positron concentration. The latter also strongly influences all the relativistic plasma parameters. Our present analysis is aimed to understand collective interactions in dense astrophysical objects, e.g. white dwarfs, where the lighter species electrons and positrons are taken as relativistically degenerate.

  5. Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-08-01

    The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.

  6. Oblique propagation of ion acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Wang, Jian-Yong; Cheng, Xue-Ping; Tang, Xiao-Yan; Yang, Jian-Rong; Ren, Bo

    2014-03-15

    The oblique propagation of ion-acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons is studied. Linear dispersion relations of the fast and slow ion-acoustic modes are discussed under the weak and strong magnetic field situations. By means of the reductive perturbation approach, Korteweg-de Vries equations governing ion-acoustic waves of fast and slow modes are derived, respectively. Explicit interacting soliton-cnoidal wave solutions are obtained by the generalized truncated Painlevé expansion. It is found that every peak of a cnoidal wave elastically interacts with a usual soliton except for some phase shifts. The influence of the electron superthermality, positron concentration, and magnetic field obliqueness on the soliton-cnoidal wave are investigated in detail.

  7. Differential Influence of Frequency, Timing, and Intensity Cues in a Complex Acoustic Categorization Task

    PubMed Central

    Nagel, Katherine I.; McLendon, Helen M.

    2010-01-01

    Songbirds, which, like humans, learn complex vocalizations, provide an excellent model for the study of acoustic pattern recognition. Here we examined the role of three basic acoustic parameters in an ethologically relevant categorization task. Female zebra finches were first trained to classify songs as belonging to one of two males and then asked whether they could generalize this knowledge to songs systematically altered with respect to frequency, timing, or intensity. Birds' performance on song categorization fell off rapidly when songs were altered in frequency or intensity, but they generalized well to songs that were changed in duration by >25%. Birds were not deaf to timing changes, however; they detected these tempo alterations when asked to discriminate between the same song played back at two different speeds. In addition, when birds were retrained with songs at many intensities, they could correctly categorize songs over a wide range of volumes. Thus although they can detect all these cues, birds attend less to tempo than to frequency or intensity cues during song categorization. These results are unexpected for several reasons: zebra finches normally encounter a wide range of song volumes but most failed to generalize across volumes in this task; males produce only slight variations in tempo, but females generalized widely over changes in song duration; and all three acoustic parameters are critical for auditory neurons. Thus behavioral data place surprising constraints on the relationship between previous experience, behavioral task, neural responses, and perception. We discuss implications for models of auditory pattern recognition. PMID:20610781

  8. Chronic stroke and aging: the impact of acoustic stimulus intensity on fractionated reaction time.

    PubMed

    Coombes, Stephen A; Janelle, Christopher M; Cauraugh, James H

    2009-03-13

    In control samples, intense acoustic "go" stimuli accelerate the central and peripheral motor processes that compose simple reaction time movements. The goal of the current study was to determine whether movements that are initiated to intense acoustic cues facilitate simple reaction times in (1) adults with chronic stroke as compared to age matched controls and (2) in older as compared to younger adults. EMG and force data were collected from three groups (stroke, older adults, and younger adults) during a ballistic wrist and finger extension task. Movements were made to the onset of 80 dB and 107 dB acoustic cues and simple reaction times were fractionated into premotor and motor components. The present findings offer two important contributions to the literature. First, increases in stimulus intensity led to faster motor times in the impaired limb of stroke subjects. Second, increased stimulus intensity led to faster premotor reaction times across all groups, although an age rather than a stroke-specific motor deficit was evidenced, with the younger control group displaying significantly faster premotor times. Findings are integrated with previous evidence concerning post stroke corticospinal tract integrity and are interpreted via mechanisms which address stroke and age-related changes in motoneurons and activity in motor units.

  9. The concept of cyclic sound intensity and its application to acoustical imaging

    NASA Astrophysics Data System (ADS)

    Lafon, B.; Antoni, J.; Sidahmed, M.; Polac, L.

    2011-04-01

    This paper demonstrates how to take advantage of the cyclostationarity property of engine signals to define a new acoustical quantity, the cyclic sound intensity, which displays the instantaneous flux of acoustical energy in the angle-frequency domain during an average engine cycle. This quantity is attractive in that it possesses the ability of being instantaneous and averaged at the same time, thus reconciling two conflicting properties into a rigourous and unambiguous framework. Cyclic sound intensity is a rich concept with several original ramifications. Among other things, it returns a unique decomposition into instantaneous active and reactive parts. Associated to acoustical imaging techniques, it allows the construction of sound radiation movies that evolve within the engine cycle and whose each frame is a sound intensity map calculated at a specific time - or crankshaft angle - in the engine cycle. This enables the accurate localisation of sources in space, in frequency and in time (crankshaft angle). Furthermore, associated to cyclic Wiener filtering, this methodology makes it possible to decompose the overall radiated sound into several noise source contributions whose cyclic sound intensities can then be analysed independently.

  10. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  11. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement. PMID:25659300

  12. On the generation of double layers from ion- and electron-acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan

    2016-03-01

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  13. The acoustic environment of intensive care wards based on long period nocturnal measurements.

    PubMed

    Xie, Hui; Kang, Jian

    2012-01-01

    The patients in the Intensive Care Units are often exposed to excessive levels of noise and activities. They can suffer from sleep disturbance, especially at night, but they are often too ill to cope with the poor environment. This article investigates the acoustic environment of typical intensive care wards in the UK, based on long period nocturnal measurements, and examines the differences between singlebed and multibed wards, using statistical analysis. It has been shown that the acoustic environment differs significantly every night. There are also significant differences between the noise levels in the singlebed and multibed wards, where acoustic ceilings are present. Despite the similar background noises in both ward types, more intrusive noises tend to originate from the multibed wards, while more extreme sounds are likely to occur in the single wards. The sound levels in the measured wards for each night are in excess of the World Health Organization's (WHO) guide levels by at least 20 dBA, dominantly at the middle frequencies. Although the sound level at night varies less than that in the daytime, the nocturnal acoustic environment is not dependant on any specific time, thus neither the noisiest nor quietest period can be determined. It is expected that the statistical analysis of the collected data will provide essential information for the development of relevant guidelines and noise reduction strategies.

  14. Role of positively charged dust grains on dust acoustic wave propagation in presence of nonthermal ions

    SciTech Connect

    Sarkar, Susmita; Maity, Saumyen

    2013-08-15

    An expression for ion current flowing to the dust grains is proposed, when dust charge is positive and the ions are nonthermal. Secondary electron emission has been considered as the source of positive charging of the dust grains. Investigation shows that presence of positively charged dust grains along with thermal electrons and nonthermal ions generate purely growing dust acoustic waves for both the cases of ion nonthermal parameter greater than one and less than one. In the later case, the growth is conditional.

  15. Chirped-Standing-Wave Acceleration of Ions with Intense Lasers.

    PubMed

    Mackenroth, F; Gonoskov, A; Marklund, M

    2016-09-01

    We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities. PMID:27636480

  16. Chirped-Standing-Wave Acceleration of Ions with Intense Lasers.

    PubMed

    Mackenroth, F; Gonoskov, A; Marklund, M

    2016-09-01

    We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities.

  17. Chirped-Standing-Wave Acceleration of Ions with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Mackenroth, F.; Gonoskov, A.; Marklund, M.

    2016-09-01

    We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities.

  18. Ion-acoustic and Buneman instabilities in collisional plasmas with q-nonextensive distribution

    NASA Astrophysics Data System (ADS)

    Hashemzadeh, M.

    2016-10-01

    The ion-acoustic and Buneman instabilities are studied in a current carrying plasma by taking into account the collisional effects and q-nonextensive distribution function. Using the kinetic theory and Bhatnagar-Gross-Krook collision model, a generalized dielectric permittivity function in the presence of moving electrons and electron and ion-neutral collision frequency is derived. The longitudinal dispersion relation in the Buneman and ion-acoustic instability limit is obtained. The results of the Buneman instability shows that the collision frequency, the q-parameter and electron drift velocity affect the growth rate of the instability. Finally, the profile of the ion-acoustic growth rate indicates that by increasing the ion to electron temperature ratio the instability growth rate decreases.

  19. Multicomponent kinetic simulation of Bernstein–Greene–Kruskal modes associated with ion acoustic and dust-ion acoustic excitations in electron-ion and dusty plasmas

    SciTech Connect

    Hosseini Jenab, S. M.; Kourakis, I.

    2014-04-15

    A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein–Greene–Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τ{sub trap}) and their amplitude, on the electron-to-ion temperature ratio and on the dust concentration. In electron-ion plasma, an exponential relation between τ{sub trap} and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τ{sub trap} and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly.

  20. High intensity ion beam injection into the 88-inch cyclotron

    SciTech Connect

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner,Matthaeus A.; Lyneis, Claude M.

    2000-05-31

    Low cross section experiments to produce super-heavyelements have increased the demand for high intensity heavy ion beams atenergies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the LawrenceBerkeley National Laboratory. Therefore, efforts are underway to increasethe overall ion beam transmission through the axial injection line andthe cyclotron. The ion beam emittance has been measured for various ionmasses and charge states. Beam transport simulations including spacecharge effects were performed for both of the injection line and the ionsource extraction. The relatively low nominal injection voltage of 10 kVwas found to be the main factor for ion beam losses, because of beam blowup due to space charge forces at higher intensities. Consequently,experiments and simulations have been performed at higherinjectionenergies, and it was demonstrated that the ion beams could still becentered in the cyclotron at these energies. Therefore, the new injectorion source VENUS and its ion beam transport system (currently underconstruction at the 88-Inch Cyclotron) are designed for extractionvoltages up to 30 kV.

  1. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  2. Effect of non-maxwellians ions on dust acoustic dressed soliton

    NASA Astrophysics Data System (ADS)

    Amour, Rabia; Tribeche, Mouloud

    2016-07-01

    Dust is an ubiquitous component of space and astrophysical environments, occurring for example in planetary rings, comets and the Earth's ionosphere. Dusty plasmas are known to support a wide variety of ultra low-frequency wave modes. The most well studied of such modes are the so called dust-acoustic wave (DAW) and dust ion-acoustic wave (DIAW). The aim of this communication is to study a small-amplitude dust acoustic dressed solitons in a three component dusty plasma having electrons, suprathermal ions, and dust grains. We have then investigate the effect of ion suprathermality on small amplitude dust acoustic dressed wave and compared the result with the soliton's exact solution of the fourth order of pseudo-potential and K-dV soliton.

  3. The Langmuir's Paradox: Can the Ion Acoustic Instability at the Sheath Edge Thermalize the Ions Too?

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah; Severn, Greg

    2013-09-01

    Recently a theoretical prediction was that in single-species plasmas, ion-ion collisional friction is enhanced by the ion acoustic instability. The theory predicted that the instability will not only enhance the thermalization of the electrons, but will also, near the sheath-edge, thermalize the non-Maxwellian tail of the ion velocity distribution function (IVDF), caused by charge exchange in the presheath. The theory also predicted that this instability disappears through collisional damping as neutral pressure of the plasma increases. This experiment aims to verify this theory by measuring the IVDFs near the sheath edge in a multi-dipole chamber discharge in Argon and Xenon gas for a variety of neutral pressures and electron temperatures. The threshold parameters of the phenomenon are explored. The IVDFs are determined by Laser-Induced Florescence, the electron temperature is measured by a Langmuir probe and the plasma potential towards the boundary is measured by an emissive probe. DOE Grant nos. DE-SC0001939, DE FG02- 03ER54728, and NSF No. CBET0903832.

  4. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    SciTech Connect

    Guo, Shimin Mei, Liquan; Zhang, Zhengqiang

    2015-05-15

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  5. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  6. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    SciTech Connect

    Rios, L. A.; Galvão, R. M. O.

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  7. Quantum Ion-Acoustic Oscillations in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Iqbal, Z.; Wazir, Z.; Aman-ur-Rehman

    2016-05-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  8. Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons

    SciTech Connect

    Eslami, Parvin; Mottaghizadeh, Marzieh

    2012-06-15

    By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio of the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.

  9. Expected intensities of solar neon-like ions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1985-01-01

    A study of the expected intensities of the stronger solar neon-like ion emission lines, some not yet observed, is carried out to compare with the observational situation. The potential usefulness of the 2p5 3s(3P2) - 2p6 forbidden line as a density diagnostic is discussed, and new electric quadrupole lines in the soft X-ray range are noted. 'Observability diagrams' are presented as a convenient overview of the known and unobserved lines. The S VII resonance lines appear to have anomalous intensities.

  10. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  11. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  12. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  13. Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hasan, M. M.; Hossen, M. A.; Rafat, A.; Mamun, A. A.

    2016-10-01

    A theoretical investigation has been carried out on the propagation of the ion-acoustic (IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed mK-dV (mmK-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features (phase speed, amplitude, width, etc.) of the IA solitary waves (SWs), the SWs solutions of the K-dV, mK-dV, and mmK-dV are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects (arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g., white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser-solid matter interaction experiments, etc., are mentioned.

  14. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are nonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory'', and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  15. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A.

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are rzonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory,'' and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  16. Hawking radiation from an acoustic black hole on an ion ring.

    PubMed

    Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it. PMID:20867352

  17. Dust-acoustic Solitary Waves in Dusty Plasma with Non-thermal Ions

    SciTech Connect

    Saini, Nareshpal Singh; Gill, Tarsem Singh; Kaur, Harvinder

    2005-10-31

    In the present research paper, characteristics of dust-acoustic solitary waves in dusty plasma are studied. The dust charge is treated as variable. KdV equation has been derived using reductive perturbation method. The effect of relative number density, relative ion temperature, non-thermal parameter and variable charge has been numerically studied for possibility of both type of dust-acoustic solitary waves.

  18. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  19. Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons

    NASA Astrophysics Data System (ADS)

    Abdelsalam, U. M.; Moslem, W. M.; Shukla, P. K.

    2008-05-01

    Fully nonlinear propagation of ion-acoustic solitary waves in a collisionless dense/quantum electron-positron-ion plasma is investigated. The electrons and positrons are assumed to follow the Thomas-Fermi density distribution and the ions are described by the hydrodynamic equations. An energy balance-like equation involving a Sagdeev-type pseudo-potential is derived. Finite amplitude solutions are obtained numerically and their characteristics are discussed. The small-but finite-amplitude limit is also considered and an exact analytical solution is obtained. The present studies might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.

  20. Acoustic and optical properties of thallium ion-exchanged KTiOPO4

    NASA Astrophysics Data System (ADS)

    Chu, David K. T.

    1994-10-01

    Both acoustic and optical properties of thallium ion-exchanged KTiOPO4 (Tl:KTP) plates were examined. Surface acoustic wave (SAW) velocity of the thallium-exchanged z-cut KTP possesses a reduction of 13% from the unchanged KTP. Temperature stability of SAW resonance (1/f0 df/dT) changed from ≊-81 ppm of an untreated z-cut KTP substrate to ≊-121 ppm of a z-cut Tl:KTP substrate. Large optical refractive indices changes at the Tl ion-exchanged surface were observed [Δneff(TE)≊0.3, Δneff(TM)≊0.22]. Tl ion concentration profile from the crystal surface into substrate was also studied using electron beam microscopy and the optical index m-line measurement. Tl-exchanged KTP, therefore, possesses both acoustic and optical waveguiding properties.

  1. Coupled nonlinear drift and ion acoustic waves in dense dissipative electron-positron-ion magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Karim, S.; Shah, H. A.; Siddiq, M.

    2009-11-01

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous electron-positron-ion (e-p-i) quantum magnetoplasma with neutrals in the background using the well known quantum hydrodynamic model. In this regard, Korteweg-de Vries-Burgers (KdVB) and Kadomtsev-Petviashvili-Burgers (KPB) equations are obtained. Furthermore, the solutions of KdVB and KPB equations are presented by using the tangent hyperbolic (tanh) method. The variation in the shock profile with the quantum Bohm potential, collision frequency, and the ratio of drift to shock velocity in the comoving frame, v*/u, is also investigated. It is found that increasing the positron concentration and collision frequency decreases the strength of the shock. It is also shown that when the localized structure propagates with velocity greater than the diamagnetic drift velocity (i.e., u >v*), the shock strength decreases. However, the shock strength is observed to increase when the localized structure propagates with velocity less than that of drift velocity (i.e., u

  2. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma

    SciTech Connect

    Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-03-15

    The properties of obliquely propagating ion-acoustic solitary waves in the presence of ambient magnetic field have been investigated theoretically in an electron-positron-ion nonthermal plasma. The plasma nonthermality is introduced via the q-nonextensive distribution of electrons and positrons. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting reductive perturbation method. The solution of K-dV and modified K-dV equation, which describes the solitary wave characteristics in the long wavelength limit, is obtained by steady state approach. It is seen that the electron and positron nonextensivity and external magnetic field (obliqueness) have significant effects on the characteristics of solitary waves. A critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas where static external magnetic field is present.

  3. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    SciTech Connect

    Adnan, Muhammad; Qamar, Anisa; Mahmood, S.

    2014-09-15

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  4. Experimental analysis of the relationship between reverberant acoustic intensity and energy density inside long rooms.

    PubMed

    Visentin, Chiara; Prodi, Nicola; Valeau, Vincent; Picaut, Judicaël

    2015-07-01

    In this paper, the validity of the Fick's law of diffusion in room acoustics is experimentally investigated inside long rooms. The room-acoustics diffusion model relies on Fick's law stating a proportionality relationship between sound intensity and energy density gradient inside a room through a constant diffusion coefficient. This relationship is investigated in the stationary state for the particular case of long rooms with different amounts of boundary scattering. Measurements were performed inside a 1:16 scale model, using a p-u sound intensity probe (calibrated with digital filters) to collect concurrent data in terms of sound pressure and axial velocity components. Then for each receiver position, sound intensity and energy density gradient were derived. The results show that inside long rooms the diffusion coefficient is not a constant but increases with the distance from the source with a slope depending on the scattering coefficient of the walls. Numerical simulations of the enclosures were performed too by using a sound particle-tracing code; a substantial agreement with the experimental findings is observed. The results imply that for such long enclosures, the diffusion model should consider a space-varying diffusion coefficient to be more consistent with real phenomena.

  5. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    SciTech Connect

    Saha, Asit E-mail: prasantachatterjee1@rediffmail.com; Pal, Nikhil; Chatterjee, Prasanta E-mail: prasantachatterjee1@rediffmail.com

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  6. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  7. Dust ion acoustic solitary waves in a collisional dusty plasma with dust grains having Gaussian distribution

    SciTech Connect

    Maitra, Sarit; Banerjee, Gadadhar

    2014-11-15

    The influence of dust size distribution on the dust ion acoustic solitary waves in a collisional dusty plasma is investigated. It is found that dust size distribution changes the amplitude and width of a solitary wave. A critical wave number is derived for the existence of purely damping mode. A deformed Korteweg-de Vries (dKdV) equation is obtained for the propagation of weakly nonlinear dust ion acoustic solitary waves and the effect of different plasma parameters on the solution of this equation is also presented.

  8. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    SciTech Connect

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-11-15

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  9. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Mahmood, S.

    2011-11-01

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  10. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Akhtar, N.; Mahmood, S.

    2011-11-15

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  11. Linear and nonlinear ion-acoustic waves in very dense magnetized plasmas

    SciTech Connect

    Khan, S. A.; Mahmood, S.; Saleem, H.

    2008-08-15

    Obliquely propagating linear and weakly nonlinear ion-acoustic waves in a magnetized quantum plasma are investigated by employing the quantum hydrodynamic formulation. A linear dispersion relation is presented and the nonlinear Korteweg-de Vries equation is derived using the reductive perturbative method. The dispersion caused by the quantum diffraction effects is possible only in a very short wavelength regime. The amplitude and width of the solitons formed by the ion-acoustic waves propagating in a magnetized plasma depend upon various parameters. Possible applications of the results to dense plasmas are discussed.

  12. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  13. Influences of shear in the ion parallel drift velocity and of inhomogeneous perpendicular electric field on generation of oblique ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Ilyasov, Askar; Chernyshov, Alexander; Mogilevsky, Mikhail; Golovchanskaya, Irina; Kozelov, Boris

    2016-03-01

    It is well known that the broadband electrostatic turbulence observed in the topside auroral ionosphere can be identified with electrostatic ion cyclotron and/or oblique ion acoustic waves. Under certain conditions generation of the ion cyclotron modes is inhibited, so that the oblique ion acoustic waves become the prevailing part of the broadband noise. While generation of ion cyclotron waves by the inhomogeneous distribution of energy density (IEDD) instability has been actively studied in recent years, much less attention was paid to the excitation of ion acoustic waves by means of the IEDD instability. In this work, influence of shear in the ion parallel drift velocities and of inhomogeneous perpendicular electric field on generation of nonlocal oblique ion acoustic mode is studied. It is demonstrated that the shear of the ion parallel drift velocities can generate ion acoustic waves. It is shown that this mechanism of instability development provides broadband spectrum in the frequency range around 0.1 of ion gyrofrequency, and thus, this instability can be invoked to explain the observed broadband electrostatic turbulence in the auroral region. Effect of the main background plasma parameters on excitation of oblique ion acoustic waves is analyzed.

  14. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  15. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE PAGESBeta

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  16. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Ochiai, Yasushi; Murata, Takuya; Masugata, Katsumi

    2012-10-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device, multiple shot operations are realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm and length 25 mm. A capacitor bank of capacitance 3 μF and a charging voltage of 30 kV was used, and the wire was successfully exploded by a discharge current of 15 kA with a rise time of 5.3 μs. Plasma flux of ion current density around 70 A/cm2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7×104 m/ s, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of the ion current density distribution, the ion flow is found to be concentrated toward the direction where the ion acceleration gap is placed. From the experiment, the device is found to be acceptable for applying the PHIB accelerator.

  17. Planar and non-planar dust ion-acoustic solitary waves in a quantum dusty electronegative plasma

    NASA Astrophysics Data System (ADS)

    Tasnim, S.; Islam, S.; Mamun, A. A.

    2012-03-01

    A theoretical investigation has been made on nonlinear propagation of planar and non-planar solitary waves in a quantum dusty electronegative plasma, whose constituents are quantum electrons, positive ions, negative ions, and arbitrarily charged stationary dust. The reductive perturbation method has been used to derive the Korteweg-de Vries and modified Korteweg-de Vries equations for studying the basic features of solitary waves, which are associated with both positive and negative ion dynamics. The effects of quantum parameter (H), positive and negative ion mass ratio (μin), as well as dust and positive ion number densities (β) on the basic features (polarity, height, and width) of planar solitary waves have been studied. It has been also found that the properties of dust ion-acoustic solitary waves in non-planar cylindrical or spherical geometry differ from those in planar one-dimensional geometry. The implications of our results in space (viz., interstellar compact objects like neutron stars) and laboratory experiments (e.g., intense laser solid density plasma experiments) have been briefly discussed.

  18. SIMULATION OF INTENSE BEAMS FOR HEAVY ION FUSION

    SciTech Connect

    Friedman, A

    2004-06-10

    Computer simulations of intense ion beams play a key role in the Heavy Ion Fusion research program. Along with analytic theory, they are used to develop future experiments, guide ongoing experiments, and aid in the analysis and interpretation of experimental results. They also afford access to regimes not yet accessible in the experimental program. The U.S. Heavy Ion Fusion Virtual National Laboratory and its collaborators have developed state-of-the art computational tools, related both to codes used for stationary plasmas and to codes used for traditional accelerator applications, but necessarily differing from each in important respects. These tools model beams in varying levels of detail and at widely varying computational cost. They include moment models (envelope equations and fluid descriptions), particle-in-cell methods (electrostatic and electromagnetic), nonlinear-perturbative descriptions (''{delta}f''), and continuum Vlasov methods. Increasingly, it is becoming clear that it is necessary to simulate not just the beams themselves, but also the environment in which they exist, be it an intentionally-created plasma or an unwanted cloud of electrons and gas. In this paper, examples of the application of simulation tools to intense ion beam physics are presented, including support of present-day experiments, fundamental beam physics studies, and the development of future experiments. Throughout, new computational models are described and their utility explained. These include Mesh Refinement (and its dynamic variant, Adaptive Mesh Refinement); improved electron cloud and gas models, and an electron advance scheme that allows use of larger time steps; and moving-mesh and adaptive-mesh Vlasov methods.

  19. Ion-acoustic double layers in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Venugopal, C.; Sreekala, G.; Willington, Neethu Theresa; Sebastian, Sijo

    2016-07-01

    We investigate the propagation characteristics of Ion-acoustic solitons and double layers in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdV and modified KdV equations are derived for the system and its solution is plotted for different kappa values and negatively charged oxygen ion densities. It is found that the strength of double layer increases with increasing spectral indices. It, however, decreases with increasing negatively charged oxygen ion densities. The parameter for the transition from compressive to rarefactive soliton is also specified. The presence of negatively charged oxygen ions can significantly affect the nonlinearity coefficients (both quadratic and cubic) of a double layer.

  20. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Emadi, E.; Zahed, H.

    2016-08-01

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  1. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.

    PubMed

    Romano, P Q; Conlon, S C; Smith, E C

    2013-01-01

    Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators. PMID:23297894

  2. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2016-06-01

    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves (SEAWs). This kinetic theory allows us to obtain the spectrum of the SEAWs including the effects of occupation of quantum states more accurately than the quantum hydrodynamic theory. We derive and apply the quantum kinetic theory to calculate the Landau damping of the SEAWs. We consider the contribution of ions dynamics into the SEAW spectrum. We obtain the contribution of ions in the Landau damping in the temperature regime of classic ions. Kinetic analysis for the ion-acoustic, zero sound, and Langmuir waves at the separated spin-up and spin-down electron dynamics is presented as well.

  3. Ion acoustic solitons in a relativistic warm plasma with density gradient

    SciTech Connect

    Malik, H.K.

    1995-10-01

    Modified Korteweg-deVries equation (mK-dV), which governs the behavior of ion acoustic solitons in a relativistic warm plasma with density gradient, is derived. The electron inertia is also taken into account which is important when the streaming ions are present in the plasma. A solution of the mK-dV equation is obtained for the constant density gradient. When the ion acoustic soliton propagates into the lower plasma density region, its amplitude and energy increase, but the width decreases; the same is the case for the stronger density gradients. Plasmas with high-energy streaming ions are found, for example, in the plasma sheet boundary layer of the earth`s magnetosphere and in the Van Allen radiation belts.

  4. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  5. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  6. Excitation of ion-acoustic perturbations by incoherent kinetic Alfven waves in plasmas

    SciTech Connect

    Mendonca, J. T.; Shukla, P. K.

    2007-12-15

    The dispersion relation for ion-acoustic perturbations (IAPs) in the presence of incoherent kinetic Alfven waves (KAWs) in plasmas is derived. The wave-kinetic-approach is used to study the nonlinear interactions between an ensemble of random phase KAWs and IAPs. It is found that incoherent KAW spectrum is unstable against IAPs. The instability growth rates for particular cases are obtained. The present instability offers the possibility of heating ions in a turbulent magnetoplasma composed of incoherent KAWs.

  7. Excitation of ion-acoustic perturbations by incoherent kinetic Alfvén waves in plasmas

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Shukla, P. K.

    2007-12-01

    The dispersion relation for ion-acoustic perturbations (IAPs) in the presence of incoherent kinetic Alfvén waves (KAWs) in plasmas is derived. The wave-kinetic-approach is used to study the nonlinear interactions between an ensemble of random phase KAWs and IAPs. It is found that incoherent KAW spectrum is unstable against IAPs. The instability growth rates for particular cases are obtained. The present instability offers the possibility of heating ions in a turbulent magnetoplasma composed of incoherent KAWs.

  8. Solitonic, Periodic and Quasiperiodic Behaviors of Dust Ion Acoustic Waves in Superthermal Plasmas

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Chatterjee, Prasanta

    2015-08-01

    The solitonic, periodic, and quasiperiodic behaviors of dust ion acoustic waves in superthermal plasmas with q-nonextensive electrons are studied using the bifurcation theory of planar dynamical systems through direct approach. Using a Galilean transformation, model equations are transformed to a Hamiltonian system involving electrostatic potential. The existence of solitary and periodic waves is shown for the unperturbed Hamiltonian system. Analytical forms of these waves are presented depending on physical parameters q and μ. The effects of q and μ are studied on characteristics of nonlinear dust ion acoustic solitary and periodic waves. It is observed that parameters q and μ significantly influence the characteristics of nonlinear dust ion acoustic solitary and periodic structures. Considering an external periodic perturbation, the quasiperiodic behavior of the perturbed Hamiltonian system for dust ion acoustic waves is studied. It is seen that the unperturbed Hamiltonian system has the solitary and periodic wave solutions whereas the perturbed Hamiltonian system has quasiperiodic motion for same values of parameters q, μ and v.

  9. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    NASA Astrophysics Data System (ADS)

    EL-Shamy, E. F.

    2014-08-01

    The solitary structures of multi-dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  10. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    SciTech Connect

    EL-Shamy, E. F.

    2014-08-15

    The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  11. Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields

    NASA Astrophysics Data System (ADS)

    Uemura, Yuuki; Sasaki, Kazuma; Minami, Kyohei; Sato, Toshio; Choi, Pak-Kon; Takeuchi, Shinichi

    2015-07-01

    We observed the behavior of acoustic cavitation by sonochemical luminescence and ultrasound B-mode imaging with ultrasound diagnostic equipment in a standing-wave ultrasound field and focused ultrasound field. Furthermore, in order to investigate the influence of acoustic streaming on acoustic cavitation bubbles, we performed flow analysis of the sound field using particle image velocimetry. We found that acoustic cavitation bubbles are stirred by circulating acoustic streaming and local vortexes occurring in the water tank of the standing-wave ultrasound exposure system. We considered that the acoustic cavitation bubbles are carried away by acoustic streaming due to the high ultrasound pressure in the focused ultrasound field.

  12. Acoustic nonlinear periodic (cnoidal) waves and solitons in pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Kaladze, T.; Mahmood, S.; Ur-Rehman, Hafeez

    2012-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of the same mass ion species with different temperatures. It is found that the temperature difference between negatively and positively charged ions appropriates the dispersion property to linear acoustic waves and this difference has a decisive role in nonlinear dynamics as well. Using a reductive perturbation method and appropriate boundary conditions the Korteweg-de Vries equation is derived. Both cnoidal wave and soliton solutions are discussed in detail. In the special case, it is revealed that the amplitude of a soliton may become larger than what is allowed by the nonlinear stationary wave theory, which is equal to the quantum tunneling by a particle through a potential barrier effect. The serious flaw in the results obtained for ion acoustic nonlinear periodic waves by Yadav et al (1995 Phys. Rev. E 52 3045) in two-electron temperature plasmas and Chawla and Misra (2010 Phys. Plasmas 17 102315) in electron-positron-ion plasmas is also pointed out.

  13. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  14. Dust acoustic solitary wave with variable dust charge: Role of negative ions

    SciTech Connect

    Ghosh, Samiran

    2005-09-15

    The role of negative ions on small but finite amplitude dust acoustic solitary wave including the effects of high and low charging rates of dust grains compared to the dust oscillation frequency in electronegative dusty plasma is investigated. In the case of high charging rate, the solitary wave is governed by Korteweg-de Vries (KdV) equation, but in the case of low charging rate, it is governed by KdV equation with a linear damping term. Numerical investigations reveal that in both cases dust acoustic soliton sharpens (flatens) and soliton width decreases (increases) with the increase of negative-ion number density (temperature). Also, the negative ions reduce the damping rate.

  15. Field theory for zero sound and ion acoustic wave in astrophysical matter

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  16. Two different types of enhanced ion acoustic fluctuations observed in the upper ionosphere

    SciTech Connect

    Forme, F.R.E.; Fontaine, D.; Wahlund, J.E.

    1995-08-01

    UHF and VHF data for the EISCAT incoherent scatter radar facility in northern Scandinavia is presented. Electron and ion temperatures, electron density, and ion drift velocity were measured from heights of 280 to 1500 km. Enhanced ion acoustic fluctuations are more observable with VHF than UHF radar due to wavelength effects. The fluctuations are usually associated with a large flux of precipitating electrons with energies from 100 ev to 10 kev. The spatial extent of the turbulent regions are determined. 23 refs., 6 figs.

  17. Arbitrary amplitude ion-acoustic waves in a multicomponent plasma with superthermal species

    SciTech Connect

    El-Tantawy, S. A.; Moslem, W. M.

    2011-11-15

    Properties of fully nonlinear ion-acoustic waves in a multicomponent plasma consisting of warm positive ions, superthermal electrons, as well as positrons, and dust impurities have been investigated. By using the hydrodynamic model for ions and superthermal electron/positron distribution, a Sagdeev potential has been derived. Existence conditions for large amplitude solitary and shock waves are presented. In order to show that the characteristics of the solitary and shock waves are influenced by the plasma parameters, the relevant numerical analysis of the Sagdeev potential is presented. The nonlinear structures, as predicted here, may be associated with the electrostatic perturbations in interstellar medium.

  18. Nonlinear ion acoustic dissipative shock structure with exchange-correlation effects in quantum semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Akhtar, N.

    2016-09-01

    Ion acoustic shocks in the electron-hole-ion semiconductor plasmas have been studied. The quantum recoil effects, exchange-correlation effects and degenerate pressure of electrons and holes are included. The ion species are considered classical and their dissipation is taken into account via the dynamic viscosity. The Korteweg de Vries Burgers equation is derived by using reductive perturbation approach. The excitation of shock waves in different semiconductor plasmas is pointed out. For numerical analyses, the plasma parameters of different semiconductors are considered. The impact of variation of the plasma parameters on the strength of the shock wave in the semiconductor plasmas is discussed.

  19. Measurement of the flow velocity in unmagnetized plasmas by counter propagating ion-acoustic waves

    SciTech Connect

    Ma, J.X.; Li Yangfang; Xiao Delong; Li Jingju; Li Yiren

    2005-06-15

    The diffusion velocity of an inhomogeneous unmagnetized plasma is measured by means of the phase velocities of ion-acoustic waves propagating along and against the direction of the plasma flow. Combined with the measurement of the plasma density distributions by usual Langmuir probes, the method is applied to measure the ambipolar diffusion coefficient and effective ion collision frequency in inhomogeneous plasmas formed in an asymmetrically discharged double-plasma device. Experimental results show that the measured flow velocities, diffusion coefficients, and effective collision frequencies are in agreement with ion-neutral collision dominated diffusion theory.

  20. Ion acceleration using high-contrast ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; D'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-06-01

    We have compared the acceleration of high-energy ions from the rear-surface of thin foils for various contrast conditions of the ultra-intense laser pulse irradiating the targets. The experiments were performed using the LULI 100 TW facility. We used Al targets of variable thicknesses and the laser pulse contrast ratio ahead of the main pulse was varied using either a fast Pockels cell or a single or double plasma mirror. The latter was installed at an intermediate field position, in between the focusing optics and the target, so that its effect was optimized. By improving with these two methods the laser pulse contrast, we have observed that we could significantly reduce the thickness of the target used for proton acceleration and at the same time increase both the cut-off energy of the accelerated protons and the energy conversion efficiency of the process.

  1. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  2. H- Ion Sources for High Intensity Proton Drivers

    SciTech Connect

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  3. Convergence of intense aerial acoustic waves radiated by a rectangular transverse vibrating plate

    NASA Astrophysics Data System (ADS)

    Nakai, Tomoki; Asami, Takuya; Miura, Hikaru

    2016-07-01

    A stripe-mode rectangular transverse vibrating plate can be used as a sound source that emits intense ultrasonic waves in air by placing a jut driving point outside the vibrating plate. The aim of this research was to use this vibrating plate to focus sound waves in the direction perpendicular to the nodal lines of the vibrating plate, which differs from the conventional direction. In this study, we investigated new methods for focusing the emitted sound waves by arranging reflective plates around the vibrating plate, using a design equation for each node between nodes in the vibrating plate, and placing additional reflective plates at an outer position beyond the convergence point, and found that a powerful acoustic field can be formed at an arbitrary position.

  4. Ion acoustic solitary waves and double layers in a plasma with two temperature electrons featuring Tsallis distribution

    SciTech Connect

    Shalini, Saini, N. S.

    2014-10-15

    The propagation properties of large amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Employing Sagdeev pseudopotential method, an energy balance equation has been derived and from the expression for Sagdeev potential function, ion acoustic solitary waves and double layers are investigated numerically. The Mach number (lower and upper limits) for the existence of solitary structures is determined. Positive as well as negative polarity solitary structures are observed. Further, conditions for the existence of ion acoustic double layers (IADLs) are also determined numerically in the form of the critical values of q{sub c}, f and the Mach number (M). It is observed that the nonextensivity of electrons (via q{sub c,h}), concentration of electrons (via f) and temperature ratio of cold to hot electrons (via β) significantly influence the characteristics of ion acoustic solitary waves as well as double layers.

  5. Sagdeev potential approach for quantum ion-acoustic solitary waves in an electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Banerjee, Gadadhar; Maitra, Sarit

    2016-06-01

    Sagdeev pseudopotential method is employed to study the arbitrary amplitude quantum ion-acoustic solitary waves in an unmagnetized electron-positron-ion plasma by using one dimensional quantum hydrodynamic model together with the Poisson equation. Sagdeev potential function is obtained in terms of electrostatic potential and analyzed with and without the effect of quantum diffraction parameter H. Effects of the parameter H on both the amplitude and width of the solitary waves have been observed. It is also observed that the positron density can affect the wave propagation.

  6. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    SciTech Connect

    Ema, S. A.; Ferdousi, M.; Mamun, A. A.

    2015-04-15

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.

  7. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  8. H- Ion Sources for High Intensity Proton Drivers

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Stockli, Martin P; Welton, Robert F; Dudnikova, Galina

    2010-01-01

    Spallation neutron source user facilities require reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron can provide the needed beam currents, but may be limited by the ion sources that have currents and reliability that do not meet future requirements and emittances that are too large for efficient acceleration. In this project we are developing an H- source which will synthesize the most important developments in the field of negative ion sources to provide high current, small emittance, good lifetime, high reliability, and power efficiency. We describe planned modifications to the present external antenna source at SNS that involve: 1) replacing the present 2 MHz plasma-forming solenoid antenna with a 60 MHz saddle-type antenna and 2) replacing the permanent multicusp magnet with a weaker electromagnet, in order to increase the plasma density near the outlet aperture. The SNS test stand will then be used to verify simulations of this approach that indicate significant improvements in H- output current and efficiency, where lower RF power will allow higher duty factor, longer source lifetime, and/or better reliability.

  9. Effect of nonthermality of electrons on the speed and shape of ion-acoustic solitary waves in a warm plasma

    SciTech Connect

    Abdelwahed, H. G.; El-Shewy, E. K.

    2012-07-15

    Nonlinear ion-acoustic solitary waves in a warm collisionless plasma with nonthermal electrons are investigated by a direct analysis of the field equations. The Sagdeev's potential is obtained in terms of ion acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the ion-acoustic solitons as well as the parametric regime where the solitons can exist are sensitive to the population of energetic non-thermal electrons. The soliton and double layer solutions are obtained as a small amplitude approximation.

  10. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  11. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  12. Dust-acoustic shock formation in dusty plasmas with non-thermal ions

    SciTech Connect

    Asgari, H.; Muniandy, S. V.; Wong, C. S.

    2013-01-15

    In this study, the nonlinear Burgers equation in the presence of the dust charge fluctuation is derived and the shock-like solution is determined. It is well known that in order to have a monotonic or oscillatory shock wave, a source of dissipation is needed. By using the experimental data reported in the laboratory observation of self-excited dust-acoustic shock waves [Heinrich et al., Phys. Rev. Lett. 103, 115002 (2009)], it is shown that dust charge fluctuation can be considered as a candidate for the source of dissipation needed for the dust-acoustic shock formation. By examining the effects of non-thermal ions on dust-acoustic shock's characteristics, a possible theoretical explanation for the discrepancies observed between theory and experiment is proposed.

  13. Low dust charging rate induced weakly dissipative dust acoustic solitary waves: Role of nonthermal ions

    SciTech Connect

    Chaudhuri, Tushar Kanti; Khan, Manoranjan; Gupta, M. R.; Ghosh, Samiran

    2007-10-15

    The effects of low dust charging rate compared to the dust oscillation frequency and nonthermal ions on small but finite amplitude nonlinear dust acoustic wave have been investigated. It is seen that because of the low dust charging rate, the nonlinear wave exhibits weakly dissipative solitary wave that is governed by a modified form of the Korteweg-de Vries equation. The solitary wave possesses both rarefactive and compressive soliton solution depending on the values of ion nonthermality parameter a. An analytical solution reveals that because of the simultaneous effects of low dust charging rate and nonthermal ions, the wave amplitude may grow exponentially with time if the ion nonthermality parameter (a) exceeds a critical value provided the ion-electron temperature ratio ({sigma}{sub i}) is less than 0.11.

  14. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  15. Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mushtaq, A.; Khan, R.

    2007-12-01

    The linear and nonlinear properties of a dust ion acoustic wave (DIAW) propagating in an electron-dust-ion plasma are investigated from both analytical and numerical perspectives by employing the two-fluid quantum hydrodynamic model. Ions and dust are assumed to be mobile while electrons are considered to be inertialess. Furthermore, quantum effects (diffraction as well as statistic) due to ions and electrons are incorporated. It is emphasized that the linear dispersion characteristics of the DIAW depend on the quantum diffraction effects of both ions and electrons as well as on the dust concentration. The one-dimensional Korteweg-deVries equation is derived for the quantum DIAW using the reductive perturbative technique. It is observed that the quantum electron diffraction term shrinks the width while the dust concentration enhances both the amplitude and width of the soliton.

  16. Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model

    SciTech Connect

    Masood, W.; Mushtaq, A.; Khan, R.

    2007-12-15

    The linear and nonlinear properties of a dust ion acoustic wave (DIAW) propagating in an electron-dust-ion plasma are investigated from both analytical and numerical perspectives by employing the two-fluid quantum hydrodynamic model. Ions and dust are assumed to be mobile while electrons are considered to be inertialess. Furthermore, quantum effects (diffraction as well as statistic) due to ions and electrons are incorporated. It is emphasized that the linear dispersion characteristics of the DIAW depend on the quantum diffraction effects of both ions and electrons as well as on the dust concentration. The one-dimensional Korteweg-deVries equation is derived for the quantum DIAW using the reductive perturbative technique. It is observed that the quantum electron diffraction term shrinks the width while the dust concentration enhances both the amplitude and width of the soliton.

  17. High intensity ion guides and purification techniques for low energy radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Grévy, S.

    2016-06-01

    This report gives an overview of the different devices which can be used for the purification of high intensity low energy radioactive ion beams: high resolution magnetic separators (HRS), multi-reflection time-of-flight mass separators (MR-TOF-MS) and Penning traps (PT). An overview of HRS, existing or in development, and the methods to increase the resolving power are presented. The MR-TOF-MS of ISOLTRAP and other projects having been presented during this conference, only the main characteristics of such devices are discussed. Concerning the PT, intensively used to measure masses with high precisions, we will present the PIPERADE project which aims to provide pure beams of exotic nuclei with unprecedent intensities at the future DESIR/SPIRAL2 facility.

  18. Effect of ion and ion-beam mass ratio on the formation of ion-acoustic solitons in magnetized plasma in the presence of electron inertia

    SciTech Connect

    Kalita, B. C.; Barman, S. N.

    2009-05-15

    The propagation of ion-acoustic solitary waves in magnetized plasma with cold ions and ion-beams together with electron inertia has been investigated theoretically through the Korteweg-de Vries equation. Subject to the drift velocity of the ion beam, the existence of compressive solitons is found to become extinct as {alpha} (=cold ion mass/ion-beam mass) tends to 0.01 when {gamma}=0.985 ({gamma} is the beam velocity/phase velocity). Interestingly, a transitional direction of propagation of solitary waves has been unearthed for change over, from compressive solitons to rarefactive solitons based on {alpha} and {sigma}{sub {upsilon}}(=cosine of the angle {theta} made by the wave propagation direction {xi} with the direction of the magnetic field) for fixed Q(=electron mass/ion mass). Further, the direction of propagation of ion-acoustic waves is found to be the deterministic factor to admit compressive or rarefactive solitons subject to beam outsource.

  19. Modulation instability and dissipative ion-acoustic structures in collisional nonthermal electron-positron-ion plasma: solitary and shock waves

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Ya-Ling; Ma, Chenchen; Sun, Youfa

    2016-10-01

    The nonlinear behavior of an ion-acoustic wave packet is investigated in a three-component plasma consisting of warm ions, nonthermal electrons and positrons. The nonthermal components are assumed to be inertialess and hot where they are modeled by the kappa distribution. The relevant processes, including the kinematic viscosity amongst the plasma constituents and the collision between ions and neutrals, are taken into consideration. It is shown that the dynamics of the modulated ion-acoustic wave is governed by the generalized complex Ginzburg-Landau equation with a linear dissipative term. The dispersion relation and modulation instability criterion for the generalized complex Ginzburg-Landau equation are investigated numerically. In the general dissipation regime, the effect of the plasma parameters on the dissipative solitary (dissipative soliton) and shock waves is also discussed in detail. The project is supported by NSF of China (11501441, 11371289, 11371288), National Natural Science Foundation of China (U1261112), China Postdoctoral Science Foundation (2014M560756), and Fundamental Research Funds for the Central Universities (xjj2015067).

  20. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    SciTech Connect

    Amour, Rabia; Tribeche, Mouloud

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  1. The effect of boundaries on the ion acoustic beam-plasma instability in experiment and simulation

    SciTech Connect

    Rapson, Christopher; Grulke, Olaf; Matyash, Konstantin; Klinger, Thomas

    2014-05-15

    The ion acoustic beam-plasma instability is known to excite strong solitary waves near the Earth's bow shock. Using a double plasma experiment, tightly coupled with a 1-dimensional particle-in-cell simulation, the results presented here show that this instability is critically sensitive to the experimental conditions. Boundary effects, which do not have any counterpart in space or in most simulations, unavoidably excite parasitic instabilities. Potential fluctuations from these instabilities lead to an increase of the beam temperature which reduces the growth rate such that non-linear effects leading to solitary waves are less likely to be observed. Furthermore, the increased temperature modifies the range of beam velocities for which an ion acoustic beam plasma instability is observed.

  2. Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons

    NASA Astrophysics Data System (ADS)

    Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  3. Electron acoustic waves in a magnetized plasma with kappa distributed ions

    SciTech Connect

    Devanandhan, S.; Lakhina, G. S.; Singh, S. V.; Bharuthram, R.

    2012-08-15

    Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index {kappa} and electron to ion temperature ratio {sigma} alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.

  4. Ion acoustic kinetic Alfvén rogue waves in two temperature electrons superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Kaur, Nimardeep; Saini, N. S.

    2016-10-01

    The propagation properties of ion acoustic kinetic Alfvén (IAKA) solitary and rogue waves have been investigated in two temperature electrons magnetized superthermal plasma in the presence of dust impurity. A nonlinear analysis is carried out to derive the Korteweg-de Vries (KdV) equation using the reductive perturbation method (RPM) describing the evolution of solitary waves. The effect of various plasma parameters on the characteristics of the IAKA solitary waves is studied. The dynamics of ion acoustic kinetic Alfvén rogue waves (IAKARWs) are also studied by transforming the KdV equation into nonlinear Schrödinger (NLS) equation. The characteristics of rogue wave profile under the influence of various plasma parameters (κc, μc, σ , θ) are examined numerically by using the data of Saturn's magnetosphere (Schippers et al. 2008; Sakai et al. 2013).

  5. Dust ion acoustic solitons in a plasma with kappa-distributed electrons

    SciTech Connect

    Baluku, T. K.; Hellberg, M. A.; Kourakis, I.; Saini, N. S.

    2010-05-15

    Dust ion acoustic solitons in an unmagnetized dusty plasma comprising cold dust particles, adiabatic fluid ions, and electrons satisfying a kappa distribution are investigated using both small amplitude and arbitrary amplitude techniques. Their existence domain is discussed in the parameter space of Mach number M and electron density fraction f over a wide range of values of kappa. For all kappa>3/2, including the Maxwellian distribution, negative dust supports solitons of both polarities over a range in f. In that region of parameter space solitary structures of finite amplitude can be obtained even at the lowest Mach number, the acoustic speed, for all kappa. These cannot be found from small amplitude theories. This surprising behavior is investigated, and it is shown that f{sub c}, the value of f at which the KdV coefficient A vanishes, plays a critical role. In the presence of positive dust, only positive potential solitons are found.

  6. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    SciTech Connect

    Tribeche, Mouloud; Amour, Rabia

    2007-10-15

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem.

  7. Local Measurement of Electron Density and Temperature in High Temperature Laser Plasma Using the Ion-Acoustic Dispersion

    SciTech Connect

    Froula, D H; Davis, P; Ross, S; Meezan, N; Divol, L; Price, D; Glenzer, S H; Rousseaux, C

    2005-09-20

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.

  8. Multi-dimensional instability of dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons

    NASA Astrophysics Data System (ADS)

    Haider, M. M.; Rahman, O.

    2016-07-01

    An attempt has been made to study the multi-dimensional instability of dust-ion-acoustic (DIA) solitary waves (SWs) in magnetized multi-ion plasmas containing opposite polarity ions, opposite polarity dusts and non-thermal electrons. First of all, we have derived Zakharov-Kuznetsov (ZK) equation to study the DIA SWs in this case using reductive perturbation method as well as its solution. Small-k perturbation technique was employed to find out the instability criterion and growth rate of such a wave which can give a guideline in understanding the space and laboratory plasmas, situated in the D-region of the Earth's ionosphere, mesosphere, and solar photosphere, as well as the microelectronics plasma processing reactors.

  9. Interaction of dust-ion acoustic solitary waves in nonplanar geometry with electrons featuring Tsallis distribution

    SciTech Connect

    Narayan Ghosh, Uday; Chatterjee, Prasanta; Tribeche, Mouloud

    2012-11-15

    The head-on collisions between nonplanar dust-ion acoustic solitary waves are dealt with by an extended version of Poincare-Lighthill-Kuo perturbation method, for a plasma having stationary dust grains, inertial ions, and nonextensive electrons. The nonplanar geometry modified analytical phase-shift after a head-on collision is derived. It is found that as the nonextensive character of the electrons becomes important, the phase-shift decreases monotonically before levelling-off at a constant value. This leads us to think that nonextensivity may have a stabilizing effect on the phase-shift.

  10. Wave-Particle Interactions in Electron Acoustic Waves in Pure Ion Plasmas

    SciTech Connect

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-03-06

    Electron acoustic waves (EAW) with a phase velocity less than twice the plasma thermal velocity are observed on pure ion plasma columns. At low excitation amplitudes, the EAW frequencies agree with theory, but at moderate excitation the EAW is more frequency variable than typical Langmuir waves, and at large excitations resonance is observed over a broad range. Laser induced fluorescence measurements of the wave-coherent ion velocity distribution show phase reversals and wave-particle trapping plateaus at {+-}v{sub ph}, as expected, and corroborate the unusual role of kinetic pressure in the EAW.

  11. Higher order solutions to ion-acoustic solitons in a weakly relativistic two-fluid plasma

    SciTech Connect

    Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder

    2008-12-15

    The nonlinear wave structure of small amplitude ion-acoustic solitary waves (IASs) is investigated in a two-fluid plasma consisting of weakly relativistic streaming ions and electrons. Using the reductive perturbation theory, the basic set of governing equations is reduced to the Korteweg-de Vries (KdV) equation for the lowest order perturbation. This analysis is further extended using the renormalization technique for the inclusion of higher order nonlinear and dispersive effects for better accuracy. The effect of higher order correction and various parameters on the soliton characteristics is investigated and also discussed.

  12. Continuous loudness response to acoustic intensity dynamics in melodies: effects of melodic contour, tempo, and tonality.

    PubMed

    Olsen, Kirk N; Stevens, Catherine J; Dean, Roger T; Bailes, Freya

    2014-06-01

    The aim of this work was to investigate perceived loudness change in response to melodies that increase (up-ramp) or decrease (down-ramp) in acoustic intensity, and the interaction with other musical factors such as melodic contour, tempo, and tonality (tonal/atonal). A within-subjects design manipulated direction of linear intensity change (up-ramp, down-ramp), melodic contour (ascending, descending), tempo, and tonality, using single ramp trials and paired ramp trials, where single up-ramps and down-ramps were assembled to create continuous up-ramp/down-ramp or down-ramp/up-ramp pairs. Twenty-nine (Exp 1) and thirty-six (Exp 2) participants rated loudness continuously in response to trials with monophonic 13-note piano melodies lasting either 6.4s or 12s. Linear correlation coefficients >.89 between loudness and time show that time-series loudness responses to dynamic up-ramp and down-ramp melodies are essentially linear across all melodies. Therefore, 'indirect' loudness change derived from the difference in loudness at the beginning and end points of the continuous response was calculated. Down-ramps were perceived to change significantly more in loudness than up-ramps in both tonalities and at a relatively slow tempo. Loudness change was also greater for down-ramps presented with a congruent descending melodic contour, relative to an incongruent pairing (down-ramp and ascending melodic contour). No differential effect of intensity ramp/melodic contour congruency was observed for up-ramps. In paired ramp trials assessing the possible impact of ramp context, loudness change in response to up-ramps was significantly greater when preceded by down-ramps, than when not preceded by another ramp. Ramp context did not affect down-ramp perception. The contribution to the fields of music perception and psychoacoustics are discussed in the context of real-time perception of music, principles of music composition, and performance of musical dynamics.

  13. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-04-15

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index {kappa} increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].

  14. Higher-order corrections to dust ion-acoustic soliton in a quantum dusty plasma

    SciTech Connect

    Chatterjee, Prasanta; Das, Brindaban; Mondal, Ganesh; Muniandy, S. V.; Wong, C. S.

    2010-10-15

    Dust ion-acoustic soliton is studied in an electron-dust-ion plasma by employing a two-fluid quantum hydrodynamic model. Ions and electrons are assumed to follow quantum mechanical behaviors in dust background. The Korteweg-de Vries (KdV) equation and higher order contribution to KdV equations are derived using reductive perturbation technique. The higher order contribution is obtained as a higher order inhomogeneous differential equation. The nonsecular solution of the higher order contribution is obtained by using the renormalization method and the particular solution of the inhomogeneous equation is determined using a truncated series solution method. The effects of dust concentration, quantum parameter for ions and electrons, and soliton velocity on the amplitude and width of the dressed soliton are discussed.

  15. Dust acoustic solitons with variable particle charge: role of the ion distribution.

    PubMed

    Ivlev, A V; Morfill, G

    2001-02-01

    Dust-acoustic solitons of large amplitude with variable particle charge are studied using the Sagdeev quasipotential analysis. Two limiting cases of ion distribution are considered separately: Boltzmann and highly energetic cold ions. It is shown that in both cases only compressive (density) solitons are possible. The charge variation is not important in rarefied particle clouds, but becomes crucial if the particle number density is sufficiently high. Analytical expressions for the range of Mach numbers where solitons might exist are obtained. It is found that solitons are allowed in the supersonic regime, and that in dense clouds the width of the Mach number range remains finite for the Boltzmann ions, but tends to zero for highly energetic ions.

  16. Nonlinear ion-acoustic double-layers in electronegative plasmas with electrons featuring Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Ghebache, Siham; Tribeche, Mouloud

    2016-04-01

    Weakly nonlinear ion-acoustic (IA) double-layers (DLs), which accompany electronegative plasmas composed of positive ions, negative ions, and nonextensive electrons are investigated. A generalized Korteweg-de Vries equation with a cubic nonlinearity is derived using a reductive perturbation method. Different types of electronegative plasmas inspired from the experimental studies of Ichiki et al. (2001) are discussed. It is shown that the IA wave phase velocity, in different mixtures of negative and positive ions, decreases as the nonextensive parameter q increases, before levelling-off at a constant value for larger q. Moreover, a relative increase of Q involves an enhancement of the IA phase velocity. Existence domains of either solitary waves or double-layers are then presented and their parametric dependence is determined. Owing to the electron nonextensivity, our present plasma model can admit compressive as well as rarefactive IA-DLs.

  17. Dust ion-acoustic cnoidal waves in a plasma with two temperature superthermal electrons

    NASA Astrophysics Data System (ADS)

    Saini, N. S.; Sethi, Papihra

    2016-10-01

    An investigation of dust ion-acoustic (DIA) cnoidal waves in unmagnetized collisionless plasma consisting of two temperature superthermal electrons, inertial warm ions, and negatively charged dust grains is presented. Reductive perturbation technique has been used to derive the modified Korteweg-de Vries (mKdV) equation for the study of nonlinear periodic waves. Further, applying the Sagdeev potential approach, energy balance equation is derived. Using the expression for Sagdeev potential in expanded form, the cnoidal wave solution is determined. Both positive and negative potential (compressive and rarefactive) nonlinear DIA cnoidal structures are observed. The effects of parameters like the number density of cold electrons, superthermality of hot and cold electrons, ions to hot electrons temperature ratio, and dust to ion density ratio on the characteristics of DIA cnoidal waves are analyzed.

  18. Ion-acoustic super rogue waves in ultracold neutral plasmas with nonthermal electrons

    SciTech Connect

    El-Tantawy, S. A.; El-Bedwehy, N. A.; El-Labany, S. K.

    2013-07-15

    The ion-acoustic rogue waves in ultracold neutral plasmas consisting of ion fluid and nonthermal electrons are reported. A reductive perturbation method is used to obtain a nonlinear Schrödinger equation for describing the system and the modulation instability of the ion-acoustic wave is analyzed. The critical wave number k{sub c}, which indicates where the modulational instability sets in, has been determined. Moreover, the possible region for the ion-acoustic rogue waves to exist is defined precisely. The effects of the nonthermal parameter β and the ions effective temperature ratio σ{sub *} on the critical wave number k{sub c} are studied. It is found that there are two critical wave numbers in our plasma system. For low wave number, increasing β would lead to cringe k{sub c} until β approaches to its critical value β{sub c}, then further increase of β beyond β{sub c} would enhance the values of k{sub c}. For large wave numbers, the increase of β would lead to a decrease of k{sub c}. However, increasing σ{sub *} would lead to the reduction of k{sub c} for all values of the wave number. The dependence of the rogue waves profile on the plasma parameters is numerically examined. It is found that the rogue wave amplitudes have complex behavior with increasing β. Furthermore, the enhancement of σ{sub *} and the carrier wave number k reduces the rogue wave amplitude. It is noticed that near to the critical wave number, the rogue wave amplitude becomes high, but it shrinks whenever we stepped away from k{sub c}. The implications of our results in laboratory ultracold neutral plasma experiments are briefly discussed.

  19. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  20. Collisionless damping of dust-acoustic waves in a charge varying electronegative dusty plasma with nonthermal ions

    NASA Astrophysics Data System (ADS)

    Benzekka, Moufida; Tribeche, Mouloud

    2016-07-01

    The aim of the present communication is to investigate the charge variation induced nonlinear dust acoustic wave damping in a charge varying electronegative dusty plasma with nonthermal ions. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries equation (dK-dV). The latter is significantly modified by the nonthermal negative ions effects. It may be useful to note that we consider nonthermal negative ions because of the role of their distribution into the formation and dynamics of nonlinear dust acoustic structures. Moreover, the observation of nonthermal ion distributions made by Phobos and Nozomi motivated us to consider non- Maxwellian ions.

  1. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    PubMed

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  2. Treatment of murine tumors using acoustic droplet vaporization-enhanced high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Zhu, Meili; Jiang, Lixing; Fabiilli, Mario L.; Zhang, Aili; Fowlkes, J. Brian; Xu, Lisa X.

    2013-09-01

    High intensity focused ultrasound (HIFU) can be applied focally and noninvasively to thermally ablate solid tumors. Long treatment times are typically required for large tumors, which can expose patients to certain risks while potentially decreasing the therapeutic efficacy of the treatment. Acoustic droplet vaporization (ADV) is a promising modality that can enhance the efficacy of tumor treatment using HIFU. In this study, the therapeutic effects of combined HIFU and ADV was evaluated in mice bearing subcutaneously-implanted 4T1 tumors. Histological examination showed that the combination of HIFU and ADV generated a mean necrotic area in the tumor that was 2.9-fold larger than with HIFU alone. A significant enhancement of necrosis was found in the periphery of the tumor, where the blood supply was abundant. Seven days after treatment, the tumors treated with combined HIFU and ADV were 30-fold smaller in volume than tumors treated with HIFU alone. The study demonstrates the potential advantage of combining HIFU and ADV in tumor treatment.

  3. Seasonal absolute acoustic intensity, atmospheric forcing and currents in a tropical coral reef system

    NASA Astrophysics Data System (ADS)

    de Jesús Salas Pérez, José; Salas-Monreal, David; Monreal-Gómez, María Adela; Riveron-Enzastiga, Mayra Lorena; Llasat, Carme

    2012-03-01

    The seasonal patterns of marine circulation and biovolume were obtained from time-series measurements carried out in the "Parque Nacional Sistema Arrecifal Veracruzano" (PNSAV), located in the western continental shelf of the Gulf of Mexico, from June 2008 to September 2009. Two mechanisms were depicted as the responsible for the current pattern observed in the PNSAV and not only one as suggested in large-scale studies. The first mechanism is the wind generated currents. This mechanism by itself is responsible for up to 78% of total variation of the seasonal circulation in the PNSAV as estimated with the first mode of the EOF's (Empirical Orthogonal Functions), which was correlated (Normalized Lagged Correlation) with the north-south wind component. Therefore, the wind and the first mode were highly correlated for most of the year (r > 0.7). The second mode was attributed to the low frequency current, associated to the meso-scale circulation of the Gulf of Mexico, owing to the cyclonic eddy of the Campeche Bay. Both mechanisms were mostly observed throughout the year. Nevertheless, the cyclonic eddy of the Campeche Bay (meso-scale) was the first responsible for the current fluctuations observed during the summer of 2008 and 2009. The absolute acoustic intensity (plankton biovolumes) was highly correlated to currents, showing high spatial variability, attributed to advection produced by the meso-scale circulation and to river discharges, but also by eddy diffusion produced by atmospheric and coastal water fronts.

  4. PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren; Gao, Dong-Ning; Zhang, Jie; Duan, Wen-Shan; Yang, Lei

    2016-08-01

    The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably and oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.

  5. Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons

    SciTech Connect

    El-Tantawy, S. A.; El-Bedwehy, N. A.; Moslem, W. M.

    2011-05-15

    Nonlinear ion-acoustic structures are investigated in an unmagnetized, four-component plasma consisting of warm ions, superthermal electrons and positrons, as well as stationary charged dust impurities. The basic set of fluid equations is reduced to modified Korteweg-de Vries equation. The latter admits both solitary waves and double layers solutions. Numerical calculations indicate that these nonlinear structures cannot exist for all physical parameters. Therefore, the existence regions for both solitary and double layers excitations have been defined precisely. Furthermore, the effects of temperature ratios of ions-to-electrons and electrons-to-positrons, positrons and dust concentrations, as well as superthermal parameters on the profiles of the nonlinear structures are investigated. Also, the acceleration and deceleration of plasma species have been highlight. It is emphasized that the present investigation may be helpful in better understanding of nonlinear structures which propagate in astrophysical environments, such as in interstellar medium.

  6. Numerical study of ion acoustic shock waves in dense quantum plasma

    SciTech Connect

    Hanif, M.; Mirza, Arshad M.; Ali, S.; Mukhtar, Q.

    2014-03-15

    Two fluid quantum hydrodynamic equations are solved numerically to investigate the propagation characteristics of ion acoustic shock waves in an unmagnetized dense quantum plasma, whose constituents are the electrons and ions. For this purpose, we employ the standard finite difference Lax Wendroff and relaxation methods, to examine the quantum effects on the profiles of shock potential, the electron/ion number densities, and velocity even for quantum parameter at H = 2. The effects of the latter vanish in a weakly non-linear limit while obeying the KdV theory. It is shown that the evolution of the wave depends sensitively on the plasma density and the quantum parameter. Numerical results reveal that the kinks or oscillations are pronounced for large values of quantum parameter, especially at H = 2. Our results should be important to understand the shock wave excitations in dense quantum plasmas, white dwarfs, neutron stars, etc.

  7. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    SciTech Connect

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2014-10-15

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  8. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2004-08-03

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented.

  9. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  10. Continuous loudness response to acoustic intensity dynamics in melodies: effects of melodic contour, tempo, and tonality.

    PubMed

    Olsen, Kirk N; Stevens, Catherine J; Dean, Roger T; Bailes, Freya

    2014-06-01

    The aim of this work was to investigate perceived loudness change in response to melodies that increase (up-ramp) or decrease (down-ramp) in acoustic intensity, and the interaction with other musical factors such as melodic contour, tempo, and tonality (tonal/atonal). A within-subjects design manipulated direction of linear intensity change (up-ramp, down-ramp), melodic contour (ascending, descending), tempo, and tonality, using single ramp trials and paired ramp trials, where single up-ramps and down-ramps were assembled to create continuous up-ramp/down-ramp or down-ramp/up-ramp pairs. Twenty-nine (Exp 1) and thirty-six (Exp 2) participants rated loudness continuously in response to trials with monophonic 13-note piano melodies lasting either 6.4s or 12s. Linear correlation coefficients >.89 between loudness and time show that time-series loudness responses to dynamic up-ramp and down-ramp melodies are essentially linear across all melodies. Therefore, 'indirect' loudness change derived from the difference in loudness at the beginning and end points of the continuous response was calculated. Down-ramps were perceived to change significantly more in loudness than up-ramps in both tonalities and at a relatively slow tempo. Loudness change was also greater for down-ramps presented with a congruent descending melodic contour, relative to an incongruent pairing (down-ramp and ascending melodic contour). No differential effect of intensity ramp/melodic contour congruency was observed for up-ramps. In paired ramp trials assessing the possible impact of ramp context, loudness change in response to up-ramps was significantly greater when preceded by down-ramps, than when not preceded by another ramp. Ramp context did not affect down-ramp perception. The contribution to the fields of music perception and psychoacoustics are discussed in the context of real-time perception of music, principles of music composition, and performance of musical dynamics. PMID:24809252

  11. Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis

    2013-08-15

    Acoustic supersolitons arise when a plasma model is able to support three consecutive local extrema of the Sagdeev pseudopotential between the undisturbed conditions and an accessible root. This leads to a characteristic electric field signature, where a simple bipolar shape is enriched by subsidiary maxima. Large-amplitude nonlinear acoustic modes are investigated, using a pseudopotential approach, for plasmas containing two-temperature electrons having Boltzmann or kappa distributions, in the presence of cold fluid ions. The existence domains for positive supersolitons are derived in a methodological way, both for structure velocities and amplitudes, in terms of plasma compositional parameters. In addition, typical pseudopotentials, soliton, and electric field profiles have been given to illustrate that positive supersolitons can be found in the whole range of electron distributions from Maxwellian to a very hard nonthermal spectrum in kappa. However, it is found that the parameter ranges that support supersolitons vary significantly over the wide range of kappa considered.

  12. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  13. Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma

    SciTech Connect

    Misra, A. P. E-mail: apmisra@gmail.com; Barman, Arnab

    2014-07-15

    We investigate the propagation characteristics of electrostatic waves in a magnetized pair-ion plasma with immobile charged dusts. It is shown that obliquely propagating (OP) low-frequency (in comparison with the negative-ion cyclotron frequency) long-wavelength “slow” and “fast” modes can propagate, respectively, as dust ion-acoustic (DIA) and dust ion-cyclotron (DIC)-like waves. The properties of these modes are studied with the effects of obliqueness of propagation (θ), the static magnetic field, the ratios of the negative to positive ion masses (m), and temperatures (T) as well as the dust to negative-ion number density ratio (δ). Using the standard reductive perturbation technique, we derive a Korteweg-de Vries (KdV) equation which governs the evolution of small-amplitude OP DIA waves. It is found that the KdV equation admits only rarefactive solitons in plasmas with m well below its critical value m{sub c} (≫ 1) which typically depends on T and δ. It is shown that the nonlinear coefficient of the KdV equation vanishes at m = m{sub c}, i.e., for plasmas with much heavier negative ions, and the evolution of the DIA waves is then described by a modified KdV (mKdV) equation. The latter is shown to have only compressive soliton solution. The properties of both the KdV and mKdV solitons are studied with the system parameters as above, and possible applications of our results to laboratory and space plasmas are briefly discussed.

  14. Comment on "Short-term acoustic forecasting via artificial neural networks for neonatal intensive care units" [J. Acoust. Soc. Am. 132, 3234-3239 (2012)].

    PubMed

    Park, Munhum

    2013-07-01

    In contrast to common expectations, the noise levels measured in hospital wards are known to be high with little day-night variation, potentially having negative effects on the patient outcomes and the work performance of the staff members, and considerable research attention has been drawn to such adverse acoustic conditions in healthcare environments. Recently, Young et al. [J. Acoust. Soc. Am. 132(5), 3234-3239 (2012)] proposed to use an artificial neural network (ANN) to predict the hourly energy-equivalent sound pressure level (Leq, 1h), particularly targeting neonatal intensive care units. Despite the timeliness of the study and the potential benefits of an "acoustic forecasting" model, the proposed scheme appears to be underdeveloped in a few important aspects, which this letter attempts to address. In particular, the prediction of a simpler time-series smoothing technique was equally or more accurate compared to that of the ANN. In addition, the percentage error used to indicate the prediction accuracy was not only perceptually irrelevant but also misleading given the narrow distribution of test data. Furthermore, this letter raises the more general question whether the sound pressure level may meaningfully be modeled solely based on the past time-series.

  15. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma

    NASA Astrophysics Data System (ADS)

    Masood, W.; Karim, S.; Shah, H. A.; Siddiq, M.

    2009-04-01

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation of shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v∗/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v∗/u>0) increases, whereas the slow drift shock (i.e., v∗/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  16. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  17. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007. PMID:18315105

  18. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  19. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  20. Nonlinear ion-acoustic structures in a nonextensive electron–positron–ion–dust plasma: Modulational instability and rogue waves

    SciTech Connect

    Guo, Shimin; Mei, Liquan; Sun, Anbang

    2013-05-15

    The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time.

  1. Decay of electrostatic hydrogen cyclotron waves into ion acoustic modes in auroral field lines

    NASA Astrophysics Data System (ADS)

    Bergmann, R.; Hudson, M. K.

    1987-03-01

    The coherent three-wave decay of a linearly unstable electrostatic hydrogen cyclotron (EHC) wave into stable EHC and ion acoustic modes is considered. The general problem of the three weakly interacting electrostatic normal modes in a Maxwellian plasma is discussed. EHC is examined in a fluid description, and the results are used to guide a similar study in a Vlasov plasma system intended to model the aurora acceleration region parameters. The time dependence of the decay in a simple three-wave interaction is presented in order to show how wave saturation can arise.

  2. Decay of electrostatic hydrogen cyclotron waves into ion acoustic modes in auroral field lines

    NASA Technical Reports Server (NTRS)

    Bergmann, R.; Hudson, M. K.

    1987-01-01

    The coherent three-wave decay of a linearly unstable electrostatic hydrogen cyclotron (EHC) wave into stable EHC and ion acoustic modes is considered. The general problem of the three weakly interacting electrostatic normal modes in a Maxwellian plasma is discussed. EHC is examined in a fluid description, and the results are used to guide a similar study in a Vlasov plasma system intended to model the aurora acceleration region parameters. The time dependence of the decay in a simple three-wave interaction is presented in order to show how wave saturation can arise.

  3. Properties of solitary ion acoustic waves in a quantized degenerate magnetoplasma with trapped electrons

    SciTech Connect

    Tsintsadze, N. L.; Tagviashvili, M. N.; Shah, H. A.; Qureshi, M. N. S.

    2015-02-15

    We have undertaken the investigation of ion acoustic solitary waves in both weakly and strongly quantized degenerate magnetoplasmas. It is seen that a singular point clearly demarcates the regions of weak and strong quantization due to the ambient magnetic field. The effect of the magnetic field is taken into account via the parameter  η{sub 0}=ℏω{sub ce}/ε{sub Fe} and the Mach number, and their effect on the formation of solitary structures is investigated in both cases and some results are presented graphically.

  4. Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas

    SciTech Connect

    Seadawy, A. R.

    2014-05-15

    The quantum hydrodynamic model is applied to two-dimensional ion-acoustic waves in quantum plasmas. The two-dimensional quantum hydrodynamic model is used to obtain a deformed Kortewegde Vries (dKdV) equation by reductive perturbation method. By using the solution of auxiliary ordinary equations, a extended direct algebraic method is described to construct the exact solutions for nonlinear quantum dKdV equation. The present results are describing the generation and evolution of such waves, their interactions, and their stability.

  5. Weakly nonlinear dust ion-acoustic shock waves in a dusty plasma with nonthermal electrons

    SciTech Connect

    Berbri, Abderrezak; Tribeche, Mouloud

    2009-05-15

    Weakly nonlinear dust ion-acoustic (DIA) shock waves are investigated in a dusty plasma with nonthermal electrons. A modified Korteweg-de Vries equation with a cubic nonlinearity is derived. Due to the net negative dust charge {mu}Z{sub d} and electron nonthermality, the present plasma model can admit compressive and rarefactive weak DIA shock waves. The effect of increasing {mu}Z{sub d} is to lower the critical nonthermal parameter {beta}{sub c} above which only rarefactive DIA shock waves are admitted. Our investigation may help to understand the nonlinear structures observed in the auroral acceleration regions.

  6. On the Hamiltonian structure of ion-acoustic plasma waves and water waves in channels

    NASA Astrophysics Data System (ADS)

    Menyuk, C. R.; Chen, H.-H.

    1986-04-01

    It is shown that the Hamiltonian structure of ion-acoustic waves and channel waves may be used to derive the Hamiltonian structure of the Korteweg-de Vries equation and its higher-order corrections. The Hamiltonian approach used here is more systematic and less laborious than standard methods for deriving the Korteweg-de Vries equation. It is also more revealing. In particular, it is shown that the Poisson bracket of the corrected equations equals the Korteweg-de Vries Poisson bracket at every order. It is also shown that the corrected equations become nonlocal at sufficiently high order.

  7. Measurements of thermal electron heating and the formation of a non-Maxwellian energy distribution due to ion acoustic turbulence

    SciTech Connect

    Hargreaves, T.A.

    1982-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in the U.C. Davis Prometheus III Device. P-polarized microwaves (f = 1.2 GHz, P/sub 0/ less than or equal to 5 KW) are incident on an essentially collisionless plasma with a long scale length in an oversized waveguide. For modest powers, large amplitude ion acoustic turbulence is observed on the underdense plasma shelf due to a combination of the parametric decay and the electron drift instabilities. Suprathermal and thermal electrons are strongly heated in this region with the thermal heating due to scattering with the ion turbulence. Since the cross section for interaction decreases rapidly as the electron energy increases, the low energy electrons are preferentially heated. The electron distribution function is measured and agrees with theory; the power absorption is reduced by up to a factor of two compared to a Maxwellian distribution. After the microwaves have been measured to decay, the electron distribution function is seen to relax back to its initial Maxwellian form. This occurs, as theory predicts, roughly on the electron-electron collision time scale.

  8. Nonplanar dust acoustic solitary waves in dusty plasmas with ions and electrons following a q-nonextensive distribution

    SciTech Connect

    Eslami, Parvin; Mottaghizadeh, Marzieh; Pakzad, Hamid Reza

    2011-10-15

    Cylindrical and spherical Korteweg-de Vries equations are derived for dust acoustic solitary waves in an unmagnetized three species plasma system, comprised of negatively charged cold dust, nonextensive ions and nonextensive electrons using standard reductive perturbation method. The effects of q{sub e}-nonextensive electrons, q{sub i}-nonextensive ions, electron-to-ion number density ratio {mu}, and nonplanar geometry on the profiles of the amplitudes of the solitary structures are examined numerically.

  9. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  10. Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma

    SciTech Connect

    Barman, Arnab; Misra, A. P. E-mail: apmisra@gmail.com

    2014-07-15

    The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg-de Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids 12, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive ion to dust density ratio (μ{sub pd}) as well as the ratios of positive to negative ion temperatures (σ) and masses (m)

  11. High intensity acoustic tests of a thermally stressed aluminum plate in TAFA

    NASA Technical Reports Server (NTRS)

    Ng, Chung Fai; Clevenson, Sherman A.

    1989-01-01

    An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.

  12. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    SciTech Connect

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-08-15

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form.

  13. Characterization of Ion-Acoustic Wave Reflection Off A Plasma Chamber Wall

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2015-11-01

    We present an experimental characterization of the ion acoustic wave reflection coefficient off a plasma chamber wall. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n ~ 1010cm-3 Te ~ 3 eV and B ~ 1 kG. The main diagnostics are laser-induced fluorescence and Langmuir probe measurements. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different wave excitation frequencies is obtained. Analysis of the reflection coefficient's dependence on the phase velocity and frequency of the wave is done through the characterization of waves utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  14. Effects of dust correlations on the marginal stability of ion stream driven dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Shukla, Manish K.; Avinash, K.

    2016-06-01

    The effect of dust–dust correlations on the marginal stability of dust acoustic waves excited by ion drift is studied. The ion drift is driven by the electric field {E}0 which is generally present in the discharge. Correlation effects on marginal stability are studied using augmented Debye–Hückel approximation. The marginal stability boundary is calculated in {E}0-{P}0 (P 0 is the pressure of the neutral gas) space with correlated dust grains. We show that due to dust-dust correlation the stability boundary moves into the unstable region thereby stabilizing the DAW. The effects are significant for smaller values of κ (=a/{λ }d) below unity (a is the mean particle distance and {λ }d is Debye length).

  15. Nonlinear ion-acoustic waves in a degenerate plasma with nuclei of heavy elements

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Mamun, A. A.

    2015-10-01

    The ion-acoustic (IA) solitary waves propagating in a fully relativistic degenerate dense plasma (containing relativistic degenerate electron and ion fluids, and immobile nuclei of heavy elements) have been theoretically investigated. The relativistic hydrodynamic model is used to derive the Korteweg-de Vries (K-dV) equation by the reductive perturbation method. The stationary solitary wave solution of this K-dV equation is obtained to characterize the basic features of the IA solitary structures that are found to exist in such a degenerate plasma. It is found that the effects of electron dynamics, relativistic degeneracy of the plasma fluids, stationary nuclei of heavy elements, etc., significantly modify the basic properties of the IA solitary structures. The implications of this results in astrophysical compact objects like white dwarfs are briefly discussed.

  16. Evolution of higher order nonlinear equation for the dust ion-acoustic waves in nonextensive plasma

    SciTech Connect

    Yasmin, S.; Asaduzzaman, M.; Mamun, A. A.

    2012-10-15

    There are three different types of nonlinear equations, namely, Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed modified K-dV (mixed mK-dV) equations, for the nonlinear propagation of the dust ion-acoustic (DIA) waves. The effects of electron nonextensivity on DIA solitary waves propagating in a dusty plasma (containing negatively charged stationary dust, inertial ions, and nonextensive q distributed electrons) are examined by solving these nonlinear equations. The basic features of mixed mK-dV (higher order nonlinear equation) solitons are found to exist beyond the K-dV limit. The properties of mK-dV solitons are compared with those of mixed mK-dV solitons. It is found that both positive and negative solitons are obtained depending on the q (nonextensive parameter).

  17. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    SciTech Connect

    Ata-ur-Rahman; Ali, S.; Moslem, W. M.; Mushtaq, A.

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  18. Nonlinear ion-acoustic waves in a degenerate plasma with nuclei of heavy elements

    SciTech Connect

    Hossen, M. A. Mamun, A. A.

    2015-10-15

    The ion-acoustic (IA) solitary waves propagating in a fully relativistic degenerate dense plasma (containing relativistic degenerate electron and ion fluids, and immobile nuclei of heavy elements) have been theoretically investigated. The relativistic hydrodynamic model is used to derive the Korteweg-de Vries (K-dV) equation by the reductive perturbation method. The stationary solitary wave solution of this K-dV equation is obtained to characterize the basic features of the IA solitary structures that are found to exist in such a degenerate plasma. It is found that the effects of electron dynamics, relativistic degeneracy of the plasma fluids, stationary nuclei of heavy elements, etc., significantly modify the basic properties of the IA solitary structures. The implications of this results in astrophysical compact objects like white dwarfs are briefly discussed.

  19. Nonplanar dust acoustic solitary waves in a strongly coupled dusty plasma with superthermal ions

    SciTech Connect

    El-Labany, S. K. Zedan, N. A.; El-Taibany, W. F. E-mail: eltaibany@du.edu.eg; El-Shamy, E. F.

    2014-12-15

    The nonplanar amplitude modulation of dust acoustic (DA) envelope solitary waves in a strongly coupled dusty plasma (SCDP) has been investigated. By using a reductive perturbation technique, a modified nonlinear Schrödinger equation (NLSE) including the effects of geometry, polarization, and ion superthermality is derived. The modulational instability (MI) of the nonlinear DA wave envelopes is investigated in both planar and nonplanar geometries. There are two stable regions for the DA wave propagation strongly affected by polarization and ion superthermality. Moreover, it is found that the nonlinear DA waves in spherical geometry are the more structurally stable. The larger growth rate of the nonlinear DA MI is observed in the cylindrical geometry. The salient characteristics of the MI in the nonplanar geometries cannot be found in the planar one. The DA wave propagation and the NLSE solutions are investigated both analytically and numerically.

  20. Ion-acoustic compressive and rarefactive solitons in an electron-beam plasma system

    SciTech Connect

    Yadav, L.L.; Tiwari, R.S.; Sharma, S.R. )

    1994-03-01

    Using the general formulation of reductive perturbation method, the Korteweg--de Vries (KdV) equation is derived for an electron-beam plasma with hot isothermal beam and plasma electrons and warm ions. The soliton solution of the KdV equation is discussed in detail. It is found that above a critical velocity of electron-beam two additional ion-acoustic soliton branches appear. It is found that corresponding to two linear modes, the system supports the existence of compressive as well as rarefactive solitons depending upon the plasma parameters, while corresponding to other two wave modes, the system supports only rarefactive solitons. The effect of different parameters on the characteristics of solitons have been investigated in detail.

  1. The stability of freely-propagating ion acoustic waves in 2D systems

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2014-10-01

    The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).

  2. Apparatus for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  3. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  4. Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons.

    PubMed

    Rendall, Drew

    2003-06-01

    Comparative, production-based research on animal vocalizations can allow assessments of continuity in vocal communication processes across species, including humans, and may aid in the development of general frameworks relating specific constitutional attributes of callers to acoustic-structural details of their vocal output. Analyses were undertaken on vowel-like baboon grunts to examine variation attributable to caller identity and the intensity of the affective state underlying call production. Six hundred six grunts from eight adult females were analyzed. Grunts derived from 128 bouts of calling in two behavioral contexts: concerted group movements and social interactions involving mothers and their young infants. Each context was subdivided into a high- and low-arousal condition. Thirteen acoustic features variously predicted to reflect variation in either caller identity or arousal intensity were measured for each grunt bout, including tempo-, source- and filter-related features. Grunt bouts were highly individually distinctive, differing in a variety of acoustic dimensions but with some indication that filter-related features contributed disproportionately to individual distinctiveness. In contrast, variation according to arousal condition was associated primarily with tempo- and source-related features, many matching those identified as vehicles of affect expression in other nonhuman primate species and in human speech and other nonverbal vocal signals.

  5. Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons

    NASA Astrophysics Data System (ADS)

    Rendall, Drew

    2003-06-01

    Comparative, production-based research on animal vocalizations can allow assessments of continuity in vocal communication processes across species, including humans, and may aid in the development of general frameworks relating specific constitutional attributes of callers to acoustic-structural details of their vocal output. Analyses were undertaken on vowel-like baboon grunts to examine variation attributable to caller identity and the intensity of the affective state underlying call production. Six hundred six grunts from eight adult females were analyzed. Grunts derived from 128 bouts of calling in two behavioral contexts: concerted group movements and social interactions involving mothers and their young infants. Each context was subdivided into a high- and low-arousal condition. Thirteen acoustic features variously predicted to reflect variation in either caller identity or arousal intensity were measured for each grunt bout, including tempo-, source- and filter-related features. Grunt bouts were highly individually distinctive, differing in a variety of acoustic dimensions but with some indication that filter-related features contributed disproportionately to individual distinctiveness. In contrast, variation according to arousal condition was associated primarily with tempo- and source-related features, many matching those identified as vehicles of affect expression in other nonhuman primate species and in human speech and other nonverbal vocal signals.

  6. Nonlinear ion-acoustic solitons in a magnetized quantum plasma with arbitrary degeneracy of electrons

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2016-09-01

    Nonlinear ion-acoustic waves are analyzed in a nonrelativistic magnetized quantum plasma with arbitrary degeneracy of electrons. Quantum statistics is taken into account by means of the equation of state for ideal fermions at arbitrary temperature. Quantum diffraction is described by a modified Bohm potential consistent with finite-temperature quantum kinetic theory in the long-wavelength limit. The dispersion relation of the obliquely propagating electrostatic waves in magnetized quantum plasma with arbitrary degeneracy of electrons is obtained. Using the reductive perturbation method, the corresponding Zakharov-Kuznetsov equation is derived, describing obliquely propagating two-dimensional ion-acoustic solitons in a magnetized quantum plasma with degenerate electrons having an arbitrary electron temperature. It is found that in the dilute plasma case only electrostatic potential hump structures are possible, while in dense quantum plasma, in principle, both hump and dip soliton structures are obtainable, depending on the electron plasma density and its temperature. The results are validated by comparison with the quantum hydrodynamic model including electron inertia and magnetization effects. Suitable physical parameters for observations are identified.

  7. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme wavesa)

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.

    2015-02-01

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  8. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  9. The effect of q-distributed electrons on the head-on collision of ion acoustic solitary waves

    SciTech Connect

    Ghosh, Uday Narayan; Chatterjee, Prasanta; Roychoudhury, Rajkumar

    2012-01-15

    The head-on collision of ion acoustic solitary waves (IASWs) in two component plasma comprising nonextensive distributed electrons is investigated. Two opposite directional Kortewg-de-vries (KdV) equations are derived and the phase shift due to collision is obtained using the extended version of Poincare-Lighthill-Kuo method. Different ranges of nonextensive parameter q are considered and their effects on phase shifts are observed. It is found that the presence of nonextensive distributed electrons plays a significant role on the nature of collision of ion acoustic solitary waves.

  10. Inverse problem of nonlinear acoustics: Synthesizing intense signals to intensify the thermal and radiation action of ultrasound

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Gurbatov, S. N.

    2016-07-01

    Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.

  11. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  12. Self-pinched transport of intense ion beams

    SciTech Connect

    Ottinger, P.F.; Neri, J.M.; Stephanakis, S.J.

    1999-07-01

    Electron beams with substantial net currents have been routinely propagated in the self-pinched mode for the past two decades. However, as the physics of gas breakdown and beam neutralization is different for ion beams, previous predictions indicated insufficient net current for pinching so that ion beam self-pinched transport (SPT) was assumed impossible. Nevertheless, recent numerical simulations using the IPROP code have suggested that ion SPT is possible. These results have prompted initial experiments to investigate SPT of ion beams. A 100-kA, 1.2-MeV, 3-cm-radius proton beam, generated on the Gamble II pulsed-power accelerator at NRL, has been injected into helium in the 30- to 250-mTorr regime to study this phenomenon. Evidence of self-pinched ion beam transport was observed in the 35- to 80-mTorr SPT pressure window predicted by IPROP. Measured signals from a time- and space-resolved scattered proton diagnostic and a time-integrated Li(Cu) nuclear activation diagnostic, both of which measure protons striking a 10-cm diameter target 50 cm into the transport region, are significantly larger in this pressure window than expected for ballistic transport. These results are consistent with significant self-magnetic fields and self-pinching of the ion beam. On the other hand, time-integrated signals from these same two diagnostics are consistent with ballistic transport at pressures above and below the SPT window. Interferometric electron line-density measurements, acquired during beam injection into the helium gas, show insignificant ionization below 35 mTorr, a rapidly rising ionization fraction with pressure in the SPT window, and a plateau in ionization fraction at about 2% for pressures above 80 mTorr. These and other results are consistent with the physical picture for SPT. IPROP simulations, which closely model the Gamble II experimental conditions, produce results that are in qualitative agreement with the experimental results. The advantages of SPT for

  13. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    SciTech Connect

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-15

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  14. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    NASA Astrophysics Data System (ADS)

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-01

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  15. Enhancement of Ion Line Intensity in the Analytical Zone of an Arc Dual-Jet Plasmatron

    NASA Astrophysics Data System (ADS)

    Smirnova, E. V.; Chumakova, N. L.

    2015-07-01

    We show that the effect of enhancement of the intensity (Ii) of ion lines, observed in atomic emission analysis when using an arc dual-jet plasmatron, is not an anomalous phenomenon compared with an arc plasma. For total ion energy <15 eV, it corresponds to a thermal mechanism for excitation of the spectra. At higher energy, we observe an increase in the intensity Ii relative to the equilibrium values that is due to the phenomenon of nonresonant charge exchange.

  16. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    SciTech Connect

    Panwar, A. Ryu, C. M.; Bains, A. S.

    2014-12-15

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ{sub c},κ{sub h}, cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω{sub ci} have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.

  17. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    SciTech Connect

    Ema, S. A. Mamun, A. A.; Hossen, M. R.

    2015-09-15

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  18. Electrostatic ion-acoustic-like instabilities in the solar wind with a backstreaming alpha particle beam

    SciTech Connect

    Gomberoff, L.; Gomberoff, K.; Deutsch, A.

    2010-06-15

    Nonlinear electrostatic instabilities have been shown to occur frequently and under very different conditions in plasma with two ion beams such as the fast solar wind. These instabilities can be triggered when the phase velocity of electrostatic ion-acoustic waves propagating forward and backward relative to the interplanetary magnetic field overlaps due to the presence of a finite amplitude of circularly polarized wave. The instabilities can be triggered by waves supported by the same ion component, or by waves supported by different ion components. By assuming a beam of alpha particles moving backward relative to the external magnetic field, as observed in some events in the fast solar wind, it is shown that a very small negative drift velocity of the alpha particle beam relative to the core plasma--a few percent of the local Alfven velocity--can trigger a very rich variety of nonlinear electrostatic acousticlike instabilities. Their growth rates can be rather large and they persist for larger negative alpha particles drift velocities and temperatures.

  19. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Hossen, M. R.; Mamun, A. A.

    2015-09-01

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  20. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  1. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  2. Device for providing high-intensity ion or electron beam

    DOEpatents

    McClanahan, Edwin D.; Moss, Ronald W.

    1977-01-01

    A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

  3. Arc-based smoothing of ion beam intensity on targets

    DOE PAGESBeta

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  4. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  5. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-15

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  6. Dust-ion-acoustic double layers in multi-ion dusty plasma

    SciTech Connect

    Mamun, A. A.; Deeba, F.

    2015-08-15

    A theoretical investigation has been made on nonplanar (cylindrical and spherical) dust-ionacoustic (DIA) double layers (DLs) in a multi-ion dusty plasma system containing inertial positive and negative ions and arbitrarily charged stationary dust. The dust particles have been considered as arbitrarily (either positively or negatively) charged in order to observe the effects of the dust polarity on the DIA DLs. The ion species were considered to be at different temperatures to observe the effects of the temperatures on that waves. The modified Gardner equation, which has been derived by employing the reductive perturbation method, has been used to analyze time-dependent nonplanar and planar DIA DLs. It has been found that the time evolution of DIA DLs is significantly modified not only by the nonplanar geometry, but also by the polarity, temperature, and mass ratio of the constituent particles. It has been also found that the amplitude of cylindrical DIA DL structures is larger than that of 1D planar ones, but smaller than that of the spherical ones.

  7. Electrostatic ion (hydrogen) cyclotron and ion acoustic wave instabilities in regions of upward field-aligned current and upward ion beams

    NASA Astrophysics Data System (ADS)

    Bergmann, R.

    1984-02-01

    An investigation is made into the stability of electrostatic hydrogen ion cyclotron and ion acoustic waves in a model plasma where an ion beam, population 2, and oppositely directed drifting electrons pass through a stationary ion background, population 1. The excited wave properties are then compared with the characteristics of the unstable modes observed on the S3-3 satellite. Three temperature regimes are studied: (1) Te greater than Ti2 much greater than Ti1, (2) Ti2 greater than Te not less than Ti1, and (3) Te approximately equal to Ti1 greater than Ti2. It is found that the ion beam acts as a free energy source only in regime 1. This regime is also highly unstable to the electrons as a free energy source. Unstable modes in regimes 2 and 3 seem to best satisfy the electrostatic hydrogen cyclotron wave (EHC) properties at 1 earth radius. For these cases the electrons are the free energy source, the beam supplies damping.

  8. Electrostatic ion (hydrogen) cyclotron and ion acoustic wave instabilities in regions of upward field-aligned current and upward ion beams

    NASA Technical Reports Server (NTRS)

    Bergmann, R.

    1984-01-01

    An investigation is made into the stability of electrostatic hydrogen ion cyclotron and ion acoustic waves in a model plasma where an ion beam, population 2, and oppositely directed drifting electrons pass through a stationary ion background, population 1. The excited wave properties are then compared with the characteristics of the unstable modes observed on the S3-3 satellite. Three temperature regimes are studied: (1) Te greater than Ti2 much greater than Ti1, (2) Ti2 greater than Te not less than Ti1, and (3) Te approximately equal to Ti1 greater than Ti2. It is found that the ion beam acts as a free energy source only in regime 1. This regime is also highly unstable to the electrons as a free energy source. Unstable modes in regimes 2 and 3 seem to best satisfy the electrostatic hydrogen cyclotron wave (EHC) properties at 1 earth radius. For these cases the electrons are the free energy source, the beam supplies damping.

  9. Ion-acoustic Gardner Solitons in electron-positron-ion plasma with two-electron temperature distributions

    NASA Astrophysics Data System (ADS)

    Rehman, Momin A.; Mishra, M. K.

    2016-01-01

    The ion-acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal positrons, and two temperature distribution of electrons have been studied. Using reductive perturbation method, Korteweg-de Vries (K-dV), the modified K-dV (m-KdV), and Gardner equations are derived for the system. The soliton solution of the Gardner equation is discussed in detail. It is found that for a given set of parameter values, there exists a critical value of β=Tc/Th, (ratio of cold to hot electron temperature) below which only rarefactive KdV solitons exist and above it compressive KdV solitons exist. At the critical value of β, both compressive and rarefactive m-KdV solitons co-exist. We have also investigated the soliton in the parametric regime where the KdV equation is not valid to study soliton solution. In this region, it is found that below the critical concentration the system supports rarefactive Gardner solitons and above it compressive Gardner solitons are found. The effects of temperature ratio of two-electron species, cold electron concentration, positron concentration on the characteristics of solitons are also discussed.

  10. Time evolution of nonplanar dust ion-acoustic solitary waves in a charge varying dusty plasma with superthermal electrons

    SciTech Connect

    Mayout, Saliha; Tribeche, Mouloud; Sahu, Biswajit

    2015-12-15

    A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) dust ion-acoustic solitary waves (DIASW) is carried out in a dusty plasma, whose constituents are inertial ions, superthermal electrons, and charge fluctuating stationary dust particles. Using the reductive perturbation theory, a modified Korteweg-de Vries equation is derived. It is shown that the propagation characteristics of the cylindrical and spherical DIA solitary waves significantly differ from those of their one-dimensional counterpart.

  11. Acoustic characterization of multi-element, dual-frequency transducers for high-intensity contact ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, M.; N'Djin, W. A.; Persaud, L.; Bronskill, M.; Chopra, R.

    2012-10-01

    High-intensity contact ultrasound therapy can generate precise volumes of thermal damage in deep-seated tissue using interstitial or intracavitary devices. Multi-element, dual-frequency transducers offer increased spatial control of the heating pattern by enabling modulation of ultrasound power and frequency along the device. The performance and acoustic coupling between elements of simple, multi-element, dual-frequency transducers was measured. Transducer arrays were fabricated by cutting halfway through a rectangular plate of PZT, creating individual 4 × 5 mm segments with fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz). Coupling between elements was investigated using a scanning laser vibrometer to measure transducer surface displacements at each frequency and different acoustic powers (0, 10, 20 W/cm2). The measured acoustic power was proportional to the input electrical power with no hysteresis and efficiencies >50% at both frequencies. Maximum transducer surface displacements were observed near element centers, reducing to ˜1/3-maximum near edges. The power and frequency of neighboring transducer segments had little impact on an element's output. In the worst case, an element operating at 4.1 MHz and 20 W/cm2 coupled only 1.5 W/cm2 to its immediate neighboring element. Multi-element, dual-frequency transducers were successfully constructed using a simple dicing method. Coupling between elements was minor, therefore the power and frequency of each transducer element could be considered independent.

  12. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    NASA Astrophysics Data System (ADS)

    McKerr, M.; Haas, F.; Kourakis, I.

    2016-05-01

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  13. Ion-acoustic solitary waves and their multi-dimensional instability in a magnetized degenerate plasma

    SciTech Connect

    Haider, M. M.; Mamun, A. A.

    2012-10-15

    A rigorous theoretical investigation has been made on Zakharov-Kuznetsov (ZK) equation of ion-acoustic (IA) solitary waves (SWs) and their multi-dimensional instability in a magnetized degenerate plasma which consists of inertialess electrons, inertial ions, negatively, and positively charged stationary heavy ions. The ZK equation is derived by the reductive perturbation method, and multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The effects of the external magnetic field are found to significantly modify the basic properties of small but finite-amplitude IA SWs. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable IA SWs. The basic features (viz., amplitude, width, instability, etc.) and the underlying physics of the IA SWs, which are relevant to space and laboratory plasma situations, are briefly discussed.

  14. Modification of the formation of high-Mach number electrostatic shock-like structures by the ion acoustic instability

    SciTech Connect

    Dieckmann, M. E.; Sarri, G.; Doria, D.; Borghesi, M.; Pohl, M.

    2013-10-15

    The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolves into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shock hybrid structures develop.

  15. Modification of the formation of high-Mach number electrostatic shock-like structures by the ion acoustic instability

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Doria, D.; Pohl, M.; Borghesi, M.

    2013-10-01

    The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolves into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shock hybrid structures develop.

  16. Equation-free Modeling of Ion Acoustic Wave with Particle Trapping

    NASA Astrophysics Data System (ADS)

    Stantchev, George

    2005-10-01

    Recently, Shay et al.[1] have successfully implemented equation-free projective integraion methods to simulate the propagation and steepening of a 1D ion acoustic wave. For the forward extrapolation step they have been using only a small number of lower moments of the probability density function (PDF) based on the assumption that the distribution would remain Maxwellian at all times. This however is no longer valid in many interesting situations, in particular for the case of particle trapping. To solve this problem we propose a generalization of Shay's algorithm to allow for tracking of an arbitrary PDF. We estimate the PDF at each micro-time step using statistical wavelet analysis. The resulting vectors of wavelet coefficents are used for forward extrapolation in time to obtain a multi-scale representation of the projected PDF after a coarse time step. An optimal wavelet basis is selected through adaptive refinement at the beginning of each microscopic simulation sequence. We discuss the application of this technique to the 1D acoustic wave problem with particle trapping. [1] M. Shay, J. Drake, W. Dorland, Multiscale modeling of plasmas via equation-free projective integration, in preparation

  17. Drift compression of an intense neutralized ion beam.

    PubMed

    Roy, P K; Yu, S S; Henestroza, E; Anders, A; Bieniosek, F M; Coleman, J; Eylon, S; Greenway, W G; Leitner, M; Logan, B G; Waldron, W L; Welch, D R; Thoma, C; Sefkow, A B; Gilson, E P; Efthimion, P C; Davidson, R C

    2005-12-01

    Longitudinal compression of a velocity-tailored, intense neutralized beam at 300 keV, 25 mA has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. This measurement has been confirmed independently with two different diagnostic systems.

  18. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W. G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2005-09-08

    Longitudinal compression of a velocity-tailored, intense neutralized K{sup +} beam at 300 keV, 25 mA has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. This measurement has been confirmed independently with two different diagnostic systems.

  19. Dust acoustic dromions in a magnetized dusty plasma with superthermal electrons and ions

    NASA Astrophysics Data System (ADS)

    Saini, N. S.; Ghai, Yashika; Kohli, Ripin

    2016-06-01

    An investigation of dust acoustic (DA) dromions in a magnetized dusty plasma consisting of inertial dust fluid, kappa-type distributed electrons, and ions is presented. Using reductive perturbation technique, we have derived coupled nonlinear evolution equations of (2 + 1) dimensions (called Davey-Stewartson (DS-I) equations). Hirota bilinear method has been employed to derive the analytical solution of DS-I equations. The solutions of such equations are exponentially localized and are called dromions. The combined effects of various physical parameters such as superthermality of charged particles, strength of magnetic field, and dust concentration have been studied on the existence regions and propagation properties of DA dromions in context with observations of POLAR satellite in the presence of superthermal particles in polar cap boundary layer region of Earth's atmosphere.

  20. Hybrid (Vlasov-Fluid) simulation of ion-acoustic solitons chain formation including trapped electrons

    SciTech Connect

    Behjat, E.; Aminmansoor, F.; Abbasi, H.

    2015-08-15

    Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.

  1. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    PubMed

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included. PMID:26986431

  2. Dynamics of ion acoustic double layers in a magnetized two-population electrons plasma

    SciTech Connect

    Shahmansouri, M.

    2013-10-15

    The obliquely propagating ion acoustic (IA) double-layers are investigated in a magnetized two population electron plasmas. The extended Korteweg–de Vries equation is derived by using the reductive perturbation technique. The effect of obliqueness (l{sub z}) and magnitude of the external magnetic field (ω{sub ci}), as well as the electron number density (β) on the double-layer profile, is studied, and then the ranges of parameters for which the double-layers exist are investigated in detail. We found that the combined effects of l{sub z}, ω{sub ci}, and β significantly modify the basic properties (viz. amplitude and width) of the IA double-layers.

  3. Nonlinear Dust Acoustic Waves in Dissipative Space Dusty Plasmas with Superthermal Electrons and Nonextensive Ions

    NASA Astrophysics Data System (ADS)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Sallah, M.; Darweesh, H. F.

    2016-05-01

    The nonlinear characteristics of the dust acoustic (DA) waves are studied in a homogeneous, collisionless, unmagnetized, and dissipative dusty plasma composed of negatively charged dusty grains, superthermal electrons, and nonextensive ions. Sagdeev pseudopotential technique has been employed to study the large amplitude DA waves. It (Sagdeev pseudopotential) has an evidence for the existence of compressive and rarefractive solitons. The global features of the phase portrait are investigated to understand the possible types of solutions of the Sagdeev form. On the other hand, the reductive perturbation technique has been used to study small amplitude DA waves and yields the Korteweg-de Vries-Burgers (KdV-Burgers) equation that exhibits both soliton and shock waves. The behavior of the obtained results of both large and small amplitude is investigated graphically in terms of the plasma parameters like dust kinematic viscosity, superthermal and nonextensive parameters.

  4. Evolution of nonlinear dust-ion-acoustic waves in an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Xiao, De-long; Ma, J. X.; Li, Yang-fang; Xia, Yinhua; Yu, M. Y.

    2006-05-01

    The propagation of nonlinear dust-ion-acoustic waves in an inhomogeneous dusty plasma is studied. At small but finite amplitudes, the wave evolution is governed by a modified Korteweg-deVries Burgers equation, whose coefficients are space dependent. The properties of the evolution equation are analyzed and the behavior of the corresponding shock and soliton solutions is numerically studied. If dust-charge perturbation is neglected, there exists a zero-nonlinearity point where the coefficient of the nonlinear term changes from negative to positive. At that point the nonlinear wave also undergoes structural deformation. If the dust-charge perturbation is taken into account, the zero-nonlinearity point may not appear and the soliton or shock wave will retain its form during the propagation.

  5. Evolution of nonlinear dust-ion-acoustic waves in an inhomogeneous plasma

    SciTech Connect

    Xiao Delong; Ma, J.X.; Li Yangfang; Xia Yinhua; Yu, M.Y.

    2006-05-15

    The propagation of nonlinear dust-ion-acoustic waves in an inhomogeneous dusty plasma is studied. At small but finite amplitudes, the wave evolution is governed by a modified Korteweg-deVries Burgers equation, whose coefficients are space dependent. The properties of the evolution equation are analyzed and the behavior of the corresponding shock and soliton solutions is numerically studied. If dust-charge perturbation is neglected, there exists a zero-nonlinearity point where the coefficient of the nonlinear term changes from negative to positive. At that point the nonlinear wave also undergoes structural deformation. If the dust-charge perturbation is taken into account, the zero-nonlinearity point may not appear and the soliton or shock wave will retain its form during the propagation.

  6. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  7. Ion acceleration in a solitary wave by an intense picosecond laser pulse.

    PubMed

    Zhidkov, A; Uesaka, M; Sasaki, A; Daido, H

    2002-11-18

    Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.

  8. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    NASA Astrophysics Data System (ADS)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  9. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  10. MEASURING BARYON ACOUSTIC OSCILLATIONS ON 21 cm INTENSITY FLUCTUATIONS AT MODERATE REDSHIFTS

    SciTech Connect

    Mao Xiaochun

    2012-06-20

    After reionization, emission in the 21 cm hyperfine transition provides a direct probe of neutral hydrogen distributed in galaxies. Different from galaxy redshift surveys, observation of baryon acoustic oscillations in the cumulative 21 cm emission may offer an attractive method for constraining dark energy properties at moderate redshifts. Keys to this program are techniques to extract the faint cosmological signal from various contaminants, such as detector noise and continuum foregrounds. In this paper, we investigate the possible systematic and statistical errors in the acoustic scale estimates using ground-based radio interferometers. Based on the simulated 21 cm interferometric measurements, we analyze the performance of a Fourier-space, light-of-sight algorithm in subtracting foregrounds, and further study the observing strategy as a function of instrumental configurations. Measurement uncertainties are presented from a suite of simulations with a variety of parameters, in order to have an estimate of what behaviors will be accessible in the future generation of hydrogen surveys. We find that 10 separate interferometers, each of which contains {approx}300 dishes, observing an independent patch of the sky and producing an instantaneous field of view (FOV) of {approx}100 deg{sup 2}, can be used to make a significant detection of acoustic features over a period of a few years. Compared to optical surveys, the broad bandwidth, wide FOV, and multi-beam observation are all unprecedented capabilities of low-frequency radio experiments.

  11. The emittances and brightnesses of high-intensity negative ion sources

    SciTech Connect

    Alton, G.D.; McConnell, J.W.

    1987-01-01

    The emittances of high-intensity ion beams extracted from cesium sputter negative ion sources equipped with cylindrical and ellipsoidal solid tungsten and spiral-wound tantalum (General Ionex Corporation, Model 860), and cesium surface ionizers have been measured for several ion species, including /sup 12/C/sup -/, /sup 28/Si/sup -/, /sup 58/Ni/sup -/, and /sup 197/Au/sup -/. While certain sets of data from the ellipsoidal and cylindrical geometry ionizer sources suggest a moderate growth in emittance with increasing negative ion beam intensity I over the range of intensities investigated (5 less than or equal to 1 less than or equal to 60 ..mu..A) of perhaps 20%, not all data exhibit this dependence, especially those from the Model 860 source. As well, no evidence of an emittance dependence on ion mass of a monotonic nature was found. The emittances of ion beams at the 80% intensity level from the Model 860 source are found to be higher on the average by factors of 1.8 and 1.7, respectively, than those from sources equipped with ellipsoidal and cylindrical geometry cesium surface ionizers.

  12. Intensities of hypersensitive transitions in garnet crystals doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Bol'Shakova, E. V.; Malov, A. V.; Ryabochkina, P. A.; Ushakov, S. N.; Nishchev, K. N.

    2011-06-01

    We examine the oscillator strengths and the intensity parameters Ω t ( t = 2, 4, 6) of yttrium-aluminum, scandium-containing, and gallium garnet crystals doped with Er3+ ions. A comparative analysis of the oscillator strengths and the intensity parameters Ω t ( t = 2, 4, 6) of garnets with different contents of Al3+ and Sc3+ ions (Gd2.4Er0.5Sc1.8Al3.3O12, Gd2.4Er0.5Sc1.9Al3.2O12, Gd2.4Er0.5Sc2.0Al3.1O12) is performed, as a result of which the oscillator strengths and the intensity parameters Ω t ( t = 2, 4, 6) of these crystals are shown to have close values. We find that Ca3(NbGa)5O12 crystals doped with Er3+ ions are characterized by highest values of the oscillator strengths for hypersensitive transitions and of the intensity parameter Ω2 of Er3+ ions compared to the values of these quantities in the examined garnet crystals, which is determined by the fact that the symmetry of the local environment of Er3+ ions in these crystals is C 1, C 2, or C 2ν. We reveal that, as the concentration of Er3+ ions in these crystals increases from 1 to 39 at %, both the oscillator strength of the hypersensitive transition 4 I 15/2 → 2 H 11/2 of Er3+ ions and their intensity parameter Ω2 tend to decrease, which can be related to an increase in the relative fraction of Er3+ ions with higher symmetry of the local environment.

  13. Manifestations of the geodesic acoustic mode driven by energetic ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, Ya I.; Lutsenko, V. V.; Yakovenko, Yu V.; Lepiavko, B. S.; Grierson, B.; Heidbrink, W. W.; Nazikian, R.

    2016-04-01

    Effects of the energetic-ion-driven Geodesic Acoustic modes (GAM and E-GAM) on the toroidally passing energetic ions and the concomitant change of the neutron yield of beam-plasma fusion reactions in tokamaks are considered. It is shown that due to large perturbations of the plasma density, the resonant energetic ions driving the instability can be considerably slowed down for a few tens of the particle transit periods, which is much less than the collisional slowing down time. The time of the collisionless slowing down is actually determined by the period of the particle motion within the resonance island arising because of the GAM / E-GAM. Being trapped in the island, the resonant particles can not only lose their energy but also gain it. One more effect of GAMs is the flattening on the distribution function of the resonant particles. Due to conservation of the canonical angular momentum during a GAM / E-GAM instability, the change of the particle energy is accompanied by a radial displacement of the resonant particle for a distance up to the poloidal Larmor radius of energetic ions. The particles are displaced inwards or outwards, depending on the direction of their motion along the magnetic field. Expressions describing the change of the neutron yield due to GAM modes are derived. It is found that the distortion of the velocity distribution of the resonant particles can lead to a considerable drop of the neutron emission even when effects of the particle radial displacement are small. The developed theory is applied to an E-GAM experiment on the DIII-D tokamak. Relations for the period of the motion within the resonance island of passing (both well passing and marginally passing) particles and the width of the resonance of the energetic particles with GAM modes and low-frequency Alfvén modes are derived.

  14. Fluid simulation of dispersive and nondispersive ion acoustic waves in the presence of superthermal electrons

    NASA Astrophysics Data System (ADS)

    Lotekar, Ajay; Kakad, Amar; Kakad, Bharati

    2016-10-01

    One-dimensional fluid simulation is performed for the unmagnetized plasma consisting of cold fluid ions and superthermal electrons. Such a plasma system supports the generation of ion acoustic (IA) waves. A standard Gaussian type perturbation is used in both electron and ion equilibrium densities to excite the IA waves. The evolutionary profiles of the IA waves are obtained by varying the superthermal index and the amplitude of the initial perturbation. This simulation demonstrates that the amplitude of the initial perturbation and the superthermal index play an important role in determining the time evolution and the characteristics of the generated IA waves. The initial density perturbation in the system creates charge separation that drives the finite electrostatic potential in the system. This electrostatic potential later evolves into the dispersive and nondispersive IA waves in the simulation system. The density perturbation with the amplitude smaller than 10% of the equilibrium plasma density evolves into the dispersive IA waves, whereas larger density perturbations evolve into both dispersive and nondispersive IA waves for lower and higher superthermal index. The dispersive IA waves are the IA oscillations that propagate with constant ion plasma frequency, whereas the nondispersive IA waves are the IA solitary pulses (termed as IA solitons in the stability region) that propagate with the constant wave speed. The characteristics of the stable nondispersive IA solitons are found to be consistent with the nonlinear fluid theory. To the best of our knowledge, this is the first fluid simulation study that has considered the superthermal distributions for the plasma species to model the electrostatic solitary waves.

  15. Investigation of nonextensivity trapped electrons effect on the solitary ion-acoustic wave using fractional Schamel equation

    NASA Astrophysics Data System (ADS)

    Nazari-Golshan, A.

    2016-08-01

    Ion-acoustic (IA) solitary wave propagation is investigated by solving the fractional Schamel equation (FSE) in a homogenous system of unmagnetized plasma. This plasma consists of the nonextensive trapped electrons and cold fluid ions. The effects of the nonextensive q-parameter, electron trapping, and fractional parameter have been studied. The FSE is derived by using the semi-inverse and Agrawal's methods. The analytical results show that an increase in the amount of electron trapping and nonextensive q-parameter increases the soliton ion-acoustic amplitude in agreement with the previously obtained results. However, it is vice-versa for the fractional parameter. This feature leads to the fact that the fractional parameter may be used to increase the IA soliton amplitude instead of increasing electron trapping and nonextensive parameters.

  16. Dust acoustic solitons in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity

    SciTech Connect

    Benzekka, Moufida; Tribeche, Mouloud

    2013-08-15

    Dust acoustic (DA) solitons are addressed in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity. A physically meaningful nonthermal nonextensive ion distribution is outlined. The correct non-Maxwellian ion charging current is derived based on the orbit-limited motion theory. Under grain-current balance, the variable dust charge is expressed in terms of the Lambert function. It is found that nonthermality and its nonextensive nature may act concurrently and influence the restoring force and hence the soliton profile. Due to the flexibility provided by the nonextensive parameter, we think that our model should provide a better fit of the space observations.

  17. Ion-acoustic solitons and vortices in the e-p-i plasma with field-aligned inhomogeneous flow

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Ali, S.; Saeed, U.; Haque, Q.

    2016-09-01

    The linear and nonlinear characteristics of the ion-acoustic waves are studied in a magnetized electron-positron-ion (e-p-i) plasma with shear flow along the ambient magnetic field. The sheared flow reduces or enhances the frequency of the wave strongly depending upon its polarity and nonlinear equations yield stable electrostatic structures in the form of solitons and vortices. Therefore, it is suggested that in the presence of shear flow, the electrostatic fields with real frequency ωr < csk (where cs is the ion sound speed) exist in e-p-i plasmas. Numerical solutions are discussed using the normalized parameters.

  18. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  19. High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS

    SciTech Connect

    Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

    2007-11-15

    The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

  20. Ion intensity and thermal proton transfer in ultraviolet matrix-assisted laser desorption/ionization.

    PubMed

    Lu, I-Chung; Lee, Chuping; Chen, Hui-Yuan; Lin, Hou-Yu; Hung, Sheng-Wei; Dyakov, Yuri A; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-04-17

    The ionization mechanism of ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) was investigated by measuring the total cation intensity (not including sodiated and potasiated ions) as a function of analyte concentration (arginine, histidine, and glycine) in a matrix of 2,4,6-trihydroxyacetophenone (THAP). The total ion intensity increased up to 55 times near the laser fluence threshold as the arginine concentration increased from 0% to 1%. The increases were small for histidine, and a minimal increase occurred for glycine. Time-resolved fluorescence intensity was employed to investigate how analytes affected the energy pooling of the matrix. No detectable energy pooling was observed for pure THAP and THAP/analyte mixtures. The results can be described by using a thermal proton transfer model, which suggested that thermally induced proton transfer is crucial in the primary ion generation in UV-MALDI.

  1. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    SciTech Connect

    Lidia, S.M.; Bieniosek, F.; Henestroza, E.; Ni, P.; Seidl, P.

    2010-04-30

    Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and limit the accuracy of measuring peak beam intensities delivered to the target. For beam tuning and characterizing the incident beam intensity, we have developed a cross-calibrating diagnostic suite that extends the upper limit of measurable peak intensity dynamic range. Absolute intensity calibration is obtained with a 3 {micro}m thick tungsten foil calorimeter and streak spectrometer. We present experimental evidence for peak intensity measures in excess of 400 kW/cm{sup 2} using a 0.3 MV, 25 mA, 5-20 {micro}sec K{sup +1} beam. Radiative models and thermal diffusion effects are discussed because they affect temporal and spatial resolution of beam intensity profiles.

  2. Dust-ion-acoustic Gardner solitons in a dusty plasma with bi-Maxwellian electrons

    SciTech Connect

    Masud, M. M.; Asaduzzaman, M.; Mamun, A. A.

    2012-10-15

    The nonlinear propagation of dust-ion-acoustic (DIA) waves in a dusty plasma with bi-Maxwellian electrons, namely, lower and higher temperature electrons (composed of negatively charged stationary dust, inertial ions, and non-inertial two-temperature-electrons) is investigated by deriving the Gardner equation using the reductive perturbation technique. The basic features (amplitude, width, etc.) of the hump (positive potential) and dip (negative potential) shaped DIA solitons (Gardner solitons, i.e., GSs) are found to exist beyond the Korteweg-de Vries (K-dV) limit. These DIA-GSs are qualitatively different from the K-dV and modified K-dV solitons. It is also shown that depending on the parameter {sigma} (where {sigma}=T{sub e1}/T{sub e2}, T{sub e1} and T{sub e2} being the temperatures of two distinct electrons and T{sub e1} Much-Less-Than T{sub e2}), the DIA-GSs exhibit hump and dip shape solitary structures. The implications of our results in understanding the localized nonlinear electrostatic perturbations observed in double-plasma machines, rf discharge plasma, noctilucent cloud region in Earths atmosphere, etc., where population of two thermal electrons can significantly dominate the wave dynamics, are also briefly addressed.

  3. Particle-in-cell simulation of large amplitude ion-acoustic solitons

    SciTech Connect

    Sharma, Sarveshwar Sengupta, Sudip; Sen, Abhijit

    2015-02-15

    The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame (x, t) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k{sup 2}λ{sub de}{sup 2}<1 break up into a series of solitons.

  4. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory

    SciTech Connect

    Kakad, Amar; Omura, Yoshiharu; Kakad, Bharati

    2013-06-15

    We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.

  5. Propagation and stability of quantum dust-ion-acoustic shock waves in planar and nonplanar geometry

    NASA Astrophysics Data System (ADS)

    Masood, W.; Siddiq, M.; Nargis, Shahida; Mirza, Arshad M.

    2009-01-01

    Dust-ion-acoustic (DIA) shock waves are studied in an unmagnetized quantum plasma consisting of electrons, ions, and dust by employing the quantum hydrodynamic (QHD) model. In this context, a Korteweg-deVries-Burger (KdVB) equation is derived by employing the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the quantum DIA shock wave is maximum for spherical, intermediate for cylindrical, and minimum for the planar geometry. The effects of quantum Bohm potential, dust concentration, and kinematic viscosity on the quantum DIA shock structure are also investigated. The temporal evolution of DIA KdV solitons and Burger shocks are also studied by putting the dissipative and dispersive coefficients equal to zero, respectively. The effects of the quantum Bohm potential on the stability of the DIA shock is also investigated. The present investigation may be beneficial to understand the dissipative and dispersive processes that may occur in the quantum dusty plasmas found in microelectronic devices as well as in astrophysical plasmas.

  6. Propagation and stability of quantum dust-ion-acoustic shock waves in planar and nonplanar geometry

    SciTech Connect

    Masood, W.; Siddiq, M.; Nargis, Shahida; Mirza, Arshad M.

    2009-01-15

    Dust-ion-acoustic (DIA) shock waves are studied in an unmagnetized quantum plasma consisting of electrons, ions, and dust by employing the quantum hydrodynamic (QHD) model. In this context, a Korteweg-deVries-Burger (KdVB) equation is derived by employing the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the quantum DIA shock wave is maximum for spherical, intermediate for cylindrical, and minimum for the planar geometry. The effects of quantum Bohm potential, dust concentration, and kinematic viscosity on the quantum DIA shock structure are also investigated. The temporal evolution of DIA KdV solitons and Burger shocks are also studied by putting the dissipative and dispersive coefficients equal to zero, respectively. The effects of the quantum Bohm potential on the stability of the DIA shock is also investigated. The present investigation may be beneficial to understand the dissipative and dispersive processes that may occur in the quantum dusty plasmas found in microelectronic devices as well as in astrophysical plasmas.

  7. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  8. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible. PMID:24593615

  9. Sustained acoustic medicine: a novel long duration approach to biomodulation utilizing low intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Lewis, George K.

    2015-05-01

    Therapeutic ultrasound is an established technique for biomodulation used by physical therapists. Typically it is used to deliver energy locally for the purpose of altering tissue plasticity and increasing local circulation. Access to ultrasound therapy has been limited by equipment and logistic requirements, which has reduced the overall efficacy of the therapy. Ultrasound miniaturization allows for development of portable, wearable, self-applied ultrasound devices that sidestep these limitations. Additionally, research has shown that the timescale of acoustic stimulation matters, and directly affects the quality of result. This paper describes a novel, long duration approach to therapeutic ultrasound and reviews the current data available for a variety of musculoskeletal conditions.

  10. Generation of circularly polarized attosecond pulses by intense ultrashort laser pulses from extended asymmetric molecular ions

    SciTech Connect

    Yuan, Kai-Jun; Bandrauk, Andre D.

    2011-08-15

    We present a method for generation of single circularly polarized attosecond pulses in extended asymmetric HHe{sup 2+} molecular ions. By employing an intense ultrashort circularly polarized laser pulse with intensity 4.0x10{sup 14} W/cm{sup 2}, wavelength 400 nm, and duration 10 optical cycles, molecular high-order-harmonic generation (MHOHG) spectra with multiple plateaus exhibit characters of circular polarization. Using a classical laser-induced collision model, double collisions of continuum electrons first with neighboring ions and then second with parent ions are presented at a particular internuclear distance and confirmed from numerical solutions of a time-dependent Schroedinger equation. We analyze the MHOHG spectra with a Gabor time window and find that, due to the asymmetry of HHe{sup 2+}, a single collision trajectory of continuum electrons with ions can produce circularly polarized harmonics, leading to single circularly polarized attosecond pulses for specific internuclear distances.

  11. Theoretical studies of defect formation and target heating by intense pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Schenkel, T.; Persaud, A.; Seidl, P. A.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I.

    2015-11-01

    We present results of three studies related to experiments on NDCX-II, the Neutralized Drift Compression Experiment, a short-pulse (~ 1ns), high-current (~ 70A) linear accelerator for 1.2 MeV ions at LBNL. These include: (a) Coupled transverse and longitudinal envelope calculations of the final non-neutral ion beam transport, followed by neutralized drift and final focus, for a number of focus and drift lengths and with a series of ion species (Z =1-19). Predicted target fluences were obtained and target temperatures in the 1 eV range estimated. (b) HYDRA simulations of the target response for Li and He ions and for Al and Au targets at various ion fluences (up to 1012 ions/pulse/mm2) and pulse durations, benchmarking temperature estimates from the envelope calculations. (c) Crystal-Trim simulations of ion channeling through single-crystal lattices, with comparisons to ion transmission data as a function of orientation angle of the crystal foil and for different ion intensities and ion species. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and DE-AC02-76CH0307 (PPPL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-67521.

  12. Toward efficient light diffraction and intensity variations by using wide bandwidth surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Lee, Young Ok; Chen, Fu; Lee, Kee Keun

    2016-06-01

    We have developed acoustic-optic (AO) based display units for implementing a handheld hologram display by modulating light deflection through wide bandwidth surface acoustic wave (SAW). The developed AO device consists of a metal layer, a ZnS waveguide layer, SAW inter digital transducers (IDTs), and a screen for display. When RF power with a particular resonant frequency was applied to IDTs, SAW was radiated and interfered with confined beam propagating along ZnS waveguide layer. The AO interacted beam was deflected laterally toward a certain direction depending on Bragg diffraction condition, exited out of the waveguide layer and then directed to the viewing screen placed at a certain distance from the device to form a single pixel. The deflected angles was adjusted by modulating the center frequency of the SAW IDT (SAW grating), the RF power of SAW, and the angles between propagating light beam path along waveguide and radiating SAW. The diffraction efficiency was also characterized in terms of waveguide thickness, SAW RF input power, and aperture length. Coupling of mode (COM) modeling was fulfilled to find optimal device parameters prior to fabrication. All the parameters affecting the deflection angle and efficiency to form a pixel for a three-dimensional (3D) hologram image were characterized and then discussed.

  13. Development of a Negative Hydrogen Ion Source for Spatial Beam Profile Measurement of a High Intensity Positive Ion Beam

    SciTech Connect

    Shinto, Katsuhiro; Wada, Motoi; Nishida, Tomoaki; Demura, Yasuhiro; Sasaki, Daichi; Tsumori, Katsuyoshi; Nishiura, Masaki; Kaneko, Osamu; Kisaki, Masashi; Sasao, Mamiko

    2011-09-26

    We have been developing a negative hydrogen ion (H{sup -} ion) source for a spatial beam profile monitor of a high intensity positive ion beam as a new diagnostic tool. In case of a high intensity continuous-wave (CW) deuteron (D{sup +}) beam for the International Fusion Materials Irradiation Facility (IFMIF), it is difficult to measure the beam qualities in the severe high radiation environment during about one-year cyclic operation period. Conventional techniques are next to unusable for diagnostics in the operation period of about eleven months and for maintenance in the one-month shutdown period. Therefore, we have proposed an active beam probe system by using a negative ion beam and started an experimental study for the proof-of-principle (PoP) of the new spatial beam profile monitoring tool. In this paper, we present the status of development of the H{sup -} ion source as a probe beam source for the PoP experiment.

  14. Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams

    SciTech Connect

    Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V.; Lund, Steven M.; Welch, Dale R.; Sefkow, Adam

    2008-06-19

    This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.

  15. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.

    PubMed

    Ferkous, Hamza; Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-09-01

    In the present work, comprehensive experimental and numerical investigations of the effects of frequency and acoustic intensity on the sonochemical degradation of naphthol blue black (NBB) in water have been carried out. The experiments have been examined at three frequencies (585, 860 and 1140 kHz) and over a wide range of acoustic intensities. The observed experimental results have been discussed using a more realistic approach that combines the single bubble sonochemistry and the number of active bubbles. The single bubble yield has been predicted using a model that combines the bubble dynamics with chemical kinetics consisting of series of chemical reactions (73 reversible reactions) occurring inside an air bubble during the strong collapse. The experimental results showed that the sonochemical degradation rate of NBB increased substantially with increasing acoustic intensity and decreased with increasing ultrasound frequency. The numerical simulations revealed that NBB degraded mainly through the reaction with hydroxyl radical (OH), which is the dominant oxidant detected in the bubble during collapse. The production rate of OH radical inside a single bubble followed the same trend as that of NBB degradation rate. It increased with increasing acoustic intensity and decreased with increasing frequency. The enhancing effect of acoustic intensity toward the degradation of NBB was attributed to the rise of both the individual chemical bubble yield and the number of active bubbles with increasing acoustic intensity. The reducing effect of frequency was attributed to the sharp decrease in the chemical bubble yield with increasing frequency, which would not compensated by the rise of the number of active bubbles with the increase in ultrasound frequency. PMID:25753313

  16. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  17. Ultrafast electronic motion in hydrogen molecular ions induced by a high power intense laser

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Teranishi, Y.; Chao, S. D.; Lin, S. H.

    2010-10-01

    In this Letter we report a method for controlling electronic localization in a molecular ion, on an attosecond time scale, using a high-intensity laser, based on two different excitation mechanisms. One takes place during ionization, and the other takes place sequentially, following ionization. The electronic excited states of the hydrogen molecular ion are created during ionization by taking the configuration interaction mixing of neutral molecules into account. We detect the ultrafast oscillatory electronic motion between two atoms in a hydrogen molecular ion occurring due to the creation of excited states during the course of ionization.

  18. Ablation of GaAs by Intense, Ultrafast Electronic Excitation from Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Hamza, A. V.; Barnes, A. V.; Schneider, D. H.; Banks, J. C.; Doyle, B. L.

    1998-09-01

    We have measured total ablation rates and secondary ion yields from undoped GaAs(100) interacting with slow \\(v = 6.6×105 m/s\\), very highly charged ions. Ablation rates increase strongly as a function of projectile charge. Some 1400 target atoms are removed when a single Th70+ ion deposits a potential energy of 152.6 keV within a few femtoseconds into a nanometer-sized target volume. We discuss models for ablation of semiconductors by intense, ultrafast electronic excitation.

  19. Ablation of GaAs by Intense, Ultrafast Electronic Excitation from Highly Charged Ions

    SciTech Connect

    Schenkel, T.; Hamza, A.V.; Barnes, A.V.; Schneider, D.H.; Banks, J.C.; Doyle, B.L.

    1998-09-01

    We have measured total ablation rates and secondary ion yields from undoped GaAs(100) interacting with slow (v=6.6{times}10{sup 5} m /s) , very highly charged ions. Ablation rates increase strongly as a function of projectile charge. Some 1400thinspthinsptarget atoms are removed when a single Th{sup 70+} ion deposits a potential energy of 152.6thinspthinspkeV within a few femtoseconds into a nanometer-sized target volume. We discuss models for ablation of semiconductors by intense, ultrafast electronic excitation. {copyright} {ital 1998} {ital The American Physical Society}

  20. MeV negative ion generation from ultra-intense laser interaction with a water spray

    SciTech Connect

    Ter-Avetisyan, S.; Ramakrishna, B.; Borghesi, M.; Doria, D.; Zepf, M.; Sarri, G.; Ehrentraut, L.; Steinke, S.; Sandner, W.; Schnuerer, M.; Andreev, A.; Nickles, P. V.; Tikhonchuk, V.

    2011-08-01

    MeV negative oxygen ions are obtained from a water spray target irradiated by high intensity (5 x 10{sup 19} W/cm{sup 2}) and ultrashort (50 fs) laser pulses. Generation of negative ions is ascribed to electron-capture processes that the laser-accelerated high-energy positive ion experiences when it interacts with atoms in the spray. This mechanism implies the existence of a large number of MeV neutral oxygen atoms, which is consistent with indirect experimental evidence.

  1. MeV negative ion source from ultra-intense laser-matter interaction

    SciTech Connect

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Prasad, R.; Borghesi, M.; Andreev, A. A.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Tikhonchuk, V.

    2012-02-15

    Experimental demonstration of negative ion acceleration to MeV energies from sub-micron size droplets of water spray irradiated by ultra-intense laser pulses is presented. Thanks to the specific target configuration and laser parameters, more than 10{sup 9} negative ions per steradian solid angle in 5% energy bandwidth are accelerated in a stable and reliable manner. To our knowledge, by virtue of the ultra-short duration of the emission, this is by far the brightest negative ion source reported. The data also indicate the existence of beams of neutrals with at least similar numbers and energies.

  2. Effects of nonthermal ions and polarization force on dust-acoustic waves in a density-varying dusty plasma.

    PubMed

    Asaduzzaman, M; Mamun, A A

    2012-07-01

    A rigorous theoretical investigation has been made of the effects of nonthermal ions and polarization force (which arises due to the dust density inhomogeneity) on the propagation of dust-acoustic (DA) waves in a density-varying unmagnetized dusty plasma (consisting of nonthermal ions, Maxwellian electrons, and negatively charged mobile dust) by the normal mode analysis. It has been shown that the dispersion properties of the DA waves are significantly modified by the presence of nonthermal ions and polarization force. It has been also found that the phase speed of the DA waves, as well as the dust density perturbation, increases (decreases) with the increase of nonthermal ions (polarization force), and that the potential associated with the DA waves decreases with the increase of the equilibrium dust number density. The implications of our results in the specific situation of space environments (dust-ion plasma situation) are also briefly discussed. PMID:23005552

  3. Cluster ion beam profiling of organics by secondary ion mass spectrometry--does sodium affect the molecular ion intensity at interfaces?

    PubMed

    Green, Felicia M; Gilmore, Ian S; Seah, Martin P

    2008-12-01

    The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on "Sputtering and Ion Emission by Cluster Ion Beams", recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: "under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface". It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance - for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels. PMID:19039819

  4. Ion acceleration by intense, few-cycle laser pulses with nanodroplets

    SciTech Connect

    Di Lucchio, Laura; Andreev, Alexander A.; Gibbon, Paul

    2015-05-15

    The energy distribution of electrons and ions emerging from the interaction of a few-cycle Gaussian laser pulse with spherical nanoclusters is investigated with the aim of determining prospects for accelerating ions in this regime. It is found that the direct conversion of laser energy into dense attosecond electron nanobunches results in rapid charge separation and early onset of Coulomb-explosion-dominated ion dynamics. The ion core of the cluster starts to expand soon after the laser has crossed the droplet, the fastest ions attaining 10 s of MeV at relativistic intensities. The current investigation should serve as a guide for contemporary experiments, i.e., using state-of-the-art few-cycle ultraintense lasers and nanoclusters of solid density.

  5. Nonlinear and snap-through responses of curved panels to intense acoustic excitation

    NASA Technical Reports Server (NTRS)

    Ng, C. F.

    1989-01-01

    Assuming a single-mode transverse displacement, a simple formula is derived for the transverse load-displacement relationship of a plate under in-plane compression. The formula is used to derive a simple analytical expression for the nonlinear dynamic response of postbuckled plates under sinusoidal or random excitation. The highly nonlinear motion of snap-through can be easily interpreted using the single-mode formula. Experimental results are obtained with buckled and cylindrical aluminum panels using discrete frequency and broadband excitation of mechanical and acoustic forces. Some important effects of the snap-through motion on the dynamic response of the postbuckled plates are described. Static tests were used to identify the deformation shape during snap-through.

  6. Comparison of Different Measurement Technologies for the In-Flight Assessment of Radiated Acoustic Intensity

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.; Buehrle, Ralph D.; Williams, Earl G.; Valdivia, Nicolas; Herdic, Peter C.; Sklanka, Bernard

    2005-01-01

    A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made.

  7. Experimental evidence of the effect of heat flux on thomson scattering off ion acoustic waves

    PubMed

    Amiranoff; Baton; Huller; Malka; Modena; Mounaix; Galloudec; Rousseaux; Salvati

    2000-02-01

    Thomson self-scattering measurements are performed in a preionized helium gas jet plasma at different locations along the laser propagation direction. A systematic and important variation of the intensity ratio between the blue and the red ion spectral components is observed, depending on whether the location of the probed region is in front of or behind the focal plane. A simple theoretical calculation of Thomson scattering shows that this behavior can be qualitatively understood in terms of a deformation of the electron distribution function due to the return current correlated with the classical thermal heat flux. PMID:11046481

  8. The development of the high intensity electron cyclotron resonance ion source at China Institute of Atomic Energy

    NASA Astrophysics Data System (ADS)

    Tang, B.; Ma, R.; Ma, Y.; Chen, L.; Huang, Q.; Liang, H.; Cui, B.; Jiang, W.

    2014-02-01

    High-current microwave ion source has been under development over 15 years for accelerator driven sub-critical system research at China Institute of Atomic Energy, and the beam intensity higher than 140 mA proton beam is produced by this ion source with long lifetime and high reliability. The emittance of high intensity continue-wave and pulse beam is measured on a test-bench in the laboratory. Based on the good performance of this proton ion source, a new 120 mA deuterium ion source is proposed for a high intensity neutron generator. The ion source details and status will be presented.

  9. Observations of an intense field-aligned thermal ion flow and associated intense narrow band electric field oscillations. [at auroral arc edge

    NASA Technical Reports Server (NTRS)

    Bering, E. A.; Kelley, M. C.; Mozer, F. S.

    1975-01-01

    An investigation is conducted concerning the conditions encountered during a Javelin sounding rocket experiment conducted on Apr. 3, 1970 at Fort Churchill, Canada. Evidence is presented that near the equatorward edge of the auroral arc an intense beam of cold plasma ions was flowing parallel to the earth's magnetic field. The beam was associated with intense narrow band electric field oscillations near the local ion gyrofrequency. The data support the hypothesis that intense electrostatic ion cyclotron waves were driven unstable by field-aligned currents.

  10. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  11. Michigan state upgrade to produce intense radioactive ion beams by fragmentation technique

    SciTech Connect

    Lubkin, G.B.

    1997-05-01

    This article describes the planned upgrading of accelerator facilities to produce intense radioactive ion beams, by a fragmentation technique, for experimental simulation of nucleosynthesis in novas and supernovas. (AIP) {ital 1997 American Institute of Physics.} {copyright} {ital 1997} {ital American Institute of Physics}

  12. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  13. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    SciTech Connect

    Rufai, O. R.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  14. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-10-01

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  15. Longer wavelengths require lower intensity in multiphoton detachment of negative ions

    NASA Astrophysics Data System (ADS)

    Davidson, M. D.; Schumacher, D. W.; Bucksbaum, P. H.; Muller, H. G.; van Linden van den Heuvell, H. B.

    1992-12-01

    Negative chlorine ions, held in a Penning ion trap, are irradiated by intense (up to 2×1016 W/m2) Raman-shifted light of a Nd:YAlG laser with a wavelength of 1098 nm and a pulse duration of 30 ps. Electron-energy spectra are obtained showing up to 11-photon absorption. In the case of circularly polarized light suppression of the low-energy channels is observed. A saturation intensity of (8.5+/-2.5)×1015 W/m2 is found for multiphoton detachment of Cl- by 1908-nm light. This result is counterintuitive because it is lower than the saturation intensity for multiphoton detachment at 1064 nm.

  16. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-03-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK-dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  17. Collective Thomson scattering measurements of the Ion Acoustic Decay Instability. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.

    1993-12-31

    We have developed an uv collective Thomson scattering system for plasma produced by a short wavelength laser. The Ion Acoustic Decay Instabilities are studied in a large ({approximately}mm) scale, hot ({approximately}keV) plasma, which is relevant to a direct-driven laser fusion plasma. The IADI primary decay process is measured by the CTS. We used a random phase plate to minimize the non uniform irradiation of the interaction laser. Nevertheless, the threshold of the most unstable mode driven by the IADI is quite low. The measured threshold value agrees favorably with the theoretical value of the large scale plasma. We have also shown that the CTS from the IADI can be a good tool for measuring a local electron temperature. The measured results agree reasonably with the SAGE computer calculations. We used the real part of the wave (frequency) to estimate T{sub e}. The real part is, in general, reliable compared to the imaginary part such as the damping, and the growth rates. We have shown that the IADI can be easily excited in a large scale, hot plasma. The IADI has potentially important applications to direct drive laser fusion, and also critical surface diagnostic.

  18. Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.

    2010-12-01

    Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.

  19. Nonlinear interaction of kinetic Alfvén waves and ion acoustic waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Yadav, Nitin; Sharma, R. P.

    2016-05-01

    Over the years, coronal heating has been the most fascinating question among the scientific community. In the present article, a heating mechanism has been proposed based on the wave-wave interaction. Under this wave-wave interaction, the high frequency kinetic Alfvén wave interacts with the low frequency ion acoustic wave. These waves are three dimensionally propagating and nonlinearly coupled through ponderomotive nonlinearity. A numerical code based on pseudo-spectral technique has been developed for solving these normalized dynamical equations. Localization of kinetic Alfvén wave field has been examined, and magnetic power spectrum has also been analyzed which shows the cascading of energy to higher wavenumbers, and this cascading has been found to have Kolmogorov scaling, i.e., k-5 /3 . A breakpoint appears after Kolmogorov scaling and next to this spectral break; a steeper scaling has been obtained. The presented nonlinear interaction for coronal loops plasmas is suggested to generate turbulent spectrum having Kolmogorov scaling in the inertial range and steepened scaling in the dissipation range. Since Kolmogorov turbulence is considered as the main source for coronal heating; therefore, the suggested mechanism will be a useful tool to understand the mystery of coronal loop heating through Kolmogorov turbulence and dissipation.

  20. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.

    PubMed

    Ehlert, Sven; Walte, Andreas; Zimmermann, Ralf

    2013-11-19

    The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown.

  1. Auroral ion acoustic wave enhancement observed with a radar interferometer system

    NASA Astrophysics Data System (ADS)

    Schlatter, N. M.; Belyey, V.; Gustavsson, B.; Ivchenko, N.; Whiter, D.; Dahlgren, H.; Tuttle, S.; Grydeland, T.

    2015-07-01

    Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EISCAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 × 500 m, and at times less than 160 m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.

  2. Head-on collision of electron acoustic solitary waves in dense magnetized electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Ruan, Shi-Sen; Cheng, Ze

    2013-07-01

    In this paper, we study the head-on collision between two electron acoustic solitary waves (EASWs) in magnetized quantum electron-positron-ion plasma. Using the extended Poincaré-Lighthill-Kuo perturbation method, we obtain the Korteweg-de Vries equations, the phase shifts and the trajectories after the head-on collision of the two EASWs. It is found that the phase shifts are significantly affected by the values of the quantum parameter H, the ion to electron number density ratio δ, the electron cyclotron to electron plasma frequency ratio α and the obliqueness θ (propagation angle).

  3. Positron-acoustic solitary waves in a magnetized electron-positron-ion plasma with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Alam, M. S.; Mamun, A. A.

    2015-05-01

    Obliquely propagating positron-acoustic solitary waves (PASWs) in a magnetized electron-positron-ion plasma (containing nonthermal hot positrons and electrons, inertial cold positrons, and immobile positive ions) are precisely investigated by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics of the PASWs are significantly modified by the effects of external magnetic field, obliqueness, nonthermality of hot positrons and electrons, temperature ratio of hot positrons and electrons, and respective number densities of hot positrons and electrons. The findings of our results can be employed in understanding the localized electrostatic structures and the characteristics of PASWs in various space and laboratory plasmas.

  4. Depth classification of underwater targets based on complex acoustic intensity of normal modes

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Jingwei; Yu, Yun; Shi, Zhenhua

    2016-04-01

    In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydrophones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the correctness of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.

  5. Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma

    NASA Astrophysics Data System (ADS)

    Saini, N. S.; Singh, Kuldeep

    2016-10-01

    A head-on collision between two dust ion acoustic solitary waves (DIASWs) travelling in the opposite direction in a weakly relativistic plasma composed of four distinct particle populations, namely, weakly relativistic ion fluid, superthermal electrons as well as positrons, and immobile dust, is investigated. By employing extended Poincaré-Lighthill-Kuo method, two Korteweg-de Vries (KdV) equations are derived. The analytical phase shift after a head-on collision of two dust ion acoustic (DIA) solitary waves is also obtained. The combined effects of relativistic factor (β), electron to positron temperature ratio (α), ion to electron temperature ratio (σ), positron to electron density ratio (P), dust density ratio (d), and superthermality of electrons as well as positrons (via κ) on the phase shifts are numerically studied. All these physical parameters have also changed the potential amplitude and the width of colliding solitary waves. It is found that the presence of superthermal electrons as well as positrons and dust grains has emphatic influence on the phase shifts and potential pulse profiles of compressive DIA solitons. Our results are general and may be helpful in understanding a head-on collision between two DIASWs in astrophysical and laboratory plasmas, especially the interaction of pulsar relativistic winds with supernova ejecta that produces the superthermal particles and relativistic ions.

  6. Properties of cylindrical and spherical heavy ion-acoustic solitary and shock structures in a multispecies plasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Shah, M. G.; Rahman, M. M.; Hossen, M. R.; Mamun, A. A.

    2016-02-01

    A theoretical investigation on heavy ion-acoustic (HIA) solitary and shock structures has been accomplished in an unmagnetized multispecies plasma consisting of inertialess kappa-distributed superthermal electrons, Boltzmann light ions, and adiabatic positively charged inertial heavy ions. Using the reductive perturbation technique, the nonplanar (cylindrical and spherical) Kortewg-de Vries (KdV) and Burgers equations have been derived. The solitary and shock wave solutions of the KdV and Burgers equations, respectively, have been numerically analyzed. The effects of superthermality of electrons, adiabaticity of heavy ions, and nonplanar geometry, which noticeably modify the basic features (viz. polarity, amplitude, phase speed, etc.) of small but finite amplitude HIA solitary and shock structures, have been carefully investigated. The HIA solitary and shock structures in nonplanar geometry have been found to distinctly differ from those in planar geometry. Novel features of our present attempt may contribute to the physics of nonlinear electrostatic perturbation in astrophysical and laboratory plasmas.

  7. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  8. Intensity-sensitive and position-resolving cavity for heavy-ion storage rings

    NASA Astrophysics Data System (ADS)

    Chen, X.; Sanjari, M. S.; Hülsmann, P.; Litvinov, Yu. A.; Nolden, F.; Piotrowski, J.; Steck, M.; Stöhlker, Th.; Walker, P. M.

    2016-08-01

    A heavy-ion storage ring can be adapted for use as an isochronous mass spectrometer if the ion velocity matches the transition energy of the ring. Due to the variety of stored ion species, the isochronous condition cannot be fulfilled for all the ions. In order to eliminate the measurement uncertainty stemming from the velocity spread, an intensity-sensitive and position-resolving cavity is proposed. In this paper we first briefly discuss the correction method for the anisochronism effect in the measurement with the cavity. Then we introduce a novel design, which is operated in the monopole mode and offset from the central beam orbit to one side. The geometrical parameters were optimized by analytic and numerical means in accordance with the beam dynamics of the future collector ring at FAIR. Afterwards, the electromagnetic properties of scaled prototypes were measured on a test bench. The results were in good agreement with the predictions.

  9. Effects of acoustic streaming from moderate-intensity pulsed ultrasound for enhancing biofilm mitigation effectiveness of drug-loaded liposomes.

    PubMed

    Ma, Dong; Green, Adam M; Willsey, Graham G; Marshall, Jeffrey S; Wargo, Matthew J; Wu, Junru

    2015-08-01

    Because biofilms have resistance to antibiotics, their control using minimum amounts of chemicals and energy becomes a critical issue particularly for resource-constrained long-term space and deep-sea explorations. This preliminary study investigates how ultrasound promoting penetration of antibiotic-loaded liposomes into alginate-based bacterial biofilms, resulting in enhanced bacterial (Ralstonia insidiosa) killing. Nano-sized liposomes are used as a delivery vehicle for the antibiotic gentamicin. Alginate-based synthetic biofilms, which are widely acknowledged as biofilm phantoms, filled with liposome solution are formed at the bottoms of six-well Petri dishes and exposed to ultrasound (frequency = 2.25 MHz, 10% duty cycle, and spatially and temporally averaged intensity ISAPA = 4.4 W/cm(2)). Gentamicin is released from liposomes after they are lysed using detergent solution (0.05% sodium dodecyl sulfate, 1.0% Triton X-100) and incubated for 20 min. The alginate biofilm is dissolved and diluted, counting of colony-forming units shows about 80% of the bacteria are killed. It has also been shown the liposome-capture density by the alginate film increases linearly with the ultrasound intensity up to ISAPA = 6.2 W/cm(2) reaching approximately threefold that without ultrasound. Measurement by using particle-image velocimetry has demonstrated the acoustic streaming with modification by thermal convection controls the enhancement of the liposome capture rate.

  10. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation

    SciTech Connect

    Zhu, X. P.; Dong, Z. H.; Han, X. G.; Xin, J. P.; Lei, M. K.

    2007-02-15

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation.

  11. Superhorizon fluctuations and acoustic oscillations in relativistic heavy-ion collisions

    SciTech Connect

    Mishra, Ananta P.; Mohapatra, Ranjita K.; Saumia, P. S.; Srivastava, Ajit M.

    2008-06-15

    We focus on the initial-state spatial anisotropies, originating at the thermalization stage, for central collisions in relativistic heavy-ion collisions. We propose that a plot of the root-mean-square values of the flow coefficients {radical}(v{sub n}{sup 2}){identical_to}v{sub n}{sup rms}, calculated in a laboratory fixed coordinate system, for a large range of n from 1 to about 30, can give nontrivial information about the initial stages of the system and its evolution. We also argue that for all wavelengths {lambda} of the anisotropy (at the surface of the plasma region) much larger than the acoustic horizon size H{sub s}{sup fr} at the freeze-out stage, the resulting values of v{sub n}{sup rms} should be suppressed by a factor of order 2H{sub s}{sup fr}/{lambda}. For noncentral collisions, these arguments naturally imply a certain amount of suppression of the elliptic flow. Further, by assuming that initial flow velocities are negligible at thermalization stage, we discuss the possibility that the resulting flow could show imprints of coherent oscillations in the plot of v{sub n}{sup rms} for subhorizon modes. For gold-gold collision at 200 GeV/nucleon center-of-mass energy, these features are expected to occur for n{>=}5, with n<4 modes showing suppression due to being superhorizon. This has strong similarities with the physics of the anisotropies of the cosmic microwave background radiation (CMBR) resulting from inflationary density fluctuations in the universe (despite important differences such as the absence of gravity effects for the heavy-ion case). It seems possible that the statistical fluctuations due to finite multiplicity may not be able to mask such features in the flow data or at least a nontrivial overall shape of the plot of v{sub n}{sup rms} may be inferred. In that case, the successes of analysis of CMBR anisotropy power spectrum to get cosmological parameters can be applied for relativistic heavy-ion collisions to learn about various relevant

  12. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    PubMed

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  13. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    PubMed

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed. PMID:20578764

  14. Ion and electron emission from silver nanoparticles in intense laser fields

    SciTech Connect

    Doeppner, T.; Fennel, Th.; Radcliffe, P.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.

    2006-03-15

    By a comparative analysis of the emission of highly charged ions and energetic electrons the interaction dynamics of intense femtosecond laser fields (10{sup 13}-10{sup 14} W/cm{sup 2}) with nanometer-sized silver clusters is investigated. Using dual laser pulses with variable optical delay the time-dependent cluster response is resolved. A dramatic increase both in the atomic charge state of the ions and the maximum electron kinetic energy is observed for a certain delay of the pulses. Corresponding Vlasov calculations on a metal cluster model system indicate that enhanced cluster ionization as well as the generation of fast electrons coincide with resonant plasmon excitation.

  15. Intense ion beam characterization and thermal modeling for beam materials processing

    SciTech Connect

    Davis, H.A.; Rej, D.J.; Waganaar, W.J.; Johnston, G.P.; Ruiz, C.L.; Schmidllap, F.A.

    1994-08-01

    The authors have developed an intense ion beam to investigate materials processing applications. Initial experiments have focused on thin film formation by depositing beam-ablated target material on substrates. Measurements of beam properties governing target ablation are presented here. Techniques include Thomson parabola particle spectroscopy to measure the ion beam atomic composition and the energy spectrum of each beam component, and thermal imaging to measure the beam incident energy density. Measurements are used as input to a computer model of the beam-target interaction. Comparison of computational results with target ablation and target energy absorption are found to be in good agreement.

  16. Focusing of intense and divergent ion beams in a magnetic mass analyzer

    SciTech Connect

    Jianlin, Ke; Changgeng, Zhou; Rui, Qiu; Yonghong, Hu

    2014-07-15

    A magnetic mass analyzer is used to determine the beam composition of a vacuum arc ion source. In the analyzer, we used the concentric multi-ring electrodes to focus the intense and divergent ion beams. We describe the principle, design, and the test results of the focusing device. The diameter of the beam profile is less than 20 mm when the accelerating voltage is 30 kV and the focusing voltage is about 2.0 kV. The focusing device has been successfully used in the magnetic mass analyzer to separate Ti{sup +}, Ti{sup 2+}, and Ti{sup 3+}.

  17. Intense ion beams as a tool for opacity measurements in warm dense matter

    SciTech Connect

    Abdallah, Joseph; Tauschwiz, An; Jacoby, J; Maruhn, J A; Novikov, V G; Tauschwitz, A; Onkels, E; Wittle, K; Rosmej, F B; Schott, R

    2009-01-01

    Opacity measurements in warm dense matter (WDM) provide a valuable benchmark for the diverging theoretical models in this regime. Heating of thin foils with intense heavy-ion beams allows one to create isolated samples of warm dense matter suitable for experimental determination of frequency-dependent opacities. A prerequisite for the measurements is the isothermal expansion of the heated foil. Hydrodynamic simulations predict that this condition is fulfilled. The analysis shows that existing ion-beam accelerators are capable to contribute to this field of research.

  18. Non-planar ion-acoustic solitary waves and their head-on collision in a plasma with nonthermal electrons and warm adiabatic ions

    SciTech Connect

    Han Jiuning; He Yonglin; Chen Yan; Zhang Kezhi; Ma Baohong

    2013-01-15

    By using the model of Cairns et al.[Geophys. Rev. Lett. 22, 2709 (1995)], the head-on collision of cylindrical/spherical ion-acoustic solitary waves in an unmagnetized non-planar plasma consisting of warm adiabatic ions and nonthermally distributed electrons is investigated. The extended Poincare-Lighthill-Kuo perturbation method is used to derive the modified Korteweg-de Vries equations for ion-acoustic solitary waves in this plasma system. The effects of the plasma geometry m, the ion to electron temperature ratio {sigma}, and the nonthermality of the electron distribution {alpha} on the interaction of the colliding solitary waves are studied. It is found that the plasma geometries have a big impact on the phase shifts of solitary waves. Also it is important to note that the phase shifts induced by the collision of compressive and rarefactive solitary waves are very different. We point out that this study is useful to the investigations about the observations of electrostatic solitary structures in astrophysical as well as in experimental plasmas with nonthermal energetic electrons.

  19. Hybrid (Vlasov-Fluid) simulation of ion-acoustic soliton chain formation and validity of Korteweg de-Vries model

    SciTech Connect

    Aminmansoor, F.; Abbasi, H.

    2015-08-15

    The present paper is devoted to simulation of nonlinear disintegration of a localized perturbation into ion-acoustic solitons train in a plasma with hot electrons and cold ions. A Gaussian initial perturbation is used to model the localized perturbation. For this purpose, first, we reduce fluid system of equations to a Korteweg de-Vries equation by the following well-known assumptions. (i) On the ion-acoustic evolution time-scale, the electron velocity distribution function (EVDF) is assumed to be stationary. (ii) The calculation is restricted to small amplitude cases. Next, in order to generalize the model to finite amplitudes cases, the evolution of EVDF is included. To this end, a hybrid code is designed to simulate the case, in which electrons dynamics is governed by Vlasov equation, while cold ions dynamics is, like before, studied by the fluid equations. A comparison between the two models shows that although the fluid model is capable of demonstrating the general features of the process, to have a better insight into the relevant physics resulting from the evolution of EVDF, the use of kinetic treatment is of great importance.

  20. Hybrid (Vlasov-Fluid) simulation of ion-acoustic soliton chain formation and validity of Korteweg de-Vries model

    NASA Astrophysics Data System (ADS)

    Aminmansoor, F.; Abbasi, H.

    2015-08-01

    The present paper is devoted to simulation of nonlinear disintegration of a localized perturbation into ion-acoustic solitons train in a plasma with hot electrons and cold ions. A Gaussian initial perturbation is used to model the localized perturbation. For this purpose, first, we reduce fluid system of equations to a Korteweg de-Vries equation by the following well-known assumptions. (i) On the ion-acoustic evolution time-scale, the electron velocity distribution function (EVDF) is assumed to be stationary. (ii) The calculation is restricted to small amplitude cases. Next, in order to generalize the model to finite amplitudes cases, the evolution of EVDF is included. To this end, a hybrid code is designed to simulate the case, in which electrons dynamics is governed by Vlasov equation, while cold ions dynamics is, like before, studied by the fluid equations. A comparison between the two models shows that although the fluid model is capable of demonstrating the general features of the process, to have a better insight into the relevant physics resulting from the evolution of EVDF, the use of kinetic treatment is of great importance.

  1. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    SciTech Connect

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.

  2. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    SciTech Connect

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-06-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10{sup 3} compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second.

  3. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  4. Time-fractional Schamel-KdV equation for dust-ion-acoustic waves in pair-ion plasma with trapped electrons and opposite polarity dust grains

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Yaling; Li, Yibao

    2016-03-01

    Nonlinear propagation of dust-ion-acoustic (DIA) waves is investigated in a one-dimensional, unmagnetized plasma containing positive ions, negative ions, trapped electrons featuring vortex-like distribution, and immobile dust grains having both positive and negative charges. Via reductive perturbation method, Agrawal's method, and Euler-Lagrange equation, the time-fractional Schamel-KdV equation under the sense of Riesz fractional derivative is derived to describe nonlinear behavior of DIA waves. The approximate solution of the time-fractional Schamel-KdV equation is constructed in terms of Jacobi elliptic functions by variational iteration method. The effect of the plasma parameters on the DIA solitary waves is also discussed in detail.

  5. Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    NASA Astrophysics Data System (ADS)

    Capdessus, Remi; d'Humières, Emmanuel; Tikhonchuk, Vladimir

    2013-11-01

    Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity.

  6. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  7. Generation of coherent ion acoustic solitary waves in inhomogeneous plasmas by an odd eigenmode of electron holes

    NASA Astrophysics Data System (ADS)

    Dokgo, Kyunghwan; Woo, Minho; Choi, Cheong-Rim; Min, Kyoung-Wook; Hwang, Junga

    2016-09-01

    Generation of coherent ion acoustic solitary waves (IASWs) in inhomogeneous plasmas by an odd eigenmode (OEM) of electron holes (EHs) is investigated using 1D electrostatic particle-in-cell (PIC) simulations. The OEM oscillates at a frequency comparable to the trapped electron bouncing frequency, as also demonstrated by Lewis' theoretical formalism about the linear eigenmode in Bernstein-Greene-Kruskal (BGK) equilibrium. The density gradient in the inhomogeneous plasmas causes asymmetry in the EH potential structure associated with the OEM, whose amplitude grows rapidly as it propagates through the density gradient region. As the ions interact with this asymmetric potential, which oscillates slowly enough for the ions to respond, they are ejected to the lower density side with a larger potential amplitude, forming a chain of IASWs coherently with the oscillation of the OEM.

  8. Dust ion-acoustic shock waves in charge varying dusty plasmas with electrons having vortexlike velocity distribution

    SciTech Connect

    Alinejad, H.; Tribeche, M.

    2010-12-15

    A weakly nonlinear analysis is carried out to investigate the properties of dust ion-acoustic shock waves in a charge varying dusty plasma with vortexlike electron distribution. We use the ionization model, hot ions with equilibrium streaming speed and a trapped electron charging current derived from the well-known orbit limited motion theory. A new modified Burger equation is derived. Besides nonlinear trapping, this equation involves two kinds of dissipation (the anomalous one inherent to nonadiabatic dust charge fluctuation and the one due to the particle loss and ionization). These two kinds of dissipation can act concurrently. The traveling wave solution has been acquired by employing the modified extended tanh-function method. The shocklike solution is numerically analyzed based on the typical numerical data from laboratory dusty plasma devices. It is found that ion temperature, trapped particles, and weak dissipations significantly modify the shock structures.

  9. The effects of Bohm potential on ion-acoustic solitary waves interaction in a nonplanar quantum plasma

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Chang

    2010-08-01

    The interaction of ion-acoustic solitary waves (IASWs) in a nonplanar unmagnetized quantum plasma consisting of electrons, positrons, and ions are studied by employing the quantum hydrodynamic model and the Korteweg-de Vries description. We provide the theoretical predictions about the phase shifts for the compressive IASWs and the rarefactive IASWs collisions, respectively. The effects of the positron to electron Fermi temperature ratio, the positron to ion number density ratio, and the quantum Bohm potential on phase shift are investigated. It is found that these factors can significantly modify the properties of the IASWs collisions. In particular, we find that the variations of phase shifts with quantum Bohm potential for two types of IASWs are apparently different. The validity of the results of present study is also pointed out.

  10. Harmonic plasma waves excitation and structure evolution of intense ion beams in background plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Hu; Wang, You-Nian

    2016-08-01

    The long-term dynamic evolutions of intense ion beams in plasmas have been investigated with two-dimensional electromagnetic particle simulations, taking into account the effect of the two-stream instability between beam ions and plasma electrons. Depending on the initial beam radial density profile and velocity distribution, ring structures may be formed in the beam edge regions. At the later stage of beam-plasma interactions, the ion beams are strongly modulated by the two-stream instability and multiple density spikes are formed in the longitudinal direction. The formation of these density spikes is shown to result from the excitation of harmonic plasma waves when the instability gets saturated. Comparisons between the beam cases with initial flat-top and Gaussian radial density profiles are made, and a higher instability growth rate is observed for the flat-top profile case.

  11. Short intense ion pulses for materials and warm dense matter research

    SciTech Connect

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  12. Short intense ion pulses for materials and warm dense matter research

    DOE PAGESBeta

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; et al

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics tomore » be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less

  13. Short Intense Ion Pulses for Materials and Warm Dense Matter Research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  14. Short intense ion pulses for materials and warm dense matter research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  15. Regimes of the interactions of high-intensity plane electromagnetic waves with electron-ion plasmas

    SciTech Connect

    Shiryaev, O. B.

    2008-01-15

    A set of fully nonlinear equations is derived from the Maxwell equations and the electron and ion fluid dynamics in one-dimensional geometry as a model of the interactions of extremely intense plane electromagnetic waves with cold locally non-neutral electron-ion plasmas. The problem is solved for phase velocities close to the speed of light numerically and with the help of asymptotic techniques. Depending on the field magnitudes, three nonlinear regimes are found to occur in the system. At plane-wave intensities inducing relativistic electron fluid dynamics but insufficient to cause significant ion motions, the model reverts to the classic Akhiezer-Polovin problem and yields its solutions describing the nonlinear self-modulation of the electromagnetic fields in plasmas. The types of regimes sustained at field strengths entailing substantial ion dynamics are the self-modulation with a splitting of the plane-wave field spectrum into a set of closely spaced bands, and the harmonics generation with a spectrum comprising broadly distanced bands. The latter two regimes correspond to a subcritical and an overcritical range of the plasma longitudinal field potentials.

  16. Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma with nonthermal electron and vortex-like ion distribution

    SciTech Connect

    Paul, A.; Mandal, G.; Amin, M. R.; Mamun, A. A.

    2013-10-15

    The nonlinear propagation of dust-acoustic (DA) waves in an unmagnetized dusty plasma consisting of nonthermal electrons, vortex-like (trapped) distributed ions and mobile negative dust have been investigated by employing the reductive perturbation technique. The effects of nonthermal electrons and trapped ions are found to modify the properties of the DA solitary waves.

  17. Intense beams from gases generated by a permanent magnet ECR ion source at PKU.

    PubMed

    Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam. PMID:22380337

  18. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    SciTech Connect

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y.

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  19. Modulational instability of ion acoustic waves in e-p-i plasmas with electrons and positrons following a q-nonextensive distribution

    SciTech Connect

    Eslami, Parvin; Mottaghizadeh, Marzieh; Pakzad, Hamid Reza

    2011-10-15

    The propagation of ion acoustic waves (IAWs) in plasmas composed of ions and nonextensive electrons and positrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability (MI) of ion acoustic waves is analyzed in detail. The effects of different ranges of the nonextensive parameter q on the MI are studied. The growth rate of the MI is also given for different values of the q parameter. It is also found that the ratio of the electron temperature to positron temperature and the ratio of the positron density to electron density modify the nature of IAWs instability and the solitary structures.

  20. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    NASA Astrophysics Data System (ADS)

    Sardar, Sankirtan; Bandyopadhyay, Anup; Das, K. P.

    2016-07-01

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KP and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.

  1. Particle-in-cell simulation of the head-on collision between two ion acoustic solitary waves in plasmas

    SciTech Connect

    Qi, Xin; Xu, Yan-xia; Duan, Wen-shan E-mail: lyang@impcas.ac.cn; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2014-08-15

    The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.

  2. Particle-in-cell simulation of the head-on collision between two ion acoustic solitary waves in plasmas

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Xu, Yan-xia; Duan, Wen-shan; Zhang, Ling-yu; Yang, Lei

    2014-08-01

    The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.

  3. Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Yufan; Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Evans, James E.; Yu, Xiaofei; Lao, David B.; Heldebrant, David J.; Nune, Satish K.; Cao, Bin; Bowden, Mark E.; Yu, Xiao-Ying; Wang, Xue-Lin; Zhu, Zihua

    2016-09-01

    In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces.

  4. Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas E.

    2002-11-01

    Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is <0.006 π mm-mrad (rms-normalized), a factor of 100 lower than is typical of conventional RF linear accelerators. Within the envelope of the entire beam, we could focus individual proton beamlets to 100 nm spatial scales. This required control of the laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.

  5. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-07-15

    Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.

  6. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  7. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  8. Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution

    SciTech Connect

    Bains, A. S.; Gill, T. S.; Tribeche, Mouloud

    2011-02-15

    The modulational instability (MI) of ion-acoustic waves (IAWs) in a two-component plasma is investigated in the context of the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method, the nonlinear Schroedinger equation (NLSE) which governs the MI of the IAWs is obtained. The presence of the nonextensive electron distribution is shown to influence the MI of the waves. Three different ranges of the nonextensive q-parameter are considered and in each case the MI sets in under different conditions. Furthermore, the effects of the q-parameter on the growth rate of MI are discussed in detail.

  9. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

    SciTech Connect

    Smits, K. Sarakovskis, A.; Grigorjeva, L.; Millers, D.; Grabis, J.

    2014-06-07

    It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb co-doping were prepared by sol-gel method and thermally annealed to check for the impact of phase transition on luminescence properties. Phase composition and grain sizes were examined by X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison of samples with different oxygen vacancy concentrations and different Nb concentrations confirmed the known assumption that oxygen vacancies are the main agents for tetragonal or cubic phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion luminescence intensity. Hence, ZrO{sub 2}:Er:Yb:Nb nanocrystals may show promise for upconversion applications.

  10. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  11. Higher-order contributions to ion-acoustic solitary waves in a multicomponent plasma consisting of warm ions and two-component nonisothermal electrons

    SciTech Connect

    Das, K.P.; Majumdar, S.R.; Paul, S.N. ||

    1995-05-01

    An integrated form of the governing equations in terms of pseudopotential higher-order nonlinear and dispersive effects is obtained by applying the reductive perturbation method for ion-acoustic solitary waves in a collisionless unmagnetized multicomponent plasma having warm ions and two-component nonisothermal electrons. The present method is advantageous because instead of solving an inhomogeneous second-order differential equation at each order, as in the standard procedure, we solve a first-order inhomogeneous equation at each order except at the lowest. The expressions of both Mach number and width of the solitary wave are obtained as a function of the amplitude of the wave for third-order nonlinear and dispersive effects. The variations of potential, width, and Mach number against soliton amplitude are shown graphically, taking into consideration the nonisothermality of two-component electrons in the plasma.

  12. Effects of nonextensivity on the electron-acoustic solitary structures in a magnetized electron‑positron‑ion plasma

    NASA Astrophysics Data System (ADS)

    Rafat, A.; Rahman, M. M.; Alam, M. S.; Mamun, A. A.

    2016-08-01

    Obliquely propagating electron-acoustic solitary waves (EASWs) in a magnetized electron-positron-ion plasma (containing nonextensive hot electrons and positrons, inertial cold electrons, and immobile positive ions) are precisely investigated by deriving the Zakharov-Kuznetsov equation. It is found that the basic features (viz. polarity, amplitude, width, phase speed, etc.) of the EASWs are significantly modified by the effects of the external magnetic field, obliqueness of the system, nonextensivity of hot positrons and electrons, ratio of the hot electron temperature to the hot positron temperature, and ratio of the cold electron number density to the hot positron number density. The findings of our results can be employed in understanding the localized electrostatic structures and the characteristics of EASWs in various astrophysical plasmas.

  13. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  14. Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution

    SciTech Connect

    Bouzit, Omar Tribeche, Mouloud E-mail: mtribeche@usthb.dz; Bains, A. S.

    2015-08-15

    Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist.

  15. Ion streaming instability of dust-acoustic surface waves in a semi-infinite Lorentzian complex plasma

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-10-01

    The growth rate of the dust-acoustic surface wave in the semi-infinite complex plasma with an ion streaming passing through the plasma at rest is analytically derived. We have adopted the Lorentzian distribution for electrons to investigate the nonthermal property of a plasma on the growth rate. We find that the growth rate of the surface wave increases as the wave number increases, and it is always larger than that of the bulk wave, especially in the realm of large wave numbers. The nonthermal effect of Lorentzian electrons in the high-energy tail is found to enhance the growth rate. It is also found that the density and speed of streaming ion would increase the growth rate. The growth rate of the surface wave is compared to that of the bulk wave for various physical parameters.

  16. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Alam, M. S.; Mamun, A. A.

    2015-06-01

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  17. Effects of nonextensivity on the electron-acoustic solitary structures in a magnetized electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Rafat, A.; Rahman, M. M.; Alam, M. S.; Mamun, A. A.

    2016-08-01

    Obliquely propagating electron-acoustic solitary waves (EASWs) in a magnetized electron-positron-ion plasma (containing nonextensive hot electrons and positrons, inertial cold electrons, and immobile positive ions) are precisely investigated by deriving the Zakharov-Kuznetsov equation. It is found that the basic features (viz. polarity, amplitude, width, phase speed, etc.) of the EASWs are significantly modified by the effects of the external magnetic field, obliqueness of the system, nonextensivity of hot positrons and electrons, ratio of the hot electron temperature to the hot positron temperature, and ratio of the cold electron number density to the hot positron number density. The findings of our results can be employed in understanding the localized electrostatic structures and the characteristics of EASWs in various astrophysical plasmas.

  18. High intensity proton injector for facility of antiproton and ion research.

    PubMed

    Berezov, R; Brodhage, R; Chauvin, N; Delferriere, O; Fils, J; Hollinger, R; Ivanova, V; Tuske, O; Ullmann, C

    2016-02-01

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research. PMID:26931923

  19. High intensity proton injector for facility of antiproton and ion research

    NASA Astrophysics Data System (ADS)

    Berezov, R.; Brodhage, R.; Chauvin, N.; Delferriere, O.; Fils, J.; Hollinger, R.; Ivanova, V.; Tuske, O.; Ullmann, C.

    2016-02-01

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.

  20. High intensity proton injector for facility of antiproton and ion research.

    PubMed

    Berezov, R; Brodhage, R; Chauvin, N; Delferriere, O; Fils, J; Hollinger, R; Ivanova, V; Tuske, O; Ullmann, C

    2016-02-01

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.

  1. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    SciTech Connect

    Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

    2004-04-15

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

  2. New Capabilities for Modeling Intense Beams in Heavy Ion Fusion Drivers

    SciTech Connect

    Friedman, A; Barnard, J J; Bieniosek, F M; Celata, C M; Cohen, R H; Davidson, R C; Grote, D P; Haber, I; Henestroza, E; Lee, E P; Lund, S M; Qin, H; Sharp, W M; Startsev, E; Vay, J L

    2003-09-09

    Significant advances have been made in modeling the intense beams of heavy-ion beam-driven Inertial Fusion Energy (Heavy Ion Fusion). In this paper, a roadmap for a validated, predictive driver simulation capability, building on improved codes and experimental diagnostics, is presented, as are examples of progress. The Mesh Refinement and Particle-in-Cell methods were integrated in the WARP code; this capability supported an injector experiment that determined the achievable current rise time, in good agreement with calculations. In a complementary effort, a new injector approach based on the merging of {approx}100 small beamlets was simulated, its basic feasibility established, and an experimental test designed. Time-dependent 3D simulations of the High Current Experiment (HCX) were performed, yielding voltage waveforms for an upcoming study of bunch-end control. Studies of collective beam modes which must be taken into account in driver designs were carried out. The value of using experimental data to tomographically ''synthesize'' a 4D beam particle distribution and so initialize a simulation was established; this work motivated further development of new diagnostics which yield 3D projections of the beam phase space. Other developments, including improved modeling of ion beam focusing and transport through the fusion chamber environment and onto the target, and of stray electrons and their effects on ion beams, are briefly noted.

  3. Direct spectroscopic observation of multiple-charged-ion acceleration by an intense femtosecond-pulse laser.

    PubMed

    Zhidkov, A G; Sasaki, A; Tajima, T; Auguste, T; D'Olivera, P; Hulin, S; Monot, P; Faenov, A Y; Pikuz, T A; Skobelev, I Y

    1999-09-01

    We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons.

  4. Rapid Melt and Resolidification of Surface Layers Using Intense, Pulsed Ion Beams Final Report

    SciTech Connect

    Renk, Timothy J. Turman, Bob Senft, Donna Sorensen, Neil R. Stinnett, Regan Greenly, John B. Thompson, Michael O. Buchheit, Rudolph G.

    1998-10-02

    The emerging technology of pulsed intense ion beams has been shown to lead to improvements in surface characteristics such as hardness and wear resistance, as well as mechanical smoothing. We report hereon the use of this technology to systematically study improvements to three types of metal alloys - aluminum, iron, and titanium. Ion beam tieatment produces a rapid melt and resolidification (RMR) of the surface layer. In the case of a predeposited thin-fihn layer, the beam mixes this layer into the substrate, Ieading to improvements that can exceed those produced by treatment of the alloy alone, In either case, RMR results in both crystal refinement and metastable state formation in the treated surface layer not accessible by conventional alloy production. Although more characterization is needed, we have begun the process of relating these microstructural changes to the surface improvements we discuss in this report.

  5. Flooded Lung Generates a Suitable Acoustic Pathway for Transthoracic Application of High Intensity Focused Ultrasound in Liver

    PubMed Central

    Lesser, Thomas Günther; Boltze, Carsten; Schubert, Harald; Wolfram, Frank

    2016-01-01

    Background: In recent years, high intensity focused ultrasound (HIFU) has gained increasing clinical interest as a non-invasive method for local therapy of liver malignancies. HIFU treatment of tumours and metastases in the liver dome is limited due to the adjacent ultrasound blocking lung. One-lung flooding (OLF) enables complete sonography of lung and adjoining organs including liver. HIFU liver ablation passing through the flooded lung could enable a direct intercostal beam path and thus improve dose deposition in liver. In this study, we evaluate the feasibility of an ultrasound guided transthoracic, transpulmonary HIFU ablation of liver using OLF. Methods: After right-side lung flooding, ultrasound guided HIFU was applied transthoracic- transpulmonary into liver to create thermal lesions in three pigs. The HIFU beam was targeted five times into liver, two times at the liver surface and three times deeper into the tissue. During autopsy examinations of lung, diaphragm and liver located in the HIFU path were performed. The focal liver lesions and lung tissue out of the beam path were examined histologically. Results: Fifteen thermal liver lesions were generated by transpulmonary HIFU sonication in all targeted regions. The lesions appeared well-demarcated in grey color with a cigar-shaped configuration. The mean length and width of the superficial and deeper lesions were 15.8 mm (range: 13-18 mm) and 5.8 mm (range: 5-7 mm), and 10.9 mm (range: 9-13 mm) and 3.3 mm (range: 2-5 mm), respectively. Histopathological, all liver lesions revealed a homogeneous thermal necrosis lacking vitality. There were no signs of damage of the overlying diaphragm and lung tissue. Conclusions: Flooded lung is a suitable pathway for applying HIFU to the liver, thus enabling a transthoracic, transpulmonary approach. The enlarged acoustic window could enhance the ablation speed for targets in the hepatic dome. PMID:27766022

  6. Biomechanical Properties of Human Corneas Following Low- and High-Intensity Collagen Cross-Linking Determined With Scanning Acoustic Microscopy

    PubMed Central

    Beshtawi, Ithar M.; Akhtar, Riaz; Hillarby, M. Chantal; O'Donnell, Clare; Zhao, Xuegen; Brahma, Arun; Carley, Fiona; Derby, Brian; Radhakrishnan, Hema

    2013-01-01

    Purpose. To assess and compare changes in the biomechanical properties of the cornea following different corneal collagen cross-linking protocols using scanning acoustic microscopy (SAM). Methods. Ten donor human corneal pairs were divided into two groups consisting of five corneal pairs in each group. In group A, five corneas were treated with low-fluence (370 nm, 3 mW/cm2) cross-linking (CXL) for 30 minutes. In group B, five corneas were treated with high-fluence (370 nm, 9 mW/cm2) CXL for 10 minutes. The contralateral control corneas in both groups had similar treatment but without ultraviolet A. The biomechanical properties of all corneas were tested using SAM. Results. In group A, the mean speed of sound in the treated corneas was 1677.38 ± 10.70 ms−1 anteriorly and 1603.90 ± 9.82 ms−1 posteriorly, while it was 1595.23 ± 9.66 ms−1 anteriorly and 1577.13 ± 8.16 ms−1 posteriorly in the control corneas. In group B, the mean speed of sound of the treated corneas was 1665.06 ± 9.54 ms−1 anteriorly and 1589.89 ± 9.73 ms−1 posteriorly, while it was 1583.55 ± 8.22 ms−1 anteriorly and 1565.46 ± 8.13 ms−1 posteriorly in the untreated control corneas. The increase in stiffness between the cross-linked and control corneas in both groups was by a factor of 1.051×. Conclusions. SAM successfully detected changes in the corneal stiffness after application of collagen cross-linking. A higher speed-of-sound value was found in the treated corneas when compared with the controls. No significant difference was found in corneal stiffness between the corneas cross-linked with low- and high-intensity protocols. PMID:23847309

  7. New analytical solutions for dust acoustic solitary and periodic waves in an unmagnetized dusty plasma with kappa distributed electrons and ions

    SciTech Connect

    Saha, Asit; Chatterjee, Prasanta

    2014-02-15

    Dust acoustic solitary waves and periodic waves in an unmagnetized dusty plasma with kappa distributed electrons and ions are investigated through non-perturbative approach. Basic equations are reduced to a system of ordinary differential equations involving electrostatic potential. After that by applying the bifurcation theory of planar dynamical systems to this system, we have studied the existence of solitary wave solutions and periodic wave solutions. New analytical solutions for the above waves are derived depending on the parametric space. Regarding the solitary and periodic wave solutions, the combined effects of temperature ratio (σ) of ions and electrons, spectral index (κ) and density ratio (p) are studied on characteristics of dust acoustic (DA) solitary waves and periodic waves. The spectral index (κ), density ratio (p) of ions and electrons and temperature ratio (σ) significantly influence the characteristics of dust acoustic solitary and periodic structures.

  8. Development of a new plasma diagnostic of the critical surface and studies of the ion acoustic decay instability using collective Thomson scattering. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Seka, W.; Drake, R.P.

    1992-08-01

    We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.l. In high power laser regime, the spectrum become broad, and the {Delta}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations.

  9. Development of a new plasma diagnostic of the critical surface and studies of the ion acoustic decay instability using collective Thomson scattering

    SciTech Connect

    Mizuno, K.; DeGroot, J.S. ); Seka, W. . Lab. of Laser Energetics); Drake, R.P. )

    1992-01-01

    We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.l. In high power laser regime, the spectrum become broad, and the {Delta}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations.

  10. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  11. A High-Intensity, RF Plasma-Sputter Negative Ion Source

    SciTech Connect

    Alton, G.D.; Bao, Y.; Cui, B.; Lohwasser, R.; Reed, C.A.; Zhang, T.

    1999-03-02

    A high-intensity, plasma-sputter negative-ion source based on the use of RF power for plasma generation has been developed that can be operated in either pulsed or dc modes. The source utilizes a high-Q, self-igniting, inductively coupled antenna system, operating at 80 MHz that has been optimized to generate Cs-seeded plasmas at low pressures (typically, <1 mTorr for Xe). The source is equipped with a 19-mm diameter spherical-sector cathode machined from the desired material. To date, the source has been utilized to generate dc negative-ion beams from a variety of species, including: C{sup {minus}}(610 {micro}A); F{sup {minus}}(100 {micro}A); Si{sup {minus}}(500 {micro}A); S{sup {minus}}(500 {micro}A); P{sup {minus}}(125 {micro}A); Cl{sup {minus}}(200 {micro}A); Ni{sup {minus}}(150 {micro}A); Cu{sup {minus}}(230 {micro}A); Ge{sup {minus}}(125 {micro}A); As{sup {minus}}(100 {micro}A); Se{sup {minus}}(200 {micro}A); Ag{sup {minus}}(70 {micro}A); Pt{sup {minus}}(125 {micro}A); Au{sup {minus}}(250 {micro}A). The normalized emittance {var_epsilon}{sub n} of the source at the 80% contour is: {var_epsilon}{sub n} = 7.5 mm.mrad.(MeV){sup 1/2}. The design principles of the source, operational parameters, ion optics, emittance and intensities for a number of negative-ion species will be presented in this report.

  12. Beam loss studies in high-intensity heavy-ion linacs

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Aseev, V. N.; Mustapha, B.

    2004-09-01

    The proposed Rare Isotope Accelerator (RIA) Facility, an innovative exotic-beam facility for the production of high-quality beams of short-lived isotopes, consists of a fully superconducting 1.4GV driver linac and a 140MV postaccelerator. To produce sufficient intensities of secondary beams the driver linac will provide 400kW primary beams of any ion from hydrogen to uranium. Because of the high intensity of the primary beams the beam losses must be minimized to avoid radioactivation of the accelerator equipment. To keep the power deposited by the particles lost on the accelerator structures below 1 W/m, the relative beam losses per unit length should be less than 10-5, especially along the high-energy section of the linac. A new beam dynamics simulation code TRACK has been developed and used for beam loss studies in the RIA driver linac. In the TRACK code, ions are tracked through the three-dimensional electromagnetic fields of every element of the linac starting from the electron cyclotron resonance (ECR) ion source to the production target. The simulation starts with a multicomponent dc ion beam extracted from the ECR. The space charge forces are included in the simulations. They are especially important in the front end of the driver linac. Beam losses are studied by tracking a large number of particles (up to 106) through the whole linac considering all sources of error such us element misalignments, rf field errors, and stripper thickness fluctuations. For each configuration of the linac, multiple sets of error values have been randomly generated and used in the calculations. The results are then combined to calculate important beam parameters, estimate beam losses, and characterize the corresponding linac configuration. To track a large number of particles for a comprehensive number of error sets (up to 500), the code TRACK was parallelized and run on the Jazz computer cluster at ANL.

  13. Microwave guiding and intense plasma generation at subcutoff dimensions for focused ion beams

    SciTech Connect

    Mathew, Jose V.; Dey, Indranuj; Bhattacharjee, Sudeep

    2007-07-23

    The mechanism of microwave guiding and plasma generation is investigated in a circular waveguide with a subcutoff dimension using pulsed microwaves of 3 GHz. During the initial phase, gaseous breakdown is induced by the exponentially decaying wave. Upon breakdown, the refractive index of the plasma medium varies radially, with the plasma density reaching close to cutoff values in the central region. At lower pressures, the waves can propagate through the peripheral plasma with a reduced wavelength, due to the collisionally broadened upper hybrid resonance region. The intense narrow cross sectional plasma bears promise for multielemental focused ion beams.

  14. Ion acceleration from the interaction of ultra-intense lasers with solid foils

    NASA Astrophysics Data System (ADS)

    Allen, Matthew Mark

    The discovery that ultra-intense laser pulses (I > 10 18 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped with deuterium. We present evidence that ions heavier than protons can be accelerated if hydrogenous contaminants that cover the laser target can be removed. We show that deuterons can be accelerated from the deuterated-palladium target, which has been radiatively heating to remove contaminants. Impinging a deuteron beam onto a tritiated-titanium catcher could lead to the development of a table-top source of short-pulse, 14-MeV fusion neutrons. We also show that by using an argon-ion sputter gun, contaminants from one side of the laser target can be selectively removed without affecting the other side. We show that irradiating a thin metallic foil with an ultra-intense laser pulse produces a proton beam with a yield of 1.5--2.5 10 11 and temperature, kT = 1.5 MeV with a maximum proton energy >9 MeV. Removing contaminants from the front surface of the laser target with an argon-ion sputter gun, had no observable effect on the proton beam. However, removing contaminants from the back surface of the laser target reduced the proton beam by two orders of magnitude to, at most, a yield of ˜10 9 and a maximum proton energy <4 MeV. Based on these observations, we conclude that the majority (>99%) of high energy protons (E > 5 MeV) from the interaction of an ultra-intense laser pulse with a thin foil originate on the back surface of the foil---as predicted by the TNSA model. Our experimental results are in agreement with PIC simulations showing back surface protons reach energies up to 13 MeV, while front

  15. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  16. Physics of neutralization of intense high-energy ion beam pulses by electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-05-15

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  17. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  18. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  19. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region.

    PubMed

    Feng, Q S; Xiao, C Z; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number kλ_{De} is small, such as kλ_{De}=0.1, the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude |eϕ/T_{e}|∼0.1, which indicates that in the condition of small kλ_{De}, the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large. PMID:27627405

  20. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Xiao, C. Z.; Wang, Q.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; He, X. T.

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number k λD e is small, such as k λD e=0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15 % when the wave amplitude |e ϕ / Te|˜0.1 , which indicates that in the condition of small k λD e , the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large.