Science.gov

Sample records for intense laser irradiation

  1. Response of graphene to femtosecond high-intensity laser irradiation

    SciTech Connect

    Roberts, Adam; Cormode, Daniel; Reynolds, Collin; Newhouse-Illige, Ty; LeRoy, Brian J.; Sandhu, Arvinder S.

    2011-08-01

    We study the response of graphene to high-intensity, 50-femtosecond laser pulse excitation. We establish that graphene has a high ({approx}3 x 10{sup 12} Wcm{sup -2}) single-shot damage threshold. Above this threshold, a single laser pulse cleanly ablates graphene, leaving microscopically defined edges. Below this threshold, we observe laser-induced defect formation leading to degradation of the lattice over multiple exposures. We identify the lattice modification processes through in-situ Raman microscopy. The effective lifetime of chemical vapor deposition grown graphene under femtosecond near-infrared irradiation and its dependence on laser intensity is determined. These results also define the limits of non-linear applications of graphene in femtosecond high-intensity regime.

  2. Irradiation of myoglobin by intense, ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Chelliah, Juliah J.; Kumar, S. V. K.; Dharmadhikari, Aditya K.; Dharmadhikari, Jayashree A.; Mathur, Deepak

    2016-10-01

    We probe the interaction of myoglobin with intense, femtosecond laser pulses. Significant spectral differences are found between native and the irradiated myoglobin. These arise from the disruption of the heme prosthetic group: geometrical restructuring results in alteration of the oxidation state of Fe (from its initial +3 state) which is found to be reversible on timescales of ~4-6 h. Measurements taken upon addition of OH scavengers establish the key role played by these radicals in the overall dynamics. Myoglobin remains intact upon intense field irradiation, demonstrating the structural robustness of the polypeptide backbone. Experiments utilizing intense, ultrashort laser pulses are expected to open new horizons for following, with high sensitivity, changes in the oxidation state, chemical environment, and electronic state of biomolecules in the aqueous phase.

  3. Irradiation effect of polarization direction and intensity of semiconductor laser on injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Guo-Xin, Xiong; Lei-lei, Xiong

    2016-08-01

    To investigate the irradiation effect of polarization direction and the intensity of a semiconductor laser on the injured peripheral nerve in rabbits, the model of the injured common peroneal nerve was established, the L5,6 spinal segments of the rabbits were irradiated, a uniform rotating polarizer was placed at the laser output which made the polarization direction and intensity of the output laser change according to the 80 Hz cosine law. The experimental results show that irradiating the spinal segment of injured nerves in rabbits with this changeable semiconductor laser can significantly promote the regeneration of injured peripheral nerves and the function recovery.

  4. Experimental verification of the ablation pressure dependence upon the laser intensity at pulsed irradiation of metals

    NASA Astrophysics Data System (ADS)

    Krasyuk, I. K.; Semenov, A. Yu; Stuchebryukhov, I. A.; Khishchenko, K. V.

    2016-11-01

    Experiments for verification of a functional dependence of the ablation pressure on the irradiated surface of a target upon the laser intensity in a range from 1.2 to 350 TW/cm2 have been carried out. For that, at some intensities of the laser irradiation, time intervals between the laser pulse maximum and the moment of the shock-wave front arrival to the rear surface of the target were measured, which are dependent on the ablation pressure. Two schemes of the measurements were used. At the first scheme, at higher laser intensities, the front arrival moment is determined via an electron-optical camera when the rear surface begins glowing. At the second scheme, the front arrival moment is recorded when a probe laser pulse changes the character of the reflection by the rear surface of the irradiated target. Results of measurements are in agreement with the ablation pressure dependence upon the laser pulse intensity within 20%.

  5. Advances in endonasal low intensity laser irradiation therapy

    NASA Astrophysics Data System (ADS)

    Jiao, Jian-Ling; Liu, Timon C.; Liu, Jiang; Cui, Li-Ping; Liu, Song-hao

    2005-07-01

    Endonasal low intensity laser therapy (ELILT) began in China in 1998. Now in China it is widely applied to treat hyperlipidemia and brain diseases such as Alzheimer's disease, Parkinson's disease, insomnia, poststroke depression, intractable headache, ache in head or face, cerebral thrombosis, acute ischemic cerebrovascular disease, migraine, brain lesion and mild cognitive impairment. There are four pathways mediating EILILT, Yangming channel, autonomic nervous systems and blood cells. Two unhealth acupoints of Yangming channal inside nose might mediate the one as is low intensity laser acupuncture. Unbalance autonomic nervous systems might be modulated. Blood cells might mediate the one as is intravascular low intensity laser therapy. These three pathways are integrated in ELILT so that serum amyloid β protein, malformation rate of erythrocyte, CCK-8, the level of viscosity at lower shear rates and hematocrit, or serum lipid might decrease, and melanin production/SOD activity or β endorphin might increase after ELILT treatment. These results indicate ELILT might work, but it need to be verified by randomized placebo-controlled trial.

  6. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  7. Effects of low intensity laser irradiation during healing of infected skin lesions in the rat

    NASA Astrophysics Data System (ADS)

    Nussbaum, Ethne L.; Lilge, Lothar; Mazzulli, Tony; Pritzker, Kenneth P.

    2006-02-01

    Purpose: To determine the effect of low intensity laser therapy (LILT) on healing of infected skin wounds in the rat. Methods: Wounds on the dorsum of Sprague-Dawley rats (14 per group) were inoculated or sham-inoculated with P. aeruginosa. Wounds were irradiated or sham-irradiated three times weekly from Day 1-19 using 635nm or 808nm diode lasers at radiant exposure of 1 or 20 J/cm2 delivered in continuous wave (CW) or at an intensity modulation frequency of 3800Hz. Wound area and bacterial growth were evaluated three times weekly. Results: CW 808 nm (1 and 20 J/cm2) irradiation generally delayed healing in acute wounds. However, from Day 10 onwards CW 808 nm (1 J/cm2 and 20 J/cm2) and 808 nm 3800 Hz (1 J/cm2) irradiation improved healing in inoculated wounds. Healing in acute wounds improved using 635 nm irradiation at low radiant exposure (1 J/cm2); however, using 635 nm irradiation at high radiant exposure (20 J/cm2) delayed healing. Bacterial balance in wounds was significantly altered using 635 nm (20 J/cm2) and CW 808 nm irradiation (1 and 20 J/cm2). Conclusion: Clearing wounds of normal flora was not associated with improved healing. Proliferation of staphylococcal species in wounds was associated with delayed healing.

  8. Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T.

    2012-07-11

    A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a strongly coupled cluster nanoplasma with several eV was generated.

  9. Influence of Laser Irradiation Low Intensity on Reparative Osteogenesis and Angiogenesis Under Transosseous Osteosynthesis

    PubMed Central

    Iryanov, Yuri Mikhailovich

    2016-01-01

    Introduction: The use of non-medicinal facilities of correcting processes for various pathological conditions is one of the most urgent problems of modern medicine. The purpose of the work is to study the efficiency of low-intensive of infrared laser irradiation in promoting reparative osteogenesis and angiogenesis during fracture treatment under transosseous osteosynthesis with a qualitative and quantitative morphological analysis. Methods: A tibial fracture was modeled experimentally in rats from control and experimental groups, then repositioning and fixation of fragments performed. The fracture zone of the experimental group animals was exposed to pulsed infrared laser irradiation of low intensity. The animals from control group underwent irradiation simulation. The operated bones were investigated using x-ray, light and electron microscopy, x-ray electron probe microanalysis. Results: The sessions of laser irradiation decreased inflammatory process severity, activated fibrillogenesis and angiogenesis, accelerated the compactization of newly formed bone tissue, and enhanced its maturity degree while primary healing occurred in the fracture. Conclusion: Laser therapy of fracture zone ensures the formation of regenerated bone and fragment union within earlier periods. PMID:28144431

  10. Reaction of cells to local, regional, and general low-intensive laser irradiation

    NASA Astrophysics Data System (ADS)

    Baibekov, Iskander M.; Kasymov, A. S.; Musaev, Erkin S.; Vorojeikin, V. M.; Artikov, S. N.

    1993-07-01

    Local influence of low intensive laser irradiation (LILI) of Helium-Neon (HNL), Copper vapor (CVL), Nitrogen (UVL) and Arsenic Gallium (AGL) lasers cause stimulation of processes of physiological and reparative regeneration in intact skin, and mucous membrane of stomach and duodenum, dermatome wounds and gastroduodenal ulcers. Structural bases of these effects are the acceleration of cell proliferation and differentiation and also the activation of intracellular structures and intensification of cell secretion. Regional influence of the pointed types of LILI on hepar in cirrhosis and hepatitis causes decreasing of the inflammatory and cirrhotic changes. After endo- and exo-vascular laser irradiations of blood the decreasing of the number of pathological forms of erythrocytes and the increasing of their catalase activity, are indicated. General (total) laser irradiation of the organism--laser shower, increases the bone marrow cells proliferation, especially myeloid series. It is accompanied with acceleration of their differentiation and migration in circulation. It was revealed, that HNL to a considerable extent influences the epithelial cells and CVL the connective tissue cells. UVL increases the amount of microorganisms on cell surfaces (membrane bound microorganisms). Regional irradiation of the LILI causes both direct and indirect influence of cells. Structural changes of bone marrow cells and gut mucous membrane cells indicate intersystemic interaction.

  11. Low-intensity laser irradiation use for oral and lip precancer treatment

    NASA Astrophysics Data System (ADS)

    Kunin, Anatoly A.; Podolskaya, Elana E.; Stepanov, Nicolay N.; Petrov, Anatoly; Erina, Stanislava V.; Pankova, Svetlana N.

    1996-09-01

    Precancer and background diseases of the oral mucosa and lips, such as lichen planus, chronic ulcers and fissures, meteorological heilit, lupus erythematosus, after radiation heilit were treated by low-intensity laser irradiation. Laser therapy of the over-mentioned diseases was combined with medicinal treatment. All the patients were selected and treated in the limits of dispensary system. THe choice of diagnostic methods were made according to each concrete nosological form. A great attention was paid to the goal- directly sanitation of the oral cavity and treatment of attended internal diseases. The etiological factors were revealed and statistically analyzed. The results received during our researches demonstrated high effectiveness of laser irradiation combined with medicinal therapy in the treatment of oral mucosa and lips precancer diseases.

  12. Evaluation of Surface Roughness and Bacterial Adhesion on Tooth Enamel Irradiated With High Intensity Lasers.

    PubMed

    Nogueira, Ruchele D; Silva, Camilla B; Lepri, Cesar P; Palma-Dibb, Regina Guenka; Geraldo-Martins, Vinicius R

    2017-01-01

    The aim was to evaluate the surface roughness and bacterial adhesion on enamel irradiated with high intensity lasers, associated or not to a fluoride varnish. Eighty fragments of bovine enamel were equally divided in 8 groups (n=10). Group 1 was not treated and Group 2 received only a 5% fluoride varnish application. The other groups were irradiated with an Er:Cr:YSGG (8.92 J/cm2), an Nd:YAG (84.9 J/cm2) and a diode laser (199.04 J/cm2), associated or not to a 5% fluoride varnish. The surface roughness was measured before and after treatments. Afterward, all samples were incubated in a suspension of S. mutans at 37 °C for 24 h. The colony-forming units (CFU) were counted by a stereoscope and the results were expressed in CFU/mm2. One-way ANOVA and the Tukey´s test compared the roughness data and the Student´s test compared the results obtained in the bacterial adhesion test (a=5%). The results showed that the irradiated samples without varnish presented the same roughness and the same bacterial adhesion that the non-irradiated samples. However, samples irradiated in the presence of fluoride varnish showed higher surface roughness and higher bacterial adhesion than the non-irradiated samples and those irradiated without varnish. Presence of pigments in the varnish increased the lasers' action on the enamel surface, which produced ablation in this hard tissue and significantly increased its surface roughness. For this reason, the enamel's susceptibility to bacterial adhesion was higher when the irradiation of the samples was made in presence of fluoride varnish.

  13. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Stefano; Sciortino, Silvio; Obreshkov, Boyan; Apostolova, Tzveta; Corsi, Chiara; Bellini, Marco; Berdermann, Eleni; Schmidt, Christian J.

    2016-02-01

    Direct laser writing of conductive paths in synthetic diamond is of interest for implementation in radiation detection and clinical dosimetry. Unraveling the microscopic processes involved in laser irradiation of diamond below and close to the graphitization threshold under the same conditions as the experimental procedure used to produce three-dimensional devices is necessary to tune the laser parameters to optimal results. To this purpose a transient currents technique has been used to measure laser-induced current signals in monocrystalline diamond detectors in a wide range of laser intensities and at different bias voltages. The current transients vs time and the overall charge collected have been compared with theoretical simulations of the carrier dynamics along the duration and after the conclusion of the 30 fs laser pulse. The generated charge has been derived from the collected charge by evaluation of the lifetime of the carriers. The plasma volume has also been evaluated by measuring the modified region. The theoretical simulation has been implemented in the framework of the empirical pseudopotential method extended to include time-dependent couplings of valence electrons to the radiation field. The simulation, in the low-intensity regime, I ˜1 TW /cm2 , predicts substantial deviation from the traditional multiphoton ionization, due to nonperturbative effects involving electrons from degenerate valence bands. For strong field with intensity of about 50 TW /cm2, nonadiabatic effects of electron-hole pair excitation become prominent with high carrier densities eventually causing the optical breakdown of diamond. The comparison of theoretical prediction with experimental data of laser-generated charge vs laser energy density yields a good quantitative agreement over six orders of magnitude. At the highest intensities the change of slope in the trend is explained taking into account the dependence of the optical parameters and the carrier mobility on plasma

  14. Enhanced electron-positron pair production by ultra intense laser irradiating a compound target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Yu, Tong-Pu; Zhao, Jun; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Zhao, Yuan; Zhang, Shi-Jie; Liu, Jin-Jin; Zhuo, Hong-Bin; Shao, Fu-Qiu; Kawata, Shigeo

    2016-12-01

    High-energy-density electron-positron pairs play an increasingly important role in many potential applications. Here, we propose a scheme for enhanced positron production by an ultra intense laser irradiating a gas-Al compound target via the multi-photon Breit-Wheeler (BW) process. The laser pulse first ionizes the gas and interacts with a near-critical-density plasma, forming an electron bubble behind the laser pulse. A great deal of electrons are trapped and accelerated in the bubble, while the laser front hole-bores the Al target and deforms its front surface. A part of the laser wave is thus reflected by the inner curved target surface and collides with the accelerated electron bunch. Finally, a large number of γ photons are emitted in the forward direction via the Compton back-scattering process and the BW process is initiated. Dense electron-positron pairs are produced with a maximum density of 6.02× {{10}27} m-3. Simulation results show that the positron generation is greatly enhanced in the compound target, where the positron yield is two orders of magnitude greater than that in only the solid slab case. The influences of the laser intensity, gas density and length on the positron beam quality are also discussed, which demonstrates the feasibility of the scheme in practice.

  15. Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers

    SciTech Connect

    Cui Yunqian; Wang Weimin; Li Yutong; Sheng Zhengming; Zhang Jie

    2013-02-15

    We propose a scheme to generate 10 MeV-level quasimonoenergetic proton bunches using proton-doped heavy-ion targets irradiated by intense lasers via target normal sheath acceleration. The heavy substrate ions provide a long-life quasi-stable sheath field to accelerate the doped protons at the target rear and consequently a quasimonoenergetic proton bunch is produced. The scheme is demonstrated by two-dimensional particle-in-cell simulations. An exemplificative simulation with parameters of targets made by ion-implant technique, a kind of modern doping process, gives a quasimonoenergetic bunch with peak energy {approx}13MeV, energy spread {approx}24%, and {approx}nC charge at the focused laser intensity 10{sup 20}W/cm{sup 2}.

  16. Postionisation of a spatially nonuniform plasma plume under high-intensity femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Krestovskikh, D. A.; Ivanov, K. A.; Tsymbalov, I. N.; Shulyapov, S. A.; Bukin, V. V.; Volkov, R. V.; Rupasov, A. A.; Savel’ev, A. B.

    2017-02-01

    The plasma plume formed by a high-power nanosecond laser pulse on the surface of solid targets as well as the plume parameters after its irradiation by a high-intensity femtosecond laser pulse are investigated by optical diagnostic techniques. Two-dimensional patterns of the electron plasma density are reconstructed from experimentally recorded interferograms at different stages of plasma evolution. It is shown that the interaction of the high-intensity femtosecond radiation with the plasma cloud is accompanied by the field ionisation of atoms and ions as well as by a significant increase in the electron density throughout the interaction volume. Presented at ECLIM2016 (Moscow, 18–23 September 2016).

  17. The effects of low-intensity laser irradiation on the fatigue induced by dysfunction of mitochondria

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Yang; Liu, Timon C.; Duan, Rui; Liu, Xiao-Guang

    2003-12-01

    Exercise-induced fatigue has long been an important field in sports medicine. The electron leak of mitochondrial respiratory chain during the ATP synthesis integrated with proton leak and O-.2 can decrease the efficiency of ATP synthesis in mitochondria. And the exercise-induced fatigue occur followed by the decrease of performance. If the dysfunction of mitochondria can be avoided, the fatigue during the exercise may be delayed and the performance may be enhanced. Indeed there are some kind of materials can partially prevent the decrease of ATP synthesis efficiency in mitochondria. But the side effects and safety of these materials is still needed to be studied. Low intensity laser can improve the mitochondria function. It is reasonable to consider that low intensity laser therapy may become the new and more effective way to delay or elimination the fatigue induced by dysfunction of mitochondria. Because the effect of laser irradiation may not be controlled exactly when study in vivo, we use electrical stimulation of C2C12 muscle cells in culture to define the effect of low intensity laser on the dysfunction of mitochondria, and to define the optimal laser intensity to prevent the decrease of ATP synthesis efficiency. Our study use the C2C12 muscle cells in culture to define some of the mechanisms involved in the contractile-induced changes of mitochondrial function firstly in sports medicine and may suggest a useful study way to other researchers. We also give a new way to delay or eliminating the fatigue induced by dysfunction of mitochondria without side effect.

  18. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  19. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    SciTech Connect

    Feng, ShiQuan; Cheng, XinLu; Zhao, JianLing; Zhang, Hong

    2013-07-28

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from T{sub e} = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect.

  20. Effects of low-intensity laser irradiation on the apoptosis of rabbit vascular smooth muscle cells in culture

    NASA Astrophysics Data System (ADS)

    Li, S. D.; Chen, P.; Zhang, C. P.; Wen, J. X.; Liang, J.; Kang, H. X.; Gao, R. L.; Fu, X. B.

    2011-11-01

    Restenosis is a major complication after coronary intervention therapy. Excessive proliferation of vascular smooth muscle cells (VSMCs) and a decline in their apoptosis, which eventually leads to excessive neointimal thickening in coronary arteries, are the main causes of restenosis. Induction of the apoptosis of VSMCs and inhibition of excessive proliferation of VSMCs are therefore crucial for the prevention of restenosis, and low-intensity laser irradiation of coronary arteries may play a promising role in keeping this in balance. In this study, we used in vitro cultured rabbit VSMCs to investigate the effects of low-intensity laser irradiation at a wavelength of 532 nm on the apoptosis of VSMCs via morphological observation and molecular biology. The results showed that apoptotic bodies and obvious intranuclear apoptosis-positive particles formed within VSMCs 24 h after laser irradiation, suggesting that low-intensity laser irradiation at certain doses can inhibit the proliferation of VSMCs by promoting their apoptosis. This experiment provides evidences for further animal experiments and clinical trials on prevention and treatment of restenosis by intracoronary low-intensity laser irradiation at a wavelength of 532 nm.

  1. Profiling of genes central to human mitochondrial energy metabolism following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Houreld, Nicolette N.; Masha, Roland; Abrahamse, Heidi

    2012-09-01

    Background: Wound healing involves three overlapping phases: inflammation, granulation and tissue remodelling. If this process is disrupted, delayed wound healing ensues, a common complication seen in diabetic patients. Low intensity laser irradiation (LILI) has been found to promote healing in such patients. However, the exact mechanisms of action are poorly understood. Purpose: This study aimed to profile the expression of key genes involved in mitochondrial respiration. Materials and Methods: Diabetic wounded fibroblast cells were exposed to a wavelength of 660 nm and a fluence of 5 J/cm2 and incubated for 30 min. Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used for real-time polymerase chain reaction (PCR) array analysis. The array contained genes important for each of the mitochondrial complexes involved in the electron transport chain (ETC). Adenosine triphosphate (ATP) levels were also determined post-irradiation by ATP luminescence. Results: Genes involved in complex IV (cytochrome c oxidase), COX6B2 and COX6C, and PPA1 which is involved in complex V (ATP synthase) were significantly up-regulated. There was a significant increase in ATP levels in diabetic wounded cells post-irradiation. Discussion and Conclusion: LILI stimulates the ETC at a transcriptional level, resulting in an increase in ATP. This study helps understand the mechanisms of LILI in diabetic wound healing, and gives information on activation of genes in response to LILI.

  2. Spatial intensity distribution of the radiative return from scattering media irradiated by a cw laser beam

    NASA Astrophysics Data System (ADS)

    Gurdev, Ljuan L.; Dreischuh, Tanja N.; Vankov, Orlin I.; Toncheva, Eleonora N.; Avramov, Lachezar A.; Stoyanov, Dimitar V.

    2016-01-01

    Experimental measurements and theoretical description have been performed of the spatial intensity distribution of the backward radiative response of tissue-like Intralipid-20% dilutions in distilled water irradiated by a collimated near-infrared cw laser beam. The investigations performed are a first step toward a complete estimation of the feasibility and potentialities of a stationary one-sided linear-strategy biomedical tomography approach to detecting characteristic inclusions (inhomogeneities, say ill places) in homogeneous highly-scattering host media (healthy tissues). The experimental results obtained are in good agreement with the derived theoretical expressions that thus would be of importance for the development and numerical modeling of stationary tomography algorithms ensuring optimally accurate data processing and interpretation.

  3. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    SciTech Connect

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.

  4. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGES

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  5. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  6. Analysis of strained surface layers of ZnO single crystals after irradiation with intense femtosecond laser pulses

    SciTech Connect

    Schneider, Andreas; Sebald, Kathrin; Voss, Tobias; Wolverson, Daniel; Hodges, Chris; Kuball, Martin

    2013-05-27

    Structural modifications of ZnO single crystals that were created by the irradiation with femtosecond laser pulses at fluences far above the ablation threshold were investigated with micro-Raman spectroscopy. After light-matter interaction on the femtosecond time scale, rapid cooling and the pronounced thermal expansion anisotropy of ZnO are likely to cause residual strains of up to 1.8% and also result in the formation of surface cracks. This process relaxes the strain only partially and a strained surface layer remains. Our findings demonstrate the significant role of thermoelastic effects for the irradiation of solids with intense femtosecond laser pulses.

  7. Biochemical responses of isolated lung CSCs after application of low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi; Crous, Anine

    2016-03-01

    Studies have shown that using high fluences of Low Intensity Laser Irradiation (HF-LILI) produce apoptotic effects on normal and neoplastic cells. This study aimed to determine whether HF-LILI induce cell death in lung CSCs. Lung CSCs were isolated using the stem cell marker CD 133, characterized using flow cytometry, and applied in experiments which included treatment with LILI at wavelengths of 636, 825 and 1060 nm with fluences ranging from 5 J/cm2 to 40 J/cm2. Viability and proliferation studies, using Alamar blue assay and adenosine triphosphate luminescence (ATP), indicated an increase when treating lung CSCs with low fluences of 5 - 20 J/cm2 and a decrease in viability and proliferation as well as an increase in apoptosis when applying a fluence of 40 J/cm2 indicated by flow cytometry using Annexin V and propidium iodide (PI) dyes. Results indicate that LILI, when treating lung CSCs, can induce either a bio-stimulatory or bio-inhibitory effect depending on the wavelength and fluence used. This study indicated successful apoptotic induction of lung CSCs. Future experiments should be able to conclude the exact mechanism behind HF-LILI, which can be used in the targeted treatments of CSC elimination, implementing HF-LILI in the same manner as PDT in the absence of a photosensitizer.

  8. LASER METHODS IN MEDICINE: Light absorption in blood during low-intensity laser irradiation of skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-06-01

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis.

  9. A first principles study of the lattice stability of diamond-structure semiconductors under intense laser irradiation

    SciTech Connect

    Feng Shiquan; Zhao Jianling; Cheng Xinlu

    2013-01-14

    Using density-functional linear-response theory, we calculated the phonon dispersion curves for the diamond structural elemental semiconductors of Ge, C and zinc-blende structure semiconductors of GaAs, InSb at different electronic temperatures. We found that the transverse-acoustic phonon frequencies of C and Ge become imaginary as the electron temperature is elevated, which means the lattices of C and Ge become unstable under intense laser irradiation. These results are very similar with previous theoretical and experimental results for Si. For GaAs and InSb, not only can be obtained the similar results for their transverse-acoustic modes, but also their LO-TO splitting gradually decreases as the electronic temperature is increased. It means that the electronic excitation weakens the strength of the ionicity of ionic crystal under intense laser irradiation.

  10. Condensation of ablation plumes in the irradiation of metals by high-intensity nanosecond laser pulses at atmospheric pressure

    SciTech Connect

    Kozadaev, K V

    2016-01-31

    The Anisimov–Luk'yanchuk model is adapted for describing the condensation of vapour-plasma plumes produced in the irradiation of metal targets by high-intensity (10{sup 8} – 10{sup 10} W cm{sup -2}) nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resultant data suggest that the initial stages of the development of metal ablation plumes correspond with a high degree of accuracy to the Zel'dovich–Raizer theory of dynamic condensation; however, at the stage of the ablation plume decay, the liquid-droplet phase is formed primarily by coalescence of 'nuclei'. (interaction of laser radiation with matter. laser plasma)

  11. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Simulation of generation of bremsstrahlung gamma quanta upon irradiation of thin metal films by ultra-intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Garanin, Sergey G.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-06-01

    We report the results of simulations of generation of bremsstrahlung gamma quanta upon irradiation of a thin-film metal target by ultra-intense femtosecond laser pulses. It is shown by the example of a thin gold target that the mean electron energy is twenty five times higher than the mean energy of gamma quanta generated by them. A simple approximating formula is proposed, which establishes a one-to-one relation between these quantities. The angular distributions of electrons and gamma quanta are studied. It is shown that only the angular distribution of high-energy gamma quanta repeats the angular distribution of the electrons leaving the target.

  13. Morphologic Changes of Zebrafish Melanophore after Intense Pulsed Light and Q-Switched Nd:YAG Laser Irradiation

    PubMed Central

    Ryu, Hwa Jung; Lee, Ji Min; Jang, Hee Won; Park, Hae Chul; Rhyu, Im Joo

    2016-01-01

    Background Recently, the pulse-in-pulse mode of intense pulsed light (IPL) has been used increasingly for the treatment of melasma. Objective To observe the morphologic changes in the melanophore in adult zebrafish after irradiation with conventional and pulse-in-pulse IPL and Q-switched Nd:YAG (QSNY) laser. Methods Adult zebrafish were irradiated with conventional and pulse-in-pulse mode of IPL. The conditions for conventional IPL were 3 mJ/cm2, 560 nm filter, and pulse widths of 7, 20, and 35 msec. The pulse-in-pulse conditions were 3 mJ/cm2 and on-time 1/off-time 2. The QSNY laser was used with the settings of 1,064 nm, 0.4 J/cm2, a 7 mm spot size, and one shot. Specimens were observed using a light microscope, a transmission electron microscope (TEM), a scanning electron microscope (SEM) and a confocal microscope. Results After conventional IPL irradiation with a 7 msec pulse width, melanophore breakage was observed using light microscopy. Under TEM, irradiation with conventional IPL for 7 msec and pulse-in-pulse IPL induced melanophore thermolysis with vacuolization. However, changes in the melanophore were not observed with 35 msec IPL. Under SEM, unlike the control and QSNY groups, IPL-irradiated zebrafish showed finger-like fusion in the protein structure of scales. Specimens examined by a confocal microscope after conventional IPL irradiation showed a larger green-stained area on TUNEL staining than that after pulse-in-pulse mode IPL irradiation. Conclusion Zebrafish irradiated with long pulse-IPL showed no morphologic changes using light microscopy, while morphological changes in melanophores were evident with use of TEM. Pulse-in-pulse mode IPL caused less damage than conventional IPL. PMID:27904270

  14. Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target

    SciTech Connect

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Zou, De-Bin; Yin, Yan

    2015-03-15

    By using two-dimensional particle-in-cell simulations, we demonstrate enhanced spatially periodic attosecond electron bunches generation with an average density of about 10n{sub c} and cut-off energy up to 380 MeV. These bunches are acquired from the interaction of an ultra-short ultra-intense laser pulse with a cone target. The laser oscillating field pulls out the cone surface electrons periodically and accelerates them forward via laser pondermotive force. The inner cone wall can effectively guide these bunches and lead to their stable propagation in the cone, resulting in overdense energetic attosecond electron generation. We also consider the influence of laser and cone target parameters on the bunch properties. It indicates that the attosecond electron bunch acceleration and propagation could be significantly enhanced without evident divergency by attaching a plasma capillary to the original cone tip.

  15. Efficient plasma production by intense laser irradiation of low density foam targets

    SciTech Connect

    Tripathi, S.; Chaurasia, S.; Munda, D. S.; Gupta, N. K.; Dhareshwar, L. J.; Nataliya, B.

    2010-12-01

    Experimental investigations conducted on low density structured materials, such as foams have been presented in this paper. These low density foam targets having a density greater than the critical density of the laser produced plasma ({rho}{sub cr{approx_equal}}3 mg{center_dot}cm{sup -3} at laser wavelength 1.06 {mu}m) have been envisaged to have enhanced laser absorption. Experiments were done with an indigenously developed, focused 15 Joule/500 ps Nd: Glass laser at {lambda} = 1064 nm. The focused laser intensity on the target was in the range of I{approx_equal}10{sup 13}-2x10{sup 14} W/cm{sup 2}. Laser absorption was determined by energy balance experiments. Laser energy absorption was observed to be higher than 85%. In another set of experiments, low density carbon foam targets of density 150 mg/cc were compared with the solid carbon targets. The x-ray emission in the soft x-ray region was observed to increase in foam target by about 1.8 times and 2.3 times in carbon foam and Pt doped foam as compared to solid carbon. Further, investigations were also carried out to measure the energy transmitted through the sub-critical density TAC foam targets having a density less than 3 mg/cc. Such targets have been proposed to be used for smoothening of intensity ripples in a high power laser beam profile. Transmission exceeding 1.87% has been observed and consistent with results from other laboratories.

  16. Emission of Thermally Activated Electrons from Rare Gas Clusters Irradiated with Intense VUV Light Pulses from a Free Electron Laser

    SciTech Connect

    Laarmann, T.; Rusek, M.; Schulz, J.; Castro, A.R.B. de; Guertler, P.; Laasch, W.; Moeller, T.

    2005-08-05

    The ionization dynamics of Ar and Xe clusters irradiated with intense vacuum ultraviolet light from a free-electron laser is investigated using photoelectron spectroscopy. Clusters comprising between 70 and 900 atoms were irradiated with femtosecond pulses at 95 nm wavelength ({approx}13 eV photon energy) and a peak intensity of {approx}4x10{sup 12} W/cm{sup 2}. A broad thermal distribution of emitted electrons from clusters with a maximum kinetic energy up to 30-40 eV is observed. The observation of relatively low-energy photoelectrons is in good agreement with calculations using a time-dependent Thomas-Fermi model and gives experimental evidence of an outer ionization process of the clusters, due to delayed thermoelectronic emission.

  17. Emission of thermally activated electrons from rare gas clusters irradiated with intense VUV light pulses from a free electron laser.

    PubMed

    Laarmann, T; Rusek, M; Wabnitz, H; Schulz, J; de Castro, A R B; Gürtler, P; Laasch, W; Möller, T

    2005-08-05

    The ionization dynamics of Ar and Xe clusters irradiated with intense vacuum ultraviolet light from a free-electron laser is investigated using photoelectron spectroscopy. Clusters comprising between 70 and 900 atoms were irradiated with femtosecond pulses at 95 nm wavelength (approximately 13 eV photon energy) and a peak intensity of approximately 4 x 10(12) W/cm2. A broad thermal distribution of emitted electrons from clusters with a maximum kinetic energy up to 30-40 eV is observed. The observation of relatively low-energy photoelectrons is in good agreement with calculations using a time-dependent Thomas-Fermi model and gives experimental evidence of an outer ionization process of the clusters, due to delayed thermoelectronic emission.

  18. Simulation of generation of bremsstrahlung gamma quanta upon irradiation of thin metal films by ultra-intense femtosecond laser pulses

    SciTech Connect

    Andreev, Stepan N; Rukhadze, Anri A; Garanin, Sergey G; Yakutov, B P; Tarakanov, V P

    2010-06-23

    We report the results of simulations of generation of bremsstrahlung gamma quanta upon irradiation of a thin-film metal target by ultra-intense femtosecond laser pulses. It is shown by the example of a thin gold target that the mean electron energy is twenty five times higher than the mean energy of gamma quanta generated by them. A simple approximating formula is proposed, which establishes a one-to-one relation between these quantities. The angular distributions of electrons and gamma quanta are studied. It is shown that only the angular distribution of high-energy gamma quanta repeats the angular distribution of the electrons leaving the target. (interaction of laser radiation with matter. laser plasma)

  19. Spectral analysis of x-ray emission created by intense laser irradiation of copper materials

    SciTech Connect

    Huntington, C. M.; Kuranz, C. C.; Drake, R. P.; Malamud, G.; Park, H.-S.; Maddox, B. R.

    2012-10-15

    We have measured the x-ray emission, primarily from K{sub {alpha}},K{sub {beta}}, and He{sub {alpha}} lines, of elemental copper foil and 'foam' targets irradiated with a mid-10{sup 16} W/cm{sup 2} laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He{sub {alpha}} line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K{sub {alpha}} transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K{sub {beta}} radiation, confirming a lower bulk temperature in the higher volume sample.

  20. Intravascular low-intensity He-Ne laser irradiation therapy on idiopathic edema

    NASA Astrophysics Data System (ADS)

    Gao, Yunqing; Liu, T. C.; Tang, Xiang-Jun

    1998-11-01

    194 patients with psoriasis were treated by intravascular low level laser irradiation combined with Vit C 2.0g iv and O2 inhale to the nose. An hour once a day, for 5-40 times, and 13.06 times in average, ten times with 4-7 days intervals. The results: cured 23 cases, good effected 61 cases, improved 110 cases, relapsed 10 cases. Curative effect was related to treatment times, cured and good effected 5 times 12.5 percent, 10 times 31 percent, 15 times 94 percent. A matched control group in 17 patients was treated by drug. The results: good effected 1 case, improved 13 cases, not effected 3 cases.

  1. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    SciTech Connect

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-15

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  2. Laser Irradiated Growth of Protein Crystal

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Hosokawa, Youichiroh; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi; Yoshimura, Masashi; Tsunaka, Yasuo; Morikawa, Masaaki; Kanaya, Shigenori; Masuhara, Hiroshi; Kai, Yasushi; Sasaki, Takatomo

    2003-07-01

    We succeeded in the first ever generation of protein crystals by laser irradiation. We call this process Laser Irradiated Growth Technique (LIGHT). Effective crystallization was confirmed by applying an intense femtosecond laser. The crystallization period was dramatically shortened by LIGHT. In addition, protein crystals were obtained by LIGHT from normally uncrystallized conditions. These results indicate that intense femtosecond laser irradiation generates crystal nuclei; protein crystals can then be grown from the nuclei that act as seeds in a supersaturated solution. The nuclei formation is possible primarily due to nonlinear nucleation processes of an intense femtosecond laser with a peak intensity of over a gigawatt (GW).

  3. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    SciTech Connect

    Albertazzi, B.; Chen, S. N.; Fuchs, J.; Antici, P.; Böker, J.; Swantusch, M.; Willi, O.; Borghesi, M.; Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D'Humières, E.; Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L.; Lancia, L.; Shepherd, R.; Sentoku, Y.; Starodubtsev, M.; and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  4. [Comparative study of time-correlated temperature and back-scattered light intensity for human Hegu acupoint and non-acupoint tissue irradiated by near-infrared laser].

    PubMed

    Zhou, Fang; Wei, Hua-Jiang; Guo, Zhou-Yi; Li, Ang; Yang, Ning-Ning; Yang, Hong-Qin; Xie, Shu-Sen

    2012-09-01

    Characteristics and differences of temperature and back-scattered light intensity in different depths of 0.2, 0.4, 0.6, 0.8 and 1 mm for both human Hegu acupoint and non-acupoint tissue irradiated by 808 nm diode laser at the different power of 15, 25 and 35 mW were studied. The temperature and the back-scattered light intensity in different depths of 0.2, 0.4, 0.6, 0.8 and 1 mm for human Hegu acupoint and non-acupoint tissue were measured by using the infrared thermography and optical coherence tomography. The result shows few differences in the temperature and the back-scattered light intensity of human Hegu acupoint and non-acupoint tissue before irradiation. The temperature and back-scattered light intensity of Hegu acupoint and the non-acupoint after irradiation were significantly higher, and the temperature and back-scattered light intensity of Hegu acupoint significantly were higher than the non-acupoint areas. At 0-40 min after the irradiation, the temperature and back-scattered light intensity of Hegu acupoint and the non-acupoint area will fluctuate and gradually decrease with the passage of time. From the results above, it is clearly seen that Hegu acupoint is different from non-acupoint both in the back-scattered light intensity and temperature after irradiation, and Hegu acupoint is more sensitive to laser irradiation than non-acupoint tissue.

  5. Effect of He-Ne laser irradiation and low-intensity millimeter waves on transplanted tumor growth

    NASA Astrophysics Data System (ADS)

    Brill, Gregory E.; Panina, Nadezda P.

    1995-01-01

    In experiments on white rats the influence of He-Ne laser radiation ((lambda) -- 632.8 nm, power density -- 1.5 mW/cm2) and electromagnetic field of extremely high frequency (42.0 - 43.3 GHz, 1 mW/cm2) on transplantability and growth of fibroadenomas of mammary glands, and influence of low power laser irradiation on transplantability and growth of Walker carcinosarcoma were investigated. Skin at the site of future transplantation underwent irradiation. He-Ne laser and EHF-radiation were stated to change properties of tissue accepting tumor cells. A single laser irradiation of the inoculation site of Walker carcinosarcoma cells produced no effect on tumor transplantability, but increased the average life span of animals. Laser and EHF irradiation increase the transplantability of fibroadeonomas but depress growth and rate of multiplication of tumor cells.

  6. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H.; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n=168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p<0.05). Both adaptation and sealer penetration in root canals were not affected by the laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p<0.05). It can be concluded that intracanal laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  7. Space-resolved K α emission measurement of warm dense titanium targets irradiated by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bae, Leejin; Cho, Minsang; Kang, Gyeongbo; Kim, Minju; Kim, Young Hoon; Lee, Jong-Won; Cho, Byoung-Ick; Zastrau, Ulf

    2016-10-01

    Measurements of characteristic inner-shell K α emission have been widely used and reliable spectroscopic plasma diagnostics. Intense laser-plasma interactions on the solid target generate multiple electron distributions, i.e. hot relativistic and low energy bulk electrons. The bulk electrons create warm dense (10 100 eV and solid density) conditions in titanium foil and induce the shifts of K α emission spectra by creating M-shell vacancies. Therefore, modified K α emission spectra can be served as a bulk electron temperature. In this contribution, we present the titanium K α imaging spectroscopy experiment using a toroidally bent crystal, and the K-shell emission spectrum simulations using the collisional-radiative code SCFLY, for various bulk electron temperatures. The spatial distribution of electron temperature in the titanium foil which is irradiated by an intense laser pulse could be obtained, and possible electron transport mechanism will be discussed. This work was supported by NRF of Korea (No. NRF-2016R1A2B4009631 and NRF-2016H1A2A1909533), and the TBP research project of GIST.

  8. Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples

    SciTech Connect

    Colombier, J. P.; Audouard, E.; Stoian, R.; Combis, P.

    2006-12-01

    We present results describing the efficiency of energy coupling in laser-irradiated metallic surfaces by ultrashort laser pulses with different intensity envelopes. Subsequently, we discuss probable thermodynamic paths for material ejection under the laser action. Ion and neutral emission from the excited sample is used as a sensitive method to probe the efficiency of energy deposition in the material. With support from numerical simulations of the hydrodynamic advance of the excited matter, consequences of optimized energy coupling relevant for applications in material processing are revealed. Despite the reduced sensitivity to intensity-dependent effects for linear materials, the overall absorption efficiency can be elevated if the proper conditions of density and temperature are met for the expanding material layers. In this respect, short sub-ps single pulse irradiation is compared with picosecond sequences. We show that in particular irradiation regimes, characterized by fluences superior to the material removal threshold, laser energy delivery extending on several picoseconds leads to significant superheating of the superficial layers as compared to femtosecond irradiation and to a swift acceleration of the emitted particles. Subsequently, the lifetime of the post-irradiation liquid layer is diminished, which, in turn, translates into a reduction in droplet ejection. In contrast, short pulse irradiation at moderate fluences generates a higher quantity of removed material that is ejected in a dense mixture of gas and liquid-phase particulates.

  9. Effective post-acceleration of ion bunches in foils irradiated by ultra-intense laser pulses

    SciTech Connect

    Andreev, A. A.; Nickles, P. V.; Platonov, K. Yu

    2014-08-15

    Two-step laser acceleration of protons with two foils and two laser pulses is modelled and optimized. It is shown that a nearly mono-energetic distribution of proton bunches can be realized by a suitable parameter choice. Two-step acceleration schemes make it possible to obtain both higher efficiency and energy as compared to the acceleration with only one laser pulse of an energy equal to the sum of the energy of the two pulses. With the aid of our analytical model, the optimal distance between the two targets, the delay between the two laser pulses, and the parameters of the laser pulses are determined. Estimates and results of the modelling are proven with 2D PIC simulations of the acceleration of proton bunches moving through the second target.

  10. Photoionization of isooctane in intense laser fields. II. The effect of irradiance on electron dynamics

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.; Lipsky, Sanford; Blank, David A.

    2008-12-01

    Thin path length jets (60 μm) of liquid isooctane have been photoionized with 36-70 fs pulses of 3.1 eV photons. Decay of the transient absorption (TA) at 1200 nm (assigned as predominantly due to absorption by the electron) has been examined over a time interval from 0.5 to 40 ps and over an irradiance range from 7 to 407 TW/cm2. This range of irradiance covers a region that encompasses the closing of the three photon and four photon liquid ionization channels (at ˜15 and 110 TW/cm2, respectively) [J. Chem. Phys. 127, 214820 (2007)]. The temporal behavior of the TA is observed to cycle with irradiance. At the closing of both channels, the temporal behavior of the TA is the same and can be fitted to the model of an electron diffusively recombining with its geminate cation. In irradiance regions prior and subsequent to these channel closings, a similar diffusive fit of the TA is possible but with parameters changed to accommodate an experimental decay, which is much more rapid in the first few picoseconds. Possible origins for this periodic behavior are examined using the nonperturbative strong field approximation of Riess [Phys. Rev. A 22, 1786 (1980)].

  11. Photoionization of isooctane in intense laser fields. II. The effect of irradiance on electron dynamics.

    PubMed

    Healy, Andrew T; Lipsky, Sanford; Blank, David A

    2008-12-21

    Thin path length jets (60 microm) of liquid isooctane have been photoionized with 36-70 fs pulses of 3.1 eV photons. Decay of the transient absorption (TA) at 1200 nm (assigned as predominantly due to absorption by the electron) has been examined over a time interval from 0.5 to 40 ps and over an irradiance range from 7 to 407 TW/cm(2). This range of irradiance covers a region that encompasses the closing of the three photon and four photon liquid ionization channels (at approximately 15 and 110 TW/cm(2), respectively) [J. Chem. Phys. 127, 214820 (2007)]. The temporal behavior of the TA is observed to cycle with irradiance. At the closing of both channels, the temporal behavior of the TA is the same and can be fitted to the model of an electron diffusively recombining with its geminate cation. In irradiance regions prior and subsequent to these channel closings, a similar diffusive fit of the TA is possible but with parameters changed to accommodate an experimental decay, which is much more rapid in the first few picoseconds. Possible origins for this periodic behavior are examined using the nonperturbative strong field approximation of Riess [Phys. Rev. A 22, 1786 (1980)].

  12. Light absorption in blood during low-intensity laser irradiation of skin

    SciTech Connect

    Barun, V V; Ivanov, A P

    2010-06-23

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis. (laser methods in medicine)

  13. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  14. X-ray generation by fast electrons propagating in nanofibres irradiated by a laser pulse of relativistic intensity

    SciTech Connect

    Andreev, A A; Platonov, K Yu

    2016-02-28

    Numerical simulations were made of the interaction of a relativistically intense laser pulse with a target consisting of nanometre fibres. Fast electrons were shown to execute forced betatron oscillations in the electrostatic fibre field and the laser field. The fibre diameter was determined whereby the amplitude of betatron electron oscillations is resonantly increased. The power of coherent X-ray betatron radiation of the electron bunch was calculated outside of the resonance domain and in the resonance case. We showed that the laser-to-X-ray betatron radiation conversion coefficient in the resonance case amounts to a few percent and the target made up of nanometre fibres may be regarded as an efficient laser-driven source of coherent X- and gamma-ray radiation. (interaction of laser radiation with matter. laser plasma)

  15. Effect of low intensity helium-neon (HeNe) laser irradiation on experimental paracoccidioidomycotic wound healing dynamics.

    PubMed

    Ferreira, Maria Carolina; Gameiro, Jacy; Nagib, Patrícia Resende Alo; Brito, Vânia Nieto; Vasconcellos, Elza da Costa Cruz; Verinaud, Liana

    2009-01-01

    The effect of HeNe laser on the extracellular matrix deposition, chemokine expression and angiogenesis in experimental paracoccidioidomycotic lesions was investigated. At days 7, 8 and 9 postinfection the wound of each animal was treated with a 632.8 nm HeNe laser at a dose of 3 J cm(-2). At day 10 postinfection, the wounds were examined by using histologic and immunohistochemical methods. Results revealed that laser-treated lesions were lesser extensive than untreated ones, and composed mainly by macrophages and lymphocytes. High IL-1beta expression was shown in the untreated group whereas in laser-treated animals the expression was scarce. On the other hand, the expression of CXCL-10 was found to be reduced in untreated animals and quite intensive and well distributed in the laser-treated ones. Also, untreated lesions presented vascular endothelial growth factor (VEGF) in a small area near the center of the lesion and high immunoreactivity for hypoxia-inducible factor-1 (HIF-1), whereas laser-treated lesions expressed VEGF surrounding blood vessels and little immunoreactivity for HIF-1. Laser-treated lesions presented much more reticular fibers and collagen deposition when compared with the untreated lesion. Our results show that laser was efficient in minimizing the local effects observed in paracoccidioidomycosis and can be an efficient tool in the treatment of this infection, accelerating the healing process.

  16. Conformational Transformations of Hemoglobin Molecules During in vivo Blood Irradiation by Low-Intensity Laser Radiation in the Red and Near IR Ranges

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.

    2014-07-01

    The effect of in vivo blood irradiation by low-intensity laser radiation on electronic-conformational interactions in hemoglobin molecules has been studied experimentally. The changes in the electronic and IR absorption spectra were followed for blood samples drawn at specific times during intravenous and supravascular irradiation, and also after dark reactions have occurred. The nature of the spectral changes observed is discussed. It is shown that the reversible photodissociation of hemoglobin-ligand complexes, initiated by blood irradiation, changes the oxyhemoglobin and deoxyhemoglobin levels, which leads to changes in the electronic absorption spectra of the blood and erythrocytes, and all the conformational transitions in the hemoglobin macromolecules accompanying ligand detachment and addition are responsible for the changes in their IR spectra.

  17. Fast-Ion Energy-Flux Enhancement from Ultrathin Foils Irradiated by Intense and High-Contrast Short Laser Pulses

    SciTech Connect

    Andreev, A.; Platonov, K.; Levy, A.; Ceccotti, T.; Thaury, C.; Loch, R. A.; Martin, Ph.

    2008-10-10

    Recent significant improvements of the contrast ratio of chirped pulse amplified pulses allows us to extend the applicability domain of laser accelerated protons to very thin targets. In this framework, we propose an analytical model particularly suitable to reproducing ion laser acceleration experiments using high intensity and ultrahigh contrast pulses. The model is based on a self-consistent solution of the Poisson equation using an adiabatic approximation for laser generated fast electrons which allows one to find the target thickness maximizing the maximum proton (and ion) energies and population as a function of the laser parameters. Model furnished values show a good agreement with experimental data and 2D particle-in-cell simulation results.

  18. L-shell emission from high-Z solid targets by intense 10{sup 19}W/cm{sup 2} irradiation with a 248nm laser

    SciTech Connect

    Nelson, T.R.; Borisov, A.B.; Boyer, K.

    2000-01-05

    Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection. Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10{sup 18}W/cm{sup 2}) irradiation, with the most promising results coming from the irradiation of Xe clusters with a UV (248nm) laser at intensities of 10{sup 18}--10{sup 19}W/cm{sup 2}. In this paper the authors report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF{sub 2} and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction.

  19. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Kozadaev, K. V.

    2014-04-01

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10-100 ns) pulses with a high (108-1010 W cm-2) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 108 to 109 W cm-2. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 108-109 W cm-2.

  20. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    SciTech Connect

    Kozadaev, K V

    2014-04-28

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10–100 ns) pulses with a high (10{sup 8}–10{sup 10} W cm{sup -2}) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 10{sup 8} to 10{sup 9} W cm{sup -2}. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 10{sup 8}–10{sup 9} W cm{sup -2}. (interaction of laser radiation with matter)

  1. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  2. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    PubMed Central

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-01-01

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021  W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017  W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems. PMID:26330230

  3. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    DOE PAGES

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; ...

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021 W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in thismore » regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017 W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less

  4. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    SciTech Connect

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021 W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017 W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.

  5. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser.

    PubMed

    Faenov, A Ya; Colgan, J; Hansen, S B; Zhidkov, A; Pikuz, T A; Nishiuchi, M; Pikuz, S A; Skobelev, I Yu; Abdallah, J; Sakaki, H; Sagisaka, A; Pirozhkov, A S; Ogura, K; Fukuda, Y; Kanasaki, M; Hasegawa, N; Nishikino, M; Kando, M; Watanabe, Y; Kawachi, T; Masuda, S; Hosokai, T; Kodama, R; Kondo, K

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10(21)  W/cm(2) is efficiently converted to X-ray radiation, which is emitted by "hot" electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E(4-5) of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10(17)  W/cm(2), there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.

  6. Computer simulation of heat and mass transfer in tissue during high-intensity long-range laser irradiation.

    PubMed

    Director, L B; Frid, S E; Mendeleev VYa; Scovorod'Ko, S N

    1998-09-11

    Three-dimensional transient finite difference numerical model of the biological tissue irradiated by powerful laser beam is developed. It is used to simulate the thermal behavior of tissue assuming that radiation wavelength is chosen to give rise for volumetric heat sources. A three-dimensional seven-flow model is used to calculate radiation propagation. Evaporation and burn-out of tissue resulting in a through hole along the axis of the beam are taken into account. Besides the water boiling and corresponding changes of thermal and optical tissue properties the model takes into account one of the heat steam transfer mechanisms. Estimates are carried out for the effects of diffusion transfer and vaporization of water from the tissue surface. Kinetics of protein denaturation process are calculated by Arrenius equation. The problem is solved numerically using discrete grid technique and adaptive time-step control algorithm.

  7. Direct detection of delayed high energy electrons from the 181Ta target irradiated by a moderate intensity femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Savel’ev, A.; Chefonov, O.; Ovchinnikov, A.; Agranat, M.; Spohr, K. M.

    2017-03-01

    We depict an experimental study of delayed fast, negatively charged particles from femtosecond laser-plasma interaction at an intensity of I ∼ 1017 W cm‑2. Plates of 2 mm thickness made of 181Ta (∼100% abundance) and natural W were used as targets. We distinguished certain delayed events due to detection of negative H‑, C‑ and O‑ ions. However, most events which were delayed by 0.5–5 μs with respect to the instantaneous plasma formation caused by the laser pulses, were identified as electrons with energies of 3–7 keV. A comparative analysis between the tantalum and tungsten spectra was undertaken. This revealed a close similarity between the measured spectrum for tantalum and the predicted spectrum for electrons arising from to the internal conversion decay of the 6.237 keV nuclear isomeric state in 181Ta.

  8. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  9. Photoionization of isooctane and n-octane in intense laser fields. I. Effect of irradiance on ionization rates.

    PubMed

    Healy, Andrew T; Lipsky, Sanford; Blank, David A

    2007-12-07

    The population of ejected electrons following multiphoton ionization of neat liquids isooctane and n-octane is investigated over a large range of ionizing irradiance I(ex). Transient absorption (TA) at 1200 nm in both neat liquids is measured in a 60 mum path at time delays of 0.7 and 2.5 ps following an intense 400 nm (3.1 eV) ionizing pulse. As the irradiance of this pulse is varied over the range from 4 to 410 TWcm(2), the dependence of TA on I(ex) exhibits the periodic structure theoretically predicted for multiphoton channel openings and closings. At low I(ex) (<9 TWcm(2)), TA in isooctane is proportional to I(ex) (n) where n=3, consistent with nonresonant, near threshold ionization (liquid phase ionization potential=8.6 eV). At I(ex)>9 TWcm(2), n declines with increasing I(ex) up to I(ex)=13 TWcm(2), at which point n abruptly increases to 4. The pattern is repeated at I(ex)>13 TWcm(2), albeit with n declining from 4 and then abruptly increasing to 5 as I(ex) becomes greater than 100 TWcm(2). A similar trend is observed in n-octane. The dependence of the TA on I(ex) in the regions of channel openings and closings is compared to the nonperturbative, strong field approximation developed by Reiss [Phys. Rev. A 22, 1786 (1980)].

  10. Photoionization of isooctane and n-octane in intense laser fields. I. Effect of irradiance on ionization rates

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.; Lipsky, Sanford; Blank, David A.

    2007-12-01

    The population of ejected electrons following multiphoton ionization of neat liquids isooctane and n-octane is investigated over a large range of ionizing irradiance Iex. Transient absorption (TA) at 1200nm in both neat liquids is measured in a 60μm path at time delays of 0.7 and 2.5ps following an intense 400nm (3.1eV) ionizing pulse. As the irradiance of this pulse is varied over the range from 4to410TW/cm2, the dependence of TA on Iex exhibits the periodic structure theoretically predicted for multiphoton channel openings and closings. At low Iex (<9TW/cm2), TA in isooctane is proportional to Iexn where n =3, consistent with nonresonant, near threshold ionization (liquid phase ionization potential=8.6eV). At Iex>9TW/cm2, n declines with increasing Iex up to Iex=13TW/cm2, at which point n abruptly increases to 4. The pattern is repeated at Iex>13TW/cm2, albeit with n declining from 4 and then abruptly increasing to 5 as Iex becomes greater than 100TW/cm2. A similar trend is observed in n-octane. The dependence of the TA on Iex in the regions of channel openings and closings is compared to the nonperturbative, strong field approximation developed by Reiss [Phys. Rev. A 22, 1786 (1980)].

  11. First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse

    SciTech Connect

    Lee, Kyung-Min; Min Kim, Chul; Moon Jeong, Tae; Sato, Shunsuke A.; Otobe, Tomohito; Shinohara, Yasushi; Yabana, Kazuhiro

    2014-02-07

    A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwell's equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range 10{sup 10} W/cm{sup 2} to 2 × 10{sup 15} W/cm{sup 2} based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied to investigate the changes in the optical reflectance of α-quartz bulk, half-wavelength thin-film, and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange–correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials, in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.

  12. Experimental Study on Fast Electrons Transport in Ultra-intense Laser Irradiated Solid Targets by Transition Radiation

    NASA Astrophysics Data System (ADS)

    Zhijian, Zheng; Guangcan, Wang; Yuqiu, Gu

    2008-11-01

    The experiment was performed with SILEX laser facility(Ti-saphhire) at LFRC in China. The SILEX parameter: wavelength 0.8μm, duration 35fs, output power 280TW, contrast 5*105, The focal spot φ10μm(F/1.7), intensity on target surface 1*10^19W/cm^2(F/3). The main diagnostic equipments are the electron spectrometer, OMA spectrometer, optical streak camera. Some experimental results are given: The spectrum of optical emission from rear surface is rather narrow around some particular frequencies(1φ, 2φ, 3φ), We ascribe and confirm that the spike-like spectral line that is coherent transition radiation; The coherent light is also seen on time-integrated image with ring-patter due to Weibel instability of the fast electron transport; Obtained experimental cure of target thickness vs OTR image intensity is relative to mean free path of fast electron; The measuring optical transition radiation(OTR) duration of 171ps much longer than 1ps duration of fast electron transport target, the possible explanation is that the OTR duration to be determined magnetic diffusion time.

  13. Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators

    NASA Astrophysics Data System (ADS)

    Sato, S. A.; Yabana, K.; Shinohara, Y.; Otobe, T.; Lee, K.-M.; Bertsch, G. F.

    2015-11-01

    We calculate the energy deposition by very short laser pulses in SiO2 (α -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.

  14. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  15. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse

    SciTech Connect

    Nishimura, H.; Nakamura, H.; Tanabe, M.; Fujiwara, T.; Yamamoto, N.; Fujioka, S.; Mima, K.; Mishra, R.; Sentoku, Y.; Mancini, R.; Hakel, P.; Ohshima, S.; Batani, D.; Veltcheva, M.; Desai, T.; Jafer, R.; Kawamura, T.; Koike, F.

    2011-02-15

    Heat transport in reduced-mass targets irradiated with a high intensity laser pulse was studied. K{alpha} lines from partially ionized chlorine embedded in the middle of a triple-layered plastic target were measured to evaluate bulk electron temperature in the tracer region inside the target. Two groups of K{alpha} lines, one from Cl{sup +}-Cl{sup 6+} (hereby called ''cold K{alpha}''), and the other from Cl{sup 9+} and Cl{sup 10+} (''shifted K{alpha}'') are observed from different regions within the target. Two-dimensional collisional particle-in-cell simulations show two distinct heating mechanisms occurring concurrently: uniform heating by refluxing electrons and local heating by diffusive electrons in the central region. These two heating processes, which made the target temperature distribution nonuniform, are responsible for producing the two groups of K{alpha} lines in the experiment. The blue-shift of cold K{alpha} lines in the experiment is the signature of higher temperatures achieved by the refluxing heating in smaller-mass targets.

  16. [Effect of the photosensitizers pheophorbid a and protoporphyrin IX on skin wound healing by the action of low-intensity laser irradiation].

    PubMed

    Liapina, E A; Machneva, T V; Larkina, E A; Tkachevskaia, E P; Osipov, A N; Mironov, A F

    2010-01-01

    The effect of photosensitizer with subsequent He-Ne (632.8 nm; 3 mW/cm2) laser irradiation on experimental skin wound healing has been studied. Pheophorbid a and protoporphyrin IX were used as photosensitizers. It was found that the application of the photosensitizer and subsequent laser irradiation, first, decreased the amount and the functional activity of leukocyte in wound excudate and, second, inhibited the SOD-activity, compared to that of the control group. Moreover, pheophorbide a and protoporphyrin practically did not affect the total healing period but decreased the length of the inflammation stage. It was supposed that these effects are related to the generation of reactive oxygen species during irradiation.

  17. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  18. Intravascular low-level laser irradiation in the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Shi, Hong-Min; Zhang, Hui-Guo; Zhang, Mei-Jue; Xu, Jian; Zhou, Min; Hu, Guo-Qiang

    1998-11-01

    Liu TCY et al have put forward the biological information model on low intensity laser irradiation (BIML): low intensity laser irradiation couples with intracellular messenger through the chromophore absorption in the cell membrane: hot-color laser irradiation activates cAMP phosphodiestererase through Gi protein, or activates phosphoinositide phospholipase C through G protein, or activates one of receptor-associated kinases: cAMP; cold- color laser irradiation activates adenylate cyclase through Gs protein: cAMP$ARUP. In this paper, under the guidance of BIML, we applied the intravascular low intensity He-He laser irradiation on blood to a patient of idiopathic edema, and succeeded.

  19. [Dynamics of autonomic regulation and daily pH-metry in patients with gastroesophageal reflux disease under the influence of low-intensity laser irradiation of blood].

    PubMed

    Burduli, N M; Balayan, M M

    2014-01-01

    102 patients with GERD were examined: 70 female (68%) and 32 men (32%). Age of respondents ranged from 20 to 65 years (average of 45.8 ±8,2). All patients were randomly divided into 2 groups. In the first (control) group (30 people) traditional drug treatment were used according to the standard therapy of GERD (proton pump inhibitors, antacids, prokinetics), patients in the second (main) group (70 people) along with drug therapy has received a course of intravenous laser therapy according to the methods ILIB-405. For intravenous laser treatment Russian apparatus "Matrix-ILIB" ("Matrix", Russia) was used with wavelength 0,405 μm, output power at the end of the main optical path of 1-1.5 mW. Laser blood irradiation was carried out for 15 minutes in the CW mode, the course of treatment was 10 daily treatments with a break on Saturday and Sunday. Conclusions: 1. Intravenous laser irradiation of blood in the complex therapy of patients with gastroesophageal reflux disease improved significantly of HRV due to the alignment of parasympathetic regulation circuit and reducing the activity of sympathetic autonomic regulation, 2. the inclusion of intravenous laser irradiation of blood in the complex therapy of patients with GERD was accompanied by reliable normalization of the indicators of the daily pH-metry of the esophagus in patients with GERD.

  20. Ion explosion and multi-mega-electron-volt ion generation from an underdense plasma layer irradiated by a relativistically intense short-pulse laser.

    PubMed

    Yamagiwa, M; Koga, J; Tsintsadze, L N; Ueshima, Y; Kishimoto, Y

    1999-11-01

    Ion acceleration and expansion in the interaction of a relativistically intense short-pulse laser with an underdense plasma layer are investigated. Ion and electron dynamics are studied by a two-dimensional particle-in-cell simulation with the real mass ratio. It is shown that the longitudinal electric field induced by electron evacuation due to a large ponderomotive force or light pressure can accelerate ions to several MeV in the direction of the laser propagation. It is after the laser completely passes through the plasma layer that the ion explosion starts to be significant.

  1. Mechanical behavior of cartilage during laser irradiation

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, Sergio H.; Lavernia, Enrique J.; Wong, Brian J.

    2001-07-01

    Internal stress σ(t), diffuse transmitted light intensity I(t) from a He-Ne probe laser (λ= 632.8 nm), and radiometric surface temperature Ts(t) were measured during the photothermal heating of porcine septal cartilage using a pulsed Nd:YAG laser (λ= 1.32 μm). Rectangular specimens, 1-4 mm thick, were secured to a tensile force testing rig and laser irradiated. Force measurements during heating showed significant variation in the rate of deformation, which were found to be strong dependent on tissue orientation; revealing the anisotropic nature of its thermo-mechanical properties. These finding suggest that the collagen and proeoglycan networks lie in a preferential orientation within the extracellular matrix, which must be addressed before this procedure can be used on a wider basis.

  2. Effect of Laser Irradiation on Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Murakami, Satoshi; Kashii, Masafumi; Kitano, Hiroshi; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Doi, Masaaki; Sugamoto, Kazuomi; Yoshikawa, Hideki; Sasaki, Takatomo

    2005-11-01

    We previously developed a protein crystallization technique using a femtosecond laser and protein crystal processing and detaching techniques using a pulsed UV laser. In this study, we examine the effect of laser irradiation on protein integrity. After several kinds of laser were irradiated on part of a solution of glycerol-6-phosphate dehydrogenase from Leuconostoc mesenteroides, we measured the enzyme activity. Femtosecond and deep-UV laser irradiations have little influence on the whole enzyme activity, whereas the enzyme lost its activity upon high-power near-infrared laser irradiation at a wavelength of 1547 nm. These results suggest that suitable laser irradiation has no remarkable destructive influence on protein crystallization or crystal processing.

  3. Laser irradiation to produce amorphous pharmaceuticals.

    PubMed

    Titapiwatanakun, Varin; Tankul, Junlathip; Basit, Abdul W; Gaisford, Simon

    2016-11-30

    Using a high-power CO2 laser to irradiate powder beds, it was possible to induce phase transformation to the amorphous state. Irradiation of a model drug, indometacin, resulted in formation of a glass. Varying the settings of the laser (power and raster speed) was shown to change the physicochemical properties of the glasses produced and all irradiated glasses were found to be more stable than a reference glass produced by melt-quenching. Irradiation of a powder blend of paracetamol and polyvinylpyrrolidone K30 was found to produce a solid amorphous dispersion. The results suggest that laser-irradiation might be a useful method for making amorphous pharmaceuticals.

  4. Photoionization of isooctane and n-octane in intense laser fields: The effect of irradiance on ionization rates and electron dynamics

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.

    Thin path length jets (60 mum) of liquid isooctane and n-octane have been photoionized with 36-70 fs pulses of 3.1 eV photons. The population of electrons ejected post ionization is investigated over a large range of ionizing irradiance, Iex, though transient absorption (TA) measurements at wavelengths in the range 570 nm (2.17 eV) to 1315 nm (0.94 eV). As Iex is varied over a range from 3 TW/cm2 to 410 TW/cm2, the dependence of the TA intensity on Iex at time delays 0.7 ps and 2.5 ps exhibits the periodic structure theoretically predicted to develop as a result of multiphoton channel closings. At low Iex (< 9 TW/cm2), TA intensity in isooctane is proportional to Inex where n = 3, consistent with non-resonant, near threshold ionization (liquid phase ionization potential = 8.6 eV). At I ex > 9 TW/cm2, n declines with increasing Iex up to Iex = 13 TW/cm2, at which point n abruptly increases to 4. The pattern is repeated at Iex > 13 TW/cm 2, albeit with n declining from 4 and then abruptly increasing to 5 as Iex becomes greater than 100 TW/cm2. A similar trend is observed in n-octane. The decay of the TA intensity in both liquids has been measured from 0.50 ps to 180 ps over the same range of irradiance. Via comparison of the two liquids, and electron quenching studies, the TA at wavelengths longer than 800 nm has been assigned to be predominantly due to absorption by the electron. At the lowest irradiances, where n = 3 photons are required for photoionization, the TA decay in isooctane is characteristic of a geminate ion pair decaying via diffusive recombination in a Coulomb field. As the irradiance is increased, an early time, rapid, exponential decay of the TA begins to develop until an irradiance is reached (≅ 13 TW/cm2) at which our studies indicate that the n = 3 channel closes. At this irradiance, the TA decay returns to purely diffusive-like. As the irradiance is further increased, there is a reappearance of the early time exponential decay until the n = 4

  5. High intensity laser interactions with atomic clusters

    SciTech Connect

    Ditmire, T

    2000-08-07

    The development of ultrashort pulse table top lasers with peak pulse powers in excess of 1 TW has permitted an access to studies of matter subject to unprecedented light intensities. Such interactions have accessed exotic regimes of multiphoton atomic and high energy-density plasma physics. Very recently, the nature of the interactions between these very high intensity laser pulses and atomic clusters of a few hundred to a few thousand atoms has come under study. Such studies have found some rather unexpected results, including the striking finding that these interactions appear to be more energetic than interactions with either single atoms or solid density plasmas. Recent experiments have shown that the explosion of such clusters upon intense irradiation can expel ions from the cluster with energies from a few keV to nearly 1 MeV. This phenomenon has recently been exploited to produce DD fusion neutrons in a gas of exploding deuterium clusters. Under this project, we have undertaken a general study of the intense femtosecond laser cluster interaction. Our goal is to understand the macroscopic and microscopic coupling between the laser and the clusters with the aim of optimizing high flux fusion neutron production from the exploding deuterium clusters or the x-ray yield in the hot plasmas that are produced in this interaction. In particular, we are studying the physics governing the cluster explosions. The interplay between a traditional Coulomb explosion description of the cluster disassembly and a plasma-like hydrodynamic explosion is not entirely understood, particularly for small to medium sized clusters (<1000 atoms) and clusters composed of low-Z atoms. We are focusing on experimental studies of the ion and electron energies resulting from such explosions through various experimental techniques. We are also examining how an intense laser pulse propagates through a dense medium containing these clusters.

  6. New scheme for enhancement of maximum proton energy with a cone-hole target irradiated by a short intense laser pulse

    NASA Astrophysics Data System (ADS)

    Yang, Siqian; Zhou, Weimin; Jiao, Jinlong; Zhang, Zhimeng; Cao, Leifeng; Gu, Yuqiu; Zhang, Baohan

    2017-03-01

    Improvement of proton energy from short intense laser interaction with a new proposal of a cone-hole target is investigated via two-dimensional particle-in-cell simulations. The configuration of the target is a cone structure with a hole of changeable diameter through the center of the tip, with proton layers contaminated both on the target rear surface and at the rear part of the hole. In the interacting process, the cone-hole geometry enables the focus of the laser pulse by the cone structure and the consequent penetration of the intensified laser through the tip along the hole instead of reflection, which can increase the energy coupling from laser field to plasmas. The heated electrons, following the target normal sheath acceleration scheme, induce a much stronger electrostatic field in the longitudinal direction at the rear surface of the target than that in the traditional foil case. The simulation results indicate that the accelerated proton beam from the cone-hole target has a cutoff energy about 5.7 and 2.1 times larger than the foil case and the hollow cone case, respectively. Furthermore, the case of the cone-hole target without the proton layer in the hole is also analyzed to demonstrate the effect of the proton layer position and the results show that not only can the existence of the central proton layer improve the proton energy but also lead to a better collimation. The dependence of proton energy on the hole diameter and the scaling law of the maximum proton energy relative to laser intensity are also presented.

  7. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  8. Excimer laser irradiation of metal surfaces

    NASA Astrophysics Data System (ADS)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  9. Continuous wave laser irradiation of explosives

    SciTech Connect

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  10. Functional assessment of laser irradiation

    NASA Astrophysics Data System (ADS)

    Robbins, David O.

    1988-03-01

    Exposure of the fovea to intense coherent light can produce either transient or permanent changes in the eye's ability to resolve fine spatial detail. Permanent functional changes can occur in the absence of gross morphological damage and at power densities below the ED50 level. Furthermore, the eye may become increasingly susceptible to damage after repeated low-level exposures which initially produce only transient effects. Independent of any long-term hazards, laser exposures can also disrupt visual/motor behavior for periods of up to 96 hrs

  11. Influence of irradiation with {gamma}-ray photons on the photoluminescence of Cd{sub 0.9}Zn{sub 0.1}Te crystals preliminarily subjected to the intense radiation of a neodymium laser

    SciTech Connect

    Glinchuk, K. D.; Medvid', A. P.; Mychko, A. M.; Naseka, Yu. M.; Prokhorovich, A. V.; Strilchuk, O. M.

    2013-04-15

    The effect of the preliminary treatment of Cd{sub 0.9}Zn{sub 0.1}Te crystals with high-power pulses of neodymium laser radiation (the power density is {<=}1.8 MW/cm{sup 2}, at a wavelength of 532 nm) on the low-temperature (5 K) photoluminescence induced by {gamma}-ray radiation (the dose was {Phi}{sub {gamma}} = 5 kGy) is studied. The luminescence bands are related to radiation-stimulated donor-acceptor pairs, which include shallow neutral donors and neutral cadmium vacancies stimulated by {gamma}-ray irradiation, the transition of free electrons to neutral cadmium vacancies formed by radiation, and the annihilation of excitons bound to the above vacancies. It is shown that, in the crystals preliminarily treated with laser radiation, the intensity of the {gamma}-ray-stimulated luminescence bands is significantly lower than in crystals not subjected to laser radiation. This fact is accounted for by a decrease in the concentration of cadmium vacancies generated by the {gamma}-ray radiation as a result of their annihilation during the course of their interaction with laser-stimulated defects, in particular, as a consequence of their recombination at laser-stimulated interstitial cadmium atoms.

  12. He-Ne laser extravascular irradiation therapy

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Chen, Huifang; Xie, Shusen; Chen, Yanjiao; Zhang, Yanrong

    2000-10-01

    Based on the study of tissue optics related with the laser irradiation blood therapy, a new treatment method, extravascular low-level laser irradiation therapy (ELLLI) is developed. The veins of 30 patients with cerebrovascular disease combined with diabetes, asthma were treated by He-Ne laser (632.8nm, 25mW) which was delivered by an optics fiber. The fiber was outside the patient's skin and the laser irradiated on the blood vessel perpendicularly. The therapy time was 60 minutes each time and about 7-10 times a course of the treatment. The values of blood sugar, blood- fat and hemorrheology were measured as the effective indexes. After the treatment the effective indexes and the symptoms of the patients were all improved. With the advantages of simplicity and safety (no medical infection), laser extravascular irradiation therapy is likely to be a new medical method for heart brain and other diseases.

  13. Laser irradiation of carbon-tungsten materials

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Avotina, L.; Marin, A.; Lungu, C. P.; Grigorescu, C. E. A.; Demitri, N.; Ursescu, D.; Porosnicu, C.; Osiceanu, P.; Kizane, G.; Grigoriu, C.

    2014-09-01

    Carbon-tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp2-sp3 transitions with the number of laser pulses just for nanometric layer thicknesses.

  14. Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae

    2013-09-01

    Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.

  15. Effects of Laser Irradiation on Peripheral Nerve

    NASA Astrophysics Data System (ADS)

    Baxter, G. D.; Chow, R.; Armati, P.; Bjordal, J. M.; Laakso, L.

    2009-06-01

    A literature review was undertaken to determine the electrophysiological effects of Laser Irradiation (LI) on peripheral mammalian nerves, as a means of elucidating the potential mechanisms underlying pain relief associated with laser therapy. Relevant computerized databases and reference lists were searched, and experts consulted for further articles. A total of 38 studies, comprising 82 separate experiments were identified. In human studies, all types of LI (red and infrared, pulsed and cw) slowed nerve conduction velocity, and reduced compound action potential of irradiated nerves. In animal studies, infrared LI suppressed conduction velocity, as well as noxious stimulation evoked potential. This review thus indicates the potential of laser irradiation to inhibit activity in peripheral nerves, and highlights one potential mechanism of action for laser-mediated pain relief.

  16. Efficiency of applying low-intensity laser radiation in treating patients with granuloma annulare

    NASA Astrophysics Data System (ADS)

    Kochetkov, M. A.; Volnukhin, Vladimir A.; Kozlov, Valentine I.

    2001-04-01

    This article considers the application of low-intensity laser therapy in treating patients with granuloma annulare. The treatment was carried out by using two different laser therapeutic techniques, namely, the local laser irradiation of pathological foci and the laser transcutaneous irradiation of blood. It was found that both techniques produced a unidirectional effect, brought about a pronounced improvement of the clinical picture of the disease, and normalized microcirculation and microvascular reactivity of the affected skin.

  17. Surface changes of implants after laser irradiation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Sadegh, Hamid M. M.; Goldin, Dan S.; Hennig, Thomas

    1999-05-01

    Periimplantitis is one of the major factors for the loss of dental implants. Due to the minor defense ability of the tissue surrounding the implant compared to natural teeth treatment of periimplantitis in the early stage is very important. Reducing bacteria with a laser might be the most successful step in therapy of periimplantitis. Aim of the study was to observe changes in surface morphology of seven different implants after irradiation with three different lasers. Two kinds of flat round samles were prepared by the manufacturers either identical to the body surface or to the cervical area of the corresponding implants. The samples were irradiated using different power settings. The lasers used were a CO2 laser (Uni Laser 450P, ASAH Medico Denmark; fiber guided, wavelength 10.6 μm, max. average power 8.3 W, "soft-pulse" and cw) an Er:YAG laser (KaVo Key Laser II, wavelength 2.94 μm, pulse duration 250-500μs, pulse energy 60-500 mJ, pulse repetition rate 1-15 Hz, focus diameter 620 μm, air-water cooling; Biberach, Germany; a frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 μs, pulse repetition rate 30 Hz, water cooling). After irradiation the implant surfaces were investigated with a Scanning Electron Microscope. Ablation thresholds were determined. After CO2 laser irradiation no changes in surface morphology were observed whereas using the pulsed Er:YAG laser or frequency doubled Alexandrite laser even at low energies loss of integrity or melting of the surface was observed. The changes in surface morphology seem to depend very strongly on the type of surface coating.

  18. Irradiance analyzer for high power lasers

    SciTech Connect

    Conrad, R.W.

    1981-04-07

    An irradiance analysis system which includes an array of square rods that are joined together and have a flat entrance end and a polished flat exit end through which visible light is transmitted to a fresnel lens and focused to a particular area where the image focused is photographed so that when the various frames are developed they can be analyzed in a conventional film densitometer to yield quantative data on the temporal variation of laser beam irradiance distributions.

  19. Effect of laser intensity on the characteristic of inkjet-printed silver nanoparticles during continuous laser sintering.

    PubMed

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Lee, Jae-Heon; Moon, Seung-Jae

    2014-11-01

    The variation in electric conductivity was examined for laser irradiation with various beam intensities. A 532-nm continuous wave laser was irradiated onto inkjet-printed silver lines on a glass substrate and the electrical resistance was measured in situ during the irradiation. The results demonstrate that electrical conductivity varies nonlinearly with laser intensity, and has a minimum specific resistance of 3.1 x 10(-8) Ωm at 4 kW/cm2 irradiation. These results are interesting because the specific resistance achieved by the present laser irradiation was approximately 1.9 times lower than the best value obtainable by oven heating, even though it was still higher by 1.9 times than that of bulk silver. It is also demonstrated that the irradiation time required to complete the sintering process decreases with laser intensity. The numerical simulation of laser heating shows that the heating temperature could be as high as 250 degrees C for laser sintering, while it is limited to 250 degrees C for oven sintering. The characteristics of sintering with laser intensity based on the results of field emission scanning electron microscope images are discussed.

  20. Quantum dot intermixing using excimer laser irradiation

    SciTech Connect

    Djie, H. S.; Ooi, B. S; Gunawan, O.

    2006-08-21

    The authors report a spatial control of the band gap in InGaAs/GaAs quantum dots (QDs) using the combined effects of pulsed excimer laser irradiation and impurity-free dielectric cap induced intermixing technique. A large band gap shift of up to 180 meV has been obtained under laser irradiation of 480 mJ/cm{sup 2} and 150 pulses to the SiO{sub 2} capped shallow QD structure, while the nonirradiated SiO{sub 2} and Si{sub x}N{sub y} capped QDs only exhibit band gap shifts of 18 and 91 meV, respectively.

  1. Heat profiles of laser-irradiated nails

    NASA Astrophysics Data System (ADS)

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A.; Kendler, Michael; Simon, Jan C.; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  2. Heat profiles of laser-irradiated nails.

    PubMed

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A; Kendler, Michael; Simon, Jan C; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  3. Application of Laser Irradiation for Restorative Treatments

    PubMed Central

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes. PMID:27990188

  4. Effect of laser irradiation of donor blood on erythrocyte shape.

    PubMed

    Baibekov, I M; Ibragimov, A F; Baibekov, A I

    2012-04-01

    Changes in erythrocyte shape in donor blood during storage and after irradiation with He-Ne laser and infrared laser were studied by scanning electron microscopy, thick drop express-method, and morphometry. It was found that laser irradiation delayed the appearance of erythrocytes of pathological shapes (echinocytes, stomatocytes, etc.) in the blood; He-Ne laser produced a more pronounced effect.

  5. Colour changes by laser irradiation of reddish building limestones

    NASA Astrophysics Data System (ADS)

    Grossi, C. M.; Benavente, D.

    2016-10-01

    We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm-2. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm-2, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm-2) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.

  6. Xenon clusters in intense VUV laser fields.

    PubMed

    Santra, Robin; Greene, Chris H

    2003-12-05

    A simple model is developed that quantitatively describes intense interactions of a vacuum ultraviolet (VUV) laser pulse with a xenon cluster. We find good agreement with a recent experiment [Nature (London) 420, 482 (2002)

  7. Detecting radiation reaction at moderate laser intensities.

    PubMed

    Heinzl, Thomas; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Bulanov, Stepan S; Rykovanov, Sergey; Schroeder, Carl B; Esarey, Eric; Leemans, Wim P

    2015-02-01

    We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizable for particles that gain almost no energy through the interaction with the laser pulse. Hence, there are regions of parameter space in which radiation reaction is actually the dominant influence on charged particle motion.

  8. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  9. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    SciTech Connect

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field.

  10. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  11. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  12. Solar irradiance dictates settlement timing and intensity of marine mussels

    PubMed Central

    Fuentes-Santos, Isabel; Labarta, Uxío; Álvarez-Salgado, X. Antón; Fernández-Reiriz, Mª José

    2016-01-01

    Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance. PMID:27384527

  13. Solar irradiance dictates settlement timing and intensity of marine mussels

    NASA Astrophysics Data System (ADS)

    Fuentes-Santos, Isabel; Labarta, Uxío; Álvarez-Salgado, X. Antón; Fernández-Reiriz, Mª José

    2016-07-01

    Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance.

  14. Low intensity laser therapy accelerates muscle regeneration in aged rats

    PubMed Central

    Vatansever, Fatma; Rodrigues, Natalia C.; Assis, Livia L.; Peviani, Sabrina S.; Durigan, Joao L.; Moreira, Fernando M.A.; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2013-01-01

    Background Elderly people suffer from skeletal muscle disorders that undermine their daily activity and quality of life; some of these problems can be listed as but not limited to: sarcopenia, changes in central and peripheral nervous system, blood hypoperfusion, regenerative changes contributing to atrophy, and muscle weakness. Determination, proliferation and differentiation of satellite cells in the regenerative process are regulated by specific transcription factors, known as myogenic regulatory factors (MRFs). In the elderly, the activation of MRFs is inefficient which hampers the regenerative process. Recent studies found that low intensity laser therapy (LILT) has a stimulatory effect in the muscle regeneration process. However, the effects of this therapy when associated with aging are still unknown. Objective This study aimed to evaluate the effects of LILT (λ=830 nm) on the tibialis anterior (TA) muscle of aged rats. Subjects and methods The total of 56 male Wistar rats formed two population sets: old and young, with 28 animals in each set. Each of these sets were randomly divided into four groups of young rats (3 months of age) with n=7 per group and four groups of aged rats (10 months of age) with n=7 per group. These groups were submitted to cryoinjury + laser irradiation, cryoinjury only, laser irradiation only and the control group (no cryoinjury/no laser irradiation). The laser treatment was performed for 5 consecutive days. The first laser application was done 24 h after the injury (on day 2) and on the seventh day, the TA muscle was dissected and removed under anesthesia. After this the animals were euthanized. Histological analyses with toluidine blue as well as hematoxylin-eosin staining (for counting the blood capillaries) were performed for the lesion areas. In addition, MyoD and VEGF mRNA was assessed by quantitative polymerase chain reaction. Results The results showed significant elevation (p<0.05) in MyoD and VEGF genes expression levels

  15. Application of low-intensity lasers with special regard to rheumatology

    NASA Astrophysics Data System (ADS)

    Glazewski, Jacek B.

    1994-02-01

    A number of reports and scientific publications, especially from recent years, prove that laser irradiation from several to a few dozen milliwatts has positive both local and general influence in many diseases. It is widely regarded that irradiation by a laser of low intensity improves energetic balance of cells, tissues, and the whole system, and works through following the mechanisms: direct absorption of photons, electromagnetic influence, and phosphorylation of ADP under the influence of photostimulation.

  16. Thermal Changes of Maize Seed by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.

    2015-09-01

    In this research, the thermal evolution in maize seeds ( Zea mays L.) was studied when low-intensity laser irradiation was applied during 60 s. The seeds were irradiated in three different conditions: suspended in air, placed on an aluminum surface, and finally placed on a cardboard; the evolution of the seed temperature was measured by an infrared camera. Photoacoustic spectroscopy and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient (β ) of the seeds. The results indicate that using 650 nm laser light and 27.4 mW, it is possible to produce temperature changes (up to 9.06°C after 1 min) on the seeds. Comparing the mean temperature of the seeds, during and after the incidence of light from a laser, it was found that there were statistically significant differences (P≤ 0.05) from time t1 to time t_{16} (t1 to t_{16}) and t3 to t_{16}, for the laser turned on and off, respectively. The seed condition that had the highest temperature variation, relative to the initial temperature (during the irradiation laser exposure), involved the seeds suspended in air. With regard to the stage of decay of the temperature, it was found that the seed condition that decays more slowly was the seed placed on the cardboard. It was also found that black-dyed maize seeds are optically opaque in the 300 nm to 700 nm range Also, the thermal diffusion length is smaller than the optical penetration length. In the present investigation, it was shown that there is a thermal component associated with the mechanisms of laser biostimulation, which is also a function of the container materials of the seed. In this way, the effects of laser treatment on maize seeds involve at least a temperature effect. It is important to know the temperature changes in the seeds that have been irradiated with a laser beam since they could have substantial practical and theoretical importance.

  17. [Preventive measures with low-intensity laser for workers exposed to physical exertion].

    PubMed

    Ushkova, I N; Mal'kova, N Iu; Chernushevich, N I

    2010-01-01

    Studies covered 168 personal computer users, 98 jewelry female polishers, 64 assemblers of metallic ship frameworks. Various doses of laser rays in accordance with work conditions appeared effective for improving upper limbs microcirculation. The suggested method is based on effects of low-intensity laser irradiation.

  18. Study on damage of K9 glass under 248nm ultraviolet pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Fang, Xiaodong

    2015-04-01

    The damage of K9 glass under 248nm ultraviolet pulsed laser irradiation was studied. The laser pulse energy was kept within the range of 60mJ to 160mJ, and the repetition rate was adjusted within the range of 1Hz to 40Hz. The damage morphologies of single-pulse and multi-pulse laser irradiation were characterized by optical microscope, and the damage mechanism was discussed. The experimental results indicated that the damage of K9 glass irradiated by 248nm ultraviolet laser mainly followed the thermal-mechanical coupling mechanism and the damage threshold of K9 glass was 2.8J/cm2. The intensity of damage area increased gradually with the increase of the laser pulse number. It was shown that accumulation effect of laser induced damage to K9 glass was obvious.

  19. Effect of low-level laser irradiating point on immunity

    NASA Astrophysics Data System (ADS)

    Cai, ChangSong; Qi, Qiong-fang; Xin, Jiang

    1993-03-01

    This paper reports that cellular immune function was observed when He-Ne laser was used to irradiate `zusanli' point in rats using various power, time, and periods. The indicator was a lymphocyte transformation test (LTT) by MTT colorimetric analysis. The best irradiating condition was determined, the effect and both virtues and defects of the laser were compared with those of electropuncture. The results show (1) LTT was enhanced in the group of laser irradiating point, but LTT was not enhanced in non-point (t' test, P < 0.01). (2) Lower power -- 2 mW or 5 mW of irradiating for 15 - 20 min, was better; 10 mW or 20 mW of irradiating for 10 - 15 min was suitable. Prolonged irradiating time did not enhance the immune function of the rats. On the contrary, immune function was inhibited. (3) A 7-day period of irradiating was best (once a day, 10 mW for 10 min). Enhanced LTT was not seen when irradiation days were added (SNK, P > 0.05). (4) Laser irradiation point and electropuncture were compared with vehicle control, LTT in the former two groups was enhanced significantly (ANOVA, P < 0.01), and laser irradiating point and electropuncture had the same effect (SNK, P > 0.05). The data suggest that laser irradiating point was able to enhance cell immunity and the enhancement of LTT had a point specific characteristic. The best condition of laser irradiating point was 2 mW for 15 - 20 min, and 10 mW or 20 mW for 10 - 15 min. The best period was 7-day irradiation. The results show laser irradiating the point may activate the main and collateral channels system, then modify the immune function of the body. Our observations provide experimental evidence for proper clinical application of laser irradiating points. The paper theoretically discusses and analyzes the experiment results in detail.

  20. Zeeman effect induced by intense laser light.

    PubMed

    Stambulchik, E; Maron, Y

    2014-08-22

    We analyze spectral line shapes of hydrogenlike species subjected to fields of electromagnetic waves. It is shown that the magnetic component of an electromagnetic wave may significantly influence the spectra. In particular, the Zeeman effect induced by a visible or infrared light can be experimentally observed using present-day powerful lasers. In addition, the effect may be used for diagnostics of focused beam intensities achieved at existing and newly built laser facilities.

  1. Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse

    NASA Astrophysics Data System (ADS)

    Gaudin, J.; Medvedev, N.; Chalupský, J.; Burian, T.; Dastjani-Farahani, S.; Hájková, V.; Harmand, M.; Jeschke, H. O.; Juha, L.; Jurek, M.; Klinger, D.; Krzywinski, J.; Loch, R. A.; Moeller, S.; Nagasono, M.; Ozkan, C.; Saksl, K.; Sinn, H.; Sobierajski, R.; Sovák, P.; Toleikis, S.; Tiedtke, K.; Toufarová, M.; Tschentscher, T.; Vorlíček, V.; Vyšín, L.; Wabnitz, H.; Ziaja, B.

    2013-08-01

    We studied experimentally and theoretically the structural transition of diamond under an irradiation with an intense femtosecond extreme ultraviolet laser (XUV) pulse of 24-275 eV photon energy provided by free-electron lasers. Experimental results obtained show that the irradiated diamond undergoes a solid-to-solid phase transition to graphite, and not to an amorphous state. Our theoretical findings suggest that the nature of this transition is nonthermal, stimulated by a change of the interatomic potential triggered by the excitation of valence electrons. Ultrashort laser pulse duration enables to identify the subsequent steps of this process: electron excitation, band gap collapse, and the following atomic motion. A good agreement between the experimentally measured and theoretically calculated damage thresholds for the XUV range supports our conclusions.

  2. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  3. Laser irradiation in Nd{sup 3+} doped strontium barium niobate glass

    SciTech Connect

    Haro-Gonzalez, P.; Martin, I. R.; Arbelo-Jorge, E.; Gonzalez-Perez, S.; Caceres, J. M.; Nunez, P.

    2008-07-01

    A local nanocrystalline formation in a neodymium doped strontium barium niobate (SBN) glass has been obtained under argon laser irradiation. The intense emission around 880 nm, originated from the {sup 4}F{sub 3/2} ({sup 4}F{sub 5/2}) thermalized level when the glass structure changes to a glass ceramic structure due to the irradiation of the laser beam, has been studied. The intensities and lifetimes change from this level inside and outside the irradiated area made by the laser excitation. They have been analyzed and demonstrated that the desvitrification process has been successfully achieved. These results confirm that nanocrystals of SBN have been created by the laser action confirming that the transition from glass to glass ceramic has been completed. These results are in agreement with the emission properties of nanocrystals of the bulk glass ceramic sample. The present study also suggests that the SBN nanocrystal has a potential application as temperature detector.

  4. Pyrolysis of vegetation by brief intense irradiation

    SciTech Connect

    Fendell, F.E.; Kung, E.Y. )

    1993-09-01

    When nonreflected intense visible radiation of about 4 x 10 exp 6 J/(sq m-sec) is incident on a dense vegetative layer (about 3-kg/sq m loading, 0.3-m height) for even a second or two, the absorbing leafy matter can be desiccated and gasified. Simple unsteady 1D models are formulated and solved to characterize the rate of propagation earthward of the pyrolysis front, at which the vegetative population under consideration totally disappears. Distinct treatments are undertaken for temperate-cereal-like layers which contain only foliage (hay, wheat, grass) and brush-like layers, in which not only effectively pyrolyzable leafy matter but also partially pyrolyzable woody-stem matter exist. Qualitative remarks consider soot formation in the pyrolyzate and/or combustion of the hydrocarbon-vapor pyrolyzate with interstitial air. 7 refs.

  5. Laser-intensity requirements for generating enhanced kilovolt bremsstrahlung emission in intense laser-cluster interactions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Davis, J.; Petrova, Tz. B.; Petrov, G. M.

    2012-06-01

    The effects of ultrahigh-intensity laser radiation on dynamical processes such as electron scattering, bremsstrahlung emission, and pair production, have received growing theoretical interest as laser intensities in the laboratory continue to increase. Recently, for example, a calculation was published that predicted resonant increases of more than four orders of magnitude in bremsstrahlung emission in the presence of intense optical laser radiation [A. A. Lebed and S. P. Roshchupkin, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.033413 81, 033413 (2010)]. The analysis in that paper was limited to laser intensities of ≤1017 W/cm2, and it was applied only to bremsstrahlung emissions at the laser frequency. In the present paper, we extend this Lebed and Roshchupkin analysis in order to assess the possibility of achieving some enhancement in bremsstrahlung emissions at significantly higher harmonics of the optical laser photon energies (˜6 keV) and thereby to appraise whether or not enhanced bremsstrahlung emissions may have played a hidden role in producing the population inversions and kilovolt x-ray amplifications that have been seen experimentally [A. B. Borisov , J. Phys. B 40, F307 (2007)]. In those experiments, light from a KrF laser was focused onto a gas of xenon clusters to intensities ≳1019 W/cm2. A model of the expansion and ionization dynamics of a xenon cluster when heated by such laser intensities has been constructed [Tz. B. Petrova , High Energy Density Phys.1574-181810.1016/j.hedp.2012.03.007 8, 209 (2012)]. It is capable of replicating the x-ray gains seen experimentally, but only under the assumption that sufficiently high inner-shell photoionization rates are generated in the experiments. We apply this model to show that such photoionization rates are achievable, but only if there are enhancements of the Bethe-Heitler bremsstrahlung emission rate of three to four orders of magnitude. Our extended analysis of the Lebed and Roshchupkin work

  6. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy

    SciTech Connect

    Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F.; Verissimo, C.; Moshkalev, S. A.

    2013-07-14

    We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency of the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.

  7. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  8. Transverse intensity transformation by laser amplifiers

    NASA Astrophysics Data System (ADS)

    Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.

    2015-03-01

    Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.

  9. Generation of Ultra-high Intensity Laser Pulses

    SciTech Connect

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  10. Effect of laser irradiation of nanoparticles in aqueous uranium salt solutions on nuclide activity

    SciTech Connect

    Simakin, Aleksandr V; Shafeev, Georgii A

    2011-07-31

    This paper presents an experimental study of the effect of laser irradiation of aqueous uranyl chloride solutions containing gold nanoparticles on the activity of the uranium series radionuclides {sup 234}Th, {sup 234m}Pa, and {sup 235}U. The solutions were exposed to femtosecond Ti:sapphire laser pulses and to the second or third harmonic of a Nd:YAG laser (150-ps pulses) at a peak intensity in the medium of {approx}10{sup 12} W cm{sup -2}. The activities of the radionuclides in the irradiated solutions were shown to differ markedly from their equilibrium values. The sign of the deviation depends on the laser wavelength. The measured activity deviations can be interpreted as evidence that laser exposure of nanoparticles accelerates the alpha and beta decays of the radionuclides. The observed effects are accounted for in terms of a mechanism that involves resonant enhancement of optical waves by metallic nanoparticles. (interaction of laser radiation with matter)

  11. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    DOE PAGES

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; ...

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. We used high-speed photography to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a moremore » uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Lastly, finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less

  12. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    SciTech Connect

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; Adams, David P.

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. We used high-speed photography to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Lastly, finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.

  13. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    SciTech Connect

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; Adams, David P.

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.

  14. Integrated Modeling of Polymer Composites Under High Energy Laser Irradiation

    DTIC Science & Technology

    2015-10-30

    included as an appendix. 15. SUBJECT TERMS organic matrix composites, polymer matrix composites, lasers, thermal transport, ICMSE, molecular dynamics...AFRL-RX-WP-TR-2016-0071 INTEGRATED MODELING OF POLYMER COMPOSITES UNDER HIGH ENERGY LASER IRRADIATION Brent Volk, Gregory Ehlert...22 July 2013 – 30 September 2015 4. TITLE AND SUBTITLE INTEGRATED MODELING OF POLYMER COMPOSITES UNDER HIGH ENERGY LASER IRRADIATION 5a. CONTRACT

  15. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  16. Laser intensity effects in noncommutative QED

    SciTech Connect

    Heinzl, Thomas; Ilderton, Anton; Marklund, Mattias

    2010-03-01

    We discuss a twofold extension of QED assuming the presence of strong external fields provided by an ultraintense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, photons change significantly in character: they acquire a quasimomentum that is no longer lightlike. We study the consequences of this combined noncommutative strong-field effect for the basic lepton-photon interactions.

  17. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    SciTech Connect

    Yu, T. P.; Sheng, Z. M.; Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Pukhov, A.

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  18. Sub-wavelength pattern generation by laser direct writing via repeated irradiation.

    PubMed

    Klein-Wiele, Jan-Hendrik; Simon, Peter

    2013-01-14

    A simple technique is presented allowing the fabrication of high density periodic patterns via direct laser ablation. Applying fluence control for reducing the ablated feature sizes combined with lateral translation of an interference pattern between two (or more) irradiation cycles, sub-wavelength period patterns (< 200 nm) are created. Variation of the amount and direction of translation and the applied intensities during subsequent irradiation steps leads to variable pattern design as demonstrated for polymeric and silicon samples.

  19. Control of light backscattering in blood during intravenous laser irradiation

    NASA Astrophysics Data System (ADS)

    Melnik, Ivan S.; Popov, V. D.; Rusina, Tatyana V.; Dets, Sergiy M.

    1997-02-01

    One of the most important problems in modern laser medicine is the determination of system response on laser treatment. Reaction of living system is significant during many kinds of laser procedures like surgery, therapy and biostimulation. Our study was aimed to optimize laser exposure using feed-back fiber system for intravenous laser irradiation of blood (ILIB). This system consisted of helium-neon laser (633 nm, 5 mW) with coupled fiber unit, photodetector and PC interface. Photodetector signals produced due to light backscattering were storaged and processed during all blood irradiation procedure. Significant time-dependent variations were observed within 9-15 min after beginning of treatment procedure and were correlated with number of trials, stage and character of disease. The designed feed-back system allows us to register a human blood response on laser irradiation to achieve better cure effect.

  20. Laser cleaning of calcareous stones: influence of laser irradiation in colour changes of different layers

    NASA Astrophysics Data System (ADS)

    Amaral, Sandra S.; Pires, Margarida; Carvalho, M. D.; Costa, F. M.

    2008-10-01

    Experimental laser cleaning of black crusted calcareous stones, carried on to study the laser yellowing of petreous surfaces, showed different colour alterations on the exposed surface, after laser irradiation, depending not only on the incident fluence but also with the crust or stone irradiated layer.

  1. Optical spectroscopic characterizations of laser irradiated olivine grains

    NASA Astrophysics Data System (ADS)

    Yang, Yazhou; Zhang, Hao; Wang, Ziwei; Yuan, Ye; Li, Shaolin; Hsu, Weibiao; Liu, Chujian

    2017-01-01

    Context. Visible and near-infrared spectra of asteroids are known to be susceptible to nanophase irons produced by space weathering processes, thus making mineral identifications difficult. Mid-infrared spectroscopy may retain more mineral features owing to its lattice vibrational nature. Aims: We investigate the structure and reflectance spectral feature changes of olivine grains before and after simulated space weathering. Methods: We irradiate olivine grains by using pulsed laser to simulate varying degrees of micrometeorite bombardments. Reflectance measurements from 0.5 to 25 μm and radiative transfer calculations were carried out in order to compare them with each other. Results: Both the experimental simulations and modeling results indicate that the mid-infrared spectral features of olivine grains can survive the intense irradiations. Although the Christansen Feature is slightly shifted to longer wavelength, major vibrational bands remain essentially unchanged, because the lattice structure is quite immune to even the strongest irradiations, as revealed by both the X-ray diffraction and Raman scattering measurements. Conclusions: Mid-infrared spectroscopy is much more immune to productions of nanophase irons and amorphous materials and thus may be used more reliably in remote detections of minerals on asteroid surfaces.

  2. Photochemical reduction of graphene oxide (GO) by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Muttaqin; Nakamura, Takahiro; Sato, Shunichi

    2016-03-01

    In this study, we demonstrated a facile method for the reduction of graphene oxide (GO) by applying femtosecond laser pulse irradiation in aqueous colloidal solution. Utilization of femtosecond (fs) laser pulse irradiation enabled us to control GO reduction by adjusting laser fluence and irradiation time. The formation of reduced graphene oxide (rGO) was induced by solvated electrons generated through laser irradiation of colloidal GO solution, which was confirmed by means of UV-visible and Raman spectroscopy, XPS and XRD. By applying an optimum femtosecond laser condition, the interplanar spacing between carbon layers decreased significantly from 9.81 Å to 3.52Å indicating the effective removal of oxygen-containing groups from the basal plane of GO. Furthermore, the sheet resistivity of the fabricated rGO in disk form was 1,200 times lower than GO.

  3. Interaction of intense ultrashort pulse lasers with clusters.

    NASA Astrophysics Data System (ADS)

    Petrov, George

    2007-11-01

    The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys

  4. Study of point defects created by high-intensity ultrashort pulse laser in YLF crystals

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia C.; dos Santos, Everson B.; Samad, Ricardo E.; Ranieri, Izilda M.; Gomes, Laercio; de Freitas, Anderson Z.; Vieira, Nilson D., Jr.

    2005-03-01

    In this work we report the creation of color centers in LiF and YLF crystals by high intensity, ultrashort laser pulses. We used pure and Tm3+ and Oxygen doped samples, all irradiated with a Ti:Sapphire CPA laser system and also with electron beam, at room temperature. In both kinds of irradiations the production of photochromic damages and color centers that have absorption bands in UV and visible range was observed. A comparison between the two kinds of irradiation was done and the involved processes are described in this paper. F2+ stable centers were produced by the ultrashort laser pulses irradiation in contrast to the well-known, short lived centers produced by electron beams, and a mechanism was proposed to explain the observed stability.

  5. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  6. Astrophysically relevant hydrodynamics experiments using intense lasers

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Budil, K. S.; Estabrook, K.; Glendinning, S. G.; Gold, D.; Ryutov, D.; Kane, J.; Arnett, D.; Drake, R. P.; Smith, T.; Carroll, J.; McCray, R.; Liang, E.; Keilty, K.; Rubenchik, A.

    1998-04-01

    In a broad-based collaboration, we are developing a series of astrophysically relevant hydrodynamics experiments on the Nova and PetaWatt lasers at Lawrence Livermore National Laboratory. Issues that we are or planning to investigate are deep nonlinear hydrodynamic instabilities in 2D versus 3D, relevant to core-collapse supernova explosions [J. Kane et al., Ap. J. (1997); B.A. Remington et al., Phys. Plasmas (1997).]; strong-shock hydrodynamics relevant to supernova remnant formation [R.P. Drake et al., submitted, Ap. J. (1997).]; radiative blast wave development, of potential interest to gamma-ray burst models [E. Liang et al., 2nd Int. Workshop on LaboratoryAstrophysics using Intense Lasers, Mar. 19-21, 1998, Univ. of AZ.]; and cratering experiments, of possible interest to hypervelocity meteoroid impacts [A. Rubenchik et al., 2nd Int. Workshop on Laboratory Astrophysics using Intense Lasers, Mar. 19-21, 1998, Univ. of AZ.]. An overview of this work will be given, and the issue of scaling will be addressed [D. Ryutov et al., in preparation for submittal to Ap. J. (1998).].

  7. Laboratory Plasma Astrophysics Research with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki; Kato, Tsunehiko; Kuramitsu, Yasuhiro; Sakawa, Yuichi

    2008-12-01

    Large scale laser facilities mainly constructed for fusion research can be used to produce high-energy-density plasmas like the interior of stars and planets. They can be also used to reproduce the extreme phenomena of explosion and high Mach number flow in mimic scale in laboratory. With advanced diagnostic technique, we can study the physics of plasma phenomena expected to control a variety of phenomena in Universe. The subjects studied so far are reviewed, for example, in [1], [2]. The project to promote the laboratory astrophysics with Gekko XII laser facility has been initiated from April 1st this year as a project of our institute. It consists of four sub-projects. They are 1. Physics of collisionless shock and particle acceleration, 2. Physics of Non LTE (local thermodynamic equilibrium) photo-ionized plasma, 3. Physics of planets and meteor impact, 4. Development of superconducting Terahertz device. I will briefly explain what the laser astrophysics means and introduce what are the targets of our project. Regarding the first sub-project, we have carried out hydrodynamic and PIC simulation to design the experiments with intense laser. We clarified the physical mechanism of generation of the magnetic field in non-magnetized plasma and the collsionless shock formation caused by the ion orbit modifications by the magnetic fields generated as the result of plasma instability. Note from Publisher: This article contains the abstract only.

  8. Review of Astrophysics Experiments on Intense Lasers

    SciTech Connect

    Remington, B A; Drake, R P; Takabe, H; Arnett, D

    2000-01-19

    Astrophysics has traditionally been pursued at astronomical observatories and on theorists' computers. Observations record images from space, and theoretical models are developed to explain the observations. A component often missing has been the ability to test theories and models in an experimental setting where the initial and final states are well characterized. Intense lasers are now being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively tested against data. We describe here several areas of astrophysics--supernovae, supernova remnants, gamma-ray bursts, and giant planets--where laser experiments are under development to test our understanding of these phenomena.

  9. Effect of different laser irradiation on the dysentery bacilli

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Chen, Rong; Chen, Yanjiao; Li, Depin; Wen, Caixia

    1998-08-01

    The S. flexnesi, which have high drug-resistance especially in Cm, Sm, Tc, SD, were irradiated by Ar+ laser at 488 nm and semiconductor laser at 808 nm. The experiment results have shown that both Ar+ laser and semiconductor laser with power density of 1.7 w/cm2 and irradiation dose of 2000 J/cm2 can conduce to the bacterial lethality and increase the mutation rates of the bacterial drug-sensitivity, and 'Colony Count' method have the superiority over the 'Inhibacteria Ring' method. At the mean time it further indicate that the high power semiconductor laser would play an important role in the sciences of laser biological medicine. But the effect of the near infrared semiconductor laser is far lower than that of Ar+ laser of shorter wavelength at the same irradiation dose. It is clear that the output and irradiation dose of near infrared semiconductor laser shall be increased in order to get the same rates of the bacterial lethality and the drug-sensitivity mutation as Ar+ laser's.

  10. Multigraphene growth on lead-pencil drawn sliver halide print paper irradiated by scanning femtosecond laser

    NASA Astrophysics Data System (ADS)

    Kaneko, Satoru; Shimizu, Yoshitada; Rachi, Takeshi; Kato, Chihiro; Tanaka, Satomi; Naganuma, Yasuhiro; Katakura, Toru; Satoh, Kazuo; Ushiyama, Mikio; Konuma, Seiji; Itou, Yuko; Takikawa, Hirofumi; Tan, Goon; Matsuda, Akifumi; Yoshimoto, Mamoru

    2016-01-01

    Drawings were made on various types of paper using lead pencils of grades from 4H through 10B. Raman spectroscopy verified both G and D peaks on all the drawings on PC print paper, PC photopaper, kent paper, and paper for silver halide print. After irradiation with a scanning femtosecond laser, silver halide paper drawn on with a 10B lead pencil maintained its surface flatness compared with the other types of paper. Raman spectroscopy on silver print paper showed a high-intensity G peak and a low-intensity D peak. After irradiating the scanning femtosecond laser on silver halide paper drawn on with a 10B lead pencil, Raman spectroscopy showed a high-intensity G peak and less intense of D peak together with a 2D peak around 2,700 cm-1 corresponding to the existence of multigraphene.

  11. Hydrogen production by Rhodobacter sphaeroides DSM 158 under intense irradiation.

    PubMed

    Krujatz, Felix; Härtel, Paul; Helbig, Karsten; Haufe, Nora; Thierfelder, Simone; Bley, Thomas; Weber, Jost

    2015-01-01

    To identify optimal hydrogen production conditions using growing cultures of Rhodobacter sphaeroides DSM 158 the effects of varying the reactor's volumetric power input (0.01-1.4kWm(-3)) and irradiation intensity (5-2500Wm(-2)) were investigated in batch and continuous production modes. Irradiation intensity had a greater effect on hydrogen production than volumetric power input. Hydrogen production and photofermentative biomass formation were maximized by irradiation at 2250Wm(-2) with a volumetric power input of 0.55kWm(-3). The bacterial dry weight (2.64gL(-1)) and rate of hydrogen production (195mLL(-1)h(-1)) achieved under these conditions were greater than any that have previously been reported for batch-mode hydrogen production by R. sphaeroides. Continuous mode experiments (D=0.1h(-1)) yielded a bacterial dry weight, hydrogen production rate, productivity and hydrogen yield of 2.35±0.18gL(-1), 165±6.2mLL(-1)h(-1), 3.96LL(-1)d(-1) and 36.6%, respectively.

  12. Morphological analysis of the retrofilled apical dentin surfaces irradiated with CO2 laser

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Lage-Marques, Jose L.; Gavini, Giulio; Clasen, Naya F.; Matsumoto, Koukichi

    1998-04-01

    Countless researches conducted in these last years have compared the sealing capacity of various materials for retrofillings. Besides, the association of laser irradiation to traditional procedures inquires to increase the success of this kind of treatment. The purpose of this study was to evaluate the morphological changes on dentin surface and the junction between retrofilling material and apical cavity, with different materials irradiated or not with CO2 laser, in scanning electron microscopy. The following materials were used: Group A yields Super EBA; group B yields Super EBA and CO2 laser irradiation (Luxar System); group C yields Glass Ionomer Cement; group D yields Glass Ionomer Cement and CO2 laser. In groups B and D the power set was 2 watts, 20 msec, with a CT3105 ceramic point, and the power density for the CO2 laser application was 397,93 w/cm2. The morphological analysis permitted to conclude that the dentin laser irradiation showed different and less intense superficial alteration when compared with retrofilling materials. In most cases, the alterations to the material surfaces showed cavities and craters. Group B presented more irregular and affected surfaces, creating blank spaces in the adjacent areas to the radicular dentinal surfaces after laser application, probably because of the carbonization.

  13. Laser and intense pulsed light management of couperose and rosacea.

    PubMed

    Dahan, S

    2011-11-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions.

  14. [Laser and intense pulsed light management of couperose and rosacea].

    PubMed

    Dahan, S

    2011-09-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions.

  15. Fast Electron Generation in Cones with Ultra-Intense Laser Pulses

    SciTech Connect

    Mackinnon, A; VanWoerkom, L; Akli, K; Bartal, T; Beg, F; Chawla, S; Chen, C; Chowdhury, E; Freeman, R; Hey, D; Key, M; King, J; Link, A; MacPhee, A; Offermann, D; Ovchinnikov, V; Patel, P; Schumacher, D; Stephens, R; Tsui, Y; Ma, T

    2007-12-07

    Experimental results from copper cones irradiated with ultra-intense laser light are presented. Spatial images and total yields of Cu K{sub {alpha}} fluorescence were measured as a function of the laser focusing properties. The fluorescence emission extends into the cone approximately 300 {micro}m from the cone tip and cannot be explained by ray tracing including cone wall absorption. In addition the total fluorescence yield from cones is an order of magnitude higher than for equivalent mass foil targets. Indications are that the physics of the laser cone interaction is dominated by preplasma created from the long duration, low energy pre-pulse from the laser.

  16. Intense ultrashort laser-Xe cluster interaction

    NASA Astrophysics Data System (ADS)

    Davis, J.; Whitney, K. G.; Petrova, Tz. B.; Petrov, G. M.

    2012-09-01

    The last several years have witnessed a surge of activity involving the interaction of clusters with intense ultrashort pulse lasers. The interest in laser-cluster interaction has not been only of academic interest, but also because of the wide variety of potential applications. Clusters can be used as a compact source of X-rays, incoherent as well as coherent, and of fast ions capable of driving a fusion reaction in deuterium plasmas. In one set of xenon cluster experiments, in particular, amplification of ˜2.8 Å X-rays has been observed [28]. X-ray amplification in cluster media is a phenomenon of critical importance and may lead to applications such as EUV lithography, EUV and X-ray microscopy, X-ray tomography, and variety of applications in biology and material sciences. However, while amplification of ˜2.8 Å X-rays has been documented in experiments, the mechanism for producing it remains to be fully understood. In this talk, a xenon model of laser-cluster interaction dynamics is presented to shed light on the processes responsible for amplification. The focus of this research is on the feasibility of creating population inversions and gain in some of the inner-shell hole state transitions within the M-shell of highly ionized xenon. The model couples a molecular dynamics (MD) treatment of the explosively-driven, non-Maxwellian cluster expansion to a comprehensive multiphoton-radiative ionization dynamic (ID) model including single- and double-hole state production within the Co- and Fe-like ionization stages of xenon. The hole-state dynamics is self-consistently coupled to a detailed valence-state collisional-radiative dynamics of the Ni-, Co-, and Fe-like ionization stages of xenon. In addition, the model includes tunneling ionization rates that confirm an initial condition assumption that Ni-like ground states can be created almost instantaneously, on the order of a femtosecond or less, i.e., at laser intensities larger than 1019 W/cm2, all of the N

  17. Functional assessment of laser irradiation. Annual report, March 1984-February 1985

    SciTech Connect

    Robbins, D.O.

    1988-03-01

    Exposure of the retina to intense spots of coherent light produces immediate changes in the ability of the animal to perform a visual discrimination task. Relatively large shifts in visual acuity occur during laser irradiation and recovery is somewhat rapid following termination of relatively low-energy, long-duration exposures. With more intense energies, recovery is slower and permanent shifts in postexposure spectral sensitivity often accompany these types of exposure conditions.

  18. Saturable absorption in aqueous suspensions of detonation nanodiamonds under irradiation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Mikheev, G. M.; Vanyukov, V. V.; Mogileva, T. N.; Puzyr', A. P.; Bondar', V. S.; Svirko, Y. P.

    2015-12-01

    The phenomenon of saturable absorption has been observed in aqueous suspensions of detonation nanodiamonds (DNDs) with 34, 50, and 110 nm sized clusters of nanoparticles under irradiation with 795-nm laser pulses of 120-fs duration. The saturable absorption intensity has been studied as a function of the DND concentration in suspension. At a concentration of 2 wt % of DNDs with 50-nm average cluster size, the saturable absorption intensity amounts to 950 GW/cm2.

  19. Platinum nanostructures formed by femtosecond laser irradiation in water

    SciTech Connect

    Huo Haibin; Shen Mengyan

    2012-11-15

    Platinum nanostructures with various morphologies, such as spike-like, ripple-like and array-like structures, have been fabricated by 400 nm and 800 nm femtosecond laser irradiation in water. Different structures can be formed on the surfaces as a function of the laser wavelength, the fluence and scan methods. The reflectance measurements of these structures show much larger absorption on the irradiated surfaces than untreated platinum surfaces.

  20. A theoretical study of a laser-irradiated capillary discharge

    SciTech Connect

    Petway, L. B.; Back, C. A.; Estabrook, K.; Lee, R. W.; Zigler, A.

    1989-08-15

    A theoretical study of a laser-irradiated capillary discharge is presented. The discharge produces a columnar flow of low-temperature plasma (1 eV) with a density of 10/sup 19/ atoms/cm/sup 3/. This ambient low-temperature plasma is then irradiated by a 1.06-/mu/m Nd glass laser with pulse lengths from 100 ps to 1 ns. The resultant plasma is studied, using hydrodynamic simulations coupled to a detailed kinetics model.

  1. Thermal effects in IR-laser-irradiated living cells

    NASA Astrophysics Data System (ADS)

    Meier, Thomas H.; Rueck, Angelika C.; Scalfi-Happ, Claudia; Hug, Hubert; Schneider, Marion E.

    2003-10-01

    Irradiation of cell-layers with focussed 2.8 μm ir-laser allows to control the cell temperature from room temperature up to 100°C. Temperatures were calculated for a cell culture model and verified experimentally by thermal mapping of the cell-surrounding medium by means of thermochromic liquid crystals (TLC). Irradiation power and time were varied and associated biological effects like necrosis and apoptosis were observed with respect to the irradiation dosis.

  2. Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets

    NASA Astrophysics Data System (ADS)

    Fazeli, R.

    2017-02-01

    Enhancement of the soft X-ray emission including free-free, free-bound and bound-bound emissions from Au nano-porous targets irradiated by single and double laser pulses is studied through numerical simulations. Laser pulses of duration 2 ns are used in calculations considering different prepulse intensities and a fixed intensity of 1013 Wcm-2 for the main pulse. The effects of prepulse intensity and time separation between laser pulses are studied for targets of different porosities. Results show that the X-ray yield can be enhanced significantly by a nano-porous target having optimum initial density. Such enhancement can be more improved when double laser pulses with appropriate delay time and intensities irradiate nano-porous targets. It is shown that the enhancement will be reduced when the prepulse intensity is greater than a specific value.

  3. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    PubMed

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10(8) J cm(-3) and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10(19) W cm(-2), we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10(22) W cm(-2) will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10(10) J cm(-3), equivalent to a pressure of 0.35 Tbar.

  4. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  5. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    PubMed Central

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218

  6. Heating of blood by low-intensity laser radiation

    NASA Astrophysics Data System (ADS)

    Korolevich, Alexander N.; Astafyeva, Liudmila G.; Dubina, Natali S.; Vecherinski, Sergei I.; Belsley, Michael S.

    2003-10-01

    Theoretical and experimental studies of the influence of low-intensity laser radiation, on the velocity of microcirculation of the erythrocytes of patients with the cardiovascular disease "in vivo" are carried out. Dynamic light scattering techniques were used to monitor the variation in the perfusion of micro capillary blood flow during irradiation under "in vivo" conditions and compared to the change in average size of aggregates of the blood effects observed "in vitro" using static scattering of light. It is shown that the process of the fragmentation of erythrocytes depends on amount of energy absorbed by biological tissues. This conclusion is supported by the good qualitative agreement with the theoretical model, based on the heat transfer theory within the dermis.

  7. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  8. Positive ion emission from oxidized aluminum during ultraviolet excimer laser irradiation

    SciTech Connect

    Khan, Enamul; Langford, S. C.; Dickinson, J. T.

    2011-07-15

    We report quadrupole mass-selected time-of-flight measurements of positive ions from oxidized aluminum metal (and for comparison, single-crystal sapphire) during pulsed excimer laser irradiation at 193 and 248 nm. This work focuses on laser fluences well below onset of rapid etching or optical breakdown. By far the most intense emissions are due to Al{sup +}. On previously unexposed material, the ion kinetic energies are initially well above the photon energy, consistent with the ejection of Al{sup +} sorbed at surface electron traps. During prolonged irradiation, the emission intensities and kinetic energies gradually fall. Emission from patches of oxide would account for previous reports of laser-induced Al{sup +} emission from metallic aluminum surfaces cleaned by ion etching if patches of thin oxide were to survive the etching treatment.

  9. Vascular spasm complicates continuous wave but not pulsed laser irradiation

    SciTech Connect

    Gal, D.; Steg, P.G.; Rongione, A.J.; DeJesus, S.T.; Clarke, R.H.; Isner, J.M. )

    1989-11-01

    Preliminary clinical experience with laser angioplasty has suggested that arterial spasm may complicate attempts to employ laser light to accomplish vascular recanalization. The present study was designed to investigate the role of energy profile on the development of arterial spasm during laser angioplasty. Laser irradiation was delivered percutaneously in vivo to New Zealand white rabbits and to Yucatan microswine with or without atherosclerotic lesions induced by a combination of balloon endothelial denudation and atherogenic diet. Continuous wave (CW) laser irradiation from an argon ion gas laser (wavelength 488 to 514 nm) was applied to 23 arteries, while 16 arteries were irradiated using a pulsed xenon chloride (308 nm) or xenon fluoride (351 nm) excimer laser. Arterial spasm, defined as greater than 50% reduction in luminal diameter narrowing, complicated delivery of laser light to 17 (74%) of the 23 arteries irradiated with the CW argon laser. Spasm was consistently observed at powers greater than 2 W, at cumulative exposures greater than 200 seconds, and at total energy greater than 200 joules. Spasm was typically diffuse (including the length of the vessel) and protracted (lasting up to 120 minutes). Intra-arterial nitroglycerin (up to 300 micrograms) produced only temporary and incomplete resolution of laser-induced spasm. In contrast, spasm was never observed in any of the 16 arteries in which laser angioplasty was performed using a pulsed laser (0.95 to 6.37 joules/cm2, 10 to 50 Hz, 48 to 370 seconds). Thus CW but not pulsed laser angioplasty may be complicated by arterial spasm

  10. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  11. INTERACTION OF LASER RADIATION WITH MATTER: Collisionless absorption of intense laser radiation in nanoplasma

    NASA Astrophysics Data System (ADS)

    Zaretsky, D. F.; Korneev, Philipp A.; Popruzhenko, Sergei V.

    2007-06-01

    The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma — classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse — is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regime linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed.

  12. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  13. Photobiomodulation of wound healing via visible and infrared laser irradiation.

    PubMed

    Solmaz, Hakan; Ulgen, Yekta; Gulsoy, Murat

    2017-03-20

    Fibroblast cells are known to be one of the key elements in wound healing process, which has been under the scope of research for decades. However, the exact mechanism of photobiomodulation on wound healing is not fully understood yet. Photobiomodulation of 635 and 809 nm laser irradiation at two different energy densities were investigated with two independent experiments; first, in vitro cell proliferation and then in vivo wound healing. L929 mouse fibroblast cell suspensions were exposed with 635 and 809 nm laser irradiations of 1 and 3 J/cm(2) energy densities at 50 mW output power separately for the investigation of photobiomodulation in vitro. Viabilities of cells were examined by means of MTT assays performed at the 24th, 48th, and 72nd hours following the laser irradiations. Following the in vitro experiments, 1 cm long cutaneous incisional skin wounds on Wistar albino rats (n = 24) were exposed with the same laser sources and doses in vivo. Wound samples were examined on 3rd, 5th, and 7th days of healing by means of mechanical tensile strength tests and histological examinations. MTT assay results showed that 635 nm laser irradiation of both energy densities after 24 h were found to be proliferative. One joule per square centimeter laser irradiation results also had positive effect on cell proliferation after 72 h. However, 809 nm laser irradiation at both energy densities had neither positive nor negative affects on cell viability. In vivo experiment results showed that, 635 nm laser irradiation of both energy densities stimulated wound healing in terms of tensile strength, whereas 809 nm laser stimulation did not cause any stimulative effect. The results of mechanical tests were compatible with the histological evaluations. In this study, it is observed that 635 nm laser irradiations of low energy densities had stimulative effects in terms of cell proliferation in vitro and mechanical strength of incisions in vivo. However, 809 nm laser

  14. Ultrastructure observation of middle ear mucosa with laser irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Mengkui; Yang, Shulan; Fang, Yaoyun; Sun, Jianhe

    1998-08-01

    In order to study the effects of He-Ne laser on the mucosa of middle ear mucosa from 9 patients with chronic otitis media, all of who had slight damp eardrum, were irradiated by low power He-Ne laser ten minutes per day for ten days. Specimen was taken before and after irradiation and observed under scanning electron microscope. It was found that the surface structure of the mucosa was more integral, the arrangement of the epithelial cell was closer together and microvilli arose among the noncilliated cells after irradiation. The inflammatory cell disappeared arid the morphologic structure appeared normal. These data provided the therapeutic evidence for the lower power He-Ne laser irradiation on patients with chronic purulent otitis midia.

  15. Production of stabilized color centers in YLiF{sub 4} crystals by high-intensity ultrashort laser pulses

    SciTech Connect

    Courrol, Lilia C.; Samad, Ricardo E.; Ranieri, Izilda M.; Gomes, Laercio; Baldochi, So circumflex nia L.; Freitas, Anderson Z. de; Vieira, Nilson D. Jr.

    2005-12-01

    In this work we show that is possible to produce stable color centers in YLiF{sub 4} crystals, with dimensional control, by focusing high-intensity ultrashort laser pulses in the bulk. In particular, with the spectroscopic characterization of ultrashort laser-irradiated YLF samples, it was possible to discuss the basic formation mechanisms of these centers.

  16. Laser irradiated gas jet: A spectroscopic experimental and theoretical study

    SciTech Connect

    Lee, R.W.; Matthews, D.L.; Koppel, L.; Busch, G.E.; Charatis, G.; Dunning, M.J.; Mayer, F.J.

    1983-09-01

    We present x-ray spectroscopic measurements of the longitudinal electron density profile and the longitudinal and transverse electron temperature profiles for a laser irradiated gas jet. We attempt to verify our spectroscopic method by laser interferometry and by comparison of inferred quantities to those determined from laser plasma interaction simulations. Because temperature profiles were time dependent, we used a theoretical time dependent radiation transport code to analyze the data.

  17. Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils

    SciTech Connect

    Allen, Matthew Mark

    2004-03-12

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) moc2, where Iλ2 is the irradiance in Wμm2/cm2 and moc2 is the electron rest mass.At laser irradiance of Iλ2 ~ 1018 Wμm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target.

  18. Effect of laser irradiation on neutrophils metabolism in stress

    NASA Astrophysics Data System (ADS)

    Brill, Gregory E.; Grigoriev, Sergei N.; Romanova, Tatyana P.; Petrisheva, Svetlana G.

    1994-02-01

    In experiments on male mice of CBA line the alteration of neutrophils cytochemical profile in peripheral blood He-Ne laser irradiation in vitro (4 mW/cm2, 15 min) and modification of metabolic disturbances in polymorphonuclear leucocytes in stress by laser radiation were studied. It was found that direct laser irradiation of blood results in the decrease of glycogen and lipids content, the increase of ATP-ase, succinate dehydrogenase and myeloperoxidase activity, rise of lysosomal cationic proteins level, and membrane oxidase systems of neutrophils stimulation. In short-term immobilization stress conditions transcutaneous laser irradiation in vivo (19 mW/cm2, 15 min) prevents the development of stress induced changes of metabolism and function of neutrophils.

  19. Effects of laser irradiation on the morphology of Cu(110)

    SciTech Connect

    Brandstetter, T.; Draxler, M.; Hohage, M.; Zeppenfeld, P.; Stehrer, T.; Heitz, J.; Georgiev, N.; Martinotti, D.; Ernst, H.-J.

    2008-07-15

    The effects of pulsed laser irradiation on the morphology of the Cu(110) surface were investigated by means of reflectance difference spectroscopy (RDS) and spot profile analysis low-energy electron diffraction (SPA-LEED). The laser light induces surface defects (adatoms and islands) as well as subsurface dislocation lines. The high surface mobility leads to efficient annealing of the surface defects even at room temperature, whereas the subsurface dislocation lines persist up to temperatures T>800 K. SPA-LEED profiles of the (00) diffraction spot from the laser irradiated surface suggest an anisotropic distribution of the subsurface line defects related to the geometry of the fcc easy glide system, which is corroborated by STM measurements. Comparative experiments using conventional Ar ion bombardment point out the distinctiveness of the morphological changes induced by laser irradiation.

  20. Evaluation of two laser systems for intracanal irradiation

    NASA Astrophysics Data System (ADS)

    Cecchini, Silvia C. M.; Zezell, Denise M.; Bachmann, Luciano; Pinotti, Marcos; Nogueira, Gesse E.; Strefezza, Claudia; Eduardo, Carlos P.

    1999-05-01

    The aim of this study was to determine safe parameters for intracanal laser irradiation. Single rooted extracted teeth were irradiated with the pulsed Er:YAG laser (2.94 μm) and Nd:YAG (1.06 μm) laser. The teeth with remaining root thickness >= 1mm on the apical portion were selected and divided in eight groups according to the laser parameters: output energy of 40-100 mJ/pulse; repetition rate of 10-15 Hz. The root canals were irradiated for 4 periods with a 20s breaks in between with the fiber stationary 1mm from the apical foramen, during 3s or from the apical to coronal surface in a continuous, circling fashion, with 2mm/s. Morphological changes were also observed by scanning electron microscopy.

  1. Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode

    NASA Astrophysics Data System (ADS)

    Volpato, Luiz Evaristo Ricci; de Oliveira, Rodrigo Cardoso; Espinosa, Mariano Martinez; Bagnato, Vanderley Salvador; Machado, Maria A. A. M.

    2011-07-01

    Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm2), infrared laser (780 nm, 40 mW, 1 W/cm2), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm2). All applications were punctual and performed with a spot with 0.4 mm2 of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced.

  2. Low intensity laser therapy: the clinical approach

    NASA Astrophysics Data System (ADS)

    Kahn, Fred

    2006-02-01

    Recently, there has been significant improvement in the process of research and application of Low Intensity Laser Therapy (LILT). Despite this positive direction, a wide discrepancy between the research component and clinical understanding of the technology remains. In our efforts to achieve better clinical results and more fully comprehend the mechanisms of interaction between light and cells, further studies are required. The clinical results presented in this paper are extrapolated from a wide range of musculoskeletal problems including degenerative osteoarthritis, repetitive motion injuries, sports injuries, etc. The paper includes three separate clinical studies comprising 151, 286 and 576 consecutive patient discharges at our clinic. Each patient studied received a specific course of treatment that was designed for that individual and was modified on a continuing basis as the healing process advanced. On each visit, clinical status correlation with the duration, dosage and other parameters was carried out. The essentials of the treatment consisted of a three stage approach. This involved a photon stream emanating from a number of specified gallium-aluminum-arsenide diodes; stage one, red light array, stage two consisting of an array of infrared diodes and stage three consisting of the application of an infrared laser diode probe. On average, each of these groups required less than 10 treatments per patient and resulted in a significant improvement / cure rate greater than 90% in all conditions treated. This report clearly demonstrates the benefits of LILT, indicating that it should be more widely adapted in all medical therapeutic settings.

  3. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  4. Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses

    SciTech Connect

    Liang, Edison

    2006-06-15

    Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the pulses are transmitted when the plasma is compressed to thinner than {approx}2 relativistic skin depths. A fraction of the plasma is then captured and efficiently accelerated by self-induced JxB forces. For 1 {mu}m laser and 10{sup 21} W cm{sup -2} intensity, the maximum energy exceeds GeV in a picosecond.

  5. Using laser irradiation for the surgical treatment of periodontal disease

    NASA Astrophysics Data System (ADS)

    Vieru, Rozana D.; Lefter, Agafita; Herman, Sonia

    2002-10-01

    In the marginal pr ogressive profound periodontities, we associated low level laser therapy (LLLT) to the classical surgical treatment with implant of biovitroceramics. From a total of 50 patients, 37 where irradiated with the laser. We used a diode laser, =830 nm, energy density up to 2 J cm2, in Nogier pulsed mode. The laser treatment is used in a complex of therapeutic procedures: odontal, local anti-inflammatory -- as well as in the cabinet and at home --, prosthetic, and for the morphologic and functional rebalancing. The immediate effects where: an evolution without bleeding and without post-surgical complications, as can appear at the patients who didn't benefit of laser irradiation (hematom, pain, functional alteration in the first post-surgical week). Operated tissue is recovering faster. The percentage of recurrences decreases and the success depends less on the biological potential and the immunity of each individual.

  6. Transendoscopic neodymium:yttrium aluminum garnet laser irradiation in horses.

    PubMed

    Tate, L P; Sweeney, C L; Cullen, J M; Corbett, W T; Newman, H C; Brown, T C; Ketner, M T

    1989-05-01

    A neodymium:yttrium aluminum garnet (Nd:YAG) laser was used to study effects of applying laser irradiation transendoscopically to the corniculate process of the arytenoid cartilage in horses. Dosimetry was established initially in vitro in 10 corniculate cartilages that were irradiated and examined histologically to determine penetration depths at selected power settings. Eleven horses were given xylazine IV and butorphoral tartrate IV, and their left ventricle and corniculate process were irradiated. Six horses had left laryngeal hemiplegia and were euthanatized and necropsied 14 weeks after laser application and evaluation for upper airway stridor. Endoscopy was performed in the 5 other horses; they were euthanatized and necropsied at selected intervals to characterize the healing process. Healing was by second intention and was complete at 14 weeks. Two horses developed buds of granulation tissue along the laser incision, which resolved after a second laser application. Scar tissue formation resulted in left of midline displacement of the dorsal portion of the right corniculate process. The left ventricle healed without complications and was totally ablated. All horses had inspiratory stridor when exercised 14 weeks after laser irradiation.

  7. Cerebrovascular and metabolic effects on the rat brain of focal Nd:YAG laser irradiation

    SciTech Connect

    Kiessling, M.; Herchenhan, E.; Eggert, H.R. )

    1990-12-01

    To investigate the effects of focal neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation (lambda = 1060 nm) on regional cerebral blood flow, cerebral protein synthesis, and blood-brain barrier permeability, the parietal brain surface of 44 rats was irradiated with a focused laser beam at a constant output energy of 30 J. Survival times ranged from 5 minutes to 48 hours. Laser irradiation immediately caused well-defined cortical coagulation necrosis. Within 5 minutes after unilateral irradiation, 14C-iodoantipyrine autoradiographs demonstrated severely reduced blood flow to the irradiation site and perilesional neocortex, but a distinct reactive hyperemia in all other areas of the forebrain. Apart from a persistent ischemic focus in the vicinity of the cortical coagulation necrosis, blood flow alterations in remote areas of the brain subsided within 3 hours after irradiation. Autoradiographic assessment of 3H-tyrosine incorporation into brain proteins revealed rapid onset and prolonged duration of protein synthesis inhibition in perifocal morphologically intact cortical and subcortical structures. Impairment of amino acid incorporation proved to be completely reversible within 48 hours. Immunoautoradiographic visualization of extravasated plasma proteins using 3H-labeled rabbit anti-rat immunoglobulins-showed that, up to 1 hour after irradiation, immunoreactive proteins were confined to the neocortex at the irradiation site. At 4 hours, vasogenic edema was present in the vicinity of the irradiation site and the subcortical white matter, and, at later stages (16 to 36 hours), also extended into the contralateral hemisphere. Although this was followed by a gradual decrease in labeling intensity, resolution of edema was still not complete after 48 hours.

  8. Diffusion mass transfer in ionic materials under intense electron irradiation

    NASA Astrophysics Data System (ADS)

    Bochkarev, I. G.; Ghyngazov, S. A.; Frangulyan, T. S.; Petrova, A. B.; Chernyavskii, A. V.

    2017-01-01

    The results of studies on the impact of an electron beam with the energy of 1-2 MeV on diffusion processes in materials with ionic bonds are presented in the paper. Used electron beam intensity is allowed to provide heating of the material to temperatures of 1600 K. Diffusion of Na, Mg, Al ions into single crystals KBr in the temperature range 573-883 K, Al ions in the NiO-AlO system at 1373-1573 K, was studied. Diffusion annealing carried out under thermal and radiation-thermal heating of the samples. Then diffusion coefficients were determined. It was found stimulating action of irradiation on diffusion processes of Mg, Al ions in Kbr and Al ions in the NiO-Al2O3 system, which consists in increasing the diffusion coefficients at radiation-thermal annealing. The observed effect is achieved by increasing the effective rate of diffusion jumps.

  9. Laser-induced point-defect reaction in proton-irradiated SiC

    NASA Astrophysics Data System (ADS)

    Zimbone, M.; Litrico, G.; Barbera, M.; Baratta, G. A.; Foti, G.

    2009-01-01

    The defects produced in 4H-SiC epitaxial layers by irradiation with 200-keV H+ were characterized by low-temperature photoluminescence. These defects induce sharp luminescent lines, the so-called alphabet lines. Their intensity shows an evolution under UV-laser irradiation not previously observed. By monitoring the change in the resulting photoluminescence spectra versus time, we distinguish two original ‘families’ of peaks called PB1 and PB2. They display a different, and opposite, behaviour with laser irradiation but they are strongly correlated. In particular, the recovering rate of the PB1 family and the growth rate of the PB2 family are the same, indicating a structural rearrangement of defects.

  10. Wavelength and intensity effects on the dissociation of H2 + in intense laser fields

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Xu, Han; Bai, Ya; Sang, R. T.; Litvinyuk, Igor V.; Liu, Peng; Li, Ruxin

    2016-11-01

    We report on a systematic investigation of the dissociation dynamics of H2 + in intense laser fields, and study how the kinetic energy spectrum of the dissociating proton can be modulated by the wavelength and intensity of the driving laser field. In the experiment, H2 is dissociatively ionized by an intense laser pulse with varying carrier wavelengths ranging from 800 to 1800 nm and varying peak intensities. A model based on Floquet theory and Landau-Zener theory is adopted to explain the experimental observations. The intensity effect is further explored in a few-cycle pump-probe experiment. We observed a significant intensity-dependent proton kinetic energy shift, which can also be well explained by the theoretical simulation. The wavelength- and intensity-dependent proton spectra reveal the mechanism of selective excitation of vibrational levels of H2 + in intense laser fields.

  11. Communication: Mode bifurcation of droplet motion under stationary laser irradiation

    SciTech Connect

    Takabatake, Fumi; Yoshikawa, Kenichi; Ichikawa, Masatoshi

    2014-08-07

    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  12. Crystallization of silicon carbide thin films by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    De Cesare, G.; La Monica, S.; Maiello, G.; Masini, G.; Proverbio, E.; Ferrari, A.; Chitica, N.; Dinescu, M.; Alexandrescu, R.; Morjan, I.; Rotiu, E.

    1996-10-01

    Pulsed laser irradiation at low incident fluences was demonstrated to be effective for the crystallization of amorphous hydrogenated silicon carbide (a-SiC:H) films deposited on Si wafers. The amorphous films, with a carbon content in the range 30-50%, were deposited on (100) Si wafers by low temperature plasma enhanced chemical vapor deposition (PECVD). The crystallization treatment was carried out by a multipulse KrF excimer laser. The crystallinity modifications induced by the laser treatment were evidenced by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. An important increase of the microhardness was evidenced as an effect of the laser treatment.

  13. Communication: Mode bifurcation of droplet motion under stationary laser irradiation

    NASA Astrophysics Data System (ADS)

    Takabatake, Fumi; Yoshikawa, Kenichi; Ichikawa, Masatoshi

    2014-08-01

    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  14. Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles

    PubMed Central

    2016-01-01

    The formation of singlet oxygen by irradiation of gold nanoparticles in their plasmon resonance band with continuous or pulsed laser light has been investigated. Citrate-stabilized nanoparticles were found to facilitate the photogeneration of singlet oxygen, albeit with low quantum yield. The reaction caused by pulsed laser irradiation makes use of the equilibrated hot electrons that can reach temperatures of several thousand degrees during the laser pulse. Although less efficient, continuous irradiation, which acts via the short-lived directly excited primary “hot” electrons only, can produce enough singlet oxygen for photodynamic cancer therapy and has significant advantages for practical applications. However, careful design of the nanoparticles is needed, since even a moderately thick capping layer can completely inhibit singlet oxygen formation. Moreover, the efficiency of the process also depends on the nanoparticle size. PMID:27239247

  15. Infrared nanosecond pulsed laser irradiation of stainless steel: Micro iron-oxide zones generation

    NASA Astrophysics Data System (ADS)

    Ortiz-Morales, M.; Frausto-Reyes, C.; Soto-Bernal, J. J.; Acosta-Ortiz, S. E.; Gonzalez-Mota, R.; Rosales-Candelas, I.

    2014-07-01

    Nanosecond-pulsed, infrared (1064 nm) laser irradiation was used to create periodic metal oxide coatings on the surface of two samples of commercial stainless steel at ambient conditions. A pattern of four different metal oxide zones was created using a galvanometer scanning head and a focused laser beam over each sample. This pattern is related to traverse direction of the laser beam scanning. Energy-dispersive X-ray spectroscopy (EDS) was used to find the elemental composition and Raman spectroscopy to characterize each oxide zone. Pulsed laser irradiation modified the composition of the stainless steel samples, affecting the concentration of the main components within each heat affected zone. The Raman spectra of the generated oxides have different intensity profiles, which suggest different oxide phases such as magnetite and maghemite. In addition, these oxides are not sensible to the laser power of the Raman system, as are the iron oxide powders reported in the literature. These experiments show that it is possible to generate periodic patterns of various iron oxide zones by laser irradiation, of stainless steel at ambient conditions, and that Raman spectroscopy is a useful punctual technique for the analysis and inspection of small oxide areas.

  16. Infrared nanosecond pulsed laser irradiation of stainless steel: micro iron-oxide zones generation.

    PubMed

    Ortiz-Morales, M; Frausto-Reyes, C; Soto-Bernal, J J; Acosta-Ortiz, S E; Gonzalez-Mota, R; Rosales-Candelas, I

    2014-07-15

    Nanosecond-pulsed, infrared (1064 nm) laser irradiation was used to create periodic metal oxide coatings on the surface of two samples of commercial stainless steel at ambient conditions. A pattern of four different metal oxide zones was created using a galvanometer scanning head and a focused laser beam over each sample. This pattern is related to traverse direction of the laser beam scanning. Energy-dispersive X-ray spectroscopy (EDS) was used to find the elemental composition and Raman spectroscopy to characterize each oxide zone. Pulsed laser irradiation modified the composition of the stainless steel samples, affecting the concentration of the main components within each heat affected zone. The Raman spectra of the generated oxides have different intensity profiles, which suggest different oxide phases such as magnetite and maghemite. In addition, these oxides are not sensible to the laser power of the Raman system, as are the iron oxide powders reported in the literature. These experiments show that it is possible to generate periodic patterns of various iron oxide zones by laser irradiation, of stainless steel at ambient conditions, and that Raman spectroscopy is a useful punctual technique for the analysis and inspection of small oxide areas.

  17. [Low-intensity laser radiation in preoperative preparation of patients with benign prostatic hyperplasia].

    PubMed

    Neĭmark, A I; Muzalevskaia, N I

    2000-01-01

    Low-intensity laser therapy administered in the form of intravenous blood irradiation, transrectal and transurethral prostatic irradiation and their combination as preoperative preparation and correction of immunity disturbances in patients with benign prostatic hyperplasia (BPH) were studied. The response to the treatment was evaluated by positive changes in the immune status and bacterial contamination of the urine and prostatic tissue. Conventional preoperative preparation (uroantiseptics, antibiotics and phytotherapy) fails to correct signs of T-cell immunodeficiency, depression of phagocytic activity of neutrophils, significantly reduce bacteriurea. Laser therapy as intravenous laser blood radiation acts immunomodulatorily on cellular immunity and normalized the proportion of T-helpers of the first and second order (T-suppressors) and neutrophil phagocytosis. The antibacterial effect of this technique on urinary microflora and prostatic tissue is not very high. Local laser therapy is a potent immunostimulator of T- and B-lymphocytes, increased the index of immunoregulatory cells' proportion, activated phagocytosis of neutrophils. It has pronounced antibacterial effect against gram-negative urinary microflora and tissue of the prostate. Combined laser therapy produced the highest immunomodulating action on T-lymphocytes and immunostimulating one on B-lymphocytes, potentiated phagocytic ability of neutrophils, elevated index of the immunoregulatory cells, but was unable to correct their imbalance completely. Antibacterial effects of combined laser therapy were the highest, including the bacterial group Proteus-Providencia. Preoperative low-intensity laser therapy of BPH reduced the number of postoperative pyoinflammatory complications, hospital stay, severity of postoperative period.

  18. Submicro foaming in biopolymers by UV pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Oujja, Mohamed; Rebollar, Esther; Gaspard, Solenne; Abrusci, Concepción; Catalina, Fernando; Lazare, Sylvain; Castillejo, Marta

    2006-05-01

    Microstructuring of polymers and biopolymers is of application in medical technology and biotechnology. Using different fabrication techniques three-dimensionally shaped and micro structured constructs can be developed for drug release and tissue engineering. As an alternative method, laser microstructuring offers a series of advantages including high resolution capability, low heat deposition in the substrate and high level of flexibility. In this work we present evidence of laser microfoam formation in collagen and gelatine by nanosecond pulsed laser irradiation in the UV at 248 and 266 nm. Irradiation at 355 nm produces melting followed by resolidification of the substrate, whereas irradiation at 532 and 1064 nm induces the formation of craters of irregular contours. Single pulse irradiation of a collagen film with an homogenized KrF microbeam yields a 20 μm thick expanded layer, which displays the interesting features of a nanofibrous 3-dimensional network with open cells. In gelatine, irradiation at 248 and 266 nm produces similar morphological modifications. The effect of the structural properties of the substrate on the laser induced microfoam is studied by comparing gelatines differing in gel strength (Bloom values 225 and 75) and in crosslinking degree. While results are discussed on the basis of thermal and photomechanical mechanisms and of the role played by the water content of the substrates, it is thought that such structures could have a biomimic function in future 3D cell culture devices for research.

  19. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  20. Modeling the thermal response of porcine cartilage to laser irradiation

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, Sergio H.; Aguilar, Guillermo; Basu, Reshmi; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    Cartilage laser thermoforming, also known as laser reshaping, is a new surgical procedure that allows in-situ treatment of deformities in the head and neck with less morbidity than traditional approaches. During laser irradiation, cartilage becomes sufficiently subtle or deformable for stretching and shaping into new stable configurations. This study describes the experimental and theoretical characterization of the thermal response of porcine cartilage to laser irradiation (Nd:YAG). The surface temperature history of cartilage specimens was monitored during heating and thermal relaxation; using laser exposure times ranging between 1 and 15 s and laser powers of 1 to 10 W. The experimental results were then used to validate a finite element model, which accounts for heat diffusion, light propagation in tissue, and heat loss due to water evaporation. The simultaneous solution of the energy and mass diffusion equations resulted in predictions of temperature distribution in cartilage that were in good agreement with experiments. The model simulations will provide insights to the relationship between the laser treatment parameters (exposure time, laser beam diameter, and power) and the onset of new molecular arrangements and cell thermal injury in the material, thus conceiving basic guidelines of laser thermoforming.

  1. Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Calcagno, L.; Giulietti, D.; Cutroneo, M.; Zimbone, M.; Skala, J.

    2015-07-01

    Advanced targets based on Au nanoparticles embedded in polymers films show high absorption coefficient in the UV-visible and infrared region. They can be employed to enhance the proton and ion acceleration from the laser-generated plasma in TNSA regime. In conditions of "p" polarized laser irradiations at 1015 W/cm2 intensity, in these films can be induced resonant absorption due to plasma wave excitation. Plasma on-line diagnostics is based on SiC detectors, Thomson spectrometry and X-ray streak camera imaging. Measurements of kinetic energy of accelerated ions indicate a significant increment using polymer targets containing gold nanoparticles and "p" polarized laser light with respect to pure polymers and unpolarized light irradiation.

  2. Distinct photoresponse in graphene induced by laser irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Wen Hui; Nan, Hai Yan; Liu, Qi; Liang, Zheng; Yu, Zhi Hao; Liu, Feng Yuan; Hu, Wei Da; Zhang, Wei; Wang, Xin Ran; Ni, Zhen Hua

    2015-01-01

    The graphene-based photodetector with tunable p-p+-p junctions was fabricated through a simple laser irradiation process. Distinct photoresponse was observed at the graphene (G)-laser irradiated graphene (LIG) junction by scanning photocurrent measurements, and its magnitude can be modulated as a result of a positive correlation between the photocurrent and doping concentration in LIG region. Detailed investigation suggests that the photo-thermoelectric effect, instead of the photovoltaic effect, dominates the photocurrent generation at the G-LIG junctions. Such a simple and low-cost technique offers an alternative way for the fabrication of graphene-based optoelectronic devices.

  3. Distinct photoresponse in graphene induced by laser irradiation

    SciTech Connect

    Wang, Wen Hui; Nan, Hai Yan; Liu, Qi; Ni, Zhen Hua; Liang, Zheng; Yu, Zhi Hao; Liu, Feng Yuan; Wang, Xin Ran; Hu, Wei Da; Zhang, Wei

    2015-01-12

    The graphene-based photodetector with tunable p-p{sup +}-p junctions was fabricated through a simple laser irradiation process. Distinct photoresponse was observed at the graphene (G)-laser irradiated graphene (LIG) junction by scanning photocurrent measurements, and its magnitude can be modulated as a result of a positive correlation between the photocurrent and doping concentration in LIG region. Detailed investigation suggests that the photo-thermoelectric effect, instead of the photovoltaic effect, dominates the photocurrent generation at the G-LIG junctions. Such a simple and low-cost technique offers an alternative way for the fabrication of graphene-based optoelectronic devices.

  4. Research of metallic materials irradiation with high energy pulsed laser impact

    NASA Astrophysics Data System (ADS)

    Blesman, A. I.; Postnikov, D. V.; Seropyan, G. M.; Tkachenko, E. A.; Teplouhov, A. A.; Polonyankin, D. A.

    2016-02-01

    In the process of metallic materials treatment by pulsed laser beams with nanosecond duration occurs extremely rapid and intensive heating of their surface. In this case a thin surface layer of material is heated to the boiling point and rapidly evaporates. This leads to arising substantial forces of reactive nature which significantly influence on the shape of the solidified melt and in some cases may cause deformation of the underlying layers. The considered question is relevant in the research of precision treatment of miniature products by laser beams. A metallic powder with microfine material structure was selected as the object of research and was exposed to laser irradiation with nanosecond duration. At the core of reactive forces calculation used the approach similar for laser rocket engines. The paper also presents the model and the results of the forces and the reactive recoil impulse calculation occurring during laser impact to the microfine metallic powder.

  5. Laser-induced damage threshold of silicon under combined millisecond and nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Lv, Xueming; Pan, Yunxiang; Jia, Zhichao; Li, Zewen; Zhang, Hongchao; Ni, Xiaowu

    2017-03-01

    The laser-silicon interaction process was investigated with the superposed radiation of two pulsed Nd:YAG lasers. A pulse duration of 1 millisecond (ms) was superposed by 7 nanosecond (ns) pulses, creating a combined pulse laser (CPL). The time-resolved surface temperature of silicon was measured by an infrared radiation pyrometer. The melting thresholds of silicon were attained for a single ms laser and a CPL by infrared radiometry and time-resolved reflectance. The concept of threshold boundary was proposed, and a fitted curve of threshold boundary was obtained. An axisymmetric model was established for laser heating of silicon. The transient temperature fields were obtained for single ms laser and CPL irradiation using finite element analysis. The numerical results were validated experimentally, and an obvious decrease in melting threshold was found under CPL irradiation. That is attributed to pre-heating by the ms laser and the surface damage caused by the ns laser.

  6. Upconversion emission from amorphous Y 2O 3:Tm 3+, Yb 3+ prepared by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, C. B.; Xia, Y. Q.; Qin, F.; Yu, Y.; Miao, J. P.; Zhang, Z. G.; Cao, W. W.

    2011-06-01

    Y 2O 3:Tm 3+, Yb 3+ was prepared by nanosecond pulsed laser irradiation. The X-ray diffraction pattern shows that the material produced by laser irradiation is amorphous, which presents strong blue upconversion emission under the excitation of 976 nm diode laser. The relative intensity of the blue emission to the infrared one is linearly dependent on the pump power and is an order of magnitude higher than that of the bulk material. The analyses of rate equations and the time-resolved spectroscopic results indicate that the enhancement of the blue upconversion is attributed to the longer lifetime of the levels of the Tm 3+ and Yb 3+ ions.

  7. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  8. Coulomb explosion induced by intense ultrashort laser pulses in two-dimensional clusters

    SciTech Connect

    Mijoule, Vincent; Lewis, Laurent J.; Meunier, Michel

    2006-03-15

    The phenomenon of Coulomb explosion is studied through qualitative numerical simulations of clusters irradiated with intense ultrashort laser pulses. We introduce a semiquantum approach which allows us to model two different types of materials--akin to rare gases and dielectrics--and which is appropriate for both low- and high-energy domains, i.e., the thermodynamic regime and the Coulomb explosion regime. Through a detailed study of clusters submitted to laser pulses of various intensities, we demonstrate that Coulomb explosion is the process responsible for cluster explosion under femtosecond laser pulses. We examine the differences in the dynamics of explosion of rare-gas clusters as a function of the wavelength of the incident laser radiation. For dielectric clusters, our simulations reveal a fragmented explosion mechanism; the influence of the size of the cluster is also studied.

  9. Responses of astrocytes in culture after low dose laser irradiation

    SciTech Connect

    Yew, D.T.; Zheng, D.R.; Au, C.; Li, W.W. )

    1990-03-01

    The effect of Helium-Neon low dose laser on astrocytes was investigated in cultures of isolated astrocytes from albino neonatal rats. The laser appeared to inhibit the growth of astrocytes as exemplified by the smaller sizes of the cells and the decreased leucine uptake in each cell after treatment. Temporary decrease in the number of mitoses was also observed, but this trend was reversed soon after. Electron microscopic studies revealed an increase in buddings from cell bodies and processes (branches) after irradiation.

  10. Measurements of X-ray doses and spectra produced by picosecond laser-irradiated solid targets.

    PubMed

    Yang, Bo; Qiu, Rui; Yu, Minghai; Jiao, Jinlong; Lu, Wei; Yan, Yonghong; Zhang, Bo; Zhang, Zhimeng; Zhou, Weimin; Li, Junli; Zhang, Hui

    2017-05-01

    Experiments have shown that high-intensity laser interaction with a solid target can generate significant X-ray doses. This study was conducted to determine the X-ray doses and spectra produced for picosecond laser-irradiated solid targets. The photon doses and X-ray spectra in the laser forward and side directions were measured using an XG III ps 300 TW laser system. For laser intensities of 7×10(18)-4×10(19)W/cm(2), the maximum photon dose was 16.8 mSv at 50cm with a laser energy of ~153J on a 1-mm Ta target. The photon dose in the forward direction increased more significantly with increasing laser intensity than that in the side direction. For photon energies >300keV, the X-ray spectrum can be fit with an effective temperature distribution of the exponential form, dN/dE = k× exp(-E/Tx). The X-ray temperature Tx increased with the laser intensity in the forward direction with values of 0.46-0.75MeV. Tx was less strongly correlated with the laser intensity in the side direction with values of 0.29-0.32MeV. The escaping electron spectrum was also measured. The measured electron temperature was correlated with the electron temperature predicted by the ponderomotive law. The observations in this experiment were also investigated numerically. A good agreement was observed between the experimental and simulation results.

  11. Segmental irradiation of the bladder with neodymium YAG laser irradiation

    SciTech Connect

    McPhee, M.S.; Mador, D.R.; Tulip, J.; Ritchie, B.; Moore, R.; Lakey, W.H.

    1982-11-01

    The Neodymium YAG laser energy source can be readily adapted for cystoscopic use by some simple modifications of existing urologic equipment. Both the fiberoptic resectoscope and a deflecting cystourethroscope have been adapted for this purpose. Fixation of the fiber tip 1 cm. from the target and use of a divergent beam of 36 degrees allows the delivery of standardized dosage to a relatively large bladder tissue volume. Animal experiments involving 35 mongrel dogs established that repetitive overlapping doses of 200 joules ech can successfully treat a large area of bladder resulting in a full thickness bladder wall injury. This technique has been used in 4 high risk patients with infiltrating bladder cancer without adverse sequelae. The ability to reliably produce a full thickness lesion may give this modality a therapeutic advantage over conventional cautery techniques especially for the treatment of residual infiltrative carcinoma.

  12. Effects of low-power laser irradiation on the mitosis rate of the corneal epithelium

    NASA Astrophysics Data System (ADS)

    Chen, Varda; Landshman, Nahum; Belkin, Michael

    1995-05-01

    The effect of repeated low power He-Ne laser on rabbit's corneal epithelium was studied after 3 daily sessions. Under certain irradiation parameters, low power He-Ne laser irradiation was found to change the mitotic rate in the basal layer of intact corneal epithelium. Three daily irradiations for 3 or 10 minutes increased the mitotic index while 30 minutes irradiations decreased it.

  13. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  14. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.

    PubMed Central

    Venugopalan, V; Nishioka, N S; Mikić, B B

    1995-01-01

    The physical mechanisms that enable short pulses of high-intensity ultraviolet laser radiation to remove tissue, in a process known as laser ablation, remain obscure. The thermodynamic response of biological tissue to pulsed laser irradiation was investigated by measuring and subsequently analyzing the stress transients generated by pulsed argon fluorine (ArF, lambda = 193 nm) and krypton fluorine (KrF, lambda = 248 nm) excimer laser irradiation of porcine dermis using thin-film piezoelectric transducers. For radiant exposures that do not cause material removal, the stress transients are consistent with rapid thermal expansion of the tissue. At the threshold radiant exposure for ablation, the peak stress amplitude generated by 248 nm irradiation is more than an order of magnitude larger than that produced by 193 nm irradiation. For radiant exposures where material removal is achieved, the temporal structure of the stress transient indicates that the onset of material removal occurs during irradiation. In this regime, the variation of the peak compressive stress with radiant exposure is consistent with laser-induced rapid surface vaporization. For 193 nm irradiation, ionization of the ablated material occurs at even greater radiant exposures and is accompanied by a change in the variation of peak stress with radiant exposure consistent with a plasma-mediated ablation process. These results suggest that absorption of ultraviolet laser radiation by the extracellular matrix of tissue leads to decomposition of tissue on the time scale of the laser pulse. The difference in volumetric energy density at ablation threshold between the two wavelengths indicates that the larger stresses generated by 248 nm irradiation may facilitate the onset of material removal. However, once material removal is achieved, the stress measurements demonstrate that energy not directly responsible for target decomposition contributes to increasing the specific energy of the plume (and plasma

  15. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  16. Dynamic optical limiting experiments on vanadium dioxide and vanadium pentoxide thin films irradiated by a laser beam.

    PubMed

    Wang, Weiping; Luo, Yongquan; Zhang, Dayong; Luo, Fei

    2006-05-10

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films are irradiated by a near-infrared continuous-wave laser beam and the dynamic optical limiting performance is measured. The temperature varying with time of the films induced by a laser beam is also recorded by an IR thermal sensor. Under the irradiation of a laser beam with an intensity of 255 W/cm2 and a spot diameter of 2 mm, the laser beam transmittance of the VO2 film decreases from 47% before phase transition to 28% after phase transition, and the response time is approximately 200 ms; the laser beam transmittance of the V2O5 film decreases from 51% before phase transition to 24% after phase transition, and the response time is approximately 40 ms. The optical limiting is realized by this laser heating-induced phase transition.

  17. Dynamic optical limiting experiments on vanadium dioxide and vanadium pentoxide thin films irradiated by a laser beam

    SciTech Connect

    Wang Weiping; Luo Yongquan; Zhang Dayong; Luo Fei

    2006-05-10

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films are irradiated by a near-infrared continuous-wave laser beam and the dynamic optical limiting performance is measured. The temperature varying with time of the films induced by a laser beam is also recorded by an IR thermal sensor. Under the irradiation of a laser beam with an intensity of 255 W/cm2 and a spot diameter of 2 mm, the laser beam transmittance of the VO2 film decreases from 47% before phase transition to 28% after phase transition, and the response time is {approx}200 ms; the laser beam transmittance of the V2O5 film decreases from 51% before phase transition to 24% after phase transition, and the response time is {approx}40 ms. The optical limiting is realized by this laser heating-induced phase transition.

  18. Low Level Laser Irradiation of Nerve Cells In Vitro

    DTIC Science & Technology

    1996-01-01

    Advisor Michael Miloro, D.M.D., M.D. College of Dentistry ABSTRACT Low energy laser treatment of patients with nerve injuries has been reported to achieve...Isolation and Culture 15 vii Cell Lines 17 Cell Expansion 19 Cell Freezing 20 Experimental Design 20 GaA1As Laser Diode 22 Radiation Schedule 23...of 1 six well plate. Two groups served as controls. The remaining groups were irradiated with a 70 mW GaA1As laser diode , wavelength 820-830 nm

  19. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Z. K.; Zheng, H. Y.; Lim, C. P.; Lam, Y. C.

    2009-09-01

    Controlled modification of surface wettability of polymethyl methacrylate (PMMA) was achieved by irradiation of PMMA surface with femtosecond laser pulses at various laser fluences and focus distances. Fluences from 0.40 to 2.1 J/cm2 produced a hydrophobic surface and 2.1 to 52.7 J/cm2 (maximum investigated) produced a hydrophilic surface. Fluences less than 0.31 J/cm2 had no effect on the wettability of the raw PMMA. This change in wettability was caused dominantly by laser induced chemical structure modification and not by a change in surface roughness.

  20. [Low level laser irradiation in the visible spectra induces HeLa cells proliferation].

    PubMed

    Yang, Hong-qin; Wang, Yu-hua; Chen, Jiang-xu; Zheng, Li-qin; Xie, Shu-sen

    2012-04-01

    The aim of this in vitro study was to evaluate the effects of low level laser irradiation on the proliferation of HeLa cells using 405 nm diode laser, 514 nm argon laser, 633 nm He-Ne laser, or 785 nm diode laser, The cells were seeded on 96-well microplates for 24 h in 5% fetal bovine serum containing medium, then irradiated with the laser at dose of 100 and 1 000 J x m(-2), respectively. At the time point of 24, 48, 72 h after irradiation, cell viability was assessed by MTT assay. The results show that 405, 633 and 785 nm laser irradiation induces wavelength-dependent and time-dependent proliferation. 633 nm laser irradiation results in a stimulatory proliferation effect that is most significant, whereas 514 nm laser irradiation produces little increase in cell proliferation. Low level laser irradiation increases cell proliferation in a dose-dependent manner. 1 000 J x m(-2) laser irradiation is more effective in increasing cell proliferation than 100 J x m(-2) laser irradiation using 405 nm diode laser, 633 nm He-Ne laser, or 785 nm diode laser, but not as effective as using 514 nm argon laser.

  1. Axion-like-particle search with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Döbrich, Babette; Gies, Holger

    2010-10-01

    We study ALP -photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV mass range and can thus complement ALP searches at dipole magnets.

  2. Change in Reflectivity of Metals under Intense Laser Radiation. Revision

    DTIC Science & Technology

    1981-05-01

    Ruby Laser Ruby Laser F. M - mirror Target L - lens F - filter or Tre Vacuum chamber attenuator Vacuum chamber W - window (a) For specular reflectance (b...of fusion the sur- face temperature remains constant. The thicIness of the molten layer de- pends on the intensity of the absorbed laser radiation and...REFLECTIVITY OF METALS UNDER INTENSE LASER RADIATION by William T. Walter A Final Technical Report DTIC t J-JUL 2 419MI A Prepared foe AIR FORCE OFFICE OF

  3. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma.

    PubMed

    Torrisi, L; Cavallaro, S; Cutroneo, M; Giuffrida, L; Krasa, J; Margarone, D; Velyhan, A; Kravarik, J; Ullschmied, J; Wolowski, J; Szydlowski, A; Rosinski, M

    2012-02-01

    A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  4. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  5. Irradiation of Materials using Short, Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.

    2016-10-01

    We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).

  6. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  7. Effects of CO/sub 2/ laser irradiation on gingiva

    SciTech Connect

    Rossmann, J.A.; Gottlieb, S.; Koudelka, B.M.; McQuade, M.J.

    1987-06-01

    A CO/sub 2/ laser (Coherent Medical Model 400) was used to irradiate the gingival tissue of a cynomolgous monkey to determine laser effects on the epithelium and underlying connective tissue. A focal length of 400 mm and a 10-watt power setting at 0.2- and 0.5-second exposure was used. Biopsy results indicated that a 0.2-second duration of CO/sub 2/ laser irradiation was inadequate to completely de-epithelialize the gingival tissue. A 0.5-second exposure exhibited complete epithelial destruction with little or no disturbance of the underlying connective tissue layer and viable connective tissue 1.0 mm below the impact site.

  8. Bio-heat transfer simulation of retinal laser irradiation.

    PubMed

    Narasimhan, Arunn; Jha, Kaushal Kumar

    2012-05-01

    Retinopathy is a surgical process in which maladies of the human eye are treated by laser irradiation. A two-dimensional numerical model of the human eye geometry has been developed to investigate transient thermal effects due to laser radiation. In particular, the influence of choroidal pigmentation and that of choroidal blood convection-parameterized as a function of choroidal blood perfusion-are investigated in detail. The Pennes bio-heat transfer equation is invoked as the governing equation, and finite volume formulation is employed in the numerical method. For a 500-μm diameter spot size, laser power of 0.2 W, and 100% absorption of laser radiation in the retinal pigmented epithelium (RPE) region, the peak RPE temperature is observed to be 103 °C at 100 ms of the transient simulation of the laser surgical period. Because of the participation of pigmented layer of choroid in laser absorption, peak temperature is reduced to 94 °C after 100 ms of the laser surgery period. The effect of choroidal blood perfusion on retinal cooling is found to be negligible during transient simulation of retinopathy. A truncated three-dimensional model incorporating multiple laser irradiation of spots is also developed to observe the spatial effect of choroidal blood perfusion and choroidal pigmentation. For a circular array of seven uniformly distributed spots of identical diameter and laser power of 0.2 W, transient temperature evolution using simultaneous and sequential mode of laser surgical process is presented with analysis.

  9. Effects of ultraviolet nanosecond laser irradiation on structural modification and optical transmission of single layer graphene

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Kang, Xiaoli; Zhu, Qihua; Zheng, Wanguo

    2017-03-01

    Structural modifications and optical transmission change of single layer graphene (SLG) on transparent SiO2 substrate induced by nanosecond 355 nm laser irradiation were systematically studied by scanning electron microscopy (SEM), laser-excited Raman, X-ray photon spectroscopy (XPS) and UV-vis transmission spectra. In this study, to avoid damage to graphene, the selected irradiation fluence was set to be smaller than the laser damage threshold of SLG. Laser-driven formation of nano-dots, carbon clusters and spherical carbon morphologies were clearly presented using SEM magnification images, and the formation mechanism of such structures were discussed. Raman spectra revealed formation of D' peak and the continuously increasing of ID/IG intensity ratio with the concurrent increase of laser fluence, indicating the increase in amount of structural defects and disordering in SLG. XPS results disclosed that the oxygen content in SLG increases with laser fluence. The formation and relative content increase of Cdbnd O, Csbnd Osbnd C and Osbnd Cdbnd O bonds in SLG induced by laser irradiation were also revealed by XPS. Laser-driven micro-structure modifications of crystalline graphene to nano-crystalline graphene and photo-chemical reactions between graphene and O2 and H2O in air environment were suggested to be responsible for the Raman and XPS revealed modifications in SLG. It is worthy to point out that the above mentioned structural modifications only caused a slight decrease (<2% @ 550 nm) in the optical transmittance of SLG. These results may provide more selections for the batch processing of large scale graphene aiming at modifying its structure and thus taiorling its properties.

  10. An intense polarized beam by a laser ionization injection

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of: (1) producing the neutral hydrogen beam by Lorentz stripping; (2) excitation of the neutral hydrogen beam with a laser; and (3) ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98 percent and a polarization of 80 percent can be expected by an intense laser beam from a free electron laser (FEL).

  11. High-order harmonics from laser-irradiated plasma surfaces

    SciTech Connect

    Teubner, U.; Gibbon, P.

    2009-04-15

    The investigation of high-order harmonic generation (HHG) of femtosecond laser pulses by means of laser-produced plasmas is surveyed. This kind of harmonic generation is an alternative to the HHG in gases and shows significantly higher conversion efficiency. Furthermore, with plasma targets there is no limitation on applicable laser intensity and thus the generated harmonics can be much more intense. In principle, harmonic light may also be generated at relativistic laser intensity, in which case their harmonic intensities may even exceed that of the focused laser pulse by many orders of magnitude. This phenomenon presents new opportunities for applications such as nonlinear optics in the extreme ultraviolet region, photoelectron spectroscopy, and opacity measurements of high-density matter with high temporal and spatial resolution. On the other hand, HHG is strongly influenced by the laser-plasma interaction itself. In particular, recent results show a strong correlation with high-energy electrons generated during the interaction process. The harmonics are a promising tool for obtaining information not only on plasma parameters such as the local electron density, but also on the presence of large electric and magnetic fields, plasma waves, and the (electron) transport inside the target. This paper reviews the theoretical and experimental progress on HHG via laser-plasma interactions and discusses the prospects for applying HHG as a short-wavelength, coherent optical tool.

  12. Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation.

    PubMed Central

    Venugopalan, V; Nishioka, N S; Mikić, B B

    1996-01-01

    The physical mechanisms that achieve tissue removal through the delivery of short pulses of high-intensity infrared laser radiation, in a process known as laser ablation, remain obscure. The thermodynamic response of biological tissue to pulsed infrared laser irradiation was investigated by measuring and analyzing the stress transients generated by Q-sw Er:YSGG (lambda = 2.79 microns) and TEA CO2 (lambda = 10.6 microns) laser irradiation of porcine dermis using thin-film piezoelectric transducers. For radiant exposures that do not produce material removal, the stress transients are consistent with thermal expansion of the tissue samples. The temporal structure of the stress transients generated at the threshold radiant exposure for ablation indicates that the onset of material removal is delayed with respect to irradiation. Once material removal is achieved, the magnitude of the peak compressive stress and its variation with radiant exposure are consistent with a model that considers this process as an explosive event occurring after the laser pulse. This mechanism is different from ArF- and KrF-excimer laser ablation where absorption of ultraviolet radiation by the collagenous tissue matrix leads to tissue decomposition during irradiation and results in material removal via rapid surface vaporization. It appears that under the conditions examined in this study, explosive boiling of tissue water is the process that mediates the ablation event. This study provides evidence that the dynamics and mechanism of tissue ablation processes can be altered by targeting tissue water rather than the tissue structural matrix. Images FIGURE 6 PMID:8744336

  13. Research of silicon solar cells' performance after being irradiated by high power laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Yunfei; Li, Yanjie; Zhao, Guomin; Chen, Minsun

    2016-11-01

    Compared with traditional methods of energy supply, there is a great possibility to get a more remarkable enhancement of conversion efficiency for laser power (of proper wavelength and intensity) beaming to silicon solar cells. However, it should be noticed that cells may be damaged by high power laser. Based on the background, this essay explores high-power-laser's possible damage to silicon solar cells by analyzing IV curves (obtained by IV tester) and minority-carrier lifetime (measured by open-circuit-voltage-decay method). Research shows that, for 30s irradiation, minority-carrier lifetime decreases to some extent when irradiated by laser of over 5.5W/cm2 and the higher laser power density, the more degradation. Similarly, IV curves see a downward trend under laser of over 5.5W/cm2. In addition, there is a roughly linear relationship between lifetime and the decrease amount of short circuit current. Moreover, the degradation degree has a close relation with the maximum temperature. The prolonged illumination would not bring about more serious damage if one cell had already reached an equilibrium temperature.

  14. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Formation of micromodifications in a KDP crystal irradiated by tightly focused femtosecond visible laser pulses

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Makarov, Ivan A.; Mikheev, Pavel M.; Syrtsov, Vladimir S.; Shashkov, Alexander A.

    2005-07-01

    The formation of micromodifications in the bulk of a KDP crystal irradiated by tightly focused 600-nm, 100-fs and 200-fs, 0.02-10 μJ femtosecond laser pulses is studied. A theoretical model describing the initial stage of formation of a plasma channel taking into account field ionisation and heating of the electron component of the plasma is proposed. The laser pulse intensity (1013 W cm-2), the electron concentration (1020 cm-3) and the average electron temperature (5 eV) in the plasma channel are estimated.

  15. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  16. Intensity Scaling for Diode Pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-01

    unphased diode lasers is absorbed in the near IR by atomic potassium, rubidium , or cesium. The gain cell for a DPAL system using a heat pipe design is...demonstrated linear scaling of a rubidium laser to 32 times threshold.3 In our present work, we explore scaling to pump in- tensities of >100kW/cm2. The...of output power. Each alkali atom in the laser medium may be required to cycle as many as 1010 pump photons per second. We demonstrated a rubidium

  17. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  18. Physical and Chemical Changes of Polystyrene Nanospheres Irradiated with Laser

    SciTech Connect

    Mustafa, Mohd Ubaidillah; Juremi, Nor Rashidah Md.; Mohamad, Farizan; Wibawa, Pratama Jujur; Agam, Mohd Arif; Ali, Ahmad Hadi

    2011-05-25

    It has been reported that polymer resist such as PMMA (Poly(methyl methacrylate) which is a well known and commonly used polymer resist for fabrication of electronic devices can show zwitter characteristic due to over exposure to electron beam radiation. Overexposed PMMA tend to changes their molecular structure to either become negative or positive resist corresponded to electron beam irradiation doses. These characteristic was due to crosslinking and scissors of the PMMA molecular structures, but till now the understanding of crosslinking and scissors of the polymer resist molecular structure due to electron beam exposure were still unknown to researchers. Previously we have over exposed polystyrene nanospheres to various radiation sources, such as electron beam, solar radiation and laser, which is another compound that can act as polymer resist. We investigated the physical and chemical structures of the irradiated polystyrene nanospheres with FTIR analysis. It is found that the physical and chemical changes of the irradiated polystyrene were found to be corresponded with the radiation dosages. Later, combining Laser irradiation and Reactive Ion Etching manipulation, created a facile technique that we called as LARIEA NSL (Laser and Reactive Ion Etching Assisted Nanosphere Lithography) which can be a facile technique to fabricate controllable carbonaceous nanoparticles for applications such as lithographic mask, catalysts and heavy metal absorbers.

  19. Achromatic circular polarization generation for ultra-intense lasers.

    SciTech Connect

    Atherton, Briggs W.; Schollmeier, Marius; Bennett, Guy R.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

    2010-05-01

    Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to generate circular polarization.

  20. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission

    SciTech Connect

    Kahn, E. H.; Langford, S. C.; Dickinson, J. T.; Boatner, Lynn A

    2013-01-01

    We report mass-resolved time-of-flight measurements of neutral particles from the surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed.

  1. High-intensity laser therapy during chronic degenerative tenosynovitis experimentally induced in broiler chickens

    NASA Astrophysics Data System (ADS)

    Fortuna, Damiano; Rossi, Giacomo; Bilotta, Teresa W.; Zati, Allesandro; Gazzotti, Valeria; Venturini, Antonio; Pinna, Stefania; Serra, Christian; Masotti, Leonardo

    2002-10-01

    The aims of this study was the safety and the efficacy of High Intensity Laser Therapy (HILT) on chronic degenerative tenosynovitis. We have effectuated the histological evaluation and seroassay (C reactive protein) on 18 chickens affect by chronic degenerative tenosynovitis experimentally induced. We have been employed a Nd:YAG laser pulsed wave; all irradiated subjects received the same total energy (270 Joule) with a fluence of 7,7 J/cm2 and intensity of 10,7 W/cm2. The histological findings revealed a distinct reduction of the mineralization of the choral matrix, the anti-inflammatory effect of the laser, the hyperplasia of the synoviocytes and ectasia of the lymphatic vessels.

  2. X-ray Polarization Measurements at Relativistic Laser Intensities

    SciTech Connect

    Beiersdorfer, P; Shepherd, R; Mancini, R C; Chen, H; Dunn, J; Keenan, R; Kuba, J; Patel, P K; Ping, Y; Price, D F; Widmann, K

    2004-03-20

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10{sup 21} W/cm{sup 2}. Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function.

  3. Photodynamic therapy with laser scanning mode of tumor irradiation

    NASA Astrophysics Data System (ADS)

    Chepurna, Oksana; Shton, Irina; Kholin, Vladimir; Voytsehovich, Valerii; Popov, Viacheslav; Pavlov, Sergii; Gamaleia, Nikolai; Wójcik, Waldemar; Zhassandykyzy, Maral

    2015-12-01

    In this study we propose a new version of photodynamic therapy performed by laser scanning. The method consists in tumor treatment by a light beam of a small cross section which incrementally moves through the chosen area with a defined delay at each point and repetitively re-scans a zone starting from the initial position. Experimental evaluation of the method in vitro on murine tumor model showed that despite the dose, applied by scanning irradiation mode, was 400 times lower, the tumor inhibition rate conceded to attained with continuous irradiation mode by only 20%.

  4. Platelet derived growth factor secretion and bone healing after Er:YAG laser bone irradiation.

    PubMed

    Kesler, Gavriel; Shvero, Dana Kesler; Tov, Yariv Siman; Romanos, George

    2011-03-01

    Er:YAG laser irradiation has been reported to enhance wound healing. However, no studies have evaluated the synthesis of growth factors after laser irradiation. The present study investigated the effects of laser irradiation on the amount of secretion of platelet derived growth factor (PDGF) in the wound, clarifying the effects of the Er:YAG laser on the bone healing. Osteotomies were prepared in the tibiae of 28 rats using an Er:YAG laser (test group). Maximum power of 8 watts, energy per pulse of 700 mJ, and frequency up to 50 Hz were used. The laser was used with external water irrigation, a spot size of 2 mm, energy per pulse of 500 to 1000 mJ/pulse, and energy density of 32 J/cm(2). Twenty eight additional rats served as a control group and their osteotomies were prepared with a drill 1.3 mm in diameter at 1000 rpm, with simultaneous saline irrigation. Two rats from the tested group and 2 from the control group were sacrificed on each day following surgery (1-14 days), and the tissue specimens were prepared for histologic evaluation. Immunohistochemical staining with anti-PDGF was performed after histologic examination. The difference between the PDGF staining intensities of the 2 treatment groups was analyzed using a multivariate logistic regression test. A significant rise in PDGF staining occurred in both groups 2-3 days following surgery. However, while high PDGF counts remained for the 2-week experimental period in the laser group, PDGF levels in the control group returned to baseline levels 8 days post surgery. The 2 groups (laser and control) were found to be different throughout the experiment, and the rat type was found to be a significant predictor (P  =  .000011). The present study demonstrated that Er:YAG laser irradiation seems to stimulate the secretion of PDGF in osteotomy sites in a rat model. It is possible that the high levels of PDGF are part of the mechanism that Er:YAG irradiation enhances and improves the healing of

  5. Experimental study on rat NK cell activity improvement by laser acupoint irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Dongxiao; Chen, Xiufeng; Ruan, Buqing; Yang, Feng

    1998-08-01

    To study the improvement of the natural killer (NK) cell activity by semiconductor laser acupoint irradiation, rats were used in this experiment and were injected immunosuppressant in their abdomen. The immunoassay was made after the surface irradiation and inner irradiation at Baihui point by semiconductor laser. The NK cell activity is an important index of immunologic function. The results showed that the NK cell activity after laser acupoint irradiation was enhanced. This enhancement is relatively important in the clinical therapy of tumor.

  6. Research activities on high-intensity laser and high field physics at APRI-GIST

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Moon

    2015-05-01

    The performance of a 0.1-Hz-repetition-rate, 30-fs, 1.5-PW Ti:sapphire laser which is using for research on high field physics in APRI-GIST is presented. The charged particles (electrons and protons) are accelerated and an efficient x-ray generation is demonstrated using the PW laser. Protons are accelerated up to 80 MeV when an ultra-thin polymer target is irradiated by a circularly-polarized PW laser pulse. Electrons are accelerated to multi-GeV level with a help of injector and accelerator scheme. In the relativistic harmonic generation experiment, the harmonic order is dramatically extended, by optimizing the intensity of pre-pulse level, up to 164th that corresponds to 4.9 nm in wavelength and the experimental results can be explained by the oscillatory flying mirror model. The upgrade of the PW laser to the multi-PW level is under way.

  7. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target.

    PubMed

    Gauthier, M; Kim, J B; Curry, C B; Aurand, B; Gamboa, E J; Göde, S; Goyon, C; Hazi, A; Kerr, S; Pak, A; Propp, A; Ramakrishna, B; Ruby, J; Willi, O; Williams, G J; Rödel, C; Glenzer, S H

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  8. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    NASA Astrophysics Data System (ADS)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  9. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  10. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    SciTech Connect

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  11. Influence of irradiation conditions on plasma evolution in laser-surface interaction

    NASA Astrophysics Data System (ADS)

    Hermann, J.; Boulmer-Leborgne, C.; Dubreuil, B.; Mihailescu, I. N.

    1993-09-01

    The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm-2 was studied by emission spectroscopy. Time- and space-resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe˜10 eV and ne=1018 cm-3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get information on the role of the plasma in the laser-surface interaction, Ti surfaces were investigated by microscopy after irradiation. Thus an enhanced momentum transfer from the plasma to the target due to the recoil pressure of the breakdown plasma could be evidenced.

  12. Is there a stimulation of blood microcirculation at low level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rogatkin, Dmitry; Dunaev, Andrey

    2014-05-01

    In 1980-2000 besides the laser surgery an intensive evolution of Low Level Laser Therapy (LLLT) had started in medicine, especially in Russia as well as in several other East-European countries. At the same time the biophysical mechanisms of LLLT are still the subject of disputes. One of the most popular clinical effects at Low Level Laser Irradiation (LLLI) being mentioned in medical publications for justification of the LLLT healing outcome is a stimulation of blood microcirculation in irradiated area. It was declared a priori at a dawn of LLLT and is now a basis of medical interpretation of healing mechanisms of LLLT at least in Russia. But in past 20 years a lot of investigation was carried out on optical registration of microhaemodynamic parameters in vivo as well as a number of noninvasive diagnostic tools was created for that. So, today it is possible to experimentally check the blood microcirculation stimulation hypothesis. Our study was aimed on that during the past 10 years. The most precision and accurate experiments we have carried out recently using simultaneously three different noninvasive diagnostic techniques: Laser Doppler Flowmetry, Tissue Reflectance Oximetry and Infrared Thermography. All these methods didn't confirm the effect on the blood microcirculation stimulation in skin or mucosa at irradiation with the power density below 50 mW/cm2 and irradiation time up to 5-6 minutes. Above this threshold the heating on 0,8…1 °C of tissue in the field of irradiation and the corresponding synchronous increase of all parameters of microhemodynamics were observed.

  13. Three-photon-excited upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation.

    PubMed

    Zeng, Huidan; Song, Juan; Chen, Danping; Yuan, Shuanglong; Jiang, Xiongwei; Cheng, Ya; Yang, Yunxia; Chen, Guorong

    2008-04-28

    We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O(2-) to Nb(5+) can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix.

  14. Temperature modeling of laser-irradiated azo-polymer thin films.

    PubMed

    Yager, Kevin G; Barrett, Christopher J

    2004-01-08

    Azobenzene polymer thin films exhibit reversible surface mass transport when irradiated with a light intensity and/or polarization gradient, although the exact mechanism remains unknown. In order to address the role of thermal effects in the surface relief grating formation process peculiar to azo polymers, a cellular automaton simulation was developed to model heat flow in thin films undergoing laser irradiation. Typical irradiation intensities of 50 mW/cm2 resulted in film temperature rises on the order of 5 K, confirmed experimentally. The temperature gradient between the light maxima and minima was found, however, to stabilize at only 10(-4) K within 2 micros. These results indicate that thermal effects play a negligible role during inscription, for films of any thickness. Experiments monitoring surface relief grating formation on substrates of different thermal conductivity confirm that inscription is insensitive to film temperature. Further simulations suggest that high-intensity pulsed irradiation leads to destructive temperatures and sample ablation, not to reversible optical mass transport.

  15. Interlaminar damage of carbon fiber reinforced polymer composite laminate under continuous wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Chi; Wu, Chen-Wu; Huang, Yi-Hui; Song, Hong-Wei; Huang, Chen-Guang

    2017-01-01

    The interlaminar damages were investigated on the carbon fiber reinforced polymer (CFRP) composite laminate under laser irradiation. Firstly, the laminated T700/BA9916 composites were exposed to continuous wave laser irradiation. Then, the interface cracking patterns of such composite laminates were examined by optical microscopy and scanning electron microscopy. Finally, the Finite Element Analysis (FEA) was performed to compute the interface stress of the laminates under laser irradiation. And the effects of the laser parameters on the interlaminar damage were discussed.

  16. Laser irradiation effects: A functional assessment

    NASA Astrophysics Data System (ADS)

    Robbins, David O.

    1994-08-01

    Specification of damage criteria and establishment of morphological data resulting from laser exposure has been an important mission for biomedical researchers and strategic planners. Equally important, however, from a military standpoint is the impact that this alteration, whether temporary or permanent, has on the ability of a soldier to complete a visually guided mission. Furthermore, while permanent visual loss associated with distinct morphological damage is of course serious it must also be recognized that temporary shifts in visual acuity or contrast sensitivity can occur at energy densities below those associated with distinct tissue damage. These temporary visual performance shifts could themselves be life threatening and may be the result of reversible or minute physical changes that are undetectable using current damage criteria. Our result suggests that significant shifts in visual sensitivity does occur at or below the ED50 level and that these shifts can be long lasting. Using a behavioral technique to measure on-going visual acuity, we have exposed awake, task-oriented rhesus monkeys to a variety of laser exposures which vary in energy density and temporal and spatial distribution on the retina. Our preliminary results in this project are consistent with the results of our previous studies and have extended the various exposure and performance criteria already established.

  17. Heat transport in metals irradiated by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kanavin, A. P.; Smetanin, I. V.; Isakov, V. A.; Afanasiev, Yu. V.; Chichkov, B. N.; Wellegehausen, B.; Nolte, S.; Momma, C.; Tünnermann, A.

    1998-06-01

    Different regimes of heat propagation in metals irradiated by subpicosecond laser pulses are studied on the basis of a two-temperature diffusion model. Analytical solutions for the heat conduction equation, corresponding to the different temperature dependences of the electron thermal conductivity, are obtained. It is shown that in case of a strong electron-lattice nonequilibrium, the heat penetration depth grows linearly with time, and the heat propagation velocity decreases with increasing laser fluence. Investigations of this ``counterintuitive'' regime of heat propagation are performed.

  18. Heat transport in metals irradiated by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kanavin, Andrei P.; Afanasiev, Yuri V.; Chichkov, Boris N.; Isakov, Vladimir A.; Smetanin, Igor V.

    2000-02-01

    Different regimes of heat propagation in metals irradiated by subpicosecond laser pulses are studied on the basis of two-temperature diffusion model. New analytical solutions for the heat conduction equation, corresponding to the different temperature dependences of the electron thermal conductivity (formula available n paper), are found. It is shown that in case of a strong electron-lattice nonequilibrium, the heat penetration depth grows linearly with time, lT varies direct as t, in opposite to the ordinary diffusionlike behavior, lT varies direct as t1/2. Moreover, the heat propagation velocity decreases with increasing laser fluence.

  19. Study of the laser cleaning on plaster sculptures. The effect of laser irradiation on the surfaces

    NASA Astrophysics Data System (ADS)

    Pelosi, C.; Fodaro, D.; Sforzini, L.; Rubino, A. R.; Falqui, A.

    2013-06-01

    The focus of this paper is to study the effects caused by the laser irradiation on nineteenth and twentieth century plaster sculptures. Before applying the laser cleaning on the sculptures, it was tested on samples prepared in laboratory according to the results of the scientific investigation carried out on the selected works of art. The characterization of the surface finishing materials of the sculptures was performed by Fourier Transform Infrared spectrometry (FTIR), X-ray Fluorescence spectroscopy (XRF), UV fluorescence photography, and internal micro stratigraphic analysis. Regarding the finishing materials, shellac, zinc white, siccative oil and proteins were found on the surfaces. The results of the scientific investigation, together with the examination of the ancient technical manuals, were used to create the laboratory samples to carry out the irradiation tests with laser. The laser irradiation and cleaning tests were carried out with a Q-switched Nd:YAG system. The irradiated surfaces were analyzed before and after the laser tests with the aid of a video microscope and a reflectance spectrophotometer, in order to evaluate the color changes of the surfaces. The possible morphological modifications caused by laser irradiation were also investigated by Scanning Electron Microscopy (SEM) together with ancillary Energy Dispersive Spectroscopy (EDS) elemental analysis. Concerning the laser cleaning test on the samples, in general little color changes were observed both with the 532 and 1064 nm wavelength. Total color changes, expressed as Δ E*, are always small apart from the samples made of shellac and zinc white in linseed oil, as finishing layer. As regards these samples the surface irradiated with the laser greyed lightly, corresponding to a decrease of L* parameter (lightness). SEM imaging of the treated and not-treated samples, both at low and high magnification, does not show evidence of significant morphological differences due to the laser beam

  20. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  1. Spatial intensity profiling of an industrial laser welding system

    SciTech Connect

    Milewski, J.O.

    1991-12-31

    A investigation was conducted to devise a method to sense the laser beam intensity profile of an industrial laser welding system. The research focuses on monitoring methods and assessing locations within the system where data can be taken which reveal the relationship between the laser beam intensity profile and the input system parameters of the laser beam welding process. Emphasis has been placed on the configuration of a distributed computing environment to acquire, analyze and display the results of the sensed beam profile. Conventional image processing techniques are demonstrated. It was found that a distributed computing environment was useful for processing the large volumes of data generated by this process characterization method, and the distributed computing environment provided the computing power required for computationally intensive analysis and display techniques. The mathematical techniques used to discriminate one data set from another and relate the results to processing conditions are discussed.

  2. Plasma-based polarization modulator for high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  3. Control of the local devitrification on oxyfluoride glass doped with Er{sup 3+} ions under diode laser irradiation

    SciTech Connect

    Gonzalez-Perez, S.; Martin, I. R.; Jaque, D.; Haro-Gonzalez, P.; Capuj, N.

    2010-11-15

    Temperature control of the devitrification process in an erbium doped oxyfluoride glass under laser irradiation is reported. The green upconversion emissions around 525 and 545 nm originated from the thermalized {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels were studied when the glass structure changes to glass ceramic during irradiation with a laser beam. Power dependence of the fluorescence intensity ratio was used to determine the temperature of the irradiated zone. The transition from glass to glass ceramic takes place under 2300 mW of laser power with an estimated temperature around 783 K. This result agrees with the one obtained in the samples devitrified under conventional furnace treatment. Therefore, the estimation of the temperature of the irradiated zone through the fluorescence intensity ratio method allows a controlled devitrification. Moreover, an irradiated line has been written in the glass showing an important diffusion of the Pb{sup 2+} and F{sup -} ions. These results confirm that nanocrystals have been created due to the laser action.

  4. Importance of pulsed laser intensity in porphyrin-sensitized NADH photo-oxidation

    NASA Astrophysics Data System (ADS)

    Kirveliene, V.; Rotomskis, Ricardas; Juodka, B.; Piskarskas, Algis S.

    1991-05-01

    Porphyrin-type photosensitizers are the subject of intensive studies because of their successful use in photodynamic therapy. The suggestion that singlet molecular oxygen 1o2(1g),produced after the primary photophysical process, is the active agent in the cytotoxic action of porphyrin and light has gained general acceptance. However, this suggestion may not be relevant to the mechanism of intracellular photodamage to cells, where high concentration of reducing agent (i. e. NAD(P)H) and prevailing oxygen levels should favor the pathway, in which semi-oxidized substrate radical and semi-reduced dye radicals are generated. Excitation of the dye using a pulsed laser might lead to biphotonic processes and radical reactions not involving oxygen in the primary steps, thus overcoming tumor anoxia. The main documented results of the use of high peak power laser for photosensitized reactions were: 1, HP-sensitized tryptophan photodegradation induced by 20 MW cm2 peak intensity pulses (5 ns, 630 nm) was identical with that induced by cw light;1 2, protoporphyrin IX dimethyl ether irradiated with 2 GW cm peak intensity pulses (30 ps, 530 nm) showed a yield of photodecomposition substantially higher than that induced by cw irradiation. It is assumed that multi-step excitation is responsible for photodecomposition under powerful picosecond pulses;2 3, irradiation of Rose Bengal and red blood cells suspension with increasing intensities (40 ps, 532 nm) resulted in a decrease in acetyicholinesterase inhibition.3 On the other side the law of time-intensity reciprocity was verified in a wide range using cw irradiation sources.4

  5. Post-Deposition Induced Conductivity in Pulsed Laser Irradiated Metal Doped Zinc Oxide Films

    SciTech Connect

    Wang, Lisa J; Exarhos, Gregory J

    2009-12-03

    The optical and electrical properties of doped solution-deposited and rf sputter-deposited thin metal oxide films were investigated following post deposition pulsed laser irradiation. Solution deposited films were annealed at 450 ºC. Following the heating regiment, the transparent metal oxide films were subjected to 355 nm pulsed Nd:YAG laser irradiation (4 nsec pulsewidth) at fluences between 5 and 150 mJ/cm2. Irradiation times at pulse frequencies of 30 Hz ranged from seconds to tens of minutes. Film densification, index change and a marked increase in conductivity were observed following irradiation in air and under vacuum of Al:ZnO (AZO), Ga:ZnO (GZO), and In:ZnO (IZO) films deposited on silica substrates. Despite the measured increase in conductivity, all films continued to show high transparency on the order of 90% at wavelengths from the band edge well into the near infrared region of the spectrum. Laser energies required for turning on the conductivity of these films varied depending upon the dopant. Irradiations in air yielded resistivity measurements on the order of 16.cm. Resistivities of films irradiated under vacuum were on the order of 0.1.cm. The increase in conductivity can be attributed to the formation of oxygen vacancies and subsequent promotion of free carriers into the conduction band. All irradiated films become insulating after around 24 hours. Oxygen atoms in air become reduced by electrons in the metal conduction band and diffuse into the vacancies in the lattice. The rate of this reduction process depends on the type of dopant. This work also sheds light on the damage threshold, correlating the optical properties with the presence of free carriers that have been introduced into the conduction band. All films were characterized by means of UV-VIS-NIR transmission spectroscopy, visible and UV Raman spectroscopy and Hall measurements. Analysis of interference fringes in measured transmission spectra allowed film density and refractive index

  6. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation

    SciTech Connect

    Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

    2010-07-01

    Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

  7. Intense terahertz radiation from relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.

    2017-01-01

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  8. Spectrum line intensity as a surrogate for solar irradiance variations.

    PubMed

    Livingston, W C; Wallace, L; White, O R

    1988-06-24

    Active Cavity Radiometer Irradiance Monitor (ACRIM) solar constant measurements from 1980 to 1986 are compared with ground-based, irradiance spectrophotometry of selected Fraunhofer lines. Both data sets were identically sampled and smoothed with an 85-day running mean, and the ACRIM total solar irradiance (S) values were corrected for sunspot blocking (S(c)). The strength of the mid-photospheric manganese 539.4-nanometer line tracks almost perfectly with ACRIM S(e), Other spectral features formed high in the photosphere and chromosphere also track well. These comparisons independently confirm the variability in the ACRIM S(e), signal, indicate that the source of irradiance is faculae, and indicate that ACRIM S(e), follows the 11-year activity cycle.

  9. Thermal Effects Induced by Laser Irradiation of Solids

    SciTech Connect

    Galovic, S.

    2004-12-01

    A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation

  10. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  11. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  12. Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria

    NASA Astrophysics Data System (ADS)

    Pudovkin, M. S.; Korableva, S. L.; Krasheninnicova, A. O.; Nizamutdinov, A. S.; Semashko, V. V.; Zelenihin, P. V.; Alakshin, E. M.; Nevzorova, T. A.

    2014-11-01

    The article is devoted to exploration of biological effects of crystalline PrF3 nanoparticles toward Salmonella typhimurium TA 98 bacteria under the laser irradiation. Obtained results show bactericidal activity of PrF3 nanoparticles and optimal parameters of laser irradiation (power of laser irradiation, wavelength, diameter of the laser spoil, and exposure time) have been found under which the effects of bactericidal activity become the most significant. Survival of bacterial cells under laser irradiation with wavelength 532 nm in colloidal solution of PrF3 nanoparticles was 39%, 34%, 20% for exposure times 5 minutes, 15 minutes and 30 minutes, correspondingly.

  13. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse.

    PubMed

    Jin, Z; Zhuo, H B; Nakazawa, T; Shin, J H; Wakamatsu, S; Yugami, N; Hosokai, T; Zou, D B; Yu, M Y; Sheng, Z M; Kodama, R

    2016-09-01

    Radially polarized intense terahertz (THz) radiation behind a thin foil irradiated by ultrahigh-contrast ultrashort relativistic laser pulse is recorded by a single-shot THz time-domain spectroscopy system. As the thickness of the target is reduced from 30 to 2 µm, the duration of the THz emission increases from 5 to over 20 ps and the radiation energy increases dramatically, reaching ∼10.5mJ per pulse, corresponding to a laser-to-THz radiation energy conversion efficiency of 1.7%. The efficient THz emission can be attributed to reflection (deceleration and acceleration) of the laser-driven hot electrons by the target-rear sheath electric field. The experimental results are consistent with that of a simple model as well as particle-in-cell simulation.

  14. Hot electron production using the Texas Petawatt Laser irradiating thick gold targets

    NASA Astrophysics Data System (ADS)

    Taylor, Devin; Liang, Edison; Clarke, Taylor; Henderson, Alexander; Chaguine, Petr; Wang, Xin; Dyer, Gilliss; Serratto, Kristina; Riley, Nathan; Donovan, Michael; Ditmire, Todd

    2013-06-01

    We present data for relativistic hot electron production by the Texas Petawatt Laser irradiating solid Au targets with thickness between 1 and 4 mm. The experiment was performed at the short focus target chamber TC1 in July 2011, with intensities on the order of several ×1019 W/cm2 and laser energies around 50 J. We discuss the design of an electron-positron magnetic spectrometer to record the lepton energy spectra ejected from the Au targets and present a deconvolution algorithm to extract the lepton energy spectra. We measured hot electron spectra out to ˜50 MeV, which show a narrow peak around 10-20 MeV, plus high energy exponential tail. The hot electron spectral shapes appear significantly different from those reported for other PW lasers.

  15. Trident as an ultrahigh irradiance laser

    SciTech Connect

    Johnson, R.P.; Moncur, N.K.; Cobble, J.A.; Watt, R.G.; Gibson, R.B.

    1995-02-01

    The Trident Nd:glass ICF laser at Los Alamos may be operated in a mode that produces high ultrashort pulses by the chirp/compression method. The 125-ps pulses from a standard moderated, ND:YLF oscillator are first frequency-broadened to 3-nm bandwidth, chirped in a quartz fiber, and then compressed with a grating pair to 1.5 ps. A second quartz fiber then provides nonlinear polarization rotation for background and satellite suppression and to further broaden the spectrum to >7 nm. Pulses are chirped again to 1 ns width with a second grating pair and amplified in a ND:YAG pumped Ti:sapphire regenerative amplifier. Millijoule-level output is then amplified through the existing phosphate glass Trident amplifier chain before compression to <400 fs. Energy {>=}1 J with excellent beam quality and contrast ratio is routinely produced by compressing after three rod amplifier stages. Higher energies are possible by compression further along the amplifier chain. Simultaneous use of long ({approximately}1 ns) pulses for plasma formation is also possible.

  16. Evaluation of the Morphological Characteristics of Laser-Irradiated Dentin

    PubMed Central

    Lilaj, Bledar; Franz, Alexander; Degendorfer, Daniela; Moritz, Andreas

    2015-01-01

    Abstract Objective: The aim of this study was to investigate the effect of different energy settings of Er:YAG laser irradiation on dentin surface morphology with respect to the number of opened dentinal tubules. Background data: An ideally prepared dentin surface with opened dentinal tubules is a prerequisite for adhesive fixation. No study, however, has yet compared the numbers of opened dentinal tubules with regard to statistical differences. Methods: Conventional preparations using a bur with or without additional acid etching acted as control groups. Dentin specimens were prepared from human third molars and randomly divided into eight groups according to the energy settings of the laser (1, 1.5, 4, 6, 7.5, and 8 W) and two controls (bur and bur plus acid etching). After surface preparation, dentin surfaces were analyzed with a scanning electron microscope, and the number of opened dentinal tubules in a defined area was counted. Results: The control groups showed smooth surfaces with (bur plus acid etching) and without opened dentinal tubules (bur), whereas all laser-irradiated surfaces showed rough surfaces. Using the energy setting of 4 W resulted in significantly more opened dentinal tubules than the conventional preparation technique using the bur with additional acid etching. In contrast, the energy setting of 8 W showed significantly fewer opened dentinal tubules, and also exhibited signs of thermal damage. Conclusions: The Er:YAG laser with an energy setting of 4 W generates a dentin surface with opened dentinal tubules, a prerequisite for adhesive fixation. PMID:26389986

  17. Fragmentation and Coulomb explosion of deuterium clusters by the interaction with intense laser pulses

    SciTech Connect

    Isla, M.; Alonso, J.A.

    2005-08-15

    Experiments of Zweiback et al. [Phys. Rev. Lett. 84, 2634 (2000)] on the interaction of intense femtosecond laser pulses with a dense molecular beam of large deuterium clusters have shown that these clusters can lose most of their electrons and explode, in a process known as Coulomb explosion. The collisions between the fast deuterium (D) nuclei give rise to D-D fusion. This has motivated us to carry out computer simulations based on the time-dependent density-functional theory in order to understand the ultrafast processes occurring under these high excitations. In particular we have studied the laser irradiation of the singly charged cluster D{sub 13}{sup +}. The simulations show the occurrence of two different cluster fragmentation behaviors, depending on the intensity of the laser pulse: For not too large intensities, the cluster becomes disassembled in a slow way, whereas for large laser intensities substantial ionization takes place and a violent explosion occurs due to the electrostatic repulsion between the nuclei following the loss of the electrons by the cluster. The fast fragmentation mode fits well into the idea of the Coulomb explosion.

  18. The dynamics of small molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Posthumus, J. H.

    2004-05-01

    In the past decade, the understanding of the dynamics of small molecules in intense laser fields has advanced enormously. At the same time, the technology of ultra-short pulsed lasers has equally progressed to such an extent that femtosecond lasers are now widely available. This review is written from an experimentalist's point of view and begins by discussing the value of this research and defining the meaning of the word 'intense'. It continues with describing the Ti : sapphire laser, including topics such as pulse compression, chirped pulse amplification, optical parametric amplification, laser-pulse diagnostics and the absolute phase. Further aspects include focusing, the focal volume effect and space charge. The discussion of physics begins with the Keldysh parameter and the three regimes of ionization, i.e. multi-photon, tunnelling and over-the-barrier. Direct-double ionization (non-sequential ionization), high-harmonic generation, above-threshold ionization and attosecond pulses are briefly mentioned. Subsequently, a theoretical calculation, which solves the time-dependent Schrödinger equation, is compared with an experimental result. The dynamics of H_{2}^{ + } in an intense laser field is interpreted in terms of bond-softening, vibrational trapping (bond-hardening), below-threshold dissociation and laser-induced alignment of the molecular axis. The final section discusses the modified Franck-Condon principle, enhanced ionization at critical distances and Coulomb explosion of diatomic and triatomic molecules.

  19. Activity of respiratory system during laser irradiation of brain structures

    NASA Astrophysics Data System (ADS)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  20. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol

    PubMed Central

    Nee, Chen-Hon; Yap, Seong-Ling; Tou, Teck-Yong; Chang, Huan-Cheng; Yap, Seong- Shan

    2016-01-01

    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics. PMID:27659184

  1. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol

    NASA Astrophysics Data System (ADS)

    Nee, Chen-Hon; Yap, Seong-Ling; Tou, Teck-Yong; Chang, Huan-Cheng; Yap, Seong-Shan

    2016-09-01

    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.

  2. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol.

    PubMed

    Nee, Chen-Hon; Yap, Seong-Ling; Tou, Teck-Yong; Chang, Huan-Cheng; Yap, Seong-Shan

    2016-09-23

    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.

  3. INTERACTION OF LASER RADIATION WITH MATTER: Laser swelling model for polymers irradiated by nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Malyshev, A. Yu; Bityurin, N. M.

    2005-09-01

    Mechanisms of laser swelling of polymers are considered. A theoretical model for one of such mechanisms is constructed and investigated. This mechanism is based on the formation of a thermoelastic wave upon absorption of a laser pulse. Tensile stresses in this wave lead to elastic and plastic deformation of a polymer in the heated region and to the formation of convex structures (humps). The threshold energy density of a laser pulse required for the production of a residual hump under laser irradiation is obtained analytically. A formula for the height of this hump is also derived. The model explains the earlier experimental data from the literature on swelling of a PMMA film irradiated by UV pulses.

  4. Cellular immunological effects of laser irradiation and immunoadjuvant application

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Mohamed, Abdiwahab; Naylor, Mark F.; Bartels, Kenneth E.; Ritchey, Jerry W.; Liu, Hong; Nordquist, Robert E.

    2007-02-01

    Immune system is critical in the fight against cancer. Particular important is the responses through immune cells that regulate immunological functions. Certain cytokines enhance cancer immunity (such as IL12 and interferon gamma) and others interfere or impede cancer immunity (such as IL10). The clinical outcome can be linked to the balance of these cytokines, such as IL10 to IL12 ratio. Effective treatments often reduce the IL10:IL12 ratio, indicating higher levels of the cancer fighting IL12. To enhance immune responses, a combination of laser irradiation and concurrent use of immunostimulants has been applied for the treatment of tumors. In a recent study, an 805-nm laser in conjunction with indocyanine green (ICG) has been used to treat EMT6 mammary tumors in mice. An immunoadjuvant, glycated chitosan (GC), was intratumoral injected after the laser irradiation. Our preliminary results showed that tumor-bearing mice treated either with the immunoadjuvant alone or with the combination of laser and immunoadjuvant had lower IL10:IL12 ratios than animals that received no treatment. This may play an important in the treatment to decrease tumor size and to increase survival times of mice. Cellular activities after laser-ICG-GC treatment of DBMA-4 mammary tumors in rats also showed infiltration of immune cells to the treatment sites, indicating a possible induced immunity. The combination of laser treatment and immunotherapy has been used to treat late-stage melanoma patients; the responses, both treated primary tumors and the metastases, to the treatment have been promising. The histology of two patients, before and after treatment, is presented to show the effects of this novel treatment method.

  5. Effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals

    SciTech Connect

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.

    1982-07-01

    We increased the bulk laser damage threshold of potassium dihydrogen phosphate crystals by as much as a factor of 5 by first baking the crystals at 140 /sup 0/C for 24 h and then irradiating them with laser pulses of increasing fluence. The combination of baking and subthreshold laser irradiation was more effective in improving bulk damage thresholds than either process alone. The combined process was effective for all laser pulse durations from 1 to 20 ns.

  6. Low-intensity infrared laser effects on zymosan-induced articular inflammatory response

    NASA Astrophysics Data System (ADS)

    Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia

    2015-03-01

    Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.

  7. Histomorphological and angiogenic analyzes of skin epithelium after low laser irradiation in hairless mice.

    PubMed

    Leão, Juliane Caroline; Issa, João Paulo Mardegan; Pitol, Dimitrius Leonardo; Rizzi, Ellen Camargo; Dias, Fernando José; Siéssere, Selma; Regalo, Simone Cecílio Hallak; Iyomasa, Mamie Mizusaki

    2011-09-01

    It is not well-understood how low-laser therapy affects the skin of the applied area. This study analyzes skin of the masseteric region of mice from the HRS/J strain after three different application regimens (three, six or ten applications per regimen) of low intensity laser at 20 J/cm(2) and 40 mW for 20 sec on alternate days. Three experimental groups according to the number of laser applications (three, six or ten) and three control groups (N = 5 animals for each group) were used. On the third day after the last irradiation, all animals were sacrificed and the skin was removed and processed to analyze the relative occupation of the test area by each epithelial layer and the aspects of neovascularization. Data were submitted to statistical analyzes. The irradiated groups compared to their respective controls at each period of time, showed no significant difference in relative occupation of the test area by the layers and epithelium areas for three and six applications, but for ten applications, a significant decrease (P < 0.05) in the basal and granulosum layers, and epithelium areas were found. From the comparisons of the three irradiated groups together, the group with six laser applications showed statistical difference (P < 0.05) in total epithelium and on the layers. Vascular endothelial growth factor (VEGF) and VEGFR-2 immunoreactivities were similar for the control and irradiated groups. Results suggested a biostimulatory effect with low risks associated with superficial tissues, when the treatment aims the deeper layers after six applications.

  8. Different photodynamic effect between continuous wave and pulsed laser irradiation modes in k562 cells in vitro

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Bogdanov, A. A.; Knyazev, N. A.; Rusanov, A. A.; Dubina, M. V.

    2014-10-01

    Photodynamic therapy is a cancer treatment method is used primarily continuous mode laser radiation. At high power density irradiation occurs intense consumption of molecular oxygen and this caused hypoxic tumor tissue, which leads to inefficiency PDT. In this paper, pulsed and continuous irradiation modes during PDT photosensitizer Radachlorin were compared. A mathematical model for the generation of singlet oxygen 1O2 in tumor cells during photodynamic therapy with tissue oxygenation was developed. Our study theoretically and experimentally demonstrates the increased singlet oxygen generation efficiency in a pulsed irradiation mode compared to continuous wave mode with the same power density 20mW/cm2. Experimental in vitro showed that pulsed irradiation mode mostly induces apoptosis k562 tumor cells at irradiation doses of k562 1.25 - 2.5J/cm2 while the continuous mode induced necrosis.

  9. Effect of laser irradiation for healing of the skin-muscle wounds of animals

    NASA Astrophysics Data System (ADS)

    Lapina, Victoria A.; Veremei, Eduard I.; Pancovets, Evgeniy A.

    2000-05-01

    The purpose of our investigation was to study the medical effect of low-intensity laser influence on healing of skin- muscle wounds of agricultural animals. We used the laser radiation of low intensity for cub's therapy: to sucking-pigs after herniotomy and castration, to cattle cubs after skin- muscle wounds. The animals were kept under clinical observation up to their recovery. The recuperation dynamic was observed by changing of blood quotients, leukograms, sizes of inflammatory edema, general behavior of animals. The positive dynamic of blood quotients of the experimental animal groups was really higher than that in control. The analysis of wound healing after laser influence shows that wound surface of experimental group was to a great extent smaller in comparison with control group of animals. So, these facts testify about anti-inflammatory action of laser radiation, which hastens regenerative and rehabilitative processes. Analysis of the obtained experimental data has revealed the positive influence of laser irradiation on the dynamics of wound adhesion of agricultural animals.

  10. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  11. High-intensity laser-induced electron acceleration in vacuum.

    PubMed

    Wang, J X; Ho, Y K; Feng, L; Kong, Q; Wang, P X; Yuan, Z S; Scheid, W

    1999-12-01

    In this paper, an approximate pulsed-laser-beam solution of Maxwell's equation in vacuum is derived. Then with the numerical simulation method, electron acceleration induced by high-intensity [Q(0)=eE(0)/(m(e)omega c)=3] lasers is discussed in connection with the recent experiment of Malka et al. It is found that the maximum energy gain and the relationship between the final energy and the scattering angle can be well reproduced, but the polarization effect of electron-laser interactions is not very prominent. These results show that the ponderomotive potential model is still applicable, which means that the stimulated Compton scattering is the main fundamental mechanism responsible for the electron acceleration at this laser intensity.

  12. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  13. Intense excitation source of blue-green laser

    NASA Astrophysics Data System (ADS)

    Han, K. S.

    1985-10-01

    An intense and efficient excitation source for blue-green lasers useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, hypocycloidal pinch plasma (HCP), and a newly designed dense-plasma focus (DPF) can produce intense UV photons (200 to 300 nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400 nm). During the current project period, the successful enhancement of blue-green laser output of both Coumarin 503 and LD490 dye through the spectral conversion of the HCP pumping light has been achieved with a converter dye BBQ. The factor of enhancement in the blue-green laser output energy of both Coumarin 503 and LD490 is almost 73%. This enhancement will definitely be helpful in achieving the direct high power blue-green laser (> 1 MW) with the existing blue green dye laser. On the other hand the dense-plasma focus (DPF) with new optical coupling has been designed and constructed. For the optimization of the DPF device as the UV pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as function of argon or argon-deuterium fill gas pressure. Finally, the blue-green dye laser (LD490) has been pumped with the DPF device for preliminary tests. Experimental results with the DPF device show that the velocity of the current sheath follows the inverse relation of sq st. of pressure as expected. The blue-green dye (LD490) laser output exceeded 3.1 m at the best cavity tuning of laser system. This corresponds to 3J/1 cu cm laser energy extraction.

  14. Thomson scattering in high-intensity chirped laser pulses

    SciTech Connect

    Holkundkar, Amol R.; Harvey, Chris Marklund, Mattias

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  15. Influence of laser irradiation on change properties of bulk amorphous Zr-Pd metallic alloys

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Yakovlev, A. V.; Pluzhnikova, T. N.; Shlikova, A. A.; Berezner, A. D.

    2017-01-01

    We study the morphological features of laser irradiation zones formed on the surface of the bulk metallic glasses. We use the nanoindentation method for estimation alloys properties caused by impulse heating during irradiation.

  16. Crystalline structure of dental enamel after Ho:YLF laser irradiation.

    PubMed

    Bachmann, Luciano; Craievich, Aldo Felix; Zezell, Denise Maria

    2004-11-01

    Irradiation of teeth with lasers using specific wavelengths and energy densities produces surface melting. This effect has been already applied to different procedures such as caries prevention and hypersensitivity reduction. The aim of this study is to characterize the crystalline structure of bovine enamel after holmium laser irradiation. A holmium laser (Ho:YLF) with emission wavelength of 2065 nm was used. Enamel tissues were irradiated in ablative regime and their structures before and after irradiation were analyzed using the powder X-ray diffraction technique. The X-ray diffraction patterns of non-irradiated enamel correspond to carbonated hydroxyapatite and those produced by irradiated samples indicate the existence of a mixture of two crystalline phases: hydroxyapatite and tetracalcium phosphate. The structural characteristics of holmium irradiated enamel were compared with those of the same tissue irradiated with other lasers.

  17. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  18. The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation

    PubMed Central

    Yang, Zhanbing; Watanabe, Seiichi; Kato, Takahiko

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void formation. Our results reveal that during laser-electron sequential irradiation, pre-laser irradiation enhanced void nucleation and subsequent electron irradiation enhanced void growth. However, the laser-electron dual-beam irradiation was analyzed to depress void swelling remarkably because the recombination of SVs and interstitials was enhanced. The results provide insight into the mechanism underlying the dual-beam radiation-induced depression of void swelling in solids. PMID:23383371

  19. Scintillation effect on intensity modulated laser communication systems—a laboratory demonstration

    NASA Astrophysics Data System (ADS)

    Popoola, W. O.; Ghassemlooy, Z.; Lee, C. G.; Boucouvalas, A. C.

    2010-06-01

    This paper shows the impact of atmospheric turbulence-induced fading on the symbol decision position in the on-off keying (OOK) and the binary phase shift keying (BPSK) subcarrier intensity modulated (SIM) laser communication link. Weak turbulence is simulated in the laboratory using a chamber equipped with heating elements and fans. We have shown that in atmospheric turbulence, it is advantageous to employ modulation schemes such as pulse time and subcarrier intensity modulations that do not directly impress data on the optical irradiance as is the case with the OOK. For the OOK-modulated laser communication system, atmospheric turbulence imposes complexity on the symbol decision subsystem and by extension places a limit on the achievable bit error rate (BER) performance.

  20. Effects of radiation damping in ultra-intense laser matter interaction at extreme intensity regime

    NASA Astrophysics Data System (ADS)

    Sentoku, Yasuhiko; Pandit, Rishi

    2011-10-01

    Effects of the radiation damping in the interaction of extremely intense laser (>1022 W/cm2) with metal targets are studied via a relativistic collisional particle- in-cell simulation, PICLS. We had introduced the Landau-Lifshitz equation, which is the first order term of the Lorentz-Dirac equation to PIC, and also derived the second order term to check its effect. We had implemented these damping terms in the two- dimensional PICLS code, and had studied the laser plasma interaction at >1022 W/cm2 intensities. Hot electrons generated by such extreme-intense laser lights on the target get the relativistic energy with relativistic Lorentz factor γ > 100 , and lose energy strongly by emitting radiations. Especially, we had studied the second term's effect in a comparison with the first order damping term, and found that the second term becomes comparable to the first order term when the laser intensity >1023 W/cm2. With the higher order term, the hot electrons with energies greater than 500 MeV are totally suppressed and hard them to go beyond that energy even increasing the laser intensity >1023 W/cm2. Supported by US DOE DE-PS02-08ER08-16 and DE-FC02-04ER54789.

  1. Improving the intensity of a focused laser beam

    NASA Astrophysics Data System (ADS)

    Haddadi, Sofiane; Fromager, Michael; Louhibi, Djelloul; Hasnaoui, Abdelkrim; Harfouche, Ali; Cagniot, Emmanuel; ńit-Ameur, Kamel

    2015-03-01

    Let us consider the family of symmetrical Laguerre-Gaus modes of zero azimuthal order which will be denoted as LGp0 . The latter is made up of central lobe surrounded by p concentric rings of light. The fundamental mode LG00 is a Gaussian beam of width W. The focusing of a LGp0 beam of power P by a converging lens of focal length f produces a focal spot keeping the LGp0 -shape and having a central intensity I0= 2PW2/(λf)2 whatever the value of the radial order p. Many applications of lasers (laser marking, laser ablation, …) seek nowadays for a focal laser spot with the highest as possible intensity. For a given power P, increasing intensity I0 can be achieved by increasing W and reducing the focal length f. However, this way of doing is in fact limited because the ratio W/f cannot increase indefinitely at the risk of introducing a huge truncation upon the edge of the lens. In fact, it is possible to produce a single-lobed focal spot with a central intensity of about p times the intensity I0. This result has been obtained by reshaping (rectification) a LGp0 beam thanks to a proper Binary Diffractive Optical Element (BDOE). In addition, forcing a laser cavity to oscillate upon a LGp0 can improve the power extract due to a mode volume increasing with the mode order p. This could allow envisaging an economy of scale in term of laser pumping power for producing a given intensity I0. In addition, we have demonstrated that a rectified LGp0 beam better stand the lens spherical aberration than the usual Gaussian beam.

  2. Influence of low-intensity laser radiation on degree of oxygenation and speed microcirculation of blood

    NASA Astrophysics Data System (ADS)

    Korolevich, Alexander N.; Dubina, Natali S.; Vecherinski, Sergei I.

    2000-11-01

    The paper investigated in vivo the influence of low-intensity laser radiation (he-Ne laser with wavelength 0,63 nm) on the mean velocity of their movement. It is known that characteristic of cardiovascular diseases (CVD) are microcirculation disturbances and disorder in rheological properties of blood. Therefore these investigations were carried out on cardiac ischemia patients. The blood perfusion valve and the mean velocity were measured by the method of photon correlation spectroscopy with the use of fiber optic cables. As the radiation source, a semiconductor laser with wavelength 780 nm (0,8 mW) was used. It has been found that, between the erythrocytes and the mean velocity of their movement there is an inverse dependence on the time of irradiation of patients.

  3. Mechanisms of radiation damage to Sc/Si multilayer mirrors under EUV laser irradiation

    NASA Astrophysics Data System (ADS)

    Pershyn, Y. P.; Zubarev, E. N.; Voronov, D. L.; Sevryukova, V. A.; Kondratenko, V. V.; Vaschenko, G.; Grisham, M.; Menoni, C. S.; Rocca, J. J.; Artioukov, I. A.; Uspenskii, Y. A.; Vinogradov, A. V.

    2009-06-01

    Specific structural changes in Sc/Si multilayer mirrors irradiated with extreme ultraviolet (EUV) laser single pulses (λ = 46.9 nm) at near damage threshold fluences (0.04-0.23 J cm-2) are analysed. We have identified melting of surface layers as the basic degradation mechanism for the mirrors. Both heat generation during silicide formation and low heat conduction of the layered system significantly decreases the degradation threshold of Sc/Si multilayer mirrors compared with bulk materials. The results are relevant to the use of the multilayer mirrors for shaping and directing the intense beams produced by the new generation of coherent EUV sources.

  4. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils

    SciTech Connect

    Robinson, A. P. L; Gibbon, P.

    2007-01-15

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  5. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils.

    PubMed

    Robinson, A P L; Gibbon, P

    2007-01-01

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  6. Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse

    SciTech Connect

    Namba, S.; Takiyama, K.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Kawachi, T.

    2011-11-15

    Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasma is generated.

  7. Nanofabrication with ultrafast lasers at critical intensity

    NASA Astrophysics Data System (ADS)

    Ke, Kevin; Hasselbrink, Ernest; Hunt, Alan J.

    2005-03-01

    A principal challenge facing nanotechnology is consistently producing well-defined features much smaller than the wavelength of visible light. We find that the remarkably sharp threshold for femtosecond laser-induced material damage enables nanomachining with unprecedented precision and versatility, allowing highly reproducible machining of structures with nanoscale features. Using this methodology, we demonstrate, in glass, surface trenches that are only tens of nanometers in width but micron in depth, sub-surface channels that are hundreds nanometers in diameter, tens of microns deep, and hundreds microns in length, and 3D microstructures such as cantilevers. Furthermore, we demonstrate reproducible nanometer scale features in mixed and amorphous materials that differ significantly from glass, such as gold and onion cells. This technique is versatile, not material specific, and has potentially broad applications for MEMS construction and design, high density microelectronics, nanofluidics, material science, and optical memory.

  8. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  9. Bilirubin calculi crushing by laser irradiation at a molecular oscillating region wavelength based on infrared absorption spectrum analysis using a free-electron laser: an experimental study.

    PubMed

    Watanabe, M; Kajiwara, H; Awazu, K; Aizawa, K

    2001-01-01

    We investigated a new laser technique of crushing bilirubin calculi, our aim being to crush calculi in isolation using a minimally invasive procedure. Infrared absorption spectrum analysis of the bilirubin calculi was conducted, revealing maximum absorption spectrum at a wavelength of the C=O stretching vibration of ester binding that exists within the molecular structure of bilirubin calcium. As an experiment to crush calculi using the free-electron laser, we set the laser at the effective irradiation wavelength of ester binding, and conducted noncontact irradiation of the bilirubin calculi. The calculi began to slowly ablate until the irradiated site had been completely obliterated after 20s of irradiation. Moreover, absorption spectrum analysis of the irradiated site, from a comparison of absorption peak ratios, revealed that absorption peak intensities decreased over time at the absorption wavelength of ester binding. These findings suggest that irradiation of molecular oscillating region wavelengths peculiar to calculi based on infrared absorption spectrum analysis results in the gradual crushing of calculi in isolation by breaking down their molecular structure.

  10. Biophysics behavior of acupuncture points irradiated with low energy lasers.

    PubMed

    Moldovan, C

    2007-01-01

    This work describes the Low Energy Laser (LEL) coherent light interaction with the skin cover on acupuncture loci for the purpose of detecting and measuring the spatial and temporal alteration of the thermal, electric and optical properties of the LI4 (HEGU) acupoint, irradiated with a 685 nm, 30 mW, III.B Laser. Novel electrostatic imaging technique, an original Acupuncture 3-D Thermal and Electric Mapping Technique and an original Method for Laser-Skin Reflectance, were used in the study. The results indicate that the visible laser light, with low frequency and low power, specifically modify the 3-D pattern of the temperature, electric potential and electric impedance outline of an acupuncture point, meanwhile with a significant decrease of the laser reflectance index, all measured on a 27 apparently healthy subject lot (48 years mean age, 54% male), when comparing with a non-active, non-acupunctural skin area, placed on the volar side of the same hand. The biophysical method presented, combines in a complex way and reproducible the electro stasis exploration (bioelectric homeostasis), with cutaneous thermodynamic exploration and photo-optical exploration of the derma and provides information that can be appreciated in dynamics and compared depending on the exploration target.

  11. Relieving pain in minor aphthous stomatitis by a single session of non-thermal carbon dioxide laser irradiation.

    PubMed

    Zand, Nasrin; Ataie-Fashtami, Leila; Djavid, Gholamreza Esmaeeli; Fateh, Mohsen; Alinaghizadeh, Mohammad-Reza; Fatemi, Seyyed-Mostafa; Arbabi-Kalati, Fateme

    2009-07-01

    This randomized controlled clinical trial was designed to evaluate the efficacy of single-session, non-thermal, carbon dioxide (CO(2)) laser irradiation in relieving the pain of minor recurrent aphthous stomatitis (miRAS) as a prototype of painful oral ulcers. Fifteen patients, each with two discrete aphthous ulcers, were included. One of the ulcers was randomly allocated to be treated with CO(2) laser (1 W of power in de-focused continuous mode) and the other one served as a placebo. Before laser irradiation, a layer of transparent, non-anesthetic gel was placed on both the laser lesions and the placebo lesions. The patients were requested to grade their pain on a visual analog scale up to 96 h post-operatively. The reduction in pain scores was significantly greater in the laser group than in the placebo group. The procedure itself was not painful, so anesthesia was not required. Powermetry revealed the CO(2) laser power to be 2-5 mW after passing through the gel, which caused no significant temperature rise or any visual effect of damage to the oral mucosa. Our results showed that a low-intensity, non-thermal, single-session of CO(2) laser irradiation reduced pain in miRAS immediately and dramatically, with no visible side effects.

  12. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  13. Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Pérez-Gutiérrez, Francisco G.; Evans, Rodger; Camacho-López, Santiago; Aguilar, Guillermo

    2010-02-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light intensity and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present measurements of pressure transients originated when 6 ns laser pulses are incident on agar gels with varying linear absorption coefficient, mechanical properties and irradiation geometry using laser radiant exposures above threshold for bubble formation. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this work is to evaluate the relative contribution of each absorption mechanism to mechanical effects in agar gel. Real time pressure transients are recorded with PVDF piezoelectric sensors and time-resilved imaging from 50 μm to 10 mm away from focal point.

  14. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    SciTech Connect

    Yan, Wei; He, Hao Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  15. Diffuse reflectivity of gold plating with high power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Zhang, Lei; Yang, Pengling; Wang, Zhenbao; Tao, Mengmeng; Liu, Fuhua; Feng, Guobin

    2015-05-01

    The discoloration and optical characteristics of the gold plating film under long-time high power laser irradiation are investigated. The fabrication process of gold plating on nickel underplate on rough surface of copper and aluminum alloy substrates is introduced. The measurement results of the diffuse reflectivity for the samples with different surface roughness indicate that roughness of the gold layer surface should be 4μm to obtain the maximum value of diffuse reflectivity. The discoloration and variation of diffuse reflectivity are experimentally studied under 2000W irradiation. The research results show that the discoloration and degrading of reflectivity are caused by the diffusion of Ni to the gold plating surface and forming NiO thin film due to the porosity of the gold film and high temperature treatment. A change of diffuse reflectivity related mechanism is described. Several plating solution recipes are used to eliminate the discoloration and mitigate the degrading of the reflectivity on gold surface.

  16. Dynamical evolution of the surface microrelief under multiple-pulse-laser irradiation: An analysis based on surface-scattered waves

    NASA Astrophysics Data System (ADS)

    Barborica, A.; Mihailescu, I. N.; Teodorescu, V. S.

    1994-03-01

    We introduce a theoretical analysis of the temporal and spatial evolution of the surface topography of solids following interference between incident and scattered pulsed laser beams. The essential role played by the nonlinear delayed feedback in the laser-radiation-surface system is considered. We show that it finally determines the surface topography evolution from pulse to pulse. In order to complete the analysis, numerical calculations have been conducted under the hypothesis of strong attenuation of laser radiation into the sample and of a limited heat diffusion during the action of a laser pulse. We predict an evolution from very simple to complex (chaotic) structures under multiple-pulse-laser irradiation of solid surfaces. This evolution is determined by some key irradiation parameters; initial surface microrelief, incident laser intensity, and the number of applied laser pulses. Experiments were performed in order to check the main predictions of the theoretical analysis. The system of transversal excited atmospheric pressure-CO2 laser radiation (λ=10.6 μm)-interacting with fused silica was chosen as appropriate for performing test experiments. Optical microscopy studies of laser-treated zones evidenced special modifications of the surface topography in good accordance with the conclusions following from the theoretical analysis. The theoretical analysis is also in good agreement with some available data from the literature, at the same time providing a coherent interpretation of previously unexplained behaviors.

  17. High Intensity Laser Interactions with Narrow Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Hasselback, Michael Peter

    1995-01-01

    Two-photon absorption in solids is a well known and thoroughly characterized nonlinear optical process. Higher order multi-photon absorption however, has received comparatively little study. In this dissertation, results of experiments with bulk, narrow gap semiconductors InSb and InAs are reported. By performing Z-scans and pump-probe measurements at different laser wavelengths and sample temperatures, various nonlinear optical processes are identified. Data obtained with InAs is consistent with photocarrier generation by three and four-photon absorption. It is believed this is the first direct evidence of four-photon absorption in a semiconductor. Leakage two-photon is observed with InSb at 15K. This novel effect arises from dynamic band un-blocking caused by laser heating of conduction electrons. All phenomena are excited with picosecond CO_2 laser pulses at irradiances below the material damage threshold. Physical models describing the observations are presented.

  18. Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser

    NASA Astrophysics Data System (ADS)

    Way, Jesse; Hummelt, Jason; Scharer, John

    2009-10-01

    This work presents density, spectroscopic temperature, and shockwave measurements of laser induced breakdown plasma in atmospheric air by subthreshold intensity (5.5×109 W/cm2) 193 nm laser radiation. Using molecular spectroscopy and two-wavelength interferometry, it is shown that substantial ionization (>1016 cm-3) occurs that is not predicted by collisional cascade (CC) breakdown theory. While the focused laser irradiance is three orders of magnitude below the theoretical collisional breakdown threshold, the substantial photon energy at 193 nm (6.42 eV/photon) compared with the ionization potential of air (15.6 eV) significantly increases the probability of multiphoton ionization effects. By spectroscopically monitoring the intensity of the N2+ first negative system (B Σu+2-X Σg+2) vibrational bandhead (v'=0,v″=0) at low pressure (20 Torr) where multiphoton effects are dominant, it is shown that two photon excitation, resonant enhanced multiphoton ionization is the primary mechanism for quantized ionization of N2 to the N2+(B Σu+2) state. This multiphoton effect then serves to amplify the collisional breakdown process at higher pressures by electron seeding, thereby reducing the threshold intensity from that required via CC processes for breakdown and producing high density laser formed plasmas.

  19. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L.F.; Sheehy, B.; Walker, B. Agostini, P.A. Kulander, K.C.

    1999-06-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear. {copyright} {ital 1999 American Institute of Physics.}

  20. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.; Kulander, K.C.

    1998-11-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear.

  1. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L. F.; Sheehy, B.; Walker, B.; Agostini, P. A.; Kulander, K. C.

    1999-06-11

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear.

  2. Atomic electron correlations in intense laser fields

    SciTech Connect

    Agostini, P A; DiMauro, L F; Kulander, K; Sheehy, B; Walker, B

    1998-09-03

    Abstract. This talk examines two distinct cases in strong opbical fields where electron correlation plays an important role in the dynamic.s. In the first. example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two- level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one- electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unc

  3. Proton beam generation by ultra-high intensity laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Manclossi, M.; Guemnie-Tafo, A.; Batani, D.; Malka, V.; Fritzler, S.; Lefebvre, E.; D'Humieres, E.

    2005-10-01

    We report on some recent experimental results on proton production from ultra-intense laser pulse interaction with thin aluminium and plastic foil targets. These results were obtained at Laboratoire d'Optique Appliquee with the 100TW 'salle jaune' laser system, delivering 35 fs laser pulses at 0.8 mu m, reaching a maximum intensity on target of a few 10(19) W/cm(2). In such extreme interaction conditions, an intense and collimated relativistic electron current is injected from the plasma created on the laser focal spot into the cold interior of the target. Its transport through dense matter, ruled by both collisions and self-induced (electro-magnetic) field effects, is the driving mechanism for proton acceleration from the rear side of thin foils: when reaching and leaving the foil rear-side, the fast electrons create a large charge separation and a huge electrostatic field with a maximum value of few TV/m, capable of accelerating protons. A parametric study as a function of the laser driver and target parameters indicates an optimal value for target thickness, which strongly depends on the laser prepulse duration. In our experiments, we did irradiate targets of various materials (CH, Al, Au) changing the prepulse duration by using fast Pockels cells in the laser chain. CR-39 nuclear track detectors with Al filters of different thickness and a Thomson parabola were used to detect proton generation. The best results were obtained for 2 mu m Al targets, leading to the generation of proton energies with energies up to 12 MeV.

  4. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  5. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.

    PubMed

    Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G

    2017-04-18

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  6. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.

    2017-04-01

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  7. Low-fluence carbon dioxide laser irradiation of lentigines

    SciTech Connect

    Dover, J.S.; Smoller, B.R.; Stern, R.S.; Rosen, S.; Arndt, K.A.

    1988-08-01

    Low-fluence carbon dioxide (CO2) laser irradiation of skin has previously been shown to induce damage limited primarily to the epidermis. To evaluate whether this technique was therapeutically effective for pigmented epidermal lesions, ten lentigines caused by methoxsalen and ultraviolet light therapy were treated in one patient using the CO2 laser at fluences ranging from 3.0 to 7.7 J/cm2 for 0.1-s exposures with 4.5-mm spot size. Based on substantial clearing in seven of ten lesions treated, 146 solar lentigines were treated in five patients at fluences of 3.0, 3.7, or 4.4 J/cm2. Biopsies were performed on a total of 30 lesions immediately and 24 hours, seven days, and six weeks after irradiation. Of 125 lesions followed up clinically for six weeks, 12 cleared completely, 81 lightened substantially, and 28 remained unchanged. Only two demonstrated atrophic change. Hyperpigmentation or hypopigmentation did not occur. All lesions that improved had been treated at 3.7 or 4.4 J/cm2. Immediate histologic injury consisted of vacuolar and spindly change and subsequent vesiculation limited to the basilar epidermis. Twenty-four hours later there was epidermal necrosis with regeneration, 0.1 mm of dermal basophilia and stromal condensation, and a mild inflammatory infiltrate. These alterations were dose-dependent, with near complete epidermal necrosis and superficial dermal involvement at the highest fluence, and only focal epidermal necrosis at the lowest. At seven days, epidermal regeneration was complete with traces of melanin remaining in keratinocytes. Melanophages first appeared at seven days and persisted at six weeks, by which time the inflammatory infiltrate had cleared. No lentiginous proliferation was evident and epidermal pigmentation had become normal. Low-fluence CO2 laser irradiation is an effective means of damaging the epidermis with only minimal dermal change.

  8. Fluorescence and Raman spectra on surface of K9 glass by high fluence ultraviolet laser irradiation at 355 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Huang, Jin; Geng, Feng; Zhou, Xiaoyan; Feng, Shiquan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo; Tang, Yongjian

    2013-11-01

    In order to explore the damage mechanisms of K9 glass irradiated by high energy density ultraviolet laser, laser-induced fluorescence and Raman spectra were investigated. Compared the fluorescence spectra of damaged area, undamaged area and sub-damaged area, it can be conclude that the fluorescence spectrum of sub-damaged area is different from the structure of the other two areas. Especially, the main peak of the spectra at 415 nm reveals the unique characteristics of K9 glass. The structure at the sub-damaged area enhances intensity of the Raman scattering spectra. Three peaks of the spectra at about 500 nm and two characteristic peaks at about 550 nm exhibit the characterization of damaged area. A peak of the Raman scattering spectra at 350 nm which related to water can be observed. The relationship between intensity of Raman scattering and laser intensity at 355 nm is investigated by confocal Raman microscopy. At sub-damage area, signal of Raman scattering is rather high and decreased dramatically with respect to energy density. The major band at about 1470 cm-1 sharpened and moved to higher frequency with densification. These phenomena demonstrate that the structure of sub-damaged area has some characterization compared with the damaged area. The investigation of defect induced fluorescence and Raman spectra on surface of K9 glass is important to explore the damage mechanisms of optical materials irradiated by ultraviolet laser irradiation at 355 nm.

  9. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    NASA Astrophysics Data System (ADS)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. 9, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B 29, 186 (1982); Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasma atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities.

  10. Thermal response model of polymer matrix composites under laser irradiating

    NASA Astrophysics Data System (ADS)

    Peng, Guo-liang; Zhang, Xiang-hua; Du, Tai-jiao

    2015-05-01

    A numerical study is conducted to determine which model could be used to compute temperature fields of polymer matrix composites under laser irradiating. By using the local thermal non-equilibrium model, solid and gas temperature on surfaces of materials with different volume convection coefficients have been computed and compared under different heat flux. The results show that the assumption of local thermal equilibrium is not reasonable until the heat flux applied to composites is low enough and the volume convection coefficient is big enough. And the gas may be not important for solid temperature when the volume convection coefficient is small.

  11. Diffraction of volume Bragg gratings under high flux laser irradiation.

    PubMed

    Zhang, Xiang; Feng, Jiansheng; Xiong, Baoxing; Zou, Kuaisheng; Yuan, Xiao

    2014-04-07

    Diffraction property of transmitting volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass (PTR) is studied under the irradiation of a continuous-wave fiber laser with flux of 1274 W/cm2. Dependence of temperature characteristics of VBGs prepared by different crystallization temperatures is presented. When temperature of VBGs rises up to 33°C, there are a 2.7% reduction and 1.59% ripple of diffraction efficiency for VBGs. The period variation caused by the thermal expansion of VBGs is used to explain the reduction of diffraction efficiency, and experimental results are in agreement with theoretical analysis.

  12. Influence Of Low Intensity Laser Therapy On Diabetic Polyneuropathy

    NASA Astrophysics Data System (ADS)

    Abdel-Raoof, N. A.; Elnhas, N. G.; Elsayed, I. M.

    2011-09-01

    Diabetic peripheral neuropathy is a consequence of diabetes-mediated impairment of blood flow, and resultant hypoxia of nerves that may develop within 10 years of the onset of diabetes in 40-50% of people with type 1 or type 2 diabetes. Low Intensity Laser Therapy (LILT) has been advocated for the treatment of chronic pain disorders as blood flow is an important determinant for pain relief. Comparing the effect of Helium-Neon Laser therapy versus Infrared laser therapy on blood vessels diameter and flow as well as level of sensation for neuropathy. Twenty diabetic patients suffering from neuropathy were enrolled in the study with age 45-55 years. They were assigned randomly into two equal groups in number; Group A underwent an application of He-Neon laser while Group B underwent an application of Infrared laser. Both groups received laser for 2 months. Blood flow velocity, and blood vessel diameter were investigated by using duplex Doppler ultrasound and peripheral neuropathy parameters were investigated by Semmes-Weinstein monofilament assessment. The results revealed that He-Neon laser as well as Infrared laser groups showed significant improvement in blood flow velocity, blood vessel diameter & neuropathy tested parameters after treatment but there was no significance difference between the two types of LILT. LILT is a safe, non-invasive and drug free method for improving blood flow & sensation in patients suffering from diabetic polyneuropathy in addition to preventing one of the most threatening microvascular complications of diabetes.

  13. Air leak seal for lung dissection plane with diode laser irradiation: monitoring heat-denature with auto-fluorescence

    NASA Astrophysics Data System (ADS)

    Gotoh, Maya; Arai, Tsunenori

    2008-02-01

    We studied the monitoring of heat-denature by autofluorescence spectrum from lung dissection plane during laser air leak sealing procedure. In order to seal the air leakage from lung in thoracotomy, we proposed novel laser sealing method with the combination of the diode laser (810nm wavelength) irradiation and indocyanine green staining (peak absorption wavelength: 805 nm). This sealing method is expected to preserve the postoperative ventilatory capacity and achieve minimally invasive surgery. We previously reported that this laser sealing only requires thin sealing margin (less than 300 μm in thickness) compared with that of the suturing or stapling. The most serious issue on the laser air leak sealing might be re-air-leakage due to rigid surface layer caused by excessive heat-denature, such as carbonization. We should achieve laser air leak sealing minimizing the degree of heat denature. Dissection planes of isolated porcine lung with /without the diode laser irradiation were prepared as samples. We measured the auto-fluorescence from these samples using a spectrometer. When the diode laser was irradiated with 400J/cm2, the surface of diode laser irradiated lung was fully carbonized. The ration of auto-fluorescence emission of 450nm / 500 nm, with 280 nm excitation wavelength was decreased less tha 50 % of initial value. That of 600 nm / 500 nm was increased over 700 % of initial value. The decreasing of the 450 nm auto-fluorescence intensity might be attributed to the heat-denaturing of the interstitial collagen in lung. However, increasing of the 600 nm didn't specify the origins, we suppose it might be originated from heat-denature substance, like carbonization. We could establish the useful monitoring for lung heat-denaturing with simple methodology. We think the auto-fluorescence measurement can be helpful not only for understanding the sealing mechanism, but also for controlling the degree of heat-denaturing during the procedure.

  14. [Modalities of breast cancer irradiation in 2016: Aims and indications of intensity modulated radiation therapy].

    PubMed

    Bourgier, C; Fenoglietto, P; Lemanski, C; Ducteil, A; Charissoux, M; Draghici, R; Azria, D

    2016-10-01

    Irradiation techniques for breast cancer (arctherapy, tomotherapy) are evolving and intensity-modulated radiation therapy is being increasingly considered for the management of these tumours. Here, we propose a review of intensity-modulated radiation therapy planning issues, clinical toxicities and indications for breast cancer.

  15. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation

    SciTech Connect

    Colombier, J.P.; Combis, P.; Bonneau, F.

    2005-04-15

    Ablation of Cu and Al targets has been performed with 170 fs laser pulses in the intensity range of 10{sup 12}-10{sup 14} W cm{sup -2}. We compare the measured removal depth with 1D hydrodynamic simulations. The electron-ion temperature decoupling is taken into account using the standard two-temperature model. The influence of the early heat transfer by electronic thermal conduction on hydrodynamic material expansion and mechanical behavior is investigated. A good agreement between experimental and numerical matter ablation rates shows the importance of including solid-to-vapor evolution of the metal in the current modeling of the laser matter interaction.

  16. Metal particle manipulation by laser irradiation in borosilicate glass.

    PubMed

    Hidai, Hirofumi; Yamazaki, Takato; Itoh, Sho; Hiromatsu, Kuniaki; Tokura, Hitoshi

    2010-09-13

    We propose a new technique of manipulating a metal particle in borosilicate glass. A metal particle that is heated by laser illumination heats the surrounding glass by radiation and conduction. A softened glass enabled metal particle migration. A 1-µm-thick platinum film was deposited on the back surface of a glass plate and irradiated with a green CW laser beam through the glass. As a result, the platinum film was melted and implanted into the glass as a particle. Platinum particles with diameters of 3 to 50 μm migrated at speeds up to 10 mm/s. In addition to platinum particles, nickel and austenitic stainless steel (SUS304) particles can be implanted.

  17. Heating model for metals irradiated by a subpicosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Chimier, B.; Tikhonchuk, V. T.; Hallo, L.

    2007-05-01

    We propose a model describing the heating and ablation of a metallic target irradiated by a subpicosecond laser pulse. It takes into account the temperature equilibration between the electrons and ions and the density variation of the target material during the heating process. A simple analytical equation of state is developed, which allows one to calculate the total pressure in the heated layer for different electron and ion temperatures. The thermodynamic behavior of a nonequilibrium system is discussed, and nonequilibrium spinodals and cohesion limits are introduced. The model is applied for a description of the thermal ablation process driven by a sub-ps laser pulse. Aluminum and copper targets are considered, and it is shown that the dominant ablation process is due to breaking the nonequilibrium cohesion limit. The numerical results are in good agreement with recent experimental data.

  18. Reducing wall plasma expansion with gold foam irradiated by laser

    SciTech Connect

    Zhang, Lu; Ding, Yongkun Jiang, Shaoen Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  19. Heating and destruction of metallic particles exposed to intense laser radiation

    NASA Astrophysics Data System (ADS)

    Prishivalko, Anatoly P.; Astafieva, Ludmila G.; Leiko, Svetlana T.

    1996-02-01

    The heating of a laser-irradiated solid aluminum particle to boiling or to temperatures that exceed boiling is analyzed theoretically and numerically by solution of the heat-transport equation. Two different criteria of particle destruction are considered. The temperature distributions inside the particles depending on the intensity values and particle sizes are presented. It is shown that at the start of heating the contribution of heat exchange plays the dominant role, but as the boiling point is approached the contribution of vaporization plays the main role.

  20. The radiation reaction effect in ultra intense laser foil interactions

    NASA Astrophysics Data System (ADS)

    Klimo, O.; Jirka, M.; Masek, M.; Limpouch, J.; Bussmann, M.; Korn, G.

    2013-05-01

    Since the radiation reaction effect on electron propagation is very small in most cases, it can be usually neglected and the Lorentz force equation can be applied. However, ultra-intense lasers with normalized vector potential of the order of 100 can accelerate electrons to relativistic velocities with very high gamma factor. When the electron is accelerated to such high velocities the amount of emitted radiation may become large and radiation damping and emission of energetic photons should be considered. This work studies the influence of the radiation reaction force on laser interaction with solid foil targets. It compares different approaches adopted in PIC simulations to take into account the radiation reaction. The simulations of a counter-propagating relativistic electron and an ultra-intense laser beam demonstrate a strong energy loss of electrons due to non-linear Compton scattering. The interaction of ultra-intense laser pulse with solid foil is studied using PIC simulations. It is shown that the effect of radiation reaction strongly depends on the recirculation of high-energy electrons. When the recirculation is efficient, the radiation coming from the target is much more intense and it shows different spectral and angular characteristics.

  1. [Low-intensity laser radiation in preventive measures].

    PubMed

    Ushkova, I N; Nal'kova, N Yu; Chernushevich, N I; Popov, A V; Kochetova, O A

    2013-01-01

    Results of preventive measures introduction in 524 PC users, 98 jewelry polishers and 64 metallic ship hull assemblers are given. The use of preventive measures, based on low-intensity laser radiation, was shown to prevent development of visual overfatigue and occupational musculoskeletal system diseases.

  2. The TEA CO2-Lasers with High Output Emission Intensity

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Losev, V. F.; Puchikin, А. V.; Jun, Yao

    2014-03-01

    TEA CO2-lasers generating short pulse radiation and operating in a pulse-periodic mode with the repetition rate up to 10 Hz have been developed. It is shown that the addition of nitrogen up to 8% in the mixture of molecular gases СО2:H2 = 500:50 at a total pressure of P = 0.6 bar enhances the peak emission power maintaining the temporary pulse shape. An output beam intensity of 12.3 MW/cm2 was obtained for the 30 ns pulse at a laser efficiency of 2.8%. In a compact TEA СО2-laser with an active medium volume of 6 cm3, a beam with an output intensity of 24 MW/cm2 at pulse duration of 70 ns was obtained.

  3. Electron emission and fragmentation of molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Prümper, G.; Hatamoto, T.; Okunishi, M.; Mathur, D.

    2007-06-01

    We have constructed an apparatus for high-resolution electron spectroscopy and electron-ion coincidence experiments on gas-phase molecules in intense laser fields. The apparatus comprises an electron time-of-flight (TOF) spectrometer and an ion TOF spectrometer with a position detector, placed on either side of an effusive molecular beam. The ionizing radiation is either the fundamental (800 nm wavelength) of a Ti:sapphire laser or frequency doubled 400-nm light, with pulse durations of ~ 150 fs and the repetition rate of 1 kHz. We have investigated the electron emission and fragmentation of linear alcohol molecules, methanol, ethanol and 1-propanol, in laser fields with peak intensities up to ~ 1×10 14 W/cm2. Details of our apparatus are described along with an overview of some recent results.

  4. Comparison of hot wire/laser velocimeter turbulence intensity measurements

    NASA Technical Reports Server (NTRS)

    Meyers, J. F.; Wilkinson, S. P.

    1982-01-01

    The question of whether a random measure of particle velocities yields a good statistical estimate of the stationary condition of the turbulence flow field was investigated by comparing hot-wire and laser velocimeter turbulence intensity measurements. Great care was taken to insure that the instrument precision of both the laser velocimeter and hot wire was maximized. In this attempt to reduce the measurement uncertainties in the hot wire, direct digitization of the analog output signal was performed with point-by-point conversion to velocity through a spline fit calibration curve and the turbulence intensity function was calculated statistically. Frequent calibrations of the hot wire were performed using the laser velocimeter as the velocity standard to account for the presence of the small seed particles in the air flow and signal drift in the hot wire.

  5. Deflection of a Reflected Intense Vortex Laser Beam

    NASA Astrophysics Data System (ADS)

    Zhang, Lingang; Shen, Baifei; Zhang, Xiaomei; Huang, Shan; Shi, Yin; Liu, Chen; Wang, Wenpeng; Xu, Jiancai; Pei, Zhikun; Xu, Zhizhan

    2016-09-01

    An interesting deflection effect deviating the optical reflection law is revealed in the relativistic regime of intense vortex laser plasma interaction. When an intense vortex laser obliquely impinges onto an overdense plasma target, the reflected beam deflects out of the plane of incidence with an experimentally observable deflection angle. The mechanism is demonstrated by full three-dimensional particle-in-cell simulation as well as analytical modeling using the Maxwell stress tensor. The deflection results from the rotational symmetry breaking of the foil driven by the unsymmetrical shear stress of the vortex beam. The l -dependent shear stress, where l is the topological charge, as an intrinsic characteristic to the vortex beam, plays an important role as the ponderomotive force in relativistic vortex laser matter interaction.

  6. Anomalous Radiative Trapping in Laser Fields of Extreme Intensity

    NASA Astrophysics Data System (ADS)

    Gonoskov, A.; Bashinov, A.; Gonoskov, I.; Harvey, C.; Ilderton, A.; Kim, A.; Marklund, M.; Mourou, G.; Sergeev, A.

    2014-07-01

    We demonstrate that charged particles in a sufficiently intense standing wave are compressed toward, and oscillate synchronously at, the antinodes of the electric field. We call this unusual behavior anomalous radiative trapping (ART). We show using dipole pulses, which offer a path to increased laser intensity, that ART opens up new possibilities for the generation of radiation and particle beams, both of which are high energy, directed, and collimated. ART also provides a mechanism for particle control in high-intensity quantum-electrodynamics experiments.

  7. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility

    SciTech Connect

    Koonce, M.P.; Cloney, R.A.; Berns, M.W.

    1984-06-01

    Newt eosinophils are motile granulated leukocytes that uniquely display a highly visible centrosomal area. Electron microscope and tubulin antibody fluorescence confirms the presence of centrioles, pericentriolar material, and radiating microtubules within this visible area. Actin antibodies intensely stain the advancing cell edges and tail but only weakly stain pseudopods being withdrawn into the cell. Randomly activated eosinophils follow a roughly consistent direction with an average rate of 22.5 ..mu..m/min. The position of the centrosome is always located between the trailing cell nucleus and advancing cell edge. If the cell extends more than one pseudopod, the one closest to or containing the centrosome is always the one in which motility continues. Laser irradiation of the visible centrosomal area resulted in rapid cell rounding. After several minutes following irradiation, most cells flattened and movement continued. However, postirradiation motility was uncoordinated and directionless, and the rate decreased to an average of 14.5 ..mu..m/min. Electron microscopy and tubulin immunofluorescence indicated that an initial disorganization of microtubules resulted from the laser microirradiations. After several minutes, organized microtubules reappeared, but the centrioles appeared increasingly damaged. The irregularities in motility due to irradiation are probably related to the damaged centrioles. The results presented in this paper suggest that the centrosome is an important structure in controlling the rate and direction of newt eosinophil motility.

  8. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  9. Wound healing after irradiation of bone tissues by Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Watanabe, Hisashi; Yoshino, Toshiaki; Aoki, Akira; Ishikawa, Isao

    1997-05-01

    Clinical applications of Er:YAG laser are now developing in periodontics and restorative dentistry. To date, there have been few studies indicating safety criteria for intraoral usage of the Er:YAG laser. The present study examined the effects of the Er:YAG laser on bone tissues, supposing mis- irradiation in the oral cavity during dental application, especially periodontal surgery. The experiments were performed using the newly-developed Er:YAG laser apparatus equipped with a contact probe. In experiment 1, 10 pulses of laser irradiation were administered to the parietal bone of a rat at 50, 150 and 300 mJ/pulse with and without water irrigation, changing the irradiation distance to 0, 5, 10 and 20 mm, respectively. As a control, electric knife was employed. Macroscopic and SEM observations of the wound surface were performed. In experiment 2, laser irradiation in a straight line was performed at 150 mJ/pulse, 1- pps and 0,5, 10 mm irradiation distance without water irrigation. Wound healing was observed histologically at 0, 3, 7, 14 and 28 days after laser irradiation and compared with that of the control. Non-contact irradiation by Er:YAG laser did not cause severe damage to the parietal bone tissue under water irrigation. Contact irradiation induced a limited wound, however, new bone formation was observed 28 days after laser irradiation, while osseous defect with thermal degenerative tissue remained at the control site. In conclusion, irradiation with an Er:YAG laser would not cause severe damage to surrounding bone tissues in the oral cavity when used within the usual power settings for dental treatment. Furthermore, this laser may be applicable for osseous surgery because of its high ablation efficiency and good wound healing after irradiation.

  10. A preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern

    NASA Astrophysics Data System (ADS)

    Bromley, Regina; Davey, Ross; Oliver, Lyn; Harvie, Rozelle; Baldock, Clive

    2006-08-01

    In this study we have investigated a spatial distribution of cell growth after their irradiation using a modulated x-ray intensity pattern. An A549 human non-small cell lung cancer cell line was grown in a 6-well culture. Two of the wells were the unirradiated control wells, whilst another two wells were irradiated with a modulated x-ray intensity pattern and the third two wells were uniformly irradiated. A number of plates were incubated for various times after irradiation and stained with crystal violet. The spatial distribution of the stained cells within each well was determined by measurement of the crystal violet optical density at multiple positions in the plate using a microplate photospectrometer. The crystal violet optical density for a range of cell densities was measured for the unirradiated well and this correlated with cell viability as determined by the MTT cell viability assay. An exponential dose response curve was measured for A549 cells from the average crystal violet optical density in the uniformly irradiated well up to a dose of 30 Gy. By measuring the crystal violet optical density distribution within a well the spatial distribution of cell growth after irradiation with a modulated x-ray intensity pattern can be plotted. This method can be used for in vitro investigation into the changes in radiation response associated with treatment using intensity modulated radiation therapy (IMRT).

  11. Modeling laser irradiation conditions for mucosal tissues in antimicrobial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Astaf'eva, L. G.; Plavskii, V. Yu.

    2012-05-01

    We use computer modeling to analzye empirically selected conditions for antimicrobial photodynamic therapy of mucosal tissues. We calculate the optical and thermal fields for experimental conditions for low-intensity (cold) laser irradiation used in treatment of lesions in mucosal tissues stained by methylene blue: λ = 670 nm, power density 150-300 mW/cm2, doses 9-18 J/cm2; λ = 632.8 nm, 15 mW/cm2, dose 4.5 J/cm2. For numerical estimates, we used the optical characteristics of methylene blue and three layers of mucosal tissues at the laser radiation wavelengths, and also the thermal characteristics of the tissues. The experimental conditions were optimized using the ratio of the tissue penetration depth for the absorbed optical energy and the penetration depth of methylene blue into the lesion, while maintaining safe tissue heating temperatures.

  12. A review of astrophysics experiments on intense lasers

    NASA Astrophysics Data System (ADS)

    Remington, B. A.

    1999-11-01

    Modern, high power laser facilities open new possibilities for simulating astrophysical systems in the laboratory.(S.J. Rose, Laser & Part. Beams 9, 869 (1991); B.H. Ripin et al., Laser & Part. Beams 8, 183 (1990); B.A. Remington et al., Science 284, 1488 (1999); H. Takabe et al., Plasma Phys. Contr. Fusion 41, A75 (1999); R.P. Drake, J. Geophys. Res. 104, 14505 (1999).) Scaled investigations of the hydrodynamics.(J. Kane et al., Phys. Plasmas 6, 2065 (1999); R.P. Drake et al., Ap. J. 500, L157 (1998); D. Ryutov et al., Ap. J. 518, 821 (1999).) and radiative transfer.(J. Wark et al., Phys. Plasmas 4, 2004 (1997); P.K. Patel et al., JQSRT 58, 835 (1997).) relevant to supernovae, and opacities relevant to stellar interiors.(F.J. Rogers and C.A. Iglesias, Science 263, 50 (1994); H. Merdji et al., JSQRT 58, 783 (1997).) are now possible with laser experiments. Equations of state relevant to the interiors of giant planets and brown dwarfs are also being experimentally accessed.(G.W. Collins et al., Science 281, 1178 (1998); A. Benuzzi et al., Phys. Rev. E 54, 2162 (1996).) With the construction of the NIF laser in the U.S., and the LIL and LMJ lasers in France, controlled investigations of thermonuclear burn physics will become possible in the next decade. And with existing and future ultra-high intensity short pulse lasers, investigations of relativistic astrophysical plasmas are becoming possible.(M.H. Key et al., Phys. Plasmas 5, 1966 (1998); F. Pegoraro et al., Plasma Phys. Contr. Fus. 39, B261 (1997).) A review of laboratory astrophysics experiments using intense lasers will be presented, and the potential for the future will be discussed.

  13. Calculations of population transfer during intense laser pulses

    SciTech Connect

    Schafer, K.J.; Kulander, K.C.

    1993-08-01

    Recent experiments by several groups have examined the question of population transfer to resonantly excited states during intense short laser pulses, in particular the amount of population that remains ``trapped`` in excited states at the end of a laser pulse. In this chapter we present calculations of population transfer and resonant ionization in xenon at both 660 and 620 nm. At the longer wavelength, the seven photon channel closes at 2.5{times}10{sup 13} W/cm{sup 2}. Pulses with peak intensities higher than this result in ``Rydberg trapping``, the resonant transfer of population to a broad range of high-lying states. The amount of population transferred depends on both the peak intensity and pulse duration. At 620 mm there are numerous possible six photon resonances to states with p or f angular momentum. We have done a large number of calculations for 40 fs pulses at different peak intensities and have examined the population transferred to these low-lying resonant states as a function of the peak laser intensity. We do not have room to comment upon the resonantly enhanced ionized electron energy spectra that we also determine in the same calculations. Our calculations involve the direct numerical integration of the time-dependent Schroedinger equation for an atom interacting with a strong laser field. The time-dependent wave function of a given valence electron is calculated on a spatial grid using a one-electron pseudo potential. This single active electron approximation (SAE) has been shown to be a good approximation for the rare gases at the intensities and wavelengths that we will consider. The SAE potential we use has an explicit angular momentum dependence which allows us to reproduce all of the excited state energies for xenon quite well.

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Dynamics of splashing of molten metals during irradiation with single CO2 laser pulses

    NASA Astrophysics Data System (ADS)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1988-03-01

    An experimental investigation was made of the dynamics of the loss of the melt as a result of interaction with single-mode CO2 laser radiation pulses of 5-35 μs duration. The dynamics of splashing of the melt during irradiation with short pulses characterized by a Gaussian intensity distribution differed from that predicted by models in which the distribution of the vapor pressure was assumed to be radially homogeneous.

  15. An inverse problem in estimating the laser irradiance and thermal damage in laser-irradiated biological tissue with a dual-phase-lag model.

    PubMed

    Yang, Yu-Ching; Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih

    2017-03-01

    The aim of this study is to solve an inverse heat conduction problem to estimate the unknown time-dependent laser irradiance and thermal damage in laser-irradiated biological tissue from the temperature measurements taken within the tissue. The dual-phase-lag model is considered in the formulation of heat conduction equation. The inverse algorithm used in the study is based on the conjugate gradient method and the discrepancy principle. The effect of measurement errors and measurement locations on the estimation accuracy is also investigated. Two different examples of laser irradiance are discussed. Results show that the unknown laser irradiance and thermal damage can be predicted precisely by using the present approach for the test cases considered in this study.

  16. Atoms, molecules and clusters in intense laser fields

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.

    Recent advances in the technology of intense, short laser pulses have opened the possibility of investigating processes in atoms, molecules and clusters in which the normal intramolecular forces between electrons and nuclei, and between different electrons, are rivaled in strength by interactions with the driving laser, or with a cluster plasma. Experiments using rescattered electrons offer a means of probing atomic and molecular processes on ultrafast timescales. This thesis extends techniques and concepts of atomic and molecular physics to describe physics in the strong field regime. This involves investigating how electron scattering from atoms and molecules is affected by the intense and time-varying electric field of the laser, the effect of such scattering on experimental observables, and the role of intramolecular structure on strong field processes. Also investigated is the evolution of van derWaals atomic clusters when subject to intense laser pulses in the VUV regime. Here processes such as photoionization, inverse bremsstrahlung heating, and collisional ionization and recombination are affected both by the non-hydrogenic nature of the relevant atomic potentials but also by the screening of these potentials by the cluster plasma.

  17. Effects of laser irradiation on a bloom forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Li, Tiancui; Bi, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-10-01

    Effects of laser irradiation on photosystem II (PS II) photochemical efficiencies, growth, and other physiological responses of Microcystis aeruginosa were investigated in this study. Results indicate that laser irradiation (wavelengths 405, 450, 532, and 650 nm) could effectively inhibit maximal PS II quantum yield (Fv/Fm) and maximal electron transport rates (ETRmax) of M. aeruginosa, while saturating light levels (Ek) of M. aeruginosa did not change significantly. Among the four tested wavelengths, 650 nm laser (red light) showed the highest inhibitory efficiency. Following 650 nm laser irradiation, the growth of M. aeruginosa was significantly suppressed, and contents of cellular photosynthetic pigments (chlorophyll a, carotenoid, phycocyanin, and allophycocyanin) decreased as irradiation dose increased. Meanwhile, laser irradiation enhanced the enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) in M. aeruginosa cells. Lower irradiation doses did not change the intracellular microcystin contents, but higher dose irradiation (>1284 J cm(-2)) caused the release of microcystin into the culture medium. Transmission electron microscope examination showed that the ultrastructure of M. aeruginosa cells was destructed progressively following laser irradiation. Effects of laser irradiation on M. aeruginosa may be a combination of photochemical, electromagnetic, and thermal effects.

  18. Ho:YAG laser irradiation in blood vessel as a vasodilator: ex vivo study

    NASA Astrophysics Data System (ADS)

    Nakatani, E.; Iwasaki, T.; Kaneko, K.; Shimazaki, N.; Arai, T.

    2007-02-01

    We studied Ho:YAG laser irradiation in blood vessel as a vasodilator ex vivo. We thought that the Ho:YAG laser-induced bubble expansion might be able to dilate the vessel because we found the vessel wall expansion after the Ho:YAG laser irradiation, that is steady deformation, in the vessel ex vivo. There have been many reports regarding to the Ho:YAG laser irradiation in the vessel. Most of studies concentrated on the interaction between Ho:YAG laser irradiation and vessel wall to investigate side effect on Ho:YAG laser angioplasty. We proposed to use the Ho:YAG laser-induced bubble expansion as a vasodilator. We studied vasodilation effect of the Ho:YAG laser-induced bubble ex vivo. The flash lamp excited Ho:YAG laser surgical unit (IH102, NIIC, Japan) (λ=2.1μm) was used. The laser energy was delivered by a silica glass fiber (outer diameter: 1000μm, core diameter: 600μm). The laser-induced bubble was generated in the extracted fresh porcine carotid artery with the warmed saline perfusion. The laser energy at the fiber tip was ranging from 170-1300mJ per pulse. Number of the laser irradiation was ranged from 20pulses to 100pulses. The outer diameter of the vessel was observed. To examine the change in mechanical properties of the vessel wall, the stress-strain curve of the laser-irradiated vessel was measured. Birefringence observation and microscopic observation of staining specimen were performed. When the laser energy was set to 1300mJ per pulse, the outer diameter of the vessel after the laser irradiation was expanded by 1.4 times comparing with that of before the laser irradiation and the dilatation effect was kept even at 10minutes after the irradiation. The elasticity modulus of the artery by collagen was changed by the laser irradiation. In the polarized microscopic observation, the brightness of the intimal side of the vessel is increased comparing with that of the normal. We think this brightness increasing may be attributed to birefringence change

  19. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  20. Generation of Energetic Particles in Intense Laser Matter Interaction

    NASA Astrophysics Data System (ADS)

    Ramakrishna, Bhuvanesh; Muhammad, Tayyab; Bagchi, Suman; Mandal, Tirtha; Chakera, Juzer; Naik, Prasad; Gupta, Parshotam Dass; Department of Physics, Indian Institute of Technology Hyderabad, India. Collaboration; Laser Plasma Division, Raja Ramanna CentreAdvanced Technology, Indore, India. Collaboration

    2016-10-01

    The acceleration of high energy ion beams up to several tens of MeV per nucleon following the interaction of an ultra-short (t <50 fs), intense (Iλ2 >1018 W.cm-2. μm-2) laser pulse with solid targets, is one of the burgeoning fields of research in the last few years. Mechanisms leading to forward-accelerated, high quality ion beams, operating at currently accessible laser intensities (up to 1021 W/cm2) in laser-matter interactions, are mainly associated with large electric fields set up at the target rear interface by the laser-accelerated electrons leaving the target. In this paper, we present our recent experimental results on MeV ion generation by mildly relativistic (1019 W / cm - 2) short-pulse (45 fs) laser interaction with foil targets of varying thicknesses, structured / uniform targets (e.g. nano structures on thin metallic foils, sandwich targets). Spectral modification / bunching, and divergence from structured targets will be discussed. DST Ramanujan Fellowship (SR/S2/RJN-25/2012).

  1. Challenges of PIC Simulations at High Laser Intensity

    NASA Astrophysics Data System (ADS)

    Luedtke, Scott V.; Arefiev, Alexey V.; Toncian, Toma; Hegelich, Bjorn Manuel

    2015-11-01

    New lasers with very high intensity pulses (I >1022 W/cm2) are being commissioned to explore new regimes of laser-matter interactions. These lasers require accurate particle-in-cell (PIC) simulations, which may require new computational approaches to efficiently produce physically accurate results. We examine the constraints on PIC simulations at high field intensity imposed by both the particle pusher and field solver. As proposed by Arefiev, et al. (Physics of Plasmas 22, 013103 (2015)), we implement adaptive sub-cycling in the Boris pusher of the EPOCH code and demonstrate its effectiveness in efficiently reducing errors from the pusher. It is well know that the use of a finite-difference scheme also modifies the electromagnetic wave dispersion relation. We examine the effect of the resulting discrepancy in the phase velocity on electron acceleration, and demonstrate that relatively small errors in the phase velocity lead to substantial changes in the electron energy gain from the laser pulse. We discuss the corresponding conditions for the field solver. These results are relevant to direct laser acceleration and underdense ionization experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  2. Skin imaged by femtosecond laser irradiation: a risk assessment for in vivo applications

    NASA Astrophysics Data System (ADS)

    Fischer, F.; Volkmer, B.; Puschmann, S.; Greinert, R.; Breitbart, W.; Kiefer, J.; Wepf, R.

    2006-04-01

    During the last couple of years new imaging techniques using femtosecond lasers (fs-lasers) in the near infrared spectral range evolved for a variety of in vitro applications. We wanted to know, whether fs-lasers have a non-invasive imaging potential for in vivo applications for human skin. So far, little is known about possible risks of this irradiation type. To estimate the risk of irradiation damage in human skin we used a "biological dosimeter" in this investigation. We irradiated fresh human skin samples with both an fs-laser and a solar simulator (UV-source) for comparison. DNA damage introduced in the epidermis was evaluated using fluorescent antibodies against cyclobutane-pyrimidin-dimers (CPDs) in combination with immuno-fluorescence image analysis. Various fs-irradiation regimes were evaluated differing in laser power and step width of horizontal irradiation scans. When using 15 mW or 30 mW fs-laser power combined with horizontal irradiation scans applied every 5 mm in depth around the epidermal-dermal junction no induction of CPDs was found. However, induction of CPDs could be seen using 60 mW laser power and 5 μm step width. Narrowing the step width to 1 mm and using increasing laser power (up to 35 mW) from the surface of the skin to the epidermis led to CPD formation, too. Quantitative comparison of CPD production at various laser regimes with CPD production using a solar simulator was done. We could show that the number of CPDs formed by the 60 mW laser irradiation regime is comparable to an UV-irradiation giving 0.6 MED (minimal erythemal dose). The smaller step width laser irradiation regime (1 μm step width and up to 35 mW) was comparable to a UV-irradiation regime resulting in 0.45 MED.

  3. Hyperspectral and gated ICCD imagery for laser irradiated carbon materials

    NASA Astrophysics Data System (ADS)

    Roberts, Charles D.; Acosta, Roberto A.; Marciniak, Michael A.; Perram, Glen P.

    2013-02-01

    New optical diagnostics for studying laser ablation and induced combustion for carbon materials are key to monitoring the evolving, spatial distribution of the gas plume. We are developing high speed imaging FTIR and gated ICCD imagery for materials processing, manufacture process control, and high energy laser applications. The results from two projects will be discussed. First, an imaging Fourier Transform Spectrometer with a 320 x 256 InSb focal plane array frames at 1.9 kHz with a spatial resolution of 1 mm and spectral resolution of up to 0.25 cm-1. Gas phase plumes above the surface of laser-irradiated black plexiglass, fiberglass and painted thin metals have been spectrally resolved. Molecular emission from CO, CO2, H2O, and hydrocarbons is readily identified. A line-by-line radiative transfer model is used to derive movies for specie concentrations and temperatures. Second, excimer laser pulsed ablation of bulk graphite into low-pressure (0.05 - 1 Torr) argon generates highly ionized, high speed (M>40) plumes. A gated, intensified CCD camera with band pass filtering has been used to generate plume imagery with temporal resolution of 10ns. The Sedov-Taylor shock model characterizes the propagation of the shock front if the dimensionality of the plume is allowed to deviate from ideal spherical expansion. A drag model is more appropriate when the plume approaches extinction (~10 μs) and extends the characterization into the far field. Conversion of laser pulse energy to the shock is efficient.

  4. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    SciTech Connect

    Tanaka, Nozomi Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi

    2015-09-14

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  5. The study towards high intensity high charge state laser ion sources

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Jin, Q. Y.; Sha, S.; Zhang, J. J.; Li, Z. M.; Liu, W.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  6. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  7. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  8. Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

    2008-08-25

    We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

  9. High-energy-density electron beam generation in ultra intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Liu, Jianxun; Ma, Yanyun; Yang, Xiaohu; Zhao, Jun; Yu, Tongpu; Shao, Fuqiu; Zhuo, Hongbin; Gan, Longfei; Zhang, Guobo; Zhao, Yuan; Yang, Jingkang

    2017-01-01

    By using a two-dimensional particle-in-cell simulation, we demonstrate a scheme for high-energy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum (Al) target. With the laser having a peak intensity of 4 × 1023 W cm‑2, a high quality electron beam with a maximum density of 117nc and a kinetic energy density up to 8.79 × 1018 J m‑3 is generated. The temperature of the electron beam can be 416 MeV, and the beam divergence is only 7.25°. As the laser peak intensity increases (e.g., 1024 W cm‑2), both the beam energy density (3.56 × 1019 J m‑3) and the temperature (545 MeV) are increased, and the beam collimation is well controlled. The maximum density of the electron beam can even reach 180nc. Such beams should have potential applications in the areas of antiparticle generation, laboratory astrophysics, etc. This work is financially supported by the National Natural Science Foundation of China (Nos. 11475260, 11305264, 11622547, 91230205, and 11474360), the National Basic Research Program of China (No. 2013CBA01504), and the Research Project of NUDT (No. JC14-02-02).

  10. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  11. Classical effect for enhanced high harmonic yield in ultrashort laser pulses with a moderate laser intensity

    NASA Astrophysics Data System (ADS)

    Shi, Y. Z.; Wang, S.; Dong, F. L.; Li, Y. P.; Chen, Y. J.

    2017-03-01

    We study the influence of pulse duration on high harmonic generation (HHG) by exploring a wide laser-parameter region theoretically. Previous studies have shown that for high laser intensities close to saturation ionization intensity, the HHG inversion efficiency is higher for shorter pulses since the ground-state depletion is weaker in short pulses. Our simulations show that this high efficiency also appears for a moderate laser intensity at which the ionization is not very strong. A classical effect relating to shorter travel distances of the rescattering electron in shorter pulses is shown to contribute importantly to this high efficiency. The effect can be amplified significantly if a two-color laser field is used, suggesting a potential approach to increasing the HHG yield and generating short and bright attosecond pulses.

  12. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  13. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    SciTech Connect

    Shepherd, R; Chen, H; Ping, Y; Dyer, G; Wilks, S; Chung, H; Kemp, A; Hanson, S; Widmann, K; Fournier, K; Faenov, A; Pikuz, T; Niles, A; Beiersdorfer, P

    2007-02-27

    We have performed experiments at the COMET and Calisto short pulse laser facilities to make the first comprehensive measurements of the laser absorption and energy partition in solid targets heated with an ultrashort laser pulse focused to relativistic laser intensities (>10 10{sup 17} W/cm{sup 2}). The measurements show an exceedingly high absorption for P polarized laser-target interactions above 10{sup 19} W/cm{sup 2}. Additionally, the hot electron population is observed to markedly increase at the same intensity range. An investigation of the relaxation process was initiated u using time sing time-resolved K{sub {alpha}} spectroscopy. Measurements of the time time-resolved K{sub {alpha}} radiation suggest a 10-20 ps relativistic electron relaxation time. However modeling difficulties of these data are apparent and a more detailed investigation on this subject matter is warranted.

  14. Three-body fragmentation of CO{sub 2} driven by intense laser pulses

    SciTech Connect

    Wu, Chengyin Liu, Yunquan; Gong, Qihuang; Wu, Cong; Fan, Yameng; Xie, Xiguo; Wang, Peng; Deng, Yongkai

    2015-03-28

    Dissociative ionization dynamics were studied experimentally for CO{sub 2} driven by intense laser pulses. Three-dimensional momentum vectors of correlated atomic ions were obtained for each three-body fragmentation event using triple ion coincidence measurement. Newton diagram demonstrated that three-body fragmentation of CO{sub 2}{sup n+} (n = 3-6) can occur through Coulomb explosion process and sequential fragmentation process depending on the fragmentation channels. The experimental data from these two processes were disentangled by using correlation diagram of correlated ions. Based on the accurate Coulomb explosion data, we reconstructed the bond angle distributions of CO{sub 2}{sup n+} at the moment of fragmentation, which are close to that of neutral CO{sub 2} before laser irradiation.

  15. Generation of heavy ion beams using high-intensity short pulse lasers

    NASA Astrophysics Data System (ADS)

    Petrov, George; McGuffey, Chris; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2016-10-01

    A theoretical study of ion acceleration from high-Z material irradiated by intense sub-picosecond lasers is presented. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. At least four technical hurdles have been identified: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration and poor energy coupling due to high reflectivity of the plasma. Using two dimensional particle-in-cell (PIC) simulations, we observed transitions from Radiation Pressure Acceleration (RPA) to the Breakout Afterburner regime (BoA) and to Target Normal Sheath Acceleration (TNSA) akin to light ions. The numerical simulations predict gold ions beams with high directionality (<10 degrees half-angle), high fluxes (>1011 ions/sr) and energy (>10 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  16. Nonsequential and sequential fragmentation of CO2(3+) in intense laser fields.

    PubMed

    Wu, Cong; Wu, Chengyin; Song, Di; Su, Hongmei; Yang, Yudong; Wu, Zhifeng; Liu, Xianrong; Liu, Hong; Li, Min; Deng, Yongkai; Liu, Yunquan; Peng, Liang-You; Jiang, Hongbing; Gong, Qihuang

    2013-03-08

    We experimentally studied the three-body fragmentation dynamics of CO(2) initiated by intense femtosecond laser pulses. Sequential and nonsequential fragmentations were precisely separated and identified for CO(2)(3+) to break up into O(+) + C(+) + O(+) ions. With accurate measurements of three-dimensional momentum vectors of the correlated atomic ions and calculations of the high-level ab initio potential of CO(2)(3+), we reconstructed the geometric structure of CO(2)(3+) before fragmentation, which turns out to be very close to that of the neutral CO(2) molecule before laser irradiation. Our study indicated that Coulomb explosion is a promising approach for imaging geometric structures of polyatomic molecules if the fragmentation dynamics can be clearly clarified and the appropriate dissociation potential is provided for multiply charged molecular ions.

  17. Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation

    PubMed Central

    Wang, Bing; Wang, Xincai; Zheng, Hongyu; Lam, Yee Cheong

    2015-01-01

    The effect of laser irradiation on surface wettability of cyclic olefin polymer (COP) was investigated. Under different laser parameters, a superhydrophilic or a superhydrophobic COP surface with a water contact angle (WCA) of almost 0° or 163°, respectively, could be achieved by direct femtosecond laser irradiation. The laser power deposition rate (PDR) was found to be a key factor on the wettability of the laser-treated COP surface. The surface roughness and surface chemistry of the laser-irradiated samples were characterized by surface profilometer and X-ray photoelectron spectroscopy, respectively; they were found to be responsible for the changes of the laser-induced surface wettability. The mechanisms involved in the laser surface wettability modification process were discussed.

  18. Effect of laser soldering irradiation on covalent bonds of pure collagen.

    PubMed

    Constantinescu, Mihai A; Alfieri, Alex; Mihalache, George; Stuker, Florian; Ducray, Angélique; Seiler, Rolf W; Frenz, Martin; Reinert, Michael

    2007-03-01

    Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined

  19. Au-C allotrope nano-composite films at extreme conditions generated by intense ultra-short laser

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Saravanan, K.; Tayyab, M.; Bagchi, S.; Avasthi, D. K.

    2016-07-01

    Structural evolution of gold-carbon allotrope nano-composite films under relativistically intense, ultra-short laser pulse irradiation is studied in this work. Au-C nano-composite films, having 4 and 10 at.% of Au, were deposited by co-sputtering technique on silicon substrates. Au-C60 NC films with 2.5 at.% Au were deposited on 12 μm thick Al foil using co-evaporation technique. These samples were radiated with single pulse from 45 fs, 10 TW Ti:Sapphire Laser at RRCAT at an intensity of 3 × 1018 W cm-2. The morphological and compositional changes were investigated using scanning electron microscopy (SEM) and Rutherford back-scattering spectrometry (RBS) techniques. Laser pulse created three morphologically distinct zones around the point of impact on samples with silicon substrates. The gold content in 600 μm circular region around a point of impact is found to reduce by a factor of five. Annular rings of ∼70 nm in diameter were observed in case of Au-C NC film after irradiation. Laser pulse created a hole of about 400 μm in the sample with Al foil as substrate and wavy structures of 6 μm wavelength are found to be created around this hole. The study shows radial variation in nano-structure formation with varying local intensity of laser pulse.

  20. Laser irradiation affects enzymatic antioxidant system of streptozotocin-induced diabetic rats.

    PubMed

    Ibuki, Flavia Kazue; Simões, Alyne; Nicolau, José; Nogueira, Fernando Neves

    2013-05-01

    The aim of the present study was to analyze the effect of low-power laser irradiation in the antioxidant enzymatic system of submandibular (SMG) and parotid (PG) salivary glands of streptozotocin-induced diabetic rats. The animals were randomly divided into six groups: three diabetic groups (D0, D5, and D20) and three non-diabetic groups (C0, C5, and C20), according to laser dose received (0, 5, and 20 J/cm(2), respectively). Areas of approximately 1 cm(2) were demarcated in the salivary glands (each parotid and both submandibular glands) and after irradiated according to Simões et.al. (Lasers Med Sci 24:202-208, 2009). A diode laser (660 nm/100 mW) was used, with laser beam spot of 0.0177 cm(2). The group treated with 5 J/cm(2) laser dose was subjected to irradiation for 1 min and 4 s (total irradiation time) and the group treated with 20 J/cm(2) laser dose was subjected to irradiation for 4 min and 16 s. Twenty-four hours after irradiation the animals were euthanized and the salivary glands were removed for biochemical analysis. The total antioxidant values (TA), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase enzymes were determined. SOD and CAT activities, as well as TA were higher in SMG of irradiated diabetic rats. However, in SMG of non-diabetic rats, laser irradiation decreased TA values and led to an increase in the CAT activity. In addition, there was a decrease in the activity of CAT in PG of diabetic and non-diabetic animals after laser irradiation. According to the results of the present study, low-power laser irradiation can affect the enzymatic antioxidant system of salivary glands of streptozotocin-induced diabetic rats.

  1. [Use of the thermal laser effect of laser irradiation for cardiovascular applications exemplified by the Nd:YAG laser].

    PubMed

    Ischinger, T; Coppenrath, K; Weber, H; Enders, S; Unsöld, E; Hessel, S

    1989-11-01

    Techniques of percutaneous transluminal application of laser energy for vessel recanalization have been used clinically since 1983. The commonly used Nd:YAG and argon lasers achieve ablation of atherosclerotic plaques by thermal action (vaporization). In order to reduce undesirable thermal damage in the neighborhood of the target tissue and to avoid vessel perforation, optimal irradiation parameters, modified (atraumatic) fiber tips (hot tips, sapphires), and steerable catheter systems needed to be implemented. Favorable results from peripheral application have encouraged use in the coronary circulation. More recently, coagulative tissue effects of circumferential irradiation of the vessel wall during balloon dilatation have been used for stabilization of acute and late results after mechanical balloon angioplasty. Enhancement of the differential light absorption of atherosclerotic plaque by use of biological dyes may further improve selective intravascular laser application. Intraoperative ECG-guided laser coagulation of arrhythmogenic areas of myocardium is a method for treatment of malignant arrhythmias. Transluminal non-operative application of myocardial laser photocoagulation has now been tested experimentally and shown to be safe and effective. There was no arrhythmogenicity or thermal damage of coronary arteries associated with this method. Innovative techniques such as nanosecond pulsed excimer lasers (athermal action) and development of "intelligent" lasers--which are equipped with spectroscopy-guided feedback systems for plaque recognition--have opened new perspectives and will further improve safety and efficacy of clinical laser application. However, according to current experience, the thermally acting Nd:YAG laser is an effective and versatile mode of laser therapy for selected cardiovascular indications.

  2. Temporal dispersion induced commercial laser in speckle free intense imaging

    NASA Astrophysics Data System (ADS)

    Kalyan Manna, Suman; Nguyen, Giang-Nam; Le Gall, Stephen

    2016-01-01

    Coherent imaging suffers from speckle, which is basically some uncorrelated intensity distribution and bears no obvious relationship to the macroscopic properties of the object illuminated. Reducing the spatial coherence of the illuminating beam, usually improves the quality of imaging by paying the penalty for reducing intensity, and directionality as well. Here, we demonstrate an alternative way of resolving the speckle issue by inducing temporal dispersion onto the commercial He-Ne laser beam, devising with a dispersive slope available near to the edge of the 1-D organic photonic band gap Cholesteric Liquid Crystal (CLC).

  3. On the formation of Na nanoparticles in femtosecond-laser irradiated glasses

    SciTech Connect

    Jiang Nan; Su Dong; Spence, John C. H.; Qiu Jianrong

    2010-03-15

    This work discusses the response of Na to both high-energy electrons and femtosecond-laser (fs-laser) pulses in the soda-lime glass. The evidence for different responses of Na to high-energy electron irradiation between glasses with and without fs-laser irradiation suggests that the chemical and/or physical states of Na in the fs-laser irradiated glass are different from those in the original glass. Fs-laser pulses in the glass may be able to neutralize Na, which may form clusters. These results suggest that close attention should be paid to the defects associated with Na when optical or physical data are interpreted in fs-laser irradiated Na glasses.

  4. A Review of Astrophysics Experiments on Intense Lasers

    SciTech Connect

    Remington, B.A.; Arnett, D.; Drake, R.P.; Takabe, H.

    1999-03-03

    Astrophysics traditionally has been the domain of large astronomical observatories and theorists' computers, the former producing images from deep space, and the latter constructing intricate models to explain the observations. A component often missing has been the ability to quantitatively test the theories and models in an experimental setting where the initial and final states are well characterized. In a new development, intense lasers are being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively compared with data. We summarize here several areas of astrophysics: supernovae, supernova remnants, gamma-ray bursts, and giant planets. In each of these areas, experiments are under development at intense laser facilities to test and refine our understanding of these phenomena.

  5. Free charged particle behavior in intense laser fields

    NASA Astrophysics Data System (ADS)

    Fradkin, D. M.

    1984-03-01

    Theoretical studies were performed examining the effect of intense laser fields, together with auxiliary electromagnetic field configuration, on the behavior of otherwise free charged particles. The Lorentz-Dirac classical equation was employed to determine the effect of radiation reaction on the transfer of asymptotic energy momentum to a particle by a single intense plane wave pulse. The added effect due to a uniform magnetic field along the pulse propagation direction was determined. Single particle Dirac theory was employed to analyze particle polarization direction changes in a quantum-mechanical model. The general nature of the Lorentz transformation as a active transformation connecting initial and final states was determined, in which a single state characterization parameter was left unspecified. Analytic and computer studies were made of the effect of two simultaneous laser pulses, propagating in opposite directions on particle dynamics.

  6. Effect of intense laser IR fields on triatomic molecules

    NASA Astrophysics Data System (ADS)

    Ivanov, S. V.; Panchenko, V. Ia.; Chugunov, A. V.

    1986-04-01

    Theoretical and experimental results on the effect of intense laser IR fields on triatomic molecular gases are presented with particular emphasis on ozone. Experiments were conducted in single- and double-frequency IR fields at power densities ranging from 10 to the -6th to 10 GW/sq cm in the pulsed regime and 0.001 to 100 W/sq cm in the CW regime; studies were performed using a TEA CO2 laser system. Attention is given to: the nonlinear absorption spectrum; the dependence of absorption in ozone on the power density of incident radiation; results of numerical solutions; the analytical solution; two-photon resonances in the ozone absorption spectrum; the spectrum of double-frequency IR-IR absorption; cascade-excitation channels; and laser-stimulated explosion in ozone.

  7. Propagation of intense laser pulse in cold underdense plasma

    SciTech Connect

    Chen, X.L.; Sudan, R.N.

    1994-10-05

    We have derived a simplified set of three dimensional equations for the propagation of an intense laser pulse in cold underdense plasma [Phys. Fluids, {bold B}5, 1336 (1993)]. A three dimensional code has recently been developed to study this set of equations. Here we report on some of the preliminary results from the 3-d code. {copyright} 1994 {ital American} {ital Institute} {ital of} {ital Physics}

  8. On the formation of nanostructures on a CdTe surface, stimulated by surface acoustic waves under nanosecond laser irradiation

    SciTech Connect

    Vlasenko, A. I.; Baidullaeva, A.; Veleschuk, V. P. Mozol, P. E.; Boiko, N. I.; Litvin, O. S.

    2015-02-15

    The formation of nanoscale structures in the unirradiated part of a p-CdTe crystal surface irradiated by a nanosecond ruby laser is revealed and investigated. It is shown that their formation is caused by the effect of the long-range action of a laser pulse with an intensity of I = 20 MW/cm{sup 2}. Nanoscale-structure formation is explained by the influence of the pressure gradient of the surface acoustic wave, in particular, within the “vacancy-pump” mechanism on the surface.

  9. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser

    SciTech Connect

    Nishiuchi, M. Sakaki, H.; Esirkepov, T. Zh.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Bulanov, S. V.; Kondo, K.; Nishio, K.; Orlandi, R.; Koura, H.; Imai, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Sako, H.; Matsukawa, K.; and others

    2015-03-15

    Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.

  10. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Sako, H.; Pirozhkov, A. S.; Matsukawa, K.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-03-01

    Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.

  11. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  12. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats.

    PubMed

    Mohammed, Haitham S

    2016-11-01

    Transcranial low-level infrared laser is a modality of therapy based on the principle of photons delivered in a non-invasive manner through the skull for the treatment of some neurological conditions such as psychological disorders, traumatic brain injuries, and neurodegenerative diseases among others. In the present study, effects of low-level infrared laser irradiation with different radiation powers (80, 200, and 400 mW, continuous wave) were investigated on normal animals subjected to forced swimming test (FST). Results indicated that there are changes in FST parameters in animals irradiated with laser; the lowest dose provoked a significant increase in animal activity (swimming and climbing) and a significant decrease in animal's immobility, while the highest laser dose resulted in a complete inverse action by significantly increasing animal immobility and significantly decreasing animal activity with respect to control animals. The lowest dose (80 mW) of transcranial laser irradiation has then utilized on animals injected with a chronic dose of reserpine (0.2 mg/kg i.p. for 14 days) served as an animal model of depression. Laser irradiation has successfully ameliorated depression induced by reserpine as indicated by FST parameters and electrocorticography (ECoG) spectral analysis in irradiated animals. The findings of the present study emphasized the beneficial effects of low-level infrared laser irradiation on normal and healthy animals. Additionally, it indicated the potential antidepressant activity of the low dose of infrared laser irradiation.

  13. Time-resolved SFG study of formate on a Ni( 1 1 1 ) surface under irradiation of picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Noguchi, H.; Okada, T.; Onda, K.; Kano, S. S.; Wada, A.; Domen, K.

    2003-03-01

    Time-resolved sum-frequency generation spectroscopy was carried out on a deuterated formate (DCOO) adsorbed on Ni(1 1 1) surface to investigate the surface reaction dynamics under instantaneous surface temperature jump induced by the irradiation by picosecond laser pulses. The irradiation of pump pulse (800 nm) caused the rapid intensity decrease of both CD and OCO stretching modes of bridged formate on Ni(1 1 1). Different temporal behaviors of intensity recovery between these two vibrational modes were observed, i.e., CD stretching mode recovered faster than OCO. This is the first result to show that the dynamics of adsorbates on metals strongly depends on the observed vibrational mode. From the results of temperature and pump fluence dependence, we concluded that the observed intensity change was not due to the decomposition or desorption, but was induced by a non-thermal process.

  14. Low-power laser irradiation enhance macrophage phagocytic capacity through Src activation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with organic functions. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages, the regulation mechanism of phagocytosis was also discussed. Our results indicated that Low-power laser irradiation can enhance the phagocytosis of macrophage through activation of Src.

  15. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    SciTech Connect

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  16. Design and testing of low intensity laser biostimulator

    PubMed Central

    Valchinov, Emil S; Pallikarakis, Nicolas E

    2005-01-01

    -wave retardation plate. The proposed method for testing the device efficiency employs a biofeedback from the subject by recording the biopotentials evoked by the laser stimulus at related distant SLB sites. Therefore measuring of SLB biopotentials caused by the stimulus would indicate that a biopotential has been evoked at the irradiated site and has propagated to the measurement sites, rather than being caused by local changes of the electrical skin conductivity. Results A prototype device was built according to the proposed design using relatively inexpensive and commercially available components. The laser output can be pulse modulated from 0.1 to 1000 Hz with a duty factor from 10 to 90 %. The average output power density can be adjusted in the range 24 – 480 mW/cm2, where the total irradiation is limited to 2 Joule per stimulation session. The device is controlled by an 8-bit RISC Flash microcontroller with internal RAM and EEPROM memory, which allows for a wide range of different stimulation protocols to be implemented and memorized. The integrated laser diode driver with its onboard light power control loop provides safe and consistent laser modulation. The prototype was tested on the right Tri-Heater (TH) acupuncture meridian according to the proposed method. Laser evoked potentials were recorded from most of the easily accessible SLB along the meridian under study. They appear like periodical spikes with a repetition rate from 0.05 to 10 Hz and amplitude range 0.1 – 1 mV. Conclusion The prototype's specifications were found to be better or comparable to those of other existing devices. It features low component count, small size and low power consumption. Because of the low power levels used the possibility of sensory nerve stimulation via the phenomenon of shock or heat is excluded. Thus senseless optical stimulation is achieved. The optical system presented offers simple and cost effective way for beam collimation and polarization change. The novel method proposed

  17. Optothermal response of plasmonic nanofocusing lens under picosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Du, Z.; Chen, C.; Traverso, L.; Xu, X.; Pan, L.; Chao, I.-H.; Lavine, A. S.

    2014-03-01

    This work studied the optothermal response of plasmonic nanofocusing structures under picosecond pulsed laser irradiation. The surface plasmon polariton is simulated to calculate the optical energy dissipation as the Joule heating source and the thermal transport process is studied using a two temperature model (TTM). At the picosecond time scale that we are interested in, the Fourier heat equation is used to study the electron thermal transport and the hyperbolic heat equation is used to study the lattice thermal transport. For comparison, the single temperature model (STM) is also studied. The difference between TTM and STM indicates that TTM provides more accurate estimates in the picosecond time scale and the STM results are only reliable when the local electron and lattice temperature difference is negligible.

  18. The effect of low-intensity laser therapy on wound healing in Streptozotocin-induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Rabelo, Sylvia B.; Villaverde, Antonio G. J. B.; Salgado, Miguel A. C.; Melo, Milene d. S.; Nicolau, Renata A.; Pacheco, Marcos T. T.

    2004-10-01

    Diabetes Mellitus is a condition that results in a delay of the wound healing process, that is associated with an insufficient production of collagen, a decrease of the amount of collagen fibrils and deficient blood flow in the wound area. It is sugested that Low Intensity Laser Therapy acts by improving wound healing in normal organisms, accelerating tissue regeneration. The aim of this work was to investigate the biostimulatory effect of the HeNe laser irradiation, at 632.8 nm, on wound healing in 15 male rats suffering from diabetes induced by Streptozotocin, compared to 15 control diabetic animals. Irradiation parameters were: laser power of 15mW, exposition time of 17 s., irradiated area of 0.025 cm2 and laser energy density of 10 J/cm2. Full-thickness skin squared samples, with 5 mm of non-injured tissue around the wound, were obtained at 4, 7 and 15 days after wounding procedure (5 treated and 5 control animals each time). The histopathologic analysis performed by haematoxylin-cosin staining. Results suggested that the irradiation of diabetic rats was efficient for wound healing. Treated group presented better quality of the wound tissues by the macroscopic observation than control group and the microscopic analysis demonstrated that treated animals had better histopathologic evaluation than non treated.

  19. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin

    SciTech Connect

    Polla, L.L.; Margolis, R.J.; Dover, J.S.; Whitaker, D.; Murphy, G.F.; Jacques, S.L.; Anderson, R.R.

    1987-09-01

    The specific targeting of melanosomes may allow for laser therapy of pigmented cutaneous lesions. The mechanism of selective destruction of pigmented cells by various lasers, however, has not been fully clarified. Black, brown, and albino guinea pigs were exposed to optical pulses at various radiant exposure doses from a Q-switched, 40 nsec, 694 nm ruby laser. Biopsies were analyzed by light and electron microscopy (EM). Albino animals failed to develop clinical or microscopic evidence of cutaneous injury after irradiation. In both black and brown animals, the clinical threshold for gross change was 0.4 J/cm2, which produced an ash-white spot. By light microscopy, alterations appeared at 0.3 J/cm2 and included separation at the dermoepidermal junction, and the formation of vacuolated epidermal cells with a peripheral cytoplasmic condensation of pigment. By EM, enlarged melanosomes with a central lucent zone were observed within affected epidermal cells at 0.3 J/cm2. At 0.8 and 1.2 J/cm2, individual melanosomes were more intensely damaged and disruption of melanosomes deep in the hair papillae was observed. Dermal-epidermal blisters were formed precisely at the lamina lucida, leaving basal cell membranes and hemidesmosomes intact. Possible mechanisms for melanosomal injury are discussed. These observations show that the effects of the Q-switched ruby laser are melanin-specific and melanin-dependent, and may be useful in the selective destruction of pigmented as well as superficial cutaneous lesions.

  20. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation

    SciTech Connect

    Jiao, Z.; Huang, H.; Zhou, Y. E-mail: nzhou@uwaterloo.ca; Liu, L.; Hu, A.; Duley, W.; He, P. E-mail: nzhou@uwaterloo.ca

    2014-04-07

    The joining of Al-Fe nanoparticles (NPs) by femtosecond (fs) laser irradiation is reported in this paper. Fe and Al NPs were deposited on a carbon film in vacuum via fs laser ablation. Particles were then exposed to multiple fs laser pulses at fluences between 0.5 and 1.3 mJ/cm{sup 2}. Transmission Electron Microscopy (TEM) and Electron Diffraction X-ray observations indicate that Al and Fe NPs bond to each other under these conditions. For comparison, bonding of Al to Al and Fe to Fe NPs was also investigated. The nanostructure, as observed using TEM, showed that individual Al NPs were monocrystalline while individual Fe NPs were polycrystalline prior to joining and that these structures are retained after the formation of Al-Al and Fe-Fe NPs. Al-Fe NPs produced by fs laser joining exhibited a mixed amorphous and crystalline phase at the interface. Bonding is suggested to originate from intermixing within a region of high field intensity between particles.

  1. Residual stress near cracks of K and fused silica under 1064 nm nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Hongjie; Huang, Jin; Zhou, Xiaoyan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2012-11-01

    Measurements of birefringence induced in K9 and fused silica specimens by cracks produced by 1064 nm Nd∶YAG laser have been presented. The Birefringence data is converted into the units of stress, thus permitting the estimation of residual stress near crack. The intensity of residual stress in K9 glass is larger than that in fused silica under the same condition. The similarity of residual stress distribution along the y-axis reveals that the nature of shock wave transmission in optical materials under 1064 nm laser irradiation is the same with each other. The value of residual stress can be influenced by laser parameters and characterization of optical material. Simulation based on a theoretical model giving the residual stress field around a crack is developed for comparison with experiment results. The probability of initial damage and the direction of the energy dissipation in cracks determine the residual stress distribution. The thermal stress coupling enlarges the asymmetry of residual stress distribution. Residual stress in optical material has a strong effect on fracture and should be taken into account in any formulation that involves the enhanced damage resistance of optical components used in laser induced damage experiments.

  2. Simulations of controlled spectral emission of Al plasmas generated by temporally tailored laser irradiation

    SciTech Connect

    Colombier, J. P.; Guillermin, M.; Garrelie, F.; Audouard, E.; Stoian, R.

    2010-10-08

    Hydrodynamics simulations and irradiation experiments were performed to correlate ul-trashort intensity envelopes of the laser fields and thermodynamical states reached by the emerging plasma phase in ablation regimes. We discuss the efficiency of energy coupling as a function of different intensity envelopes and the resulting temperature, density and ionization states since the energy delivery rate is an essential factor that predetermines the material thermodynamic evolution. Subsequently, we examine the plasma composition in calculating the proportion of neutral/ion species typical of LIBS signals and comparing it with neutral/ion ratios given by experimental results. Moreover, the calculations allow to investigate the efficiency of nanoparticles generation from materials subjected to different heating rates. These can be related to hydrodynamic ejection of nanosized liquid layers upon the action of mechanic waves. With support from numerical simulations of the hydrodynamic advance of the excited matter, experiments revealed that mastering intensity envelopes of ultrashort laser pulse leads to further control on the ablation products. Emerging plasma phase in a hot state generates specific spectral emission patterns that can serve as indicators for its controlled formation and kinetic evolution.

  3. Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation.

    PubMed

    Soleimanpour, A M; Khare, Sanjay V; Jayatissa, Ahalapitiya H

    2012-09-26

    This paper reports the effect of post-laser irradiation on the gas-sensing behavior of nickel oxide (NiO) thin films. Nanocrystalline NiO semiconductor thin films were fabricated by a sol-gel method on a nonalkaline glass substrate. The NiO samples were irradiated with a pulsed 532-nm wavelength, using a Nd:YVO(4) laser beam. The effect of laser irradiation on the microstructure, electrical conductivity, and gas-sensing properties was investigated as a function of laser power levels. It was found that the crystallinity and surface morphology were modified by the pulsed-laser irradiation. Hydrogen gas sensors were fabricated using both as-deposited and laser-irradiated NiO films. It was observed that the performance of gas-sensing characteristics could be changed by the change of laser power levels. By optimizing the magnitude of the laser power, the gas-sensing property of NiO thin film was improved, compared to that of as-deposited NiO films. At the optimal laser irradiation conditions, a high response of NiO sensors to hydrogen molecule exposure of as little as 2.5% of the lower explosion threshold of hydrogen gas (40,000 ppm) was observed at 175 °C.

  4. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  5. Microstructures and properties of materials under repeated laser irradiation

    SciTech Connect

    Averback, Robert; Bellon, Pascal

    2007-02-12

    This research program has explored the stability of alloys under pulsed laser irradiation. Two primary directions were investigated: (i) phase transitions during a single laser pulse, and (ii) phase stability under repeated laser irradiation. The first theme was primarily concerned with both the crystalline to amorphous phase transition and the transition of liquids and glasses to crystalline matter. The second project examined the phase evolution during laser pulsing in situations where plastic deformation was prevalent (high-energy laser pulses). Both computer simulation and experimental programs were undertaken. Our work using computer simulations had several notable successes. For the work connected with multiple pulsing, we used molecular dynamics (MD) to simulate the behavior of alloys under severe plastic deformation. We found that during high strain-rate deformation atomic mixing of chemical species is random, independent of the detailed thermochemical properties of the system. This result contrasts with recent reports. In this work, we also developed two new methods of analyzing atomic mixing, one is based on relative mean square displacements (RMSD) of atoms and the other, Burgers vector analysis (BVA), on nearest neighbor displacements. The RMSD analysis is valuable in that it specifies the length scales over which deformation processes take place, and we applied it to understand deformation in nanocrystalline, amorphous and large-grained systems. The BVA analysis, on the other hand, reveals if the damage is homogeneous. Finally we showed that at elevated temperatures, the phase stability is not determined from a simple competition between shearing events and vacancy diffusion, which has long been assumed, but rather atomic mixing in the shearing events is temperature dependent. This work is significant in that it elucidates the fundamental mechanisms that underlie high strain rate deformation, and it provides computational tools for other researchers to

  6. Local ultraviolet laser irradiation for gradients on biocompatible polymer surfaces.

    PubMed

    Nottrodt, Nadine; Leonhäuser, Dorothea; Bongard, Yvonne; Bremus-Köbberling, Elke; Gillner, Arnold

    2014-04-01

    Generation of supporting structures, which guide cell growth, is a challenging task in the field of tissue engineering. Cell guidance properties of a scaffold are important in the field of neuronal regeneration. Those guiding structures can provide guidance just by mechanical stimulus or by chemical stimuli like cell signaling molecules. For an enhanced guidance, chemical gradients are under investigation. With this study, we show that ultraviolet laser irradiation is a useful tool to activate polymer surfaces with a high temporal and spatial resolution. We demonstrated that poly(methyl methacrylate) (PMMA) and poly-ε-caprolactone (PCL) can be locally activated and functionalized with amine groups that can be used for immobilization of arginine-glycine-aspartic acid (RGD) peptide. The immobilized RGD was detected by neuronal B35 cells. By defined pulse accumulation functionalization density on the surface can be varied for the generation of gradients. We demonstrated that PMMA and PCL have different process windows for functionalization. Although PMMA has a very small process window for activation, PCL allows the generation of stepwise functionalization. The presented technology can help to develop assays for the analysis of cell migration and neuronal regeneration due to flexible patterning easily realized by changing the irradiation parameters.

  7. Cutaneous tissue repair following CO2 laser irradiation.

    PubMed

    Kamat, B R; Carney, J M; Arndt, K A; Stern, R S; Rosen, S

    1986-08-01

    We studied the mechanism of repair following exposure of normal skin to the CO2 laser in a focused mode. Exposed areas were biopsied at 0, 24, 48 h; 1, 2 weeks; 1, 2 1/2 months (pulse width varying from 0.1 to 1.0 s) after irradiation. The initial pattern was a V-shaped zone of cauterized collagen with a central crevice, the depth of which correlated with the total energy applied. The epidermal changes consisted of transepidermal cauterization and basal vacuolar changes lateral to the site of impact. Over a period of 1 week, the wound crevice decreased in depth and width and the central margins of the zone of cauterized collagen approximated. The cauterized collagen was extruded and was noted in the epidermal crust; minimal granulation tissue was present. Biopsies at later time periods showed formation of granulation tissue and retention of small amounts of necrotic collagen; the process of collagen extrusion was largely prevented by suturing. These observations show that dermal contraction and necrotic collagen extrusion are important components of initial tissue repair following limited dermal destruction produced by CO2 irradiation.

  8. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  9. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    SciTech Connect

    Pérez del Pino, Ángel Cabana, Laura; Tobias, Gerard; György, Enikö; Ballesteros, Belén

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  10. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.

  11. Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation

    SciTech Connect

    Wang, Shutong; Feng, Guoying E-mail: zhoush@scu.edu.cn

    2014-12-22

    Micro/nano patterning of ZnSe wafer is demonstrated by femtosecond laser irradiation through a diffracting pinhole. The irradiation results obtained at fluences above the ablation threshold are characterized by scanning electron microscopy. The microsized structure with low spatial frequency has a good agreement with Fresnel diffraction theory. Laser induced periodic surface structures and laser-induced periodic curvelet surface structures with high spatial frequency have been found on the surfaces of microsized structures, such as spikes and valleys. We interpret its formation in terms of the interference between the reflected laser field on the surface of the valley and the incident laser pulse.

  12. Loss of vasoreactivity by laser thermal energy or argon laser irradiation.

    PubMed

    Tomaru, T; Uchida, Y; Nakamura, F; Miwa, A Y; Kawai, S; Okada, R; Sugimoto, T

    1993-05-01

    Vasoreactivity of laser-treated vessels was investigated in two different experimental conditions. The canine left circumflex coronary artery (LCx) was lased under perfusion with Krebs-bicarbonate buffer by means of a thermal laser (hot-tip probe, HT) at 7 W for 6 seconds and an argon laser beam through a 300 microns optical fiber at 3 W (tip power) for 1 second at 12 spots. A nontreated segment of the LCx served as a control. Two 3-mm long segments were obtained from the treated segment: one to measure the results of potassium (K) induced contraction, and another 3, 4 diaminopyridine (DAP; K channel inhibitor) induced contraction. In 11 instances, coronary angiography of the perfused artery showed less than 50% stenosis after laser treatment. The segments were then mounted isometrically with 1 g tension in Krebs-bicarbonate buffer. Contraction was induced either with 30 mM KCI or 10(-2) M DAP and expressed as developed tension (gram; g). KCI induced vasocontraction of 4.15 +/- 0.93 g in the control, 0.33 +/- 0.71 g in laser irradiated segments (P < 0.0001 vs control), and 0.02 +/- 0.06 g in thermally-treated segments (P < 0.0001 vs control). DAP induced vasocontraction of 5.21 +/- 1.32 g in the control, 0.39 +/- 0.83 g in laser irradiated segments (P < 0.0001 vs control), and 0.07 +/- 0.13 g in thermally treated segments (P < 0.001 vs control). In 4 instances, more than 50% stenosis remained and additional balloon dilatation reduced the stenosis to less than 50%. The lesions also showed reduced vasoreactivity. In vivo thermal angioplasty resulted in reduced vasoreactivity compared to control in 4 anesthetized dogs. Thus, laser and thermal angioplasty reduced vasoreactivity induced by either KCI or 3, 4 DAP. Neither acetylcholine at 10(-6) M nor papaverine at 10(-4) M was able to induce relaxation of treated segments. In conclusion, 1) the lased coronary artery loses its vasoreactivity to either a constrictive or relaxing agent, 2) although stenosis may be produced

  13. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  14. Ultrafast x-ray diffraction of laser-irradiated crystals

    NASA Astrophysics Data System (ADS)

    Heimann, P. A.; Larsson, J.; Chang, Z.; Lindenberg, A.; Schuck, P. J.; Judd, E.; Padmore, H. A.; Bucksbaum, P. H.; Lee, R. W.; Murnane, M.; Kapteyn, H.; Wark, J. S.; Falcone, R. W.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or `camshaft' operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  15. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A.; Padmore, H.A.; Lindenberg, A.; Schuck, P.J.; Judd, E.; Falcone, R.W.; Bucksbaum, P.H.; Murnane, M.; Kapteyn, H. Lee, R.W. Wark, J.S.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or {open_quote}camshaft{close_quote} operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps. {copyright} {ital 1997 American Institute of Physics.}

  16. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A.; Larsson, J.; Chang, Z.

    1997-09-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  17. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P. A.; Padmore, H. A.; Larsson, J.; Lindenberg, A.; Schuck, P. J.; Judd, E.; Falcone, R. W.; Chang, Z.; Bucksbaum, P. H.; Murnane, M.; Kapteyn, H.; Lee, R. W.; Wark, J. S.

    1997-07-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or 'camshaft' operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  18. Detection of chemical changes in bone after irradiation with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Santos, Moises O.; Rabelo, Jose S.; Ana, Patrícia A.; Correa, Paulo R.; Zezell, Denise M.

    2011-03-01

    The use of laser for bone cutting can be more advantageous than the use of drill. However, for a safe clinical application, it is necessary to know the effects of laser irradiation on bone tissues. In this study, the Fourier Transform Infrared spectroscopy (FTIR) was used to verify the molecular and compositional changes promoted by laser irradiation on bone tissue. Bone slabs were obtained from rabbit's tibia and analyzed using ATR-FTIR. After the initial analysis, the samples were irradiated using a pulsed Er,Cr:YSGG laser (2780nm), and analyzed one more time. In order to verify changes due to laser irradiation, the area under phosphate (1300-900cm-1), amides (1680-1200cm-1), water (3600-2400cm-1), and carbonate (around 870cm-1 and between 1600-1300cm-1) bands were calculated, and normalized by phosphate band area (1300-900cm-1). It was observed that Er,Cr:YSGG irradiation promoted a significant decrease in the content of water and amides I and III at irradiated bone, evidencing that laser procedure caused an evaporation of the organic content and changed the collagen structure, suggesting that these changes may interfere with the healing process. In this way, these changes should be considered in a clinical application of laser irradiation in surgeries.

  19. Characterization of preformed plasmas with an interferometer for ultra-short high-intensity laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Sagisaka, A.; Daido, H.; Ogura, K.; Orimo, S.; Hayashi, Y.; Nishiuchi, M.; Mori, M.; Matsukado, K.; Fukumi, A.; Li, Z.; Nakamura, S.; Takagaki, K.; Hazama, H.; Suzuki, M.; Utsumi, T.; Bulanov, S. V.; Esirkepov, T.

    The evolution of an Al preformed plasma produced by a prepulse was observed before and after the arrival of the main pulse by an interferometer using a femtosecond probe pulse. A central density depression due to the ponderomotive force of the main laser pulse in the preformed plasma with a 100 μm scale length was clearly visible after the main pulse irradiation at an intensity of 5×1016 W/cm2. The temporal profiles of the prepulse, characterized by a cross-correlation in conjunction with a precise density profile measurement by an interferometer, contribute to the better understanding of femtosecond laser-matter interactions.

  20. Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown

    PubMed Central

    Varghese, Babu; Bonito, Valentina; Jurna, Martin; Palero, Jonathan; Verhagen, Margaret Hortonand Rieko

    2015-01-01

    We investigated the influence of thermal initiation pathway on the irradiance threshold for laser induced breakdown in transparent, absorbing and scattering phantoms. We observed a transition from laser-induced optical breakdown to laser-induced thermal breakdown as the absorption coefficient of the medium is increased. We found that the irradiance threshold after correction for the path length dependent absorption and scattering losses in the medium is lower due to the thermal pathway for the generation of seed electrons compared to the laser-induced optical breakdown. Furthermore, irradiance threshold gradually decreases with the increase in the absorption properties of the medium. Creating breakdown with lower irradiance threshold that is specific at the target chromophore can provide intrinsic target selectivity and improve safety and efficacy of skin treatment methods that use laser induced breakdown. PMID:25909007

  1. Apraclonidine effects on ocular responses to YAG laser irradiation to the rabbit iris

    SciTech Connect

    Sugiyama, K.; Kitazawa, Y.; Kawai, K. )

    1990-04-01

    Apraclonidine (p-aminoclonidine) ophthalmic solution effectively reduces the rise in intraocular pressure (IOP) following anterior segment laser surgery. We tested the effect of topical 0.5% apraclonidine on intraocular pressure and on protein and prostaglandin (PG) E2 concentrations in aqueous humor following Q-switched Nd:YAG laser irradiation to the iris of albino rabbits, at an energy level of 2 to 200 mJ. IOP was measured prior to and for 24 hr after irradiation. Aqueous humor was withdrawn before and 1 hr after laser irradiation for determining protein (Lowry method) and PGE2 (radioimmunoassay). Four to seven rabbits were used for each experiment. The increase in IOP and protein concentration following laser irradiation was demonstrated to be dependent on the amount of laser energy. Apraclonidine completely abolished the IOP rise, and significantly reduced the elevation of protein content. Apraclonidine failed to affect the increase in PGE2.

  2. Film-substrate hydrodynamic interaction initiated by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Khokhlov, V. A.; Inogamov, N. A.; Zhakhovsky, V. V.; Ilnitsky, D. K.; Migdal, K. P.; Shepelev, V. V.

    2017-01-01

    Action of an ultrashort single laser pulse onto a thin metal film is considered. Disruption of a plane freestanding film quickly heated by a laser is the simplest model of the laser thermomechanical spallation. There is a sharp spallation (ablation) threshold Fabl dividing dynamics of a freestanding film to two regimes: below or above the threshold Fabl. Problem of significant importance is: how this picture will change when a film is deposited onto a substrate? We have solved this problem. It is found that there are two thresholds Fdelam < F < Fabl and the four regimes of motion relative to the case of a freestanding film. For the range of fluences 0 < F < Fdelam a film oscillates remaining on a substrate. Oscillations decay in time due to irradiation of the sonic waves into substrate. For Fdelam < F < Fabl + ΔF the film delaminates from the substrate because negative pressure (tensile stress) propagating from the vacuum boundary with the rarefaction acoustic wave achieves the film-substrate contact boundary and overcomes adhesion strength of a contact. The addition ΔF to the freestanding case is small in the case when the ratio η of the acoustic impedances of substrate to a film is small. This is the case of the gold or silver films on a glass. The third is the complicated regime with interacting delamination and spallation processes when F ≈ Fabl + ΔF. In the fourth regime Fabl + ΔF < F there is the disruption of a film into two halves. The external half flies away while the internal one remains on substrate.

  3. [Optical properties of human normal bladder tissue at five different wavelengths of laser and their linearly polarized laser irradiation in vitro].

    PubMed

    Wei, Hua-jiang; Xing, Da; Wu, Guo-yong; Jin, Ying; Gu, Huai-min

    2004-09-01

    A double-integrating-spheres system, the basic principle of measuring technology of radiation, and an optical model of biological tissues were used for the study. Optical properties of human normal bladder tissue at 476.5, 488, 496.5, 514.5 and 532 nm of laser and their linearly polarized laser irradiation were studied. The results of measurement showed that total attenuation coefficient and scattering coefficient of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. And these was an obvious distinction between the results at these wavelengths of laser and their linearly polarized laser irradiation. Absorption coefficient of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation was tardily increased with decreasing wavelengths. But there were a number of gurgitations. And these were independent of the wavelengths of laser or their linearly polarized laser irradiation. Mean cosine of scattering of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with decreasing wavelengths. And these was an obvious distinction with these wavelengths of laser and their linearly polarized laser irradiation. But penetration depth of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with increasing wavelengths. But there were a number of gurgitations. Refractive index of human normal bladder tissue at these wavelengths of laser ranged from 1.37 to 1.44. Absorption coefficient, scattering coefficient, total attenuation coefficient, and effective attenuation coefficients of human normal bladder tissue in Kubelka-Munk two-flux model at the same wavelength of laser and the linearly polarized laser irradiation do not exhibit prominent distinction (P > 0.05). Some absorption coefficient, scattering coefficient

  4. Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro.

    PubMed

    Ben-Dov, N; Shefer, G; Irintchev, A; Wernig, A; Oron, U; Halevy, O; Irinitchev, A

    1999-01-11

    Low-energy laser (He-Ne) irradiation was found to promote skeletal muscle regeneration in vivo. In this study, its effect on the proliferation and differentiation of satellite cells in vitro was evaluated. Primary rat satellite cells were irradiated for various time periods immediately after preparation, and thymidine incorporation was determined after 2 days in culture. Laser irradiation affected thymidine incorporation in a bell-shaped manner, with a peak at 3 s of irradiation. Three seconds of irradiation caused an induction of cell-cycle regulatory proteins: cyclin D1, cyclin E and cyclin A in an established line of mouse satellite cells, pmi28, and proliferating cell nuclear antigen (PCNA) in primary rat satellite cells. The induction of cyclins by laser irradiation was compatible with their induction by serum refeeding of the cells. Laser irradiation effect on cell proliferation was dependent on the rat's age. At 3 weeks of age, thymidine incorporation in the irradiated cells was more than twofold higher than that in the controls, while at 6 weeks of age this difference had almost disappeared. Myosin heavy chain (MHC) protein levels were twofold lower in the irradiated than in the control cells, whereas the proliferation of the irradiated cells was twofold higher. Fusion percentage was lower in the irradiated compared to non-irradiated cells. In light of these data, the promoting effect of laser irradiation on skeletal muscle regeneration in vivo may be due to its effect on the activation of early cell-cycle regulatory genes in satellite cells, leading to increased proliferation and to a delay in cell differentiation.

  5. Enhancement of laser to X-ray conversion by counter-propagating laser beams irradiating thin gold targets

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ge, Z. Y.; Ma, Y. Y.; Yang, X. H.; Xu, B. B.; Ramis, R.

    2017-03-01

    X-ray emission from laser irradiating solid target is an important X-ray source for various potential applications. Counter-propagating (C-P) laser beams configuration is proposed to enhance the laser to X-ray conversion efficiency (CE) from laser irradiating solid targets. One-dimensional radiation hydrodynamics simulations show that the total X-ray CE for the C-P lasers case is as high as 65%, which has a 13% improvement compared with the single laser case. The improvement is mainly caused by the enlarged radiation region, and the enhancement of X-ray emission is from soft X-ray. Detailed energy term distributions and influences of the foil thickness on the X-ray CEs for both cases are presented. It is found that the enhancement of radiation is attributed to lower thermal and kinetic energy of the C-P lasers scheme.

  6. High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers

    NASA Astrophysics Data System (ADS)

    Takabe, H.; Kato, T. N.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Kadono, T.; Shigemori, K.; Otani, K.; Nagatomo, H.; Norimatsu, T.; Dono, S.; Endo, T.; Miyanishi, K.; Kimura, T.; Shiroshita, A.; Ozaki, N.; Kodama, R.; Fujioka, S.; Nishimura, H.; Salzman, D.; Loupias, B.; Gregory, C.; Koenig, M.; Waugh, J. N.; Woolsey, N. C.; Kato, D.; Li, Y.-T.; Dong, Q.-L.; Wang, S.-J.; Zhang, Y.; Zhao, J.; Wang, F.-L.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y. K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Sheng, Z.-M.; Zhang, J.

    2008-12-01

    We propose that most of the collisionless shocks in the Universe, for example, supernova remnant shocks, are produced because of the magnetic field generated by Weibel instability and its nonlinear process. In order to verify and validate the computational result confirming this theory, we are carrying out model experiments with intense lasers. We are going to make a collisionless counter-streaming plasma with intense laser ablation based on the scaling law to laser plasma with the particle-in-cell simulation resulting in Weibel-mediated shock formation. Preliminary experimental data are shown. The photo-ionization and resultant non-LTE plasma physics are also very important subjects in astrophysics related to mainly compact objects, for example, black hole, neutron star and white dwarf. Planckian radiation with its temperature 80 100 eV has been produced in gold cavity with irradiation of intense lasers inside the cavity. The sample materials are irradiated by the radiation inside the cavity and absorption and self-emission spectra are observed and analyzed theoretically. It is demonstrated how the effect of non-LTE is essential to reproduce the experimental spectra with the use of a precision computational code.

  7. Axon reflex in ocular injury: sensory mediation of the response of the rabbit eye to laser irradiation of the iris.

    PubMed

    Butler, J M; Unger, W G; Cole, D F

    1980-10-01

    Laser irradiation of the rabbit iris produces an injury response consisting of prolonged miosis, uveal vasodilation and a transient rise of intraocular pressure (IOP) accompanied by a breakdown of the blood-aqueous barrier. This response has hitherto been attributed partly to prostaglandin (PG) mediation and partly to mediation by a non-cholinergic nervous pathway thought to be sensory in fuction. Responses of the rabbit eye to laser irritation were examined at specified intervals after diathermic coagulation of the epigasserian nerve tract. Both the intensity of the pupillary constriction and the increase in IOP were almost unaltered at 90 minutes but progressively decreased until at 4 days there was essentially no response to high energy laser irradiation in the denervated eye. It was evident that manifestation of the response is largely dependent upon the presence of intact and functional sensory nerves, and it is proposed that endogenous PGs exert some, if not all of their effects via sensory nerve endings. It is suggested that those terminals which are directly stimulated, whether by laser irradiation or by PGs formed during the injury, release some mediator to cause pupillary constriction. From thes terminals impulses pass orthodromically and antidromically by axon reflex to release further mediator from terminals in the region of the ciliary vessels or the major arterial circle. In this way the response is propagated and augmented.

  8. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  9. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

    PubMed Central

    Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria

    2017-01-01

    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175

  10. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

    NASA Astrophysics Data System (ADS)

    Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria

    2017-01-01

    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.

  11. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    SciTech Connect

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  12. Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Shibata, Akimichi; Yada, Shuhei; Terakawa, Mitsuhiro

    2016-06-01

    Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of a poly(lactic-co-glycolic acid) (PLGA) following irradiation with femtosecond laser pulses at different wavelengths. Microscopic observation as well as water absorption and mass change measurement revealed that the biodegradation of the PLGA varied significantly depending on the laser wavelength. There was a significant acceleration of the degradation rate upon 400 nm-laser irradiation, whereas 800 nm-laser irradiation did not induce a comparable degree of change. The X-ray photoelectron spectroscopy analysis indicated that laser pulses at the shorter wavelength dissociated the chemical bonds effectively, resulting in a higher degradation rate at an early stage of degradation.

  13. Improving the bulk laser-damage resistance of KDP by baking and pulsed-laser irradiation

    SciTech Connect

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Rainer, F.

    1981-09-16

    Isolated bulk damage centers are produced when KDP crystals are irradiated by 1-ns 1064-nm pulses. We have tested about 100 samples and find the median threshold to be 7 J/cm/sup 2/ when the samples are irradiated only once at each test volume (1-on-1 tests). The median threshold increased to 11 J/cm/sup 2/ when the test volumes were first subjected to subthreshold laser irradiation (n-on-1 tests). We baked several crystals at temperatures from 110 to 165/sup 0/C and remeasured their thresholds. Baking increased thresholds in some crystals, but did not change thresholds of others. The median threshold of baked crystals ranged from 8 to 10 J/cm/sup 2/ depending on the baking temperature. In crystals that had been baked, subthreshold irradiation produced a large change in the bulk damage threshold, and reduced the volume density of damage centers relative to the density observed in unbaked crystals. The data are summarized in the table.

  14. Er:YAG laser irradiation to control the progression of enamel erosion: an in situ study.

    PubMed

    Scatolin, R S; Colucci, V; Lepri, T P; Alexandria, A K; Maia, L C; Galo, R; Borsatto, M C; Corona, S A M

    2015-07-01

    This in situ study evaluated the effect of Er:YAG laser irradiation in controlling the progression of enamel erosion-like lesions. Fifty-six enamel slabs (330 KHN ± 10 %) with one fourth of the surface covered with resin composite (control area) were submitted to initial erosion-like lesion formation with citric acid. The slabs were divided into two groups: irradiated with Er:YAG laser and non-irradiated. Fourteen volunteers used an intraoral palatal appliance containing two slabs, in two phases of 5 days each. During the intraoral phase, in a crossed-over design, half of the volunteers immersed the appliance in citric acid while the other half used deionized water, both for 5 min, three times per day. Enamel wear was determined by an optical 3D profilometer. ANOVA revealed that when deionized water was used as immersion solution during the intraoral phase, lower values of wear were showed when compared with the groups that were eroded with citric acid, whether irradiated or non-irradiated with Er:YAG laser. When erosion with citric acid was performed, Er:YAG laser was not able to reduce enamel wear. Small changes on enamel surface were observed when it was irradiated with Er:YAG laser. It may be concluded that Er:YAG laser irradiation did not reduce the progression of erosive lesions on enamel submitted to in situ erosion with citric acid.

  15. Effect of semiconductor GaAs laser irradiation on pain perception in mice

    SciTech Connect

    Zarkovic, N.; Manev, H.; Pericic, D.; Skala, K.; Jurin, M.; Persin, A.; Kubovic, M.

    1989-01-01

    The influence of subacute exposure (11 exposures within 16 days) of mice to the low power (GaAs) semiconductive laser-stimulated irradiation on pain perception was investigated. The pain perception was determined by the latency of foot-licking or jumping from the surface of a 53 degrees C hot plate. Repeated hot-plate testing resulted in shortening of latencies in both sham- and laser-irradiated mice. Laser treatment (wavelength, 905 nm; frequency, 256 Hz; irradiation time, 50 sec; pulse duration, 100 nsec; distance, 3 cm; peak irradiance, 50 W/cm2 in irradiated area; and total exposure, 0.41 mJ/cm2) induced further shortening of latencies, suggesting its stimulatory influence on pain perception. Administration of morphine (20 mg/kg) prolonged the latency of response to the hot plate in both sham- and laser-irradiated mice. This prolongation tended to be lesser in laser-irradiated animals. Further investigations are required to elucidate the mechanism of the observed effect of laser.

  16. Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator

    SciTech Connect

    Murakami, M.; Tanaka, M.

    2013-04-22

    An ion acceleration scheme using carbon nanotubes (CNTs) is proposed, in which embedded fragments of low-Z materials are irradiated by an ultrashort intense laser to eject substantial numbers of electrons. Due to the resultant characteristic electrostatic field, the nanotube and embedded materials play the roles of the barrel and bullets of a gun, respectively, to produce highly collimated and quasimonoenergetic ion beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic MeV-order proton beams using nanometer-size CNT under a super-intense electrostatic field {approx}10{sup 14} V m{sup -1}.

  17. Frequency conversion of high-intensity, femtosecond laser pulses

    SciTech Connect

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  18. Low-level Ga-Al-As laser irradiation enhances osteoblast proliferation through activation of Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Li, Qiushi; Qu, Zhou; Chen, Yingxin; Liu, Shujie; Zhou, Yanmin

    2014-12-01

    Low-level laser irradiation has been reported to promote bone formation, but the molecular mechanism is still unclear. Hedgehog signaling pathway has been reported to play an important role in promoting bone formation. The aim of the present study was to examine whether low-level Ga-Al-As laser (808 nm) irradiation could have an effect on Hedgehog signaling pathway during osteoblast proliferation in vitro. Mouse osteoblastic cell line MC3T3-E1 was cultured in vitro. The cultures after laser irradiation (3.75J/cm2) were treated with recombinant N-terminals Sonic Hedgehog (N-Shh)or Hedgehog inhibitor cyclopamine (cy). The experiment was divided into 4 group, group 1:laser irradiation, group 2: laser irradiation and N-Shh, group 3: laser irradiation and cy, group 4:control with no laser irradiation. On day 1,2 and 3,cell proliferation was determined by cell counting, Cell Counting Kit-8.On 12 h and 24 h, cell cycle was detected by flow cytometry. Proliferation activity of laser irradiation and N-Shh group was remarkably increased compared with those of laser irradiation group. Proliferation activity of laser irradiation and cy group was remarkably decreased compared with those of laser irradiation group, however proliferation activity of laser irradiation and cy group was remarkably increased compared with those of control group. These results suggest that low-level Ga-Al-As laser irradiation activate Hedgehog signaling pathway during osteoblast proliferation in vitro. Hedgehog signaling pathway is one of the signaling pathways by which low-level Ga-Al-As laser irradiation regulates osteoblast proliferation.

  19. Measurement of the relaxation time of hot electrons in laser-solid interaction at relativistic laser intensities

    SciTech Connect

    Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P

    2006-08-22

    The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.

  20. Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation.

    PubMed

    Kushibiki, Toshihiro; Tajiri, Takako; Ninomiya, Yoshihisa; Awazu, Kunio

    2010-03-08

    Low-level laser therapy (LLLT) has been used as a method for biostimulation. Cartilage develops through the differentiation of mesenchymal cells into chondrocytes, and differentiated chondrocytes in articular cartilage maintain cartilage homeostasis by synthesizing cartilage-specific extracellular matrix. The aim of this study is to evaluate the enhancement of chondrocyte differentiation and the expression levels of chondrogenic mRNA in prechondrogenic ATDC5 cells after laser irradiation. For chondrogenic induction, ATDC5 cells were irradiated with a blue laser (405 nm, continuous wave) at 100 mW/cm(2) for 180 s following incubation in chondrogenic differentiation medium. Differentiation after laser irradiation was quantitatively evaluated by the measurement of total collagen contents and chondrogenesis-related mRNAs. The total amount of collagen and mRNA levels of aggrecan, collagen type II, SOX-9, and DEC-1 were increased relative to those of a non-laser irradiated group after 14 days of laser irradiation. On the other hand, Ap-2alpha mRNA, a negative transcription factor of chondrogenesis, was dramatically decreased after laser irradiation. In addition, intracellular reactive oxygen species (ROS) were generated after laser irradiation. These results, for the first time, provide functional evidence that mRNA expression relating to chondrogenesis is increased, and Ap-2alpha is decreased immediately after laser irradiation. As this technique could readily be applied in situ to control the differentiation of cells at an implanted site within the body, this approach may have therapeutic potential for the restoration of damaged or diseased tissue.

  1. Experimental Identification of ``Vacuum Heating'' at Femtosecond-Laser-Irradiated Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Grimes, M. K.; Rundquist, A. R.; Lee, Y.-S.; Downer, M. C.

    1999-05-01

    Aluminum and iron targets were irradiated by intense ( I<=1015 W/cm2), 120 fs laser pulses with sufficiently high contrast such that the surface expanded no more than the peak electron quiver amplitude during excitation. Under these experimentally verified conditions, obliquely incident, p-polarized pulses uniquely experienced anomalous absorption, proportional to \\(Iλ2\\)0.64, and as high as 20%. This extra absorption was distinguished from competing pump-induced linear mechanisms by fs-time-resolved reflectivity, and agreed quantitatively with essential features of Brunel's ``vacuum heating,'' in which light is absorbed by drawing electrons into the vacuum and sending them back into the plasma with approximately the quiver velocity.

  2. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Faenov, A. Ya.; Pikuz, T.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.

    2008-03-01

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800nm ) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%.

  3. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    SciTech Connect

    Fukuda, Y.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.; Faenov, A. Ya.; Pikuz, T.

    2008-03-24

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO{sub 2}, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO{sub 2} clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm{sup 2} scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than {+-}3%.

  4. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    NASA Astrophysics Data System (ADS)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T.

    2013-12-01

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  5. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    SciTech Connect

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  6. Third harmonic generation with ultra-high intensity laser pulses

    SciTech Connect

    Rax, J.M.; Fisch, N.J.

    1992-04-01

    When an intense, plane-polarized, laser pulse interacts with a plasma, the relativistic nonlinearities induce a third harmonic polarization. A phase-locked growth of a third harmonic wave can take place, but the differences between the nonlinear dispersion of the pump and driven waves leads to a rapid unlocking, resulting in a saturation. What becomes third harmonic amplitude oscillations are identified here, and the nonlinear phase velocity and the renormalized electron mass due to plasmon screening are calculated. A simple phase-matching scheme, based on a resonant density modulation, is then proposed and analyzed.

  7. Coherent combs in ionization by intense and short laser pulses

    NASA Astrophysics Data System (ADS)

    Krajewska, K.; Kamiński, J. Z.

    2016-03-01

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented.

  8. In-target electron thermalization by the Weibel instability during intense irradiation of a thin aluminum foil

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Ruyer, C.; Albertazzi, B.; Lancia, L.; Dervieux, V.; Antici, P.; Bocker, J.; Chen, S. N.; Nakatsutsumi, M.; Romagnani, L.; Shepherd, R.; Swantusch, M.; Borghesi, M.; Willi, O.; Pepin, H.; Grech, M.; Riconda, C.; Gremillet, L.

    2015-11-01

    Proton-radiography of the electromagnetic fields developing after irradiation of a 3 μm-thick Al foil by a high-intensity laser (5 ×1019 W.cm-2, 700fs, 8 μm focal spot) was performed at the Titan facility. The obtained radiographs evidence filamentary structures which develop inside the dense target, 300 μ m away from the focal spot, a few picoseconds after the laser drive. We will demonstrate that the radiographs' structures are due to magnetic fields triggered by the so-called Weibel instability, inside the dense target. For this purpose, large scale particle-in-cell simulations of hot electrons thermalization in a dense, cold and collisional target have been performed. They demonstrate the ability of the laser-heated electrons to sustain a strong temperature anisotropy during their relaxation in the thin foil. This hot electron anisotropy results in a Weibel instability, thus triggering magnetic fluctuations of spectrum consistent with the experiment over 10 picoseconds.

  9. The irradiation of rabbit sperm cells with He-Ne laser prevents their in vitro liquid storage dependent damage.

    PubMed

    Iaffaldano, Nicolaia; Rosato, Maria Pina; Paventi, Gianluca; Pizzuto, Roberto; Gambacorta, Mario; Manchisi, Angelo; Passarella, Salvatore

    2010-05-01

    The aim of the study was to investigate the effects of different energy doses of helium-neon (He-Ne) laser irradiation on both mitochondrial bioenergetics functions and functional quality of rabbit spermatozoa during 48 h of in vitro liquid storage at 15 degrees C. 11 rabbit semen pools were each divided into four aliquots: three of them were irradiated with He-Ne laser with different energy doses (3.96, 6.12 and 9.00 J/cm(2)) being the last control kept under the same experimental conditions without irradiation. Sperm motility, viability and acrosome integrity were monitored together with cytochrome c oxidase (COX) activity and the cell energy charge (EC) at 0, 24 and 48 h of storage. Irradiated samples stored for 24 and 48 h better maintained motility (P < 0.01), acrosome integrity (P < 0.01) and viability (P < 0.05) with respect to the control, particularly with the energy dose of 6.12 J/cm(2) that showed the most intense biostimulative effect. COX activity and EC were immediately increased by irradiation particularly in the treatments 6.12 and 9.00 J/cm(2) (P < 0.05), that maintained their levels higher with respect to the control after 48 h of storage (P < 0.01). COX activity of rabbit sperm cells was positively correlated with EC (P < 0.05), viability (P < 0.01) and acrosome integrity (P < 0.05) parameters. These results indicate that the effects of He-Ne laser irradiation on sperm cells are mediated through the stimulation of the sperm mitochondrial respiratory chain and that this effect plays a significant role in the augmentation of the rabbit sperm cells' capability to survive during liquid storage conditions.

  10. Structural transformations in Sc/Si multilayers irradiated by EUV lasers

    NASA Astrophysics Data System (ADS)

    Voronov, Dmitriy L.; Zubarev, Evgeniy N.; Pershyn, Yuriy P.; Sevryukova, Victoriya A.; Kondratenko, Valeriy V.; Vinogradov, Alexander V.; Artioukov, Igor A.; Uspenskiy, Yuriy A.; Grisham, Michael; Vaschenko, Georgiy; Menoni, Carmen S.; Rocca, Jorge J.

    2007-09-01

    Multilayer mirrors for the extreme ultraviolet (EUV) are key elements for numerous applications of coherent EUV sources such as new tabletop lasers and free-electron lasers. However the field of applications is limited by the radiation and thermal stability of the multilayers. Taking into account the growing power of EUV sources the stability of the optics becomes crucial. To overcome this problem it is necessary to study the degradation of multilayers and try to increase their temporal and thermal stability. In this paper we report the results of detailed study of structural changes in Sc/Si multilayers when exposed to intense EUV laser pulses. Various types of surface damage such as melting, boiling, shock wave creation and ablation were observed as irradiation fluencies increase. Cross-sectional TEM study revealed that the layer structure was completely destroyed in the upper part of multilayer, but still survived below. The layers adjacent to the substrate remained intact even through the multilayer surface melted down, though the structure of the layers beneath the molten zone was noticeably changed. The layer structure in this thermally affected zone is similar to that of isothermally annealed samples. All stages of scandium silicide formation such as interdiffusion, solid-state amorphization, silicide crystallization etc., are present in the thermally affected zone. It indicates a thermal nature of the damage mechanism. The tungsten diffusion barriers were applied to the scandium/silicon interfaces. It was shown that the barriers inhibited interdiffusion and increased the thermal stability of Sc/Si mirrors.

  11. Ultlra-intense laser-matter interactions at extreme parameters

    SciTech Connect

    Hegellich, Bjorn M

    2010-11-24

    thinnest of these at less than 3nm, i.e. 1/300 of the laser wavelength, are even thinner than the plasma skin depth. This drastically changes the laser-matter interaction physics leading to the emergence of new particle acceleration mechanisms, like Break-Out Afterburner (BOA) Acceleration, driven by a relativistic, kinetic plasma instability or Radiation Pressure Acceleration (RPA), driven by stabilized charge separation. Furthermore, these interactions also produce relativistic high harmonics in forward direction as well as mono-en,ergetic electron pulses which might lend itself as a source for fully coherent Thomson scattering in the mulit-keV regime. In this talk I will present an overview over the laser developments leading to this paradigm change as well as over the theoretical and experimental results following from it. Specifically we were able for the first time to demonstrate BOA acceleration of Carbon ions to up to 0.5 GeV using a laser pulse with {approx}10{sup 20} W/cm{sup 2} intensity and showing the scalability of this mechanism into regimes relevant for Hadron Therapy. We were further able to demonstrate mono-energetic electron break-out from ultrathin targets, as a first step towards a flying mirror.

  12. Nanofoaming in the surface of biopolymers by femtosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; de Nalda, R.; Abrusci, C.; Catalina, F.; Bañares, L.; Lazare, S.; Castillejo, M.

    2007-12-01

    In this work, the nanostructuring induced in femtosecond (fs) laser irradiation of biopolymers is examined in self-standing films of collagen and gelatine. Irradiation by single 90 fs pulses at 800, 400 and 266 nm is shown to result in the formation of a modified layer with submicrometric size structures. The size and uniformity of the observed features are strongly dependent on irradiation wavelength and on the characteristics of the biopolymer (water content and mechanical strength). Examination of the films by laser induced fluorescence serves to assess the chemical modifications induced by laser irradiation, revealing changes in the emission bands assigned to the aromatic amino acid tyrosine and its degradation products. The results are discussed in the framework of a mechanism involving the generation of large free-electron densities, through multiphoton and avalanche ionization, which determine the temperature and stress distribution in the irradiated volume.

  13. Plasmonic enhancement of the vanadium dioxide phase transition induced by low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Ferrara, Davon W.; MacQuarrie, Evan R.; Diez-Blanco, Victor; Nag, Joyeeta; Kaye, Anthony B.; Haglund, Richard F.

    2012-08-01

    Nanocomposites consisting of gold nanoparticle (NP) arrays and vanadium dioxide (VO2) thin films are noteworthy for the tunability of both their thermal and optical properties. The localized surface plasmon resonance (LSPR) of the Au can be tuned when its dielectric environment is modulated by the semiconducting-to-metal phase transition (SMT) of the VO2; the LSPR itself can be altered by changing the shape of the NPs and the pitch of the NP array. In principle, then it should be possible to choose a combination of VO2 film and Au LSPR properties that maximizes the overall optical response of the nanocomposite. To demonstrate this effect, transient transmission measurements were conducted on lithographically fabricated arrays of Au NPs of diameter 140 nm, array spacing 350 nm, and covered with a 60 nm thick films of VO2 via pulsed laser deposition. Both Au::VO2 nanocomposites and bare VO2 film were irradiated with a shuttered 785 nm pump laser, and their optical response was probed at 1550 nm by a fixed-frequency diode laser. The Au::VO2 nanocomposite exhibited an increased effective absorption coefficient 1.5 times that of the plain film and required 37 % less laser power to induce the SMT. The time-dependent temperature rise in the film as a function of laser intensity was calculated from these measurements and compared with both analytic and finite-element models. Our results suggest that Au::VO2 nanocomposites may be useful in applications such as thermal-management coatings for energy efficient "smart" windows.

  14. Ultrastructural evaluation of radicular dentin after Nd:YAG laser irradiation combined with different chemical substances.

    PubMed

    Faria, Maria Isabel Anastacio; Souza-Gabriel, Aline Evangelista; Marchesan, Melissa Andreia; Sousa-Neto, Manoel Damiao; Silva-Sousa, Yara Teresinha Correa

    2008-01-01

    This aticle sought to evaluate the dentin morphology after irradiation by a Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser, using different chemical substances to irrigate radicular canals: distilled water, 17% ethylenediaminetetraacetic acid plus Cetavlon (EDTAC), 1% sodium hypochlorite, and 2% chlorhexidine. Groups were subdivided according to the protocol of laser application (n=9). The specimens were analyzed by scanning electron microscopy (SEM). No differences were found in dentin morphology when different root thirds were examined. Regardless of the chemical substance used, alterations were more evident in groups in which the surfaces were dried before laser irradiation. Fusion areas, craters, carbonization, and partially exposed tubules were verified. When the irradiation was performed in water, the smear layer was incorporated into the laser-modified surface. Among the specimens irrigated with EDTAC and laser-treated, partial obliteration of dentin tubules due to the laser action was verified; in addition, there was no remaining smear layer on the surfaces. Samples irrigated with sodium hypochlorite followed by laser irradiation demonstrated similar morphology to the samples in the chlorhexidine group, with some fusion areas present and no exposed dentin tubules or fissures. The irradiation from an Nd:YAG laser in the presence of EDTAC solution provided a more favorable surface pattern compared to the other experimental conditions, due to the removal of the contaminated layer and the posterior sealing of dentin tubules.

  15. The Ablation Properties of CO2 Laser Irradiating to Absorption Media: An In Vitro Study

    PubMed Central

    Sattayut, Sajee; Hortong, Kittiwut; Kitichaiwan, Chorpaka

    2012-01-01

    This study aimed to compare histological affected zone of tissue samples irradiated by defocused CO2 laser at 1, 2, and 3W continuous wave with and without absorption media. The in vitro experiment was conducted in 70 tissue blocks. The samples were randomly allocated into 7 groups: 10 samples each group, namely, the groups irradiated with 1, 2, and 3W, defocused CO2 laser for 5 seconds, the groups irradiated with 1, 2, and 3W, defocused CO2 laser to the absorption media, and the media alone group as a control. Then the samples were stained with Masson's trichrome and measured the affected borders under light microscope at 10 × 10 magnification. There was no histological alteration in the groups irradiated with the defocused CO2 laser to the absorption media while the groups without using the absorption media showed the tissue alteration by photoablation. PMID:23227050

  16. Controversial effects of low level laser irradiation on the proliferation of human osteoblasts

    NASA Astrophysics Data System (ADS)

    Bölükbaşı Ateş, Gamze; Ak, Ayşe.; Garipcan, Bora; Yüksel, Šahru; Gülsoy, Murat

    2015-03-01

    Low level laser irradiation (LLLI) is the application of red or near infrared lasers irradiating between 600-1100 nm with an output power of 1-500 mW. Several researches indicate that LLLI modulates cellular mechanisms and leads to enhance proliferation. Although the biological mechanisms are not fully understood, it is known that the effects depend on several parameters such as wavelength, irradiation duration, energy level, beam type and energy density. The aim of this study is to investigate the effect of low level laser irradiation at varying energy densities with two different wavelengths (635 nm and 809 nm) on the proliferation of human osteoblasts in vitro. The cells are seeded on 96 well plates (105cells/well) and after 24 h incubation cells are irradiated at energy densities 0.5 J/cm2, 1 J/cm2 and 2 J/cm2. Cell viability test is applied after 24 h, 48 h and 72 h in order to examine effects of laser irradiation on osteoblast proliferation. 635 nm light irradiation did not appear to have significant effect on the proliferation of osteoblasts as compared to the control. On the other hand, 809 nm laser irradiation caused significant (p ≤ 0.01) biostimulation effect on the osteoblast cell cultures at 48 h and 72 h. In conclusion, irradiation of both wavelengths did not cause any cytotoxic effects. 809 nm light irradiation can promote proliferation of human osteoblasts in vitro. On the other hand, 635 nm light irradiation has no positive effect on osteoblast proliferation. As a result, LLLI applied using different wavelengths on the same cell type may lead to different biological effects.

  17. Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Darvish, Behafarid; Sajjadi, Amir Yousef

    2017-02-01

    The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ˜1000 times compared to the conventional approach.

  18. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  19. Development of Outer Surface Irradiated Laser Stress Improvement Process (L-SIP)

    SciTech Connect

    Noriaki Sugimoto; Hironori Onitsuka; Koji Okimura; Takahiro Ohta; Kazuhiko Kamo

    2006-07-01

    Improvement of residual stress is effective in a countermeasure to deal with the stress corrosion cracks in pipe welds. A irradiated laser stress improvement process (L-SIP) will be introduced as a method to improve residual stress inside steel pipes. This work method is to improve inner surface residual stress from tensile stress to compressive stress by irradiating laser beam around the welds of steel pipe and utilizing the temperature differences between inner and outer surface. (authors)

  20. Effect of CO2 pulsed laser irradiation on improving the biocompatibility of a polyethersulfone film

    NASA Astrophysics Data System (ADS)

    Jelvani, S.; Pazokian, H.; Moradi Farisar, S.

    2013-02-01

    In this paper a 200 ns pulsed TEA CO2 laser is used for treatment of polyethersulfone (PES) films surface. The laser induced structures and chemical compositions on the surface upon irradiation are studied. The hydrophilicity and biocompatibility of the irradiated surfaces are examined by contact angle and platelet adhesion measurements, respectively. The optimum number of pulses and fluence for improving the surface biocompatibility are found.

  1. Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time

    SciTech Connect

    Nguyen, Vanthan; Yan, Lihe Si, Jinhai; Hou, Xun

    2015-02-28

    Photoluminescent carbon nanodots (C-dots) with size tunability and uniformity were fabricated in polyethylene glycol (PEG{sub 200N}) solution using femtosecond laser ablation method. The size distributions and photoluminescence (PL) properties of C-dots are well controlled by adjusting the combined parameters of laser fluence, spot size, and irradiation time. The size reduction efficiency of the C-dots progressively increases with decreasing laser fluence and spot size. The optimal PL spectra are red-shifted and the quantum yields decrease with the increase in C-dots size, which could be attributed to the more complex surface functional groups attached on C-dots induced at higher laser fluence and larger spot size. Moreover, an increase in irradiation time leads to a decrease in size of C-dots, but long-time irradiation will result in the generation of complex functional groups on C-dots, subsequently the PL spectra are red-shifted.

  2. Effect of low intensity laser therapy in an experimental model of cranio-encephalic trauma in rats

    NASA Astrophysics Data System (ADS)

    Meneguzzo, Daiane T.; Okada, Cristina Y.; Koike, Márcia K.; Silva, Bomfim A., Jr.; Moreira, Maria S.; Eduardo, Carlos d. P.; Martins Marques, Marcia

    2007-02-01

    The aim of this study was to analyze the effects of phototherapy with low intensity laser on the inflammatory reaction after rat brain injury. Cryogenic injury was performed at the brain of 16 male Wistar rats (250-300g) using a cooper probe at -80º C. Immediately, 24 h and 48 h later, the rats received laser irradiation using a GaAlAs laser (830 nm, 100 mW). The samples were randomly divided into four groups (n= 4 per group): A: control (non- irradiated); B: energy density of 14.28 J/cm2; C: 28.57 J/cm2; D: 42.85 J/cm2. Three days later, the cerebral vascular permeability and the inflammatory cells at the trauma site were evaluated. For vascular permeability analysis, 2 h prior sacrifice an intra vascular injection of Evans blue stain was done in the rats. For inflammatory cells counting, frozen samples were sectioned and the histological slides were stained with Giemsa. The data were compared by either ANOVA or Kruskall-Wallis complemented by the Dunn's test. The irradiated groups presented higher cerebral vascular permeability than controls (A: 2.6 +/- 0.8; B:12.0 +/- 2.0; C: 13.1 +/- 4.1, and D: 12.4 +/- 1.8; p=0.016). The inflammatory cell numbers of irradiated samples were similar to controls (A: 65 +/- 6; B:85 +/- 9; C: 84 +/-14, and D: 83 +/- 3; p=0.443). The data showed that phototherapy with low intensity laser modulates the inflammatory reaction in the brain by increasing the cerebral vascular permeability after a cryogenic trauma.

  3. [Rabbit facial nerve damager after Nd: YAG laser irradiation: an experimental study

    PubMed

    Yu, Y C; Zhang, Z Y; Zhou, G Y; Zhu, H G

    1999-12-01

    OBJECTIVE:To investigate the change effects of rabbit facial nerve after Nd:YAG laser irradiation.METHODS: According to therapeutic laser energy density,the facial nerves of 28 rabbits were irradiated by Nd:YAG laser with 5 different laser dosages.RESULTS: The facial nerves were functionally intact with mild degeneration histologically at three weeks postoperatively,when the energy density of Nd: YAG laserlaser lower than 70J/cm(2).In the group with energy density of 140J/cm(2),facial nerve density functionally impaired with moderate degeneration which rehabilitated within six weeks. While the laser power increaseed to more than 240J/cm(2),irreversible nerve damages happened.CONCLUSION: laser thermal effect is the main cause of nerve damage,there is a positive correlation between laser dosage and nerve impairment.

  4. First-principles calculations for initial electronic excitation in dielectrics induced by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sato, Shunsuke A.; Yabana, Kazuhiro

    2016-12-01

    Laser-induced damage of SiO2 (α-quartz) is investigated by first-principles calculations. The calculations are based on a coupled theoretical framework of the time-dependent density functional theory and Maxwell equation to describe strongly-nonlinear laser-solid interactions. We simulate irradiation of the bulk SiO2 with femtosecond laser pulses and compute energy deposition from the laser pulse to electrons as a function of the distance from the surface. We further analyze profiles of laser-induced craters, comparing the transferred energy with the cohesive energy of SiO2. The theoretical crater profile well reproduces the experimental features for a relatively weak laser pulse. In contrast, the theoretical result fails to reproduce the measured profiles for a strong laser pulse. This fact indicates a significance of the subsequent atomic motions that take place after the energy transfer ends for the formation of the crater under the strong laser irradiation.

  5. [Ultrastructural changes of neutrophilic granulocytes in dilated cardiomyopathy and their dynamics after blood irradiation with Helium-Neon laser in vitro].

    PubMed

    Khomeriki, S G; Morozov, I A

    1998-01-01

    Venous blood from 10 patients with dilated cardiomyopathy was irradiated with a laser in vitro. The control group consisted of 20 healthy donors. The neutrophil granulocytes were separated at gradient centrifugation. Alterations of neutrophils manifested with an increase of specific cytoplasmic granules number, thickening of submembrane actin, cell configuration changes with a relative increase of their surface. Laser irradiation of the blood resulted in destruction of the altered (less resistant) cells while morphometric parameters of the remaining cells approaches those of donor cells. Thus, low-intensity laser irradiation results in the renewal of the neutrophil population in patients with dilated cardiomyopathy and normalization of structural-functional changes in the circulating neutrophil population.

  6. Low-Energy Laser Irradiation And The Nervous System: Method And Results

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, R.; Nissan, M.; Barr-Nea, L.

    1988-06-01

    The present study introduces a novel method for assessing the efficacy of so-called soft tissue lasers on the peripheral and central nervous systems. In any readily available method relying on low energy laser irradiation, one of the most critical factors is obviously the wavelength of the laser, for this will determine how much of the energy applied to the skin or muscle actually reaches the target nerve. The present findings reaffirm our conclusion that low energy laser irradiation is bene-ficial in the treatment of injured peripheral or central nervous system, the beneficial effect diminishing with decreasing wavelength from 632nm down to 465nm. Our results pave the way for a new approach to the treatment of traumatic paraplegia and argue in favor of a combination of laser irradiation and PNS or CNS transplantation for the treatment of spinal cord injury.

  7. Decomposition of cyclohexane ion induced by intense femtosecond laser fields by ion-trap time-of-flight mass spectrometry

    SciTech Connect

    Yamazaki, Takao; Watanabe, Yusuke; Kanya, Reika; Yamanouchi, Kaoru

    2016-01-14

    Decomposition of cyclohexane cations induced by intense femtosecond laser fields at the wavelength of 800 nm is investigated by ion-trap time-of-flight mass spectrometry in which cyclohexane cations C{sub 6}H{sub 12}{sup +} stored in an ion trap are irradiated with intense femtosecond laser pulses and the generated fragment ions are recorded by time-of-flight mass spectrometry. The various fragment ion species, C{sub 5}H{sub n}{sup +} (n = 7, 9), C{sub 4}H{sub n}{sup +} (n = 5–8), C{sub 3}H{sub n}{sup +} (n = 3–7), C{sub 2}H{sub n}{sup +} (n = 2–6), and CH{sub 3}{sup +}, identified in the mass spectra show that decomposition of C{sub 6}H{sub 12}{sup +} proceeds efficiently by the photo-irradiation. From the laser intensity dependences of the yields of the fragment ion species, the numbers of photons required for producing the respective fragment ions are estimated.

  8. Analytical model for interaction of short intense laser pulse with solid target

    SciTech Connect

    Luan, S. X.; Ma, G. J.; Yu, Wei; Yu, M. Y.; Zhang, Q. J.; Sheng, Z. M.; Murakami, M.

    2011-04-15

    A simple but comprehensive two-dimensional analytical model for the interaction of a normally incident short intense laser pulse with a solid-density plasma is proposed. Electron cavitation near the target surface by the laser ponderomotive force induces a strong local electrostatic charge-separation field. The cavitation makes possible mode conversion of the laser light into longitudinal electron oscillation at laser frequency, even for initial normal incidence of laser pulse. The intense charge-separation field in the cavity can significantly enhance the laser induced uxB electron oscillation at twice laser frequency to density levels even higher than that of the initial target.

  9. Probing Dense Plasmas Created from Intense Irradiation of Solid Target in the XUV Domain

    SciTech Connect

    Dobosz, S.; Doumy, G.; Stabile, H.; Monot, P.; Bougeard, M.; Reau, F.; Martin, Ph.

    2006-04-07

    In this paper, electronic density and temperature have been inferred from XUV transmission through hot solid-density plasma created by high temporal contrast femtosecond irradiation of thin plastic foil target in the 1018W/cm2 intensity range. High order harmonics generated in pulsed gas jet are used as a probe beam. The initial plasma parameters are determined with an accuracy better than 15% on the 100fs time scale, by comparison of the transmission of two consecutive harmonics.

  10. Coherence effects in the ultra-intense laser-induced ultrafast response of complex atoms

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Yuan, Jianmin

    2016-05-01

    Both coherent pumping and energy relaxation play important roles in understanding physical processes of ultra-intense coherent light-matter interactions. Here, using a large-scale quantum master equation approach, we describe dynamical processes of practical open quantum systems driven by both coherent and stochastic interactions. As examples, two typical cases of light-matter interactions are studied. First, we investigate coherent dynamics of inner-shell electrons of a neon gas irradiated by a high intensity X-ray laser along with vast number of decaying channels. In these single-photon dominated processes, we find that, due to coherence-induced Rabi oscillations and power broadening effects, the photon absorptions of a neon gas can be suppressed resulting in differences in ionization processes and final ion-stage distributions. Second, we take helium as an example of multi-photon and multichannel interference dominated electron dynamics, by investigating the transient absorption of an isolated atto-second pulse in the presence of a femto-second infrared laser pulse.

  11. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  12. Advanced polymer targets for TNSA regime producing 6 MeV protons at 1016 W/cm2 laser intensity

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2017-02-01

    High intensity laser pulses, at an intensity of the order of 1016 W/cm2, are employed to irradiate in vacuum polyethylene terephthalate thin foils in the target normal sheath acceleration (TNSA) regime. The plasma obtained in the forward emission is investigated using ion collectors and semiconductor detectors connected in a time-of-flight configuration, Thomson parabola spectrometer, and X-ray streak camera. The results indicate that the foil thickness of 1 micron is optimal to accelerate protons of up to 6.5 MeV. The high ion acceleration can be due to different effects such as the high absorption in the advanced semicrystalline polymer containing spherulite centers, the high resonant absorption in gold nanoparticles embedded in the polymer, the optimal thickness of the used polymer to enhance the electron density in the forward plasma, and the self-focusing effect induced by preplasma created in front of the irradiated target.

  13. Intense laser-driven proton beam energy deposition in compressed and uncompressed Cu foam

    NASA Astrophysics Data System (ADS)

    McGuffey, Christopher; Krauland, C. M.; Kim, J.; Beg, F. N.; Wei, M. S.; Habara, H.; Noma, S.; Ohtsuki, T.; Tsujii, A.; Yahata, K.; Yoshida, Y.; Uematsu, Y.; Nakaguchi, S.; Morace, A.; Yogo, A.; Nagatomo, H.; Tanaka, K.; Arikawa, Y.; Fujioka, S.; Shiraga, H.

    2016-10-01

    We investigated transport of intense proton beams from a petawatt laser in uncompressed or compressed Cu foam. The LFEX laser (1 kJ on target, 1.5 ps, 1053 nm, I >2×1019 W/cm2) irradiated a curved C foil to generate the protons. The foil was in an open cone 500 μm from the tip where the focused proton beam source was delivered to either of two Cu foam sample types: an uncompressed cylinder (1 mm L, 250 µm ϕ) , and a plastic-coated sphere (250 µm ϕ) that was first driven by GXII (9 beams, 330 J/beam, 1.3 ns, 527 nm) to achieve similar ρϕ to the cylinder sample's ρL as predicted by 2D radiation hydrodynamic simulations. Using magnetic spectrometers and a Thomson parabola, the proton spectra were measured with and without the Cu samples. When included, they were observed using Cu K-shell x-ray imaging and spectroscopy. This paper will present comparison of the experimentally measured Cu emission shape and proton spectrum changes due to deposition in the Cu with particle-in-cell simulations incorporating new stopping models. This work was made possible by laser time Awarded by the Japanese NIFS collaboration NIFS16KUGK107 and performed under the auspices of the US AFOSR YIP Award FA9550-14-1-0346.

  14. Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Fang, Xiaodong

    2015-10-01

    The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.

  15. Measuring the intensity of intense laser pulses at the few-percent level

    NASA Astrophysics Data System (ADS)

    Zigo, Stefan; Wang, Yujun; Tross, Jan; Feizollah, Peyman; Berry, Ben; Malakar, Yubaraj; Kushawaha, Rajesh; Kumarappan, Vinod; Rudenko, Artem; Ben-Itzhak, Itzik; Esry, Brett; Trallero-Herrero, Carlos

    2015-05-01

    Strong-field measurements are often frustratingly difficult to reproduce quantitatively either through further experiment or through comparison with theory. One of the reasons for this difficulty is the large uncertainty that typically accompanies the measurement of an intense laser pulse's peak intensity, which often falls in the tens of percent range. Despite many attempts, there remains no readily accessible way to do better. And, since most strong-field processes of interest are highly nonlinear, small changes in intensity can translate to large changes in the outcome. The trick, of course, is to use this sensitivity as the measurement--but one needs a reliable calibration curve to compare with. We aim to develop a technique based on the total ionization yield of argon that can be easily implemented yet provides intensity measurements at the few-percent level through comparison with carefully calibrated solutions of the time-dependent Schrodinger equation. This proposal was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE).

  16. Nd:Yag laser irradiation of single lap joints made by polyethylene and polyethylene doped by carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Visco, A. M.; Brancato, V.; Cutroneo, M.; Torrisi, L.

    2014-04-01

    Thermoplastic polyethylene can be welded by the transmission laser welding technique (TTLW) that exhibits some process related benefits with respect other conventional joining methods. This justifies its large use in wide fields, from the automotive to medical or domestic appliances. In this research, we studied single lap joints made by polyethylene pure and filled with carbon nanomaterials (0.2% in weight) to make the polymer laser absorbent. The joints were irradiated by a Nd:YAG laser operating at 1064 nm (first harmonic) with an intensity of 107 W/cm2 and 1 ÷ 30Hz, a maximum pulse energy of 300mJ and a laser spot of ≈ 1 cm2 (no focusing lens were employed). The joints were characterized by morphological analysis, mechanical shear tests and calorimetric analysis. The results suggested that the laser exposition time must be opportunely balanced in order to avoid a poor adhesion between the polymer sheets and to realized efficient joints. In particular the mechanical test showed that the laser exposition time of 40 seconds is the best conditions to obtain the highest shear strength of the joints of 140 N. After too prolonged laser exposure times, degrading phenomena starts.

  17. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    PubMed

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  18. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  19. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    SciTech Connect

    Allen, Matthew M.

    2004-01-01

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) m{sub o}c2, where Iλ2 is the irradiance in W μm2/cm2 and moc2 is the electron rest mass. At laser irradiance of Iλ2 ~ 1020 W μm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by

  20. Interstitial laser irradiation of metastatic mammary tumors in combination with intratumoral injection of immunoadjuvant

    NASA Astrophysics Data System (ADS)

    Joshi, Chet; Jose, Jessnie; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Laser immunotherapy (LIT) was developed to treat metastatic cancers using a combination of laser irradiation and immunological stimulation. The original design of LIT employs a non-invasive, selective laser photothermal interaction, using an in situ light-absorbing dye. However, this non-invasive treatment mode faces challenges in treating deep, large tumors. Furthermore, it has difficulties in the cases of highly pigmented skin overlying target tumors. To overcome these limitations, interstitial laser immunotherapy (ILIT) was proposed. In ILIT, a cylindrical, side-fire fiber diffuser is placed inside the target tumor to induce thermal damage. To enhance the interstitial irradiation induced photothermal interaction, an immunological modifier, glycated chitosan (GC), is injected into the tumor after the laser treatment. In this study, a cylindrical diffuser with an active length of 1 cm was used to treat tumors of 1 to 1.5 cm in size. Different laser powers (1 to 3 watts) and different irradiation durations (10 to 30 minutes) were used to test the thermal effects of ILIT. Different doses of the GC (1.0%, 0.1 to 0.6 ml per rat) were used to determine the immunological effects of ILIT. Our results show that the animal survival depends on both laser dose and GC dose. A dose of 0.2 ml per tumor appeared to result in the highest survival rate under interstitial laser irradiation with 2.5 watts and 20 minutes. While the results in this study are not conclusive, they indicate that interstitial laser irradiation can be combined with immunotherapy to treat metastatic cancers. Furthermore, our results suggest that an optimal combination of laser dose and GC dose could be obtained for future clinical protocols using interstitial laser immunotherapy.

  1. Four-color laser irradiation system for laser-plasma interaction experiments

    SciTech Connect

    Pennington, D.M.; Henesian, M.A.; Wilcox, R.B.

    1996-06-01

    Since 1986, optical smoothing of the laser irradiance on targets for Inertial Confinement Fusion (ICF) has gained increasing attention. Optical smoothing can significantly reduce wavefront aberrations that produce nonuniformities in the energy distribution of the focal spot. Hot spots in the laser irradiance can induce local self focusing of the light, producing filamentation of the plasma. Filamentation can have detrimental consequences on the hydrodynamics of an ICF plasma, and can affect the growth of parametric instabilities, as well as add to the complexity of the study of such instabilities as stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). As experiments approach and exceed breakeven (i.e., where driver energy = fusion yield), the likelihood of significant excitation of these processes increases. As a result, the authors are including a scheme for implementing optical-beam smoothing for target experiments in the baseline design for the proposed next-generation ICF facility--the National Ignition Facility (NIF). To verify the efficacy of this design for the suppression of parametric instabilites in NIF-like indirect-drive targets, the authors successfully modified a Nova beamline to simulate the proposed NIF conditions. In this article, they discuss the laser science associated with a four-color target campaign on Nova to test the effect of f-number (ratio of focal length to beam diameter) and temporal smoothing on the scaling of SBS with a four-segment interaction beam using NIF-like parameters. The results of the target series associated with the four-color configuration are discussed elsewhere.

  2. Laser irradiation of disk targets at 0. 53. mu. m wavelength

    SciTech Connect

    Mead, W.C.; Campbell, E.M.; Estabrook, K.G.

    1981-01-26

    We present results and analysis for laser-irradiations of Be, CH, Ti, and Au disk targets with 0.53 ..mu..m light in 3 to 35 J, 600 ps pulses, at nominal intensities from 3 x 10/sup 13/ to approx. 4 x 10/sup 15/ W/cm/sup 2/. The measured absorptions are higher than observed in similar 1.06 ..mu..m irradiations, and are largely consistent with modeling which shows the importance of inverse bremsstrahlung and Brillouin scattering. Observed red-shifted back-reflected light shows that Brillouin is operating at low to moderate levels. The measured fluxes of multi-keV x-rays indicate low hot-electron fractions, with temperatures which are consistent with resonance absorption. Measurements show efficient conversion of absorbed light into sub-keV x-rays, with time-, angular-, and spatial-emission distributions which are generally consistent with non-LTE modeling using inhibited thermal electron transport.

  3. Ultra-Intense Laser Pulse Propagation in Gas and Plasma

    SciTech Connect

    Antonsen, T. M.

    2004-10-26

    It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently

  4. Effective observation of treatment of chronic pharyngitis with semiconductor laser irradiation at acupuncture points

    NASA Astrophysics Data System (ADS)

    Li, Suxian; Wang, Xiaoyan; Wang, Yanrong

    1993-03-01

    The treatment of this disease with laser such as He-Ne laser, Nd:YAG laser, and CO2 laser, etc., has been applied in our country, but application of the semiconductor laser therapy has received few reports. It has many advantages, such as ting volume, steady function, simple operation (the patient can operate it by himself), no side effects, remarkable results, and it is very convenient. So the semiconductor laser can be used to treat the chronic pharyngitis with irradiation on acupunctural points. One-hundred-twenty chronic pharyngitis patients were divided into 2 groups, a laser group and a medicine group, 60 cases for each. The effective rate is 91.6% and 66.6%, respectively. Obviously the treatment of chronic pharyngitis with semiconductor laser is valuable for widespread use. The principle of the laser therapy is discussed in the last part of this paper.

  5. How Plasmonic excitation influences the LIPSS formation on diamond during multipulse femtosecond laser irradiation ?

    NASA Astrophysics Data System (ADS)

    Abdelmalek, Ahmed; Bedrane, Zeyneb; Amara, El-Hachemi; Eaton, Shane M.; Ramponi, Roberta

    2017-03-01

    A generalized plasmonic model is proposed to calculate the nanostructure period induced by multipulse laser femtosecond on diamond at 800 nm wavelengths. We follow the evolution of LIPSS formation by changing diamond optical parameters in function of electron plasma excitation during laser irradiation. Our calculations shows that the ordered nanostructures can be observed only in the range of surface plasmon polariton excitation.

  6. Time-dependent intensity and phase measurements of ultrashort laser pulses as short as 10 fs

    SciTech Connect

    DeLong, K.W.; Fittinghoff, D.N.; Ladera, C.L.; Trebino, R.; Taft, G.; Rundquist, A.; Murnane, M.M.; Kapteyn, H.C.; Christov, I.P.

    1995-05-01

    Frequency-Resolved Optical Gating (FROG) measures the time-dependent intensity and phase of an ultrashort laser pulse. Using FROG, we have tested theories for the operation of sub{minus}10 fs laser oscillators.

  7. A four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL

    SciTech Connect

    Pennington, D.M.; Henesian, M.A.; Wilcox, R.B.; Weiland, T.L.; Eimerl, D.; Ehrlich, R.B.; Laumann, C.W.; Miller, J.L.

    1995-06-26

    A novel four-color beam smoothing scheme with a capability similar to that planned for the proposed National Ignition Facility has been deployed on the Nova laser, and has been successfully used for laser fusion experiments. Wavefront aberrations in high power laser systems produce nonuniformities in the energy distribution of the focal spot that can significantly degrade the coupling of the energy into a fusion target, driving various plasma instabilities. The introduction of temporal and spatial incoherence over the face of the beam using techniques such as smoothing by spectral dispersion (SSD) can reduce these variation in the focal irradiance when averaged over a finite time interval. We developed a multiple frequency source that is spatially separated into four quadrants, each containing a different central frequency. Each quadrant is independently converted to the third harmonic in a four-segment Type I/ Type II KDP crystal array with independent phase-matching for efficient frequency conversion. Up to 2.3 kJ of third harmonic light is generated in a 1 ns pulse, corresponding to up to 65% conversion efficiency. SSD is implemented by adding limited frequency modulated bandwidth to each frequency component. Smoothing by spectral dispersion is implemented during the spatial separation of the FM modulated beams to provide additional smoothing, reaching a 16% rms intensity variation level. The four- color system was successfully used to probe NIF-like plasmas, producing {lt} 1% SBS backscatter at {gt} 2x10{sup 15} W/cm{sup 2}. This paper discusses the detailed implementation and performance of the segmented four-color system on the Nova laser system.

  8. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  9. Analytical model for calibrating laser intensity in strong-field-ionization experiments

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Le, Anh-Thu; Jin, Cheng; Wang, Xu; Lin, C. D.

    2016-02-01

    The interaction of an intense laser pulse with atoms and molecules depends extremely nonlinearly on the laser intensity. Yet experimentally there still exists no simple reliable methods for determining the peak laser intensity within the focused volume. Here we present a simple method, based on an improved Perelomov-Popov-Terent'ev model, that would allow the calibration of laser intensities from the measured ionization signals of atoms or molecules. The model is first examined by comparing ionization probabilities (or signals) of atoms and several simple diatomic molecules with those from solving the time-dependent Schrödinger equation. We then show the possibility of using this method to calibrate laser intensities for atoms, diatomic molecules as well as large polyatomic molecules, for laser intensities from the multiphoton ionization to tunneling ionization regimes.

  10. Laser-irradiated drug chromatographic analysis and laser injection of drugs to treat staphyloccocal lesions of skin

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Latyshev, Alexei S.; Kovsh, Anna I.; Razumova, Svetlana A.; Masyukova, Svetlana A.; Volnukhin, Vladimir A.

    2001-05-01

    This article deals with further development of laser drug delivery methods. In order to estimate the effect of laser- drug interactions, we carried out the chromatographic fractionation of dexamethasone, hydrocortisone, and gentamicine, both prior to and after irradiating them by pulsed Er:YAG laser radiation. The laser radiation parameters were as follows: the wavelength, pulse energy, and pulse duration were, respectively, 2.94 micrometers , 0.7 J, and 100 microsecond(s) . The total laser radiation dose administered to a 100 (mu) l sample of these drug preparations amounted to 150 J. A chromatographic analysis revealed that drug samples exposed to Er:YAG laser radiation did not show any change. The results obtained made it possible to employ pulsed Er:YAG laser radiation to perform laser-acoustic injection of the above-mentioned drug preparations to study the treatment of staphylococcal lesions in 30 guinea pigs. The perforated channel depth was measured and the injected drug solution volume was calculated. It was found that laser injection enabled one to introduce therapeutic doses of drugs, and that it expedited the healing of lesions by 3 to 4 days, as compared to the control group that received the topical application of drugs without laser irradiation.

  11. The surface of root canal irradiated by Nd:YAG laser with TiO2

    NASA Astrophysics Data System (ADS)

    Ebihara, Arata; Anjo, Tomoo; Takeda, Atsushi; Suda, Hideaki

    2004-05-01

    The aim of this study was to determine the appropriateness of Nd:YAG laser irradiation for root canal preparation. Tooth crowns were removed from single-rooted human teeth and a quartz optical fiber (diameter 400 μm) was inserted into the root canal orifice towards the apical foramen. The length of the fiber within the root canal was measured, and the irradiating length determined. Root canals were then filled with 3% TiO2 emulsion solution (a photosensitizer) and irradiated using a pulsed Nd:YAG laser at 600 mJ/pulse (pulse frequency; 5 or 10 pps). During laser irradiation, the fiber was moved coronally from the apical region towards the canal orifice at a rate of 1 mm/s. Contact microradiographs (CMR) were taken before and after laser irradiation. Each root was then halved longitudinally, and the root canal surface observed by scanning electron microscopy (SEM). The CMR images of the tooth revealed that the root canal was slightly enlarged as a result of treatment. Carbonization of the root canal dentin was not seen, but a smear layer and melted dentin were observed by SEM. Nd:YAG laser irradiation using TiO2 emulsion solution appears to be a useful tool for root canal preparation.

  12. Nanocrystals distribution inside the writing lines in a glass matrix using Argon laser irradiation.

    PubMed

    Haro-González, P; Martín, I R; Creus, Alberto Hernández

    2010-01-18

    Localized modification in strontium barium niobate glass doped with Ho(3+) under laser irradiation has been carried out. The preliminary samples of this study have been fabricated by the melt quenching method and doped with 2.5% mol of Ho(3+). A 3.5W cw multiline Ar-laser has been focused and shifted in a line during laser irradiation. The formation of Strontium Barium Niobate nanocrystals has been confirmed by X-ray diffraction, atomic force microscope image and fluorescence. They have been localized in the irradiation line and change the optical properties of the sample. These nanocrystals have been obtained due to the excitation of the Ho(3+) ions which under nonradiative processes produced the heating of the sample. In this work, it has been demonstrated that the diffusion of the Nb(5+) ions to the border of the irradiated line controls the growth of the nanocrystals in the sample.

  13. Plasma Interactions in Laser Irradiated Semi-Cylindrical Cavities Studied with Soft X-Ray Interferometry Using a Capillary Discharge Laser

    SciTech Connect

    Purvis, M A; Grava, J; Filevich, J; Marconi, M; Rocca, J J; Moon, S J; Dunn, J; Nilsen, J; Shlyaptsev, V N; Jankowska, E

    2007-09-19

    Soft x-ray interferometry was used to measure the evolution of dense converging plasmas created by laser irradiation of 500 {micro}m diameter semi-cylindrical carbon targets. Optical laser pulses with an intensity of {approx} 1 x 10{sup 12} W cm{sup -2} and 120 ps duration were used to heat the surface of the cavities. The dense plasma formed expands from the walls converging slightly off the semi-cylinder's axis, giving rise to a bright localized high density plasma region. A sequence of electron density maps were measured using a 46.9 nm wavelength tabletop capillary discharge soft x-ray laser probe and a amplitude division interferometer based on diffraction gratings. The measured density profiles are compared with simulations conducted using the multi-dimensional hydrodynamic code HYDRA. The benchmarked model was then used to simulate particle trajectories which reveal that the increase in electron density near the axis is mainly the result of the convergence of plasma that originated at the bottom of the groove during laser irradiation.

  14. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    PubMed

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects.

  15. Control of magnetic anisotropy and magnetic patterning of perpendicular Co/Pt multilayers by laser irradiation

    SciTech Connect

    Schuppler, C.; Habenicht, A.; Guhr, I.L.; Maret, M.; Leiderer, P.; Boneberg, J.; Albrecht, M.

    2006-01-02

    We report an approach to altering the magnetic properties of (111) textured Co/Pt multilayer films grown on sapphire (0001) substrates in a controlled way using single-pulse laser irradiation. The as-grown films reveal a strong perpendicular magnetic anisotropy induced by interfacial anisotropy. We show that laser irradiation can chemically mix the multilayer structure particularly at the interfaces, hence reducing the perpendicular magnetic anisotropy and coercivity in a controlled manner depending on laser fluence. As a result, perpendicular films can also be magnetically patterned into hard and soft magnetic regions using a regular two-dimensional lattice of polystyrene particles acting as an array of microlenses.

  16. Sub-surface channels in sapphire made by ultraviolet picosecond laser irradiation and selective etching.

    PubMed

    Moser, Rüdiger; Ojha, Nirdesh; Kunzer, Michael; Schwarz, Ulrich T

    2011-11-21

    We demonstrate the realization of sub-surface channels in sapphire prepared by ultraviolet picosecond laser irradiation and subsequent selective wet etching. By optimizing the pulse energy and the separation between individual laser pulses, an optimization of channel length can be achieved with an aspect ratio as high as 3200. Due to strong variation in channel length, further investigation was done to improve the reproducibility. By multiple irradiations the standard deviation of the channel length could be reduced to 2.2%. The achieved channel length together with the high reproducibility and the use of a commercial picosecond laser system makes the process attractive for industrial application.

  17. Modelling of intense line radiation from laser-produced plasmas

    SciTech Connect

    Lee, Yim T.; Gee, M.

    1990-04-01

    In this paper, we discuss modelling of Lyman-{alpha} (i.e. Ly-{alpha}) radiation emitted from laser-produced plasmas. We are interested in the application of one of these line radiations to pump a transition of an ion in a different plasma spatially separated from the emitting source. The interest is in perturbing the plasma rather than just probing it as in some backlighting experiments. As a result of pumping, the populations of certain excited levels are inverted. The resulting gain coefficients depend strongly on the population inversion density which in turn depends on the brightness of the pump radiation. As a result, we must produce an intense bright radiation source. In addition, to pump a transition effectively, we also need a pump line with a width larger than the mismatch of the resonance since the widths of the pumped transitions are rather narrow

  18. An intensity-based stochastic model for terrestrial laser scanners

    NASA Astrophysics Data System (ADS)

    Wujanz, D.; Burger, M.; Mettenleiter, M.; Neitzel, F.

    2017-03-01

    Up until now no appropriate models have been proposed that are capable to describe the stochastic characteristics of reflectorless rangefinders - the key component of terrestrial laser scanners. This state has to be rated as unsatisfactory especially from the perception of Geodesy where comprehensive knowledge about the precision of measurements is of vital importance, for instance to weigh individual observations or to reveal outliers. In order to tackle this problem, a novel intensity-based stochastic model for the reflectorless rangefinder of a Zoller + Fröhlich Imager 5006 h is experimentally derived. This model accommodates the influence of the interaction between the emitted signal and object surface as well as the acquisition configuration on distance measurements. Based on two different experiments the stochastic model has been successfully verified for three chosen sampling rates.

  19. Basic studies on intravascular low-intensity laser therapy

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Duan, Rui; Wang, Shuang-Xi; Liu, Jiang; Cui, Li-Ping; Jin, Hua; Liu, Song-Hao

    2006-09-01

    Intravascular low intensity laser therapy (ILILT) was originally put forward in USA in 1982, but popularized in Russia in 1980s and in China in 1990s, respectively. A randomized placebo-controlled study has shown ILILT clinical efficacy in patients suffering from rheumatoid arthritis. As Chinese therapeutic applications of ILILT were the most widely in the world, its basic research, such as intracellular signal transduction research, blood research in vitro, animal blood research in vivo, human blood research in vivo and traditional Chinese medicine research, was also very progressive in China. Its basic studies will be reviewed in terms of the biological information model of photobiomodulation in this paper. ILILT might work in view of its basic studies, but the further randomized placebo-controlled trial and the further safety research should be done.

  20. Short intense laser pulse collapse in near-critical plasma.

    PubMed

    Sylla, F; Flacco, A; Kahaly, S; Veltcheva, M; Lifschitz, A; Malka, V; d'Humières, E; Andriyash, I; Tikhonchuk, V

    2013-02-22

    It is observed that the interaction of an intense ultrashort laser pulse with a near-critical gas jet results in the pulse collapse and the deposition of a significant fraction of the energy. This deposition happens in a small and well-localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over ~ 150 μm at a subrelativistic velocity (~ c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated with the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizable magnetic dipole that sustains the electron current over several picoseconds.