The structure of intense vorticity in homogeneous isotropic turbulence
NASA Technical Reports Server (NTRS)
Jimenez, J.; Wray, A. A.; Saffman, P. G.; Rogallo, R. S.
1992-01-01
The structure of the intense vorticity regions is studied in numerically simulated homogeneous, isotropic, equilibrium turbulent flow fields at four different Reynolds numbers in the range Re(sub lambda) = 36-171. In accordance with previous investigators, this vorticity is found to be organized in coherent, cylindrical or ribbon-like, vortices ('worms'). A statistical study suggests that they are just especially intense features of the background, O(omega'), vorticity. Their radii scale with the Kolmogorov microscale and their lengths with the integral scale of the flow. An interesting observation is that the Reynolds number based on the circulation of the intense vortices, gamma/nu, increases monotonically with Re(sub lambda), raising the question of the stability of the structures in the limit of Re(sub lambda) approaching infinity. One and two-dimensional statistics of vorticity and strain are presented; they are non-gaussian, and the behavior of their tails depends strongly on the Reynolds number. There is no evidence of convergence to a limiting distribution in our range of Re(sub lambda), even though the energy spectra and the energy dissipation rate show good asymptotic properties in the higher Reynolds number cases. Evidence is presented to show that worms are natural features of the flow and that they do not depend on the particular forcing scheme.
Shy, S.S.; Yang, S.I.; Lin, W.J.; Su, R.C.
2005-10-01
This paper presents turbulent burning velocities, S{sub T}, of several premixed CH{sub 4}/diluent/air flames at the same laminar burning velocity S{sub L}=0.1 m/s for two equivalence ratios f=0.7 and 1.4 near flammability limits with consideration of radiation heat losses from small (N{sub 2} diluted) to large (CO{sub 2} diluted). Experiments are carried out in a cruciform burner, in which the long vertical vessel is used to provide a downward propagating premixed flame and the large horizontal vessel equipped with a pair of counterrotating fans and perforated plates can be used to generate an intense isotropic turbulence in the central region between the two perforated plates. Turbulent flame speeds are measured by four different arrangements of pairs of ion-probe sensors at different positions from the top to the bottom of the central region in the burner. It is found that the effect of gas velocity on S{sub T} measured in the central region can be neglected. Simultaneous measurements using the pressure transducer and ion-probe sensors show that the pressure rise due to turbulent burning has little influence on S{sub T}. These measurements prove the accuracy of the S{sub T} data. At f=0.7, the percentage of [(S{sub T}/S{sub L}){sub CO{sub 2}}-(S{sub T}/S{sub L}){sub N{sub 2}}]/(S{sub T}/S{sub L}){sub N{sub 2}} decreases gradually from -4 to -17% when values of u{sup '}/S{sub L} increase from 4 to 46, while at f=1.4 such decrease is much more abrupt from -19 to -53% when values of u{sup '}/S{sub L} only increase from 4 to 18. The larger the radiation losses, the smaller the values of S{sub T}. This decreasing effect is augmented by increasing u{sup '}/S{sub L} and is particularly pronounced for rich CH{sub 4} flames. When u{sup '}/S{sub L}=18, lean CO{sub 2} and/or N{sub 2}-diluted CH{sub 4} flames have much higher, 3.6 and/or 1.8 times higher, values of S{sub T}/S{sub L} than rich CO{sub 2} and/or N{sub 2}-diluted CH{sub 4} flames, respectively. It is found that
Bubbles in an isotropic homogeneous turbulent flow
NASA Astrophysics Data System (ADS)
Mancilla, F. E.; Martinez, M.; Soto, E.; Ascanio, G.; Zenit, R.
2011-11-01
Bubbly turbulent flow plays an important role in many engineering applications and natural phenomena. In this kind of flows the bubbles are dispersed in a turbulent flow and they interact with the turbulent structures. The present study focuses on the motion and hydrodynamic interaction of a single bubble in a turbulent environment. In most previous studies, the effect of bubbles on the carrier fluid was analyzed, under the assumption that the bubble size was significantly smaller that the smallest turbulence length scale. An experimental study of the effect of an isotropic and homogeneous turbulent flow on the bubble shape and motion was conducted. Experiments were performed in an isotropic turbulent chamber with nearly zero mean flow, in which a single bubble was injected. The fluid velocity was measured using the Particle Image Velocimetry (PIV) technique. The bubble deformation was determined by video processing of high-speed movies. The fluid disturbances on the bubble shape were studied for bubbles with different sizes. We will present experimental data obtained and discuss the differences among these results to try to understand the bubble - turbulence interaction mechanisms.
Some Basic Laws of Isotropic Turbulent Flow
NASA Technical Reports Server (NTRS)
Loitsianskii, L. G.
1945-01-01
An Investigation is made of the diffusion of artificially produced turbulence behind screens or other turbulence producers. The method is based on the author's concept of disturbance moment as a certain theoretically well-founded measure of turbulent disturbances.
The signature of initial production mechanisms in isotropic turbulence decay
NASA Astrophysics Data System (ADS)
Meldi, M.
2016-03-01
In the present work the quantification of the time-lasting effects of production mechanisms in homogeneous isotropic turbulence decay is addressed. The analysis is developed through the use of theoretical tools as well as numerical calculations based on the eddy damped quasinormal Markovian (EDQNM) model. In both cases a modified Lin equation is used, which accounts for production mechanisms as proposed by Meldi, Lejemble, and Sagaut ["On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence," J. Fluid Mech. 756, 816-843 (2014)]. The approaches used show that an exponential decay law can be observed if the intensity of the forcing is strong enough to drive the turbulence dynamics, before a power-law decay is eventually attained. The EDQNM numerical results indicate that the exponential regime can persist for long evolution times, longer than the observation time in grid turbulence experiments. A rigorous investigation of the self-similar behavior of the pressure spectrum has been performed by a comprehensive comparison of EDQNM data with direct numerical simulation (DNS)/experiments in the literature. While DNS and free decay EDQNM simulations suggest the need of a very high Reλ threshold in order to observe a clear -7/3 slope of the pressure inertial range, experimental data and forced EDQNM calculations indicate a significantly lower value. This observation suggests that the time-lasting effects of production mechanisms, which cannot be excluded in experiments, play a role in the lack of general agreement with classical numerical approaches. These results reinforce the urge to evolve the numerical simulation state of the art towards the prediction of realistic physical states.
NASA Astrophysics Data System (ADS)
Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph
2008-09-01
High-speed inline digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets and 50 μm diameter neutral density particles. Experiments are performed in a 50×50×70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by two dimensional particle image velocimetry. An automated tracking program has been used for measuring velocity time history of more than 17 000 droplets and 15 000 particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. The turbulent diffusion coefficient is calculated by integration of the ensemble-averaged Lagrangian velocity autocovariance. Trends of the asymptotic droplet diffusion coefficient are examined by noting that it can be viewed as a product of a mean square velocity and a diffusion time scale. To compare the effects of turbulence and buoyancy, the turbulence intensity (ui') is scaled by the droplet quiescent rise velocity (Uq). The droplet diffusion coefficients in horizontal and vertical directions are lower than those of the fluid at low normalized turbulence intensity, but exceed it with increasing normalized turbulence intensity. For most of the present conditions the droplet horizontal diffusion coefficient is higher than the vertical diffusion coefficient, consistent with trends of the droplet velocity fluctuations and in contrast to the trends of the diffusion timescales. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale are a monotonically increasing function of ui'/Uq.
Local flow structures defined by kinematic events in isotropic turbulence
NASA Technical Reports Server (NTRS)
Adrian, R. J.; Ditter, J. L.
1988-01-01
The spatial structure of turbulent motion in incompressible isotropic turbulence is investigated using a conditional average in which the conditional event specifies the local deformation tensor in addition to the local velocity vector. This average gives the best estimate of the flow field around a fixed point x given the kinematic state at x. Estimates are calculated for various kinematic states in isotropic turbulence, including pure translation, pure shear, plane strain, axisymmetric strain, and pure rotation. It is demonstrated that the large-scale motion is dominated by a vortex ring structure associated with the translational component, except at critical points of the velocity vector field.
Influence of stable stratification on three-dimensional isotropic turbulence
NASA Astrophysics Data System (ADS)
Metais, O.
The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.
Diffusion of Heat from a Line Source in Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Uberoi, Mahinder S; Corrsin, Stanley
1953-01-01
An experimental and analytical study has been made of some features of the turbulent heat diffusion behind a line heated wire stretched perpendicular to a flowing isotropic turbulence. The mean temperature distributions have been measured with systematic variations in wind speed, size of turbulence-producing grid, and downstream location of heat source. The nature of the temperature fluctuation field has been studied. A comparison of Lagrangian and Eulerian analyses for diffusion in a nondecaying turbulence yields an expression for turbulent-heat-transfer coefficient in terms of turbulence velocity and a Lagrangian "scale." the ratio of Eulerian to Lagrangian microscale has been determined theoretically by generalization of a result of Heisenberg and with arbitrary constants taken from independent sources, shows rough agreement with experimental results. A convenient form has been deduced for the criterion of interchangeability of instantaneous space and time derivatives in a flowing turbulence.
Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.
1998-01-01
A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.
Decay of Isotropic Turbulence at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Wray, A. A.
1994-01-01
Decay of isotropic turbulence is computed using direct numerical simulations. Comparisons with experimental spectra at moderate and low Reynolds numbers (R(sub lambda) less than 70) show good agreement. At moderate to high Reynolds numbers (R(sub lambda) greater 50), the spectra are found to collapse with Kolmogorov scaling at high wave numbers. However, at low Reynolds numbers (R(sub lambda) less than 50) the shape of the spectra at the Kolmogorov length scales is Reynolds number dependent. Direct simulation data from flowfields of decaying isotropic turbulence are used to compute the terms in the equation for the dissipation rate of the turbulent kinetic energy. The development of the skewness and the net destruction of the turbulence dissipation rate in the limit of low Reynolds numbers are presented. The nonlinear terms are found to remain active at surprisingly low Reynolds numbers.
Assessing the Structure of Isotropic and Anisotropic Turbulent Magnetic Fields
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Holden, Lisa; Grayson, Lindsay; Wallace, Kirk
2016-10-01
Turbulent magnetic fields permeate our universe, impacting a wide range of astronomical phenomena across all cosmic scales. A clear example is the magnetic field that threads the interstellar medium (ISM), which impacts the motion of cosmic rays through that medium. Understanding the structure of magnetic turbulence within the ISM and how it relates to the physical quantities that characterize it can thus inform our analysis of particle transport within these regions. Toward that end, we probe the structure of magentic turbulence through the use of Lyapunov exponents for a suite of isotropic and nonisotropic Alfvénic turbulence profiles. Our results provide a means of calculating a “turbulence lengthscale” that can then be connected to how cosmic rays propagate through magentically turbulent environments, and we perform such an analysis for molecular cloud environments.
Decay of isotropic turbulence generated by a mechanically agitated grid.
NASA Technical Reports Server (NTRS)
Ling, S. C.; Wan, C. A.
1972-01-01
Experimental study of weak isotropic turbulence, created by a mechanically agitated grid, has indicated that in the absence of large linear-momentum wakes the energy of turbulence relaxes very quickly into a stable self-preserving structure, which, depending on the initial Reynolds number of turbulence, decays at different constant inverse powers of time. Both the longitudinal correlation coefficients and the corresponding spectral distributions, except for the difference in the parametric constants, are of the same functional type as those found previously for a passive grid.
Charge pariticle transport in the non-isotropic turbulences
NASA Astrophysics Data System (ADS)
Sun, P.; Jokipii, J. R.
2015-12-01
The scattering and diffusion of energetic charged particles is not only important for understanding phenomena such as diffusive shock acceleration but it also is a natural probe of the statistical characteristics of magnetohydrodynamic (MHD) turbulence. Although Parker's transport equation (Parker 1965) allows us to describe the propagation of charged particles, the transport coefficients needed in the equation must be determined. Using Quasi-Linear Theory (QLT, e.g. Jokipii (1966)), one finds that coefficients can be related to the correlation function or power spectrum of homogeneous magnetic turbulence. However, different turbulence models will generally have a different influence on particle's scattering and diffusion. Among those models developed in MHD Turbulence, such as isotropic, Slab plus 2D (Tu & Marsch 1993; Gray et al 1996; Bieber et al 1996), etc. Here, using test-particle orbit simulations to calculate the transport coefficients, we study particle transport in synthesized asymmetric turbulence using the form first proposed by Goldreich & Sridhar (1995). We developed and introduce a systematic method to synthesize scale-dependent non-isotropic magnetic turbulences. We also developed and introduce a method to synthesize the 3d turbulent magnetic field from the observed solar wind time series dataset. We present the comparison of their effects on charge particle transport with previous theories and models.
Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number
NASA Astrophysics Data System (ADS)
Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui
2013-11-01
To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.
Computation of large-scale statistics in decaying isotropic turbulence
NASA Technical Reports Server (NTRS)
Chasnov, Jeffrey R.
1993-01-01
We have performed large-eddy simulations of decaying isotropic turbulence to test the prediction of self-similar decay of the energy spectrum and to compute the decay exponents of the kinetic energy. In general, good agreement between the simulation results and the assumption of self-similarity were obtained. However, the statistics of the simulations were insufficient to compute the value of gamma which corrects the decay exponent when the spectrum follows a k(exp 4) wave number behavior near k = 0. To obtain good statistics, it was found necessary to average over a large ensemble of turbulent flows.
NASA Astrophysics Data System (ADS)
Abdelsamie, Abouelmagd H.; Lee, Changhoon
2013-03-01
The current paper examines the heavy particle statistics modification by two-way interaction in particle-laden isotropic turbulence in an attempt to interpret their statistics modification using the information of modulated turbulence. Moreover, we clarify the distinctions of this modification between decaying and stationary turbulence as an extension of our previous work [A. H. Abdelsamie and C. Lee, "Decaying versus stationary turbulence in particle-laden isotropic turbulence: Turbulence modulation mechanism," Phys. Fluids 24, 015106 (2012), 10.1063/1.3678332]. Direct Numerical Simulation (DNS) was carried out using 1283 grid points at a Taylor micro-scale Reynolds number of Rλ ˜ 70. The effect of O(10^6) solid particles with a different Stokes number (St) was implemented as a point-force approximation in the Navier-Stokes equation. Various statistics associated with particle dispersion are investigated, and the auto-correlations models which was provided by Jung et al. ["Behavior of heavy particles in isotropic turbulence," Phys. Rev. E 77, 016307 (2008), 10.1103/PhysRevE.77.016307] are extended in the current paper. DNS results reveal that the two-way coupling interaction enhances the fluid and heavy particle auto-correlation functions and the alignment between their velocity vectors for all Stokes numbers in decaying and stationary turbulence, but for different reasons. The modification mechanisms of particle dispersion statistics in stationary turbulence are different from those in decaying turbulence depending on the Stokes number, particularly for St <1.
Plasma emission from isotropic Langmuir turbulence - Are radio microbursts structureless?
NASA Technical Reports Server (NTRS)
Gopalswamy, N.
1993-01-01
The brightness temperature of radio emission through the fundamental and second harmonic plasma processes is determined for isotropic Langmuir waves of low-energy density in order to account for the microbursts at meter-dekameter wavelengths. The probable cause for low levels of Langmuir turbulence is the presence of isotropic density fluctuations in the corona which isotropize the beam-generated Langmuir waves. We determined the energy density of Langmuir waves attainable from the beam-plasma instability in the presence of isotropic density fluctuations. Since the electron density fluctuations isotropize the beam-generated plasma waves, the head-on collision of plasma waves becomes efficient to produce the second harmonic plasma emission. For reasonable beam parameters, the brightness temmperature of the fundamental never exceeds 10 exp 6 K, while the second harmonic covers the observed range of microburst brightness temperatures. Thus, the microbursts are predominantly at second harmonic. This leads to an important conclusion that the microbursts are structureless, similar to a population of normal type III bursts of low polarization with no fundamental-harmonic structure.
Coagulation of monodisperse aerosol particles by isotropic turbulence
NASA Astrophysics Data System (ADS)
Chun, J.; Koch, D. L.
2005-02-01
The rate of coagulation of initially monodisperse aerosols due to isotropic turbulence is studied with particular emphasis on the effects of noncontinuum hydrodynamics and particle inertia. The prevalence of these two factors distinguishes aerosol coagulation from the coagulation of colloidal particles. The turbulent flow seen by an interacting pair of particles is modelled as a stochastically varying flow field that is a linear function of position. This approximation is valid because the 1-10 micron diameter particles for which turbulence dominates coagulation are much smaller than the smallest eddies of a typical turbulent flow field. It is shown that the finite mean-free path of the gas enhances the rate of coagulation and leads to a finite coagulation rate even in the absence of van der Waals attractions. The coupled effects of turbulent shear and Brownian motion are treated. As in the case of laminar shear flows, it is found that Brownian motion plays an important role in the coagulation process even when the Peclet number is moderately large. It is shown that particle inertia increases the coagulation rate in two ways. First, preferential concentration increases the radial distribution function on length scales intermediate between the Kolmogorov length scale and the particle diameter. Second, the greater persistence of particles' relative motion during their local interaction leads to an increase in coagulation rate with increasing particle Stokes number.
Homogeneous and Isotropic Turbulence: A Short Survey on Recent Developments
NASA Astrophysics Data System (ADS)
Benzi, Roberto; Biferale, Luca
2015-12-01
We present a detailed review of some of the most recent developments on Eulerian and Lagrangian turbulence in homogeneous and isotropic statistics. In particular, we review phenomenological and numerical results concerning the issue of universality with respect to the large scale forcing and the viscous dissipative physics. We discuss the state-of-the-art of numerical versus experimental comparisons and we discuss the dicotomy between phenomenology based on coherent structures or on statistical approaches. A detailed discussion of finite Reynolds effects is also presented.
Large Deviation Statistics of Vorticity Stretching in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2015-11-01
A key feature of 3D fluid turbulence is the stretching/re-alignment of vorticity by the action of the strain-rate. It is shown using the cumulant-generating function that cumulative vorticity stretching along a Lagrangian path in isotropic turbulence behaves statistically like a sum of i.i.d. variables. The Cramer function for vorticity stretching is computed from the JHTDB isotropic DNS (Reλ = 430) and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain-rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramer functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of largest FTLE. A model Fokker-Planck equation is constructed by approximating the viscous destruction of vorticity with a deterministic non-linear relaxation law matching conditional statistics, while the fluctuations in vorticity stretching are modelled by stochastic noise matching the statistics encoded in the Cramer function. The model predicts a stretched-exponential tail for the vorticity magnitude PDF, with good agreement for the exponent but significant error (30-40%) in the pre-factor. Supported by NSF Graduate Fellowship (DGE-1232825) and NSF Grant CMMI-0941530.
PDF Modeling of Evaporating Droplets in Isotropic Turbulence.
NASA Astrophysics Data System (ADS)
Mashayek, F.; Pandya, R. V. R.
2000-11-01
We use a statistical closure scheme of Van Kampen [1] to obtain an approximate equation for probability density function p(τ_d, t) to predict the time (t) evolution of statistical properties related to particle time constant τd of collisionless evaporating droplets suspended in isothermal isotropic turbulent flows. The resulting Fokker-Planck equation for p(τ_d, t) has non-linear, time-dependent drift and diffusion coefficients that depend on the statistical properties of droplet's slip velocity. Approximate analytical expressions for these properties are derived and the equation is solved numerically after implementing a numerical method based on path-integral formalism. Time evolution of various droplet diameter related statistical properties are then calculated and are compared with the data available from the stochastic and direct numerical simulations (DNS) studies performed by Mashayek[2]. A good agreement for temporal evolution of mean and standard deviation of particle diameter is observed with DNS results. Reference [1] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier Science Publishers, North Holland, Amsterdam, 1992. [2] Mashayek, F., Stochastic Simulations of Particle-Laden Isotropic Turbulent Flow, Int. J. Multiphase Flow, 25(8):1575-1599 (1999).
Fluctuations of thermodynamic variables in compressible isotropic turbulence
NASA Astrophysics Data System (ADS)
Donzis, Diego; Jagannathan, Shriram
2014-11-01
A distinguishing feature of compressible turbulence is the appearance of fluctuations of thermodynamic variables. While their importance is well-known in understanding these flows, some of their basic characteristics such as the Reynolds and Mach number dependence are not well understood. We use a large database of Direct Numerical Simulation of stationary compressible isotropic turbulence on up to 20483 grids at Taylor Reynolds numbers up to 450 and a range of Mach numbers (Mt ~ 0 . 1 - 0 . 6) to examine statistical properties of thermodynamic variables. Our focus is on the PDFs and moments of pressure, density and temperature. While results at low Mt are consistent with incompressible results, qualitative changes are observed at higher Mt with a transition around Mt ~ 0 . 3 . For example, the PDF of pressure changes from negatively to positively skewed as Mt increases. Similar changes are observed for temperature and density. We suggest that large fluctuations of thermodynamic variables will be log-normal at high Mt. We also find that, relative to incompressible turbulence, the correlation between enstrophy and low-pressure regions is weakened at high Mt which can be explained by the dominance of the so-called dilatational pressure.
Energy transfer and constrained simulations in isotropic turbulence
NASA Technical Reports Server (NTRS)
Jimenez, Javier
1993-01-01
The defining characteristic of turbulent flows is their ability to dissipate energy, even in the limit of zero viscosity. The Euler equations, if constrained in such a way that the velocity derivatives remain bounded, conserve energy. But when they arise as the limit of the Navier-Stokes (NS) equations, when the Reynolds number goes to infinity, there is persuasive empirical evidence that the gradients become singular as just the right function of Re for the dissipation to remain non-zero and to approach a well defined limit. It is generally believed that this limiting value of the dissipation is a property of the Euler equations themselves, independent of the particular dissipative mechanism involved, and that it can be normalized with the large scale properties of the turbulent flow (e.g. the kinetic energy per unit volume u'(exp 2)/2, and the integral scale L) without reference to the Reynolds number or to other dissipative quantities. This is usually taken to imply that the low wave number end of the energy spectrum, far from the dissipative range, is also independent of the particular mechanism chosen to dispose of the energy transfer. In the following sections, we present some numerical experiments on the effect of substituting different dissipation models into the truncated Euler equations. We will see that the effect is mainly felt in the 'near dissipation' range of the energy spectrum, but that this range can be quite wide in some cases, contaminating a substantial range of wave numbers. In the process, we will develop a 'practical' approximation to the subgrid energy transfer in isotropic turbulence, and we will gain insight into the structure of the nonlinear interactions among turbulent scales of comparable size, and into the nature of energy backscatter. Some considerations on future research directions are offered at the end.
Coalescence of Aerosol Droplets in an Isotropic Turbulent Flow
NASA Astrophysics Data System (ADS)
Koch, Donald L.; Duru, Paul; Chun, Jaehun; Cohen, Claude
2003-11-01
Turbulence-induced coagulation or coalescence influences the aerosol synthesis of fine particles, the formation of particulate air pollutants and the growth of rain drops. We observed the rate of coalescence of an initially monodisperse aerosol of micron-sized drops in the isotropic turbulent flow field produced by an oscillating grid. The drop size is measured using phase-Doppler anemometry and the number density is measured with a light attenuation probe. The turbulent flow is characterized using laser Doppler and hot wire anemometry. Coalescence is a second-order rate process with a rate coefficient that is found to be approximately proportional the product of the Kolmogorov shear rate and the cube of the particle radius as reflected in the ideal coalescence rate for non-interacting particles predicted by Saffman and Turner and Brunk, Koch, and Lion. A more detailed understanding of the coalescence process is obtained through simulations of the relative trajectories of pairs of drops interacting through non-continuum hydrodynamic interactions and van der Waals attractions. The theory and experiments are in good agreement and indicate that the collision efficiency (ratio of the actual to the ideal rate constant) is of order one and is considerably larger than that observed in particle liquid systems. The larger collision efficiency results from the finite mean-free path of the gas and the larger ratio of van der Waals to viscous forces in a gas compared to that in a liquid. For the smallest drops and Kolmogorov shear rates considered in our experiments, the coupled effects of Brownian motion and turbulent shear are important. Our simulations show that Brownian motion has a significant influence on the coalescence rate for Peclet numbers as large as 10-50.
Dynamics of Aerosol Particles in Stationary, Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Collins, Lance R.; Meng, Hui
2004-01-01
A detailed study of the dynamics of sub-Kolmogorov-size aerosol particles in stationary isotropic turbulence has been performed. The study combined direct numerical simulations (DNS; directed by Prof. Collins) and high-resolution experimental measurements (directed by Prof. Meng) under conditions of nearly perfect geometric and parametric overlap. The goal was to measure the accumulation of particles in low-vorticity regions of the flow that arises from the effect commonly referred to as preferential concentration. The grant technically was initiated on June 13, 2000; however, funding was not available until July 11, 2000. The grant was originally awarded to Penn State University (numerical simulations) and SUNY-Buffalo (experiments); however, Prof. Collins effort was moved to Cornell University on January 2002 when he joined that university. He completed the study there. A list of the specific tasks that were completed under this study is presented.
Non-isotropic turbulence effects on spray combustion
NASA Technical Reports Server (NTRS)
Kim, Y. M.; Shang, H. M.; Chen, C. P.
1991-01-01
A numerical model for the prediction of local properties of statistically stationary spray-combusting flows is evaluated by comparison with experimental data. To appraise the relative performance of turbulence models, computations were carried out by the k-epsilon model and the algebraic stress model. The present numerical results show the qualitative agreement with experimental data. In terms of overall local flow properties, the algebraic stress model improves a degree of conformity to the experimental data due to its ability to introduce the nonisotropic turbulence effects. Two swirl numbers are considered to investigate the influence of swirl on the droplet evaporation and trajectories, and the effects of droplet/turbulence interactions in flow properties. It is found that the large swirl produces a higher evaporationn rate, and more intensive turbulent mixing and burning. The discrepancies observed in the results are attributed mainly to uncertainties in the initial spray size and velocity distributions, the droplet/wall impingement interaction, the combustion model with the fast chemistry and the turbulence models dealing with the strong streamline curvature and complex interactions between the dispersed droplets and the continuous gas-phase flows.
NASA Technical Reports Server (NTRS)
Eaton, John; Hwang, Wontae; Cabral, Patrick
2002-01-01
This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact
Preferential Rotation of Chiral Dipoles in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Kramel, Stefan; Voth, Greg A.; Tympel, Saskia; Toschi, Federico
2016-10-01
We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.
Preferential concentration of heavy particles in compressible isotropic turbulence
NASA Astrophysics Data System (ADS)
Zhang, Qingqing; Liu, Han; Ma, Zongqiang; Xiao, Zuoli
2016-05-01
Numerical simulations of particle-laden compressible isotropic turbulence with Taylor Reynolds number Reλ ˜ 100 are conducted by using a high-order turbulence solver, which is based on high-order compact finite difference method in the whole flow domain and localized artificial diffusivities for discontinuities. For simplicity, only one-way coupling (i.e., the influence of fluid on particles) between the carrier flow and particles is considered. The focus is on the study of the preferential concentration of heavy particles in dissipative scale of turbulence and the underlying mechanisms. Firstly, the effect of Stokes number (St) on the particle distribution in flow of Mach 1.01 (referred to as high-Mach-number case in this study) is investigated as a necessary supplementation for the previous studies in incompressible and weakly compressible flows. It turns out that heavy particles with Stokes number close to unity exhibit the strongest preferential concentration, which is in agreement with the observation in incompressible flow. All types of heavy particles have a tendency to accumulate in high-density regions of the background flow. While all kinds of particles dominantly collect in low-vorticity regions, intermediate and large particles (St = 1 and St = 5) are also found to collect in high-vorticity regions behind the randomly formed shocklets. Secondly, the impact of turbulent Mach number (Mt) (or the compressibility) of the carrier flow on the spatial distribution of the particles with St = 1 is discussed using the simulated compressible flows with Mt being 0.22, 0.68, and 1.01, respectively. In low-Mach-number flow, particles tend to concentrate in regions of low vorticity due to the centrifuge effect of vortices and particle concentration decreases monotonically with the increasing vorticity magnitude. As Mach number increases, the degree of particle clustering is slightly weakened in low-vorticity regions but is enhanced in high-vorticity regions, which
The role of wall confinement on the decay rate of an initially isotropic turbulent field
NASA Astrophysics Data System (ADS)
Dowling, David R.; Movahed, Pooya; Johnsen, Eric
2014-11-01
The problem of freely decaying isotropic turbulence has been the subject of intensive research during the past few decades due to its importance for modeling purposes. While isotropy and periodic boundary conditions assumptions simplify the analysis, large-scale anisotropy (e.g., caused by rotation, shear, acceleration or walls) is in practice present in most turbulent flows and affects flow dynamics across different scales, as well as the kinetic energy decay. We investigate the role of wall confinement and viscous dissipation on the decay rate of an initially isotropic field for confining volumes of different aspect ratios. We first generate an isotropic velocity field in a cube with periodic boundary conditions. Next, using this field, we change the boundary conditions to no-slip walls on all sides. These walls restrict the initial field to a confined geometry and also provide an additional viscous dissipation mechanism. The problem is considered for confining volumes of different aspect ratios by adjusting the initial field. The change in confining volume introduces an additional length scale to the problem. Direct numerical simulation of the proposed set-up is used to verify the scaling arguments for the decay rate of kinetic energy. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.
Symmetries and the approach to statistical equilibrium in isotropic turbulence
NASA Astrophysics Data System (ADS)
Clark, Timothy T.; Zemach, Charles
1998-11-01
The relaxation in time of an arbitrary isotropic turbulent state to a state of statistical equilibrium is identified as a transition to a state which is invariant under a symmetry group. We deduce the allowed self-similar forms and time-decay laws for equilibrium states by applying Lie-group methods (a) to a family of scaling symmetries, for the limit of high Reynolds number, as well as (b) to a unique scaling symmetry, for nonzero viscosity or nonzero hyperviscosity. This explains why a diverse collection of turbulence models, going back half a century, arrived at the same time-decay laws, either through derivations embedded in the mechanics of a particular model, or through numerical computation. Because the models treat the same dynamical variables having the same physical dimensions, they are subject to the same scaling invariances and hence to the same time-decay laws, independent of the eccentricities of their different formulations. We show in turn, by physical argument, by an explicitly solvable analytical model, and by numerical computation in more sophisticated models, that the physical mechanism which drives (this is distinct from the mathematical circumstance which allows) the relaxation to equilibrium is the cascade of turbulence energy toward higher wave numbers, with the rate of cascade approaching zero in the low wave-number limit and approaching infinity in the high wave-number limit. Only the low-wave-number properties of the initial state can influence the equilibrium state. This supplies the physical basis, beyond simple dimensional analysis, for quantitative estimates of relaxation times. These relaxation times are estimated to be as large as hundreds or more times the initial dominant-eddy cycle times, and are determined by the large-eddy cycle times. This mode of analysis, applied to a viscous turbulent system in a wind tunnel with typical initial laboratory parameters, shows that the time necessary to reach the final stage of decay is
Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.
2010-10-10
Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.
Large-deviation statistics of vorticity stretching in isotropic turbulence.
Johnson, Perry L; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.
Joint Statistics of Finite Time Lyapunov Exponents in Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry; Meneveau, Charles
2014-11-01
Recently, the notion of Lagrangian Coherent Structures (LCS) has gained attention as a tool for qualitative visualization of flow features. LCS visualize repelling and attracting manifolds marked by local ridges in the field of maximal and minimal finite-time Lyapunov exponents (FTLE), respectively. To provide a quantitative characterization of FTLEs, the statistical theory of large deviations can be used based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms (with finite-size correction). We generalize the formalism to characterize the joint distributions of the two independent FTLEs in 3D. The ``joint Cramér function of turbulence'' is measured from the Johns Hopkins Turbulence Databases (JHTDB) isotropic simulation at Reλ = 433 and results are compared with those computed using only the symmetric part of the velocity gradient tensor, as well as with those of instantaneous strain-rate eigenvalues. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude and the most likely ratio of FTLEs changes from 4:1:-5 to 8:3:-11, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. Supported by NSF Graduate Fellowship (DGE-1232825), a JHU graduate Fellowship, and NSF Grant CMMI-0941530. CM thanks Prof. Luca Biferale for useful discussions on the subject.
Large-deviation statistics of vorticity stretching in isotropic turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry L.; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Reλ=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.
Large-deviation statistics of vorticity stretching in isotropic turbulence.
Johnson, Perry L; Meneveau, Charles
2016-03-01
A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor. PMID:27078458
Dynamics of non-local interactions in isotropic turbulence
NASA Astrophysics Data System (ADS)
Maqui, Agustin; Donzis, Diego
2011-11-01
A large database of isotropic turbulence with Rλ ranging from 38 to 1100 and resolutions up to 40963 is used to study aspects of the dynamic response of the small scales to forcing at the largest scales. Time correlations of spectra and transfer show that changes in the large scales have an immediate effect on the smallest dissipative scales. Furthermore, these non-local interactions are strongly anti-correlated for wavenumbers beyond the so-called bottleneck. While the applied large-scale forcing is Gaussian, the probability density function of individual modes of the energy spectrum is skewed for all wavenumbers. On the other hand, transfer spectra shows departures from Gaussianity only at high wavenumbers. Short-term behavior is studied through the evolution of the ratio of spectral levels at different wavenumbers as forcing is abruptly introduced or discontinued. All results demonstrate the direct connection between distant scales. More importantly, the observed trends do not appear to decrease as the Reynolds numbers increases. Different models for the spectral transfer are shown to capture some of the observed behavior. Further consequences of the results will be discussed.
Statistics of pressure and pressure gradient in homogeneous isotropic turbulence
NASA Technical Reports Server (NTRS)
Gotoh, T.; Rogallo, R. S.
1994-01-01
The statistics of pressure and pressure gradient in stationary isotropic turbulence are measured within direct numerical simulations at low to moderate Reynolds numbers. It is found that the one-point pdf of the pressure is highly skewed and that the pdf of the pressure gradient is of stretched exponential form. The power spectrum of the pressure P(k) is found to be larger than the corresponding spectrum P(sub G)(k) computed from a Gaussian velocity field having the same energy spectrum as that of the DNS field. The ratio P(k)/P(sub G)(k), a measure of the pressure-field intermittence, grows with wavenumber and Reynolds number as -R(sub lambda)(exp 1/2)log(k/k(sub d)) for k less than k(sub d)/2 where k(sub d) is the Kolmogorov wavenumber. The Lagrangian correlations of pressure gradient and velocity are compared and the Lagrangian time scale of the pressure gradient is observed to be much shorter than that of the velocity.
Interacting scales and energy transfer in isotropic turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE
1993-01-01
The dependence of the energy transfer process on the disparity of the interacting scales is investigated in the inertial and far-dissipation ranges of isotropic turbulence. The strategy for generating the simulated flow fields and the choice of a disparity parameter to characterize the scaling of the interactions is discussed. The inertial range is found to be dominated by relatively local interactions, in agreement with the Kolmogorov assumption. The far-dissipation is found to be dominated by relatively non-local interactions, supporting the classical notion that the far-dissipation range is slaved to the Kolmogorov scales. The measured energy transfer is compared with the classical models of Heisenberg, Obukhov, and the more detailed analysis of Tennekes and Lumley. The energy transfer statistics measured in the numerically simulated flows are found to be nearly self-similar for wave numbers in the inertial range. Using the self-similar form measured within the limited scale range of the simulation, an 'ideal' energy transfer function and the corresponding energy flux rate for an inertial range of infinite extent are constructed. From this flux rate, the Kolmogorov constant is calculated to be 1.5, in excellent agreement with experiments.
Energy transfer and dissipation in forced isotropic turbulence.
McComb, W D; Berera, A; Yoffe, S R; Linkmann, M F
2015-04-01
A model for the Reynolds-number dependence of the dimensionless dissipation rate C(ɛ) was derived from the dimensionless Kármán-Howarth equation, resulting in C(ɛ)=C(ɛ,∞)+C/R(L)+O(1/R(L)(2)), where R(L) is the integral scale Reynolds number. The coefficients C and C(ɛ,∞) arise from asymptotic expansions of the dimensionless second- and third-order structure functions. This theoretical work was supplemented by direct numerical simulations (DNSs) of forced isotropic turbulence for integral scale Reynolds numbers up to R(L)=5875 (R(λ)=435), which were used to establish that the decay of dimensionless dissipation with increasing Reynolds number took the form of a power law R(L)(n) with exponent value n=-1.000±0.009 and that this decay of C(ɛ) was actually due to the increase in the Taylor surrogate U(3)/L. The model equation was fitted to data from the DNS, which resulted in the value C=18.9±1.3 and in an asymptotic value for C(ɛ) in the infinite Reynolds-number limit of C(ɛ,∞)=0.468±0.006. PMID:25974586
Energy transfer and dissipation in forced isotropic turbulence.
McComb, W D; Berera, A; Yoffe, S R; Linkmann, M F
2015-04-01
A model for the Reynolds-number dependence of the dimensionless dissipation rate C(ɛ) was derived from the dimensionless Kármán-Howarth equation, resulting in C(ɛ)=C(ɛ,∞)+C/R(L)+O(1/R(L)(2)), where R(L) is the integral scale Reynolds number. The coefficients C and C(ɛ,∞) arise from asymptotic expansions of the dimensionless second- and third-order structure functions. This theoretical work was supplemented by direct numerical simulations (DNSs) of forced isotropic turbulence for integral scale Reynolds numbers up to R(L)=5875 (R(λ)=435), which were used to establish that the decay of dimensionless dissipation with increasing Reynolds number took the form of a power law R(L)(n) with exponent value n=-1.000±0.009 and that this decay of C(ɛ) was actually due to the increase in the Taylor surrogate U(3)/L. The model equation was fitted to data from the DNS, which resulted in the value C=18.9±1.3 and in an asymptotic value for C(ɛ) in the infinite Reynolds-number limit of C(ɛ,∞)=0.468±0.006.
Preferential concentration of poly-dispersed droplets in stationary isotropic turbulence
NASA Astrophysics Data System (ADS)
Lian, Huan; Charalampous, Georgios; Hardalupas, Yannis
2013-05-01
The preferential concentration of poly-dispersed water droplets with a range of Sauter mean diameters between 25 and 95 μm has been studied experimentally in stationary homogeneous isotropic turbulence with four different intensities, characterized by turbulent Reynolds numbers based on Taylor microscale, of Re λ = 107, 145, 185 and 213. The image processing method of recorded scattered light intensity images from droplets is described and its ability to identify droplets is assessed in terms of image quality. The influence of image processing parameters on measured characteristics of droplet clustering is evaluated. The radial distribution function (RDF) and 2D Voronoï analysis quantified the magnitude of preferential droplet concentration and the results from both methods agreed well. RDF showed that the characteristic length scale of resulting droplet clusters varies between 20 and 30 times the Kolmogorov length scale over all the experimental conditions. It was found that the preferential concentration is more appropriately described by a Stokes number, based on various representative diameters, namely the arithmetic mean diameter, D 10, or the diameter, DN60 %, below which 60 % of the total droplet number in the spray is present, or the diameter, DV5 %, which carries 5 % of the total liquid volume in the spray. The magnitude of droplet preferential concentration was maximum when the proposed Stokes number was around unity for all experimental conditions. Little dependence of the magnitude of preferential concentration on turbulent Reynolds numbers was found, in contrast to the recent DNS findings (Tagawa et al. in J Fluid Mech 693:201-215, 2012).
NASA Astrophysics Data System (ADS)
Donzis, D. A.; Yeung, P. K.; Sreenivasan, K. R.
2008-04-01
Existing experimental and numerical data suggest that the turbulence energy dissipation and enstrophy (i.e., the square of vorticity) possess different scaling properties, while available theory suggests that there should be no differences at sufficiently high Reynolds numbers. We have performed a series of direct numerical simulations with up to 20483 grid points where advanced computational power is used to increase the Reynolds number (up to 650 on the Taylor scale) or to resolve the small scales better (down to 1/4 of a Kolmogorov scale). Our primary goal is to assess the differences and similarities between dissipation and enstrophy. Special attention is paid to the effects of small-scale resolution on the quality and reliability of the data, in view of recent theoretical work [V. Yakhot and K. R. Sreenivasan, "Anomalous scaling of structure functions and dynamic constraints on turbulence simulations," J. Stat. Phys. 121, 823 (2005)] which stipulates the resolution needed to obtain a moment of a given order. We also provide error estimates as a function of small-scale resolution. Probability density functions of dissipation and enstrophy at high Reynolds number reveal the presence of extreme events several thousands times of the mean. The extreme events in dissipation and enstrophy fields appear to scale alike, substantially overlap in space, and are nearly statistically isotropic, while fluctuations of moderate amplitudes, at least for the present Reynolds numbers, show persistent differences. Conditional sampling shows that intense dissipation is likely to be accompanied by similarly intense enstrophy, but intense enstrophy is not always accompanied by intense dissipation.
Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence
NASA Technical Reports Server (NTRS)
Domaradzki, J. Andrzej; Rogallo, Robert S.
1990-01-01
Detailed computations were made of energy transfer among the scales of motion in incompressible turbulent fields at low Reynolds numbers, generated by direct numerical simulations. It was observed that, although the transfer resulted from triad interactions that were nonlocal in k space, the energy always transferred locally. The energy transfer calculated from the eddy-damped quasi-normal Markovian (EDQNM) theory of turbulence at low Reynolds numbers is in excellent agreement with the results of the numerical simulations. At high Reynolds numbers, the EDQNM theory predicts the same transfer mechanism in the inertial range that is observed at low Reynolds numbers.
Energy transfer in isotropic turbulence at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Domaradzki, J. A.; Rogallo, R. S.
1988-01-01
Detailed measurements were made of energy transfer among the scales of motion in incompressible turbulent fields at low Reynolds numbers generated by direct numerical simulation. It was observed that although the transfer resulted from triad interactions that were non-local in k space, the energy always transferred locally. The results are consistent with the notion of non-uniform advection of small weak eddies by larger and stronger ones, similar to transfer processes in the far dissipation range at high Reynolds numbers.
Depression of Nonlinearity in Decaying Isotropic MHD Turbulence
Servidio, S.; Matthaeus, W. H.; Dmitruk, P.
2008-03-07
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency.
A detailed look at turbulence intensity
Technology Transfer Automated Retrieval System (TEKTRAN)
The effect of turbulence intensity on energy capture by small wind turbines has been a point of debate in the last few years. Claims of 25% de-rating of the power curve for turbines installed at sites with high turbulence are not uncommon. Over the years, many attempts have been made to model the ef...
Mixing of a passive scalar in isotropic and sheared homogeneous turbulence
NASA Technical Reports Server (NTRS)
Shirani, E.; Ferziger, J. H.; Reynolds, W. C.
1981-01-01
In order to calculate the velocity and scalar fields, the three dimensional, time-dependent equations of motion and the diffusion equation were solved numerically. The following cases were treated: isotropic, homogeneous turbulence with decay of a passive scalar; and homogeneous turbulent shear flow with a passive scalar whose mean varies linearly in the spanwise direction. The solutions were obtained at relatively low Reynolds numbers so that all of the turbulent scales could be resolved without modeling. Turbulent statistics such as integral length scales, Taylor microscales, Kolmogorov length scale, one- and two-point correlations of velocity-velocity and velocity-scalar, turbulent Prandtl/Schmidt number, r.m.s. values of velocities, the scalar quantity and pressure, skewness, decay rates, and decay exponents were calculated. The results are compared with the available expermental results, and good agreement is obtained.
Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence
NASA Astrophysics Data System (ADS)
Fang, L.; Bos, W. J. T.; Jin, G. D.
2015-12-01
We show by direct numerical simulation (DNS) that the Lagrangian cross correlation of velocity gradients in homogeneous isotropic turbulence increases at short times, whereas its auto-correlation decreases. Kinematic considerations allow to show that two invariants of the turbulent velocity field determine the short-time velocity gradient correlations. In order to get a more intuitive understanding of the dynamics for longer times, heuristic models are proposed involving the combined action of local shear and rotation. These models quantitatively reproduce the effects and disentangle the different physical mechanisms leading to the observations in the DNS.
NASA Technical Reports Server (NTRS)
Ling, S. C.; Saad, A.
1977-01-01
The energetic isotropic turbulence generated by a waterfall of low head was found to be developed in part through the unstable two-phase flow of entrained air bubbles. The resulting turbulent field had a turbulent Reynolds number in excess of 20,000 and maintained a self-similar structure throughout the decay period studied. The present study may provide some insight into the structure of turbulence produced by breaking waves over the ocean.
NASA Astrophysics Data System (ADS)
Canet, Léonie; Delamotte, Bertrand; Wschebor, Nicolás
2016-06-01
We investigate the regime of fully developed homogeneous and isotropic turbulence of the Navier-Stokes (NS) equation in the presence of a stochastic forcing, using the nonperturbative (functional) renormalization group (NPRG). Within a simple approximation based on symmetries, we obtain the fixed-point solution of the NPRG flow equations that corresponds to fully developed turbulence both in d =2 and 3 dimensions. Deviations to the dimensional scalings (Kolmogorov in d =3 or Kraichnan-Batchelor in d =2 ) are found for the two-point functions. To further analyze these deviations, we derive exact flow equations in the large wave-number limit, and show that the fixed point does not entail the usual scale invariance, thereby identifying the mechanism for the emergence of intermittency within the NPRG framework. The purpose of this work is to provide a detailed basis for NPRG studies of NS turbulence; the determination of the ensuing intermittency exponents is left for future work.
Canet, Léonie; Delamotte, Bertrand; Wschebor, Nicolás
2016-06-01
We investigate the regime of fully developed homogeneous and isotropic turbulence of the Navier-Stokes (NS) equation in the presence of a stochastic forcing, using the nonperturbative (functional) renormalization group (NPRG). Within a simple approximation based on symmetries, we obtain the fixed-point solution of the NPRG flow equations that corresponds to fully developed turbulence both in d=2 and 3 dimensions. Deviations to the dimensional scalings (Kolmogorov in d=3 or Kraichnan-Batchelor in d=2) are found for the two-point functions. To further analyze these deviations, we derive exact flow equations in the large wave-number limit, and show that the fixed point does not entail the usual scale invariance, thereby identifying the mechanism for the emergence of intermittency within the NPRG framework. The purpose of this work is to provide a detailed basis for NPRG studies of NS turbulence; the determination of the ensuing intermittency exponents is left for future work. PMID:27415353
NASA Astrophysics Data System (ADS)
Gopalan, Balaji; Katz, Joseph
2008-11-01
This study investigates experimentally, the effects of adding dispersants on the breakup of crude oil droplets in turbulent flows during oceanic spills. The current measurements are performed in a nearly homogeneous and isotropic turbulence facility, the central portion of which is characterized using 2-D PIV. Sample crude oil from Alaska National Slope is mixed with dispersant COREXIT 9527 and injected into the central portion of the turbulent facility. High speed, in-line digital holographic cinematography is utilized to visualize the breakup of droplets at high spatial and temporal resolution. We observe that, in some cases, after the droplet breaks up, the elongated portion of the droplet does not recoil, leaving an elongated tail, probably due to the low local surface tension. At high dispersant to oil ratios, extremely thin tails extend from the droplet, and are stretched by the flow. Breakup of these thin threads produces very small oil droplets, a desired effect during cleanup of oil spill.
Turbulence generation through intense kinetic energy sources
NASA Astrophysics Data System (ADS)
Maqui, Agustin F.; Donzis, Diego A.
2016-06-01
Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.
On the dynamics of small-scale vorticity in isotropic turbulence
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Wray, A. A.
1994-01-01
It was previously shown that the strong vorticity in isotropic turbulence is organized into tubular vortices ('worms') whose properties were characterized through the use of full numerical simulations at several Reynolds numbers. At the time most of the observations were kinematic, and several scaling laws were discovered for which there was no theoretical explanation. In the meantime, further analysis of the same fields yielded new information on the generation of the vortices, and it was realized that even if they had to be formed by stretching, they were at any given moment actually compressed at many points of their axes. This apparent contradiction was partially explained by postulating axial inertial waves induced by the nonuniformity of the vortex cores, which helped to 'spread' the axial strain and allowed the vortices to remain compact even if not uniformly stretched. The existence of such solutions was recently proved numerically. The present report discusses a set of new numerical simulations of isotropic turbulence, and a reanalysis of the old ones, in an effort to prove or disprove the presence of these waves in actual turbulent flows and to understand the dynamics, as opposed to the kinematics, of the vortices.
NASA Astrophysics Data System (ADS)
Xanthos, Savvas; Gong, Minwei; Andreopoulos, Yiannis
2010-01-01
Further analysis of the experimental data of the velocity gradient tensor first published by Xanthos et al. [J. Fluid Mech. 584, 301 (2007)] has been carried out and new results are reported here to provide additional insights on the effects of expansion waves interacting with isotropic turbulence. The flow field was generated by the reflection of an incoming shock wave at the open end of a large scale shock tube facility which interacted with the induced flow behind the incident shock wave which passed through a turbulence generating grid. In the present configuration the interaction is free from streamline curvature effects, which cause additional effects on turbulence. The strength of the applied expansive straining was 240 s-1. Rectangular pattern grids of different mesh sizes were used to generate isotropic and homogeneous turbulence with turbulent Reynolds number Reλ based on Taylor's microscale between 450 and 488. Lateral vorticity fluctuations and fluctuations of enstrophy and all stretching vector components are drastically reduced during the interaction. Residual attenuation in the postinteraction flow field was found only in the lateral vorticity fluctuations and in the longitudinal stretching term S11Ω1. Helicity and the helicity angle were computed from the data and the orientation angle of the vorticity vector in reference to the velocity vector was determined. Large fluctuations of the helicity angle were observed which extend from 0° to 180° with most probable values close to 30° and 130° and a mean value of 85°. Rotational dissipation rate was found to be high at these angles. The time-dependent signals of enstrophy, vortex stretching/tilting vector, and dissipation rate were found to exhibit a rather strong intermittent behavior which is characterized by high amplitude bursts followed by low level activities. It was found that the observed strong dissipative events are mostly associated with strong activities in the longitudinal stretching
Optical intensity interferometry through atmospheric turbulence
NASA Astrophysics Data System (ADS)
Tan, P. K.; Chan, A. H.; Kurtsiefer, C.
2016-04-01
Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.
Velocity Fluctuations in the Interaction of Homogeneous, Isotropic Turbulence and a Detonation Wave
NASA Astrophysics Data System (ADS)
Hussein, S. M.; Blaiszik, E. M.; Baydar, E.; Lu, F. K.
The canonical problem of a shock wave interacting with homogeneous, isotropic turbulence (STI) has been well studied for over 40 years [1] and remains a topic of interest [2, 3]. One of the motivations for studying this canonical STI problem is that it captures key physics of the complex viscous-inviscid interaction that occur in other more realistic situations such as shock/boundary-layer interactions. A relatively less well-studied problem is the interaction with a detonation wave (DTI), with initial studies dating to almost as far back [4, 5].
NASA Astrophysics Data System (ADS)
Fang, L.; Zhang, Y. J.; Fang, J.; Zhu, Y.
2016-08-01
We show by direct numerical simulations (DNSs) that in different types of isotropic turbulence, the fourth-order statistical invariants have approximately a linear relation, which can be represented by a straight line in the phase plane, passing two extreme states: the Gaussian state and the restricted Euler state. Also, each DNS case corresponds to an equilibrium region that is roughly Reynolds-dependent. In addition, both the time reversal and the compressibility effect lead to nonequilibrium transition processes in this phase plane. This observation adds a new restriction on the mean-field theory.
Mixed-derivative skewness for high Prandtl and Reynolds numbers in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Briard, Antoine; Gomez, Thomas
2016-08-01
The mixed-derivative skewness Suθ of a passive scalar field in high Reynolds and Prandtl numbers decaying homogeneous isotropic turbulence is studied numerically using eddy-damped quasi-normal Markovian closure, for Reλ ≥ 103 up to Pr = 105. A convergence of Suθ for Pr ≥ 103 is observed for any high enough Reynolds number. This asymptotic high Pr regime can be interpreted as a saturation of the mixing properties of the flow at small scales. The decay of the derivative skewnesses from high to low Reynolds numbers and the influence of large scales initial conditions are investigated as well.
Fang, L; Zhang, Y J; Fang, J; Zhu, Y
2016-08-01
We show by direct numerical simulations (DNSs) that in different types of isotropic turbulence, the fourth-order statistical invariants have approximately a linear relation, which can be represented by a straight line in the phase plane, passing two extreme states: the Gaussian state and the restricted Euler state. Also, each DNS case corresponds to an equilibrium region that is roughly Reynolds-dependent. In addition, both the time reversal and the compressibility effect lead to nonequilibrium transition processes in this phase plane. This observation adds a new restriction on the mean-field theory. PMID:27627399
The upper atmosphere of Uranus - A critical test of isotropic turbulence models
NASA Technical Reports Server (NTRS)
French, R. G.; Elliot, J. L.; Sicardy, B.; Nicholson, P.; Matthews, K.
1982-01-01
Observations of the August 15, 1980, Uranus occultation of KM 12, obtained from Cerro Tololo InterAmerican Observatory, European Southern Observatory, and Cerro Las Campanas Observatory, are used to compare the atmospheric structure at points separated by approximately 140 km along the planetary limb. The results reveal striking, but by no means perfect correlation of the light curves, ruling out isotropic turbulence as the cause of the light curve spikes. The atmosphere is strongly layered, and any acceptable turbulence model must accommodate the axial ratios of greater than about 60 which are observed. The mean temperature of the atmosphere is 150 plus or minus 15 K for the region near number density 10 to the 14th per cu cm. Derived temperature variations of vertical scale approximately 130 km and amplitude plus or minus 5 K are in agreement for all stations, and correlated spikes correspond to low-amplitude temperature variations with a vertical scale of several kilometers.
NASA Astrophysics Data System (ADS)
Bateson, Colin; Aliseda, Alberto
2015-11-01
We present results from wind tunnel experiments on the evolution of small inertial (d ~ 10 - 200 μm) water droplets in homogeneous, isotropic, slowly decaying grid turbulence. High-speed imaging and a Particle Tracking algorithm are used to calculate relative velocity distributions. We analyze the preferential concentration, via the 2D Radial Distribution Function, and enhanced relative velocity of droplets resulting from their inertial interactions with the underlying turbulence. The two-dimensional particle velocities, measured from multi-image tracks along a streamwise plane, are conditionally analyzed with respect to the distance from the nearest particle. We focus on the non-normality of the statistics for the particle-particle separation velocity component to examine the influence of the inertial interaction with the turbulence on the dynamics of the droplets. We observe a negative bias (in the mean and mode) in the separation velocity of particles for short separations, signaling a tendency of particles to collide more frequently than a random agitation by turbulence would predict. The tails of the distribution are interpreted in terms of the collision/coalescence process and the probability of collisions that do not lead to coalescence.
Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field
NASA Astrophysics Data System (ADS)
Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.
2016-08-01
In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R=(b/{B}0)({{\\ell }}\\parallel /{{\\ell }}\\perp ) for rms magnetic fluctuation b, large-scale mean field {{\\boldsymbol{B}}}0, and coherence scales parallel ({{\\ell }}\\parallel ) and perpendicular ({{\\ell }}\\perp ) to {{\\boldsymbol{B}}}0. Here we use a nonperturbative analytic framework based on Corrsin’s hypothesis, together with direct computer simulations, to examine the R-scaling of the FLRW for varying B 0 with finite b and isotropic fluctuations with {{\\ell }}\\parallel /{{\\ell }}\\perp =1, instead of the well-studied route of varying {{\\ell }}\\parallel /{{\\ell }}\\perp for b \\ll {B}0. The FLRW for isotropic magnetic fluctuations is also of astrophysical interest regarding transport processes in the interstellar medium. With a mean field, fluctuations may have variance anisotropy, so we consider limiting cases of isotropic variance and transverse variance (with b z = 0). We obtain analytic theories, and closed-form solutions for extreme cases. Padé approximants are provided to interpolate all versions of theory and simulations to any B 0. We demonstrate that, for isotropic turbulence, Corrsin-based theories generally work well, and with increasing R there is a transition from quasilinear to Bohm diffusion. This holds even with b z = 0, when different routes to R\\to ∞ are mathematically equivalent; in contrast with previous studies, we find that a Corrsin-based theory with random ballistic decorrelation works well even up to R = 400, where the effects of trapping are barely perceptible in simulation results.
A mass-conserving volume of fluid method for DNS of droplet-laden isotropic turbulence
NASA Astrophysics Data System (ADS)
Ferrante, Antonino; Dodd, Michael
2012-11-01
We developed a mass-conserving wisps-free volume of fluid (VoF) method for direct numerical simulation (DNS) of droplet-laden turbulent flows. We used the continuous surface force (CSF) model to include the surface tension within a split-advection and mass-conserving VoF. The liquid-gas interface curvature is computed accurately using a variable-stencil height-function technique. We modified the sequence of the advection sweeps, and our results show that, in the case of non-zero Weber number, the algorithm is accurate and stable. We present DNS results of fully-resolved droplet-laden incompressible decaying isotropic turbulence at initial Reλ = 190 using a computational mesh of 10243 grid points, droplet volume fraction 0.1 tracking the volumes of 7000 droplets of Weber number We = 0 . 5 based on the r.m.s. velocity fluctuation, droplet-to-fluid density ratio 10, and initial droplet diameter equal to the Taylor length-scale of turbulence.
Power law of decaying homogeneous isotropic turbulence at low Reynolds number.
Burattini, P; Lavoie, P; Agrawal, A; Djenidi, L; Antonia, R A
2006-06-01
We focus on an estimate of the decay exponent (m) in the initial period of decay of homogeneous isotropic turbulence at low Taylor microscale Reynolds number R lambda (approximately equal to 20-50). Lattice Boltzmann simulations in a periodic box of 256(3) points are performed and compared with measurements in grid turbulence at similar R lambda. Good agreement is found between measured and calculated energy spectra. The exponent m is estimated in three different ways: from the decay of the turbulent kinetic energy, the decay of the mean energy dissipation rate, and the rate of growth of the Taylor microscale. Although all estimates are close, as prescribed by theory, that from the Taylor microscale has the largest variability. It is then suggested that the virtual origin for the decay rate be determined from the Taylor microscale, but the actual value of m be estimated from the decay rate of the kinetic energy. The dependence of m on R lambda(0) (the value of R lambda at the beginning of the simulation) is also analyzed, using the present data as well as data from the literature. The results confirmed that m approaches 1, as R lambda(0) increases.
Presumed PDF Modeling of Early Flame Propagation in Moderate to Intense Turbulence Environments
NASA Technical Reports Server (NTRS)
Carmen, Christina; Feikema, Douglas A.
2003-01-01
The present paper describes the results obtained from a one-dimensional time dependent numerical technique that simulates early flame propagation in a moderate to intense turbulent environment. Attention is focused on the development of a spark-ignited, premixed, lean methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. A Monte-Carlo particle tracking method, based upon the method of fractional steps, is utilized to simulate the phenomena represented by a probability density function (PDF) transport equation. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on three primary parameters that influence the initial flame kernel growth: the detailed ignition system characteristics, the mixture composition, and the nature of the flow field. The computational results of moderate and intense isotropic turbulence suggests that flames within the distributed reaction zone are not as vulnerable, as traditionally believed, to the adverse effects of increased turbulence intensity. It is also shown that the magnitude of the flame front thickness significantly impacts the turbulent consumption flame speed. Flame conditions studied have fuel equivalence ratio s in the range phi = 0.6 to 0.9 at standard temperature and pressure.
Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.
2012-01-01
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.
Forward and backward in time dispersion of fluid and inertial particles in isotropic turbulence
NASA Astrophysics Data System (ADS)
Bragg, Andrew D.; Ireland, Peter J.; Collins, Lance R.
2016-01-01
In this paper, we investigate both theoretically and numerically the Forward-In-Time (FIT) and Backward-In-Time (BIT) dispersion of fluid and inertial particle-pairs in isotropic turbulence. Fluid particles are known to separate faster BIT than FIT in three-dimensional turbulence, and we find that inertial particles do the same. However, we find that the irreversibility in the inertial particle dispersion is in general much stronger than that for fluid particles. For example, the ratio of the BIT to FIT mean-square separation can be up to an order of magnitude larger for the inertial particles than for the fluid particles. We also find that for both the inertial and fluid particles, the irreversibility becomes stronger as the scale of their separation decreases. Regarding the physical mechanism for the irreversibility, we argue that whereas the irreversibility of fluid particle-pair dispersion can be understood in terms of a directional bias arising from the energy transfer process in turbulence, inertial particles experience an additional source of irreversibility arising from the non-local contribution to their velocity dynamics, a contribution that vanishes in the limit St → 0, where St is the particle Stokes number. For each given initial (final, in the BIT case) separation, r0, there is an optimum value of St for which the dispersion irreversibility is strongest, as such particles are optimally affected by both sources of irreversibility. We derive analytical expressions for the BIT, mean-square separation of inertial particles and compare the predictions with numerical data obtained from a Reλ ≈ 582 (where Reλ is the Taylor Reynolds number) Direct Numerical Simulation (DNS) of particle-laden isotropic turbulent flow. The small-time theory, which in the dissipation range is valid for times ≤max[Stτη, τη] (where τη is the Kolmogorov time scale), is in excellent agreement with the DNS. The theory for long-times is in good agreement with the DNS
Isotropic boundary adapted wavelets for coherent vorticity extraction in turbulent channel flows
NASA Astrophysics Data System (ADS)
Farge, Marie; Sakurai, Teluo; Yoshimatsu, Katsunori; Schneider, Kai; Morishita, Koji; Ishihara, Takashi
2015-11-01
We present a construction of isotropic boundary adapted wavelets, which are orthogonal and yield a multi-resolution analysis. We analyze DNS data of turbulent channel flow computed at a friction-velocity based Reynolds number of 395 and investigate the role of coherent vorticity. Thresholding of the wavelet coefficients allows to split the flow into two parts, coherent and incoherent vorticity. The statistics of the former, i.e., energy and enstrophy spectra, are close to the ones of the total flow, and moreover the nonlinear energy budgets are well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e., noise-like, background flow and exhibits an almost equi-distribution of energy.
Passive scalar convective-diffusive subrange for low Prandtl numbers in isotropic turbulence.
Briard, A; Gomez, T
2015-01-01
In this Rapid Communication, we study the behavior of a strongly diffusive passive scalar field T submitted to a freely decaying, homogeneous and isotropic turbulence with eddy-damped quasinormal Markovian simulations. We present a new subrange located between the k(-17/3) inertial-diffusive subrange and the Kolmogorov wave number k(η). This subrange is generated by small-scale convection linked to k(η) that balances diffusion effects. Thus, we build a typical length scale k(CD)(-1) based on convection and diffusion and give an expression for the shape of the passive scalar spectrum in this subrange E(T)∼√[Pr]k(-11/3) using physical arguments. This result unifies two different theories coming from Batchelor [G. K. Batchelor, J. Fluid. Mech. 5, 113 (1959)] and Chasnov [J. Chasnov et al., Phys. Fluids A 1, 1698 (1989)] and explains results previously obtained experimentally.
Characteristics of drag and lift forces of a finite-sized particle in isotropic turbulence
NASA Astrophysics Data System (ADS)
Kim, Jungwoo; Balachandar, S.
2007-11-01
In the problem of particle-laden flows, the prediction of drag and lift forces acting on the particle in the presence of turbulence is one of the most important issues. In order to investigate the effect of turbulence at the level of a single particle, we perform direct numerical simulations of an isolated particle subjected to free-stream turbulence, following Bagchi & Balachandar (2003). The particle Reynolds number ranges from 100 to 350. At each particle Reynolds number, the turbulent intensity is about 5-20 percent of the mean relative particle velocity and the corresponding diameter of the particle is comparable to or larger than the Kolmogorov scale. In this study, the instantaneous force is decomposed into the drag and lift forces. Then, the statistical characteristics of the forces are investigated. The present result shows that the use of the stationary sphere drag as quasi-steady force improves the estimation of the drag force as compared to the Schiller-Neumann drag correlation. In addition, the modification of wake dynamics due to turbulence and its relation to the forces acting on the particle is presented. We also investigate the case of a freely moving particle and explore its effect.
NASA Astrophysics Data System (ADS)
Yu, Huidan; Meneveau, Charles
2010-11-01
We study the Lagrangian time evolution of velocity gradient dynamics near the Vieillefosse tail. The data are obtained from fluid particle tracking through the 1024^4 space-time DNS of forced isotropic turbulence at Reλ=433, using a web-based public database (http://turbulence.pha.jhu.edu). Examination of individual time-series of velocity gradient invariants R and Q show that they are punctuated by strong peaks of negative Q and positive R. Most of these occur very close to the Viellefosse tail along Q = - (3/2^2/3) R^2/3. It is found there that the magnitude of pressure Hessian has positive Lagrangian time-derivative, meaning that it increases in order to resist the rapid growth. We also observe a "phase delay" of the pressure Hessian signals compared to those of R and Q, indicative of an "overshoot" of the controlling mechanism. We also examine the trajectories in the recently proposed 3-D extension of the R-Q plane (see Lüthi B, Holzner M, Tsinober A. 2009, J. Fluid Mech. 641, 497-507). Finally, Lagrangian models of the velocity gradient tensor are examined in the same light to identify similarities and differences with the observed dynamics. Such comparisons supply informative guidance to model improvements.
NASA Astrophysics Data System (ADS)
Collins, Lance; Bragg, Andrew; Ireland, Peter
2014-11-01
In this talk, we consider the physical mechanism for the clustering of inertial particles in the inertial range of turbulence. By comparisons with DNS data we demonstrate that the mechanism in the theory of Zaichik et al. (Phys. Fluids 19, 113308, 2007) quantitatively describes the clustering of particles in the inertial range. We then analyze the theory for isotropic turbulence in the limit Reλ --> ∞ . For arbitrary St (Stokes number), there exists a separation in the inertial range beyond which Str << 1 , where Str is the Stokes number based on the eddy turnover timescale at separation r. The inertial-range clustering in this limit can be understood to be due to the preferential sampling of the coarse-grained velocity gradient tensor at that scale. At smaller separations, there may be transitions to Str ~ 1 , where a path history symmetry breaking effect dominates the clustering mechanism, and in some cases Str >> 1 , which implies ballistic behavior and a flat RDF. The scaling for each of these regimes is derived and compared to DNS, where applicable. Finally, we compare the results with the ``sweep-stick'' mechanism by Coleman and Vassilicos (Phys. Fluids 21, 113301, 2009) and discuss the similarities and differences between the two theories.
The rotation and translation of non-spherical particles in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Byron, Margaret
The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. In the following pages, we explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms. We fabricate cylindrical and spheroidal particles and suspend them in homogeneous, isotropic turbulence that is generated via randomly-actuated jet arrays. The particles are fabricated with agarose hydrogel, which is refractive-index-matched to the surrounding fluid (water). Both the fluid and the particle are seeded with passive tracers, allowing us to perform Particle Image Velocimetry (PIV) simultaneously on the particle and fluid phase. To investigate the effects of shape, particles are fabricated at varying aspect ratios; to investigate the effects of buoyancy, particles are fabricated at varying specific gravities. Each particle type is freely suspended at a volume fraction of F=0.1%, for which four-way coupling interactions are negligible. The suspended particles are imaged together with the surrounding fluid and analyzed using stereoscopic PIV, which yields three velocity components in a two-dimensional measurement plane. Using image thresholding, the results are separated into simultaneous fluid-phase and solid-phase velocity
Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence
NASA Astrophysics Data System (ADS)
Johnson, Perry L.; Meneveau, Charles
2015-08-01
One of the hallmarks of turbulent flows is the chaotic behavior of fluid particle paths with exponentially growing separation among them while their distance does not exceed the viscous range. The maximal (positive) Lyapunov exponent represents the average strength of the exponential growth rate, while fluctuations in the rate of growth are characterized by the finite-time Lyapunov exponents (FTLEs). In the last decade or so, the notion of Lagrangian coherent structures (which are often computed using FTLEs) has gained attention as a tool for visualizing coherent trajectory patterns in a flow and distinguishing regions of the flow with different mixing properties. A quantitative statistical characterization of FTLEs can be accomplished using the statistical theory of large deviations, based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms and introduce a finite-size correction to the histogram-based method. We generalize the existing univariate formalism to the joint distributions of the two FTLEs needed to fully specify the Lyapunov spectrum in 3D flows. The joint Cramér function of turbulence is measured from two direct numerical simulation datasets of isotropic turbulence. Results are compared with joint statistics of FTLEs computed using only the symmetric part of the velocity gradient tensor, as well as with joint statistics of instantaneous strain-rate eigenvalues. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. The most likely ratio of the FTLEs λ1 : λ2 : λ3 is shown to be about 4:1:-5, compared to about 8:3:-11 when using only the strain-rate tensor for calculating fluid volume deformations. The results
Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence
Johnson, Perry L. Meneveau, Charles
2015-08-15
One of the hallmarks of turbulent flows is the chaotic behavior of fluid particle paths with exponentially growing separation among them while their distance does not exceed the viscous range. The maximal (positive) Lyapunov exponent represents the average strength of the exponential growth rate, while fluctuations in the rate of growth are characterized by the finite-time Lyapunov exponents (FTLEs). In the last decade or so, the notion of Lagrangian coherent structures (which are often computed using FTLEs) has gained attention as a tool for visualizing coherent trajectory patterns in a flow and distinguishing regions of the flow with different mixing properties. A quantitative statistical characterization of FTLEs can be accomplished using the statistical theory of large deviations, based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms and introduce a finite-size correction to the histogram-based method. We generalize the existing univariate formalism to the joint distributions of the two FTLEs needed to fully specify the Lyapunov spectrum in 3D flows. The joint Cramér function of turbulence is measured from two direct numerical simulation datasets of isotropic turbulence. Results are compared with joint statistics of FTLEs computed using only the symmetric part of the velocity gradient tensor, as well as with joint statistics of instantaneous strain-rate eigenvalues. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. The most likely ratio of the FTLEs λ{sub 1} : λ{sub 2} : λ{sub 3} is shown to be about 4:1:−5, compared to about 8:3:−11 when using only the strain-rate tensor for calculating fluid volume
MAGNETIC FIELD LINE RANDOM WALK IN ISOTROPIC TURBULENCE WITH ZERO MEAN FIELD
Sonsrettee, W.; Ruffolo, D.; Snodin, A. P.; Wongpan, P.; Subedi, P.; Matthaeus, W. H.; Chuychai, P. E-mail: david.ruf@mahidol.ac.th E-mail: pat.wongpan@postgrad.otago.ac.nz E-mail: prasub@udel.edu
2015-01-01
In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B {sub 0})(ℓ{sub ∥}/ℓ ) for rms magnetic fluctuation b, large-scale mean field B {sub 0}, and parallel and perpendicular coherence scales ℓ{sub ∥} and ℓ , respectively. Here we examine the FLRW when R → ∞ by taking B {sub 0} → 0 for finite b{sub z} (fluctuation component along B {sub 0}), which differs from the well-studied route with b{sub z} = 0 or b{sub z} << B {sub 0} as the turbulence becomes quasi-two-dimensional (quasi-2D). Fluctuations with B {sub 0} = 0 are typically isotropic, which serves as a reasonable model of interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin's hypothesis to determine closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are directly related to the k {sup –1} or k {sup –2} moment of the power spectrum. We test these theories by performing computer simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B {sub 0} → 0, they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by quasi-two-dimensionality.
The minimum energy decay rate in quasi-isotropic grid turbulence
NASA Astrophysics Data System (ADS)
Davidson, P. A.
2011-08-01
We consider high Reynolds number, freely-decaying, isotropic turbulence in which the large scales evolve in a self-similar manner when normalized by the integral scales, u and ℓ. As it is well known, a range of possible behaviors may be observed depending on the form of the longitudinal velocity correlation at large separation, uf∞=u 2f(r →∞). We consider the cases u2f∞=cmr-m,2≤m ≤6, whose spectral counterpart is E(k →0)~cmkm -1 for m <6, with or without a lnk correction, and E(k →0)~I k4 for m =6. (I is Loitsyansky's integral.) It has long been known that the cmm=constant during the decay. This, in turn, sets the energy decay rate as u2~t-(1-p)2m /(m+2), where p is the power-law exponent for the normalized dissipation rate, εℓ/εℓu3u3~t-p, observed empirically to be a small positive number in grid turbulence. We systematically explore the properties of these different classes of turbulence and arrive at the following conclusions. (i) The invariance of cm is a direct consequence of linear momentum conservation for m ≤4, and angular momentum conservation for m =5. (ii) The classical spectra of Saffman, E(k →0)~c3k2, and Batchelor, E(k →0)~Ik4, are robust in the sense that they emerge from a broad class of initial conditions. In particular, it is necessary only that <ωi ω'j >∞ ≤O(r-8) at t =0. The non-classical spectra (m =2,4,5), on the other hand, require very specific initial conditions in order to be realized, of the form <ωiω'j>∞=O(r-(m +2)). (Note the equality rather than the inequality here.) This makes the non-classical spectra less likely to be observed in practice. (iii) The case of m =2, which is usually associated with the u2~t-1 decay law, is pathological in a number of respects. For example, its spectral tensor diverges as k →0, and the long-range correlations
Kazansky, Peter G; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Beresna, Martynas; Gecevičius, Mindaugas; Svirko, Yuri; Akturk, Selcuk; Qiu, Jianrong; Miura, Kiyotaka; Hirao, Kazuyuki
2011-10-10
We present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing. PMID:21997076
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence
Chumakov, Sergei
2008-01-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
Time resolved measurements of rigid fiber dispersion in near homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Sabban, Lilach; Cohen, Asaf; van Hout, Rene; Empfl Environmental Multi-Phase Flow Laboratory Team
2013-11-01
Time resolved, planar particle image velocimetry (PIV, 3kHz) and two-orthogonal view, digital holographic cinematography (2kHz) was used to measure 3D fiber trajectories/orientation dynamics in near homogeneous isotropic air turbulence (HIT) with dilute suspended fibers. The PIV covered a field of view of 6 × 12 mm2 and the holography a volume of interest of 173 mm3, positioned at the center of the chamber. HIT (Reλ = 144) was generated in the center of a 403 cm3 cube by eight woofers mounted on each of its corners. Three different nylon fibers having a length of 0.5 mm and diameter of 10, 14 and 19 μm were released from the top of the chamber. Fibers had Stokes numbers of order one and are expected to accumulate in regions of low vorticity and settle along a path of local minimal drag. Fiber 3D trajectories/orientations have been obtained from the holography measurements and orientational/translational dispersion coefficients will be presented. In addition the flow field in the vicinity of tracked fibers has been resolved by the PIV, and results on fluid and fiber accelerations and position correlation with in-plane strain rate and out-of-plane vorticity will be presented.
Power and nonpower laws of passive scalar moments convected by isotropic turbulence.
Gotoh, Toshiyuki; Watanabe, Takeshi
2015-09-11
The scaling behavior of the moments of two passive scalars that are excited by two different methods and simultaneously convected by the same isotropic steady turbulence at R_{λ}=805 and Sc=0.72 is studied by using direct numerical simulation with N=4096^{3} grid points. The passive scalar θ is excited by a random source that is Gaussian and white in time, and the passive scalar q is excited by the mean uniform scalar gradient. In the inertial convective range, the nth-order moments of the scalar increment δθ(r) do not obey a simple power law, but have the local scaling exponents ξ_{n}^{θ}+β_{n}log(r/r_{*}) with β_{n}>0. In contrast, the local scaling exponents of q have well-developed plateaus and saturate with increasing order. The power law of passive scalar moments is not trivial. The universality of passive scalars is found not in the moments, but in the normalized moments. PMID:26406833
Clustering of vertically constrained passive particles in homogeneous and isotropic turbulence
NASA Astrophysics Data System (ADS)
van Hinsberg, Michel; de Pietro, Massimo; Biferale, Luca; Clercx, Herman; Toschi, Federico
2014-11-01
We analyze the dynamics of small particles confined within a horizontal fluid slab in a three-dimensional (3D) homogenous isotropic turbulent velocity field. Particles can freely move horizontally as fluid tracers but are vertically confined around a given horizontal plane via a simple linear restoring force. The present model may be considered as the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy or other mechanisms, are capable to maintain themselves in a shallow horizontal layer somewhere below the free surface of oceans or lakes. In the model varying the strength of the restoring force can control the thickness of the fluid slab in which the particles can move. Whenever some confinement is present, particle trajectories deviate from fluid tracers and experience an effectively compressible velocity field. We report a quantification of this effective compressibility as well as a quantification of preferential concentration of tracer particles in terms of the correlation dimension. We found that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale, that maximizes the clustering of the particles. This work is part of the research programmes 11PR2841 and FP112 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). The work was partially funded by ERC Grant No 339032.
Miura, H.; Araki, K.
2014-07-15
Hall effects on local structures in homogeneous, isotropic, and incompressible magnetohydrodynamic turbulence are studied numerically. The transition of vortices from sheet-like to tubular structures induced by the Hall term is found, while the kinetic energy spectrum does not distinguish the two types of structures. It is shown by the use of the sharp low-pass filter that the transition occurs not only in the scales smaller than the ion skin depth but also in a larger scale. The transition is related with the forward energy transfer in the spectral space. Analyses by the use of the sharp low-pass filter show that the nonlinear energy transfer associated with the Hall term is dominated by the forward transfer and relatively local in the wave number space. A projection of the simulation data to a Smagorinsky-type sub-grid-scale model shows that the high wave number component of the Hall term may possibly be replaced by the model effectively.
NASA Astrophysics Data System (ADS)
Kaufmann, A.; Moreau, M.; Simonin, O.; Helie, J.
2008-06-01
The purpose of this paper is to evaluate the accuracy of the mesoscopic approach proposed by Février et al. [P. Février, O. Simonin, K.D. Squires, Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study, J. Fluid Mech. 533 (2005) 1-46] by comparison against the Lagrangian approach for the simulation of an ensemble of non-colliding particles suspended in a decaying homogeneous isotropic turbulence given by DNS. The mesoscopic Eulerian approach involves to solve equations for a few particle PDF moments: number density, mesoscopic velocity, and random uncorrelated kinetic energy (RUE), derived from particle flow ensemble averaging conditioned by the turbulent fluid flow realization. In addition, viscosity and diffusivity closure assumptions are used to compute the unknown higher order moments which represent the mesoscopic velocity and RUE transport by the uncorrelated velocity component. A detailed comparison between the two approaches is carried out for two different values of the Stokes number based on the initial fluid Kolmogorov time scale, St=0.17 and 2.2. In order to perform reliable comparisons for the RUE local instantaneous distribution and for the mesoscopic kinetic energy spectrum, the error due to the computation method of mesoscopic quantities from Lagrangian simulation results is evaluated and minimized. A very good agreement is found between the mesoscopic Eulerian and Lagrangian predictions for the small particle Stokes number case corresponding to the smallest particle inertia. For larger particle inertia, a bulk viscous term is included in the mesoscopic velocity governing equation to avoid spurious spatial oscillation that may arise due to the inability of the numerical scheme to resolve sharp number density gradients. As a consequence, for St=2.2, particle number density and RUE spatial distribution predicted by the
Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi
2015-10-01
We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.
Lipkens, B; Blackstock, D T
1998-09-01
A model experiment was reported to be successful in simulating the propagation of sonic booms through a turbulent atmosphere [B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 103, 148-158 (1998)]. In this study the effect on N wave characteristics of turbulence intensity and propagation distance through turbulence are investigated. The main parameters of interest are the rise time and the peak pressure. The effect of turbulence intensity and propagation distance is to flatten the rise time and peak pressure distributions. Rise time and peak pressure distributions always have positive skewness after propagation through turbulence. Average rise time grows with turbulence intensity and propagation distance. The scattering of rise time data is one-sided, i.e., rise times are almost always increased by turbulence. Average peak pressure decreases slowly with turbulence intensity and propagation distance. For the reported data a threefold increase in average rise time is observed and a maximum decrease of about 20% in average peak pressure. Rise times more than ten times that of the no turbulence value are observed. At most, the maximum peak pressure doubles after propagation through turbulence, and the minimum peak pressure values are about one-half the no-turbulence values. Rounded waveforms are always more common than peaked waveforms. PMID:9745733
NASA Astrophysics Data System (ADS)
Dou, Zhongwang; Pecenak, Zachary K.; Cao, Lujie; Woodward, Scott H.; Liang, Zach; Meng, Hui
2016-03-01
Enclosed flow apparatuses with negligible mean flow are emerging as alternatives to wind tunnels for laboratory studies of homogeneous and isotropic turbulence (HIT) with or without aerosol particles, especially in experimental validation of Direct Numerical Simulation (DNS). It is desired that these flow apparatuses generate HIT at high Taylor-microscale Reynolds numbers ({{R}λ} ) and enable accurate measurement of turbulence parameters including kinetic energy dissipation rate and thereby {{R}λ} . We have designed an enclosed, fan-driven, highly symmetric truncated-icosahedron ‘soccer ball’ airflow apparatus that enables particle imaging velocimetry (PIV) and other whole-field flow measurement techniques. To minimize gravity effect on inertial particles and improve isotropy, we chose fans instead of synthetic jets as flow actuators. We developed explicit relations between {{R}λ} and physical as well as operational parameters of enclosed HIT chambers. To experimentally characterize turbulence in this near-zero-mean flow chamber, we devised a new two-scale PIV approach utilizing two independent PIV systems to obtain both high resolution and large field of view. Velocity measurement results show that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48 mm diameter) of the chamber. From PIV-measured velocity fields, we obtained turbulence dissipation rates and thereby {{R}λ} by using the second-order velocity structure function. A maximum {{R}λ} of 384 was achieved. Furthermore, experiments confirmed that the root mean square (RMS) velocity increases linearly with fan speed, and {{R}λ} increases with the square root of fan speed. Characterizing turbulence in such apparatus paves the way for further investigation of particle dynamics in particle-laden homogeneous and isotropic turbulence.
Flow structure interaction between a flexible cantilever beam and isotropic turbulence
NASA Astrophysics Data System (ADS)
Vogel, Andrew; Morvan, Thomas; Goushcha, Oleg; Andreopoulos, Yiannis; Elvin, Niell
2015-11-01
In the present experimental work we consider the degree of distortion of isotropy and homogeneity of grid turbulence caused by the presence of a thin flexible cantilever beam immersed in the flow aligned in the longitudinal direction. Beams of various rigidities and lengths were used in the experiments. Piezoelectric patches were attached to the beams which provided an output voltage proportional to the strain and therefore proportional to the beam's deflection. The experiments were carried out in a large scale wind tunnel and hot-wires were used to measure turbulence intensity in the vicinity of the beams for various values of the ratio of aerodynamic loading to beam's rigidity. It was found that the flow field distortion depends on the rigidity of the beam. For very rigid beams this distortion is of the order of the boundary layer thickness developing over the beam while for very flexible beams the distorted region is of the order of the beam's tip deflection. Analysis of the time-dependent signals indicated some correlation between the frequency of beam's vibration and flow structures detected. Supported by NSF Grant: CBET #1033117.
NASA Astrophysics Data System (ADS)
Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph
2007-11-01
Lagrangian motion in isotropic turbulence of slightly buoyant diesel oil droplets (specific gravity 0.85 and size 0.6-1.1 mm) and almost neutrally buoyant, 50 μm tracer particles are studied using high speed, in-line digital holographic cinematography. Droplets and particles are injected into a 50x50x70 mm^3 sample volume located at the center of a nearly isotropic turbulence facility, and data are obtained for Reλ of 190, 195 and 214. The turbulence is characterized by 2D PIV measurements at different planes. An automated tracking program has been used for measuring velocity time history of more than 22000 droplet tracks and 15000 particle tracks. Analysis compares probability density functions (PDF) of Lagrangian velocity and acceleration, spectra, as well as velocity and acceleration autocorrelation functions of droplets with those of particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. PDFs of droplet velocity have nearly Gaussian distributions, justifying use of Taylor's (1921) model to calculate diffusion parameters. The fluid particle diffusion coefficient exceeds that of the droplet primarily because the fluid diffusion timescale is higher than that of the droplet. For all droplet sizes and Reynolds numbers, the diffusion coefficient, calculated using Taylor's model, scaled by quiescent rise velocity and turbulence integral length scale, is a monotonically increasing function of the turbulence level normalized by droplet quiescent rise velocity.
Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence
NASA Astrophysics Data System (ADS)
Bragg, Andrew D.; Ireland, Peter J.; Collins, Lance R.
2015-08-01
In this paper, we consider the physical mechanism for the clustering of inertial particles in the inertial range of isotropic turbulence. We analyze the exact, but unclosed, equation governing the radial distribution function (RDF) and compare the mechanisms it describes for clustering in the dissipation and inertial ranges. We demonstrate that in the limit Str≪1 , where Str is the Stokes number based on the eddy turnover time scale at separation r , the clustering in the inertial range can be understood to be due to the preferential sampling of the coarse-grained fluid velocity gradient tensor at that scale. When Str≳O (1 ) this mechanism gives way to a nonlocal clustering mechanism. These findings reveal that the clustering mechanisms in the inertial range are analogous to the mechanisms that we identified for the dissipation regime [see New J. Phys. 16, 055013 (2014), 10.1088/1367-2630/16/5/055013]. Further, we discuss the similarities and differences between the clustering mechanisms we identify in the inertial range and the "sweep-stick" mechanism developed by Coleman and Vassilicos [Phys. Fluids 21, 113301 (2009), 10.1063/1.3257638]. We show that the idea that initial particles are swept along with acceleration stagnation points is only approximately true because there always exists a finite difference between the velocity of the acceleration stagnation points and the local fluid velocity. This relative velocity is sufficient to allow particles to traverse the average distance between the stagnation points within the correlation time scale of the acceleration field. We also show that the stick part of the mechanism is only valid for Str≪1 in the inertial range. We emphasize that our clustering mechanism provides the more fundamental explanation since it, unlike the sweep-stick mechanism, is able to explain clustering in arbitrary spatially correlated velocity fields. We then consider the closed, model equation for the RDF given in Zaichik and
Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence.
Bragg, Andrew D; Ireland, Peter J; Collins, Lance R
2015-08-01
In this paper, we consider the physical mechanism for the clustering of inertial particles in the inertial range of isotropic turbulence. We analyze the exact, but unclosed, equation governing the radial distribution function (RDF) and compare the mechanisms it describes for clustering in the dissipation and inertial ranges. We demonstrate that in the limit Str≪1, where Str is the Stokes number based on the eddy turnover time scale at separation r, the clustering in the inertial range can be understood to be due to the preferential sampling of the coarse-grained fluid velocity gradient tensor at that scale. When Str≳O(1) this mechanism gives way to a nonlocal clustering mechanism. These findings reveal that the clustering mechanisms in the inertial range are analogous to the mechanisms that we identified for the dissipation regime [see New J. Phys. 16, 055013 (2014)]. Further, we discuss the similarities and differences between the clustering mechanisms we identify in the inertial range and the "sweep-stick" mechanism developed by Coleman and Vassilicos [Phys. Fluids 21, 113301 (2009)]. We show that the idea that initial particles are swept along with acceleration stagnation points is only approximately true because there always exists a finite difference between the velocity of the acceleration stagnation points and the local fluid velocity. This relative velocity is sufficient to allow particles to traverse the average distance between the stagnation points within the correlation time scale of the acceleration field. We also show that the stick part of the mechanism is only valid for Str≪1 in the inertial range. We emphasize that our clustering mechanism provides the more fundamental explanation since it, unlike the sweep-stick mechanism, is able to explain clustering in arbitrary spatially correlated velocity fields. We then consider the closed, model equation for the RDF given in Zaichik and Alipchenkov [Phys. Fluids 19, 113308 (2007)] and use this
Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence
Bragg, Andrew D.; Ireland, Peter J.; Collins, Lance R.
2015-08-27
In this study, we consider the physical mechanism for the clustering of inertial particles in the inertial range of isotropic turbulence. We analyze the exact, but unclosed, equation governing the radial distribution function (RDF) and compare the mechanisms it describes for clustering in the dissipation and inertial ranges. We demonstrate that in the limit Str <<1, where Str is the Stokes number based on the eddy turnover time scale at separation r, the clustering in the inertial range can be understood to be due to the preferential sampling of the coarse-grained fluid velocity gradient tensor at that scale. When Str≳O(1)more » this mechanism gives way to a nonlocal clustering mechanism. These findings reveal that the clustering mechanisms in the inertial range are analogous to the mechanisms that we identified for the dissipation regime. Further, we discuss the similarities and differences between the clustering mechanisms we identify in the inertial range and the “sweep-stick” mechanism developed by Coleman and Vassilicos. We show that the idea that initial particles are swept along with acceleration stagnation points is only approximately true because there always exists a finite difference between the velocity of the acceleration stagnation points and the local fluid velocity. This relative velocity is sufficient to allow particles to traverse the average distance between the stagnation points within the correlation time scale of the acceleration field. We also show that the stick part of the mechanism is only valid for Str<<1 in the inertial range. We emphasize that our clustering mechanism provides the more fundamental explanation since it, unlike the sweep-stick mechanism, is able to explain clustering in arbitrary spatially correlated velocity fields. We then consider the closed, model equation for the RDF given in Zaichik and Alipchenkov and use this, together with the results from our analysis, to predict the analytic form of the RDF in the
Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence
Bragg, Andrew D.; Ireland, Peter J.; Collins, Lance R.
2015-08-27
In this study, we consider the physical mechanism for the clustering of inertial particles in the inertial range of isotropic turbulence. We analyze the exact, but unclosed, equation governing the radial distribution function (RDF) and compare the mechanisms it describes for clustering in the dissipation and inertial ranges. We demonstrate that in the limit St_{r} <<1, where St_{r} is the Stokes number based on the eddy turnover time scale at separation r, the clustering in the inertial range can be understood to be due to the preferential sampling of the coarse-grained fluid velocity gradient tensor at that scale. When St_{r}≳O(1) this mechanism gives way to a nonlocal clustering mechanism. These findings reveal that the clustering mechanisms in the inertial range are analogous to the mechanisms that we identified for the dissipation regime. Further, we discuss the similarities and differences between the clustering mechanisms we identify in the inertial range and the “sweep-stick” mechanism developed by Coleman and Vassilicos. We show that the idea that initial particles are swept along with acceleration stagnation points is only approximately true because there always exists a finite difference between the velocity of the acceleration stagnation points and the local fluid velocity. This relative velocity is sufficient to allow particles to traverse the average distance between the stagnation points within the correlation time scale of the acceleration field. We also show that the stick part of the mechanism is only valid for St_{r}<<1 in the inertial range. We emphasize that our clustering mechanism provides the more fundamental explanation since it, unlike the sweep-stick mechanism, is able to explain clustering in arbitrary spatially correlated velocity fields. We then consider the closed, model equation for the RDF given in Zaichik and Alipchenkov and use this, together with the results from our analysis, to predict the
Intensity fluctuations of ultrasonic scattering in a highly turbulent flow.
Shen, C; Lemmin, U
2000-05-01
Aspects of ultrasound intensity fluctuations backscattered from additive microstructures in a turbulent flow have been investigated theoretically and experimentally for the conditions of a small insonified volume, a high sound frequency and strong turbulence. These conditions are typically found in high resolution Doppler sonar applications. An easily applicable expression for the auto-correlation of scattering intensity fluctuations is obtained by introducing open-channel turbulence theory, a semi-empirical scalar spectrum (including a Batchelor spectrum) and a Gaussian window function. Experiments carried out in a laboratory-clear water, open-channel flow for different turbulence levels verify the underlying assumptions. A good agreement is found with the predictions made with the above-derived expression. The feasibility of extracting flow information from the backscattered intensity fluctuations is discussed.
Intense sediment transport: Collisional to turbulent suspension
NASA Astrophysics Data System (ADS)
Berzi, Diego; Fraccarollo, Luigi
2016-02-01
A recent simple analytical approach to the problem of steady, uniform transport of sediment by a turbulent shearing fluid dominated by interparticle collisions is extended to the case in which the mean turbulent lift may partially or totally support the weight of the sediment. We treat the granular-fluid mixture as a continuum and make use of constitutive relations of kinetic theory of granular gases to model the particle phase and a simple mixing-length approach for the fluid. We focus on pressure-driven flows over horizontal, erodible beds and divide the flow itself into layers, each dominated by different physical mechanisms. This permits a crude analytical integration of the governing equations and to obtain analytical expressions for the distribution of particle concentration and velocity. The predictions of the theory are compared with existing laboratory measurements on the flow of glass spheres and sand particles in water. We also show how to build a regime map to distinguish between collisional, turbulent-collisional, and fully turbulent suspensions.
NASA Technical Reports Server (NTRS)
Hogge, H. D.; Meecham, W. C.
1978-01-01
The problem of decaying isotropic turbulence has been studied using a Wiener-Hermite expansion with a renormalized time-dependent base. The theory is largely deductive and uses no modeling approximations. It has been found that many properties of large-Reynolds-number turbulence can be calculated (at least for moderate time) using the moving-base expansion alone. Such properties found are the spectrum shape in the dissipation range, the Kolmogorov constant, and the energy cascade in the inertial subrange. Furthermore, by using a renormalization scheme, it is possible to extend the calculation to larger times and to initial conditions significantly different from the equilibrium form. If the initial spectrum is the Kolmogorov spectrum perturbed with a spike or dip in the inertial subrange, the process proceeds to eliminate the perturbation and relax to the preferred spectrum shape. The turbulence decays with the proper dissipation rate, and several other properties are found to agree with measured data. The theory is also used to calculate the energy transfer and the flatness factor of turbulence.
Intensity fluctuations of asymmetrical optical beams in anisotropic turbulence.
Baykal, Yahya
2016-09-20
Intensity fluctuations of asymmetrical optical beams are examined when such beams propagate through anisotropic turbulence. Anisotropic turbulence is modeled by non-Kolmogorov von Kármán spectrum. The variations of the scintillation index are observed against the changes in the asymmetry factor of the Gaussian beam, power law exponent of non-Kolmogorov spectrum, anisotropic factors in the transverse direction, and the link length. It is found that for all the conditions, asymmetry in the optical beam is a disadvantage but the anisotropy in the atmosphere is an advantage for reducing the intensity fluctuations in an optical wireless communications link operating in the atmosphere. PMID:27661570
NASA Astrophysics Data System (ADS)
Bassenne, Maxime; Urzay, Javier; Park, George I.; Moin, Parviz
2016-03-01
This study investigates control-based forcing methods for incompressible homogeneous-isotropic turbulence forced linearly in physical space which result in constant turbulent kinetic energy, constant turbulent dissipation (also constant enstrophy), or a combination of the two based on a least-squares error minimization. The methods consist of proportional controllers embedded in the forcing coefficients. During the transient, the controllers adjust the forcing coefficients such that the controlled quantity achieves very early a minimal relative error with respect to its target stationary value. Comparisons of these forcing methods are made with the non-controlled approaches of Rosales and Meneveau ["Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties," Phys. Fluids 17, 095106 (2005)] and Carroll and Blanquart ["A proposed modification to Lundgren's physical space velocity forcing method for isotropic turbulence," Phys. Fluids 25, 105114 (2013)], using direct numerical simulations (DNS) and large-eddy simulations (LES). The results indicate that the proposed constant-energetics forcing methods shorten the transient period from a user-defined artificial flow field to Navier-Stokes turbulence while maintaining steadier statistics. Additionally, the proposed method of constant kinetic-energy forcing behaves more robustly in coarse LES when initial conditions are employed that favor the occurrence of subgrid-scale backscatter, whereas the other approaches fail to provide physical turbulent flow fields. For illustration, the proposed forcing methods are applied to dilute particle-laden homogeneous-isotropic turbulent flows; the results serve to highlight the influences of the forcing strategies on the disperse-phase statistics.
NASA Astrophysics Data System (ADS)
Tóth-Katona, Tibor; Gleeson, James T.
2004-01-01
Fluctuations of the injected electric power during electroconvection (EHC) of liquid crystals are reported in both the conductive and the dielectric regime of convection. The amplitude and the frequency of the fluctuations, as well as the probability density functions have been compared in these two regimes and substantial differences have been found both in defect turbulence of EHC and at the DSM1→DSM2 transition.
Kiyani, K. H.; Fauvarque, O.; Chapman, S. C.; Hnat, B.; Sahraoui, F.; Khotyaintsev, Yu. V.
2013-01-20
The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfven wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.
NASA Astrophysics Data System (ADS)
Tang, S. L.; Antonia, R. A.; Djenidi, L.; Danaila, L.; Zhou, Y.
2016-09-01
The transport equation for the mean scalar dissipation rate ɛ ¯ θ is derived by applying the limit at small separations to the generalized form of Yaglom's equation in two types of flows, those dominated mainly by a decay of energy in the streamwise direction and those which are forced, through a continuous injection of energy at large scales. In grid turbulence, the imbalance between the production of ɛ ¯ θ due to stretching of the temperature field and the destruction of ɛ ¯ θ by the thermal diffusivity is governed by the streamwise advection of ɛ ¯ θ by the mean velocity. This imbalance is intrinsically different from that in stationary forced periodic box turbulence (or SFPBT), which is virtually negligible. In essence, the different types of imbalance represent different constraints imposed by the large-scale motion on the relation between the so-called mixed velocity-temperature derivative skewness ST and the scalar enstrophy destruction coefficient Gθ in different flows, thus resulting in non-universal approaches of ST towards a constant value as Reλ increases. The data for ST collected in grid turbulence and in SFPBT indicate that the magnitude of ST is bounded, this limit being close to 0.5.
Turbulence generation through intense localized sources of energy
NASA Astrophysics Data System (ADS)
Maqui, Agustin; Donzis, Diego
2015-11-01
Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.
NASA Astrophysics Data System (ADS)
Lee, J. H.; Kevin; Monty, J. P.; Hutchins, N.
2016-08-01
The discrepancy between measured turbulence intensity obtained from experiments in wall-bounded turbulence and the fully resolved reference results (usually from DNS datasets) are often attributed to spatial resolution issues, especially in PIV measurements due to the presence of spatial averaging within the interrogation region/volume. In many cases, in particular at high Reynolds numbers (where there is a lack of DNS data), there is no attempt to verify that this is the case. There is a risk that attributing unexpected PIV statistics to spatial resolution, without careful checks, could mask wider problems with the experimental setup or test facility. Here, we propose a robust technique to validate the under-resolved PIV obtained turbulence intensity profiles for canonical wall-bounded turbulence. This validation scheme is independent of Reynolds number and does not rely on empirical functions. It is based on arguments that (1) the viscous-scaled small-scale turbulence energy is invariant with Reynolds number and that (2) the spatially under-resolved measurement is sufficient to capture the large-scale energy. This then suggests that we can estimate the missing energy from volume-filtered DNS data at much lower Reynolds numbers. Good agreement is found between the experimental results and estimation profiles for all three velocity components, demonstrating that the estimation tool successfully computes the missing energy for given spatial resolutions over a wide range of Reynolds numbers. A database for a canonical turbulent boundary layer and associated MATLAB function are provided that enable this missing energy to be calculated across a range of interrogation volume sizes, so that users do not require access to raw DNS data. This methodology and tool will provide PIV practitioners, investigating canonical wall-bounded turbulent flow with a convenient check of the effects of spatial resolution on a given experiment.
NASA Astrophysics Data System (ADS)
Tautz, R. C.
2013-10-01
Aims: The process of pitch-angle isotropization is important for many applications ranging from diffusive shock acceleration to large-scale cosmic-ray transport. Here, the basic analytical description is revisited on the basis of recent simulation results. Methods: Both an analytical and a numerical investigation were undertaken of the Fokker-Planck equation for pitch-angle scattering. Additional test-particle simulations obtained with the help of a Monte-Carlo code were used to verify the conclusions. Results: It is shown that the usual definition of the pitch-angle Fokker-Planck coefficient via the mean-square displacement is flawed. The reason can be traced back to the assumption of homogeneity in time which does not hold for pitch-angle scattering. Conclusions: Calculating the mean free path via the Fokker-Planck coefficient has often proven to give an accurate description. For numerical purposes, accordingly, it is the definition that has to be exchanged in favor of the pitch-angle correlation function.
NASA Astrophysics Data System (ADS)
Jin, Guodong; He, Guo-Wei
2015-11-01
Clustering and intermittency in radial relative velocity (RRV) of heavy particles of same size settling in turbulent flows can be remarkably changed due to gravity. Clustering is monotonically reduced at Stokes number less than 1 under gravity due to the disability of the centrifugal mechanism, however it is non-monotonically enhanced at Stokes number greater than 1 due to the multiplicative amplification in the case that the proposed effective Kubo number is less than 1. Although gravity causes monotonical reduction in the rms of RRV of particles at a given Stokes number with decreasing Froude number, the variation tendency in the tails of standardized PDF of RRV versus Froude number is obviously different: the tails become narrower at a small Stokes number, while they become broader at a large Stokes number. The mechanism of this variation stems from the compromise between the following two competing factors. The mitigation of correlation of particle positions and the regions of high strain rate which are more intermittent reduces the intermittency in RRV at small Stokes numbers, while the significant reduction in the backward-in-time relative separations will make particle pairs see small-scale structures, leading to a higher intermittency in RRV at large Stokes numbers. NSAF of China (grant number U1230126); NSFC (grant numbers 11072247 and 11232011).
Rotational motion of elongated particles in isotropic turbulent flow: statistical perspective
NASA Astrophysics Data System (ADS)
Zhao, Lihao; Andersson, Helge; Variano, Evan
2014-11-01
We consider the rotational motion of non-spherical particles in turbulent flow, comparing the statistics of particles' angular velocity to the corresponding quantities computed in the fluid phase. We use numerical (DNS) and laboratory measurements for particles that are both larger and smaller than the Kolmogorov lengthscale. The particles are spheroids or rods, with aspect ratios between 1 and 10. We will discuss the subtleties of defining a meaningful Stokes number for these particles, focusing on the effect of asphericity and the fact that our interest is in rotation and not translation. Comparing the probability density function of angular velocity between fluid and particle phase indicates that the angular velocity of particles has a narrower distribution than that of the fluid phase, and that. particles do respond to extreme events in the fluid phase. The first four moments of the PDFs are analyzed, and these show that the ``filtering'' effect is very similar between DNS and lab experiments, despite differences in particle sizes and mass. We propose a nondimensional curve for predicting the magnitude of the filtering effect, and discuss the implications of this curve for the definition of Stokes number, as discussed earlier. This work has been supported by grants from the Peder Sather Center for Advanced Study at UC Berkeley and from the Research Council of Norway (Contract No. 213917/F20).
Two-color correlation between intensity fluctuations in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Luo, Meilan; Zhao, Daomu
2016-06-01
The correlation between intensity fluctuations generated by two varying wavelengths through a turbulent medium is investigated, where the influences arising from source correlation and perturbation of atmosphere are mainly emphasized. It is demonstrated that the correlation between intensity fluctuations can be enhanced or reduced by modulating the difference of two incident wavelengths. For shorter wavelength, the correlation between intensity fluctuations is stronger at the far field. In addition, in the case of single wavelength, a relationship λ1z1 =λ2z2 =λnzn holding in free space could be found, from which the distance where the peak value occurs may be inferred. However, it can be destroyed by increasing the strength of atmosphere.
Pawar, Shashikant S; Arakeri, Jaywant H
2016-08-01
Frequency spectra obtained from the measurements of light intensity and angle of arrival (AOA) of parallel laser light propagating through the axially homogeneous, axisymmetric buoyancy-driven turbulent flow at high Rayleigh numbers in a long (length-to-diameter ratio of about 10) vertical tube are reported. The flow is driven by an unstable density difference created across the tube ends using brine and fresh water. The highest Rayleigh number is about 8×10^{9}. The aim of the present work is to find whether the conventional Obukhov-Corrsin scaling or Bolgiano-Obukhov (BO) scaling is obtained for the intensity and AOA spectra in the case of light propagation in a buoyancy-driven turbulent medium. Theoretical relations for the frequency spectra of log amplitude and AOA fluctuations developed for homogeneous isotropic turbulent media are modified for the buoyancy-driven flow in the present case to obtain the asymptotic scalings for the high and low frequency ranges. For low frequencies, the spectra of intensity and vertical AOA fluctuations obtained from measurements follow BO scaling, while scaling for the spectra of horizontal AOA fluctuations shows a small departure from BO scaling. PMID:27505375
NASA Astrophysics Data System (ADS)
Sahli, Ouissem; Adjlout, Lahouari; Ladjedel, Omar; Amine Ghazi, Mohamed
2016-03-01
The present work is an experimental investigation on the effect of the turbulence intensity variation in a staggered tube bundle equipped with grooves at 90° and 270°.The experiments were carried out in a subsonic wind tunnel. Three Reynolds numbers and three turbulence levels were tested. The pressure distributions and drag forces were measured. Surface visualizations were also performed. The obtained results show that the turbulence intensity for different Reynolds number has an influence on the reduction of the drag coefficient.
NASA Astrophysics Data System (ADS)
Siddle-Mitchell, Seth; Liu, Xiaofeng; Katz, Joseph
2015-11-01
The instantaneous pressure distribution in a turbulent flow field can be measured non-intrusively by integrating the measured material acceleration using particle image velocimetry (PIV). However, due to the finite spatial resolution of the measurement, the pressure reconstructed from PIV is actually subjected to the effect of spatial filtering. Consequently, the reconstructed pressure is effectively imbedded with the contribution of the sub-grid scale (SGS) stress, which is a term appearing in the filtered Navier-Stokes equation. To quantify the effect of the SGS stress on non-intrusive spatial pressure measurement, we use box filtering to filter three dimensional velocity components in a time-varying isotropic turbulence flow field available to public from the John Hopkins University Turbulence Database (JHTDB). Preliminary results show that the error in the reconstructed instantaneous pressure caused by the SGS stress is about 4.4% of the r.m.s. fluctuation of the filtered isotropic pressure. Correction using similarity SGS modeling reduces the error to 2.1%. This project is funded by the San Diego State University Research Foundation.
Fichtl, G.H.
1983-09-01
When designing a wind energy converison system (WECS), it may be necessary to take into account the distribution of wind across the disc of rotation. The specific engineering applications include structural strength, fatigue, and control. This wind distribution consists of two parts, namely that associated with the mean wind profile and that associated with the turbulence velocity fluctuation field. The work reported herein is aimed at the latter, namely the distribution of turbulence velocity fluctuations across the WECS disk of rotation. A theory is developed for the two-time covariance matrix for turbulence velocity vector components for wind energy conversion system (WECS) design. The theory is developed for homogeneous and iotropic turbulance with the assumption that Taylor's hypothesis is valid. The Eulerian turbulence velocity vector field is expanded about the hub of the WECS. Formulae are developed for the turbulence velocity vector component covariance matrix following the WECS blade elements. It is shown that upon specification of the turbulence energy spectrum function and the WECS rotation rate, the two-point, two-time covariance matrix of the turbulent flow relative to the WECS bladed elements is determined. This covariance matrix is represented as the sum of nonstationary and stationary contributions. Generalized power spectral methods are used to obtain two-point, double frequency power spectral density functions for the turbulent flow following the blade elements. The Dryden turbulence model is used to demonstrate the theory. A discussion of linear system response analysis is provided to show how the double frequency turbulence spectra might be used to calculate response spectra of a WECS to turbulent flow. Finally the spectrum of the component of turbulence normal to the WECS disc of rotation, following the blade elements, is compared with experimental results.
How is turbulence intensity determined by macroscopic variables in a toroidal plasma?
NASA Astrophysics Data System (ADS)
Inagaki, S.; Tokuzawa, T.; Tamura, N.; Itoh, S.-I.; Kobayashi, T.; Ida, K.; Shimozuma, T.; Kubo, S.; Tanaka, K.; Ido, T.; Shimizu, A.; Tsuchiya, H.; Kasuya, N.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Yamada, H.; Fujisawa, A.; Itoh, K.; the LHD Experiment Group
2013-11-01
We report observations of the dynamic response of micro-fluctuations and turbulent flux to a low-frequency heating power modulation in the Large Helical Device. The responses of heat flux and micro-fluctuation intensity differ from that of the change in temperature gradient. This result violates the local transport model, where turbulence is determined by the local temperature gradient. A new relationship between flux, gradient and turbulence is found. In addition to the temperature gradient, the heating rate is proposed as a new, direct controlling parameter of turbulence to explain the fast response of turbulence against periodic modulation of heating power.
Banakh, V A; Marakasov, D A
2007-08-01
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Binienda, W. K.; Tan, H. Q.; Xu, M. H.
1992-01-01
Analytical derivations of stress intensity factors (SIF's) of a multicracked plate can be complex and tedious. Recent advances, however, in intelligent application of symbolic computation can overcome these difficulties and provide the means to rigorously and efficiently analyze this class of problems. Here, the symbolic algorithm required to implement the methodology described in Part 1 is presented. The special problem-oriented symbolic functions to derive the fundamental kernels are described, and the associated automatically generated FORTRAN subroutines are given. As a result, a symbolic/FORTRAN package named SYMFRAC, capable of providing accurate SIF's at each crack tip, was developed and validated. Simple illustrative examples using SYMFRAC show the potential of the present approach for predicting the macrocrack propagation path due to existing microcracks in the vicinity of a macrocrack tip, when the influence of the microcrack's location, orientation, size, and interaction are taken into account.
NASA Technical Reports Server (NTRS)
Binienda, W. K.; Arnold, S. M.; Tan, H. Q.
1992-01-01
An essential part of describing the damage state and predicting the damage growth in a multicracked plate is the accurate calculation of stress intensity factors (SIF's). Here, a methodology and rigorous solution formulation for SIF's of a multicracked plate, with fully interacting cracks, subjected to a far-field arbitrary stress state is presented. The fundamental perturbation problem is derived, and the steps needed to formulate the system of singular integral equations whose solution gives rise to the evaluation of the SIF's are identified. This analytical derivation and numerical solution are obtained by using intelligent application of symbolic computations and automatic FORTRAN generation capabilities (described in the second part of this paper). As a result, a symbolic/FORTRAN package, named SYMFRAC, that is capable of providing accurate SIF's at each crack tip was developed and validated.
Intensity, Scale, and Spectra of Turbulence in Mixing Region of Free Subsonic Jet
NASA Technical Reports Server (NTRS)
Laurence, James C
1956-01-01
Report presents the results of the measurements of intensity of turbulence, the longitudinal and lateral correlation coefficients, and the spectra of turbulence in a 3.5-inch-diameter free jet measured with hot-wire anemometers at exit Mach numbers from 0.2 to 0.7 and Reynolds numbers from 192,000 to 725,000.
NASA Astrophysics Data System (ADS)
Yamaguchi, Atsushi; Ishihara, Takeshi
2016-09-01
In this study, a new motion compensation algorithm was proposed and verified by using numerical simulation. Compensated horizontal mean wind speed by using conventional method shows good agreement with reference wind speed regardless of the motion of the floater. However, turbulence intensity is always overestimated. The overestimation is more significant when the maximum pitch angle of the floater motion is larger. When proposed method is used, the overestimation of the turbulent intensity is improved and estimated turbulent intensity shows better agreement with reference value. There still remains underestimation of the turbulence intensity with the bias of -1.1%. This is probably caused by the low sampling frequency in LIDAR measurement and further research is needed to model the high frequency component of the wind speed for LIDAR measurement.
Flame Propagation in Low-Intensity Turbulence under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Aldredge, R. C.
2001-01-01
The goal of the research is to understand the influences of the hydrodynamic instability on premixed-flame propagation. It is known that coupling between flame and flow-field dynamics in association with the hydrodynamic instability may lead to flame-generated turbulence, flame acceleration and enhancement of burning rates. As a result of such hydrodynamic coupling the transition from initially planar or wrinkled laminar flames to fast turbulent flames or detonations is possible, even when diffusive-thermal effects associated with non-unity reactant Lewis numbers are not destabilizing. It is important to identify methods of suppressing the hydrodynamic instability so as to insure fire safety, particularly in space.
[Effects of turbulent fluctuation intensity on the growth of algae and water environment].
Lei, Yu; Long, Tian-yu; San, Lei; An, Qiang; Huang, Ning-qiu
2013-05-01
Through a self-designed vertically oscillating grid experiment device, the experiment was carried out to research the effects of the turbulence fluctuation intensity on the growth of algae and water environment in the water with adequate nutrients by changing the vibration frequency under a certain light and temperature conditions. The results showed that: the turbulent fluctuation has significant effects on algae growing that weak turbulence fluctuation can promote the growth of algae and strong turbulence fluctuation will inhibit the growth of algae in the range of experimental level. With the increase of the turbulent fluctuation intensity, the peak of algal biomass gradually delayed. Changes of nitrogen and phosphorus in the experimental process have significant differences, when the vibration frequency was up to 2.0 Hz, the maximum reduction of TN and TP were 55.2% and 69.0% lower compared with 0.5 Hz, which was closely associated with the growth of algae. With the intensity of turbulent fluctuation increases, nitrogen-phosphorus ratio first increases and then decreases corresponding to the peak of the algal biomass. Turbulent fluctuation can promote the pH and, dissolved oxygen quickly adjusted to the level of algae growing required, and the most appropriate value remains unchanged.
NASA Astrophysics Data System (ADS)
Chareyron, D.; Marié, J. L.; Fournier, C.; Gire, J.; Grosjean, N.; Denis, L.; Lance, M.; Méès, L.
2012-04-01
An in-line digital holography technique is tested, the objective being to measure Lagrangian three-dimensional (3D) trajectories and the size evolution of droplets evaporating in high-Reλ strong turbulence. The experiment is performed in homogeneous, nearly isotropic turbulence (50 × 50 × 50 mm3) created by the meeting of six synthetic jets. The holograms of droplets are recorded with a single high-speed camera at frame rates of 1-3 kHz. While hologram time series are generally processed using a classical approach based on the Fresnel transform, we follow an ‘inverse problem’ approach leading to improved size and 3D position accuracy and both in-field and out-of-field detection. The reconstruction method is validated with 60 μm diameter water droplets released from a piezoelectric injector ‘on-demand’ and which do not appreciably evaporate in the sample volume. Lagrangian statistics on 1000 reconstructed tracks are presented. Although improved, uncertainty on the depth positions remains higher, as expected in in-line digital holography. An additional filter is used to reduce the effect of this uncertainty when calculating the droplet velocities and accelerations along this direction. The diameters measured along the trajectories remain constant within ±1.6%, thus indicating that accuracy on size is high enough for evaporation studies. The method is then tested with R114 freon droplets at an early stage of evaporation. The striking feature is the presence on each hologram of a thermal wake image, aligned with the relative velocity fluctuations ‘seen’ by the droplets (visualization of the Lagrangian fluid motion about the droplet). Its orientation compares rather well with that calculated by using a dynamical equation for describing the droplet motion. A decrease of size due to evaporation is measured for the droplet that remains longest in the turbulence domain.
Free-Stream Turbulence Intensity in the Langley 14- by 22-Foot Subsonic Tunnel
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; McGinley, Catherine B.
2004-01-01
An investigation was conducted using hot-wire anemometry to determine the turbulence intensity levels in the test section of the Langley 14- by 22-Foot Subsonic Tunnel in the closed or walls-down configuration. This study was one component of the three-dimensional High-Lift Flow Physics experiment designed to provide code validation data. Turbulence intensities were measured during two stages of the study. In the first stage, the free-stream turbulence levels were measured before and after a change was made to the floor suction surface of the wind tunnel s boundary layer removal system. The results indicated that the new suction surface at the entrance to the test section had little impact on the turbulence intensities. The second stage was an overall flow quality survey of the empty tunnel including measurements of the turbulence levels at several vertical and streamwise locations. Results indicated that the turbulence intensity is a function of tunnel dynamic pressure and the location in the test section. The general shape of the frequency spectrum is fairly consistent throughout the wind tunnel, changing mostly in amplitude (also slightly with frequency) with change in condition and location.
Intensity fluctuations of flat-topped beam in non-Kolmogorov weak turbulence: comment.
Charnotskii, Mikhail
2012-09-01
In J. Opt. Soc. Am. A 29, 169 (2012), Gerçekcioğlu and Baykal presented an investigation of the dependence of the scintillation index of flat-topped Gaussian beams on the exponent α of the power-law-type spectra of non-Kolmogorov turbulence. In particular, they found that the scintillation index reaches a maximum at α≈3.2. We show that this conclusion is an artifact of their specific calculation, and depends on the choice of the length unit. Gerçekcioğlu and Baykal's calculations are made for the 3<α<5 range of the spectral exponent. We show that for the homogeneous and isotropic turbulence the correct range is 3<α<4, when Markov approximation is used.
Probe systems for measuring static pressure and turbulence intensity in fluid streams
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.
Enhancement of backscattered intensity for a bistatic lidar operating in atmospheric turbulence.
Holmes, J F
1991-06-20
The extended Huygens-Fresnel formulation is used to calculate the enhanced backscattered intensity as a function of the off-axis receiver distance for a bistatic lidar operating in atmospheric turbulence. The result is simple and compact and allows the regime where there is significant enhancement to be readily identified. In addition, the result depends only on the logamplitude covariance, which implies that the enhancement is due to incoherent turbulence perturbation effects. PMID:20700254
Effect of turbulent atmosphere on the on-axis average intensity of Pearcey–Gaussian beam
NASA Astrophysics Data System (ADS)
F, Boufalah; L, Dalil-Essakali; H, Nebdi; A, Belafhal
2016-06-01
The propagation characteristics of the Pearcey–Gaussian (PG) beam in turbulent atmosphere are investigated in this paper. The Pearcey beam is a new kind of paraxial beam, based on the Pearcey function of catastrophe theory, which describes diffraction about a cusp caustic. By using the extended Huygens–Fresnel integral formula in the paraxial approximation and the Rytov theory, an analytical expression of axial intensity for the considered beam family is derived. Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors, including incident beam parameters and turbulence strengths.
NASA Technical Reports Server (NTRS)
Kerr, R. A.
1983-01-01
In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.
Xu, Yonggen; Li, Yude; Zhao, Xile
2015-09-01
Propagation properties of partially coherent elegant Laguerre-Gaussian beam (PC-eLGB) and partially coherent standard Laguerre-Gaussian beam (PC-sLGB) through the turbulent atmosphere are studied. Analytical formulas for the intensity and effective beam width (EBW) of the PC-eLGB and PC-sLGB through the turbulent atmosphere are derived based on the extended Huygens-Fresnel principle. The propagation properties of PC-eLGB and PC-sLGB through the turbulent atmosphere are studied numerically and comparatively. It is shown that the intensities of the PC-eLGB and PC-sLGB are less affected by the turbulent atmosphere than the fully coherent Laguerre-Gaussian beam. The spreading (EBW and divergent angle of the far field) of PC-eLGB and PC-sLGB with the different mode orders (m,n) is slower in the free space than in the turbulent atmosphere, and the PC-sLGB spreads more rapidly than the PC-eLGB through the free space and the turbulent atmosphere. The study results will be useful for free space optical communications.
A new statistical tool to study the geometry of intense vorticity clusters in turbulence
NASA Astrophysics Data System (ADS)
Vela-Martin, Alberto; Ishihara, Takashi
2016-04-01
Recent large-scale direct numerical simulations (DNS) of high-Reynolds number (high-Re) turbulence, suggest that strong micro-scale tube-like vortices form clusters in localized thin regions of space. However, to this date no thorough quantitative and statistical analysis of the geometry of such vortical clusters has been conducted. This study is intended to generate new statistical tools to study the shape and dynamics of these intense vorticity and strain regions. We first propose a new method for locating and analysing the geometrical properties of thresholded vortical clusters contained inside boxes of a given size. Second, we use this new tool to investigate the natural presence of intense shear layers and their relevance as geometrical features of high-Re homogeneous turbulence. This new method is applied to the DNS of homogeneous incompressible turbulence with up to 40963 grid points, showing that the geometry of high vorticity regions varies strongly depending on the threshold and on the size of the clusters. In particular for sizes in the inertial range of scales and high thresholds, approximately layer-like structures of vortices are extracted and visualized. Agreement of results with previous observations and known features of turbulence supports the validity of the proposed method to characterize the geometry of intense vorticity and strain regions in high-Re turbulence.
NASA Astrophysics Data System (ADS)
Dhariwal, Rohit; Rani, Sarma; Koch, Donald
2015-11-01
In an earlier work, Rani, Dhariwal, and Koch (JFM, Vol. 756, 2014) developed an analytical closure for the diffusion current in the PDF transport equation describing the relative motion of high-Stokes-number particle pairs in isotropic turbulence. In this study, an improved closure was developed for the diffusion coefficient, such that the motion of the particle-pair center of mass is taken into account. Using the earlier and the new analytical closures, Langevin simulations of pair relative motion were performed for four particle Stokes numbers, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Detailed comparisons of the analytical model predictions with those of DNS were undertaken. It is seen that the pair relative motion statistics obtained from the improved theory show excellent agreement with the DNS statistics. The radial distribution functions (RDFs), and relative velocity PDFs obtained from the improved-closure-based Langevin simulations are found to be in very good agreement with those from DNS. It was found that the RDFs and relative velocity RMS increased with Reλ for all Stη . The collision kernel also increased strongly with Reλ , since it depended on the RDF and the radial relative velocities.
Intense turbulent convection in a horizontal plane liquid layer
NASA Astrophysics Data System (ADS)
Gertsenshtein, S. Ya.; Palymskii, I. A.; Sibgatullin, I. N.
2008-02-01
Direct numerical simulation of turbulent convection in a horizontal liquid layer heated from below is performed within the framework of the nonstationary Navier—Stokes equations with the use of the Bubnov—Galerkin method. The main attention is given to calculations for superhigh supercriticalities. Computational burden is reduced by the use of the splitting method at each step of integration. Previously, the smallness of the residual arising from substitution of simulated results into the initial system of equations is demonstrated and the residual’s dependence on the number of reference functions and supercriticality is considered. A good agreement of the results obtained with the use of different numerical implementations of the Bubnov—Galerkin procedure is shown, in particular, for the stochastic processes corresponding to a low supercriticality and appearing with the formation of strange attractors close to a Mobius strip. The calculations were carried out for a wide range of supercriticality (from 1 to 34000). It is shown that simulations and experiment are in good qualitative agreement.
Bumblebee Flight in Heavy Turbulence.
Engels, T; Kolomenskiy, D; Schneider, K; Lehmann, F-O; Sesterhenn, J
2016-01-15
High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments, or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.
Bumblebee Flight in Heavy Turbulence
NASA Astrophysics Data System (ADS)
Engels, T.; Kolomenskiy, D.; Schneider, K.; Lehmann, F.-O.; Sesterhenn, J.
2016-01-01
High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments, or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.
Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis
Yi, S.; Kwon, J. M.; Diamond, P. H.; Hahm, T. S.
2014-09-15
This paper studies effects of q-profile structure on turbulence spreading. It reports results of numerical experiments using global gyrokinetic simulations. We examine propagation of turbulence, triggered by an identical linear instability in a source region, into an adjacent, linearly stable region with variable q-profile. The numerical experiments are designed so as to separate the physics of turbulence spreading from that of linear stability. The strength of turbulence spreading is measured by the penetration depth of turbulence. Dynamics of spreading are elucidated by fluctuation intensity balance analysis, using a model intensity evolution equation which retains nonlinear diffusion and damping, and linear growth. It is found that turbulence spreading is strongly affected by magnetic shear s, but is hardly altered by the safety factor q itself. There is an optimal range of modest magnetic shear which maximizes turbulence spreading. For high to modest shear values, the spreading is enhanced by the increase of the mode correlation length with decreasing magnetic shear. However, the efficiency of spreading drops for sufficiently low magnetic shear even though the mode correlation length is comparable to that for the case of optimal magnetic shear. The reduction of spreading is attributed to the increase in time required for the requisite nonlinear mode-mode interactions. The effect of increased interaction time dominates that of increased mode correlation length. Our findings of the reduction of spreading and the increase in interaction time at weak magnetic shear are consistent with the well-known benefit of weak or reversed magnetic shear for core confinement enhancement. Weak shear is shown to promote locality, as well as stability.
Streamwise mean flow and turbulent intensity profiles in turbulent pipe flow
NASA Astrophysics Data System (ADS)
Vassilicos, John Christos; Laval, Jean-Philippe; Foucaut, Jean-Marc; Stanislas, Michel; Imperial-Lille Collaboration
2015-11-01
The Townsend-Perry attached eddy spectral model predicts that theintegral length-scale varies very slowly with distance to the wall inthe intermediate layer. The only way for the integral length scale'svariation to be more realistic while keeping with the Townsend-Perryattached eddy spectrum is to add a new wavenumber range to the modelat wavenumbers smaller than that spectrum. This necessary additionalso accounts for the high Reynolds number outer peak of the turbulentkinetic energy in the intermediate layer. An analytic expression isobtained for this outer peak in agreement with extremely high Reynoldsnumber data by Hultmark, Vallikivi, Bailey & Smits (2012,2013). Townsend's (1976) production-dissipation balance and thefinding of Dallas, Vassilicos & Hewitt (2009) that, in theintermediate layer, the eddy turnover time scales with skin frictionvelocity and distance to the wall implies that the mean flow gradienthas an outer peak at the same location as the turbulent kineticenergy. This is seen in the data of Hultmark, Vallikivi, Bailey Smits (2012, 2013). The same approach also predicts that the mean flowgradient has a logarithmic decay at distances to the wall larger thanthe position of the outer peak. This qualitative prediction is alsosupported by the aforementioned data.
Residual parallel Reynolds stress due to turbulence intensity gradient in tokamak plasmas
Guercan, Oe. D.; Hennequin, P.; Diamond, P. H.; McDevitt, C. J.; Garbet, X.; Bourdelle, C.
2010-11-15
A novel mechanism for driving residual stress in tokamak plasmas based on k{sub ||} symmetry breaking by the turbulence intensity gradient is proposed. The physics of this mechanism is explained and its connection to the wave kinetic equation and the wave-momentum flux is described. Applications to the H-mode pedestal in particular to internal transport barriers, are discussed. Also, the effect of heat transport on the momentum flux is discussed.
NASA Technical Reports Server (NTRS)
Dryden, Hugh L; Schubauer, G B; Mock, W C , Jr; Skramstad, H K
1937-01-01
The investigation of wind-tunnel turbulence, conducted at the National Bureau of Standards with the cooperation of the National Advisory Committee for Aeronautics, has been extended to include a new variable, namely, the scale of the turbulence. This report presents the results of a study of this new variable together with the intensity of the turbulence, and the effect of both on the critical Reynolds number of spheres.
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.
Fluctuations of light intensity scattered from multiple glints in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Wang, Liguo; Li, Yaqing; Gao, Ming; Lei, Gong
2016-01-01
As targets in space are usually very far from the ground, some targets containing smooth reflecting components can be seen to be composed of a single or multiple glints when they are detected by a Lidar (laser radar) system located on the ground. The received intensity of the detector fluctuates, which caused significant noise on the system, for two reasons. One is the randomness of positions of the glints and the other is the perturbations of the atmospheric turbulence. The formulation of the scintillation index of the reflected intensity is derived by using incoherent superposition of the reflected field. The results show that the scintillation index can be divided into two parts, corresponding to the two sources that cause the intensity fluctuations. The results show that the target composed by multiple glints has two different effects on the fluctuation of the reflected intensity, one is the amplification effect of the incoherent superposition, and the other is some similar aperture averaging effect.
NASA Astrophysics Data System (ADS)
Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda
2016-11-01
For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue.
NASA Astrophysics Data System (ADS)
Hari Prasad, K. B. R. R.; Srinivas, C. V.; Satyanarayana, A. N. V.; Naidu, C. V.; Baskaran, R.; Venkatraman, B.
2015-08-01
Season- and stability-dependent turbulence intensity ( σ u / u *, σ v / u *, σ w / u *) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components ( u', v', w') measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux-profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.
Correcting hot-wire measurements of stream-wise turbulence intensity in boundary layers
Monkewitz, P. A.; Duncan, R. D.; Nagib, H. M.
2010-09-15
The current experimental activity aimed at resolving the scaling of stream-wise turbulence intensity profiles uu{sup +}(y{sup +}) with Reynolds number in turbulent flat plate boundary layers has brought the largely unresolved issue of correcting systematic errors in hot-wire measurements of uu{sup +}(y{sup +}) into focus. Here, a heuristic scheme is proposed to generate unique uu{sup +}(y{sup +};Re{sub {delta}{sup *}}) profiles from data obtained with single hot wires of widely different length, aspect ratio and construction over a large Reynolds number range of 4000 < or approx. Re{sub {delta}{sup *}} < or approx. 50 000. A comparison with LDA data and other checks suggest that the present correction scheme produces uu{sup +}(y{sup +};Re{sub {delta}{sup *}}) profiles close to the (unknown) true profiles.
Gross separation approaching a blunt trailing edge as the turbulence intensity increases.
Scheichl, B
2014-07-28
A novel rational description of incompressible two-dimensional time-mean turbulent boundary layer (BL) flow separating from a bluff body at an arbitrarily large globally formed Reynolds number, Re, is devised. Partly in contrast to and partly complementing previous approaches, it predicts a pronounced delay of massive separation as the turbulence intensity level increases. This is bounded from above by a weakly decaying Re-dependent gauge function (hence, the BL approximation stays intact locally), and thus the finite intensity level characterizing fully developed turbulence. However, it by far exceeds the moderate level found in a preceding study which copes with the associated moderate delay of separation. Thus, the present analysis bridges this self-consistent and another forerunner theory, proposing extremely retarded separation by anticipating a fully attached external potential flow. Specifically, it is shown upon formulation of a respective distinguished limit at which rate the separation point and the attached-flow trailing edge collapse as [Formula: see text] and how on a short streamwise scale the typical small velocity deficit in the core region of the incident BL evolves to a large one. Hence, at its base, the separating velocity profile varies generically with the one-third power of the wall distance, and the classical triple-deck problem describing local viscous-inviscid interaction crucial for moderately retarded separation is superseded by a Rayleigh problem, governing separation of that core layer. Its targeted solution proves vital for understanding the separation process more close to the wall. Most importantly, the analysis does not resort to any specific turbulence closure. A first comparison with the available experimentally found positions of separation for the canonical flow past a circular cylinder is encouraging. PMID:24936020
NASA Astrophysics Data System (ADS)
Pollak, D. A.; Nygaard, N. G.; Jimémez, M. M.; Wagner, R.; Sathe, A.
2014-12-01
To maximize offshore wind energy generation it is critical to have a comprehensive understanding of all atmospheric and oceanic parameters that could affect any part of the wind turbine system; prime of which is ambient turbulence intensity (TI), a measure of the degree of fluctuations about the mean wind speed within the three dimensional wind field (σU, standard deviation of wind speed). A wealth of data from nine meteorological towers located between 7 and 111 kilometers offshore in the Irish and North Seas were used to investigate the dependencies of TI and σU on wind speed, height, wind direction (θ) and fetch. The average turbulence intensity at 50m ranged from 6.32% to 7.44%, with TI decreasing with distance from the coast until 40-50 kilometers after which TI interestingly began to increase. In fact, when examining TI as a function of wind direction, TI was largest in sectors with fetch greater than 100-200 km and smallest in land sectors. Additional factors that influenced the TI dependency on θ, especially in the sites with reduced fetch, were coastal orientation, inland topography and atmospheric stability. Dissimilar to the relationships indicated in the IEC 61400-3 standards, σU is not linear, and TI not monotonically decreasing as a function of wind speed. Instead there is a height-dependent wind speed bin, between 8-14 m/s, where the transition from thermally- to mechanically-generated turbulence occurs. When comparing plots of σU and TI versus wind speed for all of the masts at various heights, it can be seen that there is near ubiquitous agreement between the masts. This implies that when averaging over all wind directions, these relationships are universal throughout Northern Europe. The vertical profiles of σU and TI are highly susceptible to different wind regimes. At low wind speeds σU and TI are nearly uniform with height, likely a result of the well-mixed nature of thermally-driven turbulence. At high wind speeds a strong, nearly
Kefayati, Sarah; Holdsworth, David W; Poepping, Tamie L
2014-01-01
Clinical decision-making for the treatment of patients with diseased carotid artery is mainly based on the severity of the stenosis. However, stenosis severity alone is not a sensitive indicator, and other local factors for the assessment of stroke risk are required. Flow disturbance is of particular interest due to its proven association with increased thromboembolic activities. The objective of this study was to investigate the level of turbulence intensity (TI) with regards to certain geometrical features of the plaque - namely stenosis severity, eccentricity, and ulceration. A family of eight carotid-artery bifurcation models was examined using particle image velocimetry. Results showed a marked difference in turbulence intensity among these models; increasing degree of stenosis severity resulted in increased turbulence intensity, going from 0.12 m/s for mild stenosis to 0.37 m/s for severe stenosis (with concentric geometry). Moreover, independent of stenosis severity, eccentricity led to further elevations in turbulence intensity, increasing TI by 0.05-0.10 m/s over the counterpart concentric plaque. The presence of ulceration (in a 50% eccentric plaque) produced a larger portion of moderate turbulence intensity (~0.10 m/s) compared to the non-ulcerated model, more proximal to the bifurcation apex in the post-stenotic recirculation zone. The effect of plaque eccentricity and ulceration in enhancing the downstream turbulence has potential clinical implications for a more sensitive assessment of stroke risk beyond stenosis severity alone.
Intensity fluctuations of flat-topped beam in non-Kolmogorov weak turbulence.
Gerçekcioğlu, Hamza; Baykal, Yahya
2012-02-01
Results obtained on the intensity fluctuations of flat-topped Gaussian beams in weakly turbulent non-Kolmogorov horizontal atmospheric optics links are represented. Effects on the scintillation index of the power law α that describes the non-Kolmogorov spectrum are examined. Our results correctly reduce to the existing intensity fluctuations of flat-topped beams in Kolmogorov turbulence. Variation of the scintillation index against non-Kolmogorov power law α exhibits a peak at the worst power law α(w), which happens to be smaller than the Kolmogorov power law of 11/3. If the power law is smaller (larger) than α(w), increase in α will increase (decrease) the intensity fluctuations. Evaluation of the scintillation index at the worst power law results in smaller fluctuations for a Gaussian beam at short propagation distances; however, at long propagation distances flatter beams happen to possess smaller fluctuations. The scintillation change versus the source size follows a similar trend regardless whether the flat-topped beam propagates in a Kolmogorov or non-Kolmogorov medium.
Wake Measurements at alpha ventus - Dependency on Stability and Turbulence Intensity
NASA Astrophysics Data System (ADS)
Westerhellweg, Annette; Cañadillas, Beatriz; Kinder, Friederike; Neumann, Tom
2014-12-01
Wind and power deficit in the wake are assessed for the offshore wind farm Alpha Ventus. Operational data are evaluated for the power deficit in the wake of a single wind turbine and in a row of wind turbines. The wake of a single wind turbine is described by the maximum power deficit and expansion width of the wake. The impact of atmospheric stability in respect to vertical wind shear and turbulence intensity is assessed showing that wake effects are more pronounced under stable conditions.
NASA Astrophysics Data System (ADS)
Thorne, Meghan L.; Rankin, Richard N.; Poepping, Tamie L.; Holdsworth, David W.
2010-03-01
The most widely performed test for patients suspected of having carotid atherosclerosis is Doppler ultrasound (DUS). Unfortunately, limitations in sensitivity and specificity prevent DUS from being the sole diagnostic tool. Novel DUS velocity-derived parameters, such as turbulence intensity (TI), may provide enhanced hemodynamic information within the carotid artery, increasing diagnostic accuracy. In this study, we evaluate a new technique for recording, storing and analyzing DUS in a clinical environment, and determine the correlation between TI and conventional DUS measurements. We have recruited 32 patients with a mean age of 69+/-11 yrs. An MP3 recorder was used to digitally record Doppler audio signals three times at three sites: the common carotid artery, peak stenosis and region of maximum turbulence. A Fourier-based technique was used to calculate TI, facilitating clinical application without additional ECGgating data. TI was calculated as the standard deviation of Fourier-filtered mean velocity data. We found that TI and clinical PSV were linearly dependent (P<0.001) within the region of maximum turbulence and the precision of all TI measurements was found to be 14%. We have demonstrated the ability to record Doppler waveform data during a conventional carotid exam, and apply off-line custom analysis to Doppler velocity data to produce measurements of TI.
NASA Astrophysics Data System (ADS)
Marakasov, D. A.
2009-12-01
The problem of reconstructing the wind velocity profile from the spatiotemporal statistics of turbulent reflected optical radiation intensity fluctuations is considered in the article. Expressions for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of the wave scattered on a diffusive screen are derived. An algorithm for reconstructing the wind velocity profile from the spatiotemporal spectra of the intensity of a reflected spherical wave in the turbulent atmosphere is suggested. The results of closed numerical experiments are presented that confirm the efficiency of the suggested algorithm.
NASA Astrophysics Data System (ADS)
Ghassemlooy, Zabih; Popoola, Wasiu O.; Ahmadi, Vahid; Leitgeb, Erich
In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects.
Wu, Yuqian; Zhang, Yixin; Zhu, Yun
2016-08-01
We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment. PMID:27505642
Wu, Yuqian; Zhang, Yixin; Zhu, Yun
2016-08-01
We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment.
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A. A.
1989-01-01
The effect of the turbulence intensity level and its cross-stream distribution at the inlet on the numerical prediction of the heat transfer in a two-dimensional turbulent-wall jet was investigated. The investigation was carried out within the framework of the standard kappa-epsilon turbulence model. The predicted Nusselt number showed the influence of the turbulence intensity level and its cross-stream distribution at the inlet to be significant but restricted to the first 15 slot widths from the inlet slot. Beyond this location, all the predictions were observed to collapse onto a single curve which exhibited a maximum over-prediction of about 30 percent when compared with the available experimental data.
NASA Astrophysics Data System (ADS)
Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.
2013-11-01
We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.
NASA Astrophysics Data System (ADS)
Sutton, David M.
The effect of freestream turbulence intensities ranging from Tu = 1.26% to Tu = 3.2% is studied. Skin friction measurements made on the surface of the airfoil using oil film interferometry (OFI) show that, in general, the effect of the increased Tu is to inhibit separation of the laminar boundary layer. With increased Tu, the near-wall flow experiences strong deceleration in the adverse pressure gradient, but does not reverse as it does in the baseline case where Tu = 0.05%. The Cp distribution resulting from this decelerated fluid is similar in appearance to that of a laminar separation bubble. OFI results also show that laminar separation initiates a more rapid transition process than does higher turbulence intensity: transition of the boundary layer occurs over a shorter distance with Tu = 1.26% than it does with Tu = 2.19% due to the presence of a LSB at the lower turbulence intensity.
NASA Astrophysics Data System (ADS)
Frisch, Uriel
1996-01-01
Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.
Contribution to the numerical study of turbulence in high intensity discharge lamps
Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K.
2011-07-15
We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.
NASA Technical Reports Server (NTRS)
Hoffmann, Jon A.
1988-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.
NASA Technical Reports Server (NTRS)
Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.
1989-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.
Experimental assessment of helicopter rotor turbulence ingestion noise in hover
NASA Technical Reports Server (NTRS)
Simonich, J. C.; Schlinker, R. H.; Amiet, R. K.
1989-01-01
An experiment was conducted to assess the accuracy of a theory for non-isotropic turbulence ingestion. In order to generate non-isotropic turbulence in a controlled environment, a scale model rotor in a closed chamber was used so that the turbulence generated by the rotor was reingested by the recirculating flow. Simultaneous measurements of turbulence inflow properties and far field acoustics were acquired. Measurements confirmed that the inflow turbulence was highly non-isotropic. The measured aerodynamic properties were used as inputs for the noise prediction procedure. The general agreement between the non-isotropic noise prediction procedure and the experiment was good, although the procedure generally overpredicts the quasi-tonal low to mid range frequencies and underpredicts the higher broadband signals. The predicted sound power level as a function of polar angle was in close agreement with measurements, except near the rotor plane, which is not modeled by the present analysis. It is determined that the most sensitive parameter influencing the predicted noise was the turbulence intensity.
Active control for turbulent premixed flame simulations
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2004-03-26
Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.
NASA Astrophysics Data System (ADS)
Mochalin, Ievgen V.; Khalatov, Artem A.
2015-09-01
A numerical simulation of the turbulent flow between coaxial permeable cylinders is performed for the case of the rotating inner cylinder and superimposed radial flow through the annular domain. Both forced inflow and outflow are considered in a wide range of the rotation rate and throughflow intensity. Two configurations of the rotating cylinder are examined with an entire permeable porous surface and with lengthwise porous slots. The stable rotational fluid motion is shown to be concentrated within a boundary layer close to the inner cylinder surface at strong enough imposed radial inflow. Under such conditions, the centrifugal stability boundary is independent on the gap width. Flow stabilization due to the forced inflow is possible at any rotation rate considered for both the configurations of the inner rotating cylinder. The stabilization by the forced outflow is feasible only in the case of the entire permeable rotating cylinder. But there are always large-scale vortices in the gap under conditions of the forced outflow through the slotted rotating cylinder except for the relatively low rotation rate. Transition to turbulence in the boundary layer at the inner rotating cylinder may occur before the centrifugal instability onset at large enough inflow intensity. The boundary layer thickness and turbulence intensity are influenced by the inflow rate and differ between the cases of the entire permeable cylinder and the slotted one.
Variability of surface roughness and turbulence intensities at a coastal site in India
NASA Astrophysics Data System (ADS)
Ramachandran, Radhika; Prakash, J. Winston Jeeva; Gupta, K. Sen; Nair, K. Narayanan; Kunhikrishnan, P. K.
1994-09-01
Surface-layer features with different prevailing wind directions for two distinct seasons (Southwest Monsoon and Northeast Monsoon) on the west coast of India are studied using data obtained from tower-based sensors at a site located about 500 m from the coast. Only daytime runs have been used for the present analysis. The surface boundary-layer fluxes have been estimated using the eddy correlation method. The surface roughness z 0 obtained using the stability-corrected wind profiles (Paulson, 1970) has been found to be low for the Southwest monsson season. For the other season, z 0 is relatively high. The drag coefficient C D varies with height in the NE monsoon season but not in the season with low z 0. This aspect is reflected in the wind profiles for the two seasons and is discussed in detail. The scaling behaviour of friction velocity u * and the turbulence intensity of longitudinal, lateral and vertical winds σu, σv and σw, respectively) are further examined to study their dependence on fetch. Our study shows that for the non-dimensional case, σu/u* and σv/u* do not show any surface roughness dependence in either season. On the other hand, for σw/u* for the season with low z 0, the values are seen to agree well with that of Panofsky et al. (1977) for homogeneous terrain whereas for the other season with high z 0, the results seem to conform more to the values observed by Smedman and Högström (1983) for coastal terrain. The results are discussed in the light of observations by other investigators.
Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence
NASA Technical Reports Server (NTRS)
Leonard, Andy D.; Hill, James C.
1992-01-01
Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.
Turbulence generation in homogeneous dilute particle- laden flows
NASA Astrophysics Data System (ADS)
Chen, Jeng-Horng
Homogeneous turbulence generated by the motion of particles in dispersed multiphase flows was studied both theoretically and experimentally, motivated by applications to sprays, particle-laden jets, bubble plumes and rainstorms, among others. The experiments involved uniform fluxes of monodisperse spherical particles falling through a slow upflow of air. Particle fluxes and phase velocities were measured by sampling and phase-discriminating laser Doppler velocimetry (LDV), respectively. Measured particle velocities included mean and fluctuating streamwise and cross-stream velocities and probability density functions (PDF's). Measured continuous-phase velocities included mean and fluctuating streamwise and cross-stream velocities, PDF's and the higher moments of velocity fluctuations such as skewness and kurtosis, energy spectra of velocity fluctuations and integral length scales based on streamwise velocity fluctuations. Continuous-phase velocity measurements included conditional averages for particle wake disturbances and the turbulent inter-wake region surrounding these disturbances as well as overall flow properties. Present and earlier results in the literature provided particle Reynolds numbers of 38-990, particle volume fractions less than 0.01% and turbulence intensities (normalized by mean particle relative velocities) of 0.1-10.0%. Theory included characterization of particle wake disturbances as laminar-like turbulent wakes observed for intermediate particle Reynolds numbers in turbulent environments, characterization of the turbulent inter-wake region by analogy to grid-generated isotropic turbulence, and estimation of overall flow properties by conditional averaging of the properties of the wake disturbances and the turbulent inter-wake region. Present measurements showed that particle wake disturbances during turbulence generation were properly characterized by the properties of laminar-like turbulent wakes. The turbulent inter-wake region was
Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Wang, S.; Zhou, Y.; Alam, Md. Mahbub; Yang, H.
2014-11-01
This work investigates the aerodynamics of a NACA 0012 airfoil at the chord-based Reynolds numbers (Rec) from 5.3 × 103 to 2.0 × 104. The lift and drag coefficients, CL and CD, of the airfoil, along with the flow structure, were measured as the turbulent intensity Tu of oncoming flow varies from 0.6% to 6.0%. The analysis of the present data and those in the literature unveils a total of eight distinct flow structures around the suction side of the airfoil. Four Rec regimes, i.e., the ultra-low (<1.0 × 104), low (1.0 × 104-3.0 × 105), moderate (3.0 × 105-5.0 × 106), and high Rec (>5.0 × 106), are proposed based on their characteristics of the CL-Rec relationship and the flow structure. It has been observed that Tu has a more pronounced effect at lower Rec than at higher Rec on the shear layer separation, reattachment, transition, and formation of the separation bubble. As a result, CL, CD, CL/CD and their dependence on the airfoil angle of attack all vary with Tu. So does the critical Reynolds number Rec,cr that divides the ultra-low and low Rec regimes. It is further noted that the effect of increasing Tu bears similarity in many aspects to that of increasing Rec, albeit with differences. The concept of the effective Reynolds number Rec,eff advocated for the moderate and high Rec regimes is re-evaluated for the low and ultra-low Rec regimes. The Rec,eff treats the non-zero Tu effect as an addition of Rec and is determined based on the presently defined Rec,cr. It has been found that all the maximum lift data from both present measurements and previous reports collapse into a single curve in the low and ultra-low Rec regimes if scaled with Rec,eff.
Probe shapes that measure time-averaged streamwise momentum and cross-stream turbulence intensity
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and apparatus for directly measuring the time-averaged streamwise momentum in a turbulent stream use a probe which has total head response which varies as the cosine-squared of the angle of incidence. The probe has a nose with a slight indentation on its front face for providing the desired response. The method of making the probe incorporates unique design features. Another probe may be positioned in a side-by-side relationship to the first probe to provide a direct measurement of the total pressure. The difference between the two pressures yields the sum of the squares of the cross-stream components of the turbulence level.
Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua
2014-01-01
This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.
Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua
2014-01-01
This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness. PMID:24592153
Tsai, Shen-Ta; Jhuo, Yue-Hua
2014-01-01
This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 104, 1.24 × 105, and 1.50 × 105), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness. PMID:24592153
Effects of axisymmetric contractions on turbulence of various scales
NASA Technical Reports Server (NTRS)
Tan-Atichat, J.; Nagib, H. M.; Drubka, R. E.
1980-01-01
Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cubic contour contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, where viscous decay over the contraction length was negligible, or when a first order correction for viscous decay was applied to the results.
Chen, Ziyang; Cui, Shengwei; Zhang, Lei; Sun, Cunzhi; Xiong, Mengsu; Pu, Jixiong
2014-07-28
The scintillation index of a Gaussian beam and radially polarized beams in turbulent atmosphere is experimentally investigated. The scintillation index of a Gaussian beam and a completely coherent radially polarized beam increases with increasing propagation distance from 0 to 400m. The influence of the coherence of partially coherent radially polarized beam on the scintillation is studied. The result shows that the scintillation index of a partially coherent radially polarized beam can be smaller than that of a completely coherent beam.
Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA
Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.
2012-06-05
Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.
Noise of a model helicopter rotor due to ingestion of turbulence
NASA Technical Reports Server (NTRS)
Paterson, R. W.; Amiet, R. K.
1979-01-01
A theoretical and experimental investigation of the noise of a model helicoper rotor due to ingestion of turbulence was conducted. Experiments were performed with a 0.76 m dia, articulated model rotor for a range of inflow turbulence and rotor operating conditions. Inflow turbulence levels varied from approximately 2 to 19 percent and tip Mach number was varied from 0.3 to 0.52. Test conditions included ingestion of a atmospheric turbulence in outdoor hover as well as ingestion of grid generated isotropic turbulence in the wind tunnel airstream. In wind tunnel testing, both forward flight and vertical ascent (climb) were simulated. Far field noise spectra and directivity were measured in addition to incident turbulence intensities, length scales, and spectra. Results indicate that ingestion of atmospheric turbulence is the dominant helicopter rotor hover noise mechanism at the moderate to high frequencies which determine perceived noise level.
NASA Technical Reports Server (NTRS)
Kiock, R.
1978-01-01
Turbulence intensity (Tu) measurements were made in two-dimensional and rotating cascades of blades in a low-speed cascade wind tunnel using hot-wire probes as sensors. The local Tu at Re = 1.6x100000 was determined in the wake zone behind a two-dimensional cascade. Then the values were recomputed for a rotating cascade, giving a mean turbulence intensity of 6.5% at 1/10 chord downstream and 2.9% at one chord. Fans were used for measurements on the rotating cascade. Re was equal to 7x100000. Frequency analysis was employed to separate the actual Tu of the entry flow from the effects caused by interaction with the rotor blades, showing that the true Tu increased from a few tenths of a percent to 6.6% in the 1st rotor, and from 7.2 to 9.3% in the 2d rotor. The Tu behind the 3d rotor was equal to 8.9%.
NASA Astrophysics Data System (ADS)
Zhang, J. A.; Marks, F. D.; Montgomery, M.; Lorsolo, S.
2010-12-01
Turbulent transport processes in the atmospheric boundary layer play an important role in the intensification and maintenance of a hurricane vortex. However, direct measurement of turbulence in the hurricane boundary layer has been scarce. This study analyzes the flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989) and Category 4 Hurricane Allen (1980) between 1 km and the sea surface. Momentum flux, turbulent kinetic energy (TKE) and vertical eddy diffusivity are estimated before and during the eyewall penetrations. Spatial scales of turbulent eddies are determined through spectral analysis. The turbulence parameters estimated for the eyewall penetration leg are found to be nearly an order of magnitude larger than those for the leg outside the eyewall at similar altitudes. In the low-level intense eyewall region, the horizontal length scale of dominant turbulent eddies is found to be between 500 - 3000 m and the corresponding vertical length scale is approximately 100 - 200 m. The results suggest also that it is unwise to include the eyewall vorticity maximum (EVM) in the turbulence parameter estimation, since the EVMs are likely to be quasi two-dimensional vortex structures that are embedded within the three dimensional turbulence on the inside edge of the eyewall.
Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage
NASA Technical Reports Server (NTRS)
Salazar, Denise; Yuricich, Jillian
2014-01-01
In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta
2004-01-01
A molecular Rayleigh scattering based flow diagnostic is developed to measure time average velocity, density, temperature, and turbulence intensity in a 25.4-mm diameter nozzle free jet facility. The spectrum of the Rayleigh scattered light is analyzed using a Fabry-Perot interferometer operated in the static imaging mode. The resulting fringe pattern containing spectral information of the scattered light is recorded using a low noise CCD camera. Nonlinear least squares analysis of the fringe pattern using a kinetic theory model of the Rayleigh scattered light provides estimates of density, velocity, temperature, and turbulence intensity of the gas flow. Resulting flow parameter estimates are presented for an axial scan of subsonic flow at Mach 0.95 for comparison with previously acquired pitot tube data, and axial scans of supersonic flow in an underexpanded screeching jet. The issues related to obtaining accurate turbulence intensity measurements using this technique are discussed.
Extreme events in computational turbulence
Yeung, P. K.; Zhai, X. M.; Sreenivasan, Katepalli R.
2015-01-01
We have performed direct numerical simulations of homogeneous and isotropic turbulence in a periodic box with 8,1923 grid points. These are the largest simulations performed, to date, aimed at improving our understanding of turbulence small-scale structure. We present some basic statistical results and focus on “extreme” events (whose magnitudes are several tens of thousands the mean value). The structure of these extreme events is quite different from that of moderately large events (of the order of 10 times the mean value). In particular, intense vorticity occurs primarily in the form of tubes for moderately large events whereas it is much more “chunky” for extreme events (though probably overlaid on the traditional vortex tubes). We track the temporal evolution of extreme events and find that they are generally short-lived. Extreme magnitudes of energy dissipation rate and enstrophy occur simultaneously in space and remain nearly colocated during their evolution. PMID:26424452
Extreme events in computational turbulence.
Yeung, P K; Zhai, X M; Sreenivasan, Katepalli R
2015-10-13
We have performed direct numerical simulations of homogeneous and isotropic turbulence in a periodic box with 8,192(3) grid points. These are the largest simulations performed, to date, aimed at improving our understanding of turbulence small-scale structure. We present some basic statistical results and focus on "extreme" events (whose magnitudes are several tens of thousands the mean value). The structure of these extreme events is quite different from that of moderately large events (of the order of 10 times the mean value). In particular, intense vorticity occurs primarily in the form of tubes for moderately large events whereas it is much more "chunky" for extreme events (though probably overlaid on the traditional vortex tubes). We track the temporal evolution of extreme events and find that they are generally short-lived. Extreme magnitudes of energy dissipation rate and enstrophy occur simultaneously in space and remain nearly colocated during their evolution. PMID:26424452
A hot-wire method for high-intensity turbulent flows
NASA Technical Reports Server (NTRS)
Mueller, U. R.
1983-01-01
A measuring technique for determing instantaneous, three-dimensional velocity vectors in highly turbulent flows by means of a 4-sensor hot-wire probe is described. As is well known, the hot-wire signal received in reversing flows cannot uniquely be interpreted. This difficulty is circumvented by tracking the thermal wake of a heated wire. Whenever the approximate flow direction is indicated by a temperature-sensitive wake detector, all components of the instantaneous velocity vector are evaluated by means of a digital data reduction method. Uniqueness of the solution derived from the triple-hot-wire response equations is examined. A first application of the proposed measuring technique in the recirculating flow downstream of a backward-facing step is described.
Structure of wind-shear turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.; Laituri, T. R.
1988-01-01
The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.
New approach to the correlation of turbulent burning velocity data
Shet, U.S.P.; Sriramulu, V.; Gupta, M.C.
1981-01-01
This investigation highlights a new approach to the correlation of turbulent burning velocity data, which basically stems from the fact that detailed measurements of turbulence, using wire meshes and perforated discs as generators of isotropic turbulence, show a unique trend when the ratio of Kolmogorov microscale /eta/ to lateral macroscale L is plotted against the r.m.s. turbulent velocity u/prime/. For weak turbulence, the data obtained for different generators telescoped into a single curve, whereas for strong turbulence distinct demarcations could be detected for different grids. Analysis reveals that two correlations are adequate for interpreting the data obtained. When turbulence intensity is low, the ratio of turbulent to laminar burning velocity S/sub T//S/sub L/ depends only on /eta/sub L/ in much the same fashion as u/prime/sub SL/ while for large intensities, u/prime/sub SL/ turns out to be an additional parameter besides /eta/sub L/. When this analysis is extended to the data of other investigators, the forms of the correlating equations remain the same as in the present work but require different empirical constants. 15 refs.
The effects of anisotropic free-stream turbulence on turbulent boundary layer behavior
NASA Technical Reports Server (NTRS)
Liang-Wei, F.; Hoffman, J. A.
1985-01-01
The effects of near-isotropic and highly anisotropic free-stream turbulence on mean flow properties of the turbulence structure of turbulent boundary layers in a near zero pressure gradient flow has been experimentally evaluated. Turbulence levels vary from 0.5% to 8.0% and the momentum thickness Reynolds number varies from 800 to 1100. The results indicate that the effects of free-stream turbulence on the classical boundary layer properties for near-isotropic turbulence which have been published by other investigators are similar to the case of highly anisotropic turbulence fields, while the effects of free-stream turbulence on the properties of the turbulent structure within the boundary layer for the case of near-isotropic turbulence are quite different compared to the highly anisotropic case.
Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence
NASA Technical Reports Server (NTRS)
Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto
1990-01-01
The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At
Accelerative propagation and explosion triggering by expanding turbulent premixed flames.
Akkerman, V'yacheslav; Chaudhuri, Swetaprovo; Law, Chung K
2013-02-01
The dynamics and morphology of outwardly propagating, accelerating turbulent premixed flames and the effect of flame acceleration on explosion triggering are analyzed. Guided by recent theoretical results and substantiated by experiments, we find that an expanding flame front in an externally forced, near-isotropic turbulent environment exhibits accelerative propagation given by a well-defined power law based on the average global flame radius. In this context the limits of the power-law exponent and the effective turbulence intensity experienced by the flame are derived. The power-law exponent is found to be substantially larger than that for the hydrodynamically unstable cellular laminar flames, hence facilitating the possibility of detonation triggering in turbulent environments. For large length scales, hydrodynamic instability is expected to provide additional acceleration, thus further favoring the attainment of detonation triggering.
Acceleration of passive tracers in compressible turbulent flow.
Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Xiao, Zuoli; He, X T; Chen, Shiyi
2013-02-01
In compressible turbulence at high Reynolds and Mach numbers, shocklets emerge as a new type of flow structure in addition to intense vortices as in incompressible turbulence. Using numerical simulation of compressible homogeneous isotropic turbulence, we conduct a Lagrangian study to explore the effects of shocklets on the dynamics of passive tracers. We show that shocklets cause very strong intermittency and short correlation time of tracer acceleration. The probability density function of acceleration magnitude exhibits a -2.5 power-law scaling in the high compression region. Through a heuristic model, we demonstrate that this scaling is directly related to the statistical behavior of strong negative velocity divergence, i.e., the local compression. Tracers experience intense acceleration near shocklets, and most of them are decelerated, usually with large curvatures in their trajectories.
NASA Astrophysics Data System (ADS)
Nelson, C.; Avramov-Zamurovic, S.; Malek-Madani, R.; Korotkova, O.; Sova, R.; Davidson, F.
2012-10-01
A hot-air turbulence emulator is employed for generating controlled optical clear air turbulence in the weak fluctuation regime in laboratory conditions. The analysis of the first and second-order statistical moments of the fluctuating intensity of a propagating infra-red (IR) laser beam through the turbulence emulator is made and the results are compared with bi-directional shore-to-ship maritime data collected during two 2009 mid-Atlantic Coast field tests utilizing single-mode adaptive optics terminals at a range of 10.7 km, as well as with a 633 nm Helium Neon laser propagating across land and water at the United States Naval Academy.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.
2014-01-01
The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall
NASA Technical Reports Server (NTRS)
Haugstad, B. S.
1978-01-01
The nature and magnitude of turbulence-induced errors in atmospheric profiles derived from Doppler measurements made during radio occultations are investigated. It is found that turbulence in planetary atmospheres induces both fluctuating and systematic errors in derived profiles, but the errors of both types are very small. Consideration of the occultation of Mariner 10 by Venus and of the Pioneer occultations by Jupiter shows that the rms fractional errors in the atmospheric profiles derived from these observations were less than 0.01 in both temperature and pressure, while the fractional systematic errors were typically of the order of 1 millionth. The extent to which atmospheric profiles derived from radio and optical intensity measurements are affected by turbulence is also examined. The results indicate that turbulence in planetary atmospheres has only a marginal effect on derived profiles in the weak-scattering limit and that the turbulence-induced errors in this case are always much larger than the corresponding errors in profiles derived from radio Doppler measurements.
Turbulence structure in a Taylor-Couette apparatus
Fehrenbacher, Noah; Aldredge, Ralph C.; Morgan, Joshua T.
2007-10-15
Turbulence measurements were made in a Taylor-Couette apparatus as a basis for future flame propagation studies. Results of the present study extend that of earlier work by more complete characterization of the featureless turbulence regime generated by the Taylor-Couette apparatus. Laser Doppler Velocimetry was used to measure Reynolds stresses, integral and micro time scales and power spectra over a wide range of turbulence intensities typically encountered by turbulent pre-mixed hydrocarbon-air flames. Measurements of radial velocity intensities are consistent with earlier axial and circumferential velocity measurements that indicated a linear relationship between turbulence intensity and the Reynolds number based on the average cylinder rotation speed and wall separation distance. Measured integral and micro time scales and approximated integral length scales were all found to decrease with the Reynolds number, possibly associated with a confinement of the largest scales (of the order of the cylinder wall separation distance). Regions of transverse isotropy were discovered in axial-radial cross correlations for average cylinder Reynolds numbers less than 6000 and are predicted to exist also for circumferential cross correlations at higher average Reynolds numbers, greater than 6000. Power spectra for the independent directions of velocity fluctuation exhibited -5/3 slopes, suggesting that the flow also has some additional isotropic characteristics and demonstrating the role of the Taylor-Couette apparatus as a novel means for generating turbulence for flame propagation studies. (author)
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.
2015-12-01
Accurate representation of air pollutant dispersion is essential for environmental management and planning purposes. In this study, semi-empirical relationships of turbulence intensity (σu/u*, σv/u* and σw/u*) as a function of surface layer scaling and local stability are developed following boundary layer similarity concepts at Ranchi, a complex terrain in Jharkhand, Eastern India for various seasons. The impact of the new turbulence parameterization for air pollution dispersion simulation is studied by incorporating the same in the Hanna scheme of FLEXPART-WRF Lagrangian Particle dispersion model over study region. The model is used to estimate the ground level concentrations of nitrogen oxides (NOx) due to industrial and vehicular sources in study region. The meteorological parameters needed in air-quality simulation are simulated using the Advanced Research WRF (ARW) mesoscale model at high resolution (3 km). Three turbulence schemes (YSU, MYNN2 and ACM2) in ARW are alternatively tested in dispersion simulation and comparisons are made with available air quality data for eight days in different seasons (winter, pre-monsoon, monsoon and post-monsoon). Simulations with FLEXPART revealed distinct seasonal variation of dispersion patterns. It has been found that the new turbulence intensity relationships in FLEXPART improved the NOx concentration estimates by reducing the negative bias seen with default Hanna scheme. Further, the ARW simulated meteorological parameters using ACM2 and MYNN2 significantly reduced the bias in modeled pollutant concentrations. The study demonstrates the utility of high quality seasonal turbulence measurements in pollution dispersion model for better diffusion parameterization needed in air quality modeling.
Measurements of premixed-flame turbulence generation and modification in a Taylor-Couette burner
Arjomand-Kermani, Amir M.; Aldredge, Ralph C.
2007-10-15
Turbulent, premixed lean methane-air flames were studied experimentally in a Taylor-Couette burner, extending the previous work of non-reacting turbulent-flow measurements. A laser-Doppler velocimetry system is employed to measure velocity fluctuations in the circumferential direction at the center of the annulus where mean velocities are nearly zero. Turbulence parameters such as the intensities, approximated integral and micro-time and length scales and one-dimensional frequency spectra are obtained for the flow-field ahead and behind the flame front. The frequency spectra exhibit a -5/3 slope reaffirming isotropic characteristics. It is found that there is an increase in intensity, turbulence Reynolds number and energy across a broad range of frequencies behind the flame along with a shift toward larger scales. However, there appears to be a decrease in amplification of the intensities and turbulence Reynolds number with increasing pre-ignition turbulence in the burner (generated by counter-rotation of the cylinder walls). Results suggest that the presence of flame-generated turbulence in the TC burner is sensitive to both pre-ignition turbulence and equivalence ratio. (author)
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames. PMID:24125342
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations
NASA Astrophysics Data System (ADS)
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
NASA Astrophysics Data System (ADS)
Inoue, M.; Mathis, R.; Marusic, I.; Pullin, D. I.
2012-07-01
Time series velocity signals obtained from large-eddy simulations (LES) within the logarithmic region of the zero-pressure gradient turbulent boundary layer over a smooth wall are used in combination with an empirical, predictive inner-outer wall model [I. Marusic, R. Mathis, and N. Hutchins, "Predictive model for wall-bounded turbulent flow," Science 329, 193 (2010), 10.1126/science.1188765] to calculate the statistics of the fluctuating streamwise velocity in the inner region. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Reτ = 7300, 13 600, and 19 000. The LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Reτ = 62 000, 100 000, and 200 000 that lie within a gap in log (Reτ) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a loglike increase in the near-wall peak of the streamwise turbulence intensities with Reτ and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows.
Inlet free-stream turbulence effects on diffuser performance
NASA Technical Reports Server (NTRS)
Hoffman, J. A.; Gonzales, G.
1983-01-01
The performance of a subsonic two dimensional diffuser was experimentally evaluated as a function of inlet free-stream turbulence parameters. Anisotropic inlet free-stream turbulence with the eddy axis perpendicular to the flow and parallel to the diverging walls of the diffuser appears to be more effective at transmitting energy to the diverging walls of the diffuser, thereby improving diffuser performance, as compared to isotropic turbulence or anisotropic turbulence with the eddy axis perpendicular to the diverging walls of the diffuser. The pressure recovery of the diffuser was found to be strongly dependent upon the inlet free-stream total turbulence intensity, was independent of eddy size for large eddy dimensions, and was dependent upon eddy size for small eddy dimensions. The improvement in the diffuser's static pressure recovery coefficient at a total included divergence angle of 20 deg, compared to the low inlet turbulence case, was found to be as much as 21 times larger than the pressure loss across the turbulence generators.
Turbulent Sediment Suspension and Induced Ripple Dynamics Absent Mean Shear
NASA Astrophysics Data System (ADS)
Johnson, B. A.; Cowen, E.
2014-12-01
The uprush and backwash phases in the swash zone, the region of the beach that is alternately covered and uncovered by wave run-up, are fundamentally different events. Backwash is dominated by a growing boundary layer where the turbulence is set by the bed shear stress. In this phase traditional boundary layer turbulence models and Shields-type critical stress pickup functions work well. However, the uprush phase, while often viewed in the context of traditional boundary layer turbulence models, has little in common with the backwash phase. During uprush, the entire water column is turbulent, as it rapidly advects well-stirred highly turbulent flow generated offshore from breaking waves or collapsing bores. Turbulence levels in the uprush are several times higher than turbulent boundary layer theory would predict and hence the use of a boundary layer model to predict turbulence levels during uprush grossly under predicts the turbulence and subsequent sediment suspension in the swash zone. To study the importance of this advected turbulence to sediment suspension we conduct experiments in a water tank designed to generate horizontally homogeneous isotropic turbulence absent mean shear using randomly actuated synthetic jet arrays suspended above both a solid glass plate and a narrowly graded sediment bed. Using jet arrays with different jet spacings allows the generation of high Reynolds number turbulence with variable integral length scales, which we hypothesize control the characteristic length scales in the induced ripple field. Particle image velocimetry and acoustic Doppler velocimetry measurements are used to characterize the near-bed flow and this unique turbulent boundary layer. Metrics include the mean flow and turbulence intensities and stresses, temporal and spatial spectra, dissipation of turbulent kinetic energy, and integral length scales of the turbulence. We leverage our unique dataset to compare the flows over impermeable fixed and permeable mobile
Rembold, Christopher M; Suratt, Paul M
2014-01-01
Obstructive sleep disordered breathing can cause death and significant morbidity in adults and children. We previously found that children with smaller upper airways (measured by magnetic resonance imaging while awake) generated loud high frequency inspiratory sounds (HFIS, defined as inspiratory sounds > 2 kHz) while they slept. The purpose of this study was (1) to determine what characteristics of airflow predicted HFIS intensity, and (b) to determine if we could calculate changes in hydraulic diameter (D) in both an in vitro model and in the upper airways of sleeping humans. In an in vitro model, high frequency sound intensity was an estimate of airflow turbulence as reflected by the Reynold's number (Re). D of the in vitro model was calculated using Re, the pressure gradient, Swamee–Jain formula and Darcy formula. D was proportional to but smaller than the actual diameters (r2 = 0.94). In humans, we measured HFIS intensity and the pressure gradient across the upper airway (estimated with oesophageal pressure, Pes) during polysomnography in four adult volunteers and applied the same formulae to calculate D. At apnoea termination when the airway opens, we observed (1) an increase in HFIS intensity suggesting an increase in turbulence (higher Re), and (2) a larger calculated D. This method allows dynamic estimation of changes in relative upper airway hydraulic diameter (D) in sleeping humans with narrowed upper airways. PMID:24973405
NASA Astrophysics Data System (ADS)
Ostrovskii, Alexander G.; Zatsepin, Andrey G.
2016-10-01
This paper presents new observational data, which indicate that deep ventilation events in the aerobic zone extending across the upper part of the permanent pycnocline may occur sporadically in the Rim Current area, even during relatively warm seasons, when the seasonal thermocline is still notable. The strongest observed event of this type occurred on November 2014 off the continental shelf break near Gelendzhik Bay. Vertical profiles of dissolved oxygen were accurately measured using an SBE 52-MP Conductivity, Temperature, Depth (CTD) probe equipped with a fast-response SBE 43F oxygen sensor mounted on a moored Aqualog automatic mobile profiler. The analysis of the profiling data from October 6 through December 16, 2014, from depths between 35 m and 215 m revealed an anomaly on November 6-7. The dissolved oxygen exceeded the background levels by more than 0.2 ml/l (8.9 μM) at the 14.9-15.7 kg/m3 isopycnals in the pycnocline and reached approximately 1 ml/l (44.66 μM) for short periods. The peak absolute value of the dissolved oxygen reached an exceptionally high value of approximately 0.3 ml/l (13.4 μM) at the 15.9 kg/m3 isopycnal. The ventilation event increased the temperature by 0.2 °C at depths of 120-160 m. The simultaneous observations of both the thermohaline stratification and the ocean currents suggest that the ventilation event was associated with the sinking of pycnocline waters in the near-bottom Ekman layer along the continental slope and intense vertical turbulent exchange in the Rim Current area near the continental slope. The ventilation of the pycnocline when the overlaying upper ocean is stably stratified sharply differs from the convection reaching the Cold Intermediate Layer during extensive cooling of the sea surface. Indications of such ventilation events were also found in the Aqualog mooring data archive from 2012.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.; Goldman, L. J.
1982-01-01
A technique for measuring a small optical axis velocity component in a flow with a large transverse velocity component is presented. Experimental results are given for a subsonic free jet operating in a laboratory environment, and for a 0.508 meter diameter turbine stator cascade. Satisfactory operation of the instrument was demonstrated in the stator cascade facility with an ambient acoustic noise level during operation of about 105 dB. In addition, the turbulence intensity measured with the interferometer was consistent with previous measurements taken with a fringe type laser anemometer.
Amato, Alberto; Fortini, Stefania; Watteaux, Romain; Diano, Marcello; Espa, Stefania; Esposito, Serena; Ferrante, Maria I; Peters, Francesc; Iudicone, Daniele; Ribera d'Alcalà, Maurizio
2016-03-01
In recent years, there has been a renewed interest in the impact of turbulence on aquatic organisms. In response to this interest, a novel instrument has been constructed, TURBOGEN, that generates turbulence in water volumes up to 13 l. TURBOGEN is fully computer controlled, thus, allowing for a high level of reproducibility and for variations of the intensity and characteristics of turbulence during the experiment. The calibration tests, carried out by particle image velocimetry, showed TURBOGEN to be successful in generating isotropic turbulence at the typical relatively low levels of the marine environment. TURBOGEN and its sizing have been devised with the long-term scope of analyzing in detail the molecular responses of plankton to different mixing regimes, which is of great importance in both environmental and biotechnological processes.
NASA Astrophysics Data System (ADS)
Amato, Alberto; Fortini, Stefania; Watteaux, Romain; Diano, Marcello; Espa, Stefania; Esposito, Serena; Ferrante, Maria I.; Peters, Francesc; Iudicone, Daniele; Ribera d'Alcalà, Maurizio
2016-03-01
In recent years, there has been a renewed interest in the impact of turbulence on aquatic organisms. In response to this interest, a novel instrument has been constructed, TURBOGEN, that generates turbulence in water volumes up to 13 l. TURBOGEN is fully computer controlled, thus, allowing for a high level of reproducibility and for variations of the intensity and characteristics of turbulence during the experiment. The calibration tests, carried out by particle image velocimetry, showed TURBOGEN to be successful in generating isotropic turbulence at the typical relatively low levels of the marine environment. TURBOGEN and its sizing have been devised with the long-term scope of analyzing in detail the molecular responses of plankton to different mixing regimes, which is of great importance in both environmental and biotechnological processes.
Slowing and cooling atoms in isotropic laser light
NASA Astrophysics Data System (ADS)
Ketterle, Wolfgang; Martin, Alex; Joffe, Michael A.; Pritchard, David E.
1992-10-01
We demonstrate cooling and slowing of atoms in isotropic laser light. As the atoms slow, they compensate for their changing Doppler shift by preferentially absorbing photons at a varying angle to their direction of motion, resulting in a continuous beam of slow atoms unperturbed by an intense slowing laser beam. We point out several novel features of slowing and cooling in isotropic light, and show that it can be superior to cooling with directed laser beams.
Suppression of turbulent resistivity in turbulent Couette flow
NASA Astrophysics Data System (ADS)
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Pulsating instability and self-acceleration of fast turbulent flames
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei Y.
2015-01-01
A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. The computational domain is unconfined to prevent the onset of thermoacoustic instabilities. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damköhler numbers Da = 0.1 - 6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. (1) Turbulent flame speed, ST, develops pulsations with the observed peak-to-peak amplitude ST max / ST min > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. (2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when ST approaches or exceeds the speed of a Chapman-Jouguet deflagration. (3) Coupling of pressure gradients formed during pulsations with density gradients across the flame leads to the anisotropic amplification of turbulence inside the flame volume and flame acceleration. Such process, which is driven by the baroclinic term in the vorticity transport equation, is a reacting-flow analog of the mechanism underlying the Richtmyer-Meshkov instability. With the increase in turbulent intensity, the limit-cycle instability discussed here transitions to the regime described in our previous work, in which the growth of ST becomes unbounded and produces a detonation.
Orientation statistics and settling velocity of ellipsoids in decaying turbulence
NASA Astrophysics Data System (ADS)
Siewert, C.; Kunnen, R. P. J.; Meinke, M.; Schröder, W.
2014-06-01
Motivated by applications in technology as well as in other disciplines where the motion of particles in a turbulent flow field is important, the orientation and settling velocity of ellipsoidal particles in a spatially decaying isotropic turbulent flow are numerically investigated. With respect to cloud microphysics ellipsoidal particles of various shapes are interpreted as archetypes of regular ice crystals, i.e., plates and columns approximated by oblate and prolate ellipsoids. The motion of 19 million small and heavy ellipsoidal particles is tracked by a Lagrangian point-particle model based on Stokes flow conditions. Five types of ellipsoids of revolution such as prolates, spheres, and oblates are considered. The orientation and settling velocity statistics are gathered at six turbulence intensities characterized by the turbulent kinetic energy dissipation rate ranging from 30 to 250 cm2s- 3. It is shown that the preferential orientation of ellipsoids is disturbed by the turbulent fluctuations of the fluid forces and moments. As the turbulence intensity increases the orientation probability distribution becomes more and more uniform. That is, the settling velocity of the ellipsoids is influenced by the turbulence level since the drag force is dependent on the orientation. The effect is more pronounced, the longer the prolate or the flatter the oblate is. The theoretical settling velocity based on the orientation probability of the non-spherical particles is smaller than that found in the simulation. The results show the existence of the preferential sweeping phenomenon also for non-spherical particles. These two effects of turbulence on the motion of ellipsoids change the settling velocity and as such the swept volume, that is expected to result in modified collision probabilities of ellipsoid-shaped particles.
Turbulence effect on cloud radiation.
Matsuda, K; Onishi, R; Kurose, R; Komori, S
2012-06-01
The effect of turbulent clustering of water droplets on radiative transfer is investigated by means of both a three-dimensional direct numerical simulation of particle-laden homogeneous isotropic turbulence and a radiative transfer simulation based on a Monte Carlo photon tracing method. The results show that turbulent clustering causes the formation of void regions of droplets and hence increases the direct transmittance. This effect decreases as the turbulent Reynolds number increases and is estimated to be negligibly small under the conditions in real clouds.
Isotropic Monte Carlo Grain Growth
2013-04-25
IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.
NASA Technical Reports Server (NTRS)
Kao, S. K.; Lordi, N. J.
1977-01-01
Analyses of the meteorological rocket data obtained from an experiment conducted at 3-hour intervals at 8 western meridional rocket stations are presented. Large variations in the meridional wind contribute substantially to overall turbulence in the tropical stratosphere. The solar semidiurnal component of wind oscillations in the tropics was observed to be much higher than predicted by theory, often exceeding the magnitude of the diurnal amplitude throughout the stratosphere. The observed value of the solar diurnal amplitude in the stratosphere was in line with theoretical prediction. The solar terdiurnal amplitudes for temperature, meridional and zonal winds were non-negligible and must be considered in any harmonic analysis. Phase angle variation with height was rapid for all harmonics; however, there was general agreement between predicted and observed phase angles. Because of large changes in the mean winds in the mesosphere with season, harmonic determinations are difficult. There appear to be large zonal wind changes even within the same season as mentioned previously. Turbulence diffusivity in the upper stratosphere is greater near the equator than in the mid-latitudes.
Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence
Paoletti, M. S.; Fisher, Michael E.; Sreenivasan, K. R.; Lathrop, D. P.
2008-10-10
By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid {sup 4}He are strongly non-Gaussian with 1/v{sup 3} power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails.
NASA Astrophysics Data System (ADS)
Dmitrenko, Artur V.
2016-07-01
The stochastic equations of continuum are used for determining the hydraulic drag coefficients. As a result, the formulas for the hydraulic drag coefficients dependent on the turbulence intensity and scale instead of only on the Reynolds number are proposed for the classic flows of an incompressible fluid along a smooth flat plate and a round smooth tube. It is shown that the new expressions for the classical drag coefficients, which depend only on the Reynolds number, should be obtained from these new general formulas if to use the well-known experimental data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas for the hydraulic drag coefficients and their deviation from the experimental data depend on different parameters of initial fluctuations in the flow for different experiments in a wide range of Reynolds numbers. On the basis of these new dependencies, it is possible to explain that the differences between the experimental results for the fixed Reynolds number are caused by the difference in the values of flow fluctuations for each experiment instead of only due to the systematic error in the processing of experiments. Accordingly, the obtained general dependencies for the smooth flat plate and the smooth round tube can serve as the basis for clarifying the results of experiments and the experimental formulas, which used for continuum flows in different devices.
NASA Technical Reports Server (NTRS)
Sewell, Jesse; Chew, Larry
1994-01-01
In recent years, the interest in developing a high-speed civil transport has increased. This has led to an increase in research activity on compressible supersonic flows, in particular the boundary layer. The structure of subsonic boundary layers has been extensively documented using conditional sampling techniques which exploit the knowledge of both u and v velocities. Researchers using these techniques have been able to explore some of the complex three-dimensional motions which are responsible for Reynolds stress production and transport in the boundary layer. As interest in turbulent structure has grown to include supersonic flows, a need for simultaneous multicomponent velocity measurements in these flows has developed. The success of conditional analysis in determining the characteristics of coherent motions and structures in the boundary layer relies on accurate, simultaneous measurement of two instantaneous velocity components.
NASA Astrophysics Data System (ADS)
Rehill, Brendan; Ed J. Walsh Collaboration; Philipp Schlatter, Luca Brandt Collaboration; Tamer A. Zaki Collaboration; Donald M. McEligot Collaboration
2011-11-01
Within the boundary layer transition region turbulent spots emerge and grow to form the fully-turbulent boundary layer. This paper examines the turbulent statistics within turbulent spots in a transitional boundary layer subject to free-stream turbulence intensity of 4 . 7 % . Conditionally sampled DNS results, where the laminar and turbulent contributions to the transition region are separated, are used to obtain the relevant statistics. Conditional sampling of the data provides some improvement over the more classical time-space-averaged data reduction techniques, through providing more insight into the true turbulent statistics within turbulent spots. The statistics are compared to the lowest fully-turbulent DNS available in the literature to identify how the turbulent spots develop and form the fully-turbulent state. Stokes Institute, University of Limerick, Limerick, Ireland
Transversely isotropic poroelasticity arising from thin isotropic layers
Berryman, J.G.
1996-11-01
Percolation phenomena play central roles in the field of poroelasticity, where two distinct sets of percolating continua intertwine. A connected solid frame forms the basis of the elastic behavior of a poroelastic medium in the presence of confining forces, while connected pores permit a percolating fluid (if present) to influence the mechanical response of the system from within. The present paper discusses isotropic and anisotropic poroelastic media and establishes general formulas for the behavior of transversely isotropic poroelasticity arising from laminations of isotropic components. The Backus averaging method is shown to provide elementary means of constructing general formulas. The results for confined fluids are then compared with the more general Gassmann formulas that must be satisfied by any anisotropic poroelastic medium and found to be in complete agreement.
Transversely isotropic elasticity and poroelasticity arising from thin isotropic layers
Berryman, J.G.
1997-07-01
Since the classic work of Postma [1955] and Backus [1962], much has been learned about elastic constants in vertical transversely isotropic (VTI) media when the anisotropy is due to fine layering of isotropic elastic materials. However, new results are still being discovered. For example, the P-wave anisotropy parameter c{sub 11}/c{sub 33} lies in the range 1/4 {<=} c{sub 11}/c{sub 33} {<=} <{lambda}+2{mu}><1/({lambda}+2{mu})>, when the layers are themselves composed of isotropic elastic materials with Lame constants {lambda} and {mu} and the vertical average of the layers is symbolized by <{center_dot}>. The lower bound corrects a result of Postma. For porous layers, a connected solid frame forms the basis of the elastic behavior of a poroelastic medium in the presence of confining forces, while connected pores permit a percolating fluid (if present) to influence the mechanical response of the system from within. For isotropic and anisotropic poroelastic media, we establish general formulas for the behavior of transversely isotropic poroelasticity arising from laminations of isotropic components. The Backus averaging method is shown to provide elementary means of constructing general formulas. The results for confined fluids are then compared with the more general Gassmann [1951] formulas that must be satisfied by any anisotropic poroelastic medium and found to be in complete agreement. Such results are important for applications to oil exploration using AVO (amplitude versus offset) since the presence or absence of a fluid component, as well as the nature of the fluid, is the critical issue and the ways in which the fluid influences seismic reflection data still need to be better understood.
Interaction of a free flame front with a turbulence field
NASA Technical Reports Server (NTRS)
Tucker, Maurice
1956-01-01
Small-perturbation spectral-analysis techniques are used to obtain the root-mean-square flame-generated turbulence velocities and the attenuating pressure fluctuations stemming from interaction of a constant-pressure flame front with a field of isotropic turbulence in the absence of turbulence decay processes.
The isotropic radio background revisited
Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.
2014-04-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.
Turbulence modelling of flow fields in thrust chambers
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S.
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Coherence in Turbulence: New Perspective
NASA Astrophysics Data System (ADS)
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
NASA Technical Reports Server (NTRS)
Bereketab, Semere; Wang, Hong-Wei; Mish, Patrick; Devenport, William J.
2000-01-01
Two grids have been developed for the Virginia Tech 6 ft x 6 ft Stability wind tunnel for the purpose of generating homogeneous isotropic turbulent flows for the study of unsteady airfoil response. The first, a square bi-planar grid with a 12" mesh size and an open area ratio of 69.4%, was mounted in the wind tunnel contraction. The second grid, a metal weave with a 1.2 in. mesh size and an open area ratio of 68.2% was mounted in the tunnel test section. Detailed statistical and spectral measurements of the turbulence generated by the two grids are presented for wind tunnel free stream speeds of 10, 20, 30 and 40 m/s. These measurements show the flows to be closely homogeneous and isotropic. Both grids produce flows with a turbulence intensity of about 4% at the location planned for the airfoil leading edge. Turbulence produced by the large grid has an integral scale of some 3.2 inches here. Turbulence produced by the small grid is an order of magnitude smaller. For wavenumbers below the upper limit of the inertial subrange, the spectra and correlations measured with both grids at all speeds can be represented using the von Karman interpolation formula with a single velocity and length scale. The spectra maybe accurately represented over the entire wavenumber range by a modification of the von Karman interpolation formula that includes the effects of dissipation. These models are most accurate at the higher speeds (30 and 40 m/s).
NASA Technical Reports Server (NTRS)
Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.
1999-01-01
The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.
Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model
NASA Astrophysics Data System (ADS)
Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.
2016-09-01
Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.
Recent progress in compressible turbulence
NASA Astrophysics Data System (ADS)
Chen, Shiyi; Xia, Zhenhua; Wang, Jianchun; Yang, Yantao
2015-06-01
In this paper, we review some recent studies on compressible turbulence conducted by the authors' group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a constrained large eddy simulation (CLES) for wall-bounded turbulence. In the first part, we begin with a newly proposed hybrid compact-weighted essentially nonoscillatory (WENO) scheme for a CIT simulation that has been used to construct a systematic database of CIT. Using this database various fundamental properties of compressible turbulence have been examined, including the statistics and scaling of compressible modes, the shocklet-turbulence interaction, the effect of local compressibility on small scales, the kinetic energy cascade, and some preliminary results from a Lagrangian point of view. In the second part, the idea and formulas of the CLES are reviewed, followed by the validations of CLES and some applications in compressible engineering problems.
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
van de Water, Willem; Ergun Cekli, Hakki; Joosten, Rene
2011-11-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the large eddies in the wind-tunnel turbulence. A large mismatch of these times creates a flow with interesting statistics, but it is not turbulence.
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Estimating three-demensional energy transfer in isotropic turbulence
NASA Technical Reports Server (NTRS)
Li, K. S.; Helland, K. N.; Rosenblatt, M.
1980-01-01
To obtain an estimate of the spectral transfer function that indicates the rate of decay of energy, an x-wire probe was set at a fixed position, and two single wire probes were set at a number of locations in the same plane perpendicular to the mean flow in the wind tunnel. The locations of the single wire probes are determined by pseudo-random numbers (Monte Carlo). Second order spectra and cross spectra are estimated. The assumption of isotropy relative to second order spectra is examined. Third order spectra are also estimated corresponding to the positions specified. A Monte Carlo Fourier transformation of the downstream bispectra corresponding to integration across the plane perpendicular to the flow is carried out assuming isotropy. Further integration is carried out over spherical energy shells.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Ramaswamy, V. G.; Vanstone, R. H.; Dame, L. T.; Laflen, J. H.
1984-01-01
The unified constitutive theories for application to typical isotropic cast nickel base supperalloys used for air-cooled turbine blades were evaluated. The specific modeling aspects evaluated were: uniaxial, monotonic, cyclic, creep, relaxation, multiaxial, notch, and thermomechanical behavior. Further development of the constitutive theories to model thermal history effects, refinement of the material test procedures, evaluation of coating effects, and verification of the models in an alternate material will be accomplished in a follow-on for this base program.
Multifractality and the effect of turbulence on the chaotic dynamics of a HeNe laser
NASA Astrophysics Data System (ADS)
Gulich, Damián.; Zunino, Luciano; Pérez, Darío.; Garavaglia, Mario
2013-09-01
We propose the use of multifractal detrended fluctuation analysis (MF-DFA) to measure the influence of atmospheric turbulence on the chaotic dynamics of a HeNe laser. Fit ranges for MF-DFA are obtained with goodness of linear fit (GoLF) criterion. The chaotic behavior is generated by means of a simple interferometric setup with a feedback to the cavity of the gas laser. Such dynamics have been studied in the past and modeled as a function of the feedback level. Different intensities of isotropic turbulence have been generated with a turbulator device, allowing a structure constant for the index of refraction of air adjustable by means of a temperature difference parameter in the unit. Considering the recent interest in message encryption with this kind of setups, the study of atmospheric turbulence effects plays a key role in the field of secure laser communication through the atmosphere. In principle, different intensities of turbulence may be interpreted as different levels of white noise on the original chaotic series. These results can be of utility for performance optimization in chaotic free-space laser communication systems.
NASA Astrophysics Data System (ADS)
Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara
2016-07-01
The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with
The interaction of high-speed turbulence with flames: Turbulent flame speed
Poludnenko, A.Y.; Oran, E.S.
2011-02-15
Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
Cekli, Hakki Ergun; Joosten, René; van de Water, Willem
2015-12-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.
Turbulence-Flame Interactions in Type Ia Supernovae
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720; Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794; Aspden, Andrew J; Aspden, Andrew J.; Bell, John B.; Day, Marc S.; Woosley, Stan E.; Zingale, Mike
2008-05-27
The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to 8 x 107 g cm-3, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and 3 x 107 g cm-3 where the nature of the burning changes ualitatively. By 1 x 107 g cm-3, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, D_T \\sim u' l, where u' is the turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.
A Transversely Isotropic Thermoelastic Theory
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.
Sufficient condition for Gaussian departure in turbulence.
Tordella, Daniela; Iovieno, Michele; Bailey, Peter Roger
2008-01-01
The interaction of two isotropic turbulent fields of equal integral scale but different kinetic energy generates the simplest kind of inhomogeneous turbulent field. In this paper we present a numerical experiment where two time decaying isotropic fields of kinetic energies E1 and E2 initially match over a narrow region. Within this region the kinetic energy varies as a hyperbolic tangent. The following temporal evolution produces a shearless mixing. The anisotropy and intermittency of velocity and velocity derivative statistics is observed. In particular the asymptotic behavior in time and as a function of the energy ratio E_{1}E_{2}-->infinity is discussed. This limit corresponds to the maximum observable turbulent energy gradient for a given E1 and is obtained through the limit E_{2}-->0 . A field with E_{1}E_{2}-->infinity represents a mixing which could be observed near a surface subject to a very small velocity gradient separating two turbulent fields, one of which is nearly quiescent. In this condition the turbulent penetration is maximum and reaches a value equal to 1.2 times the nominal mixing layer width. The experiment shows that the presence of a turbulent energy gradient is sufficient for the appearance of intermittency and that during the mixing process the pressure transport is not negligible with respect to the turbulent velocity transport. These findings may open the way to the hypothesis that the presence of a gradient of turbulent energy is the minimal requirement for Gaussian departure in turbulence.
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale. PMID:27333052
Dynamics of Strongly Compressible Turbulence
NASA Astrophysics Data System (ADS)
Towery, Colin; Poludnenko, Alexei; Hamlington, Peter
2015-11-01
Strongly compressible turbulence, wherein the turbulent velocity fluctuations directly generate compression effects, plays a critical role in many important scientific and engineering problems of interest today, for instance in the processes of stellar formation and also hypersonic vehicle design. This turbulence is very unusual in comparison to ``normal,'' weakly compressible and incompressible turbulence, which is relatively well understood. Strongly compressible turbulence is characterized by large variations in the thermodynamic state of the fluid in space and time, including excited acoustic modes, strong, localized shock and rarefaction structures, and rapid heating due to viscous dissipation. The exact nature of these thermo-fluid dynamics has yet to be discerned, which greatly limits the ability of current computational engineering models to successfully treat these problems. New direct numerical simulation (DNS) results of strongly compressible isotropic turbulence will be presented along with a framework for characterizing and evaluating compressible turbulence dynamics and a connection will be made between the present diagnostic analysis and the validation of engineering turbulence models.
The Microstructure of Turbulent Flow
NASA Technical Reports Server (NTRS)
Obukhoff, A M; Yaglom, A M
1953-01-01
In 1941 a general theory of locally isotropic turbulence was proposed by Kolmogoroff which permitted the prediction of a number of laws of turbulent flow for large Reynolds numbers. The most important of these laws, the dependence of the mean square of the difference in velocities at two points on their distance and the dependence of the coefficient of turbulence diffusion on the scale of the phenomenon, were obtained by both Kolmogoroff and Obukhoff in the same year. At the present time these laws have been experimentally confirmed by direct measurements carried out in aerodynamic wind tunnels in the laboratory, in the atmosphere, and also on the ocean. In recent years in the Laboratory of Atmospheric Turbulence of the Geophysics Institute of the Soviet Academy of Sciences, a number of investigations have been conducted in which this theory was further developed. The results of several of these investigations are presented.
Anisotropy Lengthens the Decay Time of Turbulence in Molecular Clouds
NASA Astrophysics Data System (ADS)
Hansen, Charles E.; McKee, Christopher F.; Klein, Richard I.
2011-09-01
The decay of isothermal turbulence with velocity anisotropy is investigated using computational simulations and synthetic observations. We decompose the turbulence into isotropic and anisotropic components with total velocity dispersions σiso and σani, respectively. We find that the decay rate of the turbulence depends on the crossing time of the isotropic component only. A cloud of size L with significant anisotropy in its turbulence has a dissipation time, t diss = L/(2σiso). This translates into turbulent energy decay rates on the cloud scale that can be much lower for anisotropic turbulence than for isotropic turbulence. To help future observations determine whether observed molecular clouds have the level of anisotropy required to maintain the observed level of turbulence over their lifetimes, we performed a principal component analysis on our simulated clouds. Even with projection effects washing out the anisotropic signal, there is a measurable difference in the axis-constrained principal component analysis performed in directions parallel and perpendicular to the direction of maximum velocity dispersion. When this relative difference, ψ, is 0.1, there is enough anisotropy for the dissipation time to triple the expected isotropic value. We provide a fit for converting ψ into an estimate for the dissipation time, t diss.
ANISOTROPY LENGTHENS THE DECAY TIME OF TURBULENCE IN MOLECULAR CLOUDS
Hansen, Charles E.; McKee, Christopher F.; Klein, Richard I.
2011-09-01
The decay of isothermal turbulence with velocity anisotropy is investigated using computational simulations and synthetic observations. We decompose the turbulence into isotropic and anisotropic components with total velocity dispersions {sigma}{sub iso} and {sigma}{sub ani}, respectively. We find that the decay rate of the turbulence depends on the crossing time of the isotropic component only. A cloud of size L with significant anisotropy in its turbulence has a dissipation time, t{sub diss} = L/(2{sigma}{sub iso}). This translates into turbulent energy decay rates on the cloud scale that can be much lower for anisotropic turbulence than for isotropic turbulence. To help future observations determine whether observed molecular clouds have the level of anisotropy required to maintain the observed level of turbulence over their lifetimes, we performed a principal component analysis on our simulated clouds. Even with projection effects washing out the anisotropic signal, there is a measurable difference in the axis-constrained principal component analysis performed in directions parallel and perpendicular to the direction of maximum velocity dispersion. When this relative difference, {psi}, is 0.1, there is enough anisotropy for the dissipation time to triple the expected isotropic value. We provide a fit for converting {psi} into an estimate for the dissipation time, t{sub diss}.
Helicopter rotor noise due to ingestion of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.; Greitzer, E. M.
1986-01-01
A theoretical study was conducted to develop an analytical prediction method for helicopter main rotor noise due to the ingestion of atmospheric turbulence. This study incorporates an atmospheric turbulence model, a rotor mean flow contraction model and a rapid distortion turbulence model which together determine the statistics of the non-isotropic turbulence at the rotor plane. Inputs to the combined mean inflow and turbulence models are controlled by atmospheric wind characteristics and helicopter operating conditions. A generalized acoustic source model was used to predict the far field noise generated by the non-isotropic flow incident on the rotor. Absolute levels for acoustic spectra and directivity patterns were calculated for full scale helicopters, without the use of empirical or adjustable constants. Comparisons between isotropic and non-isotropic turbulence at the rotor face demonstrated pronounced differences in acoustic spectra. Turning and contraction of the flow for hover and low speed vertical ascent cases result in a 3 dB increase in the acoustic spectrum energy and a 10 dB increase in tone levels. Compared to trailing edge noise, turbulence ingestion noise is the dominant noise mechanism below approximately 30 rotor harmonics, while above 100 harmonics, trailing edge noise levels exceed turbulence ingestion noise by 25 dB.
Spherical cloaking with homogeneous isotropic multilayered structures
NASA Astrophysics Data System (ADS)
Qiu, Cheng-Wei; Hu, Li; Xu, Xiaofei; Feng, Yijun
2009-04-01
We propose a practical realization of electromagnetic spherical cloaking by layered structure of homogeneous isotropic materials. By mimicking the classic anisotropic cloak by many alternating thin layers of isotropic dielectrics, the permittivity and permeability in each isotropic layer can be properly determined by effective medium theory in order to achieve invisibility. The model greatly facilitates modeling by Mie theory and realization by multilayer coating of dielectrics. Eigenmode analysis is also presented to provide insights of the discretization in multilayers.
Spherical cloaking with homogeneous isotropic multilayered structures.
Qiu, Cheng-Wei; Hu, Li; Xu, Xiaofei; Feng, Yijun
2009-04-01
We propose a practical realization of electromagnetic spherical cloaking by layered structure of homogeneous isotropic materials. By mimicking the classic anisotropic cloak by many alternating thin layers of isotropic dielectrics, the permittivity and permeability in each isotropic layer can be properly determined by effective medium theory in order to achieve invisibility. The model greatly facilitates modeling by Mie theory and realization by multilayer coating of dielectrics. Eigenmode analysis is also presented to provide insights of the discretization in multilayers. PMID:19518392
NASA Astrophysics Data System (ADS)
Gopalan, Balaji
In part I, high speed in-line digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets (specific gravity of 0.85) and 50 mum diameter neutral density particles. Experiments are performed in a 50x50x70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by 2-D PIV. An automated tracking program has been used for measuring velocity time history of more than 17000 droplets and 15000 particles. The PDF's of droplet velocity fluctuations are close to Gaussian for all turbulent intensities ( u'i ). The mean rise velocity of droplets is enhanced or suppressed, compared to quiescent rise velocity (Uq), depending on Stokes number at lower turbulence levels, but becomes unconditionally enhanced at higher turbulence levels. The horizontal droplet velocity rms exceeds the fluid velocity rms for most of the data, while the vertical ones are higher than the fluid only at the highest turbulence level. The scaled droplet horizontal diffusion coefficient is higher than the vertical one, for 1 < u'i /Uq < 5, consistent with trends of the droplet velocity fluctuations. Conversely, the scaled droplet horizontal diffusion timescale is smaller than the vertical one due to crossing trajectories effect. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale is a monotonically increasing function of u'i /Uq. Part II of this work explains the formation of micron sized droplets in turbulent flows from crude oil droplets pre-mixed with dispersants. Experimental visualization shows that this breakup starts with the formation of very long and quite stable, single or multiple micro threads that trail behind millimeter sized droplets. These threads form in regions with localized increase in concentration of surfactant, which in turn depends on the flow around the droplet. The resulting reduction of local surface tension
Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence
NASA Technical Reports Server (NTRS)
Paterson, R. W.
1976-01-01
A theoretical and experimental investigation of the noise and unsteady surface pressure characteristics of an isolated airfoil in a uniform mean velocity, homogeneous, nearly-isotropic turbulence field was conducted. Wind tunnel experiments were performed with a 23 cm chord, two dimensional NACA 0012 airfoil over a free stream Mach number range of 0.1 to 0.5. Far-field noise spectra and directivity were measured in an anechoic chamber that surrounded the tunnel open jet test section. Spanwise and chordwise distribution of unsteady airfoil surface pressure spectra and surface pressure cross-spectra were obtained. Incident turbulence intensities, length scales, spectra, and spanwise cross-spectra, required in the calculation of far-field noise and surface pressure characteristics were also measured.
NASA Astrophysics Data System (ADS)
Rastegari, Amirreza; Akhavan, Rayhaneh
2011-11-01
To gain a better understanding of the mechanisms at work in skin friction drag reduction with superhydrophobic surfaces, Lattice Boltzmann simulations were performed in turbulent channels with alternating slip/no slip ridges on the walls. Simulations were performed in turbulent channels of size 5 h × 2 . 5 × 2 h and 10 h × 5 h × 2 h at a base Reynolds number of Reτ ~ 230 . Alternating slip/no slip ridges of width 4 <= w + <= 140 , aligned in the streamwise direction, all with the same fractional area of slip boundary, were studied. Drag reductions of 4%, 8%, 21%, 33% and 47%, corresponding to slip velocities of Uslip /Ubulk = 0 . 05 , 0.1, 0.26, 0.31 and 0.36 were observed for w + = g + = 4, 8, 40, 70 and 140, respectively. The mean velocity profiles display the characteristics of combined slip described by Min and Kim [Min et al. 2004]. The streamwise and spanwise turbulence intensities show large slips at the wall, the magnitude of which increases with increasing drag reduction. Examination of the anisotropy invariant maps shows a shift of turbulence structure towards the one-dimensional turbulence limit near the wall with increasing drag reduction. For z+ > 25 , the turbulence structure returns to the isotropic limit.
Rotor noise due to atmospheric turbulence ingestion. I - Fluid mechanics
NASA Technical Reports Server (NTRS)
Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.; Greitzer, E. M.
1986-01-01
In the present analytical procedure for the prediction of helicopter rotor noise generation due to the ingestion of atmospheric turbulence, different models for turbulence fluid mechanics and the ingestion process are combined. The mean flow and turbulence statistics associated with the atmospheric boundary layer are modeled with attention to the effects of atmospheric stability length, windspeed, and altitude. The turbulence field can be modeled as isotropic, locally stationary, and homogeneous. For large mean flow contraction ratios, accurate predictions of turbulence vorticity components at the rotor face requires the incorporation of the differential drift of fluid particles on adjacent streamlines.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.
1988-01-01
The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.
How Isotropic is the Universe?
NASA Astrophysics Data System (ADS)
Saadeh, Daniela; Feeney, Stephen M.; Pontzen, Andrew; Peiris, Hiranya V.; McEwen, Jason D.
2016-09-01
A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σV/H )0 <4.7 ×10-11 (95% C.L.), which is an order of magnitude tighter than previous Planck results that used cosmic microwave background temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σT ,reg/H )0 <1.0 ×10-6 (95% C.L.). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavored, with odds of 121 000:1 against.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.
1986-01-01
The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Funes, Gustavo; Figueroa, Eduardo; Gulich, Damián.; Zunino, Luciano; Pérez, Darío. G.
2013-10-01
Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence—in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.
Broken symmetry in ideal magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1993-01-01
A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.
Modeling turbulent flame propagation
Ashurst, W.T.
1994-08-01
Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.
Applicability of the isotropic vorticity theory to an adverse pressure gradient flow
NASA Astrophysics Data System (ADS)
Arora, S. C.; Azad, R. S.
1980-03-01
The isotropic vorticity theory is examined for an adverse pressure gradient flow on the basis of experimental data obtained in a conical diffuser. This conical diffuser is the same as that used by Okwuobi and Azad (1973), having an 8-deg included angle and an area ratio of 4:1 with fully developed pipe flow at the entry. The experiments are conducted in a low-speed open-circuit wind tunnel. It is shown that the rates and ratio of production and dissipation of the turbulent vorticity are constant in the core region of the diffuser but increase significantly in the wall layer. The validity of the analysis of Batchelor and Townsend (1947) for isotropic vorticity is discussed. The results suggest that even in a shear flow subjected to adverse pressure gradient, the isotropic theory of vorticity can be applied to a region far removed from the wall.
Turbulent energy flux generated by shock/homogeneous-turbulence interaction
NASA Astrophysics Data System (ADS)
Sinha, Krishnendu; Quadros, Russell; Larsson, Johan
2015-11-01
High-speed turbulent flows with shock waves are characterized by high localized surface heat transfer rates. Computational predictions are often inaccurate due to the limitations in modeling of the unclosed turbulent energy flux in the highly non-equilibrium regions of shock interaction. In this paper, we investigate the turbulent energy flux generated when homogeneous isotropic turbulence passes through a nominally normal shock wave. We use linear interaction analysis where the incoming turbulence is idealized as being composed of a collection of two-dimensional planar vorticity waves, and the shock wave is taken to be a discontinuity. The nature of the post-shock turbulent energy flux is predicted to be strongly dependent on the incidence angle of the incoming waves. The energy flux correlation is also decomposed into its vortical, entropy and acoustic contributions to understand its rapid non-monotonic variation behind the shock. Three-dimensional statistics, calculated by integrating two-dimensional results over a prescribed upstream energy spectrum, are compared with available direct numerical simulation data. A detailed budget of the governing equation is also considered in order to gain insight into the underlying physics.
Tunable dynamics of microtubule-based active isotropic gels
Henkin, Gil; DeCamp, Stephen J.; Chen, Daniel T. N.; Sanchez, Tim; Dogic, Zvonimir
2014-01-01
We investigate the dynamics of an active gel of bundled microtubules (MTs) that is driven by clusters of kinesin molecular motors. Upon the addition of ATP, the coordinated action of thousands of molecular motors drives the gel to a highly dynamical turbulent-like state that persists for hours and is only limited by the stability of constituent proteins and the availability of the chemical fuel. We characterize how enhanced transport and emergent macroscopic flows of active gels depend on relevant molecular parameters, including ATP, kinesin motor and depletant concentrations, MT volume fraction, as well as the stoichiometry of the constituent motor clusters. Our results show that the dynamical and structural properties of MT-based active gels are highly tunable. They also indicate existence of an optimal concentration of molecular motors that maximize far-from-equilibrium activity of active isotropic MT gels. PMID:25332391
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2001-01-01
A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to
Turbulent Distortion of Condensate Accretion
NASA Technical Reports Server (NTRS)
Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III
1997-01-01
When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.
Measurement of the Noise Resulting from the Interaction of Turbulence with a Lifting Surface
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Stead, Daniel J.
2011-01-01
An experimental study of the noise resulting from the interaction of an airfoil with incident turbulence is presented. The test models include NACA0015 airfoils of different chord lengths, a flat plate with a sharp leading edge, and an airfoil of same section as a reference Fowler flap. The airfoils are immersed in nearly isotropic turbulence. Two approaches for performing the noise measurements are used and compared. The effects that turbulence intensity and scales, airfoil geometry, velocity and angle of attack have on the incident turbulence interaction noise are examined. Detailed directivity measurements are presented. It is found that noise spectral levels beyond the peak frequency decrease more with decreasing airfoil leading edge sharpness, and that spectral peak level (at 0 deg. angle of attack) appears to be mostly controlled by the airfoil fs thickness and chord. Increase in turbulence scale and intensity are observed to lead to a uniform increase of the noise spectral levels with an LI(sup 2) dependence (where L is the turbulence longitudinal integral scale and I is the turbulence intensity). Noise levels are found to scale with the 6th power of velocity and the 2nd power of the airfoil chord. Sensitivity to changes in angle of attack appears to have a turbulence longitudinal integral scale to chord (C) ratio dependence, with large effects on noise for L/C greater than or equal to 1 and decreased effects as L/C becomes smaller than 1. For all L/C values, the directivity pattern of the noise resulting from the incident turbulence is seen to remain symmetric with respect to the direction of the mean flow until stall, at which point, the directivity becomes symmetric with respect to the airfoil chord. It is also observed that sensitivity to angle of attack changes is more pronounced on the model suction side than on the model pressure side, and in the higher frequency range of the spectra for the largest airfoils tested (L/C less than 0.24).
Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.
Baykal, Yahya
2016-02-20
The parameters composing oceanic turbulence are the wavelength, link length, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum. The required physical entities such as the average intensity and the scintillation index in the oceanic medium are formulated by using the power spectrum of oceanic turbulence, which is described by oceanic turbulence parameters. On the other hand, there exists a rich archive of formulations and results for the above-mentioned physical entities in atmospheric turbulence, where the parameters describing the turbulence are the wavelength, the link length, and the structure constant. In this paper, by equating the spherical wave scintillation index solutions in the oceanic and atmospheric turbulences, we have expressed the oceanic turbulence parameters by an equivalent structure constant used in turbulent atmosphere. Such equivalent structure constant will help ease reaching solutions of similar entities in an oceanic turbulent medium by employing the corresponding existing solutions, which are valid in an atmospheric turbulent medium.
NASA Astrophysics Data System (ADS)
Kim, Seulong; Kim, Kihong
2016-06-01
Bi-isotropic media, which include isotropic chiral media and Tellegen media as special cases, are the most general form of linear isotropic media where the electric displacement and the magnetic induction are related to both the electric field and the magnetic intensity. In inhomogeneous bi-isotropic media, electromagnetic waves of two different polarizations are coupled to each other. In this paper, we develop a generalized version of the invariant imbedding method for the study of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media, which can be used to solve the coupled wave propagation problem accurately and efficiently. We verify the validity and usefulness of the method by applying it to several examples, including the wave propagation in a uniform chiral slab, the surface wave excitation in a bilayer system made of a layer of Tellegen medium and a metal layer, and the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations in inhomogeneous Tellegen media. In contrast to the case of ordinary isotropic media, we find that the surface wave excitation and the mode conversion occur for both s and p waves in bi-isotropic media.
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Rosenbaum, B. M.
1972-01-01
A model, based on Lighthill's theory, for predicting aerodynamic noise from a turbulent shear flow is developed. This model is a generalization of the one developed by Ribner. Unlike Ribner's model, it does not require that the turbulent correlations factor into space and time-dependent parts. It replaces his assumption of isotropic. turbulence by the more realistic one of axisymmetric turbulence. The implications of the model for jet noise are discussed.
Jurčišinová, E; Jurčišin, M; Remecký, R; Zalom, P
2013-04-01
Using the field theoretic renormalization group technique, the influence of helicity (spatial parity violation) on the turbulent magnetic Prandtl number in the kinematic magnetohydrodynamic turbulence is investigated in the two-loop approximation. It is shown that the presence of helicity decreases the value of the turbulent magnetic Prandtl number and, at the same time, the two-loop helical contribution to the turbulent magnetic Prandtl number is at most 4.2% (in the case with the maximal helicity) of its nonhelical value. These results demonstrate, on one hand, the potential importance of the presence of asymmetries in processes in turbulent environments and, on the other hand, the rather strong stability of the properties of diffusion processes of the magnetic field in the conductive turbulent environment with the spatial parity violation in comparison to the corresponding systems without the spatial parity violation. In addition, obtained results are compared to the corresponding results found for the two-loop turbulent Prandtl number in the model of passively advected scalar field. It is shown that the turbulent Prandtl number and the turbulent magnetic Prandtl number, which are the same in fully symmetric isotropic turbulent systems, are essentially different when one considers the spatial parity violation. It means that the properties of the diffusion processes in the turbulent systems with a given symmetry breaking can considerably depend on the internal tensor structure of advected quantities.
The Isotropic Radio Background and Annihilating Dark Matter
Hooper, Dan; Belikov, Alexander V.; Jeltema, Tesla E.; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R.
2012-11-01
Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.
NASA Astrophysics Data System (ADS)
Garbet, X.; Esteve, D.; Sarazin, Y.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.
2014-11-01
The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density.
Turbulence spreading in gyro-kinetic theory
NASA Astrophysics Data System (ADS)
Migliano, P.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Peeters, A. G.; Stauffert, O.
2016-01-01
In this letter a new operative definition for the turbulence intensity in connection with magnetized plasmas is given. In contrast to previous definitions the new definition satisfies a Fisher-Kolmogorov-Petrovskii-Piskunov type equation. Furthermore, explicit expressions for the turbulence intensity and the turbulence intensity flux, that allow for the first time direct numerical evaluation, are derived. A carefully designed numerical experiment for the case of a tokamak is performed to study the impact of turbulence spreading. The effective turbulence diffusion coefficient is measured to be smaller than the heat conduction coefficient and the turbulence spreading length is found to be of the order of the turbulence correlation length. The results show that turbulence spreading can play a role in the non-local flux gradient relation, or in the scaling of transport coefficients with the normalized Larmor radius, only over lengths scale of the order of the turbulence correlation length. A new turbulence convection mechanism, due to the drift connected with the magnetic field inhomogeneities, is described. The convective flux integrates to zero under the flux surface average unless there is an up-down asymmetry in the tubulence intensity. The latter asymmetry can be generated through a radial inhomogeneity or plasma rotation. It is shown that the turbulence convection can lead to a spreading of the order of the correlation length.
Application of a Reynolds stress turbulence model to the compressible shear layer
NASA Technical Reports Server (NTRS)
Sarkar, S.; Balakrishnan, L.
1990-01-01
Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.
The comparative study for the isotropic and orthotropic circular plates
NASA Astrophysics Data System (ADS)
Popa, C.; Tomescu, G.
2016-08-01
The aim of study is static bending analysis of an isotropic circular plate using analytical method i.e. Classical Plate Theory, Finite Element software ANSYS and experimental methods. The diameter of circular plate, material properties, like modulus of elasticity (E), poissons ratio (µ) and intensity of loading is assumed at the initial stage of research work. In comparison with this plane plate we analyze a plate of same dimensions and charge, but having ribs, to see the advantage of the rigidify. The two plates are fixed supported subjected to uniformly distributed load.
The spatio-temporal spectrum of turbulent flows.
Clark di Leoni, P; Cobelli, P J; Mininni, P D
2015-12-01
Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased. PMID:26701711
The spatio-temporal spectrum of turbulent flows.
Clark di Leoni, P; Cobelli, P J; Mininni, P D
2015-12-01
Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased.
Algorithmic comparisons of decaying, isothermal, supersonic turbulence
NASA Astrophysics Data System (ADS)
Kitsionas, S.; Federrath, C.; Klessen, R. S.; Schmidt, W.; Price, D. J.; Dursi, L. J.; Gritschneder, M.; Walch, S.; Piontek, R.; Kim, J.; Jappsen, A.-K.; Ciecielag, P.; Mac Low, M.-M.
2009-12-01
statistical quantities for isotropic supersonic turbulence on spatial scales k≲ N/32 (all scales resolved by more than 32 grid cells), while scales smaller than that are significantly affected by the specific implementation of the algorithm for solving the equations of hydrodynamics. At comparable numerical resolution (N_particles≈ N_cells), the SPH runs were on average about ten times more computationally intensive than the grid runs, although with variations of up to a factor of ten between the different SPH runs and between the different grid runs. Conclusions: At the resolutions employed here, the ability to model supersonic to transonic flows is comparable across the various codes used in this study. Current address: Hellenic-American Educational Foundation, Psychiko College, Stefanou Delta 15, GR-15452 P. Psychiko, Greece.
Spherical Model for Turbulence
NASA Astrophysics Data System (ADS)
Mou, Chung-Yu.
A new set of models for homogeneous, isotropic turbulence is considered in which the Navier-Stokes equations for incompressible fluid flow are generalized to a set of N coupled equations in N velocity fields. It is argued that in order to be useful these models must embody a new group of symmetries, and a general formalism is laid out for their construction. The work is motivated by similar techniques that have had extraordinary success in improving the theoretical understanding of equilibrium phase transitions in condensed matter systems. The key result is that these models simplify when N is large. The so-called spherical limit, N to infty, can be solved exactly, yielding a closed pair of nonlinear integral equations for the response and correlation functions. These equations, known as Kraichnan's Direct Interaction Approximation (DIA) equations, are, for the first time, solved fully in the scale-invariant turbulent regime, and the implications of these solutions for real turbulence (N = 1) are discussed. In particular, it is argued that previously applied renormalization group techniques, based on an expansion in the exponent, y, that characterizes the driving spectrum, are incorrect, and that the Kolmogorov exponent zeta has a nontrivial dependence on N, with zeta(N toinfty) = {3over2}. This value is remarkably close to the experimental result, zeta~{5over3}, which must therefore result from higher order corrections in powers of {1over N}. Prospects for calculating these corrections are briefly discussed: though daunting, such a calculations would, for the first time, provide a controlled perturbation expansion for the Kolmogorov, and other, exponents. Our techniques may also be applied to other nonequilibrium dynamical problems, such as the KPZ equation for interface growth, and perhaps to turbulence in nonlinear wave systems.
Spherical model for turbulence
NASA Astrophysics Data System (ADS)
Mou, Chung-Yu
A new set of models for homogeneous, isotropic turbulence is considered in which the Navier-Stokes equations for incompressible fluid flow are generalized to a set of N coupled equations in N velocity fields. It is argued that in order to be useful these models must embody a new group of symmetries, and a general formalism is laid out for their construction. The work is motivated by similar techniques that have had extraordinary success in improving the theoretical understanding of equilibrium phase transitions in condensed matter systems. The key result is that these models simplify when N is large. The so-called spherical limit, N approaches infinity, can be solved exactly, yielding a closed pair of nonlinear integral equations for the response and correlation functions. These equations, known as Kraichnan's Direct Interaction Approximation (DIA) equations, are, for the first time, solved fully in the scale-invariant turbulent regime, and the implications of these solutions for real turbulence (N = 1) are discussed. In particular, it is argued that previously applied renormalization group techniques, based on an expansion in the exponent, y, that characterizes the driving spectrum, are incorrect, and that the Kolmogorov exponent zeta has a nontrivial dependence on N, with zeta(N approaches infinity) = 3/2. This value is remarkably close to the experimental result, zeta approximately equals 5/3, which must therefore result from higher order corrections in powers of 1/N. Prospects for calculating these corrections are briefly discussed: though daunting, such a calculation would, for the first time, provide a controlled perturbation expansion for the Kolmogorov, and other exponents. Our techniques may also be applied to other nonequilibrium dynamical problems, such as the KPZ equation for interface growth, and perhaps to turbulence in nonlinear wave systems.
Consistent Initial Conditions for the DNS of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.; Blaisdell, G. A.
1996-01-01
Relationships between diverse thermodynamic quantities appropriate to weakly compressible turbulence are derived. It is shown that for turbulence of a finite turbulent Mach number there is a finite element of compressibility. A methodology for generating initial conditions for the fluctuating pressure, density and dilatational velocity is given which is consistent with finite Mach number effects. Use of these initial conditions gives rise to a smooth development of the flow, in contrast to cases in which these fields are specified arbitrarily or set to zero. Comparisons of the effect of different types of initial conditions are made using direct numerical simulation of decaying isotropic turbulence.
Premixed Turbulent Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, Suresh
1999-01-01
A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
NASA Technical Reports Server (NTRS)
1988-01-01
The focus of the program was on the use of direct numerical simulations of turbulent flow for study of turbulence physics and modeling. A special interest was placed on turbulent mixing layers. The required data for these investigations were generated from four newly developed codes for simulation of time and spatially developing incompressible and compressible mixing layers. Also of interest were the structure of wall bounded turbulent and transitional flows, evaluation of diagnostic techniques for detection of organized motions, energy transfer in isotropic turbulence, optical propagation through turbulent media, and detailed analysis of the interaction of vortical structures.
PDF turbulence modeling and DNS
NASA Technical Reports Server (NTRS)
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
NASA Technical Reports Server (NTRS)
Liu, Xiao-Feng; Thomas, Flint O.; Nelson, Robert C.
2001-01-01
Turbulence kinetic energy (TKE) is a very important quantity for turbulence modeling and the budget of this quantity in its transport equation can provide insight into the flow physics. Turbulence kinetic energy budget measurements were conducted for a symmetric turbulent wake flow subjected to constant zero, favorable and adverse pressure gradients in year-three of research effort. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Four different approaches, based on an isotropic turbulence assumption, a locally axisymmetric homogeneous turbulence assumption, a semi-isotropy assumption and a forced balance of the TKE equation, were applied for the estimate of the dissipation term. The pressure transport term is obtained from a forced balance of the turbulence kinetic energy equation. This report will present the results of the turbulence kinetic energy budget measurement and discuss their implication on the development of strained turbulent wakes.
Exact models for isotropic matter
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
Isotropic Growth of Graphene toward Smoothing Stitching.
Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei
2016-07-26
The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect. PMID:27403842
Isotropic Growth of Graphene toward Smoothing Stitching.
Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei
2016-07-26
The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.
Solar wind turbulent cascade between ion and electron scales and quasi-parallel whistler waves
NASA Astrophysics Data System (ADS)
Alexandrova, Olga; Lacombe, Catherine; Mangeney, Andre; Grappin, Roland; Maksimovic, Milan
2014-05-01
The solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of a magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. Here we focus on the observational properties of the solar wind magnetic field turbulence around ion and electron characteristic scales. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established, with wave vectors k⊥ mainly perpendicular to the average B field. It is characterised by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to -2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by ~ k⊥-α exp(-k⊥ℓd), with α ≃ 8/3 and the dissipation scale ℓd close to the electron Larmor radius ℓd ≃ ρe. The nature of this small scale cascade and a possible dissipation mechanism are still under debate. Different spectra are however observed in some regions of the solar wind, with quasi-parallel whistlers between the lower hybrid frequency and about half the electron cyclotron frequency. Such whistler waves may have variable intensity with respect to the background turbulence. Consequently, the total magnetic spectra may present a break, a knee or a more or less intense bump around frequencies at which whistlers propagate. We discuss a possible generation mechanism of quasi-parallel whistler waves in the solar wind.
Horton, W.; Hu, G.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
Static spherically symmetric wormholes with isotropic pressure
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo
2016-06-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Efficient modeling in transversely isotropic inhomogeneous media
Alkhalifah, T.
1993-11-01
An efficient modeling technique for transversely isotropic, inhomogeneous media, is developed using a mix of analytical equations and numerical calculations. The analytic equation for the raypath in a factorized transversely isotropic (FTI) media with linear velocity variation, derived by Shearer and Chapman, is used to trace between two points. In addition, I derive an analytical equation for geometrical spreading in FTI media that aids in preserving program efficiency; however, the traveltime is calculated numerically. I then generalize the method to treat general transversely isotropic (TI) media that are not factorized anisotropic inhomogeneous by perturbing the FTI traveltimes, following the perturbation ideas of Cerveny and Filho. A Kirchhoff-summation-based program relying on Trorey`s (1970) diffraction method is used to generate synthetic seismograms for such a medium. For the type of velocity models treated, the program is much more efficient than finite-difference and general ray-trace modeling techniques.
Turbulent flows near flat plates
NASA Astrophysics Data System (ADS)
Kambe, R.; Imamura, T.; Doi, M.
1980-08-01
The method to study the effect of the plate moving in the homogeneous or isotropic turbulence is presented. The crucial point of this method is to solve the Orr-Sommerfeld like equation, which is satisfied by the kernel of the Wiener-Hermite expansion of the velocity field, under the inhomogeneous boundary condition. In the special case of constant mean flow, our method gives the same result as that of Hunt and Graham and succeeds in explaining the experimental results of Thomas and Hancock. The method is also applied to the case of nonuniform mean flow, where the shear effect comes up.
Relationship of strength of turbulence to received power
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Because of contributions due to reflection, the determination of the turbulence refractive index structure constant may be affected. For pure scattering from turbulence in the inertial subrange, the radar echo power can be used to calculate the refractive index structure constant. The radar power is determined by a convolution integral. If the antenna beam is swung to sufficiently large off-zenith angles ( 12.5 deg) so that a quasi-isotropic response from the tail ends of the Gaussian angular distribution can be anticipated, the evaluation of the convolution integral depends only on the known antenna pattern of the radar. This procedure, swinging the radar beam to attenuate the reflected component, may be called angular or direction filtering. The tilted antenna also may be pick up reflected components from near the zenith through the sidelobes. This can be tested by the evaluation of the correlation function. This method applies a time domain filtering of the intensity time series but needs a very careful selection of the high pass filters.
Chiral Isotropic Liquids from Achiral Molecules
L Hough; M Spannuth; M Nakata; D Coleman; C Jones; G Dantlgraber; C Tschierske; J Watanabe; N Clark; et al.
2011-12-31
A variety of simple bent-core molecules exhibit smectic liquid crystal phases of planar fluid layers that are spontaneously both polar and chiral in the absence of crystalline order. We found that because of intralayer structural mismatch, such layers are also only marginally stable against spontaneous saddle splay deformation, which is incompatible with long-range order. This results in macroscopically isotropic fluids that possess only short-range orientational and positional order, in which the only macroscopically broken symmetry is chirality - even though the phases are formed from achiral molecules. Their conglomerate domains exhibit optical rotatory powers comparable to the highest ever found for isotropic fluids of chiral molecules.
A Quadratic Closure for Compressible Turbulence
Futterman, J A
2008-09-16
We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.
Defect modes of chiral photonic crystals with an isotropic defect
NASA Astrophysics Data System (ADS)
Gevorgyan, A. H.; Oganesyan, K. B.
2011-06-01
Specific features of the defect modes of cholesteric liquid crystals (CLCs) with an isotropic defect, as well as their photonic density of states, Q factor, and emission, have been investigated. The effect of the thicknesses of the defect layer and the system as a whole, the position of the defect layer, and the dielectric boundaries on the features of the defect modes have been analyzed. It is shown that when the CLC layer is thin the density of states and emission intensity are maximum for the defect mode, whereas when the CLC layer is thick, these peaks are observed at the edges of the photonic band gap. Similarly, when the gain is low, the density of states and emission intensity are maximum for the defect mode, whereas at high gains these peaks are also observed at the edges of the photonic band gap. The possibilities of low-threshold lasing and obtaining high- Q microcavities have been investigated.
Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy.
Minogianni, Chrysa; Gatos, Konstantinos G; Galiotis, Costas
2005-09-01
The Raman spectrum of isotactic polypropylene (iPP) has been found to exhibit vibrational peaks in the region of 750 to 880 cm(-1) that are sensitive to the degree of crystallinity. These features are broadly assigned to various modes of methyl group rocking, rho(CH2), and there have been various attempts to assess crystallinity based on the integrated intensities of these bands. Various vibrational analyses performed in the past in combination with experimental studies have concluded that the presence of crystalline order with trans-gauche conformation gives rise to a peak at 809 cm(-1), which is assigned to a rho(CH2) mode coupled with the skeletal stretching mode. However, the presence of additional peaks at 830 cm(-1), 841 cm(-1), and 854 cm(-1), within the same envelope, have been the subject of controversy. In this work isotropic films of iPP derived from the same precursor of identical tacticity have been subjected to various degrees of annealing and the integrated intensities of the Raman bands were measured. The results showed that true 3d crystallinity in isotropic iPP can only be expressed by the 809 cm(-1) band whereas the band at 841 cm(-1) corresponds to an uncoupled rho(CH2) fundamental mode and thus is a measure of the amorphous content. The less intense satellite bands at 830 cm(-1) and 854 cm(-1) of solid iPP cannot be distinguished from the 841 cm(-1) band in the melt and are generally considered as intermediate phases possibly related to non-crystalline components with 3(1)-helical conformations. Independent differential scanning calorimetry (DSC) crystallinity measurements were in broad agreement with the Raman measurements based on the normalized intensity of the 809 cm(-1) Raman band. By comparing the Raman with the DSC data a new value for the theoretical heat of fusion for the 100% crystalline iPP has been proposed. PMID:18028610
Effects of large-scale free stream turbulence on a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Sharp, N. S.; Neuscamman, S.; Warhaft, Z.
2009-09-01
Results of a wind tunnel experiment in which there are systematic variations of free stream turbulence above a flat-plate boundary layer are presented. Upstream of the plate, an active grid generates free stream turbulence varying in intensity from 0.25% to 10.5%. The momentum thickness Reynolds number of the boundary layer varies from 550 to nearly 3000. In all cases, the ratio of the free stream turbulence length scale to the boundary layer depth is greater than unity. Hotwire measurements show that, at high turbulence intensities, the effects of the free stream turbulence extend deep into the boundary layer, affecting the wall stress as well as the small-scale (derivative) statistics. Premultiplied energy spectra show a double peak. At very low free stream turbulence intensities these peaks are associated with the inner and outer scales of the turbulent boundary layer, but at high turbulence intensities the free stream energy peak dominates over the boundary layer's outer scale. The implications of the effect of the large free stream turbulence scales on the small, near-wall scales is discussed with reference to recent high Reynolds number experiments in a turbulent boundary layer without free stream turbulence [Hutchins and Marusic, Philos. Trans. R. Soc. London, Ser. A 365, 647 (2007)].
Numerical experiments in homogeneous turbulence
NASA Technical Reports Server (NTRS)
Rogallo, R. S.
1981-01-01
The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.
A filament model of MHD turbulence
Petviashvili, V.
1996-11-01
Turbulence of ordinary fluid is recognized as chaotic motion with almost no linear features. It is well described in wavenumber space by Kolmogorov`s phenomenological theory in wave number k-space: The source of energy should exist in the region of small wavenumbers. Then isotropic energy flux is generated in k-space directed toward a larger k-region where the energy is absorbed by viscosity. The main characteristics of energy spectrum of Kolmogorov turbulence is universal and in good agreement with observations.
Biomimetic Isotropic Nanostructures for Structural Coloration
Forster, Jason D.; Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Schreck, Carl F.; Yang, Lin; Park, Jin-Gyu; Prum, Richard O.; Mochrie, Simon G.J.; O'Hern, Corey S.; Cao, Hui; Dufresne, Eric R.
2010-08-09
The self-assembly of films that mimic color-producing nanostructures in bird feathers is described. These structures are isotropic and have a characteristic length-scale comparable to the wavelength of visible light. Structural colors are produced when wavelength-independent scattering is suppressed by limiting the optical path length through geometry or absorption.
Transversely isotropic elasticity imaging of cancellous bone.
Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F
2011-06-01
To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally
Quenching and anisotropy of hydromagnetic turbulent transport
Karak, Bidya Binay; Brandenburg, Axel; Rheinhardt, Matthias; Käpylä, Petri J.; Käpylä, Maarit J.
2014-11-01
Hydromagnetic turbulence affects the evolution of large-scale magnetic fields through mean-field effects like turbulent diffusion and the α effect. For stronger fields, these effects are usually suppressed or quenched, and additional anisotropies are introduced. Using different variants of the test-field method, we determine the quenching of the turbulent transport coefficients for the forced Roberts flow, isotropically forced non-helical turbulence, and rotating thermal convection. We see significant quenching only when the mean magnetic field is larger than the equipartition value of the turbulence. Expressing the magnetic field in terms of the equipartition value of the quenched flows, we obtain for the quenching exponents of the turbulent magnetic diffusivity about 1.3, 1.1, and 1.3 for Roberts flow, forced turbulence, and convection, respectively. However, when the magnetic field is expressed in terms of the equipartition value of the unquenched flows, these quenching exponents become about 4, 1.5, and 2.3, respectively. For the α effect, the exponent is about 1.3 for the Roberts flow and 2 for convection in the first case, but 4 and 3, respectively, in the second. In convection, the quenching of turbulent pumping follows the same power law as turbulent diffusion, while for the coefficient describing the Ω×J effect nearly the same quenching exponent is obtained as for α. For forced turbulence, turbulent diffusion proportional to the second derivative along the mean magnetic field is quenched much less, especially for larger values of the magnetic Reynolds number. However, we find that in corresponding axisymmetric mean-field dynamos with dominant toroidal field the quenched diffusion coefficients are the same for the poloidal and toroidal field constituents.
Effects of simulated turbulence on aircraft handling qualities
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Joshi, D. S.
1977-01-01
The influence of simulated turbulence on aircraft handling qualities is presented. Pilot opinions of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which are more similar to real turbulence than the frequently-used Gaussian turbulence model. The proposed turbulence models flexibly accommodate changes in atmospheric conditions and are easily implemented in flight simulator studies.
ERIC Educational Resources Information Center
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Interactively variable isotropic resolution in computed tomography
NASA Astrophysics Data System (ADS)
Lapp, Robert M.; Kyriakou, Yiannis; Kachelrieß, Marc; Wilharm, Sylvia; Kalender, Willi A.
2008-05-01
An individual balancing between spatial resolution and image noise is necessary to fulfil the diagnostic requirements in medical CT imaging. In order to change influencing parameters, such as reconstruction kernel or effective slice thickness, additional raw-data-dependent image reconstructions have to be performed. Therefore, the noise versus resolution trade-off is time consuming and not interactively applicable. Furthermore, isotropic resolution, expressed by an equivalent point spread function (PSF) in every spatial direction, is important for the undistorted visualization and quantitative evaluation of small structures independent of the viewing plane. Theoretically, isotropic resolution can be obtained by matching the in-plane and through-plane resolution with the aforementioned parameters. Practically, however, the user is not assisted in doing so by current reconstruction systems and therefore isotropic resolution is not commonly achieved, in particular not at the desired resolution level. In this paper, an integrated approach is presented for equalizing the in-plane and through-plane spatial resolution by image filtering. The required filter kernels are calculated from previously measured PSFs in x/y- and z-direction. The concepts derived are combined with a variable resolution filtering technique. Both approaches are independent of CT raw data and operate only on reconstructed images which allows for their application in real time. Thereby, the aim of interactively variable, isotropic resolution is achieved. Results were evaluated quantitatively by measuring PSFs and image noise, and qualitatively by comparing the images to direct reconstructions regarded as the gold standard. Filtered images matched direct reconstructions with arbitrary reconstruction kernels with standard deviations in difference images of typically between 1 and 17 HU. Isotropic resolution was achieved within 5% of the selected resolution level. Processing times of 20-100 ms per frame
Gudimetla, V S Rao; Holmes, Richard B; Riker, Jim F
2012-12-01
An analytical expression for the log-amplitude correlation function for plane wave propagation through anisotropic non-Kolmogorov turbulent atmosphere is derived. The closed-form analytic results are based on the Rytov approximation. These results agree well with wave optics simulation based on the more general Fresnel approximation as well as with numerical evaluations, for low-to-moderate strengths of turbulence. The new expression reduces correctly to the previously published analytic expressions for the cases of plane wave propagation through both nonisotropic Kolmogorov turbulence and isotropic non-Kolmogorov turbulence cases. These results are useful for understanding the potential impact of deviations from the standard isotropic Kolmogorov spectrum.
Towards improved numerical schemes of turbulent lateral dispersion
NASA Astrophysics Data System (ADS)
Kämpf, Jochen; Cox, Darren
2016-10-01
This paper focuses on an alternative approach of lateral turbulent dispersion, proposed by Benoit Cushman-Roisin in 2008, that is based on a linear increase of the width of dispersing patches in a field of isotropic horizontal turbulence. In the open ocean, this Richardson-like dispersion regime is a well-observed feature on sub-mesoscale length scales from 10 to 100 km. In this work, we successfully validate and calibrate the new diffusion scheme using Lagrangian particles and Eulerian tracer in turbulent velocity fields simulated with the shallow-water equations. In discretized form, the new diffusion scheme exclusively relies on specification of a turbulent velocity scale that, unlike the turbulent diffusivity of Fickian approaches, is well defined through statistical properties of the turbulent flow.
Simulation and modeling of homogeneous, compressed turbulence
NASA Technical Reports Server (NTRS)
Wu, C. T.; Ferziger, J. H.; Chapman, D. R.
1985-01-01
Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.
TIME-DEPENDENT PERPENDICULAR TRANSPORT OF FAST CHARGED PARTICLES IN A TURBULENT MAGNETIC FIELD
Fraschetti, F.; Jokipii, J. R.
2011-06-20
We present an analytic derivation of the temporal dependence of the perpendicular transport coefficient of charged particles in magnetostatic turbulence, for times smaller than the time needed for charged particles to travel the turbulence correlation length. This time window is left unexplored in most transport models. In our analysis all magnetic scales are taken to be much larger than the particle gyroradius, so that perpendicular transport is assumed to be dominated by the guiding center motion. Particle drift from the local magnetic field lines (MFLs) and magnetic field line random walk are evaluated separately for slab and three-dimensional (3D) isotropic turbulence. Contributions of wavelength scales shorter and longer than the turbulence coherence length are compared. In contrast to the slab case, particles in 3D isotropic turbulence unexpectedly diffuse from local MFLs; this result questions the common assumption that particle magnetization is independent of turbulence geometry. Extensions of this model will allow for a study of solar wind anisotropies.
Even harmonic generation in isotropic media of dissociating homonuclear molecules
Silva, R. E. F.; Rivière, P.; Morales, F.; Smirnova, O.; Ivanov, M.; Martín, F.
2016-01-01
Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process. PMID:27596609
Even harmonic generation in isotropic media of dissociating homonuclear molecules.
Silva, R E F; Rivière, P; Morales, F; Smirnova, O; Ivanov, M; Martín, F
2016-01-01
Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process. PMID:27596609
Rapid Distortion Theory in astrophysical turbulence
NASA Astrophysics Data System (ADS)
Safonov, Sergey; Petrosyan, Arakel
2016-04-01
In this report, we study statistical properties of astrophysical turbulent plasma flows using Rapid Distortion Theory (RDT). The core assumption is that the turbulence responds to the external distortion so fast, that inertial and viscous forces result in a negligible change in velocity distribution. Thus it is assumed that the response to the external effect takes place in the time interval much smaller than turbulence decay time. This allows to linearize equations and to derive equations for second moments of turbulence. We apply RDT to incompressible turbulent MHD flows distorted with external magnetic field and linear velocity shear in cases of rotating and non-rotating plasma. It is shown that even with a strong nonlinearity many properties of turbulence can be qualitatively studied using a linear theory. A closed system of linear equations for velocity and magnetic field fluctuations is derived. Development of initially isotropic turbulence and transition to anisotropy are studied. Equations for fluid, current and cross helicity are derived. Differences in cases of rotating and non-rotating flows are discussed. Changes introduced by considering Hall effect are discussed.
Regimes of turbulence without an energy cascade
Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.
2016-01-01
Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics. PMID:27761005
NASA Astrophysics Data System (ADS)
Movahed, Pooya
High-speed flows are prone to hydrodynamic interfacial instabilities that evolve to turbulence, thereby intensely mixing different fluids and dissipating energy. The lack of knowledge of these phenomena has impeded progress in a variety of disciplines. In science, a full understanding of mixing between heavy and light elements after the collapse of a supernova and between adjacent layers of different density in geophysical (atmospheric and oceanic) flows remains lacking. In engineering, the inability to achieve ignition in inertial fusion and efficient combustion constitute further examples of this lack of basic understanding of turbulent mixing. In this work, my goal is to develop accurate and efficient numerical schemes and employ them to study compressible turbulence and mixing generated by interactions between shocked (Richtmyer-Meshkov) and accelerated (Rayleigh-Taylor) interfaces, which play important roles in high-energy-density physics environments. To accomplish my goal, a hybrid high-order central/discontinuity-capturing finite difference scheme is first presented. The underlying principle is that, to accurately and efficiently represent both broadband motions and discontinuities, non-dissipative methods are used where the solution is smooth, while the more expensive and dissipative capturing schemes are applied near discontinuous regions. Thus, an accurate numerical sensor is developed to discriminate between smooth regions, shocks and material discontinuities, which all require a different treatment. The interface capturing approach is extended to central differences, such that smooth distributions of varying specific heats ratio can be simulated without generating spurious pressure oscillations. I verified and validated this approach against a stringent suite of problems including shocks, interfaces, turbulence and two-dimensional single-mode Richtmyer-Meshkov instability simulations. The three-dimensional code is shown to scale well up to 4000 cores
Monte-Carlo computation of turbulent premixed methane/air ignition
NASA Astrophysics Data System (ADS)
Carmen, Christina Lieselotte
The present work describes the results obtained by a time dependent numerical technique that simulates the early flame development of a spark-ignited premixed, lean, gaseous methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. The algorithm described is based upon a sub-model developed by an international automobile research and manufacturing corporation in order to analyze turbulence conditions within internal combustion engines. Several developments and modifications to the original algorithm have been implemented including a revised chemical reaction scheme and the evaluation and calculation of various turbulent flame properties. Solution of the complete set of Navier-Stokes governing equations for a turbulent reactive flow is avoided by reducing the equations to a single transport equation. The transport equation is derived from the Navier-Stokes equations for a joint probability density function, thus requiring no closure assumptions for the Reynolds stresses. A Monte-Carlo method is also utilized to simulate phenomena represented by the probability density function transport equation by use of the method of fractional steps. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on the evaluation of the three primary parameters that influence the initial flame kernel growth-the ignition system characteristics, the mixture composition, and the nature of the flow field. Efforts are concentrated on the effects of moderate to intense turbulence on flames within the distributed reaction zone. Results are presented for lean conditions with the fuel equivalence ratio varying from 0.6 to 0.9. The present computational results, including flame regime analysis and the calculation of various flame speeds, provide excellent agreement with results obtained by other experimental and numerical researchers.
On curve and surface stretching in turbulent flow
NASA Technical Reports Server (NTRS)
Etemadi, Nassrollah
1989-01-01
Cocke (1969) proved that in incompressible, isotropic turbulence the average material line (material surface) elements increase in comparison with their initial values. Good estimates of how much they increase in terms of the eigenvalues of the Green deformation tensor were rigorously obtained.
Anisotropy in MHD turbulence due to a mean magnetic field
NASA Technical Reports Server (NTRS)
Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.
1982-01-01
The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.
Turbulent mixing of a passive scalar in grid turbulence
NASA Astrophysics Data System (ADS)
Ito, Y.; Watanabe, T.; Nagata, K.; Sakai, Y.
2016-07-01
Fractal grids have attracted attention as a new-type of turbulence-generating grid due to their unique characteristics. Recent studies have revealed that such uniqueness appears in the near field of regular grid-generated turbulence. Scalar transport in those flows is also of great interest as it is not yet fully understood. In this study, we investigate the scalar mixing in the near field of regular grid-generated turbulence with various grid configurations. Experiments have been carried out in liquid mixing layers with a Reynolds number of 5000 based on the mesh size of the grid and uniform velocity. Simultaneous measurements of two-component velocities and concentration have been performed by particle image velocimetry and a planar laser-induced fluorescence technique, respectively. The results show that the scaling law using the wake-interaction length scale is applicable for the turbulence intensity in the grid turbulence with different mesh sizes and the same thickness of the grid bar. The turbulence intensity increases as the thickness of the grid bar increases; thus, consequently increasing the scalar diffusion. The streamwise development of the scalar mixing layer thickness collapses onto a single curve by normalization based on the thickness of the grid bar.
The Isotropization Process in the Quadratic Gravity
NASA Astrophysics Data System (ADS)
Müller, Daniel; Alves, Márcio E. S.; de Araujo, José C. N.
2014-12-01
It is believed that soon after the Planck era, spacetime should have a semi-classical nature. Therefore, it is unavoidable to modify the theory of general relativity or look for alternative theories of gravitation. An interesting possibility found in the literature considers two geometric counter-terms to regularize the divergences of the effective action. These counter-terms are responsible for a higher-order derivative metric theory of gravitation. In the present paper, we investigate how isotropization occurs. For this reason a single solution is chosen throughout this paper. We obtain perturbatively, by two different methods, that the tensor and scalar components emerge naturally during the isotropization process. In this sense our result provides a numerical example to Stelle's well-known result on classical gravity with higher derivates. Our entire analysis is restricted to the particular Bianchi type I case.
A study of local anisotropy in globally isotropic incompressible MHD
NASA Astrophysics Data System (ADS)
Milano, L. J.; Dmitruk, P.; Matthaeus, W. H.; Montgomery, D.
2000-10-01
It is a well known fact that in presence of a DC applied field, MHD turbulence develops spectral anisotropy from an isotropic initial condition [1]. Typically, the reduced spectrum is steeper in the direction of the magnetic field than it is in any transverse direction. Theoretical insight into the origin of this effect has been derived from simulations in which there is a uniform DC magnetic field, but suggestions of a similar anisotropy is seen in various laboratory devices and also in the solar wind [2,3]. One might expect that a DC field is not essential, and it is the local mean field that is responsible. Here we investigate the occurence of local anisotropy in 3 dimensional MHD, i.e. we search for a local version of the spectral anisotropy effect. We perform 3D MHD pseudo-spectral incompressible relaxation simulations, and compute structure functions accumulated according to whether the separation is parallel to, or transverse to, the local magnetic field. Preliminary results show that correlations decay slower in the locally averaged magnetic field direction. [1] J. Shebalin, W. Matthaeus and D. Montgomery, J. Plasma Phys. 29, 525 (1983) [2] W.H. Matthaeus, M.L. Goldsteon and D.A. Roberts, J. Geophys. Res. 95, 20 673 (1990) [3] J. Armstrong, W. Coles, M. Kojima and B. Rickett, Ap. J. 358, 685 (1990)
Taming electromagnetic metamaterials for isotropic perfect absorbers
NASA Astrophysics Data System (ADS)
Anh, Doan Tung; Viet, Do Thanh; Trang, Pham Thi; Thang, Nguyen Manh; Quy, Ho Quang; Hieu, Nguyen Van; Lam, Vu Dinh; Tung, Nguyen Thanh
2015-07-01
Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.
ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.
McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon
2005-01-01
This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.
Zonal flow generation and its feedback on turbulence production in drift wave turbulence
Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.
2013-04-15
Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.
Zonal flow generation and its feedback on turbulence production in drift wave turbulence
NASA Astrophysics Data System (ADS)
Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.
2013-04-01
Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.
Isotropic Contraction Of Mercury Due To Despinning
NASA Astrophysics Data System (ADS)
Matsuyama, Isamu; Bills, B. G.
2009-09-01
Mercury's slow rotation period of 59 days is presumably the result of solar tides driving its initial rotational state to the present 3:2 spin-orbit resonance. The observed large gravity coefficients can be explained as due to a remnant rotational bulge recording an initial rotation period of a few days (Matsuyama and Nimmo 2009). Despinning changes the shape of the rotational bulge, generating both compressional and extensional stresses (Melosh 1977). However, Mercury's surface is dominated by compressional tectonic features (Watters et al. 1998), and the inferred global contraction has been explained as due to thermal cooling (Solomon 1976). In addition to non-isotropic changes associated with the rotational flattening, despinning causes isotropic contraction of the entire planet. We consider the effect of the compressional stresses generated by this isotropic contraction on the predicted tectonic pattern. References Matsuyama and Nimmo. Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res. (2009) vol. 114 pp. E01010 Melosh. Global tectonics of a despun planet. Icarus (1977) vol. 31 pp. 221-243 Solomon. Some aspects of core formation in Mercury. Icarus (1976) vol. 28 pp. 509-521 Watters et al. Topography of lobate scarps on Mercury: New constraints on the planet's contraction. Geology (1998) vol. 26 pp. 991-994
Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence.
Mei, Zhangrong; Korotkova, Olga
2013-11-01
A recently introduced class of scalar cosine-Gaussian Schell-Model [CGSM] beams is generalized to electromagnetic theory. The realizability conditions and the beam conditions on the source parameters are derived. Analytical formulas for the cross-spectral density matrix elements of the electromagnetic cosine-Gaussian Schell-model [EM CGSM] beams propagating in isotropic random medium are derived. It is found that the EM CGSM beams possess single-ring or double-ring intensity profiles, depending of source parameters. As two examples, the statistical characteristics of the EM CGSM beams propagating in free space and non-Kolmogorov turbulent atmosphere are studied numerically. The effects of the fractal constant of the atmospheric spectrum and the refractive-index structure constant on such characteristics are analyzed in detail.
NASA Astrophysics Data System (ADS)
Davoudifar, Pantea
2016-08-01
A model of turbulent galactic magnetic fields was developed in which, the type of turbulence were considered to be Kolmogorov. We tested the effect of this model on an isotropically distributed flux of ultra high energy cosmic ray in the extragalactic space. To do this, a giant Galactic halo (radius of ∼⃒ 100Mpc) was considered. Regular and random components of the Galactic Magnetic Fields were considered to have the mean observed relevant values and also satisfy a Kolmogorov field type. The deviation from isotropy then were calculated considering the propagation of ultra high energy protons in such a magnetic field and results were discussed to show how isotropic is the flux of ultra high energy cosmic rays in the extragalactic space. It is seen that considering an isotropic flux of ultra high energy cosmic rays in the intergalactic space for different choices of galactic magnetic field is not consistence with the distribution of observed ultra high energy events.
Numerical Experiments with Shock-Turbulence Interaction
NASA Astrophysics Data System (ADS)
Lele, S. K.; Larsson, J.; Bhagatwala, A.; Moin, P.
2009-04-01
Many applications in engineering and physical sciences involve turbulent flows interacting with shock waves. High-speed flows around aerodynamic bodies and through propulsion systems for high-speed flight abound with interactions of shear driven turbulence with complex shock waves. Supernova explosions and implosion of a cryogenic fuel pellet for inertial confinement fusion also involve the interaction of shockwaves with turbulence and strong density variations. Numerical simulations of such physical phenomena impose conflicting demands on the numerical algorithms. Capturing broadband spatial and temporal variations in a turbulent flow suggests the use of high-bandwidth schemes with minimal dissipation and dispersion, while capturing the flow discontinuity at a shock wave requires numerical dissipation. We summarize results from a series of benchmark test problems for assessing the ability of three different approaches to shock capturing: high order WENO, nonlinear artificial diffusivity with compact finite differences, and a hybrid approach combining high-order central differencing with WENO near the shocks. These test problems allow an assessment of the tradeoff needed between preserving non-dissipation of small-scale flow fluctuations and avoiding significant Gibbs' oscillation near a shock. Numerical experiments on Taylor-Green problem and compressible isotropic turbulence are used to evaluate the performance of these schemes on flows with broadband fluctuations. The compressible turbulence test case also contains local eddy-shocklets. The performance of each scheme is characterized in terms of an effective bandwidth. Finally some results on a canonical shock-turbulence interaction problem, i.e. the interaction of isotropic turbulence with a (nominally) normal shock, are discussed. These results achieve a turbulence Reynolds number which is significantly larger than previous DNS studies of this problem. It is observed that when the turbulence interacting with
Random vectorial fields representing the local structure of turbulence
NASA Astrophysics Data System (ADS)
Chevillard, Laurent; Robert, Raoul; Vargas, Vincent
2011-12-01
We propose a method to build up a random homogeneous, isotropic and incompressible turbulent velocity field that mimics turbulence in the inertial range. The underlying Gaussian field is given by a modified Biot-Savart law. The long range correlated nature of turbulence is then incorporated heuristically using a non linear transformation inspired by the recent fluid deformation imposed by the Euler equations. The resulting velocity field shows a non vanishing mean energy transfer towards the small scales and realistic alignment properties of vorticity with the eigenframe of the deformation rate.
PDF methods for combustion in high-speed turbulent flows
NASA Technical Reports Server (NTRS)
Pope, Stephen B.
1995-01-01
This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.
Adams, Allan; Chesler, Paul M; Liu, Hong
2014-04-18
We construct turbulent black holes in asymptotically AdS4 spacetime by numerically solving Einstein's equations. Using the AdS/CFT correspondence we find that both the dual holographic fluid and bulk geometry display signatures of an inverse cascade with the bulk geometry being well approximated by the fluid-gravity gradient expansion. We argue that statistically steady-state black holes dual to d dimensional turbulent flows have horizons whose area growth has a fractal-like structure with fractal dimension D=d+4/3.
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
Rotating Rayleigh-Taylor turbulence
NASA Astrophysics Data System (ADS)
Boffetta, G.; Mazzino, A.; Musacchio, S.
2016-09-01
The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.
A one-equation turbulence model for recirculating flows
NASA Astrophysics Data System (ADS)
Zhang, Yang; Bai, JunQiang; Xu, JingLei; Li, Yi
2016-06-01
A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is computed from a recalibrated Bradshaw's assumption that the constant a 1 = 0.31 is recalibrated to a function based on a set of direct numerical simulation (DNS) data. The values of dissipation of turbulent kinetic energy consist of the near-wall part and isotropic part, and the isotropic part involves the von Karman length scale as the turbulent length scale. The performance of the new model is evaluated by the results from DNS for fully developed turbulence channel flow with a wide range of Reynolds numbers. However, the computed result of the recirculating flow at the separated bubble of NACA4412 demonstrates that an increase is needed on the turbulent dissipation, and this leads to an advanced tuning on the self-adjusted function. The improved model predicts better results in both the non-equilibrium and equilibrium flows, e.g. channel flows, backward-facing step flow and hump in a channel.
Driver gas flow with fluctuations. [shock tube turbulent bursts
NASA Technical Reports Server (NTRS)
Johnson, J. A., III; Jones, W. R.; Santiago, J.
1980-01-01
A shock tube's driver gas can apparently provide flow with turbulent bursts. The fluctuations are interpreted using a boundary layer model of contact surface flow and results form a kinetic theory of turbulence. With this, a lower limit of 4 on the ratio of maximum to minimum turbulent intensities in contact surface instabilities has been estimated.
NASA Astrophysics Data System (ADS)
Brilouet, Pierre-Etienne; Canut, Guylaine; Durand, Pierre
2015-04-01
During winter, the North Western Mediterranean Sea is characterised by intense air-sea exchanges linked to regional strong winds (Mistral or Tramontana) which bring cold and dry continental air over a warmer sea. The HyMeX-ASICS-MED field campaign, devoted to intense sea-atmosphere exchange and deep oceanic convection analysis took place in the Gulf of Lion during winter 2013. The French ATR42 aircraft was operated to document the mean and turbulent structure of the atmospheric boundary layer (ABL) during strong wind conditions. The aircraft was equipped to measure turbulence fluctuations, thus allowing the computation of turbulence parameters. The flight strategy consisted of stacked horizontal legs oriented along and across the wind direction, in order to obtain information about the isotropy of the turbulent field and about coherent structures. Strong wind events were documented with 11 flights during which latent heat flux up to 600 W.m-2 were observed. The structure of the turbulent field is analysed through the integral length scale and the wavelength of the spectrum peak of the vertical velocity which represent the size of the large and the most energetic eddies, respectively. It reveals a stretching of turbulent eddies along the mean wind. This kind of organized structures plays a major role by modulating the transfers inside the ABL. In particular, this non-isotropic behaviour alters the flux estimates from along-wind samples. This last point is critical because surface and entrainment fluxes, deduced from extrapolation of the flux profiles, are essential parameters to characterise the coupling between air-sea exchanges and the ABL structure.
Scaling laws in magnetized plasma turbulence
Boldyrev, Stanislav
2015-06-28
Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar
Talbot, L.; Cheng, R.K.
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.
1995-01-01
The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.
Anisotropic non-Kolmogorov turbulence phase screens with variable orientation.
Bos, Jeremy P; Roggemann, Michael C; Rao Gudimetla, V S
2015-03-10
We describe a modification to fast Fourier transform (FFT)-based, subharmonic, phase screen generation techniques that accounts for non-Kolmogorov and anisotropic turbulence. Our model also allows for the angle of anisotropy to vary in the plane orthogonal to the direction of propagation. In addition, turbulence strength in our model is specified via a characteristic length equivalent to the Fried parameter in isotropic, Kolmogorov turbulence. Incorporating this feature enables comparison between propagating scenarios with differing anisotropies and power-law exponents to the standard Kolmogorov, isotropic model. We show that the accuracy of this technique is comparable to other FFT-based subharmonic methods up to three-dimensional spectral power-law exponents around 3.9.
The dynamics of variable-density turbulence
Sandoval, D.L.
1995-11-01
The dynamics of variable-density turbulent fluids are studied by direct numerical simulation. The flow is incompressible so that acoustic waves are decoupled from the problem, and implying that density is not a thermodynamic variable. Changes in density occur due to molecular mixing. The velocity field, is in general, divergent. A pseudo-spectral numerical technique is used to solve the equations of motion. Three-dimensional simulations are performed using a grid size of 128{sup 3} grid points. Two types of problems are studied: (1) the decay of isotropic, variable-density turbulence, and (2) buoyancy-generated turbulence in a fluid with large density fluctuations. In the case of isotropic, variable-density turbulence, the overall statistical decay behavior, for the cases studied, is relatively unaffected by the presence of density variations when the initial density and velocity fields are statistically independent. The results for this case are in quantitative agreement with previous numerical and laboratory results. In this case, the initial density field has a bimodal probability density function (pdf) which evolves in time towards a Gaussian distribution. The pdf of the density field is symmetric about its mean value throughout its evolution. If the initial velocity and density fields are statistically dependent, however, the decay process is significantly affected by the density fluctuations. For the case of buoyancy-generated turbulence, variable-density departures from the Boussinesq approximation are studied. The results of the buoyancy-generated turbulence are compared with variable-density model predictions. Both a one-point (engineering) model and a two-point (spectral) model are tested against the numerical data. Some deficiencies in these variable-density models are discussed and modifications are suggested.
Richardson effects in turbulent buoyant flows
NASA Astrophysics Data System (ADS)
Biggi, Renaud; Blanquart, Guillaume
2010-11-01
Rayleigh Taylor instabilities are found in a wide range of scientific fields from supernova explosions to underwater hot plumes. The turbulent flow is affected by the presence of buoyancy forces and may not follow the Kolmogorov theory anymore. The objective of the present work is to analyze the complex interactions between turbulence and buoyancy. Towards that goal, simulations have been performed with a high order, conservative, low Mach number code [Desjardins et. al. JCP 2010]. The configuration corresponds to a cubic box initially filled with homogeneous isotropic turbulence with heavy fluid on top and light gas at the bottom. The initial turbulent field was forced using linear forcing up to a Reynolds number of Reλ=55 [Meneveau & Rosales, POF 2005]. The Richardson number based on the rms velocity and the integral length scale was varied from 0.1 to 10 to investigate cases with weak and strong buoyancy. Cases with gravity as a stabilizer of turbulence (gravity pointing up) were also considered. The evolution of the turbulent kinetic energy and the total kinetic energy was analyzed and a simple phenomenological model was proposed. Finally, the energy spectra and the isotropy of the flow were also investigated.
Isotropic homogeneous universe with viscous fluid
Santos, N.O.; Dias, R.S.; Banerjee, A.
1985-04-01
Exact solutions are obtained for the isotropic homogeneous cosmological model with viscous fluid. The fluid has only bulk viscosity and the viscosity coefficient is taken to be a power function of the mass density. The equation of state assumed obeys a linear relation between mass density and pressure. The models satisfying Hawking's energy conditions are discussed. Murphy's model is only a special case of this general set of solutions and it is shown that Murphy's conclusion that the introduciton of bulk viscosity can avoid the occurrence of space-time singularity at finite past is not, in general, valid.
Structure in turbulent thermal convection
NASA Astrophysics Data System (ADS)
Balachandar, S.
1992-12-01
Small-scale features of vorticity, strain rate, and temperature gradients are considered in a Rayleigh-Bénard convection. The results reported are from a direct numerical simulation of turbulent convection performed in a rectangular box of aspect ratio 2√2 at a Rayleigh number of 6.5×106 and a Prandtl number of 0.72. In agreement with earlier results [Ashurst et al., Phys. Fluids 30, 2343 (1987) and Ruetsch and Maxey, Phys. Fluids A 3, 1587 (1991)], the intermediate strain rate is on an average positive, but the ratio of alpha, beta, and gamma strain rates are measured to be 5.3:1.0:-6.3. This result differs from the earlier result of 3:1:-4 obtained in homogeneous isotropic and shear turbulences. Buoyancy-induced vorticity production makes significant contribution to the overall enstrophy balance, especially close to the boundaries. Vorticity production by buoyancy is exclusively in the horizontal direction and is balanced by preferred production by stretching and tilting in the vertical direction, due to the preferred alignment of extensional alpha strain rate with the vertical direction. Such directional alignment of vorticity, strain rate, and scalar gradient is explained on the basis of preferred spatial orientation of coherent structures in thermal turbulence.
Cui, Linyan
2015-06-01
Analytic expressions for the temporal power spectra of irradiance fluctuations and angle of arrival (AOA) fluctuations are derived for optical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. In the derivation, the anisotropic non-Kolmogorov spectrum is adopted, which adopts the assumption of circular symmetry in the orthogonal plane throughout the path and the same degree of anisotropy along the propagation direction for all the turbulence cells. The final expressions consider simultaneously the anisotropic factor and general spectral power law values. When the anisotropic factor equals one (corresponding to the isotropic turbulence), the derived temporal power spectral models have good consistency with the known results for the isotropic turbulence. Numerical calculations show that the increased anisotropic factor alleviates the atmospheric turbulence's influence on the final expressions.
Quantifying Turbulence for Tidal Power Applications
Thomson, Jim; Richmond, Marshall C.; Polagye, Brian; Durgesh, Vibhav
2010-08-01
Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. The quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the turbulent intensity estimates at a height of 4.6 m above the seabed are 8% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10e-3 to 10e-1 W/m^3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.
On observing acoustic backscattering from salinity turbulence.
Goodman, Louis; Sastre-Cordova, Marcos M
2011-08-01
It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering. PMID:21877785
On observing acoustic backscattering from salinity turbulence.
Goodman, Louis; Sastre-Cordova, Marcos M
2011-08-01
It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering.
Jamming is not just isotropic anymore
NASA Astrophysics Data System (ADS)
Wandersman, E.; Chushkin, Y.; Robert, A.; Dubois, E.; Dupuis, V.; Perzynski, R.
2009-03-01
Slow dynamics observed in many disordered systems (colloidal glasses, jammed granular matter) are poorly understood. An approach could consist to discriminate the dynamical properties of such systems by the nature of the interaction potential (attractive/repulsive, isotropic/anisotropic). While the anisotropy of the potential is relevant for the rotational dynamics, its effect on the translational dynamics in glasses is quite absent of current understanding. We investigate here the effect of the interaction potential on the translational dynamics, in a magnetic colloidal glass (charge--stabilized magnetic nanoparticles). By applying a magnetic field H, the potential is tuned, from quasi-isotropic to anisotropic, but remains repulsive on average. The translational dynamics of the nanoparticles is probed (with/without field) using dynamical X-ray scattering [1]. Under field, anisotropic translational dynamics and aging are observed. Moreover, a strong anisotropic cooperativity is reported, almost hundred times larger in the parallel direction. The results are discussed using a phenomenological picture. [1] E. Wandersman et. al., J. Phys. Cond. Mat. 20 (2007) 155104
NASA Technical Reports Server (NTRS)
Rued, Klaus
1987-01-01
The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.
NASA Astrophysics Data System (ADS)
Newell, Alan C.; Rumpf, Benno
2011-01-01
In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.
1987-01-01
Recent developments at several levels of statistical turbulence modeling applicable to aerodynamics are briefly surveyed. Emphasis is on examples of model improvements for transonic, two-dimensional flows. Experience with the development of these improved models is cited to suggest methods of accelerating the modeling process necessary to keep abreast of the rapid movement of computational fluid dynamics into the computation of complex three-dimensional flows.
NASA Astrophysics Data System (ADS)
Woods, Andrew W.
2010-01-01
This review describes a range of natural processes leading to the formation of turbulent buoyant plumes, largely relating to volcanic processes, in which there are localized, intense releases of energy. Phenomena include volcanic eruption columns, bubble plumes in lakes, hydrothermal plumes, and plumes beneath the ice in polar oceans. We assess how the dynamics is affected by heat transfer, particle fallout and recycling, and Earth's rotation, as well as explore some of the mixing of the ambient fluid produced by plumes in a confined geometry.
Ultrasonic light diffraction in optically isotropic media with induced birefringence
NASA Astrophysics Data System (ADS)
Blomme, Erik; Sliwinski, Antoni
2001-11-01
Optically isotropic media which are susceptible to acoustically induced birefringence can be used as acousto- optic polarization converters. A comparative study between fused silica and dense flint shows that at normal light incidence 52% of the light can be converted from linear to circular in the case of fused silica and only 20% in the case of dense flint. In each case the conversion appears at moderate sound amplitudes and at frequencies which are typical for the intermediate regime of diffraction. Applying oblique light incidence, most interesting effects can be obtained with fused silica at high sound frequencies which are typical for the Bragg regime of diffraction and in the neighborhood of the Bragg angle. The possibility is shown to use an AO cell fabricated of fused silica as a laser-beam splitter, converting a linearly polarized beam of light partially into a circularly polarized beam and a linearly polarized beam, the light intensity of the two beams being equal. In addition, it is seen that the temporal light intensity modulations which can be observed in the near field of the light diffracted under these specific conditions, can be understood from the polarization changes taking place.
Plasma Turbulence and observational effects
NASA Astrophysics Data System (ADS)
Jiang, Yan Wei
Plasma Turbulence is present in many astronomical settings, and it plays an important role in releasing the magnetic and/or kinetic energy into accelerating particles and heating the plasma. With the diffusion approximation, I study the cascade and damping of Alfvén-cyclotron turbulence in solar plasmas numerically. Motivated by wave-wave couplings and nonlinear effects, I test several forms of the diffusion tensor. For a general locally anisotropic and inhomogeneous diffusion tensor in the wave vector space, the turbulence spectrum in the inertial range can be fitted with power-laws with the index varying with the wave propagation direction. For several locally isotropic but inhomogeneous diffusion coefficients, the steady-state turbulence spectra are nearly isotropic in the absence of damping and can be fitted by a single power-law function. However, the energy flux is strongly polarized due to the inhomogeneity that leads to an anisotropic cascade. Including the anisotropic thermal damping, the turbulence spectrum cuts off at the wave numbers, where the damping rates become comparable to the cascade rates. The combined anisotropic effects of cascade and damping make this cutoff wave number dependent on the wave propagation direction, and the propagation direction integrated turbulence spectrum resembles a broken power-law, which cuts off at the maximum of the cutoff wave numbers or the 4 He cyclotron frequency. Taking into account the Doppler effects, the model can naturally reproduce the broken power-law wave spectra observed in the solar wind and predicts that a higher break frequency is always accompanied with a greater spectral index change that may be caused by the increase of the Alfvén Mach number, the reciprocal of the plasma beta, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by future observations. Solar flare is the most energetic process in solar system and becomes the natural
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Evolution of the shock front and turbulence structures in the shock/turbulence interaction
NASA Technical Reports Server (NTRS)
Kevlahan, N.; Mahesh, K.; Lee, S.
1992-01-01
The interaction of a weak shock front with isotropic turbulence has been investigated using Direct Numerical Simulation (DNS). Two problems were considered: the ability of the field equation (the equation for a propagating surface) to model the shock; and a quantitative study of the evolution of turbulence structure using the database generated by Lee et al. Field equation model predictions for front shape have been compared with DNS results; good agreement is found for shock wave interaction with 2D turbulence and for a single steady vorticity wave. In the interaction of 3D isotropic turbulence with a normal shock, strong alignment of vorticity with the intermediate eigenvector of the rate of strain tensor (S(sup *)(sub ij) = S(sub ij) - (1/3)(delta(sub ij))(S(sub kk))) is seen to develop upstream of the shock and to be further amplified on passage through the shock. Vorticity tends to align at 90 deg to the largest eigenvector, but there is no preferred alignment with the smallest eigenvector. Upstream of the shock, the alignments continue to develop even after the velocity derivative skewness saturates. There is a significant tendency, which increases with time throughout the computational domain, for velocity to align with vorticity. The alignment between velocity and vorticity is strongest in eddy regions and weakest in convergence regions.
Measuring turbulent fluid dispersion using laser induced phosphorescence
NASA Astrophysics Data System (ADS)
van der Voort, Dennis; Dam, Nico; van de Water, Willem; Kunnen, Rudie; Clercx, Herman; van Heijst, Gertjan
2015-11-01
Fluid dispersion due to turbulence is an important subject in both natural and engineering processes, from cloud formation to turbulent mixing and liquid spray combustion. The combination of small scales and often high velocities results in few experimental techniques that can follow the course of events. We introduce a novel technique, which measures the dispersion of ``tagged'' fluid particles by means of laser-induced phosphorescence, using a solution containing a europium-based molecular complex with a relatively long phosphorescence half-life. This technique is used to measure transport processes in both the dispersion of droplets in homogeneous isotropic turbulence and the dispersion of fluid of near-nozzle spray breakup processes. By tagging a small amount of droplets/fluid via laser excitation, the tagged droplets can be tracked in a Lagrangian way. The absolute dispersion of the droplets can be measured in a variety of turbulent flows. Using this technique it is shows that droplets around St =τp /τη ~ 1 (Stokes number) disperse faster than true fluid tracers in homogeneous isotropic turbulence, as well as differences between longitudinal and radial dispersion in turbulent sprays. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Organisation for Scientific Research (NWO).
The Use of Consolidated Expansions in Modeling Anisotropic Turbulence in a Channel Flow
NASA Astrophysics Data System (ADS)
Smith, Sonya; Santy-Ateyaba, Kokomahha
1999-11-01
The diagram expansion method, first applied to isotropic turbulence,is extended to model anisotropic turbulence. Leonard and Cross stresses resulting from the filtering operation are evaluated from the Gaussian property of the filter functions used. The combination of the gradient of these stresses is considered as the anisotropic forcing term. The turbulence model is then assumed to originate from the contribution of the isotropic and anisotropic parts. The model results from a perturbation expansion using diagrams similar to those used in quantum field theory. After identifying new rules for the consolidation to account for anisotropy, all diagrams are summed and the result is a set of consolidated diagrams for the diffusion operator, the pressure effects, and the correlation functions. In this approach all the statistical properties are the function of the second moment only and the model is derived from an analytical approximation of isotropic and anisotropic correlation functions.
Phase segregation in multiphase turbulent channel flow
NASA Astrophysics Data System (ADS)
Bianco, Federico; Soldati, Alfredo
2014-11-01
The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.
Cui, Linyan; Xue, Bindang; Zhou, Fugen
2016-04-01
In this study, the modified anisotropic turbulence refractive-index fluctuations spectral model is derived based on the extended Rytov approximation theory for the theoretical investigations of optical plane and spherical waves propagating through moderate-to-strong anisotropic non-Kolmogorov turbulence. The anisotropic factor which parameterizes the asymmetry of turbulence cells or eddies in the horizontal and vertical directions is introduced. The general spectral power law in the range of 3-4 is also considered compared with the conventional classic value of 11/3 for Kolmogorov turbulence. Based on the modified anisotropic turbulence refractive-index fluctuations spectrum, the analytic expressions of the irradiance scintillation index are also derived for optical plane and spherical waves propagating through moderate-to-strong anisotropic non-Kolmogorov turbulence. They are applicable in a wide range of turbulence strengths and can reduce correctly to the previously published results in the special cases of weak anisotropic turbulence and moderate-to-strong isotropic turbulence. Calculations are performed to analyze the derived models.
Isotropic MD simulations of dynamic brittle fracture
Espanol, P.; Rubio, M.A.; Zuniga, I.
1996-12-01
The authors present results obtained by molecular dynamics simulations on the propagation of fast cracks in triangular 2D lattices. Their aim is to simulate Mode 1 fracture of brittle isotropic materials. They propose a force law that respects the isotropy of the material. The code yields the correct imposed sound c{sub {parallel}}, shear c{sub {perpendicular}} and surface V{sub R} wave speeds. Different notch lengths are systematically studied. They observed that initially the cracks are linear and always branch at a particular critical velocity c* {approx} 0.8V{sub R} and that this occurs when the crack tip reaches the position of a front emitted from the initial crack tip and propagating at a speed c = 0.68V{sub R}.
Isotropic and anisotropic surface wave cloaking techniques
NASA Astrophysics Data System (ADS)
McManus, T. M.; La Spada, L.; Hao, Y.
2016-04-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.
Velocity analysis for transversely isotropic media
Alkhalifah, T.; Tsvankin, I.
1994-08-01
The main difficulty in extending seismic processing to anisotropic media is the recovery of anisotropic velocity fields from surface reflection data. Velocity analysis for transversely isotropic (TI) media can be done by inverting the dependence of P-wave moveout velocities on the ray parameter. P-wave NMO velocity in homogeneous TI media with a vertical symmetry axis depends just on the zero-dip value V{sub nmo} and a new effective parameter {eta} that reduces to the difference between Thomsen parameters {epsilon} and {delta} in the limit of weak anisotropy. It is possible to obtain {eta} and reconstruct the NMO velocity as a function of ray parameter using moveout velocities for two different dips. Moreover, V{sub nmo}(0) and {eta} determine not only the NMO velocity, but also also long-spread (nonhyperbollic) P-wave moveout for horizontal reflectors and time-migration impulse response. Inversion of dip-moveout information allows performance of all time-processing steps in TI media using only surface P-wave data. Isotropic time-processing methods remain entirely valid for elliptical anisotropy ({epsilon} = {delta}). Accurate time-to-depth conversion, however, requires the vertical velocity V{sub P0} be resolved independently. If I-P0 is known, then allisotropies {epsilon} and {delta} can be found by inverting two P-wave NMO velocities corresponding to a horizontal and a dipping reflector. If no information is available, all three parameters (V {sub P0}, {epsilon}, and {delta}) can be obtained by combining inversion results with shear-wave information. such as the P-SV or SV-SV wave NMO velocities for a horizontal reflector. Generalization of Tsvankin`s single-layer NMO equation for layered anisotropic media with a dipping reflector provides a basis for extending anisotropic velocity analysis to vertically inhomogeneous media. The influence of a stratified overburden on moveout velocity can be stripped through a Dix-type differentiation procedure.
Swimming in turbulent flow - profitable or costly ?
NASA Astrophysics Data System (ADS)
Enders, E. C.; Roy, A. G.
2004-05-01
Fish swimming performance has long been of interest to researchers. Experiments on swimming performance are generally performed under conditions which minimise flow heterogeneity. However, fish live in environments were intense fluctuations of flow velocity and pressure occur. Only recently, studies emerged that consider the effect of turbulence on the swimming performance of fish. Research has shown that fish may benefit from turbulence. For example, rainbow trout swimming behind an obstacle which produced stable vortex shedding, profited from the energy of these vortices. Fish adjusted their swimming patterns to slalom between the vortices which resulted in a reduction in muscle activity suggesting that fish reduced energy expenditure of swimming. Similarly, sockeye salmon exploited recirculation zones during upriver spawning migration to minimise energy expenditure. In contrast to these investigations showing that fish may actually profit from turbulence, several studies suggested that turbulence increases energy expenditure of swimming. Sustained swimming speed of fish decreased with increasing turbulence intensity suggesting an increase in swimming costs. Similarly, Atlantic salmon swimming in turbulent flow have 2- to 4-fold increased energy expenditure in comparison to estimates obtained under minimised flow heterogeneity. We will give an overview of recent studies and of new experimental evidence showing how turbulence affects fish behaviour, energetics and distribution and we discuss the relevant scales at which turbulent flow structures affect fish depending on its size. These results are from special interest not only for fisheries management, habitat restoration and biodiversity conservation but also for conceptualisation and construction of migratory fish pathways.
NASA Astrophysics Data System (ADS)
Wilde, B. H.; Rosen, P. A.; Foster, J. M.; Perry, T. S.; Steinkamp, M. J.; Robey, H. F.; Khokhlov, A. M.; Gittings, M. L.; Coker, R. F.; Keiter, P. A.; Knauer, J. P.; Drake, R. P.; Remington, B. A.; Bennett, G. R.; Sinars, D. B.; Campbell, R. B.; Mehlhorn, T. A.
2003-10-01
Over the last few years we have fielded numerous supersonic jet experiments on the NOVA and OMEGA lasers and Sandia's pulsed-power Z-machine in a collaboration between Los Alamos National Laboratory, the Atomic Weapons Establishment, Lawrence Livermore National Laboratory, and Sandia National Laboratory. These experiments are being conducted to help validate our radiation-hydrodynamic codes, especially the newly developing ASC codes. One of the outstanding questions is whether these types of jets should turn turbulent given their high Reynolds number. Recently we have modified our experiments to have more Kelvin-Helmholtz shear, run much later in time and therefore have a better chance of going turbulent. In order to diagnose these large (several mm) jets at very late times ( 1000 ns) we are developing point-projection imaging on both the OMEGA laser, the Sandia Z-Machine, and ultimately at NIF. Since these jets have similar Euler numbers to jets theorized to be produced in supernovae explosions, we are also collaborating with the astrophysics community to help in the validation of their new codes. This poster will present a review of the laser and pulsed-power experiments and a comparison of the data to simulations by the codes from the various laboratories. We will show results of simulations wherein these jets turn highly 3-dimensional and show characteristics of turbulence. With the new data, we hope to be able to validate the sub-grid-scale turbulent mix models (e. g. BHR) that are being incorporated into our codes.*This work is performed under the auspices of the U. S. Department of Energy by the Los Alamos National Laboratory Laboratory under Contract No. W-7405-ENG-36, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, the Laboratory for Laser Energetics under Contract No. DE-FC03-92SF19460, Sandia National Laboratories under Contract No. DE-AC04-94AL85000, the Office of Naval Research, and the NASA Astrophysical Theory Grant.
Langmuir turbulence in the auroral ionosphere 1: Linear theory
NASA Technical Reports Server (NTRS)
Newman, D. L.; Goldman, M. V.; Ergun, R. E.; Boehm, M. H.
1994-01-01
Intense bursts of Langmuir waves with electric fields of 50 to 500 mV / m have been frequently observed at altitudes greater than 500 km in the auroral ionosphere. These bursts are driven by 20 eV to 4 keV field-aligned electrons, which are embedded in an approximately isotropic nonthermal tail of scattered electrons. The Langmuir bursts are often observed at altitudes where the ionosphere is moderately magnetized (OMEGA (sub e) approximately equals omega (sub pe)). Both the moderate magnetization and the scattered electrons have a major influence on the linear dispersion and damping of Langmuir waves. In particular, the linear dispersion is topologically different depending on whether the magnetic field is subcritical (OMEGA (sub e) less than omega (sub pe)) or supercritical (OMEGA (sub e) greater than omega (sub pe)). The correct dispersion and damping can account for the observed polarization of the Langmuir waves, which is very nearly parallel to the geomagnetic field. Inferred properties of the linear instability driven by the field-aligned electrons are discussed. The linear dispersion and damping derived here provide the basis for a nonlinear turbulence study described in a companion paper (Newman et al., this issue).
Recent developments in plasma turbulence and turbulent transport
Terry, P.W.
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Distribution of Ionized Carbon during Simulated Plasma Disruption for the Isotropic Graphite Target
NASA Astrophysics Data System (ADS)
Sukegawa, Toshio; Okamoto, Koji; Madarame, Haruki
The behavior of ionized carbon during the simulated plasma disruption is investigated with the Magneto-Plasma-Dynamic (MPD) Arc Jet. The temporal and spatial distributions of the ionized carbon were measured by emission spectroscopy. Distributions of CII and CIII were obtained. For the isotropic graphite target, the emission intensity increased as the target is exposed by the heat flux from plasma. Two consecutive peaks of intensity were observed at the point near the target surface. A simple model of redeposition and surface roughness could explain these phenomena.
Investigating source processes of isotropic events
NASA Astrophysics Data System (ADS)
Chiang, Andrea
explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve
Hierarchical structures in fully developed turbulence
NASA Astrophysics Data System (ADS)
Liu, Li
Analysis of the probability density functions (PDFs) of the velocity increment dvl and of their deformation is used to reveal the statistical structure of the intermittent energy cascade dynamics of turbulence. By analyzing a series of turbulent data sets including that of an experiment of fully developed low temperature helium turbulent gas flow (Belin, Tabeling, & Willaime, Physica D 93, 52, 1996), of a three-dimensional isotropic Navier-Stokes simulation with a resolution of 2563 (Cao, Chen, & She, Phys. Rev. Lett. 76, 3711, 1996) and of a GOY shell model simulation (Leveque & She, Phys. Rev. E 55, 1997) of a very big sample size (up to 5 billions), the validity of the Hierarchical Structure model (She & Leveque, Phys. Rev. Lett. 72, 366, 1994) for the inertial-range is firmly demonstrated. Furthermore, it is shown that parameters in the Hierarchical Structure model can be reliably measured and used to characterize the cascade process. The physical interpretations of the parameters then allow to describe differential changes in different turbulent systems so as to address non-universal features of turbulent systems. It is proposed that the above study provides a framework for the study of non-homogeneous turbulence. A convergence study of moments and scaling exponents is also carried out with detailed analysis of effects of finite statistical sample size. A quantity Pmin is introduced to characterize the resolution of a PDF, and hence the sample size. The fact that any reported scaling exponent depends on the PDF resolution suggests that the validation (or rejection) of a model of turbulence needs to carry out a resolution dependence analysis on its scaling prediction.
Optical turbulence in confined media: part I, the indoor turbulence sensor instrument.
Chabé, Julien; Blary, Flavien; Ziad, Aziz; Borgnino, Julien; Fanteï-Caujolle, Yan; Liotard, Arnaud; Falzon, Frédéric
2016-09-01
Optical system performances can be affected by local optical turbulence created by its surrounding environment (telescope dome, clean room, atmospheric surface layer). We present our new instrument INdoor TurbulENce SEnsor (INTENSE) dedicated to this local optical turbulence characterization. INTENSE consists of using several parallel laser beams separated by non-redundant baselines between 0.05 and 2.5 m and measuring the angle of arrival fluctuations from spot displacements on a CCD. After introducing the theoretical background, we give a description of the instrument including a detailed characterization of instrumental noise and, finally, give the first results for the characterization of the turbulence inside clean rooms for optical systems studies.
Optical turbulence in confined media: part I, the indoor turbulence sensor instrument.
Chabé, Julien; Blary, Flavien; Ziad, Aziz; Borgnino, Julien; Fanteï-Caujolle, Yan; Liotard, Arnaud; Falzon, Frédéric
2016-09-01
Optical system performances can be affected by local optical turbulence created by its surrounding environment (telescope dome, clean room, atmospheric surface layer). We present our new instrument INdoor TurbulENce SEnsor (INTENSE) dedicated to this local optical turbulence characterization. INTENSE consists of using several parallel laser beams separated by non-redundant baselines between 0.05 and 2.5 m and measuring the angle of arrival fluctuations from spot displacements on a CCD. After introducing the theoretical background, we give a description of the instrument including a detailed characterization of instrumental noise and, finally, give the first results for the characterization of the turbulence inside clean rooms for optical systems studies. PMID:27607283
Ignition in laminar and turbulent nonpremixed counterflow
NASA Astrophysics Data System (ADS)
Blouch, John Dewey
2002-01-01
Investigations into nonpremixed ignition were conducted to examine the influence of complex chemistry and flow turbulence as found in practical combustion systems. The counterflow configuration, where a hot air jet ignited a cold (298K) fuel jet, was adopted in experiments and calculations. The study of the ignition of large alkane hydrocarbons focused on the effects of fuel structure by investigating the reference fuels n-heptane and iso-octane. The ignition response of these fuels was similar to smaller fuels with similar molecular structures. This conclusion was reinforced by showing that the ignition temperature became nearly insensitive to fuel molecule size above C4, but continued to depend on whether the structure was linear or branched. The effects of turbulence were studied by adding perforated plates to the burner to generate controlled levels of turbulence. This configuration was examined in detail experimentally and computationally without reaction, and subsequently the effects of turbulence on ignition were studied with hydrogen as the fuel. The results indicated that at low turbulence intensities, ignition is enhanced relative to laminar ignition, but as the turbulence intensity increases the ignition temperature also increases, demonstrating that optimal conditions for ignition exist at low turbulence intensities. At high pressures, where HO2 chemistry is important, all turbulent ignition temperatures were higher than laminar ones, and the increasing temperature trend with turbulence intensity was still observed. At low fuel concentrations, a different ignition mode was observed where the transition from a weakly reacting state to a flame occurred over a range of temperatures where the flame was repeatedly ignited and extinguished. Turbulent ignition was modeled by solving a joint scalar PDF equation using a Monte Carlo technique. The absence of significant heat release prior to ignition enabled the use of a frozen flow solution, solved separately
Effect of Ambient Turbulence on the Drag Force of Particle at High Stokes Number
NASA Astrophysics Data System (ADS)
Muto, Masaya; Oshima, Nobuyuki; Tsubokura, Makoto; Nakashima, Takuji
2008-11-01
Velocity of solid particle (diameter is 2 mm) free-falling in a nearly isotropic turbulent airflow has been investigated using an ingenious experimental setup to achieve high Stokes number. Turbulent intensity around the particle is large enough to have eddies of comparable size to the thickness of boundary layer (approximately 0.2 mm) that is estimated in a laminar flow. As a result of measurement, an ensemble averaged particle velocity is larger than the velocity predicted with Schiller and Naumann's drag coefficient (Muto et al., 2007). To investigate this reduction of drag force, flow aspects near the particle are observed using a numerical simulation of rotating spherical particle (periodically rotates in opposite direction) in a uniform flow. As a result, a modulation of drag force is found and it depends on period and amplitude of the rotation. A reason of the change of drag force in both experiment and numerical simulation is deduced that eddies included in an approach flow to particle, or periodic rotation of particle affect its boundary layer, and the wake of particle is suppressed.
Rotational surfaces in isotropic spaces satisfying weingarten conditions
NASA Astrophysics Data System (ADS)
Öğrenmiş, Alper Osman
2016-07-01
In this paper, we study the rotational surfaces in the isotropic 3-space 𝕀3 satisfying Weingarten conditions in terms of the relative curvature K (analogue of the Gaussian curvature) and the isotropic mean curvature H. In particular, we classify such surfaces of linear Weingarten type in 𝕀3.
The acoustics of turbulent flow
NASA Astrophysics Data System (ADS)
Rimskii-Korsakov, A. V.
Papers are presented on such topics as the excitation of sound by small perturbations of entropy and vorticity in spatially nonuniform flows of a compressible ideal gas; the aeroacoustic characteristics of acoustically excited jets; the noise intensity and spectrum in a turbulent boundary layer on a flat plate; sound refraction in a turbulent shear flow; and the spectrum of spatial correlations of turbulent pressure pulsations at a wall at high Reynolds numbers. Consideration is also given to a comparative study of the acoustic fields of air and helium jets at subsonic outflow speeds; the effect of external boundary layer flow on jet-noise characteristics; wing-profile noise in turbulent flow; sound emission from an unsteady boundary layer; and the sound-field characteristics of a moving source (with application to aircraft-noise analysis). The effect of a sound field on coherent structures in turbulent flow, aerodynamic forces causing fan vibration and noise, and a silencer for a jet-aircraft powerplant are also examined. For individual items see A84-28803 to A84-28820
Numerical simulation of turbulence in the presence of shear
NASA Technical Reports Server (NTRS)
Shaanan, S.; Ferziger, J. H.; Reynolds, W. C.
1975-01-01
The numerical calculations are presented of the large eddy structure of turbulent flows, by use of the averaged Navier-Stokes equations, where averages are taken over spatial regions small compared to the size of the computational grid. The subgrid components of motion are modeled by a local eddy-viscosity model. A new finite-difference scheme is proposed to represent the nonlinear average advective term which has fourth-order accuracy. This scheme exhibits several advantages over existing schemes with regard to the following: (1) the scheme is compact as it extends only one point away in each direction from the point to which it is applied; (2) it gives better resolution for high wave-number waves in the solution of Poisson equation, and (3) it reduces programming complexity and computation time. Examples worked out in detail are the decay of isotropic turbulence, homogeneous turbulent shear flow, and homogeneous turbulent shear flow with system rotation.
Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field
NASA Technical Reports Server (NTRS)
Montgomery, D.; Turner, L.
1981-01-01
A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind.
Methods of separation of variables in turbulence theory
NASA Technical Reports Server (NTRS)
Tsuge, S.
1978-01-01
Two schemes of closing turbulent moment equations are proposed both of which make double correlation equations separated into single-point equations. The first is based on neglected triple correlation, leading to an equation differing from small perturbed gasdynamic equations where the separation constant appears as the frequency. Grid-produced turbulence is described in this light as time-independent, cylindrically-isotropic turbulence. Application to wall turbulence guided by a new asymptotic method for the Orr-Sommerfeld equation reveals a neutrally stable mode of essentially three dimensional nature. The second closure scheme is based on an assumption of identity of the separated variables through which triple and quadruple correlations are formed. The resulting equation adds, to its equivalent of the first scheme, an integral of nonlinear convolution in the frequency describing a role due to triple correlation of direct energy-cascading.
Single particle measurements of material line stretching in turbulence: Experiments
NASA Astrophysics Data System (ADS)
Kramel, Stefan; Tympel, Saskia; Toschi, Federico; Voth, Greg
2015-11-01
We find that particles in the shape of chiral dipoles display a preferential rotation direction in three dimensional isotropic turbulence. The particles consist of two helical ends with opposite chirality that are connected by a straight rod. They are fabricated using 3D printing and have an aspect ratio of 10 and a length in the inertial range of our flow between oscillating grids. Due to their high aspect ratio, they move like material lines. Because material lines align with the extentional eigenvectors of the velocity gradient tensor they experience a mean stretching in turbulence. The stretching of a chiral dipole produces a rotation about the dipole axis and so chiral dipoles experience a non-zero mean spinning rate in turbulence. These results provide a first direct experimental measurement of the rate of material line stretching in turbulence.
ULF turbulence in the Neptunian polar cusp
NASA Astrophysics Data System (ADS)
Farrell, W. M.; Lepping, R. P.; Smith, C. W.
1993-03-01
Results of a spectral analysis of the ULF wave turbulence in the Neptunian polar cusp are presented. The activity is characterized as broadbanded, extending up to a maximum frequency of about 0.5 Hz, and having maximum wave amplitudes as large as 6 percent of the dc magnetic field. Activity in the cusp region was particularly intense at its frontside and backside, associated with the magnetopause and cusp/magnetosphere boundaries, respectively. The turbulence, particularly that above f(ci), is tentatively identified as whistler mode. It is argued that such whistler mode turbulence should resonate with electrons having energies in the tens of kiloelectron volts. Observations indicate a very strong correlation of the ULF turbulence with the energetic electrons between 22 and 35 keV measured by Voyager's low-energy charged particle experiment. A vigorous interaction between the two is inferred. ULF wave turbulence in the cusp may represent a significant but not complete power source for the magnetosphere.
The Spectral and Statistical Properties of Turbulence Generated by a Vortex/Blade-Tip Interaction
NASA Technical Reports Server (NTRS)
Devenport, William J.; Wittmer, Kenneth S.; Wenger, Christian W.
1997-01-01
The perpendicular interaction of a streamwise vortex with the tip of a lifting blade was studied in incompressible flow to provide information useful to the accurate prediction of helicopter rotor noise and the understanding of vortex dominated turbulent flows. The vortex passed 0.3 chord lengths to the suction side of the blade tip, providing a weak interaction. Single and two-point turbulence measurements were made using sub-miniature four sensor hot-wire probes 15 chord lengths downstream of the blade trailing edge; revealing the mean velocity and Reynolds stress tensor distributions of the turbulence, as well as its spanwise length scales as a function of frequency. The single point measurements show the flow downstream of the blade to be dominated by the interaction of the original tip vortex and the vortex shed by the blade. These vortices rotate about each other under their mutual induction, winding up the turbulent wakes of the blades. This interaction between the vortices appears to be the source of new turbulence in their cores and in the region between them. This turbulence appears to be responsible for some decay in the core of the original vortex, not seen when the blade is removed. The region between the vortices is not only a region of comparatively large stresses, but also one of intense turbulence production. Velocity autospectra measured near its center suggests the presence quasi-periodic large eddies with axes roughly parallel to a line joining the vortex cores. Detailed two-point measurements were made on a series of spanwise cuts through the flow so as to reveal the turbulence scales as they would be seen along the span of an intersecting airfoil. The measurements were made over a range of probe separations that enabled them to be analyzed not only in terms of coherence and phase spectra but also in terms of wave-number frequency (kappa-omega) spectra, computed by transforming the measured cross-spectra with respect to the spanwise separation
Simulations of transition and turbulence on the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Krist, S. E.; Zang, T. A.
1987-01-01
The Navier-Stokes Computer (NSC) consists of multiple local memory parallel processors interconnected in a hypercube network. Efficient implementation of algorithms on the NSC thus requires the effective utilization of both the coarse and fine grain paralelism inherent in the architectural design. The basic approach to implementing an algorithm on the NSC is presented herein. The particular finite-difference algorithm considered was developed for performing transition and turbulence simulations by direct solution of the time-dependent incompressible Navier-Stokes equations. The suitability of this algorithm for performing simulations of the isotropic turbulence problem is verified from computations performed on a Cray 2. Projected timing results for the algorithm on the NSC itself are presented for both the isotropic turbulence and laminar turbulent transition problems.
Component separation of a isotropic Gravitational Wave Background
NASA Astrophysics Data System (ADS)
Parida, Abhishek; Mitra, Sanjit; Jhingan, Sanjay
2016-04-01
A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of 0~ 50‑100 Hz, considering one spectral shape at a time. However, one strong component can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for "component separation" of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components and place upper limits. The method is rather straightforward and needs negligible amount of computation. It utilises the linear relationship between the measurements and the amplitudes of the actual components, alleviating the need for a sampling based method, e.g., Markov Chain Monte Carlo (MCMC) or matched filtering, which are computationally intensive and cumbersome in a multi-dimensional parameter space. Using this formalism we could also study how many independent components can be separated using a given dataset from a network of current and upcoming ground based interferometric detectors.
A reformulated flexoelectric theory for isotropic dielectrics
NASA Astrophysics Data System (ADS)
Li, Anqing; Zhou, Shenjie; Qi, Lu; Chen, Xi
2015-11-01
In flexoelectricity, a strain gradient can induce polarization and a polarization gradient can induce mechanical stress. In this paper, in order to identify the contributions of each strain gradient component, the flexoelectric theory is reformulated by splitting the strain gradient tensor into mutually independent parts. Two sets of orthogonal higher-order deformation metrics are inherited and perfected to reformulate the internal energy density for isotropic materials. The deviatoric stretch gradient and the symmetric part of the rotation gradient are proved to disappear in the coupling of strain gradient to polarization and, moreover, the independent higher-order constants associated with the coupling of strain gradient to strain gradient reduce from five to three. The constitutive relations are then reformulated in terms of the new deformation and electric field metrics, and the governing equations and boundary conditions are derived according to the variational principle of electric enthalpy. On the basis of the present simplified flexoelectric theory, a flexoelectric Bernoulli-Euler beam theory is specified. Solutions for a cantilever subjected to a force at the free end and a voltage cross the thickness are constructed and the size-dependent direct and inverse flexoelectric effects are captured.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1985-01-01
This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1984-01-01
The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.
Isotropic microscale mechanical properties of coral skeletons
Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe
2015-01-01
Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958
Statistical turbulence theory and turbulence phenomenology
NASA Technical Reports Server (NTRS)
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Energy spectra in elasto-inertial turbulence
NASA Astrophysics Data System (ADS)
Valente, P. C.; da Silva, C. B.; Pinho, F. T.
2016-07-01
Direct numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model are presented. Emphasis is given to large polymer relaxation times compared to the eddy turnover time, which is a regime recently termed elasto-inertial turbulence. In this regime the polymers are ineffective in dissipating kinetic energy but they play a lead role in transferring kinetic energy to the small solvent scales which turns out to be concomitant with the depletion of the usual non-linear energy cascade. However, we show that the non-linear interactions are still highly active, but they lead to no net downscale energy transfer because the forward and reversed energy cascades are nearly balanced. Finally, we show that the tendency for a steeper elasto-inertial power-law spectra is reversed for large polymer relaxation times and the spectra tend towards the usual k-5/3 functional form.
Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence.
Mei, Zhangrong; Schchepakina, Elena; Korotkova, Olga
2013-07-29
A stochastic beam generated by a recently introduced source of Schell type with cosine-Gaussian spectral degree of coherence is shown to possess interesting novel features on propagation in isotropic and homogeneous atmospheric turbulence with general non-Kolmogorov power spectrum. It is shown that while at small distances from the source the beam's intensity exhibits annular profile with adjustable area of the dark region, the center disappears at sufficiently large distances and the beam's intensity tends to Gaussian form. Hence the 3D bottle beam is produced by the cumulative effect of the random source and the atmosphere. The distances at which the on-axis beam intensity has local minima and maxima are shown to have analytic dependence on the source and the atmospheric parameters. And the influence of the fractal constant of the atmospheric power spectrum and refractive-index structure constant on beam characteristics is analyzed in depth. The novel double-cycle qualitative change in the degree of coherence is shown to occur on atmospheric propagation which was not previously known for any other beams.
The analysis and modeling of dilatational terms in compressible turbulence
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.
1989-01-01
It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.
Grid superfluid turbulence and intermittency at very low temperature
NASA Astrophysics Data System (ADS)
Krstulovic, Giorgio
2016-06-01
Low-temperature grid-generated turbulence is investigated by using numerical simulations of the Gross-Pitaevskii equation. The statistics of regularized velocity increments are studied. Increments of the incompressible velocity are found to be skewed for turbulent states. Results are later confronted with the (quasi) homogeneous and isotropic Taylor-Green flow, revealing the universality of the statistics. For this flow, the statistics are found to be intermittent and a Kolmogorov constant close to the one of classical fluid is found for the second-order structure function.
Determining the alpha dynamo parameter in incompressible homogeneous magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Goldstein, M. L.; Lantz, S. R.
1983-01-01
Alpha, an important parameter in dynamo theory, is proportional to either the kinetic, current, magnetic, or velocity helicity of the fluctuating magnetic field and fluctuating velocity field. The particular helicity to which alpha is proportional depends on the assumptions used in deriving the first order smoothed equations that describe the alpha effect. In two cases, when alpha is proportional to either the magnetic helicity or velocity helicity, alpha is determined experimentally from two point measurements of the fluctuating fields in incompressible, homogeneous turbulence having arbitrary symmetry. For the other two possibilities, alpha is determined if the turbulence is isotropic.
Rotation of Nonspherical Particles in Turbulent Channel Flow.
Zhao, Lihao; Challabotla, Niranjan Reddy; Andersson, Helge I; Variano, Evan A
2015-12-11
The effects of particle inertia, particle shape, and fluid shear on particle rotation are examined using direct numerical simulation of turbulent channel flow. Particles at the channel center (nearly isotropic turbulence) and near the wall (highly sheared flow) show different rotation patterns and surprisingly different effects of particle inertia. Oblate particles at the center tend to rotate orthogonally to their symmetry axes, whereas prolate particles rotate around their symmetry axes. This trend is weakened by increasing inertia so that highly inertial oblate spheroids rotate nearly isotropically about their principle axes at the channel center. Near the walls, inertia does not move the rotation of spheroids towards isotropy but, rather, reverses the trend, causing oblate spheroids to rotate strongly about their symmetry axes and prolate spheroids to rotate normal to their symmetry axes. The observed phenomena are mostly ascribed to preferential orientations of the spheroids.
Experimental determination of turbulent buffeting effects in tube bundles: Final report
Johnson, J.E.; Simonis, J.C.
1988-05-01
Dynamic lift and drag force correlations for the first and second row of tubes of a square pitch tube array (P/D=1.44) are presented for upstream turbulence intensity and integral scale lengths. These correlations were developed from experimental testing of full scale heat exchanger tubes in water under controlled and measured turbulent flow conditions. Turbulent buffeting effects for upstream turbulence intensities up to 15% and scale lengths of /1/2/ to 1 tube diameter are discussed.
The dynamics of variable-density turbulence
Sandoval, D.L.
1995-11-01
The dynamics of variable-density turbulent fluids are studied by direct numerical simulation. The flow is incompressible so that acoustic waves are decoupled from the problem, and implying that density is not a thermodynamic variable. Changes in density occur due to molecular mixing. The velocity field is, in general, divergent. A pseudo-spectral numerical technique is used to solve the equations of motion. Three-dimensional simulations are performed using a grid size of 128{sup 3} grid points. Two types of problems are studied: (1) the decay of isotropic, variable-density turbulence, and (2) buoyancy-generated turbulence in a fluid with large density fluctuations (such that the Boussinesq approximation is not valid). In the case of isotropic, variable-density turbulence, the overall statistical decay behavior, for the cases studied, is relatively unaffected by the presence of density variations when the initial density and velocity fields are statistically independent. The results for this case are in quantitative agreement with previous numerical and laboratory results. In this case, the initial density field has a bimodal probability density function (pdf) which evolves in time towards a Gaussian distribution. The pdf of the density field is symmetric about its mean value throughout its evolution. If the initial velocity and density fields are statistically dependent, however, the decay process is significantly affected by the density fluctuations. For this case, the pdf of the density becomes asymmetric about its mean value during the early stages of its evolution. It is argued that these asymmetries in the pdf of the density field are due to different entrainment rates, into the mixing region, that favor the high speed fluid.
Estimating Atmospheric Turbulence From Flight Records
NASA Technical Reports Server (NTRS)
Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.
1991-01-01
Method for estimation of atmospheric turbulence encountered by airplanes utilizes wealth of data captured by multichannel digital flight-data recorders and air-traffic-control radar. Developed as part of continuing effort to understand how airplanes respond to such potentially hazardous phenomena as: clear-air turbulence generated by destabilized wind-shear layers above mountains and thunderstorms, and microbursts (intense downdrafts striking ground), associated with thunderstorms. Reconstructed wind fields used to predict and avoid future hazards.
Spatial and spectral evolution of turbulence
Guercan, O. D.; Diamond, P. H.; Hahm, T. S.
2007-05-15
Spreading of turbulence as a result of nonlinear mode couplings and the associated spectral energy transfer is studied. A derivation of a simple two-field model is presented using the weak turbulence limit of the two-scale direct interaction approximation. This approach enables the approximate overall effect of nonlinear interactions to be written in the form of Fick's law and leads to a coupled reaction-diffusion system for turbulence intensity. For this purpose, various classes of triad interactions are examined, and the effects that do not lead to spreading are neglected. It is seen that, within this framework, large scale, radially extended eddies are the most effective structures in promoting spreading of turbulence. Thus, spectral evolution that tends toward such eddies facilitates spatial spreading. Self-consistent evolution of the background profile is also considered, and it is concluded that the profile is essentially slaved to the turbulence in this phase of rapid evolution, as opposed to the case of avalanches, where it is the turbulence intensity that would be slaved to the evolving profile. The characteristic quantity describing the evolving background profile is found to be the mean ''potential vorticity'' (PV). It is shown that the two-field model with self-consistent mean PV evolution can be reduced to a single Fisher-like turbulence intensity transport equation. In addition to the usual nonlinear diffusion term, this equation also contains a 'pinch' of turbulence intensity. It is also noted that internal energy spreads faster than kinetic energy because of the respective spectral tendencies of these two quantities.
Energy Transfer in Rotating Turbulence
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
Shock-turbulence interactions in a reacting flow
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Hussaini, M. Y.; Ribner, H. S.
1992-01-01
A specific reactive flow configuration, the interaction of a detonation wave with convected homogeneous isotropic weak turbulence (which can be constructed by a Fourier synthesis of small amplitude shear waves) is addressed. The effect of chemical heat release on the rms fluctuations downstream of the detonation is presented as a function of Mach number. In addition, for the particular case of the von Karman spectrum, the one dimensional power spectra of these flow quantities is given.
Coupling Turbulence in Hybrid LES-RANS Techniques
NASA Technical Reports Server (NTRS)
Woodruff, Stephen L.
2011-01-01
A formulation is proposed for hybrid LES-RANS computations that permits accurate computations during resolution changes, so that resolution may be changed at will in order to employ only as much resolution in each subdomain as is required by the physics. The two components of this formulation, establishing the accuracy of a hybrid model at constant resolutions throughout the RANS-to-LES range and maintaining that accuracy when resolution is varied, are demonstrated for decaying, homogeneous, isotropic turbulence.
Structure of nonlocality of plasma turbulence
NASA Astrophysics Data System (ADS)
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
A phenomenological treatment of rotating turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE
1995-01-01
The strong similarity between the magnetohydrodynamic (MHD) turbulence and initially isotropic turbulence subject to rotation is noted. We then apply the MHD phenomenologies of Kraichnan and Matthaeus & Zhou to rotating turbulence. When the turbulence is subject to a strong rotation, the energy spectrum is found to scale as E(k) = C(sub Omega)(Omega(sub epsilon))(sup 1/2)k(sup -2), where Omega is the rotation rate, k is the wavenumber, and epsilon is the dissipation rate. This spectral form is consistent with a recent letter by Zeman. However, here the constant C(sub Omega) is found to be related to the Kolmogorov constant and is estimated in the range 1.22 - 1.87 for the typical values of the latter constant. A 'rule' that relates spectral transfer times to the eddy turnover time and the time scale for decay of the triple correlations is deduced. A hypothesis for the triple correlation decay rate leads to the spectral law which varies between the '-5/3' (without rotation) and '-2' laws (with strong rotation). For intermediate rotation rates, the spectrum varies according to the value of a dimensionless parameter that measures the strength of the rotation wavenumber k(sub Omega) = (Omega(sup 3)/epsiolon)(sup 1/2) relative to the wavenumber k. An eddy viscosity is derived with an explicit dependence on the rotation rate.
A Monte Carlo simulation technique for low-altitude, wind-shear turbulence
NASA Technical Reports Server (NTRS)
Bowles, Roland L.; Laituri, Tony R.; Trevino, George
1990-01-01
A case is made for including anisotropy in a Monte Carlo flight simulation scheme of low-altitude wind-shear turbulence by means of power spectral density. This study attempts to eliminate all flight simulation-induced deficiencies in the basic turbulence model. A full-scale low-altitude wind-shear turbulence simulation scheme is proposed with particular emphasis on low cost and practicality for near-ground flight. The power spectral density statistic is used to highlight the need for realistic estimates of energy transfer associated with low-altitude wind-shear turbulence. The simulation of a particular anisotropic turbulence model is shown to be a relatively simple extension from that of traditional isotropic (Dryden) turbulence.
On the dynamics of magnetorotational turbulent stresses
NASA Astrophysics Data System (ADS)
Ogilvie, G. I.
2003-04-01
The turbulent stresses that lead to angular momentum transport in accretion discs have often been treated as resulting from an isotropic effective viscosity, related to the pressure through the alpha parametrization of Shakura and Sunyaev. This simple approach may be adequate for the simplest aspects of accretion disc theory, and was necessitated historically by an incomplete understanding of the origin of the turbulence. More recently, Balbus and Hawley have shown that the magnetorotational instability provides a robust mechanism of generating turbulent Reynolds and Maxwell stresses in sufficiently ionized discs. The alpha viscosity model fails to describe numerous aspects of this process. The present paper introduces a new analytical model that aims to represent more faithfully the dynamics of magnetorotational turbulent stresses and bridge the gap between analytical studies and numerical simulations. Covariant evolutionary equations for the mean Reynolds and Maxwell tensors are presented, which correctly include the linear interaction with the mean flow. Non-linear and dissipative effects, in the absence of an imposed magnetic flux and in the limit of large Reynolds number and magnetic Reynolds number, are modelled through five non-linear terms that represent known physical processes and are strongly constrained by symmetry properties and dimensional considerations. The resulting model explains the development of statistically steady, anisotropic turbulent stresses in the shearing sheet, a local representation of a differentially rotating disc, in agreement with numerical simulations. It also predicts that purely hydrodynamic turbulence is not sustained in a flow that adequately satisfies Rayleigh's stability criterion. The model is usually formally hyperbolic and therefore `causal', and guarantees the realizability of the stress tensors. It should be particularly useful in understanding the dynamics of warped, eccentric and tidally distorted discs, non
Transport of magnetic turbulence in supernova remnants
NASA Astrophysics Data System (ADS)
Brose, R.; Telezhinsky, I.; Dwarkadas, V.; Pohl, M.
2016-06-01
Supernova remnants are known as sources of galactic cosmic rays for their non-thermal emission of radio waves, X-rays, and gamma-rays. However, the observed CR spectra are hard to reproduce within the standard acceleration theories based on the assumption of Bohm diffusion and steady-state calculations. We point out that a time-dependent treatment of the acceleration process together with a self-consistent treatment of the scattering turbulence is necessary. Therefore we numerically solve the coupled system of transport equations for cosmic rays and isotropic Alfvénic turbulence. The equations are coupled through the growth rate of the turbulence determined by the cosmicray gradient and the spatial diffusion coefficient of cosmic rays given by the spectral energy density of the turbulence. The system is solved on a co-moving expanding grid extending upstream for dozens of shock radii, allowing for self-consistent study of cosmic-ray diffusion in the vicinity of their acceleration site. The transport equation for cosmic rays is solved in a test-particle approach based on pre-calculated hydro models. We demonstrate that the system is typically not in a steady state. In fact, even after several thousand years of evolution, no equilibrium situation is reached. The resulting time-dependent particle spectra strongly differ from those derived assuming a steady state and Bohm diffusion. The turbulence spectra show that bohmlike diffusion is achieved only in a small energy band. Our results indicate that proper account for the evolution of scattering turbulence is crucial for the formation of the observed soft spectra.
Transport of magnetic turbulence in supernova remnants
NASA Astrophysics Data System (ADS)
Brose, R.; Telezhinsky, I.; Pohl, M.
2016-08-01
Context. Supernova remnants are known as sources of Galactic cosmic rays for their nonthermal emission of radio waves, X-rays, and gamma rays. However, the observed soft broken power-law spectra are hard to reproduce within standard acceleration theory based on the assumption of Bohm diffusion and steady-state calculations. Aims: We point out that a time-dependent treatment of the acceleration process together with a self-consistent treatment of the scattering turbulence amplification is necessary. Methods: We numerically solve the coupled system of transport equations for cosmic rays and isotropic Alfvénic turbulence. The equations are coupled through the growth rate of turbulence determined by the cosmic-ray gradient and the spatial diffusion coefficient of cosmic rays determined by the energy density of the turbulence. The system is solved on a comoving expanding grid extending upstream for dozens of shock radii, allowing for the self-consistent study of cosmic-ray diffusion in the vicinity of their acceleration site. The transport equation for cosmic rays is solved in a test-particle approach. Results: We demonstrate that the system is typically not in a steady state. In fact, even after several thousand years of evolution, no equilibrium situation is reached. The resulting time-dependent particle spectra strongly differ from those derived assuming a steady state and Bohm diffusion. Our results indicate that proper accounting for the evolution of the scattering turbulence and hence the particle diffusion coefficient is crucial for the formation of the observed soft spectra. In any case, the need to continuously develop magnetic turbulence upstream of the shock introduces nonlinearity in addition to that imposed by cosmic-ray feedback.
NASA Astrophysics Data System (ADS)
Aryasova, Natalie; Reznikov, Yuri
2016-09-01
We study the effect of an isotropic-nematic (I -N ) phase transition on the liquid crystal alignment at untreated polymer surfaces. We demonstrate that the pattern at the untreated substrate in the planar cell where the other substrate is uniformly rubbed strongly depends on the temperature gradient across the cell during the I -N phase transition, being macroscopically isotropic if the untreated substrate is cooled faster, but becoming almost homogeneous along the rubbing direction in the opposite temperature gradient. We interpret the observed effect using complementary models of heat transfer and nematic elasticity. Based on the heat transfer model we show that the asymmetric temperature conditions in our experiments provide unidirectional propagation of the I -N interface during the phase transition and determine the initial director orientation pattern at the test's untreated surface. Using the Frank-Oseen model of nematic elasticity, we represent the three-dimensional director field in the nematic cell as a two-dimensional (2D) pattern at the untreated surface and perform 2D numeric simulations. The simulations explain the experimental results: Different initial director orientations at the untreated surface evolve into different stationary patterns.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined
The interaction of high-speed turbulence with flames: Global properties and internal flame structure
Poludnenko, A.Y.; Oran, E.S.
2010-05-15
We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H{sub 2}-air mixture. The system being modeled represents turbulent combustion with the Damkoehler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H{sub 2}-air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes. (author)
Ohira, Yutaka
2013-04-10
We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.
Spectral approach to finite Reynolds number effects on Kolmogorov's 4/5 law in isotropic turbulence
NASA Astrophysics Data System (ADS)
Tchoufag, J.; Sagaut, P.; Cambon, C.
2012-01-01
The Kolmogorov's 4/5 law is often considered as the sole exact relationship of inertial range statistics. Its asymptotic character, however, has been evidenced, investigating the finite Reynolds number (FRN) effect for the third-order structure function S3(r) (e.g., for longitudinal velocity increments with r separation length) using variants of the Kármán-Howarth equation in physical space. Similar semi-empirical fits were proposed for the maximum of the normalized structure function, C3 = -maxrS3(r)/(ɛr), expressing C3 - 4/5 as a power law of the Taylor-based Reynolds number. One of the most complete studies in this domain is by Antonia and Burratini [J. Fluid Mech. 550, 175 (2006)]. Considering that these studies are based on a model for the unsteady second-order structure function S2(r,t), with no explicit model for the third-order structure function itself, we propose to revisit the FRN effect by a spectral approach, in the line of Qian [Phys. Rev. E 55, 337 (1997), Phys. Rev. E 60, 3409 (1999)]. The spectral transfer term T(k,t), from which S3(r,t) is derived by an exact quadrature, is directly calculated by solving the Lin equation for the energy spectrum E(k,t), closed by a standard triadic (or three-point) theory, here Eddy Damped Quasi Normal Markovian. We show that the best spectral approach to the FRN effect is found by separately investigating the negative (largest scales) and positive (smaller scales) bumps of the transfer term, and not only by looking at the maximum of the spectral flux or maxk ∫k∞T(p ,t)dp→ɛ. In the forced case, previous results are well reproduced, with Reynolds numbers as high as Reλ = 5 000 to nearly recover the 4/5 value. In the free decay case, the general trend is recovered as well, with an even higher value of Reλ = 50 000, but the EDQNM plots are systematically below those in Antonia and Burattini [J. Fluid Mech. 550, 175 (2006)]. This is explained by the sensitivity to initial data for E(k) in solving the Lin equation at moderate Reynolds numbers. Accordingly, an ad hoc initialization yields results consistent with the experimental spectrum measurements of Comte-Bellot and Corrsin [J. Fluid Mech. 48(2), 273 (1971)], from which S3(r) are recalculated. Present results show that the dispersion observed in existing data at low Reynolds number may be due to sensitivity to initial spectrum shape, a feature of the flow which is not under control in most of laboratory experiments.
Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence.
McComb, W D; Yoffe, S R; Linkmann, M F; Berera, A
2014-11-01
The pseudospectral method, in conjunction with a technique for obtaining scaling exponents ζ_{n} from the structure functions S_{n}(r), is presented as an alternative to the extended self-similarity (ESS) method and the use of generalized structure functions. We propose plotting the ratio |S_{n}(r)/S_{3}(r)| against the separation r in accordance with a standard technique for analyzing experimental data. This method differs from the ESS technique, which plots S_{n}(r) against S_{3}(r), with the assumption S_{3}(r)∼r. Using our method for the particular case of S_{2}(r) we obtain the result that the exponent ζ_{2} decreases as the Taylor-Reynolds number increases, with ζ_{2}→0.679±0.013 as R_{λ}→∞. This supports the idea of finite-viscosity corrections to the K41 prediction for S_{2}, and is the opposite of the result obtained by ESS. The pseudospectral method also permits the forcing to be taken into account exactly through the calculation of the energy input in real space from the work spectrum of the stirring forces. PMID:25493884
Infrared properties of the energy spectrum in freely decaying isotropic turbulence.
McComb, W D
2016-01-01
The low wave number expansion of the energy spectrum takes the well known form E(k,t)=E_{2}(t)k^{2}+E_{4}(t)k^{4}+⋯, where the coefficients are weighted integrals against the correlation function C(r,t). We show that expressing E(k,t) in terms of the longitudinal correlation function f(r,t) immediately yields E_{2}(t)=0 by cancellation. We verify that the same result is obtained using the correlation function C(r,t), provided only that f(r,t) falls off faster than r^{-3} at large values of r. As power-law forms are widely studied for the purpose of establishing bounds, we consider the family of model correlations f(r,t)=α_{n}(t)r^{-n}, for positive integer n, at large values of the separation r. We find that for the special case n=3, the relationship connecting f(r,t) and C(r,t) becomes indeterminate, and (exceptionally) E_{2}≠0, but that this solution is unphysical in that the viscous term in the Kármán-Howarth equation vanishes. Lastly, we show that E_{4}(t) is independent of time, without needing to assume the exponential decrease of correlation functions at large distances. PMID:26871151
Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence.
McComb, W D; Yoffe, S R; Linkmann, M F; Berera, A
2014-11-01
The pseudospectral method, in conjunction with a technique for obtaining scaling exponents ζ_{n} from the structure functions S_{n}(r), is presented as an alternative to the extended self-similarity (ESS) method and the use of generalized structure functions. We propose plotting the ratio |S_{n}(r)/S_{3}(r)| against the separation r in accordance with a standard technique for analyzing experimental data. This method differs from the ESS technique, which plots S_{n}(r) against S_{3}(r), with the assumption S_{3}(r)∼r. Using our method for the particular case of S_{2}(r) we obtain the result that the exponent ζ_{2} decreases as the Taylor-Reynolds number increases, with ζ_{2}→0.679±0.013 as R_{λ}→∞. This supports the idea of finite-viscosity corrections to the K41 prediction for S_{2}, and is the opposite of the result obtained by ESS. The pseudospectral method also permits the forcing to be taken into account exactly through the calculation of the energy input in real space from the work spectrum of the stirring forces.
Infrared properties of the energy spectrum in freely decaying isotropic turbulence.
McComb, W D
2016-01-01
The low wave number expansion of the energy spectrum takes the well known form E(k,t)=E_{2}(t)k^{2}+E_{4}(t)k^{4}+⋯, where the coefficients are weighted integrals against the correlation function C(r,t). We show that expressing E(k,t) in terms of the longitudinal correlation function f(r,t) immediately yields E_{2}(t)=0 by cancellation. We verify that the same result is obtained using the correlation function C(r,t), provided only that f(r,t) falls off faster than r^{-3} at large values of r. As power-law forms are widely studied for the purpose of establishing bounds, we consider the family of model correlations f(r,t)=α_{n}(t)r^{-n}, for positive integer n, at large values of the separation r. We find that for the special case n=3, the relationship connecting f(r,t) and C(r,t) becomes indeterminate, and (exceptionally) E_{2}≠0, but that this solution is unphysical in that the viscous term in the Kármán-Howarth equation vanishes. Lastly, we show that E_{4}(t) is independent of time, without needing to assume the exponential decrease of correlation functions at large distances.
Aerodynamic Performance and Turbulence Measurements in a Turbine Vane Cascade
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Lucci, Barbara L.; Senyitko, Richard G.
2002-01-01
Turbine vane aerodynamics were measured in a three vane linear cascade. Surface pressures and blade row losses were obtained over a range of Reynolds and Mach number for three levels of turbulence. Comparisons are made with predictions using a quasi-3D Navier-Stokes analysis. Turbulence intensity measurement were made upstream and downstream of the vane. The purpose of the downstream measurements was to determine how the turbulence was affected by the strong contraction through 75 deg turning.
The Negative Effective Magnetic Pressure in Stratified Forced Turbulence
NASA Astrophysics Data System (ADS)
Brandenburg, Axel; Kemel, Koen; Kleeorin, Nathan; Rogachevskii, Igor
2012-04-01
To understand the basic mechanism of the formation of magnetic flux concentrations, we determine by direct numerical simulations the turbulence contributions to the mean magnetic pressure in a strongly stratified isothermal layer with large plasma beta, where a weak uniform horizontal mean magnetic field is applied. The negative contribution of turbulence to the effective mean magnetic pressure is determined for strongly stratified forced turbulence over a range of values of magnetic Reynolds and Prandtl numbers. Small-scale dynamo action is shown to reduce the negative effect of turbulence on the effective mean magnetic pressure. However, the turbulence coefficients describing the negative effective magnetic pressure phenomenon are found to converge for magnetic Reynolds numbers between 60 and 600, which is the largest value considered here. In all these models, the turbulent intensity is arranged to be nearly independent of height, so the kinetic energy density decreases with height due to the decrease in density. In a second series of numerical experiments, the turbulent intensity increases with height such that the turbulent kinetic energy density is nearly independent of height. Turbulent magnetic diffusivity and turbulent pumping velocity are determined with the test-field method for both cases. The vertical profile of the turbulent magnetic diffusivity is found to agree with what is expected based on simple mixing length expressions. Turbulent pumping is shown to be down the gradient of turbulent magnetic diffusivity, but it is twice as large as expected. Corresponding numerical mean-field models are used to show that a large-scale instability can occur in both cases, provided the degree of scale separation is large enough and hence the turbulent magnetic diffusivity small enough.
Turbulent Premixed Flames in Microgravity
NASA Technical Reports Server (NTRS)
Menon, Suresh
1996-01-01
The experimental cold-flow facility is now full operational and is currently being used to obtain baseline turbulence data in a Couette flow. The baseline turbulence data is necessary to confirm the capability of the chosen device to generate and maintain the required turbulence intensity. Subsequent reacting flow studies will assume that a similar turbulent flow field exists ahead of the premixed flame. Some modifications and refinements had to be made to enable accurate measurements. It consists of two rollers, one (driven by a motor) which drives a continuous belt and four smaller rollers used to set the belt spacing and tension to minimize belt flutter. The entire assemble is enclosed in a structure that has the dimensions to enable future drop tower experiments of the hot facility. All critical dimensions are the same as the original plans except for the pulley ratio which has been changed to enable a wider operating regime in terms of the Reynolds number. With the current setup, Reynolds numbers as low as 100 and as high as 14,000 can be achieved. This is because the in-between belt spacing can be varied from 1 cm to 7.6 cm, and the belt speed can be accurately varied from .15 m/sec to 3.1 m/sec.
Incompressible Turbulent Wing-Body Junction Flow
NASA Technical Reports Server (NTRS)
Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.
1998-01-01
-stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive
Effects of external disturbances on turbulent boundary layers
NASA Astrophysics Data System (ADS)
Dogan, Eda; Hanson, Ronald; Ganapathisubramani, Bharathram
2014-11-01
The state of a turbulent boundary layer that develops under the influence of different types of freestream turbulence is examined. The freestream turbulence conditions with different length-scale and turbulence intensity are generated using active and passive grids. Downstream of the grid, a flat plate is placed to establish a zero-pressure gradient turbulent boundary layer. The interaction between the freestream and the turbulent boundary layer is investigated using simultaneous measurements of the boundary layer and freestream using single component hot-wire anemometry and multi-camera Particle Image Velocimetry (PIV). Results from the hot-wire measurements of different cases show that the near-wall peak turbulence intensity increases with increasing levels of free stream turbulence indicating the level and extent of penetration by free stream turbulence into the boundary layer. It is also observed that for different level of freestream perturbations to the flow, the momentum loss in the turbulent boundary layer could be similar. The data from these cases will be investigated further using spectral analysis to examine the energetic scales of the flow. The PIV data will be analysed to elucidate the coherent structures associated with these interactions.
Laser beam propagation in atmospheric turbulence
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1979-01-01
The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.
NASA Astrophysics Data System (ADS)
Gao, Zhiwen; Zhou, Youhe
2015-04-01
Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.
Long-range interactions in turbulence and the energy decay problem.
Davidson, P A
2011-02-28
We discuss the long-range interactions that arise in homogeneous turbulence as a consequence of the Biot-Savart law. We note that, somewhat surprisingly, these long-range correlations are very weak in decaying, isotropic turbulence, and we argue that this should also be true for magnetohydrodynamic, rotating and stratified turbulence. If this is indeed the case, it is possible to make explicit predictions for the rate of decay of energy in these anisotropic systems, and it turns out that these predictions are consistent with the available numerical and experimental evidence. PMID:21242134
On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence
Barrett, M.J.; Hollingsworth, D.K.
1999-07-01
The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.
Wind turbulence characterization for wind energy development
NASA Astrophysics Data System (ADS)
Wendell, L. L.; Gower, G. L.; Morris, V. R.; Tomich, S. D.
1991-09-01
As part of its support of the U.S. Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites.
Wind turbulence characterization for wind energy development
Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.
1991-09-01
As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,
Numerical simulation of premixed turbulent methane combustion
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.
2001-12-14
In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame.
On the Space-Time Structure of Sheared Turbulence
NASA Astrophysics Data System (ADS)
de Maré, Martin; Mann, Jakob
2016-09-01
We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according to rapid distortion theory, and Kristensen's longitudinal coherence model, in which eddies are simultaneously advected by larger eddies as well as decaying. The model is compared with data from both observations and large-eddy simulations and is found to predict spatial correlations comparable to the Mann spectral tensor and temporal coherence better than any known model. Within the developed framework, Lagrangian two-point correlations in space and time are also predicted, and the predictions are compared with measurements of isotropic turbulence. The required input to the models, which are formulated as spectral velocity tensors, can be estimated from measured spectra or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and the mean shear of the flow. The developed models can, for example, be used in wind-turbine engineering, in applications such as lidar-assisted feed forward control and wind-turbine wake modelling.
Distinguishing ichthyogenic turbulence from geophysical turbulence
NASA Astrophysics Data System (ADS)
Pujiana, Kandaga; Moum, James N.; Smyth, William D.; Warner, Sally J.
2015-05-01
Measurements of currents and turbulence beneath a geostationary ship in the equatorial Indian Ocean during a period of weak surface forcing revealed unexpectedly strong turbulence beneath the surface mixed layer. Coincident with the turbulence was a marked reduction of the current speeds registered by shipboard Doppler current profilers, and an increase in their variability. At a mooring 1 km away, measurements of turbulence and currents showed no such anomalies. Correlation with the shipboard echo sounder measurements indicate that these nighttime anomalies were associated with fish aggregations beneath the ship. The fish created turbulence by swimming against the strong zonal current in order to remain beneath the ship, and their presence affected the Doppler speed measurements. The principal characteristics of the resultant ichthyogenic turbulence are (i) low wave number roll-off of shear spectra in the inertial subrange relative to geophysical turbulence, (ii) Thorpe overturning scales that are small compared with the Ozmidov scale, and (iii) low mixing efficiency. These factors extend previous findings by Gregg and Horne (2009) to a very different biophysical regime and support the general conclusion that the biological contribution to mixing the ocean via turbulence is negligible.
NASA Technical Reports Server (NTRS)
Cuzzi, J. N.; Hogan, R.; Dobrovolskis, A.; Paque, J.
2006-01-01
It is generally agreed that individual chondrules formed as entities in a gaseous nebula prior to being accumulated into a meteorite parent body, within which they incur various forms of modification before arriving in our labs. While there are major unanswered questions about the properties of the nebula environment in which chondrules formed, the process by which the most primitive meteorites are formed overwhelmingly from chondrules must then be an aspect of "nebula processing". Textures in certain fragments of primitive meteorites might be summarized as being primarily chondrules and clastic, chondrule-sized, fragments of other minerals, each covered with a rim of fine dust with physical and chemical properties which are essentially independent of the composition and mineralogy of the underlying chondrule. This (unfortunately rather rare) texture was called "primary accretionary texture" to reflect their belief that it precedes subsequent stages in which fragmentation, comminution, mixing, heating, and other forms of alteration occur on the parent body(-ies). The size distribution of these chondrules and fragments, and the properties of their dusty rims, are key clues regarding the primary nebula accretion process. Even in the much more abundant meteorites which have clearly suffered internal mixing, abrasion, grinding, and even mineralogical alteration or replacement (due presumably to the collisional growth and heating process itself), key chondrule properties such as mean size and density remain relatively well defined, and well defined rims persist in many cases. It has been our goal to infer the key nebula processes indirectly from the properties of these very earliest primitive meteorites by making use of a theoretical framework in which the nebula possesses a plausible level of isotropic turbulence. We have shown that turbulence has the property of concentrating one particular particle size by orders of magnitude, where the preferentially concentrated
Is 2-D turbulence relevant in the atmosphere?
NASA Astrophysics Data System (ADS)
Lovejoy, Shaun; Schertzer, Daniel
2010-05-01
Starting with (Taylor, 1935), the paradigm of isotropic (and scaling!) turbulence was developed initially for laboratory applications, but following (Kolmogorov, 1941), three dimensional isotropic turbulence was progressively applied to the atmosphere. Since the atmosphere is strongly stratified, a single wide scale range model which is both isotropic and scaling is not possible so that theorists had to immediately choose between the two symmetries: isotropy or scale invariance. Following the development of models of two dimensional isotropic turbulence ((Fjortoft, 1953), but especially (Kraichnan, 1967) and (Charney, 1971)), the mainstream choice was to first make the convenient assumption of isotropy and to drop wide range scale invariance. Starting at the end of the 1970's this "isotropy primary" (IP) paradigm has lead to a series of increasingly complex isotropic 2D/isotropic 3D models of atmospheric dynamics which continue to dominate the theoretical landscape. Justifications for IP approaches have focused almost exclusively on the horizontal statistics of the horizontal wind in both numerical models and analyses and from aircraft campaigns, especially the highly cited GASP (Nastrom and Gage, 1983), (Gage and Nastrom, 1986; Nastrom and Gage, 1985) and MOZAIC (Cho and Lindborg, 2001) experiments. Since understanding the anisotropy clearly requires comparisons between horizontal and vertical statistics/structures this focus has been unfortunate. Over the same thirty year period that 2D/3D isotropic models were being elaborated, evidence slowly accumulated in favour of the opposite theoretical choice: to drop the isotropy assumption but to retain wide range scaling. The models in the alternative paradigm are scaling but strongly anisotropic with vertical sections of structures becoming increasingly stratified at larger and larger scales albeit in a power law manner; we collectively refer to these as "SP" for "scaling primary" approaches. Early authors explicitly
Rayleigh Light Scattering for Concentration Measurements in Turbulent Flows
NASA Technical Reports Server (NTRS)
Pitts, William M.
1996-01-01
Despite intensive research over a number of years, an understanding of scalar mixing in turbulent flows remains elusive. An understanding is required because turbulent mixing has a pivotal role in a wide variety of natural and technologically important processes. As an example, the mixing and transport of pollutants in the atmosphere and in bodies of water are often dependent on turbulent mixing processes. Turbulent mixing is also central to turbulent combustion which underlies most hydrocarbon energy use in modern societies as well as in unwanted fire behavior. Development of models for combusting flows is therefore crucial, however, an understanding of scalar mixing is required before useful models of turbulent mixing and, ultimately, turbulent combustion can be developed. An important subset of turbulent flows is axisymmetric turbulent jets and plumes because they are relatively simple to generate, and because the provide an appropriate test bed for the development of general theories of turbulent mixing which can be applied to more complex geometries and flows. This paper focuses on a number of experimental techniques which have been developed at the National Institute of Standards and Development for measuring concentration in binary axisymmetric turbulent jets. In order to demonstrate the value of these diagnostics, some of the more important results from earlier and on-going investigations are summarized. Topics addressed include the similarity behavior of variable density axisymmetric jets, the behavior of absolutely unstable axisymmetric helium jets, and the role of large scale structures and scalar dissipation in these flows.
Interaction of unsteady, turbulent vortical structures with a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Kothmann, Bruce D.; Pauley, Wayne R.
1992-01-01
The interaction of unsteady, turbulent, spanwise vortices with a turbulent boundary layer has been studied using smoke-wire photographs and time-resolved hot-wire measurements. Inner-variable scaling of the ensemble-averaged instantaneous velocity and turbulence intensity profiles was found to be meaningful at all times during the interaction. However, predictions of changes in wall shear stress using the logarithmic law of the wall, with the usual constants, were not reliable. A detailed account of the experimental procedure and data reduction schemes is given, in addition to comments on the use of ensemble-averaging for the analysis of low-speed unsteady flows.
NASA Technical Reports Server (NTRS)
Potter, J. Leith; Barnett, R. Joel; Fisher, Carl E.; Koukousakis, Costas E.
1986-01-01
Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location.
Tailoring turbulence with an active grid
NASA Astrophysics Data System (ADS)
Cekli, Hakki Ergun; van de Water, Willem
2010-08-01
Using an active grid in a wind tunnel, we generate homogeneous shear turbulence and initiate turbulent boundary layers with adjustable properties. Homogeneous shear turbulence is characterized by a constant gradient of the mean velocity and a constant turbulence intensity. It is the simplest anisotropic turbulent flow thinkable, and it is generated traditionally by equipping a wind tunnel with screens which have a varying transparency and flow straighteners. This is not done easily, and the reachable turbulence levels are modest. We describe a new technique for generating homogeneous shear turbulence using an active grid only. Our active grid consists of a grid of rods with attached vanes which can be rotated by servo motors. We control the grid by prescribing the time-dependent angle of each axis. We tune the vertical transparency profile of the grid by setting appropriate angles of each rod such as to generate a uniform velocity gradient, and set the rods in flapping motion around these angles to tailor the turbulence intensity. The Taylor Reynolds number reached was R λ = 870, the shear rate S = ∂ U/∂ y = 9.2 s-1, the nondimensional shear parameter S *≡ Sq 2/ɛ = 12 and u = 1.4 ms-1. As a further application of this idea we demonstrate the generation of a simulated atmospheric boundary layer in a wind tunnel which has tunable properties. This method offers a great advantage over the traditional one, in which vortex-generating structures need to be placed in the wind tunnel to initiate a fat boundary layer.
An integral turbulent kinetic energy analysis of free shear flows
NASA Technical Reports Server (NTRS)
Peters, C. E.; Phares, W. J.
1973-01-01
Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.
Fluid Dynamics Prize Otto Laporte Lecture:Turbulence and Aeroacoustics
NASA Astrophysics Data System (ADS)
Comte-Bellot, Genevieve
2014-11-01
Some significant advances obtained over the years for two closely related fields, Turbulence and Aeroacoustics, are presented. Particular focus is placed on experimental results and on physical mechanisms. For example, for a 2D channel flow, skewness factors of velocity fluctuations are discussed. The study of isotropic turbulence generated by grids in the «Velvet wind tunnel» of Stanley Corrsin, constitutes a masterpiece. Of particular note are the Eulerian memory times, analysed for all wavenumbers. Concerning hot-wire anemometry, the potential of the new constant voltage technique is presented. Some results obtained with Particule Image Velocimetry are also reported. Two flow control examples are illustrated: lift generation for a circular cylinder, and noise reduction for a high speed jet. Finally, the propagation of acoustic waves through turbulence is considered. Experimental data are here completed by numerical simulations showing the possible occurrence of caustics.
Diffusion of Sound Waves in a Turbulent Atmosphere
NASA Technical Reports Server (NTRS)
Lyon, Richard H.
1960-01-01
The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.
Symmetry Breaking Drift of Particles Settling in Homogeneous Shear Turbulence
NASA Astrophysics Data System (ADS)
van Hinsberg, M. A. T.; Clercx, H. J. H.; Toschi, Federico
2016-08-01
We investigate the influence of shear on the gravitational settling of heavy inertial particles in homogeneous shear turbulence (HST). In addition to the well-known enhanced settling velocity, observed for heavy inertial particles in homogeneous isotropic turbulence (HIT), a horizontal drift velocity is also observed in the shearing direction due to the presence of a nonzero mean vorticity (introducing symmetry breaking due to the mean shear). This drift velocity is due to the combination of shear, gravity, and turbulence, and all three of these elements are needed for this effect to occur. We extend the mechanism responsible for the enhanced settling velocity in HIT to the case of HST. Two separate regimes are observed, characterized by positive or negative drift velocity, depending on the particle settling velocity.
Symmetry Breaking Drift of Particles Settling in Homogeneous Shear Turbulence.
van Hinsberg, M A T; Clercx, H J H; Toschi, Federico
2016-08-01
We investigate the influence of shear on the gravitational settling of heavy inertial particles in homogeneous shear turbulence (HST). In addition to the well-known enhanced settling velocity, observed for heavy inertial particles in homogeneous isotropic turbulence (HIT), a horizontal drift velocity is also observed in the shearing direction due to the presence of a nonzero mean vorticity (introducing symmetry breaking due to the mean shear). This drift velocity is due to the combination of shear, gravity, and turbulence, and all three of these elements are needed for this effect to occur. We extend the mechanism responsible for the enhanced settling velocity in HIT to the case of HST. Two separate regimes are observed, characterized by positive or negative drift velocity, depending on the particle settling velocity. PMID:27541467
COSMIC RAY TRANSPORT THROUGH GYRORESONANCE INSTABILITY IN COMPRESSIBLE TURBULENCE
Yan Huirong; Lazarian, A. E-mail: alazarian@wisc.edu
2011-04-10
We study the nonlinear growth of kinetic gyroresonance instability of cosmic rays (CRs) induced by large-scale compressible turbulence. This feedback of CRs on turbulence was shown to induce an important scattering mechanism in addition to direct interaction with the compressible turbulence. The linear growth is bound to saturate due to the wave-particle interactions. By balancing the increase of CR anisotropy via the large-scale compression and its decrease via the wave-particle scattering, we find the steady-state solutions. The nonlinear suppression due to the wave-particle scattering limits the energy range of CRs that can excite the instabilities and be scattered by the induced slab waves. The direct interaction with large-scale compressible modes still appears to be the dominant mechanism for isotropization of high-energy CRs (>100 GeV).
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales, as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.
Characteristics of the laminar-turbulent edge in transitional boundary layers
NASA Astrophysics Data System (ADS)
Lee, Jin; Zaki, Tamer
2015-11-01
Characteristics of the boundary separating the laminar and turbulent regions in a transitional boundary layer are examined using a time series of three-dimensional flow fields extracted from direct numerical simulations (DNS). In order to accurately mimic boundary-layer experiments perturbed by grid turbulence, the current simulation includes the leading edge of the flat plate and the incoming homogeneous isotropic turbulence. The Reynolds number based on the momentum thickness reaches up to 1400, and high-resolution three-dimensional flow fields of the DNS data will be publicly accessible via the Johns Hopkins Turbulence Database (JHTDB). The laminar-turbulence discrimination algorithm isolates the turbulence spots within the transition zone and the bounding surface of the fully-turbulent flow. Attention is placed on the cross-stream surface between the transition zone and fully-turbulent boundary layer. The shape of this interface is dictated by a balance between downstream advection, destabilization of upstream flow and merging of turbulence spots. Conditionally sampled statistics are examined across the interface, and are also compared to the downstream equilibrium turbulent boundary layer.
Abdo, A. A.
2011-08-19
We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.
NASA Astrophysics Data System (ADS)
Lee, Kurnchul; Venugopal, Vishnu; Girimaji, Sharath S.
2016-08-01
Return-to-isotropy and kinetic-potential energy equipartition are two fundamental pressure-moderated energy redistributive processes in anisotropic compressible turbulence. Pressure-strain correlation tensor redistributes energy among various Reynolds stress components and pressure-dilatation is responsible for energy reallocation between dilatational kinetic and potential energies. The competition and interplay between these pressure-based processes are investigated in this study. Direct numerical simulations (DNS) of low turbulent Mach number dilatational turbulence are performed employing the hybrid thermal Lattice Boltzman method (HTLBM). It is found that a tendency towards equipartition precedes proclivity for isotropization. An evolution towards equipartition has a collateral but critical effect on return-to-isotropy. The preferential transfer of energy from strong (rather than weak) Reynolds stress components to potential energy accelerates the isotropization of dilatational fluctuations. Understanding of these pressure-based redistributive processes is critical for developing insight into the character of compressible turbulence.
Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis
NASA Technical Reports Server (NTRS)
Laituri, Tony R.
1988-01-01
Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.
Introduction to quantum turbulence
Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.
2014-01-01
The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870
Modeling Compressed Turbulence
Israel, Daniel M.
2012-07-13
From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.
The effect of background turbulence on differential diffusion in a turbulent jet
NASA Astrophysics Data System (ADS)
Lavertu, Thomas; Gaskin, Susan
2005-11-01
Whenever multiple scalars of unequal molecular diffusivities are mixed in a turbulent flow, differential diffusion may occurootnotetextSaylor, J.R. and Sreenivasan, K.R., 1998. Phys. Fluids, 10, p. 1135.. The present work studies differential diffusion of two scalars in a round, turbulent (water) jet of Reynolds numbers up to ReD(≡UjD/ν) 10,600. The jet issues into an approximately isotropic, turbulent background flow generated by a random synthetic jet arrayootnotetextVariano, E.A., Bodenschatz, E., and Cowen, E.A., 2004. Exp. Fluids, 37, p. 613.. By means of laser-induced fluorescence, punctual concentration measurements are made radially across the jet's cross-section, yielding instantaneous concentrations of each scalar (c1 and c2). Statistics of the instantaneous, normalized concentration difference (z ≡c2/
Turbulent electric fields in the nightside magnetosphere
NASA Astrophysics Data System (ADS)
Maynard, N. C.; Heppner, J. P.; Aggson, T. L.
1982-03-01
Electric field measurements from the long-wire double-probe instrument (baseline of 179 m) on ISEE 1 have shown the magnetospheric electric field on auroral L shells to be extremely turbulent during periods of magnetic activity. During intense activity these turbulent electric fields can penetrate to very low L values. The variational component of the electric field is typically larger than the DC value. Measurements are presented at frequencies up to 14 Hz. Magnitudes of over 40 m V/m (zero to peak) have been observed with spectral power levels in the 1-10 Hz range greater than m squareV/sq m Hz. The spectral shape of the most intense events was generally flatter than that predicted by two-dimensional hydromagnetic cascading of energy, which argues that the source of this turbulence must be driving the plasma near these frequencies. This in turn suggests that the instability is in the low-energy plasma.
Turbulent Amplification and Structure of the Intracluster Magnetic Field
NASA Astrophysics Data System (ADS)
Beresnyak, Andrey; Miniati, Francesco
2016-02-01
We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intracluster turbulence from the Matryoshka Run and find remarkable similarities between their inertial ranges. This allowed us to use the time-dependent statistical properties of intracluster turbulence to evaluate dynamo action in the intracluster medium, based on earlier results from a numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo. We argue that this approach is necessary (a) to properly normalize dynamo action to the available intracluster turbulent energy and (b) to overcome the limitations of low Re affecting current numerical models of the intracluster medium. We find that while the properties of intracluster magnetic field are largely insensitive to the value and origin of the seed field, the resulting values for the Alfvén speed and the outer scale of the magnetic field are consistent with current observational estimates, basically confirming the idea that the magnetic field in today’s galaxy clusters is a record of its past turbulent activity.
Theory and modeling of atmospheric turbulence, part 1
NASA Technical Reports Server (NTRS)
1984-01-01
The cascade transfer which is the only function to describe the mode coupling as the result of the nonlinear hydrodynamic state of turbulence is discussed. A kinetic theory combined with a scaling procedure was developed. The transfer function governs the non-linear mode coupling in strong turbulence. The master equation is consistent with the hydrodynamical system that describes the microdynamic state of turbulence and has the advantages to be homogeneous and have fewer nonlinear terms. The modes are scaled into groups to decipher the governing transport processes and statistical characteristics. An equation of vorticity transport describes the microdynamic state of two dimensional, isotropic and homogeneous, geostrophic turbulence. The equation of evolution of the macrovorticity is derived from group scaling in the form of the Fokker-Planck equation with memory. The microdynamic state of turbulence is transformed into the Liouville equation to derive the kinetic equation of the singlet distribution in turbulence. The collision integral contains a memory, which is analyzed with pair collision and the multiple collision. Two other kinetic equations are developed in parallel for the propagator and the transition probability for the interaction among the groups.
Mean flow and anisotropic cascades in decaying 2D turbulence
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.
Plasma turbulence and instabilities at ion kinetic scales
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Matteini, Lorenzo; Landi, Simone; Verdini, Andrea; Franci, Luca; Travnicek, Pavel
2015-04-01
In situ observations in the solar wind indicate existence of many bounds on plasma parameters which are often compatible with constraints expected from theoretical linear predictions for kinetic instabilities in homogeneous plasmas. Relationship between these instabilities and ubiquitous large-amplitude turbulent fluctuations in the expanding solar wind remains to large extent an open problem. We will present results from a two-dimensional, large-scale hybrid expanding box simulation of the solar wind plasma turbulence. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add an isotropic and balanced spectrum of large-scale, linearly polarized Alfvén waves with relatively strong amplitudes and we let the system evolve in a slowly expanding medium. A turbulent cascade rapidly develops with a Kolmogorov-like spectrum on large scales and a steeper spectrum on smaller scales. The turbulent spectrum heats protons both in parallel and perpendicular directions but this heating is not sufficient to overcome the double-adiabatic perpendicular cooling due to the expansion. This generates an important proton parallel temperature anisotropy which eventually leads to a fire hose-like instability which locally develops and reduces the temperature anisotropy. The present work demonstrates that fire hose can coexist with turbulence and even in the regime of strong turbulence constrains the plasma parameter space. This supports the interpretation of the many observed bounds being consequence of constraints owing to kinetic instabilities.
Fluctuation-induced dielectric permittivity in the isotropic phase of cholesteric liquid crystals
NASA Astrophysics Data System (ADS)
Mukherjee, Prabir K.; Das, Asok K.
2016-03-01
The temperature and pressure dependence of the static dielectric permittivity in the isotropic phase of the isotropic to cholesteric phase transition is calculated using Landau-de Gennes’s fluctuation theory, allowing spatial variation of the orientational order parameter. A comparison is made with experimental data available in the isotropic phase of the isotropic to cholesteric phase transition.
Inlet Turbulence and Length Scale Measurements in a Large Scale Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
Thurman, Douglas; Flegel, Ashlie; Giel, Paul
2014-01-01
Constant temperature hotwire anemometry data were acquired to determine the inlet turbulence conditions of a transonic turbine blade linear cascade. Flow conditions and angles were investigated that corresponded to the take-off and cruise conditions of the Variable Speed Power Turbine (VSPT) project and to an Energy Efficient Engine (EEE) scaled rotor blade tip section. Mean and turbulent flowfield measurements including intensity, length scale, turbulence decay, and power spectra were determined for high and low turbulence intensity flows at various Reynolds numbers and spanwise locations. The experimental data will be useful for establishing the inlet boundary conditions needed to validate turbulence models in CFD codes.
Incompressible Turbulent Wing-Body Junction Flow
NASA Technical Reports Server (NTRS)
Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.
1998-01-01
-stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive
Acceleration Statistics in Rotating and Sheared Turbulence
NASA Astrophysics Data System (ADS)
Jacobitz, Frank; Schneider, Kai; Bos, Wouter; Farge, Marie
2012-11-01
Acceleration statistics are of fundamental interest in turbulence ranging from theoretical questions to modeling of dispersion processes. Direct numerical simulations of sheared and rotating homogeneous turbulence are performed with different ratios of Coriolis parameter to shear rate. The statistics of Lagrangian and Eulerian acceleration are studied with a particular focus on the influence of the rotation ratio and also on the scale dependence of the statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian acceleration show a strong and similar influence on the rotation ratio. The flatness further quantifies its influence and yields values close to three for strong rotation. For moderate and vanishing rotation, the flatness of the Eulerian acceleration is larger than that of the Lagrangian acceleration, contrary to previous results for isotropic turbulence. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian acceleration increases as scale decreases. For strong rotation, the Eulerian acceleration is more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation.
Cui, Linyan; Xue, Bindang
2015-09-01
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. Very recent analyses of angle of arrival (AOA) fluctuations of an optical wave in anisotropic non-Kolmogorov turbulence have adopted the assumption that the propagation path was in the z-direction with circular symmetry of turbulence cells maintained in the orthogonal xy-plane throughout the path, and one single anisotropy factor was adopted in the orthogonal xy-plane to parameterize the asymmetry of turbulence cells or eddies in both horizontal and vertical directions. In this work, the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane is no longer required, and two anisotropy parameters are introduced in the orthogonal xy-plane to investigate the AOA fluctuations. In addition, deviations from the classic 11/3 spectral power law behavior for Kolmogorov turbulence are allowed by assuming spectral power law value variations between 3 and 4. With the Rytov approximation theory, new theoretical models for the variance of AOA fluctuations are developed for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. When the two anisotropic parameters are equal to each other, they reduce correctly to the recently published results (the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane was adopted). Furthermore, when these two anisotropic parameters equal one, they reduce correctly to the previously published analytic expressions for the cases of optical wave propagation through weak isotropic non-Kolmogorov turbulence.
Turbulence effects on warm-rain formation in precipitating shallow convection revisited
NASA Astrophysics Data System (ADS)
Seifert, Axel; Onishi, Ryo
2016-09-01
Two different collection kernels which include turbulence effects on the collision rate of liquid droplets are used as a basis to develop a parameterization of the warm-rain processes autoconversion, accretion, and self-collection. The new parameterization is tested and validated with the help of a 1-D bin microphysics model. Large-eddy simulations of the rain formation in shallow cumulus clouds confirm previous results that turbulence effects can significantly enhance the development of rainwater in clouds and the occurrence and amount of surface precipitation. The detailed behavior differs significantly for the two turbulence models, revealing a considerable uncertainty in our understanding of such effects. In addition, the large-eddy simulations show a pronounced sensitivity to grid resolution, which suggests that besides the effect of sub-grid small-scale isotropic turbulence which is parameterized as part of the collection kernel also the larger turbulent eddies play an important role for the formation of rain in shallow clouds.
Prediction of laminar-turbulent transition on an airfoil at high level of free-stream turbulence
NASA Astrophysics Data System (ADS)
Chernoray, V.
2015-06-01
Prediction of laminar-turbulent transition at high level of free-stream turbulence in boundary layers of airfoil geometries with external pressure gradient changeover is in focus. The aim is a validation of a transition model for transition prediction in turbomachinery applications. Numerical simulations have been performed by using a transition model by Langtry and Menter for a number of different cases of pressure gradient, at Reynolds-number range, based on the airfoil chord, 50 000 ≤ Re ≤ 500 000, and free-stream turbulence intensities 2% and 4%. The validation of the computational results against the experimental data showed good performance of used turbulence model for all test cases.
Stress waves in transversely isotropic media: The homogeneous problem
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.
Isotropic and anisotropic bouncing cosmologies in Palatini gravity
Barragan, Carlos; Olmo, Gonzalo J.
2010-10-15
We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R,R{sub {mu}{nu}R}{sup {mu}{nu}}) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R+aR{sup 2}/R{sub P}+R{sub {mu}{nu}R}{sup {mu}{nu}/}R{sub P} exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.
Shear-induced displacement of isotropic-nematic spinodals
NASA Astrophysics Data System (ADS)
Lenstra, T. A. J.; Dogic, Z.; Dhont, J. K. G.
2001-06-01
The shear dependent location of the isotropic-nematic spinodals in suspensions of bacteriophage fd is studied by means of time resolved birefringence experiments. The hysteresis in the birefringence on increasing and subsequently decreasing the shear-rate allows the determination of the location of points in the shear-rate vs concentration phase diagram between the isotropic-to-nematic and the nematic-to-isotropic spinodals. Experimental hysteresis curves are interpreted on the basis of an equation of motion for the orientational order parameter tensor, as derived from the N-particle Smoluchowski equation. The spinodals are found to shift to lower concentrations on increasing the shear-rate. Above a critical shear-rate, where shear forces dominate over thermodynamic forces, no spinodal instability could be detected.
Three-dimensional isotropic metamaterial consisting of domain-structure
NASA Astrophysics Data System (ADS)
Gong, Boyi; Zhao, Xiaopeng
2012-03-01
Whether an artificially designed negative-index structure could be regarded as a homogeneous medium or not rests with the ratio of its structural unit (man-made atom) over the operation wavelength. However, this definition is ambiguous, and usually the ratio is too large to rigorously meet the effective medium theory. In this paper a three-dimensional (3D) isotropic structure is presented which is obtained from a two-dimensional (2D) isotropic structure rotating on its axis for a circle, and the material is silver. Numerical studies confirm that both the 2D and 3D structures can realize a negative refractive index at microwave wavelengths. Observing the monitored surface current distributions and analogizing the molecular current and the magnetic domain, we suggest a new concept of domain-structure to explain the interior structure of this metamaterial, and finally conclude that the 3D structure is a kind of domain-structured and isotropic metamaterial.
Particle-Generated Turbulence in Dispersed Homogeneous Flows
NASA Astrophysics Data System (ADS)
Chen, J.-H.; Faeth, G. M.; Wu, J.-S.
1998-11-01
Homogeneous turbulence generated by uniform fluxes of monodisperse spherical particles moving through a uniform flowing gas was studied, motivated by the importance of this turbulence production mechanism for dense sprays, bubbly flows, rainstorms and the like. Measurements of phase velocities, moments, probability density functions, temporal power spectra, spatial integral scales and particle fluxes were obtained using phase-discriminating laser velocimetry and particle sampling in a counterflowing particle/air wind tunnel. Instantaneous velocity records showed that particle wake disturbances were the same as the properties of laminar-like turbulent wakes that have been observed for particle wakes at intermediate Reynolds numbers in turbulent environments. Relative turbulence intensities are proportional to the square-root of particle kinetic energy dissipation rates, in accord with simple stochastic theory. Other properties, however, exhibit complex behavior due to contributions from both particle wakes and interwake turbulence.
Propagation of a Free Flame in a Turbulent Gas Stream
NASA Technical Reports Server (NTRS)
Mickelsen, William R; Ernstein, Norman E
1956-01-01
Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.
Investigations of the evolution of turbulent gas explosions
NASA Astrophysics Data System (ADS)
Foerster, H.; Steen, H.
1986-10-01
The explosion in turbulent stochiometric propane-air mixtures was investigated as a contribution to the safety evaluation of explosions. The effect of the turbulence parameters (average fluctuation velocity u' and average vortex ball diameter L) on the damage-effect-determining flame velocity were studied. Tests show that L is determined by the size of the turbulence field and by the geometry at the boundaries. An almost linear increase of vt as a function of u' (at fixed L) is found for the experimentally accessible turbulence intensities. Contrary to simple model expectations, a significant increase of vt as a function of L (at fixed u') is also found. Therefore, u' as well as L have to be considered in the safety evaluation. Tests show that the maximum explosion pressure increase is not only determined by the turbulence state of the mixture, but also by apparatus factors such as container size and geometry as well as the type of turbulence excitation.
Visualization and computer graphics on isotropically emissive volumetric displays.
Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S
2009-01-01
The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.
Turbulence management in free shear flows by control of coherent structures
NASA Technical Reports Server (NTRS)
Husain, Hyder S.; Bridges, James E.; Hussain, Fazle
1988-01-01
The possibility of controlling turbulence by manipulating coherent structures is discussed. The processes of the generation, evolution, and interaction of coherent structures are described together with measurements necessary to analyze such coherent-structure properties as coherent vorticity, incoherent turbulence intensities, coherent and incoherent Reynolds stresses, and coherent turbulence production. Experimental findings are presented, in which the modified coherent structures were shown to result in favorable effects on the turbulence field.
NASA Astrophysics Data System (ADS)
Mukin, R. V.; Alipchenkov, V. M.; Zaichik, L. I.; Mukina, L. S.; Strizhov, V. F.
2011-12-01
The purpose of the study is to present an explicit algebraic Reynolds stress (nonlinear turbulent viscosity) model combined with modified k - ɛ turbulence model taking into account particles effect on turbulence for calculating the main turbulent characteristics of two-phase flows. For calculating particles distribution in space we used diffusion-inertia model (DIM). The turbulence attenuating in the presence of particles is clearly observed, investigated and compared with the experimental data. The developed model adequately described turbulence anisotropy and the influence of particles inertia and concentration on the turbulence intensity.
Equilibrium Shapes for Isotropic Elastic Tubes in the Planar Case
NASA Astrophysics Data System (ADS)
Xu, Qing-Hua; Zhou, Xiao-Hua; Liu, Yuan-Sheng; Wu, Ke-Jian; Wen, Jun
2013-05-01
When making an isotropic elastic shell into a curving tube, the crimp energy and bending energy determine the equilibrium shapes of the tube. In this study, we established a model to explore the elastic behavior of a tube made of an elastic shell. Two typical shapes: torus shape and periodic shape are discussed by studying the equilibrium shape equations in the planar case. Our study reveals that the crimp energy for an isotropic elastic tube is innegligible and will induce abundant shapes. It also reveals that varicose vein is more likely to occur when the blood vessels become thicker, which is in accordance with the clinic experiments.
A note on antenna models in a warm isotropic plasma
NASA Technical Reports Server (NTRS)
Singh, N.
1980-01-01
The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.
Concurrence-based entanglement measures for isotropic states
Rungta, Pranaw; Caves, Carlton M.
2003-01-01
We discuss properties of entanglement measures called I-concurrence and tangle. For a bipartite pure state, I-concurrence and tangle are simply related to the purity of the marginal density operators. The I-concurrence (tangle) of a bipartite mixed state is the minimum average I-concurrence (tangle) of ensemble decompositions of pure states of the joint density operator. Terhal and Vollbrecht [Phys. Rev. Lett. 85, 2625 (2000)] have given an explicit formula for the entanglement of formation of isotropic states in arbitrary dimensions. We use their formalism to derive comparable expressions for the I-concurrence and tangle of isotropic states.
Singular Isotropic Cosmologies and Bel-Robinson Energy
NASA Astrophysics Data System (ADS)
Cotsakis, Spiros; Klaoudatou, Ifigeneia
2006-11-01
We consider the problem of the nature and possible types of spacetime singularities that can form during the evolution of FRW universes in general relativity. We show that by using, in addition to the Hubble expansion rate and the scale factor, the Bel-Robinson energy of these universes we can consistently distinguish between the possible different types of singularities and arrive at a complete classification of the singularities that can occur in the isotropic case. We also use the Bel-Robinson energy to prove that known behaviours of exact flat isotropic universes with given singularities are generic in the sense that they hold true in every type of spatial geometry.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing
Rogue waves in oceanic turbulence
NASA Astrophysics Data System (ADS)
Fedele, Francesco
2008-08-01
A stochastic model of wave groups is presented to explain the occurrence of exceptionally large waves, usually referred to as rogue waves. The model leads to the description of the non-Gaussian statistics of large waves in oceanic turbulence and to a new asymptotic distribution of their crest heights in a form that generalizes the Tayfun model. The new model explains the unusually large crests observed in flume experiments of narrow-band waves. However, comparisons with realistic oceanic measurements gathered in the North Sea during an intense storm indicate that the generalized model agrees with the original Tayfun distribution.
TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE
Aspden, A. J.; Bell, J. B.; Woosley, S. E.
2011-04-01
In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da{sub 16}) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da{sub 16} < 1, and the flame burns inductively some distance behind the carbon flame. However, for Da{sub 16}>1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.
Sound Radiation from a Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Laufer, J.
1961-01-01
If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.
Odor Landscapes in Turbulent Environments
NASA Astrophysics Data System (ADS)
Celani, Antonio; Villermaux, Emmanuel; Vergassola, Massimo
2014-10-01
The olfactory system of male moths is exquisitely sensitive to pheromones emitted by females and transported in the environment by atmospheric turbulence. Moths respond to minute amounts of pheromones, and their behavior is sensitive to the fine-scale structure of turbulent plumes where pheromone concentration is detectible. The signal of pheromone whiffs is qualitatively known to be intermittent, yet quantitative characterization of its statistical properties is lacking. This challenging fluid dynamics problem is also relevant for entomology, neurobiology, and the technological design of olfactory stimulators aimed at reproducing physiological odor signals in well-controlled laboratory conditions. Here, we develop a Lagrangian approach to the transport of pheromones by turbulent flows and exploit it to predict the statistics of odor detection during olfactory searches. The theory yields explicit probability distributions for the intensity and the duration of pheromone detections, as well as their spacing in time. Predictions are favorably tested by using numerical simulations, laboratory experiments, and field data for the atmospheric surface layer. The resulting signal of odor detections lends itself to implementation with state-of-the-art technologies and quantifies the amount and the type of information that male moths can exploit during olfactory searches.
On the accuracy and fitting of transversely isotropic material models.
Feng, Yuan; Okamoto, Ruth J; Genin, Guy M; Bayly, Philip V
2016-08-01
Fiber reinforced structures are central to the form and function of biological tissues. Hyperelastic, transversely isotropic material models are used widely in the modeling and simulation of such tissues. Many of the most widely used models involve strain energy functions that include one or both pseudo-invariants (I4 or I5) to incorporate energy stored in the fibers. In a previous study we showed that both of these invariants must be included in the strain energy function if the material model is to reduce correctly to the well-known framework of transversely isotropic linear elasticity in the limit of small deformations. Even with such a model, fitting of parameters is a challenge. Here, by evaluating the relative roles of I4 and I5 in the responses to simple loadings, we identify loading scenarios in which previous models accounting for only one of these invariants can be expected to provide accurate estimation of material response, and identify mechanical tests that have special utility for fitting of transversely isotropic constitutive models. Results provide guidance for fitting of transversely isotropic constitutive models and for interpretation of the predictions of these models.
Effects of prestresses on mechanical properties of isotropic graphite materials
NASA Astrophysics Data System (ADS)
Oku, T.; Kurumada, A.; Imamura, Y.; Kawamata, K.; Shiraishi, M.
1998-10-01
Graphite materials which are used for plasma facing components and other components are subjected to stresses due to the high heat flux from the fusion plasma. Some mechanical properties of graphite materials can change due to the prestresses. The property changes should be considered for the design of the plasma facing components. The purpose of this study is to examine the effects of prestresses on the mechanical properties of isotropic graphite materials. Compressive prestresses were applied to two kinds of isotropic fine-grained graphites (IG-430 and IG-11) at 298 K (both), 1873 K (IG-11), 2273 K (IG-11) and 2283 K (IG-430). As a result, the decrease in Young's modulus for IG-430 due to high-temperature prestressing was 56% which was much larger than the 6.4% that was due to prestressing at 298 K. The results for IG-11 were the same as those for IG-430 graphite. This finding was considered to be due primarily to a difference in degree of the preferred orientation of crystallites in the graphite on the basis of the Bacon anisotropy factor (BAF) obtained from X-ray diffraction measurement of the prestressed specimens. Furthermore, high-temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that the isotropic graphite which is subjected to high-temperature compressive stresses can become anisotropic in service.
A Simple Mechanical Model for the Isotropic Harmonic Oscillator
ERIC Educational Resources Information Center
Nita, Gelu M.
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)
Semiclassical States Associated with Isotropic Submanifolds of Phase Space
NASA Astrophysics Data System (ADS)
Guillemin, V.; Uribe, A.; Wang, Z.
2016-05-01
We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.
A magnetic reconnection model for shock-turbulence interaction
NASA Astrophysics Data System (ADS)
Yokoi, Nobumitsu
2014-05-01
It is well recognized that several kinds of shock waves such as the Earth's bow shocks, transient shocks produced by solar flares, etc. play very important roles in solar system plasmas. Shocks are also ubiquitous in reconnection situations. It has been considered that shocks are essential to materialize a fast reconnection. In the previous papers [1-3], we considered the effects of turbulence in the fast magnetic reconnection. There we stressed the importance of the interaction between turbulence and mean-field structures as well as the importance of the balance between the transport enhancement and suppression. Considering the importance of shocks, it is required to treat shock--turbulent interaction properly in a turbulent reconnection model. In the context of turbulence theory and modeling, the shock--turbulence interaction is a very challenging problem. With the interactions with a shock, turbulence properties change considerably: (i) The intensity of fluctuations changes in an anisotropic manner; (ii) The vorticity structure is also strongly affected; (iii) The turbulence length scale changes in a complex manner across the shock; and so on. Towards the theory treating these points, in the present work, we propose a turbulence model with the density fluctuation effects incorporated. The inclusion of the density variance leads to a complicated expressions for the turbulent correlations such as the Reynolds (and Maxwell) stresses and the turbulent electromotive force, which leads to deeper understanding of the turbulent transport in shocks. It is expected that a numerical simulation of magnetic reconnection with the present turbulence model will give substantially different results near the shock regions. [1] Yokoi, N. and Hoshino, M. Phys. Plasmas 18, 111208 (2011). [2] Higashimori, K., Yokoi, N., and Hoshino, M.) Phys. Rev. Lett. 110, 255001 (2013). [3] Yokoi, N., Higashimori, K., and Hoshino, M. Phys. Plsamas 20, 122310 (2013).
TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. I. SCALING PROPERTIES
Ciaraldi-Schoolmann, F.; Schmidt, W.; Niemeyer, J. C.; Roepke, F. K.; Hillebrandt, W.
2009-05-10
We analyze the statistical properties of the turbulent velocity field in the deflagration model for Type Ia supernovae. In particular, we consider the question of whether turbulence is isotropic and consistent with the Kolmogorov theory at small length scales. Using numerical data from a high-resolution simulation of a thermonuclear supernova explosion, spectra of the turbulence energy and velocity structure functions are computed. We show that the turbulent velocity field is isotropic at small length scales and follows a scaling law that is consistent with the Kolmogorov theory until most of the nuclear fuel is burned. At length scales greater than a certain characteristic scale that agrees with the prediction of Niemeyer and Woosley, turbulence becomes anisotropic. Here, the radial velocity fluctuations follow the scaling law of the Rayleigh-Taylor instability, whereas the angular component still obeys the Kolmogorov scaling. In the late phase of the explosion, this characteristic scale drops below the numerical resolution of the simulation. The analysis confirms that a subgrid-scale model for the unresolved turbulence energy is required for the consistent calculation of the flame speed in deflagration models of Type Ia supernovae, and that the assumption of isotropy on these scales is appropriate.
Effects of Gravity on Sheared Turbulence Laden with Bubbles or Droplets
NASA Technical Reports Server (NTRS)
Elghobashi, Said; Lasheras, Juan
1999-01-01
The objective of this numerical/experimental study is to improve the understanding of the effects of gravity on the two-way interaction between dispersed particles (bubbles or liquid droplets) and the carrier turbulent flow. The first phase of the project considers isotropic turbulence. Turbulent homogeneous shear flows laden with droplets/bubbles will be studied in the next phase. The experiments reported here are concerned with the dispersion of liquid droplets by homogeneous turbulence under various gravitational conditions and the effect of these droplets on the evolution of the turbulence of the carrier fluid (air). Direct numerical simulations (DNS) of bubble - laden isotropic decaying turbulence are performed using the two-fluid approach (TF) instead of the Eulerian-Lagrangian approach (EL). The motivation for using the TF formulation is that EL requires considerable computational resources especially for the case of two-way coupling where the instantaneous trajectories of a large number of individual bubbles need to be computed. The TF formulation is developed by spatially averaging the instantaneous equations of the carrier flow and bubble phase over a scale of the order of the Kolmogorov length scale which, in our case, is much larger than the bubble diameter. On that scale, the bubbles are treated as a continuum (without molecular diffusivity) characterized by the bubble phase velocity field and concentration (volume fraction). The bubble concentration, C, is assumed small enough to neglect the bubble-bubble interactions.
NASA Astrophysics Data System (ADS)
Xiao, Shu-mei; Mei, Hai-ping; Wang, Qian; Rao, Rui-zhong
2013-08-01
An integrated fiber-optic turbulence sensor based on non-balanced fiber-optic Mach-Zehnder interferometer with a small air gap as light path difference has been designed for detecting air refractive index fluctuation. For avoiding sensing signal fading and perturbations from circumstance during signal transmission, the phase generated carrier is used. The turbulence induced air refractive index fluctuations are demodulated by the algorithm of correlation. Background noise of the sensor is below10-17 . By comparing with the refractive index structure constant measured by fine-wire resistance thermometer, results show good agreement in both their magnitude and tendency. For its outstanding property of corrosion protection, the sensor is especially suitable for maritime atmospheric optical turbulence research, which is verified by one month sea beach investigation. Some results of the maritime optical turbulence intensity are reported in the end.
Tactical missile turbulence problems
NASA Technical Reports Server (NTRS)
Dickson, Richard E.
1987-01-01
Of particular interest is atmospheric turbulence in the atmospheric boundary layer, since this affects both the launch and terminal phase of flight, and the total flight for direct fire systems. Brief discussions are presented on rocket artillery boost wind problems, mean wind correction, turbulent boost wind correction, the Dynamically Aimed Free Flight Rocket (DAFFR) wind filter, the DAFFR test, and rocket wake turbulence problems. It is concluded that many of the turbulence problems of rockets and missiles are common to those of aircraft, such as structural loading and control system design. However, these problems have not been solved at this time.
Triggering filamentation using turbulence
NASA Astrophysics Data System (ADS)
Eeltink, D.; Berti, N.; Marchiando, N.; Hermelin, S.; Gateau, J.; Brunetti, M.; Wolf, J. P.; Kasparian, J.
2016-09-01
We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This positive effect of turbulence on the filament probability, combined with our observation of off-axis filaments, suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple filaments, in the single-filament regime.