Machine Protection System Research and Development for the Fermilab PIP-II Proton Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Arden; Carmichael, Linden; Harrison, Beau
PIP-II is a high intensity proton linac being design to support a world-leading physics program at Fermilab. Initially it will provide high intensity beams for Fermilab's neutrino program with a future extension to other applications requiring an upgrade to CW linac operation (e.g. muon experiments). The machine is conceived to be 2 mA CW, 800 MeV H⁻ linac capable of working initially in a pulse (0.55 ms, 20 Hz) mode for injection into the existing Booster. The planned upgrade to CW operation implies that the total beam current and damage potential will be greater than in any present HEP hadronmore » linac. To mitigate the primary technical risk and challenges associated PIP-II an integrated system test for the PIP-II front-end technology is being developed. As part of the R&D a robust machine protection system (MPS) is being designed. This paper describes the progress and challenges associated with the MPS.« less
Collective electron driven linac for high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1983-08-01
A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can bemore » accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.« less
Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemann, R.H.
The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Numerical simulations of stripping effects in high-intensity hydrogen ion linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro, J.-P.; /Fermilab; Mustapha, B.
2008-12-01
Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.
R & D on Beam Injection and Bunching Schemes in the Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, C. M.
2016-01-01
Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developedmore » an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.« less
Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, C. M.
Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, namely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end ofmore » its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called "early injection scheme" (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.« less
Applications of High Intensity Proton Accelerators
NASA Astrophysics Data System (ADS)
Raja, Rajendran; Mishra, Shekhar
2010-06-01
Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.
Fahimian, Benjamin; Yu, Victoria; Horst, Kathleen; Xing, Lei; Hristov, Dimitre
2013-12-01
External beam radiation therapy (EBRT) provides a non-invasive treatment alternative for accelerated partial breast irradiation (APBI), however, limitations in achievable dose conformity of current EBRT techniques have been correlated to reported toxicity. To enhance the conformity of EBRT APBI, a technique for conventional LINACs is developed, which through combined motion of the couch, intensity modulated delivery, and a prone breast setup, enables wide-angular coronal arc irradiation of the ipsilateral breast without irradiating through the thorax and contralateral breast. A couch trajectory optimization technique was developed to determine the trajectories that concurrently avoid collision with the LINAC and maintain the target within the MLC apertures. Inverse treatment planning was performed along the derived trajectory. The technique was experimentally implemented by programming the Varian TrueBeam™ STx in Developer Mode. The dosimetric accuracy of the delivery was evaluated by ion chamber and film measurements in phantom. The resulting optimized trajectory was shown to be necessarily non-isocentric, and contain both translation and rotations of the couch. Film measurements resulted in 93% of the points in the measured two-dimensional dose maps passing the 3%/3mm Gamma criterion. Preliminary treatment plan comparison to 5-field 3D-conformal, IMRT, and VMAT demonstrated enhancement in conformity, and reduction of the normal tissue V50% and V100% parameters that have been correlated with EBRT toxicity. The feasibility of wide-angular intensity modulated partial breast irradiation using motion of the couch has been demonstrated experimentally on a standard LINAC for the first time. For patients eligible for a prone setup, the technique may enable improvement of dose conformity and associated dose-volume parameters correlated with toxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Swenson, Donald A.
A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.
Linac design for the European spallation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, H.
1995-10-01
A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.
The ESS neutrino facility for CP violation discovery
NASA Astrophysics Data System (ADS)
Baussan, Eric; Bouquerel, Elian; Dracos, Marcos
2017-09-01
The comparatively large value of the neutrino mixing angle θ 13 measured in 2012 by neutrino reactor experiments has opened the possibility to observe for the first time CP violation in the leptonic sector. The measured value of θ 13 also privileges the 2nd oscillation maximum for the discovery of CP violation instead of the usually used 1st oscillation maximum. The sensitivity at the 2nd oscillation maximum is about three times higher than at the 1st oscillation maximum implying a significantly lower sensitivity to systematic errors. Measuring at the 2nd oscillation maximum necessitates a very intense neutrino beam with the appropriate energy. The world’s most intense pulsed spallation neutron source, the European Spallation Source, has a proton linac with 5 MW power and 2 GeV energy. This linac also has the potential to become the proton driver of the world’s most intense neutrino beam with very high potential for the discovery of neutrino CP violation. The physics performance of that neutrino Super Beam in conjunction with a megaton Water Cherenkov neutrino detector installed ca 1000 m down in a mine at a distance of about 500 km from ESS has been evaluated. In addition, the use of such a detector will make it possible to extent the physics program to proton decay, atmospheric neutrinos and astrophysics searches. The ESS proton linac upgrade, the accumulator ring needed for proton pulse compression, the target station optimization and the physics potential are described. In addition to the production of neutrinos, this facility will also be a copious source of muons which could be used to feed a low energy nuSTORM facility, a future neutrino factory or a muon collider. The ESS linac, under construction, will reach full operation at 5 MW by 2023 after which the upgrades for the neutrino facility could start.
Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, C. M.
2016-12-15
Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvAmore » target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.« less
NASA Astrophysics Data System (ADS)
Paterson, James M.
2000-04-01
The Linac Coherent Light Source (LCLS) is a linac driven FEL which uses a 1km electron linac (the last third of the SLAC linac) and a 100m long undulator to produce 1.5 angstrom X-rays of extremely high peak brightness. This radiation is fully tranversely coherent and is in sub-picosecond long pulses. The LCLS Project is a four year R&D program to solidify the design, to develop required technologies, to optimize the cost and performance and to study the potential experimental programs using these unique beam characteristics. The program is conducted by a multi-institutional collaboration consisting of SLAC as the lead laboratory, along with ANL, BNL, LLNL, LANL and UCLA.The LCLS design and the R&D programs are described.
The R/D of high power proton accelerator technology in China
NASA Astrophysics Data System (ADS)
Xialing, Guan
2002-12-01
In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.
H- ion sources for CERN's Linac4
NASA Astrophysics Data System (ADS)
Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.
2013-02-01
The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on the future prototype ion sources is sketched.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X; Li, S; Zheng, D
Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheetmore » every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm{sup 2}. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.« less
Technical Note: Experimental results from a prototype high-field inline MRI-linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liney, G. P., E-mail: gary.liney@sswahs.nsw.gov.au
Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enablingmore » shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.« less
SLAC Linac Preparations for FACET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, R.; Bentson, L.; Kharakh, D.
The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.
Design study of a radio-frequency quadrupole for high-intensity beams
NASA Astrophysics Data System (ADS)
Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk
2017-07-01
The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant
CLIC RF High Power Production Testing Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syratchev, I.; Riddone, G.; /CERN
The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation.more » The testing program overview and test results available to date are presented.« less
Dobler, Barbara; Lorenz, Friedlieb; Wertz, Hansjörg; Polednik, Martin; Wolff, Dirk; Steil, Volker; Lohr, Frank; Wenz, Frederik
2006-08-01
To compare different combinations of intensity-modulated radiation therapy (IMRT) system components with regard to quality assurance (QA), especially robustness against malfunctions and dosimetry. Three different treatment-planning systems (TPS), two types of linacs and three multileaf collimator (MLC) types were compared: commissioning procedures were performed for the combination of the TPS Corvus 5.0 (Nomos) and KonRad v2.1.3 (Siemens OCS) with the linacs KD2 (Siemens) and Synergy (Elekta). For PrecisePLAN 2.03 (Elekta) measurements were performed for Elekta Synergy only. As record and verify (R&V) system Multi-Access v7 (IMPAC) was used. The use of the serial tomotherapy system Peacock (Nomos) was investigated in combination with the Siemens KD2 linac. In the comparison of calculated to measured dose, problems were encountered for the combination of KonRad and Elekta MLC as well as for the Peacock system. Multi-Access failed to assign the collimator angle correctly for plans with multiple collimator angles per beam. Communication problems of Multi-Access with both linacs were observed, resulting in incorrect recording of the treatment. All reported issues were addressed by the manufacturers. For the commissioning of IMRT systems, the whole chain from the TPS to the linac has to be investigated. Components that passed the commissioning in another clinical environment can have severe malfunctions when used in a new environment. Therefore, not only single components but the whole chain from planning to delivery has to be evaluated in commissioning and checked regularly for QA.
Kinhikar, Rajesh; Gamre, Poonam; Tambe, Chandrashekhar; Kadam, Sudarshan; Biju, George; Suryaprakash; Magai, C. S.; Dhote, Dipak; Shrivastava, Shyam; Deshpande, Deepak
2013-01-01
The objective of this paper was to measure the peripheral dose (PD) with diode and thermoluminescence dosimeter (TLD) for intensity modulated radiotherapy (IMRT) with linear accelerator (conventional LINAC), and tomotherapy (novel LINAC). Ten patients each were selected from Trilogy dual-energy and from Hi-Art II tomotherapy. Two diodes were kept at 20 and 25 cm from treatment field edge. TLDs (LiF:MgTi) were also kept at same distance. TLDs were also kept at 5, 10, and 15 cm from field edge. The TLDs were read with REXON reader. The readings at the respective distance were recorded for both diode and TLD. The PD was estimated by taking the ratio of measured dose at the particular distance to the prescription dose. PD was then compared with diode and TLD for LINAC and tomotherapy. Mean PD for LINAC with TLD and diode was 2.52 cGy (SD 0.69), 2.07 cGy (SD 0.88) at 20 cm, respectively, while at 25 cm, it was 1.94 cGy (SD 0.58) and 1.5 cGy (SD 0.75), respectively. Mean PD for tomotherapy with TLD and diode was 1.681 cGy SD 0.53) and 1.58 (SD 0.44) at 20 cm, respectively. The PD was 1.24 cGy (SD 0.42) and 1.088 cGy (SD 0.35) at 25 cm, respectively, for tomotherapy. Overall, PD from tomotherapy was found lower than LINAC by the factor of 1.2-1.5. PD measurement is essential to find out the potential of secondary cancer. PD for both (conventional LINAC) and novel LINACs (tomotherapy) were measured and compared with each other. The comparison of the values for PD presented in this work and those published in the literature is difficult because of the different experimental conditions. The diode and TLD readings were reproducible and both the detector readings were comparable. PMID:23531765
Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa
2015-07-15
This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.
Kishan, Amar U; Cao, Minsong; Mikaeilian, Argin G; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Kamrava, Mitchell
2015-01-01
The purpose of this study was to investigate the dosimetric differences of delivering preoperative intensity modulated radiation therapy (IMRT) to patients with soft tissue sarcomas of the extremity (ESTS) with a teletherapy system equipped with 3 rotating (60)Co sources and a built-in magnetic resonance imaging and with standard linear accelerator (LINAC)-based IMRT. The primary study population consisted of 9 patients treated with preoperative radiation for ESTS between 2008 and 2014 with LINAC-based static field IMRT. LINAC plans were designed to deliver 50 Gy in 25 fractions to 95% of the planning target volume (PTV). Tri-(60)Co system IMRT plans were designed with ViewRay system software. Tri-(60)Co-based IMRT plans achieved equivalent target coverage and dosimetry for organs at risk (long bone, skin, and skin corridor) compared with LINAC-based IMRT plans. The maximum and minimum PTV doses, heterogeneity indices, and ratio of the dose to 50% of the volume were equivalent for both planning systems. One LINAC plan violated the maximum bone dose constraint, whereas none of the tri-(60)Co plans did. Using a tri-(60)Co system, we were able to achieve equivalent dosimetry to the PTV and organs at risk for patients with ESTS compared with LINAC-based IMRT plans. The tri-(60)Co system may be advantageous over current treatment platforms by allowing PTV reduction and by elimination of the additional radiation dose associated with daily image guidance, but this needs to be evaluated prospectively. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Doubling The Intensity Of An ERL Based Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Hutton
2005-05-01
A light source based on an Energy Recovered Linac (ERL) [1] consists of a superconducting linac and a transfer line that includes wigglers and undulators to produce the synchrotron light. The transfer line brings the electron bunches back to the beginning of the linac so that their energy can be recovered when they traverse the linac a second time, {lambda}/2 out of RF phase. There is another interesting condition when the length of the transfer line is (n {+-} 1/4) {lambda}. In this case, the electrons drift through on the zero RF crossing, and make a further pass around themore » transfer line, effectively doubling the circulating current in the wigglers and undulators. On the third pass through the linac, they will be decelerated and their energy recovered. The longitudinal focusing at the zero crossing is a problem, but it can be canceled if the drifting beam sees a positive energy gradient for the first half of the linac and a negative gradient for the second half (or vice versa). This paper presents a proposal to use a double chicane at the center of the linac to provide this focusing inversion for the drifting beam while leaving the accelerating and decelerating beams on crest. [1] G. R. Neil, et al, Phys. Rev. Let. 84, 662 2000« less
Beam dynamics in heavy ion induction LINACS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.
1981-10-01
Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.
Accelerator and Fusion Research Division. Annual report, October 1978-September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)
The SLAC linac as used in the SLC collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.; Abrams, G.; Adolphsen, C.
The linac of the SLAC Linear Collider (SLC) must accelerate three high intensity bunches on each linac pulse from 1.2 GeV to 50 GeV with minimal increase of the small transverse emittance. The procedures and adjustments used to obtain this goal are outlined. Some of the accelerator parameters and components which interact are the beam energy, transverse position, component alignment, RF manipulation, feedback systems, quadrupole lattice, BNS damping, energy spectra, phase space matching, collimation, instrumentation and modelling. The method to bring these interdependent parameters collectively into specification has evolved over several years. This review is ordered in the sequence whichmore » is used to turn on the linac from a cold start and produce acceptable beams for the final focus and collisions. Approximate time estimates for the various activities are given. 21 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Romanov, Aleksandr; Ruan, Jinhao
We outline the design of beam experiments for the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility and for the Integrable Optics Test Accelerator (IOTA), based on synchrotron light emitted by the electrons in bend dipoles, detected with gated microchannel-plate photomultipliers (MCP-PMTs). The system can be used both for beam diagnostics (e.g., beam intensity with full dynamic range, turn-by-turn beam vibrations, etc.) and for scientific experiments, such as the direct observation of the time structure of the radiation emitted by single electrons in a storage ring. The similarity between photon pulses and spectrum at the downstream endmore » of the electron linac and in the IOTA ring allows one to test the apparatus during commissioning of the linac.« less
accelerated through the Linac (Linear Accelerator) to an energy of 400 MeV. The Linac consists of two main of linear accelerators at NML ! Meet at the South entrance to NML (New Muon Lab) Building. 1:00 PM 1
MO-DE-BRA-02: SIMAC: A Simulation Tool for Teaching Linear Accelerator Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, M; Harnett, N; Department of Radiation Oncology, University of Toronto, Toronto, Ontario
Purpose: The first goal of this work is to develop software that can simulate the physics of linear accelerators (linac). The second goal is to show that this simulation tool is effective in teaching linac physics to medical physicists and linac service engineers. Methods: Linacs were modeled using analytical expressions that can correctly describe the physical response of a linac to parameter changes in real time. These expressions were programmed with a graphical user interface in order to produce an environment similar to that of linac service mode. The software, “SIMAC”, has been used as a learning aid in amore » professional development course 3 times (2014 – 2016) as well as in a physics graduate program. Exercises were developed to supplement the didactic components of the courses consisting of activites designed to reinforce the concepts of beam loading; the effect of steering coil currents on beam symmetry; and the relationship between beam energy and flatness. Results: SIMAC was used to teach 35 professionals (medical physicists; regulators; service engineers; 1 week course) as well as 20 graduate students (1 month project). In the student evaluations, 85% of the students rated the effectiveness of SIMAC as very good or outstanding, and 70% rated the software as the most effective part of the courses. Exercise results were collected showing that 100% of the students were able to use the software correctly. In exercises involving gross changes to linac operating points (i.e. energy changes) the majority of students were able to correctly perform these beam adjustments. Conclusion: Software simulation(SIMAC), can be used to effectively teach linac physics. In short courses, students were able to correctly make gross parameter adjustments that typically require much longer training times using conventional training methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min
2015-07-15
Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated bymore » attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.« less
Long-term, correlated emittance decrease in intense, high-brightness induction linacs
NASA Astrophysics Data System (ADS)
Carlsten, Bruce E.
1999-09-01
Simulations of high-brightness induction linacs often show a slow, long-term emittance decrease as the beam is matched from the electron gun into the linac. Superimposed on this long-term decrease are rapid emittance oscillations. These effects can be described in terms of correlations in the beam's radial phase space. The rapid emittance oscillations are due to transverse plasma oscillations, which stay nearly in phase for different radial positions within the beam. The initial emittance, just after the electron gun, is dominated by nonlinear focusing within the gun introduced by the anode exit hole. Due to the large space-charge force of an intense electron beam, the focusing of the beam through the matching section introduces an effective nonlinear force (from the change in the particles' potential energies) which counteracts the nonlinearities from the electron gun, leading to an average, long-term emittance decrease. Not all of the initial nonlinearity is removed by the matching procedure, and there are important consequences both for emittance measurements using solenoid focal length scans and for focusing the electron beam to a target.
Use of the CEBAF Accelerator for IR and UV Free Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunn, Byung; Sinclair, Charles; Leemann, Christoph
1992-08-01
The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less
A superconducting CW-LINAC for heavy ion acceleration at GSI
NASA Astrophysics Data System (ADS)
Barth, Winfried; Aulenbacher, Kurt; Basten, Markus; Dziuba, Florian; Gettmann, Viktor; Miski-Oglu, Maksym; Podlech, Holger; Yaramyshev, Stepan
2017-03-01
Recently the Universal Linear Accelerator (UNILAC) serves as a powerful high duty factor (25%) heavy ion beam accelerator for the ambitious experiment program at GSI. Beam time availability for SHE (Super Heavy Element)-research will be decreased due to the limitation of the UNILAC providing Uranium beams with an extremely high peak current for FAIR simultaneously. To keep the GSI-SHE program competitive on a high level and even beyond, a standalone superconducting continuous wave (100% duty factor) LINAC in combination with the upgraded GSI High Charge State injector is envisaged. In preparation for this, the first LINAC section (financed by HIM and GSI) will be tested with beam in 2017, demonstrating the future experimental capabilities. Further on the construction of an extended cryo module comprising two shorter Crossbar-H cavities is foreseen to test until end of 2017. As a final R&D step towards an entire LINAC three advanced cryo modules, each comprising two CH cavities, should be built until 2019, serving for first user experiments at the Coulomb barrier.
Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility
NASA Astrophysics Data System (ADS)
Lebois, M.; Bricault, P.
2011-09-01
In the next years, TRIUMF activity will be focused on building a new facility to produce very intense neutron rich radioactive ion beams. Unlike others ISOL facilities, the e-linac primary beam, that will induce the fission, is an intense electron beam (50 MeV energy and 10 mA intensity). This challenging choice, which make this installation unique, despite the ALTO facility, makes an average fission rate of 1013-14fissions/s in the target.This beam is sent on an uranium carbide target (UCx), but due to its power, it is essential to insert a "converter" on the beam path to avoid a target overheating. The purpose of this converter is to convert electrons into Bremsstralhung radiation. The γ rays produce excite the dipole resonance of 23892U (15 MeV) inducing fission. Energy deposition, fission rate and thermal behavior were simulated using Monte Carlo techniques are presented in this paper
Conceptional design of a heavy ion linac injector for HIRFL-CSRm
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Hu; Yuan, You-Jin; Xia, Jia-Wen; Yin, Xue-Jun; Du, Heng; Li, Zhong-Shan
2014-10-01
A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring (CSRm) at the Heavy Ion Research Facility in Lanzhou (HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron (SFC), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole (RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane. The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs (KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs (DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of 17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency, RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.
Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac
NASA Astrophysics Data System (ADS)
Magistris, Matteo; Silari, Marco
2006-06-01
CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.
Advanced Accelerators for Medical Applications
NASA Astrophysics Data System (ADS)
Uesaka, Mitsuru; Koyama, Kazuyoshi
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.
Space charge problems in high intensity RFQs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, M.
1996-06-01
Measurements were made to check the performance of the CERN high intensity RFQs (RFQ2A and RFQ2B) and assess the validity of the design approach; the study of space charge effects was undertaken in this context. RFQ2A and RFQ2B are 200 mA, 750 keV proton accelerators, operating at 202.56 MHz. Since the beginning of 1993, RFQ2B serves as injector to the CERN 50 MeV Alvarez linac (Linac 2). In 1992, both RFQs were on the test stand to undergo a series of beam measurements, which were compared with computations. The studies concerning the RFQ2A were more detailed and they are reportedmore » in this paper. {copyright} {ital 1996 American Institute of Physics.}« less
Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M
2016-02-01
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.
Development Status of Ion Source at J-PARC Linac Test Stand
NASA Astrophysics Data System (ADS)
Yamazaki, S.; Takagi, A.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Oguri, H.
The Japan Proton Accelerator Research Complex (J-PARC) linac power upgrade program is now in progress in parallel with user operation. To realize a nominal performance of 1 MW at 3 GeV Rapid Cycling Synchrotron and 0.75 MW at the Main Ring synchrotron, we need to upgrade the peak beam current (50 mA) of the linac. For the upgrade program, we are testing a new front-end system, which comprises a cesiated RF-driven H- ion source and a new radio -frequency quadrupole linac (RFQ). The H- ion source was developed to satisfy the J-PARC upgrade requirements of an H- ion-beam current of 60 mA and a lifetime of more than 50 days. On February 6, 2014, the first 50 mA H- beams were accelerated by the RFQ during a beam test. To demonstrate the performance of the ion source before its installation in the summer of 2014, we tested the long-term stability through continuous beam operation, which included estimating the lifetime of the RF antenna and evaluating the cesium consumption.
Automating linear accelerator quality assurance.
Eckhause, Tobias; Al-Hallaq, Hania; Ritter, Timothy; DeMarco, John; Farrey, Karl; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Perez, Mario; Park, SungYong; Booth, Jeremy T; Thorwarth, Ryan; Moran, Jean M
2015-10-01
The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The standard deviation in MLC position, as determined by EPID measurements, across the consortium was 0.33 mm for IMRT fields. With respect to the log files, the deviations between expected and actual positions for parameters were small (<0.12 mm) for all Linacs. Considering both log files and EPID measurements, all parameters were well within published tolerance values. Variations in collimator angle, MLC position, and gantry sag were also evaluated for all Linacs. The performance of the TrueBeam Linac model was shown to be consistent based on automated analysis of trajectory log files and EPID images acquired during delivery of a standardized test suite. The results can be compared directly to tolerance thresholds. In addition, sharing of results from standard tests across institutions can facilitate the identification of QA process and Linac changes. These reference values are presented along with the standard deviation for common tests so that the test suite can be used by other centers to evaluate their Linac performance against those in this consortium.
Project for the development of the linac based NCT facility in University of Tsukuba.
Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H
2014-06-01
A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kerkmeijer, Linda G W; Fuller, Clifton D; Verkooijen, Helena M; Verheij, Marcel; Choudhury, Ananya; Harrington, Kevin J; Schultz, Chris; Sahgal, Arjun; Frank, Steven J; Goldwein, Joel; Brown, Kevin J; Minsky, Bruce D; van Vulpen, Marco
2016-01-01
An international research consortium has been formed to facilitate evidence-based introduction of MR-guided radiotherapy (MR-linac) and to address how the MR-linac could be used to achieve an optimized radiation treatment approach to improve patients' survival, local, and regional tumor control and quality of life. The present paper describes the organizational structure of the clinical part of the MR-linac consortium. Furthermore, it elucidates why collaboration on this large project is necessary, and how a central data registry program will be implemented.
Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Bellodi, G.; Dimov, V.
2016-02-15
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT)more » section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.« less
Analysis and measurement of the transfer matrix of a 9-cell, 1.3-GHz superconducting cavity
Halavanau, A.; Eddy, N.; Edstrom, D.; ...
2017-04-13
Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. Here, the 9-cell, 1.3-GHz superconducting standing-wave accelerating rf cavity originally developed for e +/e - linear-collider applications has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. Finally, the experimental results are found to be in agreement with analytical calculations and numerical simulations.
Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, Shlomi
2007-11-26
The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance {sup 103}Pd for prostate brachytherapy.
The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...
2015-05-01
The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.
Preliminary Modelling of Radiation Levels at the Fermilab PIP-II Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lari, L.; Cerutti, F.; Esposito, L. S.
PIP-II is the Fermilab's flagship project for providing powerful, high-intensity proton beams to the laboratory's experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buildings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardini, Tom; Aquila, Andrew; Boutet, Sebastien
Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less
Pardini, Tom; Aquila, Andrew; Boutet, Sebastien; ...
2017-06-15
Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less
Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II
NASA Astrophysics Data System (ADS)
Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan
2018-05-01
The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.
SU-F-T-268: A Feasibility Study of Independent Dose Verification for Vero4DRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, M; Kokubo, M; Institute of Biomedical Research and Innovation, Kobe, Hyogo
2016-06-15
Purpose: Vero4DRT (Mitsubishi Heavy Industries Ltd.) has been released for a few years. The treatment planning system (TPS) of Vero4DRT is dedicated, so the measurement is the only method of dose verification. There have been no reports of independent dose verification using Clarksonbased algorithm for Vero4DRT. An independent dose verification software program of the general-purpose linac using a modified Clarkson-based algorithm was modified for Vero4DRT. In this study, we evaluated the accuracy of independent dose verification program and the feasibility of the secondary check for Vero4DRT. Methods: iPlan (Brainlab AG) was used as the TPS. PencilBeam Convolution was used formore » dose calculation algorithm of IMRT and X-ray Voxel Monte Carlo was used for the others. Simple MU Analysis (SMU, Triangle Products, Japan) was used as the independent dose verification software program in which CT-based dose calculation was performed using a modified Clarkson-based algorithm. In this study, 120 patients’ treatment plans were collected in our institute. The treatments were performed using the conventional irradiation for lung and prostate, SBRT for lung and Step and shoot IMRT for prostate. Comparison in dose between the TPS and the SMU was done and confidence limits (CLs, Mean ± 2SD %) were compared to those from the general-purpose linac. Results: As the results of the CLs, the conventional irradiation (lung, prostate), SBRT (lung) and IMRT (prostate) show 2.2 ± 3.5% (CL of the general-purpose linac: 2.4 ± 5.3%), 1.1 ± 1.7% (−0.3 ± 2.0%), 4.8 ± 3.7% (5.4 ± 5.3%) and −0.5 ± 2.5% (−0.1 ± 3.6%), respectively. The CLs for Vero4DRT show similar results to that for the general-purpose linac. Conclusion: The independent dose verification for the new linac is clinically available as a secondary check and we performed the check with the similar tolerance level of the general-purpose linac. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac.
St Aubin, J; Steciw, S; Fallone, B G
2010-09-01
Due to the close proximity of the linear accelerator (linac) to the magnetic resonance (MR) imager in linac-MR systems, it will be subjected to magnet fringe fields larger than the Earth's magnetic field of 5 x 10(-5) T. Even with passive or active shielding designed to reduce these fields, some magnitude of the magnetic field is still expected to intersect the linac, causing electron deflection and beam loss. This beam loss, resulting from magnetic fields that cannot be eliminated with shielding, can cause a detuning of the waveguide due to excessive heating. The detuning, if significant, could lead to an even further decrease in output above what would be expected strictly from electron deflections caused by an external magnetic field. Thus an investigation of detuning was performed through various simulations. According to the Lorentz force, the electrons will be deflected away from their straight course to the target, depositing energy as they impact the linac copper waveguide. The deposited energy would lead to a heating and deformation of the copper structure resulting in resonant frequency changes. PARMELA was used to determine the mean energy and fraction of total beam lost in each linac cavity. The energy deposited into the copper waveguide from the beam losses caused by transverse magnetic fields was calculated using the Monte Carlo program DOSRZnrc. From the total energy deposited, the rise in temperature and ultimately the deformation of the structure was estimated. The deformed structure was modeled using the finite element method program COMSOL MULTIPHYSICS to determine the change in cavity resonant frequency. The largest changes in resonant frequency were found in the first two accelerating cavities for each field strength investigated. This was caused by a high electron fluence impacting the waveguide inner structures coupled with their low kinetic energies. At each field strength investigated, the total change in accelerator frequency was less than a manufacturing tolerance of 10 kHz and is thus not expected to have a noticeable effect on accelerator performance. The amount of beam loss caused by magnetic fringe fields for a linac in a linac-MR system depends on the effectiveness of its magnetic shielding. Despite the best efforts to shield the linac from the magnetic fringe fields, some persistent magnetic field is expected which would result in electron beam loss. This investigation showed that the detuning of the waveguide caused by additional electron beam loss in persistent magnetic fields is not a concern.
Development of high intensity linear accelerator for heavy ion inertial fusion driver
NASA Astrophysics Data System (ADS)
Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan
2013-11-01
In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.
Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac
NASA Astrophysics Data System (ADS)
Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude
2016-02-01
Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences
Calculations of skyshine from an intense portable electron linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estes, G.P.; Hughes, H.G.; Fry, D.A.
1994-12-31
The MCNP Monte carlo code has been used at Los Alamos to calculate skyshine and terrain albedo efects from an intense portable electron linear accelerator that is to be used by the Russian Federation to radiograph nuclear weapons that may have been damaged by accidents. Relative dose rate profiles have been calculated. The design of the accelerator, along with a diagram, is presented.
A neutron beam facility for radioactive ion beams and other applications
NASA Astrophysics Data System (ADS)
Tecchio, L. B.
1999-06-01
In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.
The radioactive ion beams facility project for the legnaro laboratories
NASA Astrophysics Data System (ADS)
Tecchio, Luigi B.
1999-04-01
In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.
Accelerator structure and beam transport system for the KEK photon factory injector
NASA Astrophysics Data System (ADS)
Sato, Isamu
1980-11-01
The injector is a 2.5 GeV electron linac which serves multiple purposes, being not only the injector for the various storage rings of the Photon Factory but also for the next planned project, the TRISTAN RING, and also as an intense electron or γ-ray source for research on phenomena in widely diverse scientific fields. The accelerator structure and beam transport system for the linac were designed with the greatest care in order to avoid beam blow-up difficulties, and also to be as suitable as possible to enable the economical mass production of the accelerator guides and focusing magnets.
An electron linac-based system for BNCT of shallow tumors
NASA Astrophysics Data System (ADS)
Farhad Masoudi, S.; Ghiasi, Hedieh; Harif, Maryam; Rasouli, Fatemeh S.
2018-07-01
Although BNCT has been in existence since the 1950s, it continues to be of special significant and interest for wide groups of researchers. Recent studies, focused on investigating appropriate neutron sources as alternatives for nuclear reactors, revealed the high potential of electron linac-based facilities to improve the efficiency of this treatment method. The present simulation study has been devoted to both designing an optimized and geometrically simple target to be used as a photoneutron source based on an electron linac and designing a configuration composed of arrangement of materials to generate an appropriate beam for BNCT of shallow tumors considering the widely accepted criteria for pre-clinical survey. It has been found that the behavior of photoneutrons' current and their average energy on the surface of the target is independent of the incident energy. Accordingly, we managed to present a formula to predict the average energy of photoneutrons knowing the electron energy to an acceptable approximation avoiding Monte Carlo simulations. Considering the conflict between the beam intensity and its purity in the whole beam designing process, an optimized beam shaping assembly for electron linac of 18 MeV/ mA has been proposed. These results in essence confirm the ability of these sources for BNCT of shallow tumors and are therefore encouraging for further studies. Furthermore, the results show that this configuration, which the corresponding beam fulfills all the medical requirements, is also usable for electron linacs of other energies. This can be of high importance in practical point of view.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makufa, R; Bvochora-Nsingo, M; Karumekayi, T
2016-06-15
Purpose: The global burden of cancer is considerable, particularly in low and middle-income countries. Massachusetts General Hospital (MGH) and Botswana-Harvard AIDS Institute have partnered with the oncology community and government of Botswana to form BOTSOGO (BOTSwana Oncology Global Outreach) to address the rising burden of cancer in Botswana. Currently, radiation therapy (RT) is only available at a single linear accelerator (LINAC) in Gaborone Private Hospital (GPH). BOTSOGO worked to limit the absence of RT during a LINAC upgrade and ensure a safe transition to modern radiotherapy techniques. Methods: The existing Elekta Precise LINAC was decommissioned in November 2015 and replacedmore » with a new Elekta VERSA-HD with IMRT/VMAT/CBCT capability. Upgraded treatment planning and record-and-verify systems were also installed. Physicists from GPH and MGH collaborated during an intensive on-site visit in Botswana during the commissioning process. Measurements were performed using newly purchased Sun Nuclear equipment. Photon beams were matched with an existing model to minimize the time needed for beam modeling and machine down time. Additional remote peer review was also employed. Independent dosimetry was performed by irradiating OSLDs, which were subsequently analyzed at MGH. Results: Photon beam quality agreed with reference data within 0.2%. Electron beam data agreed with example clinical data within 3%. Absolute dose calibration was performed using both IAEA and AAPM protocols. Absolute dose measurements with OSLDs agreed within 5%. Quentry cloud-based software was installed to facilitate remote review of treatment plans. Patient treatments resumed in February 2016. The time without RT was reduced, therefore likely resulting in reduced patient morbidity/mortality. Conclusion: A global physics collaboration was utilized to commission a modern LINAC in a resource-constrained setting. This can be a useful model in other areas with limited resources. Further use of technology and on-site exchanges will facilitate the introduction of more advanced techniques in Botswana. We acknowledge funding support from the AAPM International Educational Activities Committee and the NCI Federal Share Proton Beam Program Income Grant.« less
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Shibata, T.; Ohta, M.; Yasumoto, M.; Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.; Sawada, K.; Fantz, U.
2014-02-01
To control the H0 atom production profile in the H- ion sources is one of the important issues for the efficient and uniform surface H- production. The purpose of this study is to construct a collisional radiative (CR) model to calculate the effective production rate of H0 atoms from H2 molecules in the model geometry of the radio-frequency (RF) H- ion source for Linac4 accelerator. In order to validate the CR model by comparison with the experimental results from the optical emission spectroscopy, it is also necessary for the model to calculate Balmer photon emission rate in the source. As a basic test of the model, the time evolutions of H0 production and the Balmer Hα photon emission rate are calculated for given electron energy distribution functions in the Linac4 RF H- ion source. Reasonable test results are obtained and basis for the detailed comparisons with experimental results have been established.
Wakefields in SLAC linac collimators
Novokhatski, A.; Decker, F. -J.; Smith, H.; ...
2014-12-02
When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible formore » the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.« less
NASA Astrophysics Data System (ADS)
Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.
2018-05-01
The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.
The Energy Efficiency of High Intensity Proton Driver Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovlev, Vyacheslav; Grillenberger, Joachim; Kim, Sang-Ho
2017-05-01
For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.
The linac coherent light source single particle imaging road map
Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.
2015-01-01
Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801
The linac coherent light source single particle imaging road map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquila, A.; Barty, A.; Bostedt, C.
Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, L; Archambault, L; Universite Laval, Quebec, Quebec
Purpose: This work describes how a non-clinical, research and teaching Linac is used as an extremely motivating and exciting way to introduce students to medical physics. Methods: The dedicated facility was inaugurated in 2014. The facility is composed of a fully equipped and functional state-of-the-art Varian TrueBeam Linac and a complete set of physics instruments and QA phantoms for the Linac and onboard imaging. The Linac bunker and treatment console are oversized such that a class of 12–15 can comfortably fit, seated if needed for longer sessions. A 3cr undergraduate laboratory course that includes medical imaging, x-ray source characterization (mAs,more » kVp, and filtering) and many others including an introductory Linac laboratory was created. The latter is composed of one general 4-hours session and a weekly 4-hours session for teams of two students. The general session includes a hands-on presentation of the Linac, its environment and a formal safety and radiation protection course (with an exam). Results: Since the winter of 2015, senior undergraduate (total of 15) pursuing either the medical physics or the biomedical engineering tracks can register. At the Linac, the students are allowed full control of the experiments, including set-up and irradiation. Supervisor intervention is limited to safety concerns for students or equipment. Measurements of output factors using two chambers (regular and small field) for various field sizes (1×1 to 30×30 cm{sup 2}) and of detailed depth-dose curves for 6 MV, 6 and 12 MeV beams are to be performed and discussed in a formal report. Conclusion: Full access to, and control of, a Linac is the high point of this course. It provides a glimpse of medical physics and generates an experimental background for those continuing to CAMPEP programs. This dedicated, non-clinical facility further enable enhance CAMPEP graduate teaching and research activities not possible with a clinical device.« less
Magnetic decoupling of the linac in a low field biplanar linac-MR system.
St Aubin, J; Steciw, S; Fallone, B G
2010-09-01
The integration of a low field biplanar magnetic resonance (MR) imager and linear accelerator (linac) causes magnetic interference at the linac due to the MR fringe fields. In order to eliminate this interference, passive and active magnetic shielding designs are investigated. The optimized design of passive magnetic shielding was performed using the finite element method. The design was required to achieve no greater than a 20% electron beam loss within the linac waveguide and electron gun, no greater than 0.06 T at the multileaf collimator (MLC) motors, and generate a distortion of the main MR imaging volume of no greater than 300 ppm. Through the superposition of the analytical solution for a single current carrying wire loop, active shielding designs in the form of three and four sets of coil pairs surrounding the linac waveguide and electron gun were also investigated. The optimized current and coil center locations that yielded the best cancellation of the MR fringe fields at the linac were determined using sequential quadratic programming. Optimized passive shielding in the form of two steel cylinders was designed to meet the required constraints. When shielding the MLC motors along with the waveguide and electron gun, the thickness of the cylinders was less than 1 mm. If magnetically insensitive MLC motors are used, no MLC shielding would be required and the waveguide shield (shielding the waveguide and electron gun) became 1.58 mm thick. In addition, the optimized current and coil spacing for active shielding was determined for both three and four coil pair configurations. The results of the active shielding optimization produced no beam loss within the waveguide and electron gun and a maximum MR field distortion of 91 ppm over a 30 cm diameter spherical volume. Very simple passive and active shielding designs have been shown to magnetically decouple the linac from the MR imager in a low field biplanar linac-MR system. The MLC passive shielding produced the largest distortion of the MR field over the imaging volume. With the use of magnetically insensitive motors, the MR field distortion drops substantially since no MLC shield is required. The active shielding designs yielded no electron beam loss within the linac.
WE-G-BRA-05: IROC Houston On-Site Audits and Parameters That Affect Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kry, S; Dromgoole, L; Alvarez, P
Purpose: To highlight the IROC Houston on-site dosimetry audit program, and to investigate the impact of clinical conditions on the frequency of errors/recommendations noted by IROC Houston. Methods: The results of IROC Houston on-site audits from 2000-present were abstracted and compared to clinical parameters, this included 409 institutions and 1020 linacs. In particular, we investigated the frequency of recommendations versus year, and the impact of repeat visits on the number of recommendations. We also investigated the impact on the number of recommendations of several clinical parameters: the number and age of the linacs, the linac/TPS combination, and the scope ofmore » the QA program. Results: The number of recommendations per institution (3.1 average) has shown decline between 2000 and present, although the number of recommendations per machine (0.89) has not changed. Previous IROC Houston site visits did not Result in fewer recommendations on a repeat visit, but IROC Houston tests have changed substantially during the last 15 years as radiotherapy technology has changed. There was no impact on the number of recommendations based on the number of machines at the institution or the age of a given machine. The fewest recommendations were observed for Varian-Eclipse combinations (0.71 recs/machine), while Elekta- Pinnacle combinations yielded the most (1.62 recs/machine). Finally, in the TG-142 era (post-2010), those institutions that had a QA recommendation (n=77) had significantly more other recommendations (1.83 per institution) than those that had no QA rec (n=12, 1.33 per institution). Conclusion: Establishing and maintaining a successful radiotherapy program is challenging and areas of improvement can routinely be identified. Clinical conditions such as linac-TPS combinations and the establishment of a good QA program impact the frequency of errors/deficiencies identified by IROC Houston during their on-site review process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etmektzoglou, A; Mishra, P; Svatos, M
Purpose: To automate creation and delivery of robotic linac trajectories with TrueBeam Developer Mode, an open source spreadsheet-based trajectory generation tool has been developed, tested and made freely available. The computing power inherent in a spreadsheet environment plus additional functions programmed into the tool insulate users from the underlying schema tedium and allow easy calculation, parameterization, graphical visualization, validation and finally automatic generation of Developer Mode XML scripts which are directly loadable on a TrueBeam linac. Methods: The robotic control system platform that allows total coordination of potentially all linac moving axes with beam (continuous, step-and-shoot, or combination thereof) becomesmore » available in TrueBeam Developer Mode. Many complex trajectories are either geometric or can be described in analytical form, making the computational power, graphing and programmability available in a spreadsheet environment an easy and ideal vehicle for automatic trajectory generation. The spreadsheet environment allows also for parameterization of trajectories thus enabling the creation of entire families of trajectories using only a few variables. Standard spreadsheet functionality has been extended for powerful movie-like dynamic graphic visualization of the gantry, table, MLC, room, lasers, 3D observer placement and beam centerline all as a function of MU or time, for analysis of the motions before requiring actual linac time. Results: We used the tool to generate and deliver extended SAD “virtual isocenter” trajectories of various shapes such as parameterized circles and ellipses. We also demonstrated use of the tool in generating linac couch motions that simulate respiratory motion using analytical parameterized functions. Conclusion: The SAGE tool is a valuable resource to experiment with families of complex geometric trajectories for a TrueBeam Linac. It makes Developer Mode more accessible as a vehicle to quickly translate research ideas into machine readable scripts without programming knowledge. As an open source initiative, it also enables researcher collaboration on future developments. I am a full time employee at Varian Medical Systems, Palo Alto, California.« less
Design of a CW high charge state heavy ion RFQ for SSC-LINAC
NASA Astrophysics Data System (ADS)
Liu, G.; Lu, Y. R.; He, Y.; Wang, Z.; Xiao, C.; Gao, S. L.; Yang, Y. Q.; Zhu, K.; Yan, X. Q.; Chen, J. E.; Yuan, Y. J.; Zhao, H. W.
2013-02-01
The new linac injector SSC-LINAC has been proposed to replace the existing Separator Sector Cyclotron (SSC). This effort is to improve the beam efficiency of the Heavy Ion Research Facility of Lanzhou (HIRFL). As a key component of the linac, a continuous-wave (CW) mode high charge state heavy ion radio-frequency quadrupole (RFQ) accelerator has been designed. It accelerates ions with the ratio of mass to charge up to 7 from 3.728 keV/u to 143 keV/u. The requirements of CW mode operation and the transportation of intense beam have been considered as the greatest challenges. The design is based on 238U34+ beams, whose current is 0.5 pmA (0.5 particle mili-ampere, which is the measured 17 emA electric current divided by charge state of heavy ions). It achieves the transmission efficiency of 94% with 2508.46 mm long vanes in simulation. To improve the transmission efficiency and quality of the beams, the phase advance has been taken into account to analyze the reasons of beam loss and emittance growth. Parametric resonance and beam mismatch have been carefully avoided by adjusting the structure parameters. The parameter-sensitivity of the design is checked by transportation simulations of various input beams. To verify the applicability of machining, the effects of different vane manufacturing methods on beam dynamics are presented in this paper.
Spiral 2 Cryogenic System for The Superconducting LINAC
NASA Astrophysics Data System (ADS)
Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.
2017-02-01
SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.
Future HEP Accelerators: The US Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Pushpalatha; Shiltsev, Vladimir
2015-11-02
Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less
NASA Astrophysics Data System (ADS)
Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.
2010-04-01
We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.
IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers
NASA Astrophysics Data System (ADS)
Ferrario, M.; Alesini, D.; Alessandroni, M.; Anania, M. P.; Andreas, S.; Angelone, M.; Arcovito, A.; Arnesano, F.; Artioli, M.; Avaldi, L.; Babusci, D.; Bacci, A.; Balerna, A.; Bartalucci, S.; Bedogni, R.; Bellaveglia, M.; Bencivenga, F.; Benfatto, M.; Biedron, S.; Bocci, V.; Bolognesi, M.; Bolognesi, P.; Boni, R.; Bonifacio, R.; Boscherini, F.; Boscolo, M.; Bossi, F.; Broggi, F.; Buonomo, B.; Calo, V.; Catone, D.; Capogni, M.; Capone, M.; Cassou, K.; Castellano, M.; Castoldi, A.; Catani, L.; Cavoto, G.; Cherubini, N.; Chirico, G.; Cestelli-Guidi, M.; Chiadroni, E.; Chiarella, V.; Cianchi, A.; Cianci, M.; Cimino, R.; Ciocci, F.; Clozza, A.; Collini, M.; Colo, G.; Compagno, A.; Contini, G.; Coreno, M.; Cucini, R.; Curceanu, C.; Curciarello, F.; Dabagov, S.; Dainese, E.; Davoli, I.; Dattoli, G.; De Caro, L.; De Felice, P.; De Leo, V.; Dell Agnello, S.; Della Longa, S.; Delle Monache, G.; De Spirito, M.; Di Cicco, A.; Di Donato, C.; Di Gioacchino, D.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Dodaro, A.; Doria, A.; Dosselli, U.; Drago, A.; Dupraz, K.; Escribano, R.; Esposito, A.; Faccini, R.; Ferrari, A.; Filabozzi, A.; Filippetto, D.; Fiori, F.; Frasciello, O.; Fulgentini, L.; Gallerano, G. P.; Gallo, A.; Gambaccini, M.; Gatti, C.; Gatti, G.; Gauzzi, P.; Ghigo, A.; Ghiringhelli, G.; Giannessi, L.; Giardina, G.; Giannini, C.; Giorgianni, F.; Giovenale, E.; Giulietti, D.; Gizzi, L.; Guaraldo, C.; Guazzoni, C.; Gunnella, R.; Hatada, K.; Iannone, M.; Ivashyn, S.; Jegerlehner, F.; Keeffe, P. O.; Kluge, W.; Kupsc, A.; Labate, L.; Levi Sandri, P.; Lombardi, V.; Londrillo, P.; Loreti, S.; Lorusso, A.; Losacco, M.; Lukin, A.; Lupi, S.; Macchi, A.; Magazù, S.; Mandaglio, G.; Marcelli, A.; Margutti, G.; Mariani, C.; Mariani, P.; Marzo, G.; Masciovecchio, C.; Masjuan, P.; Mattioli, M.; Mazzitelli, G.; Merenkov, N. P.; Michelato, P.; Migliardo, F.; Migliorati, M.; Milardi, C.; Milotti, E.; Milton, S.; Minicozzi, V.; Mobilio, S.; Morante, S.; Moricciani, D.; Mostacci, A.; Muccifora, V.; Murtas, F.; Musumeci, P.; Nguyen, F.; Orecchini, A.; Organtini, G.; Ottaviani, P. L.; Pace, C.; Pace, E.; Paci, M.; Pagani, C.; Pagnutti, S.; Palmieri, V.; Palumbo, L.; Panaccione, G. C.; Papadopoulos, C. F.; Papi, M.; Passera, M.; Pasquini, L.; Pedio, M.; Perrone, A.; Petralia, A.; Petrarca, M.; Petrillo, C.; Petrillo, V.; Pierini, P.; Pietropaolo, A.; Pillon, M.; Polosa, A. D.; Pompili, R.; Portoles, J.; Prosperi, T.; Quaresima, C.; Quintieri, L.; Rau, J. V.; Reconditi, M.; Ricci, A.; Ricci, R.; Ricciardi, G.; Ricco, G.; Ripani, M.; Ripiccini, E.; Romeo, S.; Ronsivalle, C.; Rosato, N.; Rosenzweig, J. B.; Rossi, A. A.; Rossi, A. R.; Rossi, F.; Rossi, G.; Russo, D.; Sabatucci, A.; Sabia, E.; Sacchetti, F.; Salducco, S.; Sannibale, F.; Sarri, G.; Scopigno, T.; Sekutowicz, J.; Serafini, L.; Sertore, D.; Shekhovtsova, O.; Spassovsky, I.; Spadaro, T.; Spataro, B.; Spinozzi, F.; Stecchi, A.; Stellato, F.; Surrenti, V.; Tenore, A.; Torre, A.; Trentadue, L.; Turchini, S.; Vaccarezza, C.; Vacchi, A.; Valente, P.; Venanzoni, G.; Vescovi, S.; Villa, F.; Zanotti, G.; Zema, N.; Zobov, M.; Zomer, F.
2014-03-01
This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.
Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T
2016-02-01
A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy
NASA Astrophysics Data System (ADS)
Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.
2016-02-01
A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delruelle, N.; Leclercq, Y.; Pirotte, O.
2014-01-29
The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the completemore » superconducting linac.« less
First heavy ion beam tests with a superconducting multigap CH cavity
NASA Astrophysics Data System (ADS)
Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.
2018-02-01
Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.
Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, J.; Bhat, C. M.; Hendricks, B. S.
We have developed a computer program interfaced with the ACNET environment of Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection into the Booster. It uses a digitizing oscilloscope and provides users an ability to configure the scope settings for optimal data acquisition from a resistive wall current monitor. When the program is launched, a) a one shot timeline is generated to initiate beam injection into the Booster, b) a gap of about 40 ns is produced in the injected beam using a set of fast kickers, c) collects line charge distribution datamore » from the wall current monitor for the first 200 μs from the injection and d) performs complete data analysis to extract full beam energy spread of the beam. The program also gives the option to store the data for offline analyses. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from recent measurements.« less
Beam dynamics pre-design with KONUS principle for the DTL of SPPC p-Linac
NASA Astrophysics Data System (ADS)
Liu, Jing; Li, Haipeng; Lu, Yuanrong; Su, Jiancang; Liu, Xiaolong; Fu, Qi
2018-04-01
As the Higgs bosons were observed on the LHC in 2012, a two-stage particle collider program named CEPC-SPPC is proposed for precise measurement of Higgs properties and exploring the new physics models. In order to deliver a 2.1-TeV proton beam into the Super Proton-Proton Collider (SPPC), the injector chain will use a 1.2-GeV proton linac (p-Linac) and three synchrotrons of p-RCS, MSS and SS. This paper focuses on the preliminary conceptual design of the DTL within the p-Linac and mainly concerns about the beam dynamics studies. Taking advantages of the KONUS principle and LORASR code, a 325 MHz, 50.65 MeV DTL design which is composed of three tanks in 15.6 m will be presented. The whole DTL contains 129 gaps for beam acceleration, one quadruple doublet which is behind the buncher and eight quadruple triplets of which three are located after each tank, respectively. The aims of this pre-study are to optimize the acceleration electric field distribution together with the focusing magnetic field parameters, enhance the beam transmission quality of beam envelopes, particle distribution and energy spread, then improve the DTL performance in terms of transmission efficiency and so on. The results of the analyses show that the DTL pre-design achieves 16.8 times high energy gain and meets all the p-Linac requirements well.
High Intensity Proton Accelerator Project in Japan (J-PARC).
Tanaka, Shun-ichi
2005-01-01
The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.
TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, P; Dong, B; Zhang, K
Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear acceleratormore » (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.« less
Post-acceleration of laser driven protons with a compact high field linac
NASA Astrophysics Data System (ADS)
Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.
2013-05-01
We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Juan Francisco, E-mail: jfcdrr@gmail.com; San José, Sol; Garrido, LLuís
2013-10-01
To introduce an approach for online adaptive replanning (i.e., dose-guided radiosurgery) in frameless stereotactic radiosurgery, when a 6-dimensional (6D) robotic couch is not available in the linear accelerator (linac). Cranial radiosurgical treatments are planned in our department using intensity-modulated technique. Patients are immobilized using thermoplastic mask. A cone-beam computed tomography (CBCT) scan is acquired after the initial laser-based patient setup (CBCT{sub setup}). The online adaptive replanning procedure we propose consists of a 6D registration-based mapping of the reference plan onto actual CBCT{sub setup}, followed by a reoptimization of the beam fluences (“6D plan”) to achieve similar dosage as originally wasmore » intended, while the patient is lying in the linac couch and the original beam arrangement is kept. The goodness of the online adaptive method proposed was retrospectively analyzed for 16 patients with 35 targets treated with CBCT-based frameless intensity modulated technique. Simulation of reference plan onto actual CBCT{sub setup}, according to the 4 degrees of freedom, supported by linac couch was also generated for each case (4D plan). Target coverage (D99%) and conformity index values of 6D and 4D plans were compared with the corresponding values of the reference plans. Although the 4D-based approach does not always assure the target coverage (D99% between 72% and 103%), the proposed online adaptive method gave a perfect coverage in all cases analyzed as well as a similar conformity index value as was planned. Dose-guided radiosurgery approach is effective to assure the dose coverage and conformity of an intracranial target volume, avoiding resetting the patient inside the mask in a “trial and error” way so as to remove the pitch and roll errors when a robotic table is not available.« less
Assessment of Alternative RF Linac Structures for APT
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The APT program has been examining both normal and superconducting variants of the APT linac for the past two years. A decision on which of the two will be the selected technology will depend upon several considerations including the results of ongoing feasibility experiments, the performance and overall attractiveness of each of the design concepts, and an assessment of the system-level features of both alternatives. The primary objective of the Assessment of Alternative RF Linac Structures for APT study reported herein was to assess and compare, at the system-level, the performance, capital and life cycle costs, reliability/availability/maintainability (RAM) and manufacturingmore » schedules of APT RF linear accelerators based upon both superconducting and normal conducting technologies. A secondary objective was to perform trade studies to explore opportunities for system optimization, technology substitution and alternative growth pathways and to identify sensitivities to design uncertainties.« less
NASA Astrophysics Data System (ADS)
Rahmani, Faezeh; Shahriari, Majid; Minoochehr, Abdolhamid; Nedaie, Hasan
2011-06-01
A hybrid photoneutron target including natural uranium has been studied for a 20 MeV linear electron accelerator (Linac) based Boron Neutron Capture Therapy (BNCT) facility. In this study the possibility of using uranium to increase the neutron intensity has been investigated by focusing on the time dependence behavior of the build-up and decay of the delayed gamma rays from fission fragments and activation products through photo-fission reactions in the BSA (Beam Shaping Assembly) configuration design. Delayed components of neutrons and photons were calculated. The obtained BSA parameters are in agreement with the IAEA recommendation and compared to the hybrid photoneutron target without U. The epithermal flux in the suggested design is 2.67E9 (n/cm 2s/mA).
Advanced Accelerators for Medical Applications
NASA Astrophysics Data System (ADS)
Uesaka, Mitsuru; Koyama, Kazuyoshi
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.
Automatic detection of MLC relative position errors for VMAT using the EPID-based picket fence test
NASA Astrophysics Data System (ADS)
Christophides, Damianos; Davies, Alex; Fleckney, Mark
2016-12-01
Multi-leaf collimators (MLCs) ensure the accurate delivery of treatments requiring complex beam fluences like intensity modulated radiotherapy and volumetric modulated arc therapy. The purpose of this work is to automate the detection of MLC relative position errors ⩾0.5 mm using electronic portal imaging device-based picket fence tests and compare the results to the qualitative assessment currently in use. Picket fence tests with and without intentional MLC errors were measured weekly on three Varian linacs. The picket fence images analysed covered a time period ranging between 14-20 months depending on the linac. An algorithm was developed that calculated the MLC error for each leaf-pair present in the picket fence images. The baseline error distributions of each linac were characterised for an initial period of 6 months and compared with the intentional MLC errors using statistical metrics. The distributions of median and one-sample Kolmogorov-Smirnov test p-value exhibited no overlap between baseline and intentional errors and were used retrospectively to automatically detect MLC errors in routine clinical practice. Agreement was found between the MLC errors detected by the automatic method and the fault reports during clinical use, as well as interventions for MLC repair and calibration. In conclusion the method presented provides for full automation of MLC quality assurance, based on individual linac performance characteristics. The use of the automatic method has been shown to provide early warning for MLC errors that resulted in clinical downtime.
Effect of transverse magnetic fields on a simulated in-line 6 MV linac
NASA Astrophysics Data System (ADS)
St. Aubin, J.; Steciw, S.; Fallone, B. G.
2010-08-01
The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.
Development and operation of the JAERI superconducting energy recovery linacs
NASA Astrophysics Data System (ADS)
Minehara, Eisuke J.
2006-02-01
The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.
Ramey, Stephen James; Padgett, Kyle R; Lamichhane, Narottam; Neboori, Hanmath J; Kwon, Deukwoo; Mellon, Eric A; Brown, Karen; Duffy, Melissa; Victoria, James; Dogan, Nesrin; Portelance, Lorraine
2018-03-01
This study aims to perform a dosimetric comparison of 2 magnetic resonance (MR)-guided radiation therapy systems capable of performing online adaptive radiation therapy versus a conventional radiation therapy system for pancreas stereotactic body radiation therapy. Ten cases of patients with pancreatic adenocarcinoma previously treated in our institution were used for this analysis. MR-guided tri-cobalt 60 therapy (MR-cobalt) and MR-LINAC plans were generated and compared with conventional LINAC (volumetric modulated arc therapy) plans. The prescription dose was 40 Gy in 5 fractions covering 95% of the planning tumor volume for the 30 plans. The same organs at risk (OARs) dose constraints were used in all plans. Dose-volume-based indices were used to compare PTV coverage and OAR sparing. The conformity index of 40 Gy in 5 fractions covering 95% of the planning tumor volume demonstrated higher conformity in both LINAC-based plans compared with MR-cobalt plans. Although there was no difference in mean conformity index between LINAC and MR-LINAC plans (1.08 in both), there was a large difference between LINAC and MR-cobalt plans (1.08 vs 1.52). Overall, 79%, 72%, and 78% of critical structure dosimetric constraints were met with LINAC, MR-cobalt, and MR-LINAC plans, respectively. The MR-cobalt plans delivered more doses to all OARs compared with the LINAC plans. In contrast, the doses to the OARs of the MR-LINAC plans were similar to LINAC plans except in 2 cases: liver mean dose (MR-LINAC, 2 .8 Gy vs LINAC, 2.1 Gy) and volume of duodenum receiving at least 15 Gy (MR-LINAC, 13.2 mL vs LINAC, 15.4 mL). Both differences are likely not clinically significant. This study demonstrates that dosimetrically similar plans were achieved with conventional LINAC and MR-LINAC, whereas doses to OARs were statistically higher for MR-cobalt compared with conventional LINAC plans because of low-dose spillage. Given the improved tumor-tracking capabilities of MR-LINAC, further studies should evaluate potential benefits of adaptive radiation therapy-capable MR-guided LINAC treatment. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.
2010-11-15
Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less
Transport and energy selection of laser generated protons for postacceleration with a compact linac
NASA Astrophysics Data System (ADS)
Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco
2013-03-01
Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.
Second user workshop on high-power lasers at the Linac Coherent Light Source
Heimann, Phil; Glenzer, Siegfried
2015-05-28
The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, W; Fan, X; Qiu, R
2014-06-01
Purpose: To compare and analyze the characteristics of static intensity-modulated radiotherapy (IMRT) plans designed on Elekta and Varian Linac in different esophageal cancer(EC), exploring advantages and disadvantages of different vendor Linac, thus can be better serve for clinical. Methods: Twenty-four patients with EC were selected, including 6 cases located in the cervical, upper, middle and the lower thorax, respectively. Two IMRT plans were generated with the Oncentra planning system: in Elekta and Varian Linac, prescription dose of 60Gy in 30 fractions to the PTV. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such asmore » lungs, spinal cord and heart, and additional Monitor units(MU), treatment time, Homogeneity index(HI), Conformity index(CI) and Gamma index comparisons were performed. Results: All plans resulted in abundant dose coverage of PTV for EC of different locations. The doses to PTV, HI and OAR in Elekta plans were not statistically different in comparison with Varian plans, with the following exceptions: in cervical, upper and lower thoracic EC the PTV's CI, and in middle thorax EC PTV's D2, D50, V105 and PTV-average were better in Elekta plans than in Varian plans. In the cervical, upper and the middle thorax EC, treatment time were significantly decreased in Varian plans as against Elekta plans, while in the lower thoracic EC treatment time were no striking difference. MUs and gamma index were similar between the two Linac plans. Conclusion: For the the middle thorax EC Varian plans is better than Elekta plans, not only in treatment time but in the PTV dose; while for the lower thorax EC Elekta plans is the first choice for better CI; for the other part of the EC usually Elekta plans can increase the CI, while Varian plans can reduce treatment time, can be selected according to the actual situation of the patient treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Alqathami, M; Wang, J
Purpose: To compare novel radiation reporting systems utilizing ferric ion (Fe{sup 3+}) reduction versus ferrous ion (Fe{sup 2+}) oxidation in gelatin matrixes for 3D and 4D (3D+time) MR-guided radiation therapy dosimetry. Methods: Dosimeters were irradiated using an integrated 1.5T MRI and 7MV linear accelerator (MR-Linac). Dosimeters were read-out with both a spectrophotometer and the MRI component of the MR-Linac immediately after irradiation. Changes in optical density (OD) were measured using a spectrophotometer; changes in MR signal intensity due to the paramagnetic differences in the iron ions were measured using the MR-Linac in real-time during irradiation (balanced-FFE sequences) and immediately aftermore » irradiation (T{sub 1}-weighted and inversion recovery sequences). Results: Irradiation of Fe{sup 3+} reduction dosimeters resulted in a stable red color with an absorbance peak at 512 nm. The change in OD relative to dose exhibited a linear response up to 100 Gy (R{sup 2}=1.00). T{sub 1}-weighted-MR signal intensity (SI) changed minimally after irradiation with increases of 8.0% for 17 Gy and 9.7% after escalation to 35 Gy compared to the un-irradiated region. Irradiation of Fe{sup 2+} oxidation dosimeters resulted in a stable purple color with absorbance peaks at 440 and 585 nm. The changes in OD, T{sub 1}-weighted-MR SI, and R{sub 1} relative to dose exhibited a linear response up to at least 8 Gy (R{sup 2}=1.00, 0.98, and 0.99) with OD saturation above 40 Gy. The T{sub 1}-weighted-MR SI increased 50.3% for 17 Gy compared to the un-irradiated region. The change in SI was observed in both 2D+time and 4D (3D+time) acquisitions post-irradiation and in real-time during irradiation with a linear increase with respect to dose (R{sup 2}>0.93). Conclusion: The Fe{sup 2+} oxidation-based system was superior as 4D dosimeters for MR-guided radiation therapy due to its higher sensitivity in both optical and MR signal readout and feasibility for real-time 4D dose readout. The Fe{sup 3+} reduction system is recommended for high dose applications. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH-102SPS.« less
Online helium inventory monitoring of JLab cryogenic systems
NASA Astrophysics Data System (ADS)
Hasan, N.; Knudsen, P.; Wright, M.
2017-12-01
There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.
Neutron production from flattening filter free high energy medical linac: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.
2015-11-01
One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.
Cai, Bin; Dolly, Steven; Kamal, Gregory; Yaddanapudi, Sridhar; Sun, Baozhou; Goddu, S Murty; Mutic, Sasa; Li, Hua
2018-04-28
To investigate the feasibility of using kV flat panel detector on linac for consistency evaluations of kV X-ray generator performance. An in-house designed aluminum (Al) array phantom with six 9×9 cm 2 square regions having various thickness was proposed and used in this study. Through XML script-driven image acquisition, kV images with various acquisition settings were obtained using the kV flat panel detector. Utilizing pre-established baseline curves, the consistency of X-ray tube output characteristics including tube voltage accuracy, exposure accuracy and exposure linearity were assessed through image quality assessment metrics including ROI mean intensity, ROI standard deviation (SD) and noise power spectrums (NPS). The robustness of this method was tested on two linacs for a three-month period. With the proposed method, tube voltage accuracy can be verified through conscience check with a 2% tolerance and 2 kVp intervals for forty different kVp settings. The exposure accuracy can be tested with a 4% consistency tolerance for three mAs settings over forty kVp settings. The exposure linearity tested with three mAs settings achieved a coefficient of variation (CV) of 0.1. We proposed a novel approach that uses the kV flat panel detector available on linac for X-ray generator test. This approach eliminates the inefficiencies and variability associated with using third party QA detectors while enabling an automated process. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Multipass Steering: A Reference Implementation
NASA Astrophysics Data System (ADS)
Hennessey, Michael; Tiefenback, Michael
2015-10-01
We introduce a reference implementation of a protocol to compute corrections that bring all beams in one of the CEBAF linear accelerators (linac) to axis, including, with a larger tolerance, the lowest energy pass using measured beam trajectory data. This method relies on linear optics as representation of the system; we treat beamline perturbations as magnetic field errors localized to regions between cryomodules, providing the same transverse momentum kick to each beam. We produce a vector of measured beam position data with which we left-multiply the pseudo-inverse of a coefficient array, A, that describes the transport of the beam through the linac using parameters that include the magnetic offsets of the quadrupole magnets, the instrumental offsets of the BPMs, and the beam initial conditions. This process is repeated using a reduced array to produce values that can be applied to the available correcting magnets and beam initial conditions. We show that this method is effective in steering the beam to a straight axis along the linac by using our values in elegant, the accelerator simulation program, on a model of the linac in question. The algorithms in this reference implementation provide a tool for systematic diagnosis and cataloging of perturbations in the beam line. Supported by Jefferson Lab, Old Dominion University, NSF, DOE.
Poster - Thurs Eve-21: Experience with the Velocity(TM) pre-commissioning services.
Scora, D; Sixel, K; Mason, D; Neath, C
2008-07-01
As the first Canadian users of the Velocity™ program offered by Siemens, we would like to share our experience with the program. The Velocity program involves the measurement of the commissioning data by an independent Physics consulting company at the factory test cell. The data collected was used to model the treatment beams in our planning system in parallel with the linac delivery and installation. Beam models and a complete data book were generated for two photon energies including Virtual Wedge, physical wedge, and IMRT, and 6 electron energies at 100 and 110 cm SSD. Our final beam models are essentially the Velocity models with some minor modifications to customize the fit to our liking. Our experience with the Velocity program was very positive; the data collection was professional and efficient. It allowed us to proceed with confidence in our beam data and modeling and to spend more time on other aspects of opening a new clinic. With the assistance of the program we were able to open a three-linac clinic with Image-Guided IMRT within 4.5 months of machine delivery. © 2008 American Association of Physicists in Medicine.
Experiments with radioactive target samples at FRANZ
NASA Astrophysics Data System (ADS)
Sonnabend, K.; Altstadt, S.; Beinrucker, C.; Berger, M.; Endres, A.; Fiebiger, S.; Gerbig, J.; Glorius, J.; Göbel, K.; Heftrich, T.; Hinrichs, O.; Koloczek, A.; Lazarus, A.; Lederer, C.; Lier, A.; Mei, B.; Meusel, O.; Mevius, E.; Ostermöller, J.; Plag, R.; Pohl, M.; Reifarth, R.; Schmidt, S.; Slavkovská, Z.; Thomas, B.; Thomas, T.; Weigand, M.; Wolf, C.
2016-01-01
The FRANZ facility is currently under construction at Goethe Universität Frankfurt a.M., Germany. It is designed to produce the world's highest neutron intensities in the astrophysically relevant energy range between 10 keV and 1 MeV and consists of a high-intensity proton linac providing energies close to the threshold of the 7Li(p,n) reaction at Ep = 1880 keV. The high intensities of both the proton and the neutron beam allow the investigation of reactions of unstable target isotopes since the needed amount of target material is significantly reduced. We will present two examplary reactions relevant for the s process and the nucleosynthesis of p nuclei, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, S; Clements, C; Hyer, D
2016-06-15
Purpose: To develop and demonstrate application of a method that characterizes deviation of linac x-ray beams from the centroid of the volumetric radiation isocenter as a function of gantry, collimator, and table variables. Methods: A set of Winston-Lutz ball-bearing images was used to determine the gantry radiation isocenter as the midrange of deviation values resulting from gantry and collimator rotation. Also determined were displacement of table axis from gantry isocenter and recommended table axis adjustment. The method, previously reported, has been extended to include the effect of collimator walkout by obtaining measurements with 0 and 180 degree collimator rotation formore » each gantry angle. Twelve images were used to characterize the volumetric isocenter for the full range of available gantry, collimator, and table rotations. Results: Three Varian True Beam, two Elekta Infinity and four Versa HD linacs at five institutions were tested using identical methodology. Varian linacs exhibited substantially less deviation due to head sag than Elekta linacs (0.4 mm vs. 1.2 mm on average). One linac from each manufacturer had additional isocenter deviation of 0.3 to 0.4 mm due to jaw instability with gantry and collimator rotation. For all linacs, the achievable isocenter tolerance was dependent on adjustment of collimator position offset, transverse position steering, and alignment of the table axis with gantry isocenter, facilitated by these test results. The pattern and magnitude of table axis wobble vs. table angle was reproducible and unique to each machine. Conclusion: This new method provides a comprehensive set of isocenter deviation values including all variables. It effectively facilitates minimization of deviation between beam center and target (ball-bearing) position. This method was used to quantify the effect of jaw instability on isocenter deviation and to identify the offending jaw. The test is suitable for incorporation into a routine machine QA program. Software development was performed by Radiological Imaging Technology, Inc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, H; Yi, B; Prado, K
2015-06-15
Purpose: This work is to investigate the feasibility of a standardized monthly quality check (QC) of LINAC output determination in a multi-site, multi-LINAC institution. The QC was developed to determine individual LINAC output using the same optimized measurement setup and a constant calibration factor for all machines across the institution. Methods: The QA data over 4 years of 7 Varian machines over four sites, were analyzed. The monthly output constancy checks were performed using a fixed source-to-chamber-distance (SCD), with no couch position adjustment throughout the measurement cycle for all the photon energies: 6 and 18MV, and electron energies: 6, 9,more » 12, 16 and 20 MeV. The constant monthly output calibration factor (Nconst) was determined by averaging the machines’ output data, acquired with the same monthly ion chamber. If a different monthly ion chamber was used, Nconst was then re-normalized to consider its different NDW,Co-60. Here, the possible changes of Nconst over 4 years have been tracked, and the precision of output results based on this standardized monthly QA program relative to the TG-51 calibration for each machine was calculated. Any outlier of the group was investigated. Results: The possible changes of Nconst varied between 0–0.9% over 4 years. The normalization of absorbed-dose-to-water calibration factors corrects for up to 3.3% variations of different monthly QA chambers. The LINAC output precision based on this standardized monthly QC relative to the TG-51 output calibration is within 1% for 6MV photon energy and 2% for 18MV and all the electron energies. A human error in one TG-51 report was found through a close scrutiny of outlier data. Conclusion: This standardized QC allows for a reasonably simplified, precise and robust monthly LINAC output constancy check, with the increased sensitivity needed to detect possible human errors and machine problems.« less
A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source
NASA Astrophysics Data System (ADS)
Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu
At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.
Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, L.; Lindberg, R.; Kim, K. -J.
The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considersmore » a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.« less
HOPI: on-line injection optimization program
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMaire, J L
1977-10-26
A method of matching the beam from the 200 MeV linac to the AGS without the necessity of making emittance measurements is presented. An on-line computer program written on the PDP10 computer performs the matching by modifying independently the horizontal and vertical emittance. Experimental results show success with this method, which can be applied to any matching section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Eddy, N.; Edstrom, D.
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.
Source of coherent short wavelength radiation
Villa, Francesco
1990-01-01
An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.
High-Energy Density science at the Linac Coherent Light Source
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.
2016-03-01
The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. In recent experiments we have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.
Brightness analysis of an electron beam with a complex profile
NASA Astrophysics Data System (ADS)
Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi
2018-05-01
We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.
Ultrafast Science Opportunities with Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durr, Hermann
X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less
High-Energy Density science at the Linac Coherent Light Source
Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.
2016-04-01
The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less
Investigations on KONUS beam dynamics using the pre-stripper drift tube linac at GSI
NASA Astrophysics Data System (ADS)
Xiao, C.; Du, X. N.; Groening, L.
2018-04-01
Interdigital H-mode (IH) drift tube linacs (DTLs) based on KONUS beam dynamics are very sensitive to the rf-phases and voltages at the gaps between tubes. In order to design these DTLs, a deep understanding of the underlying longitudinal beam dynamics is mandatory. The report presents tracking simulations along an IH-DTL using the PARTRAN and BEAMPATH codes together with MATHCAD and CST. Simulation results illustrate that the beam dynamics design of the pre-stripper IH-DTL at GSI is sensitive to slight deviations of rf-phase and gap voltages with impact to the mean beam energy at the DTL exit. Applying the existing geometrical design, rf-voltages, and rf-phases of the DTL were re-adjusted. In simulations this re-optimized design can provide for more than 90% of transmission of an intense 15 emA beam keeping the reduction of beam brilliance below 25%.
Multileaf collimator-based linear accelerator radiosurgery: five-year efficiency analysis.
Lawson, Joshua D; Fox, Tim; Waller, Anthony F; Davis, Lawrence; Crocker, Ian
2009-03-01
In 1989, Emory University initiated a linear accelerator (linac) radiosurgery program using circular collimators. In 2001, the program converted to a multileaf collimator. Since then, the treatment parameters of each patient have been stored in the record-and-verify system. Three major changes have occurred in the radiosurgery program in the past 6 years: in 2002, treatment was changed from static conformal beams to dynamic conformal arc (DCA) therapy, and all patients were imaged before treatment. Beginning in 2005, a linac was used, with the opportunity to treat at higher dose rates (600-1,000 monitor units/min). The aim of this study was to analyze the time required to deliver radiosurgery and the factors affecting treatment delivery. Benchmark data are provided for centers contemplating initiating linac radiosurgery programs. Custom software was developed to mine the record-and-verify system database and automatically perform a chart review on patients who underwent stereotactic radiosurgery from March 2001 to October 2006. The software extracted 510 patients who underwent stereotactic radiosurgery, and the following information was recorded for each patient: treatment technique, treatment time (from initiation of imaging, if done, to completion of therapy), number of isocenters, number of fields, total monitor units, and dose rate. Of the 510 patients, 395 were treated with DCA therapy and 115 with static conformal beams. The average number of isocenters treated was 1.06 (range, 1-4). The average times to deliver treatment were 24.1 minutes for patients who underwent DCA therapy and 19.3 minutes for those treated with static conformal beams, reflecting the lack of imaging in the latter patients. Eighty percent of patients were treated in <30 minutes. For the patients who underwent DCA therapy, the times required to treat 1, 2, 3, and 4 isocenters were 23.9, 24.8, 33.1, and 37.8 minutes, respectively. Average beam-on time for these patients was 11.4 minutes. There has been no significant reduction in treatment delivery with the use of 1,000 monitor units/min, reflecting the fact that beam-on time is not the major determinant of overall treatment time. Multileaf collimator-based linac radiosurgery can be delivered efficiently in <30 minutes in the vast majority of patients. Given the limited treatment room utilization required for stereotactic radiosurgery treatments, this study calls into question the need for a dedicated radiosurgery unit for even busy treatment centers.
Achromatic beam transport of High Current Injector
NASA Astrophysics Data System (ADS)
Kumar, Sarvesh; Mandal, A.
2016-02-01
The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.
Beam dynamics pre-study for the RFQ of SPPC p-Linac
NASA Astrophysics Data System (ADS)
Liu, Jing; Lu, Yuanrong; Li, Haipeng; Su, Jiancang; Liu, Xiaolong
2018-02-01
A proton-proton collider at center-of-mass energy of more than 70 TeV is the second stage of the CEPC-SPPC program. As proposed, the SPPC injector chain will use a 1.2 GeV p-Linac and three synchrotrons of 10 GeV p-RCS, 180 GeV MSS and 2.1 TeV SS. Peking University is responsible for the preliminary conceptual design of the room temperature part of SPPC p-Linac. This paper is focusing on the beam dynamics studies performed with respect to the 325 MHz RFQ. As the first accelerator structure after the ion source and the front-end of the whole SPPC, RFQ plays an important role in the beam initial transverse focusing and longitudinal bunching. Based on the New Four Section Procedure strategy, as well as the matched and Equipartitioning design method, a 3 MeV RFQ designed by Parmteq code will be introduced. The cavity length of RFQ is 3.6 m and the transmission efficiency is 98%. In this design scheme, the 40 mA proton beam from the 50 keV ion source is accelerated to 3 MeV in 3.8 m length, which achieves a sixty times energy gain. The results of the analyses show that the RFQ design is reliable and meets all the SPPC p-Linac requirements well.
An Rf Focused Interdigital Ion Accelerating Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, D.A.
2003-08-26
An Rf Focused Interdigital (RFI) ion accelerating structure will be described. It represents an effective combination of the Wideroee (or interdigital) linac structure, used for many low frequency, heavy ion applications, and the rf electric quadrupole focusing used in the RFQ and RFD linac structures. As in the RFD linac structure, rf focusing is introduced into the RFI linac structure by configuring the drift tubes as two independent pieces operating at different electrical potentials as determined by the rf fields of the linac structure. Each piece (or electrode) of the RFI drift tube supports two fingers pointed inwards towards themore » opposite end of the drift tube forming a four-finger geometry that produces an rf quadrupole field along the axis of the linac for focusing the beam. However, because of the differences in the rf field configuration along the axis, the scheme for introducing rf focusing into the interdigital linac structure is quite different from that adopted for the RFD linac structure. The RFI linac structure promises to have significant size, efficiency, performance, and cost advantages over existing linac structures for the acceleration of low energy ion beams of all masses (light to heavy). These advantages will be reviewed. A 'cold model' of this new linac structure has been fabricated and the results of rf cavity measurements on this cold model will be presented.« less
Integer programming for improving radiotherapy treatment efficiency.
Lv, Ming; Li, Yi; Kou, Bo; Zhou, Zhili
2017-01-01
Patients received by radiotherapy departments are diverse and may be diagnosed with different cancers. Therefore, they need different radiotherapy treatment plans and thus have different needs for medical resources. This research aims to explore the best method of scheduling the admission of patients receiving radiotherapy so as to reduce patient loss and maximize the usage efficiency of service resources. A mix integer programming (MIP) model integrated with special features of radiotherapy is constructed. The data used here is based on the historical data collected and we propose an exact method to solve the MIP model. Compared with the traditional First Come First Served (FCFS) method, the new method has boosted patient admission as well as the usage of linear accelerators (LINAC) and beds. The integer programming model can be used to describe the complex problem of scheduling radio-receiving patients, to identify the bottleneck resources that hinder patient admission, and to obtain the optimal LINAC-bed radio under the current data conditions. Different management strategies can be implemented by adjusting the settings of the MIP model. The computational results can serve as a reference for the policy-makers in decision making.
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Daurer, Benedikt, J.
2016-12-09
Facilitating the very short and intense pulses from an X-ray laser for the purpose of imaging small bioparticles carries the potential for structure determination at atomic resolution without the need for crystallization. In this study, we explore experimental strategies for this idea based on data collected at the Linac Coherent Light Source from 40 nm virus particles injected into a hard X-ray beam.
Modulators for the S-band test linac at DESY
NASA Astrophysics Data System (ADS)
Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.
1995-07-01
The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.
Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems.
Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G
2010-02-21
Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2-1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit.
Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems
Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G
2010-01-01
Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2–1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit. PMID:20090187
SU-F-T-494: A Multi-Institutional Study of Independent Dose Verification Using Golden Beam Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itano, M; Yamazaki, T; Tachibana, R
Purpose: In general, beam data of individual linac is measured for independent dose verification software program and the verification is performed as a secondary check. In this study, independent dose verification using golden beam data was compared to that using individual linac’s beam data. Methods: Six institutions were participated and three different beam data were prepared. The one was individual measured data (Original Beam Data, OBD) .The others were generated by all measurements from same linac model (Model-GBD) and all linac models (All-GBD). The three different beam data were registered to the independent verification software program for each institute. Subsequently,more » patient’s plans in eight sites (brain, head and neck, lung, esophagus, breast, abdomen, pelvis and bone) were analyzed using the verification program to compare doses calculated using the three different beam data. Results: 1116 plans were collected from six institutes. Compared to using the OBD, the results shows the variation using the Model-GBD based calculation and the All-GBD was 0.0 ± 0.3% and 0.0 ± 0.6%, respectively. The maximum variations were 1.2% and 2.3%, respectively. The plans with the variation over 1% shows the reference points were located away from the central axis with/without physical wedge. Conclusion: The confidence limit (2SD) using the Model-GBD and the All-GBD was within 0.6% and 1.2%, respectively. Thus, the use of golden beam data may be feasible for independent verification. In addition to it, the verification using golden beam data provide quality assurance of planning from the view of audit. This research is partially supported by Japan Agency for Medical Research and Development(AMED)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, M.; Edwards, H.; Harms, E.
2013-10-01
Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less
Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A
2017-02-01
Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
SU-F-J-143: Initial Assessment of Image Quality of An Integrated MR-Linac System with ACR Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Fuller, C; Yung, J
Purpose/Objective(s): To assess the image quality of an integrated MR-Linac system and compare with other MRI systems that are primarily used for diagnostic purposes. Materials/Methods: An ACR MRI quality control (QC) phantom was used to evaluate the image quality of a fully integrated 1.5T MRI-Linac system recently installed at our institution. This system has a new split magnet design which gives the magnetic field strength of 1.5T. All images were acquired with a set of phased-array surface coils which are designed to have minimal attention of radiation beam. The anterior coil rests on a coil holder which keeps the anteriormore » coil’s position consistent for QA purposes. The posterior coil is imbedded in the patient couch. Multiple sets of T1, T2/PD images were acquired using the protocols as prescribed by the ACR on three different dates, ranging 3 months apart. Results: The geometric distortion are within 0.5 mm in the axial scans and within 1mm in the saggital (z-direction) scans. Slice thickness accuracy, image uniformity, ghosting ratio, high contrast detectability are comparable to other 1.5T diagnostic MRI scanners. The low-contrast object detectability are lower comparatively, which is a result of using the body array coil. Additionally, the beam’s-eye-view images (oblique coronal and saggital images) have minimal geometric distortion at all linac gantry angles tested. No observable changes or drift in image quality is found from images acquired 3 month apart. Conclusion: Despite the use of a body array surface coil, the image quality is comparable to that of an 1.5T MRI scanner and is of sufficient quality to pass the ACR MRI accreditation program. The geometric distortion of the MRI system of the integrated MR-Linac is within 1mm for an object size similar to the ACR phantom, sufficient for radiation therapy treatment purpose. The authors received corporate sponsored research grants from Elekta which is the vendor for the MR-Linac evaluated in this study.« less
Interleaving lattice for the Argonne Advanced Photon Source linac
NASA Astrophysics Data System (ADS)
Shin, S.; Sun, Y.; Dooling, J.; Borland, M.; Zholents, A.
2018-06-01
To realize and test advanced accelerator concepts and hardware, a beam line is being reconfigured in the linac extension area (LEA) of the Argonne Advanced Photon Source (APS) linac. A photocathode rf gun installed at the beginning of the APS linac will provide a low emittance electron beam into the LEA beam line. The thermionic rf gun beam for the APS storage ring and the photocathode rf gun beam for the LEA beam line will be accelerated through the linac in an interleaved fashion. In this paper, the design studies for interleaving lattice realization in the APS linac is described with the initial experiment result.
NASA Astrophysics Data System (ADS)
Masoudi, S. Farhad; Rasouli, Fatemeh S.
2015-08-01
Recent studies in BNCT have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. As the most prominent facilities, the electron linac based photoneutron sources benefit from two consecutive reactions, (e, γ) and (γ, n). The photoneutron sources designed so far are composed of bipartite targets which involve practical problems and are far from the objective of achieving an optimized neutron source. This simulation study deals with designing a compact, optimized, and geometrically simple target for a photoneutron source based on an electron linac. Based on a set of MCNPX simulations, tungsten is found to have the potential of utilizing as both photon converter and photoneutron target. Besides, it is shown that an optimized dimension for such a target slows-down the produced neutrons toward the desired energy range while keeping them economy, which makes achieving the recommended criteria for BNCT of deep-tumors more available. This multi-purpose target does not involve complicated designing, and can be considered as a significant step toward finding application of photoneutron sources for in-hospital treatments. In order to shape the neutron beam emitted from such a target, the beam is planned to pass through an optimized arrangement of materials composed of moderators, filters, reflector, and collimator. By assessment with the recommended in-air parameters, it is shown that the designed beam provides high intensity of desired neutrons, as well as low background contamination. The last section of this study is devoted to investigate the performance of the resultant beam in deep tissue. A typical simulated liver tumor, located within a phantom of human body, was subjected to the irradiation of the designed spectrum. The dosimetric results, including evaluated depth-dose curves and carried out in-phantom parameters show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity, and penetrating deep in tissue in a reasonable treatment time.
Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo-Ortega, J.F., E-mail: jfcdrr@yahoo.es; Pozo, M.; Moragues, S.
To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom onmore » the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application ( (www.radiochromic.com)) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm{sup 2} region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed.« less
Energy Recovery Linacs for Light Source Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Neil
2011-04-01
Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the statusmore » of worldwide programs and discuss the technology challenges to provide such beams for photon production.« less
Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Allan; Chandrasekaran, Saravan Kumar; Grassellino, Anna
The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, andmore » LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.« less
NASA Astrophysics Data System (ADS)
Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.
1999-06-01
The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.
NASA Astrophysics Data System (ADS)
Ueno, Akira; Ikegami, Kiyoshi; Kondo, Yasuhiro
2004-05-01
A Cs-free negative hydrogen (H-) ion source driven by pulsed arc plasma with a LaB6 filament is being operated for the beam tests of the Japan Proton Accelerator Research Complex (J-PARC) linac. A peak H- current of 38 mA, which exceeds the requirement of the J-PARC first stage, is stably extracted from the ion source with a beam duty factor of 0.9% (360 μs×25 Hz) by principally optimizing the surface condition and shape of the plasma electrode. The sufficiently small emittance of the beam was confirmed by high transmission efficiency (around 90%) through the following 324 MHz 3 MeV J-PARC radio frequency quadrupole linac (M. Ikegami et al., Proc. 2003 Part. Accel. Conf. 2003, p. 1509). The process of the optimization, which confirms the validity of hypothesis that H- ions are produced by surface reaction on a Mo plasma electrode dominantly in the ion source, is presented.
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzetic, S; Hessler, J; Gupta, N
2015-06-15
Purpose: To develop an independent software tool to assist in commissioning linacs with enhanced beam conformance, as well as perform ongoing QA for dosimetrically equivalent linacs. Methods: Linac manufacturers offer enhanced beam conformance as an option to allow for clinics to complete commissioning efficiently, as well as implement dosimetrically equivalent linacs. The specification for enhanced conformance includes PDD as well as profiles within 80% FWHM. Recently, we commissioned seven Varian TrueBeam linacs with enhanced beam conformance. We developed a software tool in Visual Basic to allow us to load the reference beam data and compare our beam data during commissioningmore » to evaluate enhanced beam conformance. This tool also allowed us to upload our beam data used for commissioning our dosimetrically equivalent beam models to compare and tweak each of our linac beams to match our modelled data in Varian’s Eclipse TPS. This tool will also be used during annual QA of the linacs to compare our beam data to our baseline data, as required by TG-142. Results: Our software tool was used to check beam conformance for seven TrueBeam linacs that we commissioned in the past six months. Using our tool we found that the factory conformed linacs showed up to 3.82% difference in their beam profile data upon installation. Using our beam comparison tool, we were able to adjust the energy and profiles of our beams to accomplish a better than 1.00% point by point data conformance. Conclusion: The availability of quantitative comparison tools is essential to accept and commission linacs with enhanced beam conformance, as well as to beam match multiple linacs. We further intend to use the same tool to ensure our beam data conforms to the commissioning beam data during our annual QA in keeping with the requirements of TG-142.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Ma, B; Kuang, Y
2014-06-15
Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was includedmore » in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihailidis, D; Mallah, J; Zhu, D
2016-06-15
Purpose: The dosimetric leaf gap (DLG) is an important parameter to be measured for dynamic beam delivery of modern linacs, like the Varian Truebeam (TB). The clinical effects of DLG-values on IMRT and/or VMAT commissioning of two “matched” TB linacs will be presented.Methods and Materials: The DLG values on two TB linacs were measured for all energy modalities (filtered and FFF-modes) as part of the dynamic delivery mode commissioning (IMRT and/or VMAT. After the standard beam data was modeled in eclipse treatment planning system (TPS) and validated, IMRT validation was performed based on TG1191 benchmark, IROC Head-Neck (H&N) phantom andmore » sample of clinical cases, all measured on both linacs. Although there was a single-set of data entered in the TPS, a noticeable difference was observed for the DLG-values between the linacs. The TG119, IROC phantom and selected patient plans were furnished with DLG-values of TB1 for both linacs and the delivery was performed on both TB linacs for comparison. Results: The DLG values of TB1 was first used for both linacs to perform the testing comparisons. The QA comparison of TG119 plans revealed a great dependence of the results to the DLG-values used for the linac for all energy modalities studied, especially when moving from 3%/3mm to 2%/2mm γ-analysis. Conclusion: The DLG-values have a definite influence on the dynamic dose, delivery that increases with the plan complexity. We recommend that the measured DLG-values are assigned to each of the “matched” linacs, even if a single set of beam data describes multiple linacs. The user should perform a detail test of the dynamic delivery of each linac based on end-to-end benchmark suites like TG119 and IROC phantoms.1Ezzel G., et al., “IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.” Med. Phys. 36:5359–5373 (2009). partly supported by CAMC Cancer Center and Alliance Oncology.« less
Chan, Maria F.; Li, Qiongge; Tang, Xiaoli; Li, Xiang; Li, Jingdong; Tang, Grace; Hunt, Margie A.; Deasy, Joseph O.
2016-01-01
Data visualization technique was applied to analyze the daily QA results of photon and electron beams. Special attention was paid to any trend the beams might display. A Varian Trilogy Linac equipped with dual photon energies and five electron energies was commissioned in early 2010. Daily Linac QA tests including the output constancy, beam flatness and symmetry (radial and transverse directions) were performed with an ionization chamber array device (QA BeamChecker Plus, Standard Imaging). The data of five years were collected and analyzed. For each energy, the measured data were exported and processed for visual trending using an in-house Matlab program. These daily data were cross-correlated with the monthly QA and annual QA results, as well as the preventive maintenance records. Majority of the output were within 1% of variation, with a consistent positive/upward drift for all seven energies (~+0.25% per month). The baseline of daily device is reset annually right after the TG-51 calibration. This results in a sudden drop of the output. On the other hand, the large amount of data using the same baseline exhibits a sinusoidal behavior (cycle = 12 months; amplitude = 0.8%, 0.5% for photons, electrons, respectively) on symmetry and flatness when normalization of baselines is accounted for. The well known phenomenon of new Linac output drift was clearly displayed. This output drift was a result of the air leakage of the over-pressurized sealed monitor chambers for the specific vendor. Data visualization is a new trend in the era of big data in radiation oncology research. It allows the data to be displayed visually and therefore more intuitive. Based on the visual display from the past, the physicist might predict the trend of the Linac and take actions proactively. It also makes comparisons, alerts failures, and potentially identifies causalities. PMID:27547595
Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakonechny, Keith; Tran, Muoi; Sasaki, David
Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 seriesmore » linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.« less
Zhang, Zhen; Bane, Karl; Ding, Yuantao; ...
2015-01-30
In this study, electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (~100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugationmore » size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a field matching program to obtain the wakes. Based on the numerical calculations, we fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less
Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory
NASA Astrophysics Data System (ADS)
Buakor, K.; Rimjaem, S.
2017-09-01
Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.
Development of stripper options for FRIB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti, F.; Hershcovitch, A.; Momozaki, Y.
2010-09-12
The US Department of Energy Facility for Rare Isotope Beams (FRIB) at Michigan State University includes a heavy ion superconducting linac capable of accelerating all ions up to uranium with energies higher than 200 MeV/u and beam power up to 400 kW. To achieve these goals with present ion source performance it is necessary to accelerate simultaneously two charge states of uranium from the ion source in the first section of the linac. At an energy of approximately 16.5 MeV/u it is planned to strip the uranium beam to reduce the voltage needed in the rest of the linac tomore » achieve the final energy. Up to five different charge states are planned to be accelerated simultaneously after the stripper. The design of the stripper is a challenging problem due to the high power deposited (approximately 0.7 kW) in the stripper media by the beam in a small spot. To assure success of the project we have established a research and development program that includes several options: carbon or diamond foils, liquid lithium films, gas strippers and plasma strippers. We present in this paper the status of the different options.« less
An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander
The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of themore » different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.« less
Overtaking collision effects in a cw double-pass proton linac
Tao, Yue; Qiang, Ji; Hwang, Kilean
2017-12-22
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
Overtaking collision effects in a cw double-pass proton linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yue; Qiang, Ji; Hwang, Kilean
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
High gradient linac for proton therapy
NASA Astrophysics Data System (ADS)
Benedetti, S.; Grudiev, A.; Latina, A.
2017-04-01
Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.
Design and development of a new SRF cavity cryomodule for the ATLAS intensity upgrade
NASA Astrophysics Data System (ADS)
Kedzie, Mark; Conway, Zachary; Fuerst, Joel; Gerbick, Scott; Kelly, Michael; Morgan, James; Ostroumov, Peter; O'Toole, Michael; Shepard, Kenneth
2012-06-01
The ATLAS heavy ion linac at Argonne National Laboratory is undergoing an intensity upgrade that includes the development and implementation of a new cryomodule containing four superconducting solenoids and seven quarter-wave drift-tube-loaded superconducting rf cavities. The rf cavities extend the state of the art for this class of structure and feature ASME code stamped stainless steel liquid helium containment vessels. The cryomodule design is a further evolution of techniques recently implemented in a previous upgrade [1]. We provide a status report on the construction effort and describe the vacuum vessel, thermal shield, cold mass support and alignment, and other subsystems including couplers and tuners. Cavity mechanical design is also reviewed.
Long path-length experimental studies of longitudinal phenomena in intense beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, B. L.; Haber, I.; Kishek, R. A.
2016-05-15
Intense charged particle beams are nonneutral plasmas as they can support a host of plasma waves and instabilities. The longitudinal physics, for a long beam, can often be reasonably described by a 1-D cold-fluid model with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past five years on the University of Maryland Electron Ring, investigating longitudinal phenomena over time scales of thousands ofmore » plasma periods, illustrating good agreement with simulations.« less
EPR detection of foods preserved with ionizing radiation
NASA Astrophysics Data System (ADS)
Stachowicz, W.; Burlinska, G.; Michalik, J.
1998-06-01
The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
Micro-Bubble Experiments at the Van de Graaff Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.
In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less
The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.
St Aubin, Joel; Steciw, Stephen; Fallone, B G
2010-02-01
The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Alqathami, M; Wang, J
Purpose: To assess MR signal contrast for different ferrous ion compounds used in Fricke-type gel dosimeters for real-time dose measurements for MR-guided radiation therapy applications. Methods: Fricke-type gel dosimeters were prepared in 4% w/w gelatin prior to irradiation in an integrated 1.5 T MRI and 7 MV linear accelerator system (MR-Linac). 4 different ferrous ion (Fe2?) compounds (referred to as A, B, C, and D) were investigated for this study. Dosimeter D consisted of ferrous ammonium sulfate (FAS), which is conventionally used for Fricke dosimeters. Approximately half of each cylindrical dosimeter (45 mm diameter, 80 mm length) was irradiated tomore » ∼17 Gy. MR imaging during irradiation was performed with the MR-Linac using a balanced-FFE sequence of TR/TE = 5/2.4 ms. An approximate uncertainty of 5% in our dose delivery was anticipated since the MR-Linac had not yet been fully commissioned. Results: The signal intensities (SI) increased between the un-irradiated and irradiated regions by approximately 8.6%, 4.4%, 3.2%, and 4.3% after delivery of ∼2.8 Gy for dosimeters A, B, C, and D, respectively. After delivery of ∼17 Gy, the SI had increased by 24.4%, 21.0%, 3.1%, and 22.2% compared to the un-irradiated regions. The increase in SI with respect to dose was linear for dosimeters A, B, and D with slopes of 0.0164, 0.0251, and 0.0236 Gy{sup −1} (R{sup 2} = 0.92, 0.97, and 0.96), respectively. Visually, dosimeter A had the greatest optical contrast from yellow to purple in the irradiated region. Conclusion: This study demonstrated the feasibility of using Fricke-type dosimeters for real-time dose measurements with the greatest optical and MR contrast for dosimeter A. We also demonstrated the need to investigate Fe{sup 2+} compounds beyond the conventionally utilized FAS compound in order to improve the MR signal contrast in 3D dosimeters used for MR-guided radiation therapy. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH- 102SPS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T; Rella, J; Yang, J
Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less
WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, L; Wong, J; Li, R
2014-06-15
Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gatedmore » VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.« less
Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.
Hourdakis, Constantine J; Boziari, A
2008-04-01
Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a useful tool for the improvement of quality in radiotherapy. It succeeded to disseminate the IAEA TRS-398 protocol in nearly all radiotherapy centers achieving homogenization and consistency of dosimetry within the country. Also, it detected discrepancies in dosimetry and provided guidance and recommendations to eliminate sources of errors. Finally, it proved that quality assurance programs, periodic quality control tests, maintenance and service play an important role for achieving accuracy and safe operation in radiotherapy.
X-ray two-photon absorption with high fluence XFEL pulses
Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...
2015-09-07
Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~10 5 photons/Å 2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.
Flexible pulse delay control up to picosecond for high-intensity twin electron bunches
Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...
2015-09-10
Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.
Detector sustainability improvements at LCLS
NASA Astrophysics Data System (ADS)
Browne, Michael C.; Carini, Gabriella; DePonte, Daniel P.; Galtier, Eric C.; Hart, Philip A.; Koralek, J. D.; Mitra, Ankush; Nakahara, Kazutaka
2017-06-01
The Linac Coherent Light Source (LCLS) poses a number of daunting and often unusual challenges to maintaining X-ray detectors, such as proximity to liquid-sample injectors, complex setups with moving components, intense X-ray and optical laser light, and Electromagnetic Pulse (EMP). The Detector and Sample Environment departments at LCLS are developing an array of engineering, monitoring, and administrative controls solutions to better address these issues. These include injector improvements and monitoring methods, fast online damage recognition algorithms, EMP mapping and protection, actively cooled filters, and more.
Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.
2011-03-01
The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less
Physics design of APT linac with normal conducting rf cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, S.; Billen, J.H.; Stovall, J.E.
The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design aremore » typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results.« less
Cornell-BNL Electron Energy Recovery Linac FFAG Test Accelerator (CBETA)
NASA Astrophysics Data System (ADS)
Trbojevic, Dejan; Peggs, Steve; Berg, Scott; Brooks, Stephen; Mahler, George; Meot, Francois; Tsoupas, Nicholaos; Witte, Holger; Hoffstaetter, Georg; Bazarov, Ivan; Mayes, Christopher; Patterson, Ritchie; Smolenski, Karl; Li, Yulin; Dobbins, John; BNL Team; Cornell University Team
A novel energy recovery linac (ERL) with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack is being constructed as a result of collaboration of the Cornell University with Brookhaven National Laboratory. The existing injector and superconducting linac at Cornell University are being installed together with a single NS-FFAG arcs and straight section at the opposite side of the linac to form an ERL system. The 6 MeV electron beam from injector is transferred into the 36 MeV superconducting linac and accelerated by four successive passes: from 42 to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase and with 4 passes electron energy is recovered and brought back to the initial energy of 6 MeV. This is going to be the first 4 pass superconducting ERL and the first NS-FFAG permanent magnet structure to bring the electron beam back to the linac.
rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells
NASA Astrophysics Data System (ADS)
Chen, Qushan; Hu, Tongning; Qin, Bin; Xiong, Yongqian; Fan, Kuanjun; Pei, Yuanji
2018-04-01
Huazhong University of Science and Technology (HUST) has built a compact linac-based terahertz free electron laser (THz-FEL) prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.
Design of high-energy high-current linac with focusing by superconducting solenoids
NASA Astrophysics Data System (ADS)
Batskikh, Guennady I.; Belugin, Vladimir M.; Bondarev, Boris I.; Fedotov, Arkady P.; Durkin, Alexander P.; Ivanov, Yury D.; Mikhailov, Vladimir N.; Murin, Boris P.; Mustafin, Kharis Kh.; Shumakov, Igor V.; Uksusov, Nikolay I.
1995-09-01
The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac is presented in the report. In new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. ``Regotron'' is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.
Superconducting heavy ion injector linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, K.W.
1985-01-01
A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreadsmore » of a few keV-nsec. 11 refs, 4 figs.« less
Electron linac for medical isotope production with improved energy efficiency and isotope recovery
Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John
2015-09-08
A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.
Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions.
Calvo-Ortega, J F; Pozo, M; Moragues, S; Casals, J
2017-01-01
To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom on the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application (www.radiochromic.com) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm 2 region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, James E
The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in themore » present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.« less
Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario.
Mishra, Bibekananda; Selvam, T Palani; Sharma, P K Dash
2017-01-01
Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes.
Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario
Mishra, Bibekananda; Selvam, T. Palani; Sharma, P. K. Dash
2017-01-01
Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes. PMID:28405104
Fermilab proton accelerator complex status and improvement plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2017-05-30
Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a n umber of fixed target experiments. Routine operation with a world-record 700kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as the result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power to 900 – 1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2MW beammore » power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40-years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to >2.4MW after replacement of the existing 8 GeV Booster synchrotron. In this article we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, Kavin; et al.
The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less
Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac
NASA Astrophysics Data System (ADS)
Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.
2017-07-01
We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.
Hackett, S L; van Asselen, B; Wolthaus, J W H; Kok, J G M; Woodings, S J; Lagendijk, J J W; Raaymakers, B W
2016-07-01
A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct the response of an ionization chamber for the influence of the magnetic field. Solid phantoms are used for dosimetry measurements on the MR-linac, but air is present between the chamber wall and phantom insert. This study aimed to determine if this air influences the ion chamber measurements on the MR-linac. The absolute response of the chamber and reproducibility of dosimetry measurements were assessed on an MR-linac in solid and water phantoms. The sensitivity of the chamber response to the distribution of air around the chamber was also investigated. Measurements were performed on an MR-linac and replicated on a conventional linac for five chambers. The response of three waterproof chambers was measured with air and with water between the chamber and the insert to measure the influence of the air volume on absolute chamber response. The distribution of air around the chamber was varied indirectly by rotating each chamber about the longitudinal chamber axis in a solid phantom and a water phantom (waterproof chambers only) and measuring the angular dependence of the chamber response, and varied directly by displacing the chamber in the phantom insert using a paper shim positioned at different orientations between the chamber casing and the insert. The responses of the three waterproof chambers measured on the MR-linac were 0.7%-1.2% higher with water than air in the chamber insert. The responses of the chambers on the conventional linac changed by less than 0.3% when air in the insert was replaced with water. The angular dependence of the chambers ranged from 0.6% to 1.9% in the solid phantom on the MR-linac but was less than 0.5% in water on the MR-linac and less than 0.3% in the solid phantom on the conventional linac. Inserting a shim around the chamber induced changes of the chamber response in a magnetic field of up to 2.2%, but the change in chamber response on the conventional linac was less than 0.3%. The interaction between the magnetic field and secondary electrons in the air around the chamber reduces the charge collected from 0.7% to 1.2%. The large angular dependence of ion chambers measured in the plastic phantom in a magnetic field appears to arise from a change of air distribution as the chamber is moved within the insert, rather than an intrinsic isotropy of the chamber sensitivity to radiation. It is recommended that reference dosimetry measurements on the MR-linac can be performed only in water, rather than in existing plastic phantoms.
Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...
2017-10-20
The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Erika; Otto, Karl; Hoppe, Richard
Purpose: To develop and test the feasibility of a table-top implementation for total body irradiation (TBI) via robotic couch motion and coordinated monitor unit modulation on a standard C-arm linac geometry. Methods: To allow for collision free delivery and to maximize the effective field size, the couch was rotated to 270° IEC and dropped to 150 cm from the vertical radiation source. The robotic delivery was programmed using the TrueBeam STx Developer Mode using custom XML scripting. To assess the dosimetry of a sliding 30×20 cm{sup 2} field, irradiation on a solid water phantom of varying thickness was analyzed usingmore » EDR2 radiographic film and OSLDs. Beam modulation was achieved by dividing the couch path into multiple segments of varying dose rates and couch speeds in order to deliver 120 cGy to the midline. Results: The programmed irradiation in conjunction with coordinated couch motion was successfully delivered on a TrueBeam linac. When no beam modulation was employed, the dose difference between two different phantom sections was 17.0%. With simple beam modulation via changing dose rates and couch speeds, the desired prescription dose can be achieved at the centre of each phantom section within 1.9%. However, dose deviation at the junction was 9.2% due to the nonphysical change in the phantom thickness. Conclusions: The feasibility of robotic table-top TBI on a C-arm linac geometry was experimentally demonstrated. To achieve a more uniform dose distribution, inverse-planning allowing for a combination of dose rate modulation, jaw tracking and MLC motion is under investigation.« less
Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik
2014-02-01
An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.
Design of high-energy high-current linac with focusing by superconducting solenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batskikh, Guennady I.; Belugin, Vladimir M.; Bondarev, Boris I.
1995-09-15
The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac is presented in the report. In new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allowmore » to decrease beam matched radius and increase a linac radiation purity without aperture growth. ''Regotron'' is used as high power generator in linac main part. But D and W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.« less
Design of high-energy high-current linac with focusing by superconducting solenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I.
1995-10-01
The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channelmore » features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.« less
Digitally Controlled Four Harmonic Buncher for FSU LINAC
NASA Astrophysics Data System (ADS)
Moerland, Daniel S.; Wiedenhoever, Ingo; Baby, Lagy T.; Caussyn, David; Spingler, David
2012-03-01
Florida State University's John D. Fox Superconducting Accelerator Laboratory is operating a Tandem-Linac system for heavy ion beams at energies of 5-10 MeV/u. Recently, the accelerator has been used as the driver for the radioactive beam facility RESOLUT, which poses new demands on its high-intensity performance and time-resolution. These demands motivated us to optimize the RF bunching system and to switch the bunch frequency from 48.5 to 12.125 MHz. We installed a four-harmonic resonant transformer to create 3-4 kV potential oscillations across a pair of wire-mesh grids. This setup is modulating the energy of the beam injected into the tandem accelerator, with the aim to create short bunches of beam particles. Asawtooth-like wave-form is created using the Fourier series method, by combining the basis sinusoidal wave of 12.125MHz and its 3 higher order harmonics, in a manner similar to the systems used at ATLAS [1] and other RF-accelerators. A new aspect of our setup is the use of a digital 1GHz function generator, which allows us to optimize and stabilize the synthesized waveform. The control system was realized using labview and integrated into the recently updated controls of the accelerator. We characterize the bunching quality achievedand discuss the optimization of the bunching wave-form. The bunching system has been successfully used in a number of Linac-experiments performed during 2011.[4pt][1] S. Sharamentov, J. Bogaty, B.E. Clifft, R. Pardo, UPGRADE OF THE ATLAS POSITIVE ION INJECTOR BUNCHING SYSTEM, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee
Analysis of the LSC microbunching instability in MaRIE linac reference design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yampolsky, Nikolai
In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius ismore » equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.« less
FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations.
Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S
2015-04-01
Current commercial 10 MV Linac waveguides are 1.5 m. The authors' current 6 MV linear accelerator-magnetic resonance imager (Linac-MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac-MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match published shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. The authors have successfully designed and simulated an S-band waveguide of length of 27.5 cm capable of producing a 10 MV photon beam. This waveguide operates well within the breakdown threshold determined for the cavity geometry used. The designed Linac produces depth dose profiles similar to those of the emulated 10 MV Linac (waveguide-length of 1.5 m) but yields a narrower penumbra.
Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike
Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less
Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors
Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike; ...
2018-01-01
Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less
Status Of the ILC Main Linac Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Arun; Kapin, Valery; Solyak, Nikolay
2017-05-01
International Linear collider (ILC) is a proposed accelerator facility which is primarily based on two 11-km long superconducting main linacs. In this paper we present recent updates on the main linac design and discuss changes made in order to meet specification outlined in the technical design report (TDR).
X-ray Laser Animated Fly-Through
None
2018-01-16
Take a tour with an electron's-eye-view through SLAC's revolutionary new X-ray laser facility with this 5 1/2 minute animation. See how the X-ray pulses are generated using the world's longest linear accelerator along with unique arrays of machinery specially designed for this one-of-a-kind tool. For more than 40 years, SLAC's two-mile-long linear accelerator (or linac) linac has produced high-energy electrons for cutting-edge physics experiments. Now, SLAC's linac has entered a new phase of its career with the creation of the Linac Coherent Light Source (LCLS).
Alongi, Filippo; Fiorentino, Alba; Mancosu, Pietro; Navarria, Pierina; Giaj Levra, Niccolò; Mazzola, Rosario; Scorsetti, Marta
2016-07-01
For intracranial metastases, the role of stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy is well recognized. Historically, the first technology, for stereotactic device able to irradiate a brain tumor volume, was Gamma Knife® (GK). Due to the technological advancement of linear accelerator (Linac), there was a continuous increasing interest in SRS Linac-based applications. In those decades, it was assumed a superiority of GK compared to SRS Linac-based for brain tumor in terms of dose conformity and rapid fall-off dose close to the target. Expert commentary: Recently, due to the Linac technologic advancement, the choice of SRS GK-based is not necessarily so exclusive. The current review discussed in details the technical and clinical aspects comparing the two approaches for brain metastases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Xiaoying; Rybarcyk, Larry
HPSim is a GPU-accelerated online multi-particle beam dynamics simulation tool for ion linacs. It was originally developed for use on the Los Alamos 800-MeV proton linac. It is a “z-code” that contains typical linac beam transport elements. The linac RF-gap transformation utilizes transit-time-factors to calculate the beam acceleration therein. The space-charge effects are computed using the 2D SCHEFF (Space CHarge EFFect) algorithm, which calculates the radial and longitudinal space charge forces for cylindrically symmetric beam distributions. Other space- charge routines to be incorporated include the 3D PICNIC and a 3D Poisson solver. HPSim can simulate beam dynamics in drift tubemore » linacs (DTLs) and coupled cavity linacs (CCLs). Elliptical superconducting cavity (SC) structures will also be incorporated into the code. The computational core of the code is written in C++ and accelerated using the NVIDIA CUDA technology. Users access the core code, which is wrapped in Python/C APIs, via Pythons scripts that enable ease-of-use and automation of the simulations. The overall linac description including the EPICS PV machine control parameters is kept in an SQLite database that also contains calibration and conversion factors required to transform the machine set points into model values used in the simulation.« less
Process simulations for the LCLS-II cryogenic systems
NASA Astrophysics Data System (ADS)
Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.
2017-12-01
Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackett, S. L., E-mail: S.S.Hackett@umcutrecht.nl
Purpose: A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct the response of an ionization chamber for the influence of the magnetic field. Solid phantoms are used for dosimetry measurements on the MR-linac, but air is present between the chamber wall and phantom insert. This study aimed to determine if this air influences the ion chamber measurements on the MR-linac. The absolute responsemore » of the chamber and reproducibility of dosimetry measurements were assessed on an MR-linac in solid and water phantoms. The sensitivity of the chamber response to the distribution of air around the chamber was also investigated. Methods: Measurements were performed on an MR-linac and replicated on a conventional linac for five chambers. The response of three waterproof chambers was measured with air and with water between the chamber and the insert to measure the influence of the air volume on absolute chamber response. The distribution of air around the chamber was varied indirectly by rotating each chamber about the longitudinal chamber axis in a solid phantom and a water phantom (waterproof chambers only) and measuring the angular dependence of the chamber response, and varied directly by displacing the chamber in the phantom insert using a paper shim positioned at different orientations between the chamber casing and the insert. Results: The responses of the three waterproof chambers measured on the MR-linac were 0.7%–1.2% higher with water than air in the chamber insert. The responses of the chambers on the conventional linac changed by less than 0.3% when air in the insert was replaced with water. The angular dependence of the chambers ranged from 0.6% to 1.9% in the solid phantom on the MR-linac but was less than 0.5% in water on the MR-linac and less than 0.3% in the solid phantom on the conventional linac. Inserting a shim around the chamber induced changes of the chamber response in a magnetic field of up to 2.2%, but the change in chamber response on the conventional linac was less than 0.3%. Conclusions: The interaction between the magnetic field and secondary electrons in the air around the chamber reduces the charge collected from 0.7% to 1.2%. The large angular dependence of ion chambers measured in the plastic phantom in a magnetic field appears to arise from a change of air distribution as the chamber is moved within the insert, rather than an intrinsic isotropy of the chamber sensitivity to radiation. It is recommended that reference dosimetry measurements on the MR-linac can be performed only in water, rather than in existing plastic phantoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikraman, S; Rajesh, Thiyagarajan; Karrthick, Kp
2015-06-15
Purpose: The purpose of this study was to evaluate multiple brain metastases stereotactic treatment planning of Cyberknife versus linac using dose volume based indices. Methods: Fifteen multiple brain metastases patients were taken for this study from Cyberknife Multiplan TPSv4.6.0. All these patients underwent stereotactic treatment in Cyberknife. For each patient VMAT stereotactic treatment plan was generated in MONACO TPSv5.0 using Elekta beam modulator MLC and matched the delivered plan. A median dose of 8.5Gy(range 7–12Gy) per fraction was prescribed. Tumor volume was in the range of 0.06–4.33cc. Treatment plan quality was critically evaluated by comparing DVH indices such as D98,more » D95, CI, and HI for target volumes. Maximum point doses and volume doses were evaluated for critical organs. Results: For each case, target coverage of D98 was achieved with 100% prescription dose with SD of 0.29% and 0.41% in Linac and Cyberknife respectively. The average conformity index(CI) of 1.26±0.0796 SD for Cyberknife and 1.92±0.60SD for linac were observed. Better homogeneity Index (HI) of 1.17±0.09SD was observed in linac as compared to Cyberknife HI of 1.24±0.05SD.All the critical organ doses were well within tolerance limit in both linac and Cyberknife plans. There is no significant difference of maximum point doses for brainstem and optic chiasm. Treatment time and number of monitor units are more in Cyberknife compared to linac. The average volume receiving 12Gy in whole brain was 6% and 12% for Cyberknife and linac respectively. 1000cc of whole brain received 60% lesser dose in Linac compared to Cyberknife in all cases. Conclusion: The study shows that dosimetrically comparable plans are achievable Cyberknife and Linac. However, a better conformity, target coverage, lesser OAR dose is achieved with Cyberknife due to greater degrees of freedom with robotic gantry and smaller collimator for multiple targets.« less
Progress update on cryogenic system for ARIEL E-linac at TRIUMF
NASA Astrophysics Data System (ADS)
Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.
2014-01-01
TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.
A novel electron gun for inline MRI-linac configurations.
Constantin, Dragoş E; Holloway, Lois; Keall, Paul J; Fahrig, Rebecca
2014-02-01
This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Simple electron gun geometry modifications of a Varian 600 C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600 C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ± 15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600 C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.
A novel electron gun for inline MRI-linac configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois
2014-02-15
Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less
A novel electron gun for inline MRI-linac configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois
Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
NASA Astrophysics Data System (ADS)
Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.
2018-05-01
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.
Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac
NASA Astrophysics Data System (ADS)
Mondal, J.; Chandan, Shiv; Parashar, S.; Bhattacharjee, D.; Tillu, A. R.; Tiwari, R.; Jayapraksh, D.; Yadav, V.; Banerjee, S.; Choudhury, N.; Ghodke, S. R.; Dixit, K. P.; Nimje, V. T.
2015-09-01
S-Band standing wave (SW) linacs in the range of 1-10 MeV have many potential industrial applications world wide. In order to mitigate the industrial requirement it is required to reduce the overall size and weight of the system. On this context a 2856 M Hz, 1 Me V, bi-periodic on axis coupled self transverse focused SW linac has been designed and tested. The RF phase focusing is achieved by introducing an asymmetric field distribution in the first cell of the 1 MeV linac. The pulsed electron beam of 40 keV, 650 mA and 5 μs duration is injected from a LaB6 thermionic gun. This paper presents the structure design, beam dynamics simulation, fabrication and experimental results of the 1 MeV auto-focusing SW linac.
SU-E-T-468: Implementation of the TG-142 QA Process for Seven Linacs with Enhanced Beam Conformance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woollard, J; Ayan, A; DiCostanzo, D
2015-06-15
Purpose: To develop a TG-142 compliant QA process for 7 Varian TrueBeam linear accelerators (linacs) with enhanced beam conformance and dosimetrically matched beam models. To ensure consistent performance of all 7 linacs, the QA process should include a common set of baseline values for use in routine QA on all linacs. Methods: The TG 142 report provides recommended tests, tolerances and frequencies for quality assurance of medical accelerators. Based on the guidance provided in the report, measurement tests were developed to evaluate each of the applicable parameters listed for daily, monthly and annual QA. These tests were then performed onmore » each of our 7 new linacs as they came on line at our institution. Results: The tolerance values specified in TG-142 for each QA test are either absolute tolerances (i.e. ±2mm) or require a comparison to a baseline value. The results of our QA tests were first used to ensure that all 7 linacs were operating within the suggested tolerance values provided in TG −142 for those tests with absolute tolerances and that the performance of the linacs was adequately matched. The QA test results were then used to develop a set of common baseline values for those QA tests that require comparison to a baseline value at routine monthly and annual QA. The procedures and baseline values were incorporated into a spreadsheets for use in monthly and annual QA. Conclusion: We have developed a set of procedures for daily, monthly and annual QA of our linacs that are consistent with the TG-142 report. A common set of baseline values was developed for routine QA tests. The use of this common set of baseline values for comparison at monthly and annual QA will ensure consistent performance of all 7 linacs.« less
Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm
Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...
2014-10-15
In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.
Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tina, Adrienne
2015-08-21
The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enoughmore » to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.« less
Linac based photofission inspection system employing novel detection concepts
NASA Astrophysics Data System (ADS)
Stevenson, John; Gozani, Tsahi; Elsalim, Mashal; Condron, Cathie; Brown, Craig
2011-10-01
Rapiscan Systems is developing a LINAC based cargo inspection system for detection of special nuclear material (SNM) in cargo containers. The system, called Photofission Based Alarm Resolution (PBAR) is being developed under a DHD/DNDO Advanced Technology Demonstration (ATD) program. The PBAR system is based on the Rapiscan Eagle P9000 X-ray system, which is a portal system with a commercial 9 MeV LINAC X-ray source. For the purposes of the DNDO ATD program, a conveyor system was installed in the portal to allow scanning and precise positioning of 20 ft ISO cargo containers. The system uses a two step inspection process. In the first step, the basic scan, the container is quickly and completely inspected using two independent radiography arrays: the conventional primary array with high spatial resolution and a lower resolution spectroscopic array employing the novel Z-Spec method. The primary array uses cadmium tungstate (CdWO 4) detectors with conventional current mode readouts using photodiodes. The Z-Spec array uses small plastic scintillators capable of performing very fast (up to 10 8 cps) gamma-ray spectroscopy. The two radiography arrays are used to locate high-Z objects in the image such as lead, tungsten, uranium, which could be potential shielding materials as well as SNM itself. In the current system, the Z-Spec works by measuring the energy spectrum of transmitted X-rays. For high-Z materials the higher end of the energy spectrum is more attenuated than for low-Z materials and thus has a lower mean energy and a narrower width than low- and medium-Z materials. The second step in the inspection process is the direct scan or alarm clearing scan. In this step, areas of the container image, which were identified as high Z, are re-inspected. This is done by precisely repositioning the container to the location of the high-Z object and performing a stationary irradiation of the area with X-ray beam. Since there are a large number of photons in the 9 MV Bremsstrahlung spectrum above the photofission "threshold" of about 6 MeV, the X-ray beam induces numerous fissions if nuclear material is present. The PBAR system looks for the two most prolific fission signatures to confirm the presence of special nuclear materials (SNM). These are prompt neutrons and delayed gamma rays. The PBAR system uses arrays of two types of fast and highly efficient gamma ray detectors: plastic and fluorocarbon scintillators. The latter serves as a detector of fission prompt neutrons using the novel threshold activation detector (TAD) concept as well as a very efficient delayed gamma ray detector. The major advantage of TAD for detecting the prompt neutrons is its insensitivity to the intense source related backgrounds. The current status of the system and experimental results will be shown and discussed.
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.
2012-11-15
Purpose: In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. Methods: The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Councilmore » Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. Results: For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be {approx}3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 {+-} 0.1, 9.3 {+-} 0.1, and 19.3 {+-} 0.2 MeV, respectively. The unfolded spectra for the clinical linac agree with the EGSnrc spectra (calculated using the unfolded electron energies) with RMS energy fluence deviations of 3.7%. The corresponding measured and EGSnrc-calculated transmission data agree within 1.5%, where the typical transmission measurement uncertainty on the clinical linac is 0.4% (not including the uncertainties on the incident electron parameters). Conclusions: The approach proposed in an earlier study for unfolding photon spectra and incident electron energies from transmission data is accurate and practical for clinical use.« less
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...
2018-02-09
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less
Computational study of radiation doses at UNLV accelerator facility
NASA Astrophysics Data System (ADS)
Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel
2017-09-01
A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degiovanni, A.; Bonomi, R.; Garlasche, M.
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less
Structural analysis and evaluation of actual PC bridge using 950 keV/3.95 MeV X-band linacs
NASA Astrophysics Data System (ADS)
Takeuchi, H.; Yano, R.; Ozawa, I.; Mitsuya, Y.; Dobashi, K.; Uesaka, M.; Kusano, J.; Oshima, Y.; Ishida, M.
2017-07-01
In Japan, bridges constructed during the strong economic growth era are facing an aging problem and advanced maintenance methods have become strongly required recently. To meet this demand, we develop the on-site inspection system using 950 keV/3.95 MeV X-band (9.3 GHz) linac X-ray sources. These systems can visualize in seconds the inner states of bridges, including cracks of concrete, location and state of tendons (wires) and other imperfections. At the on-site inspections, 950 keV linac exhibited sufficient performance. But, for thicker concrete, it is difficult to visualize the internal state by 950 keV linac. Therefore, we proceeded the installation of 3.95 MeV linac for on-site bridge inspection. In addition, for accurate evaluation, verification on the parallel motion CT technique and FEM analysis are in progress.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.
Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A
2005-07-21
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
Njeh, Christopher F; Salmon, Howard W; Schiller, Claire
2017-01-01
Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.
Scientific Opportunities and Plans for FRIB
NASA Astrophysics Data System (ADS)
Bollen, Georg
2014-09-01
FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. FRIB, the US's ``Facility for Rare Isotope Beams'' under construction at Michigan State University will be a world-leading rare isotope beam facility. FRIB will be based on a 400 kW, 200 MeV/u heavy ion linac and provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. This talk will summarize the scientific opportunities with FRIB in the areas of nuclear science, nuclear astrophysics, and the test of fundamental interaction and symmetries, as well using isotopes from FRIB for societal benefits. Design features of FRIB and the status of the ongoing construction will be presented. This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE.
Santos, D M; St Aubin, J; Fallone, B G; Steciw, S
2012-02-01
In our current linac-magnetic resonance (MR) design, a 6 MV in-line linac is placed along the central axis of the MR's magnet where the MR's fringe magnetic fields are parallel to the overall electron trajectories in the linac waveguide. Our previous study of this configuration comprising a linac-MR SAD of 100 cm and a 0.5 T superconducting (open, split) MR imager. It showed the presence of longitudinal magnetic fields of 0.011 T at the electron gun, which caused a reduction in target current to 84% of nominal. In this study, passive and active magnetic shielding was investigated to recover the linac output losses caused by magnetic deflections of electron trajectories in the linac within a parallel linac-MR configuration. Magnetic materials and complex shield structures were used in a 3D finite element method (FEM) magnetic field model, which emulated the fringe magnetic fields of the MR imagers. The effects of passive magnetic shielding was studied by surrounding the electron gun and its casing with a series of capped steel cylinders of various inner lengths (26.5-306.5 mm) and thicknesses (0.75-15 mm) in the presence of the fringe magnetic fields from a commercial MR imager. In addition, the effects of a shield of fixed length (146.5 mm) with varying thicknesses were studied against a series of larger homogeneous magnetic fields (0-0.2 T). The effects of active magnetic shielding were studied by adding current loops around the electron gun and its casing. The loop currents, separation, and location were optimized to minimize the 0.011 T longitudinal magnetic fields in the electron gun. The magnetic field solutions from the FEM model were added to a validated linac simulation, consisting of a 3D electron gun (using OPERA-3d/scala) and 3D waveguide (using comsol Multiphysics and PARMELA) simulations. PARMELA's target current and output phase-space were analyzed to study the linac's output performance within the magnetic shields. The FEM model above agreed within 1.5% with the manufacturer supplied fringe magnetic field isoline data. When passive magnetic shields are used, the target current is recoverable to greater than 99% of nominal for shield thicknesses greater than 0.75 mm. The optimized active shield which resulted in 100% target current recovery consists of two thin current rings 110 mm in diameter with 625 and 430 A-turns in each ring. With the length of the passive shield kept constant, the thickness of the shield had to be increased to achieve the same target current within the increased longitudinal magnetic fields. A ≥99% original target current is recovered with passive shield thicknesses >0.75 mm. An active shield consisting of two current rings of diameter of 110 mm with 625 and 430 A-turns fully recovers the loss that would have been caused by the magnetic fields. The minimal passive or active shielding requirements to essentially fully recover the current output of the linac in our parallel-configured linac-MR system have been determined and are easily achieved for practical implementation of the system.
PERLE. Powerful energy recovery linac for experiments. Conceptual design report
NASA Astrophysics Data System (ADS)
Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.
2018-06-01
A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.
Autopilot regulation for the Linac4 H- ion source
NASA Astrophysics Data System (ADS)
Voulgarakis, G.; Lettry, J.; Mattei, S.; Lefort, B.; Costa, V. J. Correia
2017-08-01
Linac4 is a 160 MeV H- linear accelerator part of the upgrade of the LHC injector chain. Its cesiated surface H- source is designed to provide a beam intensity of 40-50mA. It is operated with periodical Cs-injection at typically 30 days intervals [1] and this implies that the beam parameters will slowly evolve during operation. Autopilot is a control software package extending CERN developed Inspector framework. The aim of Autopilot is to automatize the mandatory optimization and cesiation processes and to derive performance indicators, thus keeping human intervention minimal. Autopilot has been developed by capitalizing on the experience from manually operating the source. It comprises various algorithms running in real-time, which have been devised to: • Optimize the ion source performance by regulation of H2 injection, RF power and frequency. • Describe the performance of the source with performance indicators, which can be easily understood by operators. • Identify failures, try to recover the nominal operation and send warning in case of deviation from nominal operation. • Make the performance indicators remotely available through Web pages.Autopilot is at the same level of hierarchy as an operator, in the CERN infrastructure. This allows the combination of all ion source devices, providing the required flexibility. Autopilot is executed in a dedicated server, ensuring unique and centralized control, yet allowing multiple operators to interact at runtime, always coordinating between them. Autopilot aims at flexibility, adaptability, portability and scalability, and can be extended to other components of CERN's accelerators. In this paper, a detailed description of the Autopilot algorithms is presented, along with first results of operating the Linac4 H- Ion Source with Autopilot.
A Linear Accelerator for TA-FD calibration
NASA Astrophysics Data System (ADS)
Shibata, T.; Ikeda, D.; Ikeda, M.; Enomoto, A.; Ohsawa, S.; Kakiha, K.; Kakihara, K.; Sagawa, H.; Satoh, M.; Shidara, T.; Sugimura, T.; Fukushima, M.; Fukuda, S.; Furukawa, K.; Yoshida, M.
The energy of the primary cosmic ray can be calculated from fluorescence photons detected by fluorescence telescope. However, since we can not know the true energy of primary cosmic ray, it is difficult to calibrate between number of photons and energy directly. In TA project, we will create pseudo- cosmic ray events by using accelerated electron beam which is injected in the air. The injected electron beam creates an air shower and fluorescence photons are emitted. We can calibate between electron beam energy which is known exactry and detected photons. We are developping a small linear accelerator (Linac) at High Energy Accelerator Research Organization (KEK) in Japan. The maximum energy is 40MeV, the typical current is 0.16nC, and the intensity per pulse is 6.4mJ. The accuracy of beam energy is less than 1%. The Linac consists of a -100kV pulse type electron gun, a 1.5m pre-buncher and buncher tube, a 2m S-band accelerator tube, a quadrupole magnet, a 90 degree bending magnet, and a S-Band(2856MHz) 50MW high power klystron as RF source. We chekced the performance of the electron beam, energy resolution, beam spread, beam current, and beam loss by PARMELA simulation, and checked the air shower by electron beam and number of the detected photons by detector simulation which are made by GEANT4. In this Spring, we will do the full beam test in KEK. The beam operation in Utah will be started from this Autumn. In this talk, we will report about the results of the beam test and calibration method by this Linac.
Advanced Compton scattering light source R&D at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F; Anderson, S G; Anderson, G
2010-02-16
We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less
An overview of beam diagnostic and control systems for 50 MeV AREAL Linac
NASA Astrophysics Data System (ADS)
Sargsyan, A. A.; Amatuni, G. A.; Sahakyan, V. V.; Zanyan, G. S.; Martirosyan, N. W.; Vardanyan, V. V.; Grigoryan, B. A.
2017-03-01
Advanced Research Electron Accelerator Laboratory (AREAL) is an electron linear accelerator project with a laser driven RF gun being constructed at CANDLE Synchrotron Research Institute. After the successful operation of the gun section at 5 MeV, a program of facility energy enhancement up to 50 MeV is launched. In this paper the current status of existing diagnostic and control systems, as well as the results of electron beam parameter measurements are presented. The approaches of intended diagnostic and control systems for the upgrade program are also described.
Isac Sc-Linac Phase-II Helium Refrigerator Commissioning and First Operational Experience at Triumf
NASA Astrophysics Data System (ADS)
Sekachev, I.; Kishi, D.; Laxdal, R. E.
2010-04-01
ISAC Phase-II is an upgrade of the radioactive isotope superconducting linear accelerator, SC-linac, at TRIUMF. The Phase-I section of the accelerator, medium-beta, is operational and is cooled with a 600 W helium refrigerator, commissioned in March 2005. An identical refrigerator is being used with the Phase-II segment of the accelerator; which is now under construction. The second refrigerator has been commissioned and tested with the Phase-I section of the linac and is used for Phase-II linac development, including new SC-cavity performance tests. The commissioning of the Phase-II refrigeration system and recent operational experience is presented.
Dosimetric comparison of different treatment modalities for stereotactic radiotherapy.
Hsu, Shih-Ming; Lai, Yuan-Chun; Jeng, Chien-Chung; Tseng, Chia-Ying
2017-09-16
The modalities for performing stereotactic radiotherapy (SRT) on the brain include the cone-based linear accelerator (linac), the flattening filter-free (FFF) volumetric modulated arc therapy (VMAT) linac, and tomotherapy. In this study, the cone-based linac, FFF-VMAT linac, and tomotherapy modalities were evaluated by measuring the differences in doses delivered during brain SRT and experimentally assessing the accuracy of the output radiation doses through clinical measurements. We employed a homemade acrylic dosimetry phantom representing the head, within which a thermoluminescent dosimeter (TLD) and radiochromic EBT3 film were installed. Using the conformity/gradient index (CGI) and Paddick methods, the quality of the doses delivered by the various SRT modalities was evaluated. The quality indicators included the uniformity, conformity, and gradient indices. TLDs and EBT3 films were used to experimentally assess the accuracy of the SRT dose output. The dose homogeneity indices of all the treatment modalities were lower than 1.25. The cone-based linac had the best conformity for all tumors, regardless of the tumor location and size, followed by the FFF-VMAT linac; tomography was the worst-performing treatment modality in this regard. The cone-based linac had the best gradient, regardless of the tumor location and size, whereas the FFF-VMAT linac had a better gradient than tomotherapy for a large tumor diameter (28 mm). The TLD and EBT3 measurements of the dose at the center of tumors indicated that the average difference between the measurements and the calculated dose was generally less than 4%. When the 3% 3-mm gamma passing rate metric was used, the average passing rates of all three treatment modalities exceeded 98%. Regarding the dose, the cone-based linac had the best conformity and steepest dose gradient for tumors of different sizes and distances from the brainstem. The results of this study suggest that SRT should be performed using the cone-based linac on tumors that require treatment plans with a steep dose gradient, even as the tumor is slightly irregular, we should also consider using a high dose gradient of the cone base to treat and protect the normal tissue. If normal tissues require special protection exist at positions that are superior or inferior to the tumor, we can consider using tomotherapy or Cone base with couch at 0° for treatment.
Vacuum system for room temperature X-ray lithography source (XLS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuchman, J.C.
1988-09-30
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
Vacuum system for room temperature X-ray lithography source (XLS)
NASA Astrophysics Data System (ADS)
Schuchman, J. C.
1988-09-01
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemella, Johann; Bane, Karl; Fisher, Alan
The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less
The LAMP instrument at the Linac Coherent Light Source free-electron laser
NASA Astrophysics Data System (ADS)
Osipov, Timur; Bostedt, Christoph; Castagna, J.-C.; Ferguson, Ken R.; Bucher, Maximilian; Montero, Sebastian C.; Swiggers, Michele L.; Obaid, Razib; Rolles, Daniel; Rudenko, Artem; Bozek, John D.; Berrah, Nora
2018-03-01
The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusive metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.
7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan
2014-01-01
Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166
The US Spallation Neutron Source Project
NASA Astrophysics Data System (ADS)
Olsen, David K.
1997-10-01
Slow neutrons, with wavelengths between a few tenths to a few tens of angstroms, are an important probe for condensed-matter physics and are produced with either fission reactors or accelerator-based spallation sources. The Spallation Neutron Source (SNS) is a collaborative project between DOE National Laboratories including LBNL, LANL, BNL, ANL and ORNL to build the next research neutron source in the US. This source will be sited at ORNL and is being designed to serve the needs of the neutron science community well into the next century. The SNS consists of a 1.1-mA H- front end and a 1.0-GeV high-intensity pulsed proton linac. The 1-ms pulses from the linac will be compressed in a 221-m-circumference accumulator ring to produce 600-ns pulses at a 60-Hz rate. This accelerator system will produce spallation neutrons from a 1.0-MW liquid Hg target for a broad spectrum of neutron scattering research with an initial target hall containing 18 instruments. The baseline conceptual design, critical issues, upgrade possibilities, and the collaborative arrangement will be discussed. It is expected that SNS construction will commence in FY99 and, following a seven year project, start operation in 2006.
Zemella, Johann; Bane, Karl; Fisher, Alan; ...
2017-10-19
The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less
Bainbridge, Hannah E; Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe; McDonald, Fiona
2017-11-01
This study investigates the feasibility and potential benefits of radiotherapy with a 1.5T MR-Linac for locally advanced non-small cell lung cancer (LA NSCLC) patients. Ten patients with LA NSCLC were retrospectively re-planned six times: three treatment plans were created according to a protocol for conventionally fractionated radiotherapy and three treatment plans following guidelines for isotoxic target dose escalation. In each case, two plans were designed for the MR-Linac, either with standard (∼7mm) or reduced (∼3mm) planning target volume (PTV) margins, while one conventional linac plan was created with standard margins. Treatment plan quality was evaluated using dose-volume metrics or by quantifying dose escalation potential. All generated treatment plans fulfilled their respective planning constraints. For conventionally fractionated treatments, MR-Linac plans with standard margins had slightly increased skin dose when compared to conventional linac plans. Using reduced margins alleviated this issue and decreased exposure of several other organs-at-risk (OAR). Reduced margins also enabled increased isotoxic target dose escalation. It is feasible to generate treatment plans for LA NSCLC patients on a 1.5T MR-Linac. Margin reduction, facilitated by an envisioned MRI-guided workflow, enables increased OAR sparing and isotoxic target dose escalation for the respective treatment approaches. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pasler, Marlies; Kaas, Jochem; Perik, Thijs; Geuze, Job; Dreindl, Ralf; Künzler, Thomas; Wittkamper, Frits; Georg, Dietmar
2015-12-01
To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B.; Wojtsekhowski, B.
We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +}more » beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less
Implications of the focal beam profile in serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, Lorenzo; Chapman, Henry N.; Metcalf, Peter
The photon density profile of an X-ray free-electron laser (XFEL) beam at the focal position is a critical parameter for serial femtosecond crystallography (SFX), but is difficult to measure because of the destructive power of the beam. A novel high intensity radiation induced phasing method (HIRIP) has been proposed as a general experimental approach for protein structure determination, but has proved to be sensitive to variations of the X-ray intensity, with uniform incident fluence desired for best performance. Here we show that experimental SFX data collected at the nano-focus chamber of the Coherent X-ray Imaging end-station at the Linac Coherentmore » Light Source using crystals with a limited size distribution suggests an average profile of the X-ray beam that has a large variation of intensity. We propose a new method to improve the quality of high fluence data for HI-RIP, by identifying and removing diffraction patterns from crystals exposed to the low intensity region of the beam. The method requires crystals of average size comparable to the width of the focal spot.« less
High-intensity positron microprobe at Jefferson Lab
Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.
2014-06-19
We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 10 10 e +/s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system,more » transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less
Shielding Requirements for an Energy-Recovery Linac Free Electron Laser
2011-12-01
Radiofrequency TLD Thermo Luminescent Dosimeter xviii THIS PAGE INTENTIONALLY LEFT BLANK xix ACKNOWLEDGMENTS I would like to first thank Professor...FOR AN ENERGY- RECOVERY LINAC FREE ELECTRON LASER by Robert E. Peterson December 2011 Thesis Co-Advisors: William B. Colson Keith...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Shielding Requirements for an Energy-Recovery Linac Free Electron Laser 5. FUNDING NUMBERS 6
NASA Astrophysics Data System (ADS)
Celis-López, Miguel A.; Lárraga-Gutiérrez, José M.
2003-09-01
The objective is to present a description and the main clinical applications of this dedicated Linac for benign and malignant tumors in the central nervous system. The Novalis (BrainLab, Germany) is a 6 MV dedicated linac for a single high dose Radiosurgery (RS) and for fractionated doses in Stereotactic Radiotherapy with a high level of precision at the isocenter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KP, Karrthick; Kataria, T; Thiyagarajan, R
Purpose: To study the critical analysis and efficacy of Linac and Cyberknife (CK) treatment plans for acoustic neuroma/schwannoma. Methods: Twelve of acoustic neuroma/schwannoma patients were taken for these study that. Treatment plans were generated in Multiplan treatment planning system (TPS) for CK using 5,7.5 and 10mm diameter collimators. Target volumes were in the range of 0.280 cc to 9.256 cc. Prescription dose (Rx) ranges from 1150cGy to 1950cGy delivered over 1 to 3 Fractions. For same patients stereotactic Volumetric modulated arc plans were generated using Elekta Linac with MLC thickness of 4mm in Monaco TPS. Appropriate calculation algorithms and gridmore » size were used with same Rx and organ at risk (OAR) constrains for both Linac and CK plans. Treatment plans were developed to achieve at least 95% of the target volume to receive the Rx. The dosimetric indices such as conformity index (CI), coverage, OAR dose and volume receiving 50% of Rx (V50%) were used to evaluate the plans. Results: Target volumes ranges from 0.280 cc to 3.5cc shows the CI of 1.16±0.109 and 1.53±0.360 for cyberknife and Linac plans respectively. For small volume targets, the OARs were well spared in CK plans. There are no significant differences in CI and OAR doses were observed between CK and Linac plans that have the target volume >3.5 cc. Perhaps the V50% were lesser in CK plans, and found to be 12.8± 8.4 and 22.8 ± 15.0 for CK and Linac respectively. Conclusion: The analysis shows the importance of collimator size for small volume targets. The target volumes >3.5 cc can be treated in Linac as comparable with CK. For targets <3.5cc CK plans showed superior plan quality with better CI and OAR sparing than the Linac based plans. Further studies may require evaluating the clinical advantage of CK robotic system.« less
NASA Astrophysics Data System (ADS)
Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.
2015-10-01
Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).
Coupled-cavity drift-tube linac
Billen, James H.
1996-01-01
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.
Coupled-cavity drift-tube linac
Billen, J.H.
1996-11-26
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.
ARIEL e-LINAC: Commissioning and Development
NASA Astrophysics Data System (ADS)
Laxdal, R. E.; Zvyagintsev, V.
2016-09-01
A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.
Bogan, Michael J
2013-04-02
Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Murokh, A.; Piot, P.
2017-07-01
A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.
NASA Astrophysics Data System (ADS)
Takayama, Ken; Briggs*, Richard J.
The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.
Design of an upgradeable 45-100 mA RFQ accelerator for FAIR
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Schempp, Alwin
2009-10-01
A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.
Intense terahertz pulses from SLAC electron beams using coherent transition radiation.
Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron
2013-02-01
SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.
Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M
2014-01-31
Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.
Recirculating linacs for a neutrino factory - Arc optics design and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alex Bogacz; Valeri Lebedev
2001-10-21
A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190MeV/c and proceeding to 50GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resultingmore » arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less
Recirculating linacs for a neutrino factory - Arc optics design and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valeri Lebedev; S. Bogacz
2001-10-25
A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice designmore » choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less
Report of the eRHIC Ring-Ring Working Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, E. C.; Berg, S.; Blaskiewicz, M.
2015-10-13
This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the othermore » hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.« less
Permanent magnet focused X-band photoinjector
Yu, David U. L.; Rosenzweig, James
2002-09-10
A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.
Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source
Lunin, A.; Khabiboulline, T.; Solyak, N.; ...
2018-02-06
Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L1 of the linac for linearizing the longitudinal beam profile. Here in this paper, we presentmore » a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.« less
Feasibility of using the linac real-time log data for VMAT treatment verification
NASA Astrophysics Data System (ADS)
Midi, N. S.; Zin, Hafiz M.
2017-05-01
This study investigates the feasibility of using the real-time log data from a linac to verify Volumetric Modulated Arc Therapy (VMAT) treatment. The treatment log data for an Elekta Synergy linac can be recorded at a sampling rate of 4 Hz using the service graphing tool on the linac control computer. A treatment plan that simulates a VMAT treatment was delivered from the linac and all the dynamic treatment parameters including monitor unit (MU), Multileaf Collimator (MLC) position, jaw position, gantry angle and collimator angle were recorded in real-time using the service graphing tool. The recorded raw data were extracted and analysed using algorithms written in Matlab (MathWorks, Natick, MA). The actual treatment parameters logged using the service graphing tool was compared to the prescription and the deviations were analysed. The MLC position errors travelling at the speed range from -3.25 to 5.92 cm/s were between -1.7 mm to 2.5 mm, well within the 3.5 mm tolerance value (AAPM TG-142). The discrepancies of other delivery parameters were also within the tolerance. The real-time linac parameters logged using the service graphing tool can be used as a supplementary data for patient specific VMAT pre-treatment quality assurance.
Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source
NASA Astrophysics Data System (ADS)
Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.
2018-02-01
Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.
Stereotactic radiosurgery for trigeminal neuralgia: a systematic review.
Tuleasca, Constantin; Régis, Jean; Sahgal, Arjun; De Salles, Antonio; Hayashi, Motohiro; Ma, Lijun; Martínez-Álvarez, Roberto; Paddick, Ian; Ryu, Samuel; Slotman, Ben J; Levivier, Marc
2018-04-27
OBJECTIVES The aims of this systematic review are to provide an objective summary of the published literature specific to the treatment of classical trigeminal neuralgia with stereotactic radiosurgery (RS) and to develop consensus guideline recommendations for the use of RS, as endorsed by the International Society of Stereotactic Radiosurgery (ISRS). METHODS The authors performed a systematic review of the English-language literature from 1951 up to December 2015 using the Embase, PubMed, and MEDLINE databases. The following MeSH terms were used in a title and abstract screening: "radiosurgery" AND "trigeminal." Of the 585 initial results obtained, the authors performed a full text screening of 185 studies and ultimately found 65 eligible studies. Guideline recommendations were based on level of evidence and level of consensus, the latter predefined as at least 85% agreement among the ISRS guideline committee members. RESULTS The results for 65 studies (6461 patients) are reported: 45 Gamma Knife RS (GKS) studies (5687 patients [88%]), 11 linear accelerator (LINAC) RS studies (511 patients [8%]), and 9 CyberKnife RS (CKR) studies (263 patients [4%]). With the exception of one prospective study, all studies were retrospective. The mean maximal doses were 71.1-90.1 Gy (prescribed at the 100% isodose line) for GKS, 83.3 Gy for LINAC, and 64.3-80.5 Gy for CKR (the latter two prescribed at the 80% or 90% isodose lines, respectively). The ranges of maximal doses were as follows: 60-97 Gy for GKS, 50-90 Gy for LINAC, and 66-90 Gy for CKR. Actuarial initial freedom from pain (FFP) without medication ranged from 28.6% to 100% (mean 53.1%, median 52.1%) for GKS, from 17.3% to 76% (mean 49.3%, median 43.2%) for LINAC, and from 40% to 72% (mean 56.3%, median 58%) for CKR. Specific to hypesthesia, the crude rates (all Barrow Neurological Institute Pain Intensity Scale scores included) ranged from 0% to 68.8% (mean 21.7%, median 19%) for GKS, from 11.4% to 49.7% (mean 27.6%, median 28.5%) for LINAC, and from 11.8% to 51.2% (mean 29.1%, median 18.7%) for CKR. Other complications included dysesthesias, paresthesias, dry eye, deafferentation pain, and keratitis. Hypesthesia and paresthesia occurred as complications only when the anterior retrogasserian portion of the trigeminal nerve was targeted, whereas the other listed complications occurred when the root entry zone was targeted. Recurrence rates ranged from 0% to 52.2% (mean 24.6%, median 23%) for GKS, from 19% to 63% (mean 32.2%, median 29%) for LINAC, and from 15.8% to 33% (mean 25.8%, median 27.2%) for CKR. Two GKS series reported 30% and 45.3% of patients who were pain free without medication at 10 years. CONCLUSIONS The literature is limited in its level of evidence, with only one comparative randomized trial (1 vs 2 isocenters) reported to date. At present, one can conclude that RS is a safe and effective therapy for drug-resistant trigeminal neuralgia. A number of consensus statements have been made and endorsed by the ISRS.
Novel Linac Structures For Low-Beta Ions And For Muons
NASA Astrophysics Data System (ADS)
Kurennoy, Sergey S.
2011-06-01
Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.
SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).
Muhammad, W; Lee, S; Hussain, A
2012-06-01
The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihailidis, D
2015-06-15
Purpose: To date, there isn’t formal approach for flattening filter-free (FFF) linac vault shielding evaluation, thus, we propose an extension to NCRP#151 to accommodate the recent large number of FFF linac installations.Methods and Materials: We extended the approach in NCRP#151 to design two Truebeam vaults in our new cancer center for hypofractionated treatments. Monte Carlo calculations have characterized primary, scattered, leakage and neutron radiations from FFF-modes. These calculations have shown that: a) FFF primary beam is softer on the central-axis compared to flattening filtered (FF), b) the lateral dose profile is peaked on the central axis and less integral targetmore » current is required to generate the same tumor dose with the FF beam. Thus, the TVLs for FFF mode are smaller than those of the FF mode and the scatter functions of the FF mode (NCRP#151) may not be appropriate for FFF-mode, c) the neutron source strength and fluence for 18X-FFF is smaller than 18X-FF, but it is not of a concern here, no 18X-FFF-mode is available on the linac under investigation. Results: These barrier thickness are smaller (12% reduction on the average) than those computed for conventional FF mode with same realistic primary workload since, the primary TVLs used here are smaller and the WL is smaller than the conventional (almost half reduced), keeping the TADR in tolerance. Conclusions: A comprehensive method for shielding barrier calculations based on dedicated data for FFF-mode linacs is highly desired. Meanwhile, we provide an extension to NCRP#151 to accommodate the shielding design of such installations. It is also shown that if a vault is already designed for IMRT/VMAT and SABR hypofractionated treatments with FFF-mode linac, the vault can also be used for a FFF mode linac replacement, leaving some leeway for slightly higher workload on the FFF linac.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Liang, X; Penagaricano, J
2015-06-15
Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD),more » GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are deeply-seated and cannot be safely treated with LINAC-GRID.« less
FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baillie, Devin; Aubin, J. St.; Steciw, S., E-mail: ssteciw@ualberta.ca
2015-04-15
Purpose: Current commercial 10 MV Linac waveguides are 1.5 m. The authors’ current 6 MV linear accelerator–magnetic resonance imager (Linac–MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac–MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. Methods: The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match publishedmore » shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. Results: The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. Conclusions: The authors have successfully designed and simulated an S-band waveguide of length of 27.5 cm capable of producing a 10 MV photon beam. This waveguide operates well within the breakdown threshold determined for the cavity geometry used. The designed Linac produces depth dose profiles similar to those of the emulated 10 MV Linac (waveguide-length of 1.5 m) but yields a narrower penumbra.« less
BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plastun, A.; Mustapha, B.; Nassiri, A.
2016-05-01
Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-endmore » beam dynamics studies which are presented in this paper.« less
NASA Astrophysics Data System (ADS)
Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.
2014-08-01
RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.
Investigation of Microbunching Instabilities in Modern Recirculating Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Cheng
Particle accelerators are machines to accelerate and store charged particles, such as electrons or protons, to the energy levels for various scientific applications. A collection of charged particles usually forms a particle beam. There are three basic types of particle accelerators: linear accelerators (linac), storage-ring (or circular) accelerators, and recirculating accelerators. In a linac, particles are accelerated and pass through once along a linear or straight beamline. Storage-ring accelerators propel particles around a circular track and repetitively append the energy to the stored beam. The third type, also the most recent one in chronology, the recirculating accelerator, is designed tomore » accelerate the particle beam in a short section of linac, circulate the beam, and then either continue to accelerate for energy boost or decelerate it for energy recovery. The beam properties of a linac machine are set at best by the initial particle sources. For storage rings, the beam equilibria are instead determined by the overall machine design. The modern recirculating machines share with linacs the advantages to both accelerate and preserve the beam with high beam quality, as well as efficiently reuse the accelerating components. The beamline design in such a machine configuration can however be much more complicated than that of linacs. As modern accelerators push toward the high-brightness or high-intensity frontier by demanding particles in a highly charged bunch (about nano-Coulomb per bunch) to concentrate in an ever-decreasing beam phase space (transverse normalized emittance about 1 μm and relative energy spread of the order of 10^-5 in GeV beam energy), the interaction amongst particles via their self-generated electromagnetic fields can potentially lead to coherent instabilities of the beam and thus pose significant challenges to the machine design and operation. In the past decade and a half, microbunching instability (MBI) has been one of the most challenging issues for such high-brightness or high-intensity beam transport, as it would degrade lasing performance in the fourth-generation light sources, reduce cooling efficiency in electron cooling facilities, and compromise the luminosity of colliding beams in lepton or lepton-hadron colliders. The dissertation work will focus on the MBI in modern recirculating electron accelerators. It has been known that the collective interactions, the coherent synchrotron radiation (CSR) and the longitudinal space charge (LSC) forces, can drive MBI. The CSR effect is a collective phenomenon in which the electrons in a curved motion, e.g. a bending dipole, emit radiation at a scale comparable to the micro-bunched structure of the bunch distribution. The LSC effect stems from non-uniformity of the charge distribution, acts as plasma oscillation, and can eventually accumulate an amount of energy modulation when the beam traverses a long section of a beamline. MBI can be seeded by non-uniformity or shot noise of the beam, which originates from granularity of the elementary charge. Through the aforementioned collective effects, the modulation of the bunch sub-structure can be amplified and, once the beam-wave interaction formed a positive feedback, can result in MBI. The problem of MBI has been intensively studied for linac-based facilities and for storage-ring accelerators. However, systematic studies for recirculation machines are still very limited and form a knowledge gap. Because of the much more complicated machine configuration of the recirculating accelerators than that of linacs, the existing MBI analysis needs to be extended to accommodate the high-brightness particle beam transport in modern recirculating accelerators. This dissertation is focused on theoretical investigation of MBI in such machine configuration in the following seven themes: (1) Development and generalization of MBI theory The theoretical formulation has been extended so as to be applicable to a general linear beamline lattice including horizontal and vertical transport bending elements, and beam acceleration or deceleration. These featured generalizations are required for MBI analysis in recirculation accelerators. (2) Construction of CSR impedance models In addition to the steady-state CSR interaction, it has been found that the exit transient effect (or CSR drift) can even result in more serious MBI in high-brightness recirculation arcs. The onedimensional free-space CSR impedances, especially the exit transients, are derived. The steady-state CSR impedance is also extended to non-ultrarelativistic beam energy for MBI analysis of low-energy merger sections in recirculating accelerators. (3) Numerical implementation of the derived semi-analytical formulation This includes the development of a semi-analytical Vlasov solver for MBI analysis, and also benchmarking of the solver against massive particle tracking simulations. (4) Exploration of multistage amplification behavior of CSR microbunching development The CSR-induced MBI acts as an amplifier, which amplifies the sub-bunch modulation of a beam. The amplification is commonly quantified by the amplification gain. A beam transport system can be considered as a cascaded amplifier. Unlike the two-stage amplification of four-dipole bunch compressor chicanes employed in linacs, the recirculation arcs, which are usually constituted by several tens of bending magnets, show a distinguishing feature of up to six-stage microbunching amplification for our example arc lattices. That is, the maximal CSR amplification gain can be proportional to the peak bunch current up to sixth power. A method to compare lattice performance has been developed in terms of gain coefficients, which nearly depend on the lattice properties only. This method has also proven to be an effective way to quantify the current dependence of the maximal (5) Control of CSR MBI in multibend transport or recirculation arcs The existing mitigation schemes of MBI mostly aim to linac-based accelerators and may not be practical to the recirculating accelerator facilities. Thus a set of conditions for suppression of CSR MBI was proposed and examined for example lattices from low (~100 MeV) to high (~1 GeV) energies. (6) Study of more aspects of microbunched structures in beam phase spaces For a cascaded amplifier in circuit electronics, the total amplification gain can be estimated as the product of individual gains. In a beam transport line of an accelerator, the (scalar) gain multiplication was examined and found to under-estimate the overall microbunching amplification. The concept of gain matrix was developed, which includes the density, energy and transverse-longitudinal modulations in a beam phase space, and used to analyze MBI for a proposed recirculating machine. Throughout the gain matrix approach, it reasonably gives the upper limit of spectral MBI gain curves. This extended analysis can be employed to study multi-pass recirculation. (7) Study of MBI for magnetized beams Driven by a recent energy-recovery-linac based cooler design for electron cooling at Jefferson Lab Electron-Ion Collider Project, the generalized theoretical formulation for MBI to a transversely coupled beam has been developed and applied to this study. A magnetized beam in general features non-zero canonical angular momentum, thus considered to be a transversely coupled beam. A novel idea of utilizing magnetized beam transport was proposed for improvement of cooling efficiency and possible mitigation of collective effects. A concern of MBI regarding this design was studied and excluded. The large transverse beam size associated with the beam magnetization is found to help suppress MBI via the transverse-longitudinal correlation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihailidis, D; Mallah, J
2016-06-15
Purpose: Many times a set of multiple Varian-Truebeam (TB) linacs are acquired by an institution. Since “beam matching” is an important requirement for many facilities, we developed a strategy to perform a “simultaneous” commissioning between multiple linacs.Methods and Materials: We first commissioned the required photon beam data for eclipse on the 1st TB for all the energy modalities with a beam scanning system, while integrated measurements for output factors, of all field sizes (from 1×1 to 40×40cm{sup 2}) were conducted on the 2nd TB. Care was exercised during small field dosimetry so the appropriate detectors were used with data takenmore » between two detectors be “linked” to a larger field size (4×4cm{sup 2}) with the “daisy-chaining” technique via: OF=[M-PTW(fs)×(M-PTW(4×4))-1]×[MA12s(4×4)×(M-A12S(10×10))−1]. For all energy modalities, data that span the entire range of field size, was repeated on the next TB linac, for verification. The primarily energy-dependent dosimetric leaf gap (DLG) which was measured separately on each TB. The modeled data was validated with special measurements conducted on both linacs during commissioning. Results: Our data agreed with the “TB representative beam data” to within 0.5% for all energy modalities and field sizes ≥3×3cm2. Sample depth-doses and cross-profiles of a 3×3cm2 between the linacs agreeing to within 1% between linacs. The measured DLGs were quite different with a uniform difference of 1.3% between the two linacs. The measured DLG values are independent of the average dose rate and medium used for the measurements. Conclusion: A comprehensive method of commissioning identical Varian-TB linacs, outlining the critical issues, especially small field dosimetry and DLG. The dosimetric effect of different DLG values, when it comes to, dynamic delivery and data comparisons will be presented. The dependence of DLG value on the measurement medium (in-air vs. water) or dose rate used will also be discussed. This work was supported by CAMC Cancer Center and Alliance Oncology.« less
Michiels, Steven; Poels, Kenneth; Crijns, Wouter; Delombaerde, Laurence; De Roover, Robin; Vanstraelen, Bianca; Haustermans, Karin; Nuyts, Sandra; Depuydt, Tom
2018-05-05
Linac improvements in gantry speed, leaf speed and dose rate may increase the time-efficiency of volumetric modulated arc therapy (VMAT) delivery. The plan quality achievable with faster VMAT however remains to be investigated. In this study, a fast-rotating O-ring linac with fast-moving leaves is compared with a C-arm linac in terms of plan quality and delivery time for VMAT of head-and-neck cancer (HNC). For 30 patients with HNC, treatment planning was performed using dual-arc (HA2) and triple-arc (HA3) VMAT on a Halcyon fast-rotating O-ring linac and using dual-arc VMAT on a TrueBeam C-arm linac (TB2). Target coverage metrics and complication probabilities were compared. Plan delivery was verified using 3%/3 mm gamma-index analysis of helical diode array measurements. Volumetric image acquisition and plan delivery times were compared. All studied VMAT-techniques fulfilled the target coverage objectives. D 2% to the boost volume was higher for HA2 (median 103.7%, 1st-3rd quartile [103.5%;104.0%]) and HA3 (103.2% [103.0%;103.7%)] than for TB2 (102.6% [102.3%;103.0%)], resulting in an increased boost target dose heterogeneity for HA2 and HA3. Complication probabilities were comparable between HA2 and TB2, while HA3 showed a xerostomia probability reduction (0.8% [0.2%;1.8%]) and dysphagia probability reduction (1.0% [0.2%;1.8%]) compared with TB2. Gamma-index agreement scores were never below 93.0% for HA2, HA3 and TB2. Volumetric imaging and plan delivery time was shorter for HA2 (1 m 24 s ± 1 s) and HA3 (1 m 54 s ± 1 s) than for TB2 (2 m 47 s ± 1 s). For VMAT of HNC, the fast-rotating O-ring linac at least maintains the plan quality of two arcs on a C-arm linac while reducing the image acquisition and plan delivery time. Copyright © 2018 Elsevier B.V. All rights reserved.
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams
NASA Astrophysics Data System (ADS)
Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.
2005-07-01
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
Heavy ion linear accelerator for radiation damage studies of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less
Heavy ion linear accelerator for radiation damage studies of materials
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif
2017-03-01
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.
Compact, inexpensive, epithermal neutron source for BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, D. A.
1999-06-10
A new rf-focused linac structure, designed specifically to increase the acceleration efficiency and reduce the cost of linac structures in the few-MeV range, may win the role as the optimum accelerator-based epithermal neutron source for the BNCT application. This new linac structure resembles a drift tube linac (DTL) with radio frequency quadrupole (RFQ) focusing incorporated into each 'drift tube,' hence the name R lowbar f F lowbar ocused D lowbar TL, or RFD. It promises superior acceleration properties, focusing properties, and CW capabilities. We have a proposal under consideration for the development of an epithermal neutron source, based on themore » 2.5-MeV RFD linac system with an average current of 10 mA, having the following components: an ion source, a short low-energy transport system, a short RFQ linac section, an RFD linac section, an rf power system, a high-energy beam transport system, a proton beam target, and a neutron beam moderator system. We propose to develop a solid lithium target for this application in the form of a thin lithium layer on the inner surface of a truncated aluminum cone, cooled by the heavy water moderator, where the proton beam is expanded to a diameter of 3 cm and scanned along a circular path, striking the lithium layer at the cone's half-angle of 30 degrees. We propose to develop a moderator assembly designed to transmit a large fraction of the source neutrons from the target to the patient treatment port, while shifting the neutron energies to an appropriate epithermal energy spectrum and minimizing the gamma-ray dose. The status of this proposal and these plans are presented.« less
Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomestnykh, S.; Ben-Zvi, I.; Brutus, J. C.
The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems
Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp
NASA Astrophysics Data System (ADS)
Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.
2008-03-01
An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.
Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.
2009-03-01
X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.
Beam dynamics design of the muon linac high-beta section
NASA Astrophysics Data System (ADS)
Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.
2017-07-01
A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.
... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...
Emerging opportunities in structural biology with X-ray free-electron lasers
Schlichting, Ilme; Miao, Jianwei
2012-01-01
X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042
Summary of the 2014 Beam-Halo Monitoring Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Alan
2015-09-25
Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurementsmore » with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.« less
Applications of Coherent Radiation from Electrons traversing Crystals
NASA Astrophysics Data System (ADS)
Überall, H.
2000-04-01
Historically, the first types of coherent radiation from electrons traversing crystals studied were coherent bremsstrahlung (CB: Dyson and Überall 1955; Überall 1956, 1962) and channeling radiation (CR: Kumakhov, 1976) which produce quasimonochromatic X-rays and γ-rays, as well as parametric X-rays (Baryshevsky and Feranchuk, 1983). Related non-crystal sources are transition radiation and synchrotron radiation. We here present a comparison of radiation types from these sources, and we discuss a series of their possible applications, namely (a) CR: X-ray lithography, angiography, structure analysis of macromolecules, and trace element analysis, and (b) for CB: Radiography, use as a neutron source, elemental analysis, radiation therapy, and radioisotope production for commercial or medical use. CR and CB are very intense sources, needing only low-energy, moderately-priced electron linacs for their generation, hence competing with (or surpassing) more conventional X-ray sources intensity-wise and from a cost standpoint.
SINGLE BUNCH BEAM BREAKUP - A GENERAL SOLUTION.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WANG,J.M.; MANE,S.R.; TOWNE,N.
2000-06-26
Caporaso, Barletta and Neil (CBN) found in a solution to the problem of the single-bunch beam breakup in a linac[1]. However, their method applies only to the case of a beam traveling in a strongly betatron-focused linac under the influence of the resistive wall impedance. We suggest in this paper a method for dealing with the same problem. Our methods is more general; it applies to the same problem under any impedance, and it applies to a linac with or without external betatron focusing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaddanapudi, S; Cai, B; Sun, B
2015-06-15
Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linacmore » photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.« less
The LAMP instrument at the Linac Coherent Light Source free-electron laser
Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.; ...
2018-03-23
The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusivemore » metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here in this paper we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.« less
The LAMP instrument at the Linac Coherent Light Source free-electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.
The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusivemore » metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here in this paper we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.« less
Detection and clearing of trapped ions in the high current Cornell photoinjector
Full, S.; Bartnik, A.; Bazarov, I. V.; ...
2016-03-03
Here, we have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence ofmore » bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1–20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.« less
Vacuum system of the compact Energy Recovery Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.
2016-07-27
The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gasmore » interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.« less
The LILIA experiment: Energy selection and post-acceleration of laser generated protons
NASA Astrophysics Data System (ADS)
Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo
2012-12-01
The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.
Longitudinal bunch shaping of picosecond high-charge MeV electron beams
Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...
2016-10-20
With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.
TH-C-BRC-03: Emerging Linac Based SRS/SBRT Technologies with Modulated Arc Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, L.
2016-06-15
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
NASA Astrophysics Data System (ADS)
Latifah, R.; Bunawas; Noor, J. A. E.
2018-03-01
Linear accelerator (linac) becomes the most commonly used treatment to damage and kill cancer cell. Photon and electron as the radiation beam are produced by accelerating electrons to very high energy. Neutrons are generated when incident high photon energy interacts with component of linac such as target, flattering filter and collimator via photoneutrons reaction. The neutrons can also produce activation of materials in treatment room to generate radioactive materials. We have estimated the concentration of Argon-41 as activated product from argon-40 in the linac room using foil activation. The results show that the Argon-41 concentration in linac room which is operated 15 MV for 1 treatment (1 minute) is 1440 Bq/m3. Accordingly that concentration, the occupational dose is 6.4 mSv per year.
NASA Astrophysics Data System (ADS)
Costa, Filipa; Doran, Simon J.; Hanson, Ian M.; Nill, Simeon; Billas, Ilias; Shipley, David; Duane, Simon; Adamovics, John; Oelfke, Uwe
2018-03-01
Dosimetric quality assurance (QA) of the new Elekta Unity (MR-linac) will differ from the QA performed of a conventional linac due to the constant magnetic field, which creates an electron return effect (ERE). In this work we aim to validate PRESAGE® dosimetry in a transverse magnetic field, and assess its use to validate the research version of the Monaco TPS of the MR-linac. Cylindrical samples of PRESAGE® 3D dosimeter separated by an air gap were irradiated with a cobalt-60 unit, while placed between the poles of an electromagnet at 0.5 T and 1.5 T. This set-up was simulated in EGSnrc/Cavity Monte Carlo (MC) code and relative dose distributions were compared with measurements using 1D and 2D gamma criteria of 3% and 1.5 mm. The irradiation conditions were adapted for the MR-linac and compared with Monaco TPS simulations. Measured and EGSnrc/Cavity simulated profiles showed good agreement with a gamma passing rate of 99.9% for 0.5 T and 99.8% for 1.5 T. Measurements on the MR-linac also compared well with Monaco TPS simulations, with a gamma passing rate of 98.4% at 1.5 T. Results demonstrated that PRESAGE® can accurately measure dose and detect the ERE, encouraging its use as a QA tool to validate the Monaco TPS of the MR-linac for clinically relevant dose distributions at tissue-air boundaries.
Melville, G; Fan Liu, Sau; Allen, B J
2006-09-01
Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation on a small scale by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) to produce Ra-225, which subsequently decays to Ac-225, which can be used as a generator to produce Bi-213 for use in 'targeted alpha therapy' for cancer. This paper examines the possibility of producing Ac-225 with a linac using an accurate theoretical model in which the bremsstrahlung photon spectrum at 18 MV linac electron energy is convoluted with the corresponding photonuclear cross sections of Ra-226. The total integrated yield can then be obtained and is compared with a computer simulation. This study shows that at 18 MV, the photonuclear reaction on Ra-226 can produce low activities of Ac-225 with a linac. However, a high power linac with high current, pulse length and frequency is needed to produce practical amounts of Ac-225 and a useful reduction of Ra-226.
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study.
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2009-10-01
Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. We investigated image quality parameters for three devices over a period of 16months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.
LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing
NASA Astrophysics Data System (ADS)
Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min
2009-06-01
In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.
Marchesini, Renato; Bettega, Daniela; Calzolari, Paola; Pignoli, Emanuele
2017-05-01
Production of photonuclear particles in a tissue-equivalent medium has been calculated for linacs at 6, 10 and 15 MV from Varian TrueBeam. Based on the knowledge of bremsstrahlung fluence spectra and linac photon beam parameters, numerical integration was performed on the cross sections for photoparticle production of the constituent elements of tissue (2H,12C,13C,16O,17O,18O,14N,15N). At 15 MV, at the depth of photon maximum dose, the total absorbed dose due to neutrons, protons, alphas and residual nuclei from photon reactions in tissue (5.5E-05 Gy per Gy of photons) is comparable to that due to neutrons from accelerator head. Results reasonably agree with data reported in the literature using Monte Carlo models simulating linac head components. This work suggests a simple method to estimate the dose contributed by the photon-induced nuclear particles for high-energy photon beams produced by linacs in use, as it might be relevant for late stochastic effects. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dark current and radiation shielding studies for the ILC main linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokhov, Nikolai V.; Rakhno, I. L.; Solyak, N. A.
2016-12-05
Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel.more » A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.« less
Field characteristics of an alvarez-type linac structure having chain-like electrode array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odera, M.; Goto, A.; Hemmi, M.
1985-10-01
A chain-like electrode configuration in an Alvarez-type linac cavity was studied by models. The structure has been devised to get a moderate shunt impedance together with simplicity of operation, in ion velocity region of more than a few percent of that of light by incorporating focusing scheme by high frequency quadrupolar fields into an TM-010 accelerating field of an Alvarez linac. It has a chain-like electrode array instead of drift tubes containing quadrupole lenses for ordinary linacs. The chain-like electrode structure generates along its central axis, high frequency acceleration and focusing fields alternately, separating the acceleration and focusing functions inmore » space. The separation discriminates this structure from spatially uniform acceleration and focusing scheme of the RFQs devised by Kapchinsky and Teplyakov. It gives beam acceleration effects different from those by conventional linacs and reveals possibility of getting a high acceleration efficiency. Resonant frequency spectrum was found relatively simple by measurements on high frequency models. Separation of unwanted modes from the TM-010 acceleration mode is large; a few 10 MHz, at least. Tilt of the acceleration field is not very sensitive to pertubation in gap capacitance for the TM-010 mode.« less
Event-synchronized data acquisition system for the SPring-8 linac beam position monitors
NASA Astrophysics Data System (ADS)
Masuda, T.; Fukui, T.; Tanaka, R.; Taniuchi, T.; Yamashita, A.; Yanagida, K.
2005-05-01
By the summer of 2003, we had completed the installation of a new non-destructive beam position monitor (BPM) system to facilitate beam trajectory and energy correction for the SPring-8 linac. In all, 47 BPM sets were installed on the 1-GeV linac and three beam-transport lines. All of the BPM data acquisition system was required to operate synchronously with the electron beam acceleration cycle. We have developed an event-synchronized data acquisition system for the BPM data readout. We have succeeded in continuously taking all the BPMs data from six VME computers synchronized with the 10 pps operation of the linac to continuously acquire data. For each beam shot, the data points are indexed by event number and stored in a database. Using the real-time features of the Solaris operating system and distributed database technology, we currently have achieved about 99.9% efficiency in capturing and archiving all of the 10 Hz data. The linac BPM data is available for off-line analysis of the beam trajectory, but also for real-time control and automatic correction of the beam trajectory and energy.
Micro-SHINE Uranyl Sulfate Irradiations at the Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Kalensky, Michael; Chemerisov, Sergey
2016-08-01
Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.
Beam position monitor for energy recovered linac beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Thomas; Evtushenko, Pavel
A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.
Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, Marco; Harnett, Nicole; Jaffray, David
Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance ofmore » all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.« less
Loughery, Brian; Knill, Cory; Silverstein, Evan; Zakjevskii, Viatcheslav; Masi, Kathryn; Covington, Elizabeth; Snyder, Karen; Song, Kwang; Snyder, Michael
2018-03-20
We conducted a multi-institutional assessment of a recently developed end-to-end monthly quality assurance (QA) protocol for external beam radiation therapy treatment chains. This protocol validates the entire treatment chain against a baseline to detect the presence of complex errors not easily found in standard component-based QA methods. Participating physicists from 3 institutions ran the end-to-end protocol on treatment chains that include Imaging and Radiation Oncology Core (IROC)-credentialed linacs. Results were analyzed in the form of American Association of Physicists in Medicine (AAPM) Task Group (TG)-119 so that they may be referenced by future test participants. Optically stimulated luminescent dosimeter (OSLD), EBT3 radiochromic film, and A1SL ion chamber readings were accumulated across 10 test runs. Confidence limits were calculated to determine where 95% of measurements should fall. From calculated confidence limits, 95% of measurements should be within 5% error for OSLDs, 4% error for ionization chambers, and 4% error for (96% relative gamma pass rate) radiochromic film at 3% agreement/3 mm distance to agreement. Data were separated by institution, model of linac, and treatment protocol (intensity-modulated radiation therapy [IMRT] vs volumetric modulated arc therapy [VMAT]). A total of 97% of OSLDs, 98% of ion chambers, and 93% of films were within the confidence limits; measurements were found outside these limits by a maximum of 4%, < 1%, and < 1%, respectively. Data were consistent despite institutional differences in OSLD reading equipment and radiochromic film calibration techniques. Results from this test may be used by clinics for data comparison. Areas of improvement were identified in the end-to-end protocol that can be implemented in an updated version. The consistency of our data demonstrates the reproducibility and ease-of-use of such tests and suggests a potential role for their use in broad end-to-end QA initiatives. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
SU-E-T-11: A Cloud Based CT and LINAC QA Data Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, R; Grelewicz, Z; Belcher, A
Purpose: The current status quo of QA data management consists of a mixture of paper-based forms and spreadsheets for recording the results of daily, monthly, and yearly QA tests for both CT scanners and LINACs. Unfortunately, such systems suffer from a host of problems as, (1) records can be easily lost or destroyed, (2) data is difficult to access — one must physically hunt down records, (3) poor or no means of historical data analysis, and (4) no remote monitoring of machine performance off-site. To address these issues, a cloud based QA data management system was developed and implemented. Methods:more » A responsive tablet interface that optimizes clinic workflow with an easy-to-navigate interface accessible from any web browser was implemented in HTML/javascript/CSS to allow user mobility when entering QA data. Automated image QA was performed using a phantom QA kit developed in Python that is applicable to any phantom and is currently being used with the Gammex ACR, Las Vegas, Leeds, and Catphan phantoms for performing automated CT, MV, kV, and CBCT QAs, respectively. A Python based resource management system was used to distribute and manage intensive CPU tasks such as QA phantom image analysis or LaTeX-to-PDF QA report generation to independent process threads or different servers such that website performance is not affected. Results: To date the cloud QA system has performed approximately 185 QA procedures. Approximately 200 QA parameters are being actively tracked by the system on a monthly basis. Electronic access to historical QA parameter information was successful in proactively identifying a Linac CBCT scanner’s performance degradation. Conclusion: A fully comprehensive cloud based QA data management system was successfully implemented for the first time. Potential machine performance issues were proactively identified that would have been otherwise missed by a paper or spreadsheet based QA system.« less
X-band RF gun and linac for medical Compton scattering X-ray source
NASA Astrophysics Data System (ADS)
Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi
2004-12-01
Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.
Chen, Guang-Pei; Ahunbay, Ergun; Li, X Allen
2016-04-01
To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data are accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose-volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Ahunbay, Ergun; Li, X. Allen
Purpose: To develop an integrated quality assurance (QA) software tool for online replanning capable of efficiently and automatically checking radiation treatment (RT) planning parameters and gross plan quality, verifying treatment plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary monitor unit (MU) calculation with or without a presence of a magnetic field from MR-Linac, and validating the delivery record consistency with the plan. Methods: The software tool, named ArtQA, was developed to obtain and compare plan and treatment parameters from both the TPS and the R&V system database. The TPS data aremore » accessed via direct file reading and the R&V data are retrieved via open database connectivity and structured query language. Plan quality is evaluated with both the logical consistency of planning parameters and the achieved dose–volume histograms. Beams in between the TPS and R&V system are matched based on geometry configurations. To consider the effect of a 1.5 T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA has been used in their clinic and can quickly detect inconsistencies and deviations in the entire RT planning process. With the use of the ArtQA tool, the efficiency for plan check including plan quality, data transfer, and delivery check can be improved by at least 60%. The newly developed independent MU calculation tool for MR-Linac reduces the difference between the plan and calculated MUs by 10%. Conclusions: The software tool ArtQA can be used to perform a comprehensive QA check from planning to delivery with conventional Linac or MR-Linac and is an essential tool for online replanning where the QA check needs to be performed rapidly.« less
Kim, Eunji; Wu, Hong-Gyun; Park, Jong Min; Kim, Jung-in; Kim, Hak Jae
2018-01-01
Radiation-induced lung damage is an important treatment-related toxicity after lung stereotactic ablative radiotherapy (SABR). After implementing a tri-60Co magnetic-resonance image guided system, ViewRayTM, we compared the associated early radiological lung density changes to those associated with a linear accelerator (LINAC). Eight patients treated with the tri-60Co system were matched 1:1 with patients treated with LINAC. Prescription doses were 52 Gy or 60 Gy in four fractions, and lung dose-volumetric parameters were calculated from each planning system. The first two follow-up computed tomography (CT) were co-registered with the planning CT through deformable registration software, and lung density was measured by isodose levels. Tumor size was matched between the two groups, but the planning target volume of LINAC was larger than that of the tri-60Co system (p = 0.036). With regard to clinically relevant dose-volumetric parameters in the lungs, the ipsilateral lung mean dose, V10Gy and V20Gy were significantly poorer in tri-60Co plans compared to LINAC plans (p = 0.012, 0.036, and 0.017, respectively). Increased lung density was not observed in the first follow-up scan compared to the planning scan. A significant change of lung density was shown in the second follow-up scan and there was no meaningful difference between the tri-60Co system and LINAC for all dose regions. In addition, no patient developed clinical radiation pneumonitis until the second follow-up scan. Therefore, there was no significant difference in the early radiological lung damage between the tri-60Co system and LINAC for lung SABR despite of the inferior plan quality of the tri-60Co system compared to that of LINAC. Further studies with a longer follow-up period are needed to confirm our findings. PMID:29608606
Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility
NASA Astrophysics Data System (ADS)
Sano, Tadafumi; Hori, Jun-ichi; Takahashi, Yoshiyuki; Yashima, Hiroshi; Lee, Jaehong; Harada, Hideo
2017-09-01
In this study, we carried out Monte Carlo simulations to obtain the energy resolution of the neutron flux for TOF measurements in the KURRI-LINAC pulsed neutron facility. The simulation was performed on the moderated neutron flux from the pac-man type moderator at the energy range from 0.1 eV to 10 keV. As the result, we obtained the energy resolutions (ΔE/E) of about 0.7% to 1.3% between 0.1 eV to 10 keV. The energy resolution obtained from Monte Carlo simulation agreed with the resolution using the simplified evaluation formula. In addition, we compared the energy resolution among KURRI-LINAC and other TOF facilities, the energy dependency of the energy resolution with the pac-man type moderator in KURRI-LINAC was similar to the J-PARC ANNRI for the single-bunch mode.
Calculation of Dose for Skyshine Radiation From a 45 MeV Electron LINAC
NASA Astrophysics Data System (ADS)
Hori, M.; Hikoji, M.; Takahashi, H.; Takahashi, K.; Kitaichi, M.; Sawamura, S.; Nojiri, I.
1996-11-01
Dose estimation for skyshine plays an important role in the evaluation of the environment around nuclear facilities. We performed calculations for the skyshine radiation from a Hokkaido University 45 MeV linear accelerator using a general purpose user's version of the EGS4 Monte Carlo Code. To verify accuracy of the code, the simulation results have been compared with our experimental results, in which a gated counting method was used to measure low-level pulsed leakage radiation. In experiment, measurements were carried out up to 600 m away from the LINAC. The simulation results are consistent with the experimental values at the distance between 100 and 400 m from the LINAC. However, agreements of both results up to 100 m from the LINAC are not as good because of the simplification of geometrical modeling in the simulation. It could be said that it is useful to apply this version to the calculation for skyshine.
Development and performance test of a new high power RF window in S-band PLS-II LINAC
NASA Astrophysics Data System (ADS)
Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki
2017-12-01
A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.
Li, Qiongge; Chan, Maria F
2017-01-01
Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.
A Particle-in-cell scheme of the RFQ in the SSC-Linac
NASA Astrophysics Data System (ADS)
Xiao, Chen; He, Yuan; Lu, Yuan-Rong; Yuri, Batygin; Yin, Ling; Wang, Zhi-Jun; Yuan, You-Jin; Liu, Yong; Chang, Wei; Du, Xiao-Nan; Wang, Zhi; Xia, Jia-Wen
2010-11-01
A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH. Simulation results show that this RFQ structure is characterized by stable values of beam transmission efficiency (at least 95%) for both zero-current mode and the space charge dominated regime. The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions, and could easily be accepted by Drift Tube Linac (DTL). The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.
Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system
NASA Astrophysics Data System (ADS)
Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik
2017-12-01
A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.
Beam dynamics in THz dielectric-loaded waveguides for the AXSIS project
NASA Astrophysics Data System (ADS)
Vinatier, T.; Assmann, R. W.; Dorda, U.; Lemery, F.; Marchetti, B.
2017-07-01
In this paper, we investigate with ASTRA simulations the beam dynamics in dielectric-loaded waveguides driven by THz pulses, used as linac structure for the AXSIS project. We show that the bunch properties at the linac exit are very sensitive to the phase velocity of the THz pulse and are limited by the strong phase slippage of the bunch respective to it. We also show that the bunch properties are optimized when low frequencies (< 300 GHz) are used inside the linac, and that the longitudinal focal point can be put several tens of cm away from the linac exit thanks to ballistic bunching. However, a strong asymmetry in the bunch transverse sizes remains for which a solution is still to be found. Work supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 609920.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.
Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank dopedmore » with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications.« less
Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G
2012-10-01
The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are calculated for the unrealistic 1D magnetic field. For the transverse configuration, the entrance skin dose is equal or smaller than that of the zero B-field case for perpendicular beams. For a 10 × 10 cm(2) oblique beam the transverse magnetic field decreases the entry skin dose for oblique angles less than ±20° and increases it by no more than 10% for larger angles up to ±45°. The exit skin dose is increased by 42% for a 10 × 10 cm(2) perpendicular beam, but appreciably drops and approaches the zero B-field case for large oblique angles of incidence. For longitudinal linac-MR systems only a small increase in the entrance skin dose is predicted, due to the rapid decay of the realistic magnetic fringe fields. For transverse linac-MR systems, changes to the entrance skin dose are small for most scenarios. For the same geometry, on the exit side a fairly large increase is observed for perpendicular beams, but significantly drops for large oblique angles of incidence. The observed effects on skin dose are not expected to limit the application of linac-MR systems in either the longitudinal or transverse configuration.
Frequency choice of eRHIC SRF linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Ben-Zvi, I.; Roser, T.
2016-01-05
eRHIC is a FFAG lattice-based multipass ERL. The eRHIC SRF linac has been decided to change from 422 MHz 5-cell cavity to 647 MHz 5-cell cavity. There are several considerations affecting the frequency choice for a high-current multipass-ERL: the beam structure, bunch length, energy spread, beam-break-up (BBU) threshold, SRF loss considerations. Beyond the physics considerations, cost and complexity or risk is an important consideration for the frequency choice, especially when we are designing a machine to be built in a few years. Although there are some benefits of using a 422 MHz cavity for eRHIC ERL, however, there are somemore » very critical drawbacks, including lack of facilities to fabricate a 422 MHz 5-cell cavity, very few facilities to process such a cavity and no existing facility to test the cavity anywhere. As the cavity size is big and its weight is large, it is difficult to handle it during fabrication, processing and testing, and no one has experience in this area. As the cavity size is large, the cryomodule becomes big as well. All of these considerations drive the risk of building eRHIC ERL with 422 MHz cavities to a very high level. Therefore, a decision was made to change the frequency of main linac to be 647 MHz 5-cell cavities. This note will compare these two linacs: 422MHz 5-cell cavity linac and 647Mz 5-cell cavity SRF linac, from both practical point of view and physics point of view.« less
van Putten, Erik; Nijdam, Wideke M.; Hanssens, Patrick; Beute, Guus N.; Nowak, Peter J.; Dirven, Clemens M.; Hakkaart-van Roijen, Leona
2010-01-01
The aim of the present study is to determine and compare initial treatment costs of microsurgery, linear accelerator (LINAC) radiosurgery, and gamma knife radiosurgery in meningioma patients. Additionally, the follow-up costs in the first year after initial treatment were assessed. Cost analyses were performed at two neurosurgical departments in The Netherlands from the healthcare providers’ perspective. A total of 59 patients were included, of whom 18 underwent microsurgery, 15 underwent LINAC radiosurgery, and 26 underwent gamma knife radiosurgery. A standardized microcosting methodology was employed to ensure that the identified cost differences would reflect only actual cost differences. Initial treatment costs, using equipment costs per fraction, were €12,288 for microsurgery, €1,547 for LINAC radiosurgery, and €2,412 for gamma knife radiosurgery. Higher initial treatment costs for microsurgery were predominantly due to inpatient stay (€5,321) and indirect costs (€4,350). LINAC and gamma knife radiosurgery were equally expensive when equipment was valued per treatment (€2,198 and €2,412, respectively). Follow-up costs were slightly, but not significantly, higher for microsurgery compared with LINAC and gamma knife radiosurgery. Even though initial treatment costs were over five times higher for microsurgery compared with both radiosurgical treatments, our study gives indications that the relative cost difference may decrease when follow-up costs occurring during the first year after initial treatment are incorporated. This reinforces the need to consider follow-up costs after initial treatment when examining the relative costs of alternative treatments. PMID:20526795
Cost analysis of Gamma Knife stereotactic radiosurgery.
Griffiths, Alison; Marinovich, Luke; Barton, Michael B; Lord, Sarah J
2007-01-01
Stereotactic radiosurgery (SRS) is used to treat intracranial lesions and vascular malformations as an addition or replacement to whole brain radiotherapy and microsurgery. SRS can be delivered by hardware and software appended to standard linear accelerators (Linacs) or by dedicated systems such as Gamma Knife, which has been proposed as a more accurate and user friendly technology. Internationally, dedicated systems have been funded, despite limitations in evidence. However, some countries including Australia have not recommended additional reimbursement for dedicated systems. This study compares the costs of Linac radiosurgery with Gamma Knife radiosurgery. Due to limited evidence on comparative effects, the economic analysis was restricted to a cost evaluation. The base-case analysis assumed a modified Linac was used only to treat SRS patients. However, because a modified Linac could be used to treat other radiotherapy patients, a second analysis assumed spare time was used to meet other radiotherapy needs, and Linac capital costs were apportioned according to SRS use. The incremental cost of Gamma Knife versus a modified Linac was estimated as AU$209 per patient. This result is sensitive to variations in assumptions. A second analysis proportioning capital costs according to SRS use showed that Gamma Knife may cost up to AU$1673 more per patient. Gamma Knife may be cost competitive only if demand for SRS services is high enough to fully use equipment working time. However, given low patient demand and competing radiotherapy needs, Gamma Knife appears more costly and further evidence of survival or quality of life advantages may be required to justify reimbursement.
NASA Astrophysics Data System (ADS)
Uesaka, M.; Demachi, K.; Fujiwara, T.; Dobashi, K.; Fujisawa, H.; Chhatkuli, R. B.; Tsuda, A.; Tanaka, S.; Matsumura, Y.; Otsuki, S.; Kusano, J.; Yamamoto, M.; Nakamura, N.; Tanabe, E.; Koyama, K.; Yoshida, M.; Fujimori, R.; Yasui, A.
2015-06-01
We are developing compact electron linear accelerators (hereafter linac) with high RF (Radio Frequency) frequency (9.3 GHz, wavelength 32.3 mm) of X-band and applying to medicine and non-destructive testing. Especially, potable 950 keV and 3.95 MeV linac X-ray sources have been developed for on-site transmission testing at several industrial plants and civil infrastructures including bridges. 6 MeV linac have been made for pinpoint X-ray dynamic tracking cancer therapy. The length of the accelerating tube is ∼600 mm. The electron beam size at the X-ray target is less than 1 mm and X-ray spot size at the cancer is less than 3 mm. Several hardware and software are under construction for dynamic tracking therapy for moving lung cancer. Moreover, as an ultimate compact linac, we are designing and manufacturing a laser dielectric linac of ∼1 MeV with Yr fiber laser (283 THz, wavelength 1.06 pm). Since the wavelength is 1.06 μm, the length of one accelerating strcture is tens pm and the electron beam size is in sub-micro meter. Since the sizes of cell and nuclear are about 10 and 1 μm, respectively, we plan to use this “On-chip” linac for radiation-induced DNA damage/repair analysis. We are thinking a system where DNA in a nucleus of cell is hit by ∼1 μm electron or X-ray beam and observe its repair by proteins and enzymes in live cells in-situ.
NASA Astrophysics Data System (ADS)
Brown, C.; Gozani, T.; Shaw, T.; Stevenson, J.
2011-10-01
In the search for concealed special nuclear materials (SNM) there are a number of fission specific signatures that can be measured. These include prompt and delayed neutron and gamma ray signatures. Here the focus will be on the delayed gamma signature with the assumption that a pulsed electron linac with a constant peak current will be used to generate bremsstrahlung radiation and induce photofission in 235U. In this case, the signal to background ratio (S/B) will depend on the choice of linac frequency, pulse mode, and "active" background due to linac activation products. The linac frequency is simply the rate at which it produces short bursts of radiation, typically 2-4 μs in duration. There are two pulse modes, micro-pulsing, and macro-pulsing. In the micro-pulsing mode, the linac runs continuously at its set frequency and data is collected between bursts. In the macro-pulsing mode, the linac is turned on for a given length of time, on the order of seconds, and then turned off for a period of time typically equal to the length of time it was turned on. Counting takes place during the time the linac is off and stops when the linac is turned on for another cycle. The time dependence of the delayed gamma population can be approximated by the use of 5 time groups with half-lives of 0.29, 1.7, 13, 100, and 940 s, respectively. Each group has its own relative population, which together with its half-life determines what time frame the group contributes most to the measured signal. For example, a group with a short half-life will contribute more signal to a short cycle macro pulsed measurement than it would to a macro pulse measurement with a very long cycle. An analytical expression can be derived that calculates the maximum obtainable signal (delayed gamma photons per fission gamma ray) in either a micro- or macro-pulsed measurement. Using this information along with the observed active background present in a given situation (which can constrain the micro-pulsing parameters), the preferred mode of operation can be chosen to maximize S/B and the detection sensitivity. The principles and experimental application of the optimization process will be shown.
Fluorescent screens and image processing for the APS linac test stand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, W.; Ko, K.
A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image processing will also be discussed.
Intraoperative radiotherapy using a mobile electron LINAC: a retroperitoneal sarcoma case.
Beddar, A Sam; Krishnan, Sunil
2005-01-01
The advent of mobile LINACs for use in intraoperative radiation therapy (IORT) promises to make IORT more accessible than before and easier to deliver to patients undergoing surgery. Although mobile IORT systems have been available since 1999, few treatment centers currently use them. Here, we present the case of a typical patient undergoing IORT for retroperitoneal sarcoma to show how easy these mobile systems are to use and how adaptable they are within the operating room (OR) environment. We also discuss the roles and coordination of multidisciplinary team members during IORT and the feasibility of using mobile LINACs for IORT.
Estimates of dispersive effects in a bent NLC Main Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Syphers and Leo Michelotti
2000-10-31
An alternative being considered for the Next Linear Collider (NLC) is not to tunnel in a straight line but to bend the Main Linac into an arc so as to follow a gravitational equipotential. The authors begin here an examination of the effects that this would have on vertical dispersion, with its attendant consequences on synchrotron radiation and emittance growth by looking at two scenarios: a gentle continuous bending of the beam to follow an equipotential surface, and an introduction of sharp bends at a few sites in the linac so as to reduce the maximum sagitta produced.
INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrov, Alexander V; Shishlo, Andrei P; Plum, Michael A
Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.
NASA Astrophysics Data System (ADS)
Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.
2017-09-01
The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2010-01-01
Introduction Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. Materials and methods We investigated image quality parameters for three devices over a period of 16 months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. Results All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Discussion Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning. PMID:19695725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke
2011-06-01
One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code wasmore » used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.« less
Research and development toward a 4.5-1.5 Å linac coherent light source (LCLS) at SLAC
NASA Astrophysics Data System (ADS)
Tatchyn, R.; Arthur, J.; Baltay, M.; Bane, K.; Boyce, R.; Cornacchia, M.; Cremer, T.; Fisher, A.; Hahn, S.-J.; Hernandez, M.; Loew, G.; Miller, R.; Nelson, W. R.; Nuhn, H.-D.; Palmer, D.; Paterson, J.; Raubenheimer, T.; Weaver, J.; Wiedemann, H.; Winick, H.; Pellegrini, C.; Travish, G.; Scharlemann, E. T.; Caspi, S.; Fawley, W.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Meyerhofer, D.; Bonifacio, R.; De Salvo, L.
1996-02-01
In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3 km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 Å) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: 1) a peak current in the 7 kA range, 2) a relative energy spread of <0.05%, and 3) a transverse emittance, ɛ [rad-m], approximating the diffraction-limit condition ɛ = {λ}/{4π}, where λ[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam-processing techniques necessary for LCLS operation down to ˜20 Å, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 Å LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mrad; development of advanced beam compression, stability, and emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs; development of X-ray optics and instrumentation for extracting, modulating, and delivering photons to experimental users; and the study and development of scientific experiments made possible by the source properties of the LCLS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gales, S.
The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of ''Rad ioactive Beam Facilities'' with high luminosity and the development of associated new experimental tools.GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capabilitymore » even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 10{sup 13} fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n.In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials.Under the 7FP program of European Union called 'Preparatory phase', the SPIRAL2 project has been granted a budget of about 4 MEuro to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been launched in Oct 2006 and 8 large International collaborations has been built up around new instruments for SPIRAL2. The status of the construction of SPIRAL2 accelerator and technical R and D programs for physics instrumentation (detectors, spectrometers) in collaboration with EU and International partners will be presented.« less
The High Current RF (HCRF) LINAC Program.
1992-11-01
oncept. PrOWm, Magnetice Madulatoof. CRC, DO De I IES. FacilityCrtcl. LA (200k Govl. Funds) CrtclCI CIA PHASE I It - Magntic Switchies Fab. Load Manetic 4...beam is shown in Figure 2.7. Figure 2.6 also shows the evolution of the beam pulse width and energy as it moves through the injector, the buncher and...ACCELERATOR ELECTRON BEAM PULSE FORMATS ( SINGLE -MACROPULSE- TRAIN) I Figure 2.6. HCRF accelerator schematic and electron beam pulsewidth and energy evolution
Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D.; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R.; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem
2016-01-01
Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675
SLAC All Access: Atomic, Molecular and Optical Science Instrument
Bozek, John
2018-02-13
John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.
Radioactive ion beam acceleration at MAFF
NASA Astrophysics Data System (ADS)
Pasini, M.; Kester, O.; Habs, D.; Groß, M.; Sieber, T.; Maier, H. J.; Assmann, W.; Krüken, R.; Faestermann, T.; Schempp, A.; Ratzinger, U.; Safvan, C. P.
2004-12-01
In April 2003, the German safety commission has given the final approval for the oper- ation of the high flux reactor FRM-II. This is an important step towards the development and installation of the Munich accelerator for fission fragments (MAFF), which will deliver highest intensities of neutron rich fission fragments. The acceleration chain of MAFF [1] consists of a charge breeder, which will deliver the ions with a mass to charge ratio of A/q ⩽ 6.3 irrespective of the mass range, and with a repetition rate of maximum 50 Hz. The LINAC operating at 10% duty cycle is composed of a 101.28 IH-RFQ, which will boost up the energy from 2.5 up to 300 keV/u, three IH-tanks that will deliver an energy of 5.4 MeV/u and 2 seven gap IH-resonators that are used to vary the final energy up to a maximum of 5.9 MeV/u. Currently beam dynamics revisions are in progress especially in the low energy section, since the experimental program has requested specific time structures of the beam for TOF experiments. The status of the beam dynamics studies as well as the status of the single components of the accelerator will be presented in this paper.
Assessments of Sequential Intensity Modulated Radiation Therapy Boost (SqIB) Treatments Using HART
NASA Astrophysics Data System (ADS)
Pyakuryal, Anil
2009-05-01
A retrospective study was pursued to evaluate the SqIB treatments performed on ten head and neck cancer patients(n=10).Average prescription doses (PDs) of 39 Gy,15Gy and 17.8Gy were delivered consecutively from larger to smaller planning target volumes(ptvs) in three different treatment plans using 6 MV X-ray photon beams from a Linear accelerator (SLA Linac, Elekta) on BID weak on-weak off schedules. These plans were statistically evaluated on basis of plan indices (PIs),dose response of targets and critical structures, and dose tolerance(DT) of various organs utilizing the DVH analysis automated software known as Histogram Analysis in Radiation Therapy-HART(S.Jang et al., 2008, Med Phys 35, p.2812). Mean SqIB PIs were found consistent with the reported values for varying radio-surgical systems.The 95.5%(n=10)of each ptvs and the gross tumor volume also received 95% (n=10)of PDs in treatments. The average volume of ten organs (N=10) affected by each PDs shrank with decreasing size of ptvs in above plans.A largest volume of Oropharynx (79%,n=10,N=10) irradiated at PD, but the largest volume of Larynx (98%, n=10, N=10) was vulnerable to DT of structure (TD50).Thus, we have demonstrated the efficiency and accuracy of HART in the assessment of Linac based plans in radiation therapy treatments of cancer.
Coherent Soft X-ray Diffraction Imaging of Coliphage PR772 at the Linac Coherent Light Source
Reddy, Hemanth, K.N.
2017-01-05
A dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source.
Performance and applications of the 14 MEV electron radiation linac at CIAE
NASA Astrophysics Data System (ADS)
Zhai, X. L.; Chen, G. C.; Qi, B. M.; Xu, F. J.; Pan, L. H.; Zhang, Z. M.; Shi, X. Z.; Chen, J. K.; Wang, F. Y.
1993-07-01
A 14 MeV electron linear accelerator which was designed and manufactured by the China Institute of Atomic Energy (CIAE) has been modified into an radiation processing accelerator in 1987. It consists of an electron gun, two prebunchers, one buncher, a three meter long accelerating section, and a 90 degree bending magnet. The linac is S-band (2856 MHz), travelling wave accelerator driven by a Chinese-made klystron. The energy of electrons can be adjusted from 8 MeV to 18 MeV and the average beam power is about 2 kW. The beam width is 600 mm and the uniformity of scanning beam is better than 10%. The linac is used to irradiate power semiconductor devices for controlling the minority carrier lifetime (MCL). More than twenty factories and scientific institutions use this linac to irradiate silicon controlled rectifiers (SCR) and the fast recovery diodes (FRD), and more than 0.2 million pieces of SCR have been irradiated. Tests have also been carried out for colour-change of topaz.
Matching the laser generated p bunch into a crossbar-H drift tube linac
NASA Astrophysics Data System (ADS)
Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.
2012-05-01
Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.
Full Geant4 and FLUKA simulations of an e-LINAC for its use in particle detectors performance tests
NASA Astrophysics Data System (ADS)
Alpat, B.; Pilicer, E.; Servoli, L.; Menichelli, M.; Tucceri, P.; Italiani, M.; Buono, E.; Di Capua, F.
2012-03-01
In this work we present the results of full Geant4 and FLUKA simulations and comparison with dosimetry data of an electron LINAC of St. Maria Hospital located in Terni, Italy. The facility is being used primarily for radiotherapy and the goal of the present study is the detailed investigation of electron beam parameters to evaluate the possibility to use the e-LINAC (during time slots when it is not used for radiotherapy) to test the performance of detector systems, in particular those designed to operate in space. The critical beam parameters are electron energy, profile and flux available at the surface of device to be tested. The present work aims to extract these parameters from dosimetry calibration data available at the e-LINAC. The electron energy ranges from 4 MeV to 20 MeV. The dose measurements have been performed by using an Advanced Markus Chamber which has a small sensitive volume.
Electron Beam Focusing in the Linear Accelerator (linac)
NASA Astrophysics Data System (ADS)
Jauregui, Luis
2015-10-01
To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.
Machine Imperfection Studies of the RAON Superconducting Linac
NASA Astrophysics Data System (ADS)
Jeon, D.; Jang, J.-H.; Jin, H.
2018-05-01
Studies of the machine imperfections in the RAON superconducting linac (SCL) that employs normal conducting (NC) quadrupoles were done to assess the tolerable error budgets of the machine imperfections that ensure operation of the beam. The studies show that the beam loss requirement is met even before the orbit correction and that the beam loss requirement is met even without the MHB (multi-harmonic buncher) and VE (velocity equalizer) thanks to the RAON's radio-frequency quadrupole (RFQ) design feature. For the low energy section of the linac (SCL3), a comparison is made between the two superconducting linac lattice types: one lattice that employs NC quadrupoles and the other that employs SC solenoids. The studies show that both lattices meet the beam loss requirement after the orbit correction. However, before the orbit correction, the lattice employing SC solenoids does not meet the beam loss requirement and can cause a significant beam loss, while the lattice employing NC quadrupoles meets the requirement. For the lattice employing SC solenoids, care must be taken during the beam commissioning.
Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene
2018-04-18
The characteristics of photons and neutrons produced during the interaction between a monoenergetic (12 and 18 MeV) electron beam and a tungsten scattering foil enclosed into a 10 cm-thick tungsten shell have been determined using Monte Carlo methods. This model was used aiming to represent a linac head working in electron-mode for cancer treatment. Photon and neutron spectra were determined around the scattering foil and to 50 and 100 cm below the electron source. Induced photons are mainly produced along the direction of the incoming electron beam. On the other hand, neutrons are produced in two sites, mainly in the inner surface of the linac head and in less extent in the scattering foil. The neutron spectra are evaporation neutrons which are emitted isotropically from the site where are produced leaking out from the linac head, reaching locations were the patient is allocated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Status and operation of the Linac4 ion source prototypes
NASA Astrophysics Data System (ADS)
Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.
2014-02-01
CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.
SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Xu, Q; Xue, J
2014-06-01
Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured withmore » scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.« less
SU-F-J-147: Magnetic Field Dose Response Considerations for a Linac Monitor Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, M; Fallone, B
Purpose: The impact of magnetic fields on the readings of a linac monitor chamber have not yet been investigated. Herein we examine the total dose response as well as any deviations in the beam parameters of flatness and symmetry when a Varian monitor chamber is irradiated within an applied magnetic field. This work has direct application to the development of Linac-MR systems worldwide. Methods: A Varian monitor chamber was modeled in the Monte Carlo code PENELOPE and irradiated in the presence of a magnetic field with a phase space generated from a model of a Linac-MR prototype system. The magneticmore » field strength was stepped from 0 to 3.0T in both parallel and perpendicular directions with respect to the normal surface of the phase space. Dose to each of the four regions in the monitor chamber were scored separately for every magnetic field adaptation to evaluate the effect of the magnetic field on flatness and symmetry. Results: When the magnetic field is perpendicular to the phase space normal we see a change in dose response with a maximal deviation (10–25% depending on the chamber region) near 0.75T. In the direction of electron deflection we expectedly see opposite responses in chamber regions leading to a measured asymmetry. With a magnetic field parallel to the phase space normal we see no measured asymmetries, however there is a monotonic rise in dose response leveling off at about +12% near 2.5T. Conclusion: Attention must be given to correct for the strength and direction of the magnetic field at the location of the linac monitor chamber in hybrid Linac-MR devices. Elsewise the dose sampled by these chambers may not represent the actual dose expected at isocentre; additionally there may be a need to correct for the symmetry of the beam recorded by the monitor chamber. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less
NASA Astrophysics Data System (ADS)
Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios
2018-01-01
Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.
Solenoid Fringe Field Effects for the Neutrino Factory Linac - MAD-X Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Aslaninejad,C. Bontoiu,J. Pasternak,J. Pozimski,Alex Bogacz
2010-05-01
International Design Study for the Neutrino Factory (IDS-NF) assumes the first stage of muon acceleration (up to 900 MeV) to be implemented with a solenoid based Linac. The Linac consists of three styles of cryo-modules, containing focusing solenoids and varying number of SRF cavities for acceleration. Fringe fields of the solenoids and the focusing effects in the SRF cavities have significant impact on the transverse beam dynamics. Using an analytical formula, the effects of fringe fields are studied in MAD-X. The resulting betatron functions are compared with the results of beam dynamics simulations using OptiM code.
Characteristics of GeV Electron Bunches Accelerated by Intense Lasers in Vacuum
NASA Astrophysics Data System (ADS)
Wang, P. X.; Ho, Y. K.; Kong, Q.; Yuan, X. Q.; Cao, N.; Feng, L.
This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev. E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.
Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
NASA Astrophysics Data System (ADS)
Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
Development of intense terahertz coherent synchrotron radiation at KU-FEL
NASA Astrophysics Data System (ADS)
Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki
2016-10-01
We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.
High-intensity double-pulse X-ray free-electron laser
Marinelli, A.; Ratner, D.; Lutman, A. A.; ...
2015-03-06
The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less
Yartsev, S; Kron, T; Van Dyk, J
2007-01-01
Helical tomotherapy (HT) is a novel treatment approach that combines Intensity-Modulate Radiation Therapy (IMRT) delivery with in-built image guidance using megavoltage (MV) CT scanning. The technique utilises a 6 MV linear accelerator mounted on a CT type ring gantry. The beam is collimated to a fan beam, which is intensity modulated using a binary multileaf collimator (MLC). As the patient advances slowly through the ring gantry, the linac rotates around the patient with a leaf-opening pattern optimised to deliver a highly conformal dose distribution to the target in the helical beam trajectory. The unit also allows the acquisition of MVCT images using the same radiation source detuned to reduce its effective energy to 3.5 MV, making the dose required for imaging less than 3 cGy. This paper discusses the major features of HT and describes the advantages and disadvantages of this approach in the context of the commercial Hi-ART system. PMID:21614257
NASA Astrophysics Data System (ADS)
Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail
2017-09-01
In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.
Beam energy tracking system on Optima XEx high energy ion implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu; Wu Xiangyang
2012-11-06
The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, andmore » each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.« less
Jia, Xun; Tian, Zhen; Xi, Yan; Jiang, Steve B; Wang, Ge
2017-01-01
Image guidance plays a critical role in radiotherapy. Currently, cone-beam computed tomography (CBCT) is routinely used in clinics for this purpose. While this modality can provide an attenuation image for therapeutic planning, low soft-tissue contrast affects the delineation of anatomical and pathological features. Efforts have recently been devoted to several MRI linear accelerator (LINAC) projects that lead to the successful combination of a full diagnostic MRI scanner with a radiotherapy machine. We present a new concept for the development of the MRI-LINAC system. Instead of combining a full MRI scanner with the LINAC platform, we propose using an interior MRI (iMRI) approach to image a specific region of interest (RoI) containing the radiation treatment target. While the conventional CBCT component still delivers a global image of the patient's anatomy, the iMRI offers local imaging of high soft-tissue contrast for tumor delineation. We describe a top-level system design for the integration of an iMRI component into an existing LINAC platform. We performed numerical analyses of the magnetic field for the iMRI to show potentially acceptable field properties in a spherical RoI with a diameter of 15 cm. This field could be shielded to a sufficiently low level around the LINAC region to avoid electromagnetic interference. Furthermore, we investigate the dosimetric impacts of this integration on the radiotherapy beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüler, Emil; Trovati, Stefania; King, Gregory
Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlomore » and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.« less
SPIRAL2 at GANIL: A world leading ISOL facility at the dawn of the next decade
NASA Astrophysics Data System (ADS)
Gales, S.
2007-07-01
To pursue the investigation of a new territory of nuclei with extreme N/Z, called “terra incognita”, several projects, all aiming at the increase by several orders of magnitude of RIB intensities are now under discussion worldwide. In Europe, two major new projects have been approved recently: FAIR@GSI, using the so-called “in-flight” method, and SPIRAL2@GANIL, based on the ISOL method. The main goal of SPIRAL2 is clearly to extend our knowledge of the limit of existence and the structure of nuclei deeply in the medium and heavy mass region ( A=60-140), which is today an almost unexplored continent. SPIRAL2 is based on a high power, CW, superconducting driver LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 kW) directed on a C converter+ Uranium target and producing therefore more than 10 13 fissions/s. The expected radioactive beam intensities for exotic species in the mass range from A=60 to A=140, of the order of 10 6-10 10 pps will surpass by two order of magnitude any existing facility in the world. These unstable atoms will be available at energies between a few keV/n to 15 MeV/n. The same driver will accelerate high intensity (100 μA to 1 mA), heavier ions up to Ar at 14 MeV/n producing also proton rich exotic nuclei. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source, a must for studying the impact of nuclear fission and fusion on materials. The intensities of these unstable species are excellent opportunities for new tracers and diagnostics either for solid state, material or for radiobiological science and medicine. The technical design has reached the point where SPIRAL2 is ready for construction. Project status and foreseen schedules will be presented. Scientific and technical R&D programs in collaboration with EU and International partners for the facility as well as for the associated innovative new instruments will be discussed.
O'Brien, Daniel J; Dolan, James; Pencea, Stefan; Schupp, Nicholas; Sawakuchi, Gabriel O
2018-02-01
The purpose of this study was to acquire beam data for an MR-linac, with and without a 1.5 T magnetic field, by using a variety of commercially available detectors to assess their relative response in the magnetic field. The impact of the magnetic field on the measured dose distribution was also assessed. An MR-safe 3D scanning water phantom was used to measure output factors, depth dose curves, and off-axis profiles for various depths and for field sizes between 2 × 2 cm 2 and 22 × 22 cm 2 for an Elekta MR-linac beam with the orthogonal 1.5 T magnetic field on or off. An on-board MV portal imaging system was used to ensure that the reproducibility of the detector position, both with and without the magnetic field, was within 0.1 mm. The detectors used included ionization chambers with large, medium, and small sensitive volumes; a diamond detector; a shielded diode; and an unshielded diode. The offset of the effective point of measurement of the ionization chambers was found to be reduced by at least half for each chamber in the direction parallel with the beam. A lateral shift of similar magnitude was also introduced to the chambers' effective point of measurement toward the average direction of the Lorentz force. A similar lateral shift (but in the opposite direction) was also observed for the diamond and diode detectors. The measured lateral shift in the dose distribution was independent of depth and field size for each detector for fields between 2 × 2 cm 2 and 10 × 10 cm 2 . The shielded diode significantly misrepresented the dose distribution in the lateral direction perpendicular to the magnetic field, making it seem more symmetric. The percentage depth dose was generally found to be lower with the magnetic field than without, but this difference was reduced as field size increased. The depth of maximum dose showed little dependence on field size in the presence of the magnetic field, with values from 1.2 cm to 1.3 cm between the 2 × 2 cm 2 and 22 × 22 cm 2 fields. Output factors measured in the magnetic field at the center of the beam profile produced a larger spread of values between detectors for fields smaller than 10 × 10 cm 2 (with a spread of 2% at 3 × 3 cm 2 ). The spread of values was more consistent when the output factors were measured at the point of peak intensity of the lateral dose distribution instead (except for the shielded diode which differed by up to 2% depending on field size). The magnetic field of the MR-linac alters the effective point of measurement of ionization chambers, shifting it both downstream and laterally. Shielded diodes produce incorrect and misleading dose profiles. The output factor measured at the point of peak intensity in the lateral dose distribution is more robust than the conventional output factor (measured at central axis). Diodes are not recommended for output factor measurements in the magnetic field. © 2017 American Association of Physicists in Medicine.
SPIRAL2 at GANIL: Status and Perspectives
NASA Astrophysics Data System (ADS)
Gales, S.
2008-05-01
To pursue the investigation of a new territory of nuclei with extreme N/Z called ``terra incognita'' several projects, all aiming at the increase by several orders of magnitude of the RIB intensities are now under discussions worldwide. In Europe, two major new projects have been approved recently FAIRatGSI using the so-called ``in-flight'' method and SPIRAL2atGANIL, based on the ISOL method. Both projects were selected in the European Strategic Roadmap For research Infrastructures (ESFRI). The main goal of SPIRAL2 is clearly to extend our knowledge of the limit of existence and the structure of nuclei deeply in the medium and heavy mass region (A = 60 to 140) which is to day an almost unexplored continent. SPIRAL 2 is based on a high power, CW, superconducting driver LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 1013 fissions/s. The expected radioactive beams intensities for exotic species in the mass range from A = 60 to A = 140, of the order of 106 to 1010 pps will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100 μA to 1 mA), heavier ions up to Ar at 14 MeV/n producing also proton rich exotic nuclei. In applied areas SPIRAL2 is considered as a powerful variable energy neutron source, a must to study the impact of nuclear fission and fusion on materials. The intensities of these unstable species are excellent opportunities for new tracers and diagnostics either for solid state, material or for radiobiological science and medicine. The ``Go'' decision has been taken in May 2005. The investments and personnel costs amount to 190 M€, for the construction period 2006-2012. Construction of the SPIRAL2 facility is shared by ten French laboratories and a network of international partners. Under the 7FP program of European Union called ``Preparatory phase for the construction of new facilities ``, the SPIRAL2 project has been granted a budget of about 4M€ to build up an international consortium around this new venture. The status of the construction of SPIRAL2 accelerator and technical R&D programs for physics instrumentation (detectors, spectrometers) in collaboration with EU and International partners will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Fan, J; Eldib, A
Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less
Characterization of the Photon Energy Spectrum of a 6 MV Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez Bojorquez, M.; Larraga, J. M.; Garcia, A.
2006-09-08
In this work we study the influence of the purity of the materials used in experimental transmission measurements to obtain data to reconstruct the photon energy spectrum of a 6 MV Linac. We also evaluate the contribution to PDDs due to electron contamination in the reconstructed spectrum.
Sun, Yanwen; Zhu, Diling; Song, Sanghoon; ...
2017-05-23
The generation of two X-ray pulses with tunable nanosecond scale time separations has recently been demonstrated at the Linac Coherent Light Source using an accelerator based technique. This approach offers the opportunity to extend X-ray Photon Correlation Spectroscopy techniques to the yet unexplored regime of nanosecond timescales by means of X-ray Speckle Visibility Spectroscopy. As the two pulses originate from two independent Spontaneous Amplified Stimulated Emission processes, the beam properties fluctuate from pulse pair to pulse pair, but as well between the individual pulses within a pair. However, two-pulse XSVS experiments require the intensity of the individual pulses to bemore » either identical in the ideal case, or with a accurately known intensity ratio. We present the design and performances of a non-destructive intensity diagnostic based on measurement of scattering from a transparent target using a high-speed photo-detector. Individual pulses within a pulse pair with time delays as short as 0.7 ns can be resolved. Moreover, using small angle coherent scattering, we characterize the averaged spatial overlap of the focused pulse pairs. Furthermore, the multi-shot average-speckle contrasts from individual pulses and pulse pairs are compared.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuno, H.; Hershcovitch, A.; Fukunishi, N.
2010-09-27
The RIKEN accelerator complex started feeding the next-generation exotic beam facility RIBF (RadioIsotope Beam Factory) with heavy ion beams from 2007 after the successful commissioning at the end of 2006. Many elaborating improvements increased the intensity of the various heavy ion beams from 2007 to 2010. However, the available beam intensity especially of uranium beam is far below our goal of 1 p{micro}A (6 x 10{sup 12} particle/s). In order to achieve it, upgrade programs are well in progress, including constructions of a new 28 GHz superconducting ECR ion source and a new injector linac. However, the most serious problemmore » of the charge stripper for uranium beam is still open although many elaborating R&D works for the problems. Equilibrium charge state in gas generally is much lower than that in carbon foil due to its density-effect. But gas stripper is free from the problems originated from its lifetime and uniformity in thickness. Such merits pushed us think about low-Z gas stripper to get higher equilibrium charge state even in gas. Electron loss and capture cross section of U ion beams in He gas were measured as a function of their charge state at 11, 14 and 15 MeV/u. The extracted equilibrium charge states from the cross point of the two lines of the cross sections were promisingly higher than those in N{sub 2} gas by more than 10. The plasma window is expected to be a key technology to solve the difficulty in accumulation of such thick as about 1 mg/cm{sup 2} of low-Z gas.« less
Chow, James C.L.; Grigorov, Grigor N.; Yazdani, Nuri
2006-01-01
A custom‐made computer program, SWIMRT, to construct “multileaf collimator (MLC) machine” file for intensity‐modulated radiotherapy (IMRT) fluence maps was developed using MATLAB® and the sliding window algorithm. The user can either import a fluence map with a graphical file format created by an external treatment‐planning system such as Pinnacle3 or create his or her own fluence map using the matrix editor in the program. Through comprehensive calibrations of the dose and the dimension of the imported fluence field, the user can use associated image‐processing tools such as field resizing and edge trimming to modify the imported map. When the processed fluence map is suitable, a “MLC machine” file is generated for our Varian 21 EX linear accelerator with a 120‐leaf Millennium MLC. This machine file is transferred to the MLC console of the LINAC to control the continuous motions of the leaves during beam irradiation. An IMRT field is then irradiated with the 2D intensity profiles, and the irradiated profiles are compared to the imported or modified fluence map. This program was verified and tested using film dosimetry to address the following uncertainties: (1) the mechanical limitation due to the leaf width and maximum traveling speed, and (2) the dosimetric limitation due to the leaf leakage/transmission and penumbra effect. Because the fluence map can be edited, resized, and processed according to the requirement of a study, SWIMRT is essential in studying and investigating the IMRT technique using the sliding window algorithm. Using this program, future work on the algorithm may include redistributing the time space between segmental fields to enhance the fluence resolution, and readjusting the timing of each leaf during delivery to avoid small fields. Possible clinical utilities and examples for SWIMRT are given in this paper. PACS numbers: 87.53.Kn, 87.53.St, 87.53.Uv PMID:17533330
Beam dynamics studies of a 30 MeV RF linac for neutron production
NASA Astrophysics Data System (ADS)
Nayak, B.; Krishnagopal, S.; Acharya, S.
2018-02-01
Design of a 30 MeV, 10 Amp RF linac as neutron source has been carried out by means of ASTRA simulation code. Here we discuss details of design simulations for three different cases i.e Thermionic , DC and RF photocathode guns and compare them as injectors to a 30 MeV RF linac for n-ToF production. A detailed study on choice of input parameters of the beam from point of view of transmission efficiency and beam quality at the output have been described. We found that thermionic gun isn't suitable for this application. Both DC and RF photocathode gun can be used. RF photocathode gun would be of better performance.
RESULTS OF THE 2015 HELIUM PROCESSING OF CEBAF CRYOMODULES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drury, Michael A.; Humphry, Jr., Frank J.; King, Larry
2016-10-01
Many conference series have adopted the same The CEBAF accelerator at Jefferson Lab consists of an injec-tor and two linacs connected by arcs. Each linac contains 25 cryomodules that are designed to deliver an integrated energy of 2.2 GeV per pass to an electron beam in order to meet 12 GeV energy requirements. Helium processing is a processing technique that is used to reduce field emis-sion (FE) in SRF cavities. Helium processing of the 50 installed linac cryomodules was seen as necessary to support 12 GeV energy requirements. This paper will describe the processing procedure and summarize the results ofmore » this effort.« less
Neutron H*(10) estimation and measurements around 18MV linac.
Cerón Ramírez, Pablo Víctor; Díaz Góngora, José Antonio Irán; Paredes Gutiérrez, Lydia Concepción; Rivera Montalvo, Teodoro; Vega Carrillo, Héctor René
2016-11-01
Thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the dose of neutron radiation in a treatment room with a linear electron accelerator of 18MV. Measurements were carried out through neutron ambient dose monitors which include pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti), which were placed inside a paraffin spheres. The measurements has allowed to use NCRP 151 equations, these expressions are useful to find relevant dosimetric quantities. In addition, photoneutrons produced by linac head were calculated through MCNPX code taking into account the geometry and composition of the linac head principal parts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
1985-09-01
No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.
The ATLAS multi-user upgrade and potential applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustapha, B.; Nolen, J. A.; Savard, G.
With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existingmore » ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.« less
The ATLAS multi-user upgrade and potential applications
NASA Astrophysics Data System (ADS)
Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.
2017-12-01
With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~1 MeV/u, isotope production and radiobiological studies at ~6 MeV/u and at the full ATLAS energy of ~15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be discussed. Future plans to enhance the flexibility of this upgrade will be presented.
The Linac Coherent Light Source
White, William E.; Robert, Aymeric; Dunne, Mike
2015-05-01
The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.
Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi
NASA Astrophysics Data System (ADS)
Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar
The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.
Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H
2012-02-01
The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.
AN INTERNET RACK MONITOR-CONTROLLER FOR APS LINAC RF ELECTRONICS UPGRADE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hengjie; Smith, Terry; Nassiri, Alireza
To support the research and development in APS LINAC area, the existing LINAC rf control performance needs to be much improved, and thus an upgrade of the legacy LINAC rf electronics becomes necessary. The proposed upgrade plan centers on the concept of using a modern, network-attached, rackmount digital electronics platform –Internet Rack Monitor-Controller (or IRMC) to achieve the goal of modernizing the rf electronics at a lower cost. The system model of the envisioned IRMC is basically a 3-tier stack with a high-performance DSP in the mid-layer to perform the core tasks of real-time rf data processing and controls. Themore » Digital Front-End (DFE) attachment layer at bottom bridges the applicationspecific rf front-ends to the DSP. A network communication gateway, together with an embedded event receiver (EVR) in the top layer merges the Internet Rack MonitorController node into the networks of the accelerator controls infrastructure. Although the concept is very much in trend with today’s Internet-of-Things (IoT), this implementation has actually been used in the accelerators for over two decades.« less
NASA Astrophysics Data System (ADS)
Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Störi, H.
2012-02-01
The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H- volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e- and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H- ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H- ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.
Khatchadourian, R; Davis, S; Evans, M; Licea, A; Seuntjens, J; Kildea, J
2012-07-01
Photoneutrons are a major component of the equivalent dose in the maze and near the door of linac bunkers. Physical measurements and Monte Carlo (MC) calculations of neutron dose are key for validating bunker design with respect to health regulations. We attempted to use bubble detectors and a 3 He neutron spectrometer to measure neutron equivalent dose and neutron spectra in the maze and near the door of one of our bunkers. We also ran MC simulations with MCNP5 to measure the neutron fluence in the same region. Using a point source of neutrons, a Clinac 1800 linac operating at 10 MV was simulated and the fluence measured at various locations of interest. We describe the challenges faced when measuring dose with bubble detectors in the maze and the complexity of photoneutron spectrometry with linacs operating in pulsed mode. Finally, we report on the development of a userfriendly GUI for shielding calculations based on the NCRP 151 formalism. © 2012 American Association of Physicists in Medicine.
Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system.
Oborn, B M; Kolling, S; Metcalfe, P E; Crozier, S; Litzenberg, D W; Keall, P J
2014-05-01
A potential side effect of inline MRI-linac systems is electron contamination focusing causing a high skin dose. In this work, the authors reexamine this prediction for an open bore 1 T MRI system being constructed for the Australian MRI-Linac Program. The efficiency of an electron contamination deflector (ECD) in purging electron contamination from the linac head is modeled, as well as the impact of a helium gas region between the deflector and phantom surface for lowering the amount of air-generated contamination. Magnetic modeling of the 1 T MRI was used to generate 3D magnetic field maps both with and without the presence of an ECD located immediately below the MLC's. Forty-seven different ECD designs were modeled and for each the magnetic field map was imported into Geant4 Monte Carlo simulations including the linac head, ECD, and a 30 × 30 × 30 cm(3) water phantom located at isocenter. For the first generation system, the x-ray source to isocenter distance (SID) will be 160 cm, resulting in an 81.2 cm long air gap from the base of the ECD to the phantom surface. The first 71.2 cm was modeled as air or helium gas, with the latter encased between two windows of 50 μm thick high density polyethlyene. 2D skin doses (at 70 μm depth) were calculated across the phantom surface at 1 × 1 mm(2) resolution for 6 MV beams of field size of 5 × 5, 10 × 10, and 20 × 20 cm(2). The skin dose was predicted to be of similar magnitude as the generic systems modeled in previous work, 230% to 1400% of D(max) for 5 × 5 to 20 × 20 cm(2), respectively. Inclusion of the ECD introduced a nonuniformity to the MRI imaging field that ranged from ∼20 to ∼140 ppm while the net force acting on the ECD ranged from ∼151 N to ∼1773 N. Various ECD designs were 100% efficient at purging the electron contamination into the ECD magnet banks; however, a small percentage were scattered back into the beam and continued to the phantom surface. Replacing a large portion of the extended air-column between the ECD and phantom surface with helium gas is a key element as it significantly minimized the air-generated contamination. When using an optimal ECD and helium gas region, the 70 μm skin dose is predicted to increase moderately inside a small hot spot over that of the case with no magnetic field present for the jaw defined square beams examined here. These increases include from 12% to 40% of [Formula: see text] for 5 × 5 cm(2), 18% to 55% of D(max) for 10 × 10 cm(2), and from 23% to 65% of D(max) for 20 × 20 cm(2). Coupling an efficient ECD and helium gas region below the MLCs in the 160 cm isocenter MRI-linac system is predicted to ameliorate the impact electron contamination focusing has on skin dose increases. An ECD is practical as its impact on the MRI imaging distortion is correctable, and the mechanical forces acting on it manageable from an engineering point of view.
NASA Astrophysics Data System (ADS)
Beavis, Andrew W.; Ward, James W.
2014-03-01
Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.
Jia, Xun; Tian, Zhen; Xi, Yan; Jiang, Steve B.; Wang, Ge
2017-01-01
Abstract. Image guidance plays a critical role in radiotherapy. Currently, cone-beam computed tomography (CBCT) is routinely used in clinics for this purpose. While this modality can provide an attenuation image for therapeutic planning, low soft-tissue contrast affects the delineation of anatomical and pathological features. Efforts have recently been devoted to several MRI linear accelerator (LINAC) projects that lead to the successful combination of a full diagnostic MRI scanner with a radiotherapy machine. We present a new concept for the development of the MRI-LINAC system. Instead of combining a full MRI scanner with the LINAC platform, we propose using an interior MRI (iMRI) approach to image a specific region of interest (RoI) containing the radiation treatment target. While the conventional CBCT component still delivers a global image of the patient’s anatomy, the iMRI offers local imaging of high soft-tissue contrast for tumor delineation. We describe a top-level system design for the integration of an iMRI component into an existing LINAC platform. We performed numerical analyses of the magnetic field for the iMRI to show potentially acceptable field properties in a spherical RoI with a diameter of 15 cm. This field could be shielded to a sufficiently low level around the LINAC region to avoid electromagnetic interference. Furthermore, we investigate the dosimetric impacts of this integration on the radiotherapy beam. PMID:28331888
High duty factor plasma generator for CERN's Superconducting Proton Linac.
Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D
2010-02-01
CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.
Modeling radiation loads in the ILC main linac and a novel approach to treat dark current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokhov, Nilolai V.; Rakhno, Igor L.; Tropin, Igor S.
Electromagnetic and hadron showers generated by electrons of dark current (DC) can represent a significant radiation threat to the ILC linac equipment and personnel. In this study, a commissioning scenario is analysed which is considered as the worst-case scenario for the main linac regarding the DC contribution to the radiation environment in the tunnel. A normal operation scenario is analysed as well. An emphasis is made on radiation load to sensitive electronic equipment—cryogenic thermometers inside the cryomodules. Prompt and residual dose rates in the ILC main linac tunnels were also calculated in these new high-statistics runs. A novel approach wasmore » developed—as a part of general purpose Monte Carlo code MARS15—to model generation, acceleration and transport of DC electrons in electromagnetic fields inside SRF cavities. Comparisons were made with a standard approach when a set of pre-calculated DC electron trajectories is used, with a proper normalization, as a source for Monte Carlo modelling. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the peak absorbed dose in the cryogenic thermometers in the main tunnel for 20 years of operation is about 0.8 MGy. The calculated contact residual dose on cryomodules and tunnel walls in the main tunnel for typical irradiation and cooling conditions is 0.1 and 0.01 mSv/hr, respectively.« less
Compound refractive lenses as prefocusing optics for X-ray FEL radiation
Heimann, Philip; MacDonald, Michael; Nagler, Bob; ...
2016-01-27
The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. As a result, the X-ray focus was also determined bymore » the ablation imprint method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delahaye, J-P.; Ankenbrandt, C.; Bogacz, A.
A Neutrino Factory where neutrinos of all species are produced in equal quantities by muon decay is described as a facility at the intensity frontier for exquisite precision providing ideal conditions for ultimate neutrino studies and the ideal complement to Long Baseline Facilities like LBNF at Fermilab. It is foreseen to be built in stages with progressively increasing complexity and performance, taking advantage of existing or proposed facilities at an existing laboratory like Fermilab. A tentative layout based on a recirculating linac providing opportunities for considerable saving is discussed as well as its possible evolution toward a muon collider ifmore » and when requested by Physics. Tentative parameters of the various stages are presented as well as the necessary R&D to address the technological issues and demonstrate their feasibility.« less
Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac
NASA Astrophysics Data System (ADS)
Woodings, S. J.; Wolthaus, J. W. H.; van Asselen, B.; de Vries, J. H. W.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-03-01
Accurate small-field dosimetry is critical for a magnetic resonance linac (MRI-linac). The PTW 60019 microDiamond is close to an ideal detector for small field dosimetry due to its small physical size, high signal-to-noise ratio and approximate water equivalence. It is important to fully characterise the performance of the detector in a 1.5 T magnetic field prior to its use for MRI-linac commissioning and quality assurance. Standard techniques of detector testing have been implemented, or adapted where necessary to suit the capabilities of the MRI-linac. Detector warmup, constancy, dose linearity, dose rate linearity, field size dependence and leakage were within tolerance. Measurements with the detector were consistent with ion chamber measurements for medium sized fields. The effective point of measurement of the detector when used within a 1.5 T magnetic field was determined to be 0.80 ± 0.23 mm below the top surface of the device, consistent with the existing vendor recommendation and alignment mark at 1.0 mm. The angular dependence was assessed. Variations of up to 9.7% were observed, which are significantly greater than in a 0 T environment. Within the expected range of use, the maximum effect is approximately 0.6% which is within tolerance. However for large beams within a magnetic field, the divergence and consequent variation in angle of photon incidence means that the microDiamond would not be ideal for characterising the profiles and it would not be suitable for determining large-field beam parameters such as symmetry. It would also require a correction factor prior to use for patient-specific QA measurements where radiation is delivered from different gantry angles. The results of this study demonstrate that the PTW 60019 microDiamond detector is suitable for measuring small radiation fields within a 1.5 T magnetic field and thus is suitable for use in MRI-linac commissioning and quality assurance.
Quality assurance for a six degrees-of-freedom table using a 3D printed phantom.
Woods, Kyle; Ayan, Ahmet S; Woollard, Jeffrey; Gupta, Nilendu
2018-01-01
To establish a streamlined end-to-end test of a 6 degrees-of-freedom (6DoF) robotic table using a 3D printed phantom for periodic quality assurance. A 3D printed phantom was fabricated with translational and rotational offsets and an imbedded central ball-bearing (BB). The phantom underwent each step of the radiation therapy process: CT simulation in a straight orientation, plan generation using the treatment planning software, setup to offset marks at the linac, registration and corrected 6DoF table adjustments via hidden target test, delivery of a Winston-Lutz test to the BB, and verification of table positioning via field and laser lights. The registration values, maximum total displacement of the combined Winston-Lutz fields, and a pass or fail criterion of the laser and field lights were recorded. The quality assurance process for each of the three linacs were performed for the first 30 days. Within a 95% confidence interval, the overall uncertainty values for both translation and rotation were below 1.0 mm and 0.5° for each linac respectively. When combining the registration values and other uncertainties for all three linacs, the average deviations were within 2.0 mm and 1.0° of the designed translation and rotation offsets of the 3D print respectively. For all three linacs, the maximum total deviation for the Winston-Lutz test did not exceed 1.0 mm. Laser and light field verification was within tolerance every day for all three linacs given the latest guidance documentation for table repositioning. The 3D printer is capable of accurately fabricating a quality assurance phantom for 6DoF positioning verification. The end-to-end workflow allows for a more efficient test of the 6DoF mechanics while including other important tests needed for routine quality assurance. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.
2017-12-01
The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.
Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac.
Woodings, S J; Wolthaus, J W H; van Asselen, B; de Vries, J H W; Kok, J G M; Lagendijk, J J W; Raaymakers, B W
2018-03-08
Accurate small-field dosimetry is critical for a magnetic resonance linac (MRI-linac). The PTW 60019 microDiamond is close to an ideal detector for small field dosimetry due to its small physical size, high signal-to-noise ratio and approximate water equivalence. It is important to fully characterise the performance of the detector in a 1.5 T magnetic field prior to its use for MRI-linac commissioning and quality assurance. Standard techniques of detector testing have been implemented, or adapted where necessary to suit the capabilities of the MRI-linac. Detector warmup, constancy, dose linearity, dose rate linearity, field size dependence and leakage were within tolerance. Measurements with the detector were consistent with ion chamber measurements for medium sized fields. The effective point of measurement of the detector when used within a 1.5 T magnetic field was determined to be 0.80 ± 0.23 mm below the top surface of the device, consistent with the existing vendor recommendation and alignment mark at 1.0 mm. The angular dependence was assessed. Variations of up to 9.7% were observed, which are significantly greater than in a 0 T environment. Within the expected range of use, the maximum effect is approximately 0.6% which is within tolerance. However for large beams within a magnetic field, the divergence and consequent variation in angle of photon incidence means that the microDiamond would not be ideal for characterising the profiles and it would not be suitable for determining large-field beam parameters such as symmetry. It would also require a correction factor prior to use for patient-specific QA measurements where radiation is delivered from different gantry angles. The results of this study demonstrate that the PTW 60019 microDiamond detector is suitable for measuring small radiation fields within a 1.5 T magnetic field and thus is suitable for use in MRI-linac commissioning and quality assurance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, M; DiCostanzo, D; Grzetic, S
2015-06-15
Purpose: To show that a single model for Portal Domisetry (PD) can be established for beam-matched TrueBeam™ linacs that are equipped with the DMI imager (43×43cm effective area). Methods: Our department acquired 6 new TrueBeam™s, 4 “Slim” and 2 “Edge” models. The Slims were equipped with 6 and 10MV photons, and the Edges with 6MV. MLCs differed between the Slims and Edges (Millennium 120 vs HD-MLC respectively). PD model was created from data acquired using a single linac (Slim). This includes maximum field size profile, as well as output factors and acquired measured fluence using the DMI imager. All identicalmore » linacs were beam-matched, profiles were within 1% at maximum field size at a variety of depths. The profile correction file was generated from 40×40 profile acquired at 5cm depth, 95cm SSD, and was adjusted for deviation at the field edges and corners. The PD model and profile correction was applied to all six TrueBeam™s and imagers. A variety of jaw only and sliding window (SW) MLC test fields, as well as TG-119 and clinical SW and VMAT plans were run on each linac to validate the model. Results: For 6X and 10X, field by field comparison using 3mm/3% absolute gamma criteria passed 90% or better for all cases. This was also true for composite comparisons of TG-199 and clinical plans, matching our current department criteria. Conclusion: Using a single model per photon energy for PD for the TrueBeam™ equipped with a DMI imager can produce clinically acceptable results across multiple identical and matched linacs. It is also possible to use the same PD model despite different MLCs. This can save time during commissioning and software updates.« less
SU-F-T-496: An Investigation of Two Novel Devices for Testing Linac Clearance During CT Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, A; Massingill, B
Purpose: This work’s objective is to determine the efficacy of two newly patented devices termed the Mor-O rings, Mark1 and Mark2, developed to predict collisions between the patient and a linac at the time of CT simulation. Methods: Mark1: A ring with an inner radius equal to the distance between the isocenter and the nearest portion of a linac head(diso) was made. This is mounted to a stand that allows vertical repositioning. The ring is placed around the patient on the CT table and aligned with isocenter. The patient is moved through the ring. If the ring touches the patient,more » a collision is predicted. To test this device, predicted collisions were marked on a phantom. The phantom was then repositioned on the linac table where the collisions were verified. Mark2: An arc with the radius diso was created with a re-locatable half-linac head wire-frame. The Mark2 is positioned in the same way as the Mark1 but can additionally mimic couch and gantry angulations. The Mark2 was tested with a volunteer using multiple couch, gantry and isocenter positions. The volunteer was then repositioned on the linac table to verify the angles of collisions. Results: Mark1: One isocenter out of ten showed negative clearance (0.9mm) on the linac table. All other collisions were predicted with 1 to 36mm of additional clearance. Mark2: All collisions were prevented with an additional 1.3 to 14.8 degrees of clearance. Conclusion: The Mark1 prototype is able to predict all collisions when no couch angulation is used. This device takes less than a minute to setup and is simple to use. The Mark2, when testing beam geometries used for noncoplanar SBRT, was able to prevent all collisions with 1.3 to 14.8 degrees additional clearance. Improvements in construction for both devices could increase accuracy and usability. Andrew Morrow owns Morrow Physics, LLC and Brian Massingill owns Spur Physics, LLC. We are both listed on the patent for the devices investigated in this work (patent 9220922). Our current employer, Baylor Scott and White, is also on the patent.« less
Dobler, Barbara; Obermeier, Tina; Hautmann, Matthias G; Khemissi, Amine; Koelbl, Oliver
2017-07-05
The aim of this study was to investigate if the flattening filter free (FFF) irradiation mode of a linear accelerator (linac) is advantageous as compared to the flat beam (FF) irradiation mode in intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for carcinoma of the hypopharynx / larynx. Four treatment plans were created for each of 10 patients for an Elekta Synergy linac with Agility collimating device, a dual arc VMAT and a nine field step and shoot IMRT each with and without flattening filter. Plan quality was compared considering target coverage and dose to the organs at risk. All plans were verified by a 2D-ionization-chamber-array and delivery times were compared. Peripheral point doses were determined as a measure of second cancer risk. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. Plan quality was similar for all four treatment plans without statistically significant differences of clinical relevance. The clinical goals were met in all plans for the PTV-SIB (V 95% > 95%), the spinal cord (D 1ccm < 45 Gy) and the brain stem (D 1ccm < 48 Gy). For the parotids, the goal of D 50% < 30 Gy was met in 70% and 60% of the plans for the left and right parotid respectively, and the V 95% of the SIB reached an average of 94%. Delivery times were similar for FF and FFF and significantly decreased by around 70% for VMAT as compared to IMRT. Peripheral doses were significantly reduced by 18% in FFF mode as compared to FF and by 26% for VMAT as compared to IMRT. Lowest peripheral doses were found for VMAT FFF, followed by VMAT FF. The FFF mode of a linear accelerator is advantageous for the treatment of hypopharynx/larynx carcinoma only with respect to reduction of second cancer induction in peripheral organs for the combination of Elekta Synergy linacs and Oncentra® External Beam v4.5 treatment planning system. This might be of interest in a therapy with curative intent.
SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, P; Na, Y; Wuu, C
2016-06-15
Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) systemmore » (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to standard MLC position segments.« less
Conceptual Design for the New RPI 2020 Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adolphsen, C.; Bane, K.; Dolgashev, V.
2014-10-29
The Rensselaer Polytechnic Institute (RPI) spectrometer is an installation based on an L-band linear accelerator designed and installed many decades ago. While this installation has served many important experiments over the decades, a new more powerful and more flexible linac to serve a wider range of experiments is envisioned as an upgrade to the existing installation by 2020.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLachlan, J.A.
The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.
Design of long induction linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporaso, G.J.; Cole, A.G.
1990-09-06
A self-consistent design strategy for induction linacs is presented which addresses the issues of brightness preservation against space charge induced emittance growth, minimization of the beam breakup instability and the suppression of beam centroid motion due to chromatic effects (corkscrew) and misaligned focusing elements. A simple steering algorithm is described that widens the effective energy bandwidth of the transport system.
Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.
Melville, G; Meriarty, H; Metcalfe, P; Knittel, T; Allen, B J
2007-09-01
The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. The production of Ac-225 has been achieved using bremsstrahlung photons from an 18 MV medical linear accelerator (linac) to bombard a Ra-226 target. A linac dose of 2800 Gy produced about 64 microCi of Ra-225, which decays to Ac-225. This result, while consistent with the theoretical calculations, is far too low to be of practical use. A more powerful linac is required that runs at a higher current, longer pulse length and higher frequency for practical production. This process could also lead to the reduction of the nuclear waste product Ra-226.
Characterization of the first RF coil dedicated to 1.5 T MR guided radiotherapy
NASA Astrophysics Data System (ADS)
Hoogcarspel, Stan J.; Zijlema, Stefan E.; Tijssen, Rob H. N.; Kerkmeijer, Linda G. W.; Jürgenliemk-Schulz, Ina M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.
2018-01-01
The purpose of this study is to investigate the attenuation characteristics of a novel radiofrequency (RF) coil, which is the first coil that is solely dedicated to MR guided radiotherapy with a 1.5 T MR-linac. Additionally, we investigated the impact of the treatment beam on the MRI performance of this RF coil. First, the attenuation characteristics of the RF coil were characterized. Second, we investigated the impact of the treatment beam on the MRI performance of the RF coil. We additionally demonstrated the ability of the anterior coil to attenuate returning electrons and thereby reducing the dose to the skin at the distal side of the treatment beam. Intensity modulated radiation therapy simulation of a clinically viable treatment plan for spinal bone metastasis shows a decrease of the dose to the planned tumor volume of 1.8% as a result of the MR coil around the patient. Ionization chamber and film measurements show that the anterior and posterior coil attenuate the beam homogeneously by 0.4% and 2.2%, respectively. The impact of the radiation resulted in a slight drop of the time-course signal-to-noise ratio and was dependent on imaging parameters. However, we could not observe any image artifacts resulting from this irradiation in any situation. In conclusion, the investigated MR-coil can be utilized for treatments with the 1.5 T-linac system. However, there is still room for improvement when considering both the dosimetric and imaging performance of the coil.
OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, G G
2010-05-18
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less
Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konoplev, Ivan V.; Metodiev, K.; Lancaster, A. J.
High average current, transportable energy recovery linacs (ERLs) can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU) instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently beenmore » proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like) model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Finally, numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.« less
Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac
Konoplev, Ivan V.; Metodiev, K.; Lancaster, A. J.; ...
2017-10-10
High average current, transportable energy recovery linacs (ERLs) can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU) instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently beenmore » proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like) model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Finally, numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.« less
Ryan, Rebecca A.; Williams, Sophie; Martin, Andrew V.; Dilanian, Ruben A.; Darmanin, Connie; Putkunz, Corey T.; Wood, David; Streltsov, Victor A.; Jones, Michael W.M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sebastien; Messerschmidt, Marc; Seibert, M. Marvin; Curwood, Evan K.; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.; Abbey, Brian
2017-01-01
The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data. PMID:28872125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Rebecca A.; Williams, Sophie; Martin, Andrew V.
The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treatedmore » as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C 60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C 60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. Our paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.« less
Ryan, Rebecca A.; Williams, Sophie; Martin, Andrew V.; ...
2017-08-22
The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treatedmore » as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C 60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C 60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. Our paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.« less
Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel
2014-01-01
High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by 241Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy-1 for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy-1 achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production. PMID:24600167
Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.
Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel
2014-10-07
Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7 ± 3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.
Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system
NASA Astrophysics Data System (ADS)
Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel
2014-10-01
Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7 ± 3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.
Development of new S-band SLED for PAL-XFEL Linac
NASA Astrophysics Data System (ADS)
Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin
2017-01-01
In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.
Inverse planning in the age of digital LINACs: station parameter optimized radiation therapy (SPORT)
NASA Astrophysics Data System (ADS)
Xing, Lei; Li, Ruijiang
2014-03-01
The last few years have seen a number of technical and clinical advances which give rise to a need for innovations in dose optimization and delivery strategies. Technically, a new generation of digital linac has become available which offers features such as programmable motion between station parameters and high dose-rate Flattening Filter Free (FFF) beams. Current inverse planning methods are designed for traditional machines and cannot accommodate these features of new generation linacs without compromising either dose conformality and/or delivery efficiency. Furthermore, SBRT is becoming increasingly important, which elevates the need for more efficient delivery, improved dose distribution. Here we will give an overview of our recent work in SPORT designed to harness the digital linacs and highlight the essential components of SPORT. We will summarize the pros and cons of traditional beamlet-based optimization (BBO) and direct aperture optimization (DAO) and introduce a new type of algorithm, compressed sensing (CS)-based inverse planning, that is capable of automatically removing the redundant segments during optimization and providing a plan with high deliverability in the presence of a large number of station control points (potentially non-coplanar, non-isocentric, and even multi-isocenters). We show that CS-approach takes the interplay between planning and delivery into account and allows us to balance the dose optimality and delivery efficiency in a controlled way and, providing a viable framework to address various unmet demands of the new generation linacs. A few specific implementation strategies of SPORT in the forms of fixed-gantry and rotational arc delivery are also presented.
Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel
2014-01-01
High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by (241)Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy(-1) for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy(-1) achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.
Chojnowski, Jacek M; Taylor, Lee M; Sykes, Jonathan R; Thwaites, David I
2018-05-14
A novel phantomless, EPID-based method of measuring the beam focal spot offset of a linear accelerator was proposed and validated for Varian machines. In this method, one set of jaws and the MLC were utilized to form a symmetric field and then a 180 o collimator rotation was utilized to determine the radiation isocenter defined by the jaws and the MLC, respectively. The difference between these two isocentres is directly correlated with the beam focal spot offset of the linear accelerator. In the current work, the method has been considered for Elekta linacs. An Elekta linac with the Agility ® head does not have two set of jaws, therefore, a modified method is presented making use of one set of diaphragms, the MLC and a full 360 o collimator rotation. The modified method has been tested on two Elekta Synergy ® linacs with Agility ® heads and independently validated. A practical guide with instructions and a MATLAB ® code is attached for easy implementation. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crittendon, J. A.; Burke, D. C.; Fuentes, Y. L.P.
2017-01-06
The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams.more » The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.« less
Noise Reduction and Correction in the IPNS Linac ESEM
NASA Astrophysics Data System (ADS)
Dooling, J. C.; Brumwell, F. R.; Donley, L.; McMichael, G. E.; Stipp, V. F.
2004-11-01
The Energy Spread and Energy Monitor (ESEM) is an on-line, non-intrusive diagnostic used to characterize the output beam from the 200-MHz, 50-MeV IPNS linac. The energy spread is determined from a 3-size, longitudinal emittance measurement; whereas the energy is derived from time of flight (TOF) analysis. Signals are detected on 50-ohm, stripline beam position monitors (BPMs) terminated in their characteristic impedance. Each BPM is constructed with four striplines: top, bottom, left and right. The ESEM signals are taken from the bottom stripline in four separate BPM locations in the 50-MeV transport line between the linac and the synchrotron. Deterministic linac noise is sampled before and after the 70-microsecond macropulse. The noise phasor is vectorially subtracted from the beam signal. Noise subtraction is required at several frequencies, especially the fundamental and fifth harmonics (200 MHz and 1 GHz). It is also necessary to correct for attenuation and dispersion in the co-axial signal cables. Presently, the analysis assumes a single particle distribution to determine energy and energy spread. Work is on-going to allow for more realistic longitudinal distributions to be included in the analysis.
Advanced studies at the VISA FEL in the SASE and seeded modes
NASA Astrophysics Data System (ADS)
Andonian, G.; Dunning, M.; Hemsing, E.; Murokh, A.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Babzien, M.; Yakimenko, V.
2008-08-01
The VISA (Visible to Infrared SASE Amplifier) program has been in operation at the BNL ATF since the year 2000. The program has produced numerous results including, demonstrated saturation at 840 nm with a gain length of 18 cm, chirped beam amplification with the observation of anomalously large bandwidth of the emitted radiation, and successful benchmarking of a start-to-end simulation suite to measured results. This paper will review the prior results of the VISA program and discuss planned novel measurements, including detuning studies of a 1 μm seeded amplifier, and measurements of the orbital angular momentum of the emitted radiation. The installation of a dedicated chicane bunch compressor followed by an x-band linac to mitigate energy spread will allow for high-current operations (reduced saturation length, and deep-saturation studies). Other measurements, such as coherent transition undulator radiation, are also proposed.
Minimization of three-dimensional beam emittance growth in rare-isotope accelerator
NASA Astrophysics Data System (ADS)
Oh, B. H.; Yoon, M.
2016-12-01
In this paper, we describe a research to minimize the three-dimensional (3D) emittance growth (EG) in the RAON accelerator, a heavy ion accelerator currently being developed in Korea to produce various rare isotopes. The emittance minimization is performed using the multi-objective genetic algorithm and the simplex method. We use them to analyze the driver linac for the in-flight fragmentation separator of the RAON facility and show that redesign of the 90-degree bending section of the RAON accelerator together with adjustment of optics in the upstream and downstream superconducting linacs can limit the 3D EG to 20 % in the entire region of the driver linac. Effects of various magnet and rf accelerating cavity errors on the beam-EG are also discussed.
RF transient analysis and stabilization of the phase and energy of the proposed PIP-II LINAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.
This paper describes a recent effort to develop and benchmark a simulation tool for the analysis of RF transients and their compensation in an H- linear accelerator. Existing tools in this area either focus on electron LINACs or lack fundamental details about the LLRF system that are necessary to provide realistic performance estimates. In our paper we begin with a discussion of our computational models followed by benchmarking with existing beam-dynamics codes and measured data. We then analyze the effect of RF transients and their compensation in the PIP-II LINAC, followed by an analysis of calibration errors and how amore » Newton’s Method based feedback scheme can be used to regulate the beam energy to within the specified limits.« less
NASA Astrophysics Data System (ADS)
Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.
2016-10-01
The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.
NASA Astrophysics Data System (ADS)
Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.
2014-02-01
In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.
Terahertz radiation source using a high-power industrial electron linear accelerator
NASA Astrophysics Data System (ADS)
Kalkal, Yashvir; Kumar, Vinit
2017-04-01
High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.
SU-E-T-602: Patient-Specific Online Dose Verification Based On Transmission Detector Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoelking, J; Yuvaraj, S; Jens, F
Purpose: Intensity modulated radiotherapy requires a comprehensive quality assurance program in general and ideally independent verification of dose delivery. Since conventional 2D detector arrays allow only pre-treatment verification, there is a debate concerning the need of online dose verification. This study presents the clinical performance, including dosimetric plan verification in 2D as well as in 3D and the error detection abilities of a new transmission detector (TD) for online dose verification of 6MV photon beam. Methods: To validate the dosimetric performance of the new device, dose reconstruction based on TD measurements were compared to a conventional pre-treatment verification method (reference)more » and treatment planning system (TPS) for 18 IMRT and VMAT treatment plans. Furthermore, dose reconstruction inside the patient based on TD read-out was evaluated by comparing various dose volume indices and 3D gamma evaluations against independent dose computation and TPS. To investigate the sensitivity of the new device, different types of systematic and random errors for leaf positions and linac output were introduced in IMRT treatment sequences. Results: The 2D gamma index evaluation of transmission detector based dose reconstruction showed an excellent agreement for all IMRT and VMAT plans compared to reference measurements (99.3±1.2)% and TPS (99.1±0.7)%. Good agreement was also obtained for 3D dose reconstruction based on TD read-out compared to dose computation (mean gamma value of PTV = 0.27±0.04). Only a minimal dose underestimation within the target volume was observed when analyzing DVH indices (<1%). Positional errors in leaf banks larger than 1mm and errors in linac output larger than 2% could clearly identified with the TD. Conclusion: Since 2D and 3D evaluations for all IMRT and VMAT treatment plans were in excellent agreement with reference measurements and dose computation, the new TD is suitable to qualify for routine treatment plan verification. Funding Support, Disclosures, and Conflict of Interest: COIs: Frank Lohr: Elekta: research grant, travel grants, teaching honoraria IBA: research grant, travel grants, teaching honoraria, advisory board C-Rad: board honoraria, travel grants Frederik Wenz: Elekta: research grant, teaching honoraria, consultant, advisory board Zeiss: research grant, teaching honoraria, patent Hansjoerg Wertz: Elekta: research grant, teaching honoraria IBA: research grant.« less
NASA Astrophysics Data System (ADS)
Vagena, E.; Theodorou, K.; Stoulos, S.
2018-04-01
Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.
The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses
NASA Astrophysics Data System (ADS)
Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien
2014-11-01
Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.
Method for generating a plasma wave to accelerate electrons
Umstadter, D.; Esarey, E.; Kim, J.K.
1997-06-10
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.
Pressurized rf cavities in ionizing beams
Freemire, B.; Tollestrup, A. âV.; Yonehara, K.; ...
2016-06-20
A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less
Method for generating a plasma wave to accelerate electrons
Umstadter, Donald; Esarey, Eric; Kim, Joon K.
1997-01-01
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.
Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, John A.; Johnstone, Carol
This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less
Depth profile of production yields of natPb(p, xn) 206,205,204,203,202,201Bi nuclear reactions
NASA Astrophysics Data System (ADS)
Mokhtari Oranj, Leila; Jung, Nam-Suk; Kim, Dong-Hyun; Lee, Arim; Bae, Oryun; Lee, Hee-Seock
2016-11-01
Experimental and simulation studies on the depth profiles of production yields of natPb(p, xn) 206,205,204,203,202,201Bi nuclear reactions were carried out. Irradiation experiments were performed at the high-intensity proton linac facility (KOMAC) in Korea. The targets, irradiated by 100-MeV protons, were arranged in a stack consisting of natural Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by activation analysis method using 27Al(p, 3p1n)24Na, 197Au(p, p1n)196Au, and 197Au(p, p3n)194Au monitor reactions and also by Gafchromic film dosimetry method. The yields of produced radio-nuclei in the natPb activation foils and monitor foils were measured by HPGe spectroscopy system. Monte Carlo simulations were performed by FLUKA, PHITS/DCHAIN-SP, and MCNPX/FISPACT codes and the calculated data were compared with the experimental results. A satisfactory agreement was observed between the present experimental data and the simulations.
Superconducting energy recovery linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.
Superconducting energy recovery linacs
Ben-Zvi, Ilan
2016-09-01
High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.
SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajapati, S; Yan, Y; Gifford, K
2016-06-15
Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films weremore » placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and was 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.« less
SIMULATIONS OF TRANSVERSE STACKING IN THE NSLS-II BOOSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliller III, R.; Shaftan, T.
2011-03-28
The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme.more » We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.« less
Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis
NASA Astrophysics Data System (ADS)
Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.
2015-10-01
An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform the operation and measurement.
WE-D-BRA-04: Online 3D EPID-Based Dose Verification for Optimum Patient Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreeuw, H; Rozendaal, R; Olaciregui-Ruiz, I
2015-06-15
Purpose: To develop an online 3D dose verification tool based on EPID transit dosimetry to ensure optimum patient safety in radiotherapy treatments. Methods: A new software package was developed which processes EPID portal images online using a back-projection algorithm for the 3D dose reconstruction. The package processes portal images faster than the acquisition rate of the portal imager (∼ 2.5 fps). After a portal image is acquired, the software seeks for “hot spots” in the reconstructed 3D dose distribution. A hot spot is in this study defined as a 4 cm{sup 3} cube where the average cumulative reconstructed dose exceedsmore » the average total planned dose by at least 20% and 50 cGy. If a hot spot is detected, an alert is generated resulting in a linac halt. The software has been tested by irradiating an Alderson phantom after introducing various types of serious delivery errors. Results: In our first experiment the Alderson phantom was irradiated with two arcs from a 6 MV VMAT H&N treatment having a large leaf position error or a large monitor unit error. For both arcs and both errors the linac was halted before dose delivery was completed. When no error was introduced, the linac was not halted. The complete processing of a single portal frame, including hot spot detection, takes about 220 ms on a dual hexacore Intel Xeon 25 X5650 CPU at 2.66 GHz. Conclusion: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for various kinds of gross delivery errors. The detection of hot spots was proven to be effective for the timely detection of these errors. Current work is focused on hot spot detection criteria for various treatment sites and the introduction of a clinical pilot program with online verification of hypo-fractionated (lung) treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volotskova, O; Xu, A; Jozsef, G
Purpose: To investigate the response and dose rate dependence of a scintillation detector over a wide energy range. Methods: The energy dependence of W1 scintillation detector was tested with: 1) 50–225 keV beams generated by an animal irradiator, 2) a Leksell Gamma Knife Perfexion Co-60 source, 3) 6MV, 6FFF, 10FFF and 15MV photon beams, and 4) 6–20MeV electron beams from a linac. Calibrated linac beams were used to deliver 100 cGy to the detector at dmax in water under reference conditions. The gamma-knife measurement was performed in solid water (100 cGy with 16mm collimator). The low energy beams were calibratedmore » with an ion chamber in air (TG-61), and the scintillation detector was placed at the same location as the ionization chamber during calibration. For the linac photon and electron beams, dose rate dependence was tested for 100–2400 and 100–800 MU/min. Results: The scintillation detector demonstrated strong energy dependence in the range of 50–225keV. The measured values were lower than the delivered dose and increased as the energy increased. Therapeutic photon beams showed energy independence with variations less than 1%. Therapeutic electron beams displayed the same sensitivity of ∼2–3% at their corresponding dmax depths. The change in dose-rate of photon and electron beams within the therapeutic energy range did not affect detector output (<0.5%). Measurements acquired with the gamma knife showed that the output data agreed with the delivered dose up to 3%. Conclusion: W1 scintillation detector output has a strong energy dependence in the diagnostic and orthovoltage energy range. Therapeutic photon beams exhibited energy independence with no observable dose-rate dependence. This study may aid in the implementation of a scintillation detector in QA programs by providing energy calibration factors.« less
Automation of a Linear Accelerator Dosimetric Quality Assurance Program
NASA Astrophysics Data System (ADS)
Lebron Gonzalez, Sharon H.
According to the American Society of Radiation Oncology, two-thirds of all cancer patients will receive radiation therapy during their illness with the majority of the treatments been delivered by a linear accelerator (linac). Therefore, quality assurance (QA) procedures must be enforced in order to deliver treatments with a machine in proper conditions. The overall goal of this project is to automate the linac's dosimetric QA procedures by analyzing and accomplishing various tasks. First, the photon beam dosimetry (i.e. total scatter correction factor, infinite percentage depth dose (PDD) and profiles) were parameterized. Parameterization consists of defining the parameters necessary for the specification of a dosimetric quantity model creating a data set that is portable and easy to implement for different applications including: beam modeling data input into a treatment planning system (TPS), comparing measured and TPS modelled data, the QA of a linac's beam characteristics, and the establishment of a standard data set for comparison with other data, etcetera. Second, this parameterization model was used to develop a universal method to determine the radiation field size of flattened (FF), flattening-filter-free (FFF) and wedge beams which we termed the parameterized gradient method (PGM). Third, the parameterized model was also used to develop a profile-based method for assessing the beam quality of photon FF and FFF beams using an ionization chamber array. The PDD and PDD change was also predicted from the measured profile. Lastly, methods were created to automate the multileaf collimator (MLC) calibration and QA procedures as well as the acquisition of the parameters included in monthly and annual photon dosimetric QA. A two field technique was used for the calculation of the MLC leaf relative offsets using an electronic portal imaging device (EPID). A step-and-shoot technique was used to accurately acquire the radiation field size, flatness, symmetry, output and beam quality specifiers in a single delivery to an ionization chamber array for FF and FFF beams.
The NuMAX Long Baseline Neutrino Factory Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delahaye, J-P.; Ankenbrandt, C.; Bogacz, A.
A Neutrino Factory where neutrinos of all species are produced in equal quantities by muon decay is described as a facility at the intensity frontier for exquisite precision providing ideal conditions for ultimate neutrino studies and the ideal complement to Long Baseline Facilities like LBNF at Fermilab. It is foreseen to be built in stages with progressively increasing complexity and performance, taking advantage of existing or proposed facilities at an existing laboratory like Fermilab. A tentative layout based on a recirculating linac providing opportunities for considerable saving is discussed as well as its possible evolution toward a muon collider ifmore » and when requested by Physics. Tentative parameters of the various stages are presented as well as the necessary R&D to address the technological issues and demonstrate their feasibility.« less
Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses
Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao; ...
2018-01-03
X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less
The NuMAX Long Baseline Neutrino Factory concept
Delahaye, J-P.; Ankenbrandt, C. M.; Bogacz, S. A.; ...
2018-06-01
A Neutrino Factory where neutrinos of all species are produced in equal quantities by muon decay is described as a facility at the intensity frontier for exquisite precision providing ideal conditions for ultimate neutrino studies and the ideal complement to Long Baseline Facilities like LBNF at Fermilab. It is foreseen to be built in stages with progressively increasing complexity and performance, taking advantage of existing or proposed facilities at an existing laboratory like Fermilab. A tentative layout based on a recirculating linac providing opportunities for considerable saving is discussed as well as its possible evolution toward a muon collider ifmore » and when requested by Physics. Tentative parameters of the various stages are presented as well as the necessary R&D to address the technological issues and demonstrate their feasibility.« less
Ourmazd, Abbas [University of Wisconsin, Milwaukee, Wisconsin, USA
2017-12-09
Ever shattered a valuable vase into 10 to the 6th power pieces and tried to reassemble it under a light providing a mean photon count of 10 minus 2 per detector pixel with shot noise? If you can do that, you can do single-molecule crystallography. This talk will outline how this can be done in principle. In more technical terms, the talk will describe how the combination of scattering physics and Bayesian algorithms can be used to reconstruct the 3-D diffracted intensity distribution from a collection of individual 2-D diffiraction patterns down to a mean photon count of 10 minus 2 per pixel, the signal level anticipated from the Linac Coherent Light Source, and hence determine the structure of individual macromolecules and nanoparticles.
The NuMAX Long Baseline Neutrino Factory concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delahaye, J-P.; Ankenbrandt, C. M.; Bogacz, S. A.
A Neutrino Factory where neutrinos of all species are produced in equal quantities by muon decay is described as a facility at the intensity frontier for exquisite precision providing ideal conditions for ultimate neutrino studies and the ideal complement to Long Baseline Facilities like LBNF at Fermilab. It is foreseen to be built in stages with progressively increasing complexity and performance, taking advantage of existing or proposed facilities at an existing laboratory like Fermilab. A tentative layout based on a recirculating linac providing opportunities for considerable saving is discussed as well as its possible evolution toward a muon collider ifmore » and when requested by Physics. Tentative parameters of the various stages are presented as well as the necessary R&D to address the technological issues and demonstrate their feasibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, Aliaksei; Eddy, Nathan; Edstrom, Dean
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread application in Science and Industry. Many current and planned projects employ 1.3-GHz 9-cell superconducting cavities of the TESLA design*. In the present paper we discuss the transverse-focusing properties of such a cavity and non-ideal transverse-map effects introduced by field asymmetries in the vicinity of the input and high-order-mode radiofrequency (RF) couplers**. We especially consider the case of a cavity located downstream of an RF-gun in a setup similar to the photoinjector of the Fermilab Accelerator Science and Technology (FAST) facility. Preliminary experimental measurements of the CC2more » cavity transverse matrix were carried out at the FAST facility. The results are discussed and compared with analytical and numerical simulations.« less
The NuMAX Long Baseline Neutrino Factory Concept
Delahaye, J-P.; Ankenbrandt, C.; Bogacz, A.; ...
2018-06-12
A Neutrino Factory where neutrinos of all species are produced in equal quantities by muon decay is described as a facility at the intensity frontier for exquisite precision providing ideal conditions for ultimate neutrino studies and the ideal complement to Long Baseline Facilities like LBNF at Fermilab. It is foreseen to be built in stages with progressively increasing complexity and performance, taking advantage of existing or proposed facilities at an existing laboratory like Fermilab. A tentative layout based on a recirculating linac providing opportunities for considerable saving is discussed as well as its possible evolution toward a muon collider ifmore » and when requested by Physics. Tentative parameters of the various stages are presented as well as the necessary R&D to address the technological issues and demonstrate their feasibility.« less
Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao
X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less
Diffraction data of core-shell nanoparticles from an X-ray free electron laser
Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...
2017-04-11
X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less
Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.
Galea, R; Ross, C; Wells, R G
2014-05-01
Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. © 2013 Published by Elsevier Ltd.
Passive magnetic shielding in MRI-Linac systems.
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul
2018-03-26
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Passive magnetic shielding in MRI-Linac systems
NASA Astrophysics Data System (ADS)
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul
2018-04-01
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Solid-state pulse modulator using Marx generator for a medical linac electron-gun
NASA Astrophysics Data System (ADS)
Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae
2016-04-01
A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.
Treatment vault shielding for a flattening filter-free medical linear accelerator
NASA Astrophysics Data System (ADS)
Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.
2009-03-01
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
Treatment vault shielding for a flattening filter-free medical linear accelerator.
Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N
2009-03-07
The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m(3) less concrete to shield the single-energy linac and 36 m(3) less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenberg, Rick van de, E-mail: rickvandelangenberg@hotmail.com; Dohmen, Amy J.C.; Bondt, Bert J. de
2012-10-01
Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention aftermore » radiotherapy was defined as 'no additional intervention group, ' absence of radiological growth was defined as 'radiological control group. ' Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% {+-} 0.03; the 4-year radiological control probability was 85.4% {+-} 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.« less
Rodríguez, A; Algara, M; Monge, D; López-Torrecilla, J; Caballero, F; Morera, R; Escó, R; Pérez-Montero, H; Ferrer, C; Lara, P C
2018-03-01
Planning for radiation oncology requires reliable estimates of both demand for radiotherapy and availability of technological resources. This study compares radiotherapy resources in the 17 regions of the decentralised Spanish National Health System (SNHS). The Sociedad Española de Oncología Radioterápica (SEOR) performed a cross-sectional survey of all Spanish radiation oncology services (ROS) in 2015. We collected data on SNHS radiotherapy units, recording the year of installation, specific features of linear accelerators (LINACs) and other treatment units, and radiotherapeutic techniques implemented by region. Any machine over 10 years old or lacking a multileaf collimator or portal imaging system was considered obsolete. We performed a k-means clustering analysis using the Hartigan-Wong method to test associations between the gross domestic regional product (GDRP), the number of LINACs per million population and the percentage of LINACs over 10 years old. The SNHS controls 72 (61%) of the 118 Spanish ROS and has 180 LINACs, or 72.5% of the total public and private resources. The mean rate of LINACs per million population is 3.9 for public ROS, and 42% (n = 75) of the public accelerators were obsolete in 2015: 61 due to age and 14 due to technological capability. There was considerable regional variation in terms of the number and technological capacity of radiotherapy units; correlation between GRDP and resource availability was moderate. Despite improvements, new investments are still needed to replace obsolete units and increase access to modern radiotherapy. Regular analysis of ROS in each Spanish region is the only strategy for monitoring progress in radiotherapy capacity.
Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan
2015-07-01
We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
The LLRF System for the S-Band RF Plants of the FERMI Linac
NASA Astrophysics Data System (ADS)
Fabris, A.; Byrd, J.; D'Auria, G.; Doolittle, L.; Gelmetti, F.; Huang, G.; Jones, J.; Milloch, M.; Predonzani, M.; Ratti, A.; Rohlev, T.; Salom, A.; Serrano, C.; Stettler, M.
2016-04-01
Specifications on electron beam quality for the operation of a linac-based free-electron laser (FEL), as FERMI in Trieste (Italy), impose stringent requirements on the stability of the electromagnetic fields of the accelerating sections. These specifications can be met only with state-of-the-art low-level RF (LLRF) systems based on advanced digital technologies. Design considerations, construction, and performance results of the FERMI digital LLRF are presented in this paper. The stability requirements derived by simulations are better than 0.1% in amplitude and 0.1° S-band in phase. The system installed in the FERMI Linac S-band RF plants has met these specifications and is in operation on a 24-h basis as a user facility. Capabilities of the system allow planning for new developments that are also described here.
Beam dynamic simulation and optimization of the CLIC positron source and the capture linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayar, C., E-mail: cafer.bayar@cern.ch; CERN, Geneva; Doebert, S., E-mail: Steffen.Doebert@cern.ch
2016-03-25
The CLIC Positron Source is based on the hybrid target composed of a crystal and an amorphous target. Simulations have been performed from the exit of the amorphous target to the end of pre-injector linac which captures and accelerates the positrons to an energy of 200 MeV. Simulations are performed by the particle tracking code PARMELA. The magnetic field of the AMD is represented in PARMELA by simple coils. Two modes are applied in this study. The first one is accelerating mode based on acceleration after the AMD. The second one is decelerating mode based on deceleration in the first acceleratingmore » structure. It is shown that the decelerating mode gives a higher yield for the e{sup +} beam in the end of the Pre-Injector Linac.« less
Advanced Photon Source accelerator ultrahigh vacuum guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Noonan, J.
1994-03-01
In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.
Radiation Surveys of the Naval Postgraduate School LINAC.
1992-06-01
personnel dosimetry at the NPS LINAC. This will result in the reduction of the TLD measured neutron dose evaluation for personnel. Accession For NTIS F. A...29 ix Figure 16: Average TLD NECF for electron energy and slit width co m b inatio ns...values obtained at 90 MeV electron energy, or NECFfmal = 0.341 ± 0.015 TABLE 5: AVERAGE TLD NEUTRON ENERGY CORRECTION FACTORS Electron Energy S lit
The CSU Accelerator and FEL Facility
NASA Astrophysics Data System (ADS)
Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel
2014-03-01
The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.
Analysis of HOM Problems in the C-ADS Main Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Burn; Ng, King Yuen
2017-05-18
Excitation of higher-order modes (HOMs) in superconducting cavities may severely affect the operation of the main linac in the Chinese Accelerator Driven System (CADS). Preliminary analysis is made on the effects of beam dynamic, which includes possible longitudinal and transverse emittance enlargements, as well as the possibility of beam breakup. Suggestions are given for further investigation. Comparison is made between the C-ADS and the Fermilab Project X.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K.
2016-01-15
A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentialsmore » are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.« less
NASA Astrophysics Data System (ADS)
Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-05-01
The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.
TH-C-BRC-02: A Review of Emerging Technologies in Robotic SRS/SBRT Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
TH-C-BRC-01: An Overview of Emerging Technologies in SRS/SBRT Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L.
2016-06-15
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
TH-C-BRC-00: Emerging Technologies in SRS/SBRT Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioningmore » capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to deliver highly conformal radiosurgery treatments to multiple targets simultaneously via a single isocenter to replace the conventional multi-iso multi-plan treatments. It becomes important to understand the advantages and limitations of this technique, and the pitfalls for implementing this technique in clinical practice. The planning process of single-iso multi-target MAT will be described, and its plan quality and delivery efficiency will be compared with multi-iso plans. The QA process for verifying such complex plans will be illustrated, and pitfalls in imaging and patient set up will be discussed. Overall, this session will focus on the following areas: 1) Update on the emerging technology in current SRS/SBRT delivery. 2) New developments in treatment planning and Quality Assurance program. 3) Imaging guidance and motion management. Learning Objectives: To understand the SRS/SBRT principles and its clinical applications, and gain knowledge on the emerging technologies in SRS/SBRT. To review planning concepts and useful tips in treatment planning. To learn about the imaging guidance procedures and the quality assurance program in SRS/SBRT. National Institutes of Health, Varian Medical System; L. Ren, The presenter is funded by National Institutes of Health and Varian Medical System.« less
Characteristics of flattening filter free beams at low monitor unit settings.
Akino, Yuichi; Ota, Seiichi; Inoue, Shinichi; Mizuno, Hirokazu; Sumida, Iori; Yoshioka, Yasuo; Isohashi, Fumiaki; Ogawa, Kazuhiko
2013-11-01
Newer linear accelerators (linacs) have been equipped to deliver flattening filter free (FFF) beams. When FFF beams are used for step-and-shoot intensity-modulated radiotherapy (IMRT), the stability of delivery of small numbers of monitor units (MU) is important. The authors developed automatic measurement techniques to evaluate the stability of the dose profile, dose linearity, and consistency. Here, the authors report the performance of the Artiste™ accelerator (Siemens, Erlangen, Germany) in delivering low-MU FFF beams. A 6 MV flattened beam (6X) with 300 MU/min dose rate and FFF beams of 7 (7XU) and 11 MV (11XU), each with a 500 MU/min dose rate, were measured at 1, 2, 3, 5, 8, 10, and 20 MU settings. For the 2000 MU/min dose rate, the 7 (7XUH) and 11 MV (11XUH) beams were set at 10, 15, 20, 25, and 30 MU because of the limits of the minimum MU settings. Beams with 20 × 20 and 10 × 10 cm(2) field sizes were alternately measured ten times in intensity modulated (IM) mode, with which Siemens linacs regulate beam delivery for step-and-shoot IMRT. The in- and crossplane beam profiles were measured using a Profiler™ Model 1170 (Sun Nuclear Corporation, Melbourne, FL) in multiframe mode. The frames of 20 × 20 cm(2) beams were identified at the off-axis profile. The 6X beam profile was normalized at the central axis. The 7 and 11 MV FFF beam profiles were rescaled to set the dose at the central axis at 145% and 170%, respectively. Point doses were also measured using a Farmer-type ionization chamber and water-equivalent solid phantom to evaluate the linearity and consistency of low-MU beam delivery. The values displayed on the electrometer were recognized with a USB-type camera and read with open-source optical character recognition software. The symmetry measurements of the 6X, 7XU, and 11XU beam profiles were better than 2% for beams ≥ 2 MU and improved with increasing MU. The variations in flatness of FFF beams ≥ 2 MU were ± 5%. The standard deviation of the symmetry and flatness also decreased with increasing MU. The linearity of the 6X beam was ± 1% and ± 2% for the beams of ≥ 5 and ≥ 3 MU, respectively. The 7XU and 11XU beams of ≥ 2 MU showed linearity with ± 2% except the 7XU beam of 8 MU (+2.9%). The profiles of the FFF beams with 2000 and 500 MU/min dose rate were similar. The characteristics of low-MU beams delivered in IM mode were evaluated using an automatic measurement system developed in this study. The authors demonstrated that the profiles of FFF beams of the Artiste™ linac were highly stable, even at low MU. The linearity of dose output was also stable for beams ≥ 2 MU.
Photocathodes for High Repetition Rate Light Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
2014-04-20
This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus ismore » on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU - BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder- and single-crystal diffraction, x-ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and new diffraction facilities at ALS will be utilized. We also will continue to make use of the excellent analytical facilities at the CNF (BNL) and the Molecular Foundry (LBNL), where we have access to state of the art UHV XPS, SPM, SEM and scanning Auger microscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, A; Andreozzi, J; Davis, S
Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a watermore » tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.« less
A new methodology for inter- and intrafraction plan adaptation for the MR-linac
NASA Astrophysics Data System (ADS)
Kontaxis, C.; Bol, G. H.; Lagendijk, J. J. W.; Raaymakers, B. W.
2015-10-01
The new era of hybrid MRI and linear accelerator machines, including the MR-linac currently being installed in the University Medical Center Utrecht (Utrecht, The Netherlands), will be able to provide the actual anatomy and real-time anatomy changes of the patient’s target(s) and organ(s) at risk (OARs) during radiation delivery. In order to be able to take advantage of this input, a new generation of treatment planning systems is needed, that will allow plan adaptation to the latest anatomy state in an online regime. In this paper, we present a treatment planning algorithm for intensity-modulated radiotherapy (IMRT), which is able to compensate for patient anatomy changes. The system consists of an iterative sequencing loop open to anatomy updates and an inter- and intrafraction adaptation scheme that enables convergence to the ideal dose distribution without the need of a final segment weight optimization (SWO). The ability of the system to take into account organ motion and adapt the plan to the latest anatomy state is illustrated using artificial baseline shifts created for three different kidney cases. Firstly, for two kidney cases of different target volumes, we show that the system can account for intrafraction motion, delivering the intended dose to the target with minimal dose deposition to the surroundings compared to conventional plans. Secondly, for a third kidney case we show that our algorithm combined with the interfraction scheme can be used to deliver the prescribed dose while adapting to the changing anatomy during multi-fraction treatments without performing a final SWO.
TM 4: Beam through the Main Linac Cryomodule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A.
2017-06-14
On May 15th 2017, the CBETA project reached the major funding milestone, “Beam through the MLC.” For this test, the team had to successfully accelerate the electron beam to 6 MeV in the Injector Cryomodule (ICM), and then to a final energy of 12 MeV in the Main Linac Cryomodule (MLC). The MLC contains six superconducting accelerating cavities; for this initial test only a single cavity was powered.
Sanderson, Benjamin; McWilliam, Alan; Faivre-Finn, Corinne; Kirkby, Norman Francis; Jena, Rajesh; Mee, Thomas; Choudhury, Ananya
2017-01-01
In this study, we used evidence-based mathematical modelling to predict the patient cohort for MR-linac to assess its feasibility in a time of austerity. We discuss our results and the implications of evidence-based radiotherapy demand modelling tools such as Malthus on the implementation of new technology and value-based healthcare. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Redesign of the End Group in the 3.9 GHz LCLS-II Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunin, Andrei; Gonin, Ivan; Khabiboulline, Timergali
Development and production of Linac Coherent Light Source II (LCLS-II) is underway. The central part of LCLS-II is a continuous wave superconducting RF (CW SCRF) electron linac. The 3.9 GHz third harmonic cavity similar to the XFEL design will be used in LCLS-II for linearizing the longitudinal beam profile*. The initial design of the 3.9 GHz cavity developed for XFEL project has a large, 40 mm, beam pipe aperture for better higher-order mode (HOM) damping. It is resulted in dipole HOMs with frequencies nearby the operating mode, which causes difficulties with HOM coupler notch filter tuning. The CW linac operationmore » requires an extra caution in the design of the HOM coupler in order to prevent its possible overheating. In this paper we present the modified 3.9 GHz cavity End Group for meeting the LCLS-II requirements« less
Beam-dynamics driven design of the LHeC energy-recovery linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrini, Dario; Latina, Andrea; Schulte, Daniel
The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Trackingmore » simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.« less
Beam-dynamics driven design of the LHeC energy-recovery linac
Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; ...
2015-12-23
The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Trackingmore » simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.« less
Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility
NASA Astrophysics Data System (ADS)
Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu
2018-07-01
A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.
Electron Accelerators for Research at the Frontiers of Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartline, Beverly; Grunder, Hermann
1986-10-01
Electron accelerators for the frontiers of nuclear physics must provide high duty factor (gte 80) for coincidence measurements; few-hundred-MeV through few-GeV energy for work in the nucleonic, hadronic, and confinement regimes; energy resolution of ~ 10 -4; and high current (gte 100 zA). To fulfill these requirements new machines and upgrades of existing ones are being planned or constructed. Representative microtron-based facilities are the upgrade of MAMI at the University of Mainz (West Germany), the proposed two-stage cascade microtron at the University of Illinois (U.S.A.), and the three-stage Troitsk ``polytron'' (USSR). Representative projects to add pulse stretcher rings to existingmore » linacs are the upgrades at MIT-Bates (U.S.A.) and at NIKHEF-K (Netherlands). Recent advances in superconducting rf technology, especially in cavity design and fabrication, have made large superconducting cw linacs become feasible. Recirculating superconducting cw linacs are under construc« less
Linear accelerator radiosurgery for arteriovenous malformations: Updated literature review.
Yahya, S; Heyes, G; Nightingale, P; Lamin, S; Chavda, S; Geh, I; Spooner, D; Cruickshank, G; Sanghera, P
2017-04-01
Arteriovenous malformations (AVMs) are the leading causing of intra-cerebral haemorrhage. Stereotactic radiosurgery (SRS) is an established treatment for arteriovenous malformations (AVM) and commonly delivered using Gamma Knife within dedicated radiosurgery units. Linear accelerator (LINAC) SRS is increasingly available however debate remains over whether it offers an equivalent outcome. The aim of this project is to evaluate the outcomes using LINAC SRS for AVMs used within a UK neurosciences unit and review the literature to aid decision making across various SRS platforms. Results have shown comparability across platforms and strongly supports that an adapted LINAC based SRS facility within a dynamic regional neuro-oncology department delivers similar outcomes (in terms of obliteration and toxicity) to any other dedicated radio-surgical platform. Locally available facilities can facilitate discussion between options however throughput will inevitably be lower than centrally based dedicated national radiosurgery units. Copyright © 2016. Published by Elsevier Ltd.
In modern linacs monitor units should be defined in water at 10 cm depth rather than at dmax.
Van den Heuvel, Frank; Wu, Qiuwen; Cai, Jing
2018-05-28
Thanks to the widely adopted guidelines such as AAPM TG-51 1 and IAEA TRS-398 2 , linac calibration has become more consistent and accurate around the globe than previously. Modern linac photon beams are often calibrated in water at 10 cm depth, and configured such that 1 monitor unit (MU) corresponds to 1 cGy at the depth of maximum dose, (d max) . However, such configuration is not without limitations. Some think it is unnecessarily complex and prone to errors, and believe that defining MU at 10 cm is more appropriate. Others think that change of MU definition can cause confusion and possibly serious consequences without any real benefit. This is the premise debated in this month's Point/Counterpoint. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of a combined feed forward-feedback system for an electron Linac
NASA Astrophysics Data System (ADS)
Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.; Wu, J.
2009-10-01
This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-Integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally.
NASA Astrophysics Data System (ADS)
Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.
2011-03-01
This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI@Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.
NASA Astrophysics Data System (ADS)
Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro
2000-02-01
We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.
Kishan, Amar U; Cao, Minsong; Wang, Pin-Chieh; Mikaeilian, Argin G; Tenn, Stephen; Rwigema, Jean-Claude M; Sheng, Ke; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Lee, Percy
2015-01-01
The purpose of this study was to investigate the dosimetric feasibility of liver stereotactic body radiation therapy (SBRT) using a teletherapy system equipped with 3 rotating (60)Co sources (tri-(60)Co system) and a built-in magnetic resonance imager (MRI). We hypothesized tumor size and location would be predictive of favorable dosimetry with tri-(60)Co SBRT. The primary study population consisted of 11 patients treated with SBRT for malignant hepatic lesions whose linear accelerator (LINAC)-based SBRT plans met all mandatory Radiation Therapy Oncology Group (RTOG) 1112 organ-at-risk (OAR) constraints. The secondary study population included 5 additional patients whose plans did not meet the mandatory constraints. Patients received 36 to 60 Gy in 3 to 5 fractions. Tri-(60)Co system SBRT plans were planned with ViewRay system software. All patients in the primary study population had tri-(60)Co SBRT plans that passed all RTOG constraints, with similar planning target volume coverage and OAR doses to LINAC plans. Mean liver doses and V10Gy to the liver, although easily meeting RTOG 1112 guidelines, were significantly higher with tri-(60)Co plans. When the 5 additional patients were included in a univariate analysis, the tri-(60)Co SBRT plans were still equally able to pass RTOG constraints, although they did have inferior ability to pass more stringent liver and kidney constraints (P < .05). A multivariate analysis found the ability of a tri-(60)Co SBRT plan to meet these constraints depended on lesion location and size. Patients with smaller or more peripheral lesions (as defined by distance from the aorta, chest wall, liver dome, and relative lesion volume) were significantly more likely to have tri-(60)Co plans that spared the liver and kidney as well as LINAC plans did (P < .05). It is dosimetrically feasible to perform liver SBRT with a tri-(60)Co system with a built-in MRI. Patients with smaller or more peripheral lesions are more likely to have optimal liver and kidney sparing, with the added benefit of MRI guidance, when receiving tri-(60)Co-based SBRT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Bazalova-Carter, M
Purpose: Recent advances towards MRI Linac radiotherapy have motivated a wide range of studies characterizing electromagnetic interactions between the two devices. One of the most sensitive components is the linac electron gun. To data, only non gridded (diode) guns have been investigated however, most linac vendors utilize gridded (triode) guns, which enable efficient and robust beam gating. The purpose of this study was to develop a realistic model of a gridded gun used clinically, and to characterize its performance in magnetic fields. Methods: The gridded electron gun used on Varian high energy machines was measured using 3D laser scanning quotedmore » as accurate to 0.1mm. Based on the scane, a detailed CAD mode was developed. From this, key geometry was extracted and a FEM model was developed (Opera/SCALA). Next, the high voltage (HV), grid voltage, and emission current were read from six dose matched TrueBeam linacs for the 6X, 10X and 15X photon modes (0 B-field). The mean values were used to represent each mode, which was simulated I constant magnetic fields from 0–200G in-line, and 0–35G perpendicular. Results: Experimentally measured HV, grid voltage, and emission current from 6X, 10X and 15X modes were respectively: 15±.03kV, 10±.08kV, 11±.03kV; 93±7V, 41±3V, and 70±6V; 327±27mA, 129±10mA, and 214±19mA. The error in simulated emission current of each mode was 3%,6%, and 3%. For in-line fields, 50% beam loss occurred at 114, 96, and 97G; for perpendicular; at 12, 13 and 14G. Sensitivity for a given geometry is primarily determined by HV setting. Conclusion: Future MRI-Linac systems will almost certainly use gridded guns. We present the first model of a clinical gridded gun, and match the experimental emission current to within 6% across three different operating modes. This clinical gun shows increased sensitivity to magnetic fields than previous work,and different modes show different sensitivity.« less
SU-F-J-149: Beam and Cryostat Scatter Characteristics of the Elekta MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duglio, M; Towe, S; Roberts, D
2016-06-15
Purpose: The Elekta MR-Linac combines a digital linear accelerator system with a 1.5T Philips MRI machine. This study aimed to determine key characteristic information regarding the MR-Linac beam and in particular it evaluated the effect of the MR cryostat on the out of field scatter dose. Methods: Tissue phantom ratios, profiles and depth doses were acquired in plastic water with an IC-profiler or with an MR compatible water tank using multiple system configurations (Full (B0= 1.5T), Full (B0=0T) and No cryostat). Additionally, an in-house CAD based Monte Carlo code based on Penelope was used to provide comparative data. Results: Withmore » the cryostat in place and B0=0T, the measured TPR for the MR Linac system was 0.702, indicating an energy of around 7MV. Without the cryostat, the measured TPR was 0.669. For the Full (B0=0T) case, out of field dose at a depth of 10 cm in the isocentric plane, 5 cm from the field edge was 0.8%, 3.1% and 5.4% for 3×3 cm{sup 2}, 10×10 cm{sup 2} and 20×20 cm{sup 2} fields respectively.The out of field dose (averaged between 5 cm and 10 cm beyond the field edges) in the “with cryostat” case is 0.78% (absolute difference) higher than without the cryostat for clinically relevant field sizes (i.e. 10×10 cm{sup 2}) and comparable to measured conventional 6MV treatment beams at a depth of 10 cm (within 0.1% between 5 cm and 6 cm from field edge). At dose maximum and at 5 cm from the field edge, the “with cryostat” out of field scatter for a 10×10 cm{sup 2} field is 1.5% higher than “without cryostat', with a modest increase (0.9%) compared to Agility 6MV in the same conditions. Conclusion: The study has presented typical characteristics of the MR-Linac beam and determined that out of field dose is comparable to conventional treatment beams. All authors are employed by Elekta Ltd., who are developing an MR-Linac.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, S; Glitzner, M; Kontaxis, C
Purpose: The introduction of the MRI-linac in radiotherapy brings MRI-guided treatment with daily plan adaptions within reach. This paradigm demands on-line QA. With its ability to perform continuous volumetric imaging in an outstanding soft-tissue contrast, the MRI- linac promises to elucidate the dose deposition process during a treatment session. Here we study for a prostate case how dynamic MRI combined with linac machine parameters and a fast dose-engine can be used for on-line dose accumulation. Methods: Prostate imaging was performed in healthy volunteer on a 1.5T MR-scanner (Philips, Best, NL) according to a clinical MR-sim protocol, followed by 10min ofmore » dynamic imaging (FLASH, 4s/volume, FOV 40×40×12cm{sup 3}, voxels 3×3×3mm{sup 3}, TR/TE/α=3.5ms/1.7ms/5°). An experienced radiation oncologist made delineations, considering the prostate CTV. Planning was performed on a two-compartment pseudoCT (air/water density) according to clinical constraints (77Gy in PTV) using a Monte-Carlo (MC) based TPS that accounts for magnetic fields. Delivery of one fraction (2.2Gy) was simulated on an emulator for the Axesse linac (Elekta, Stockholm, SE). Machine parameters (MLC settings, gantry angle, dose rate, etc.) were recorded at 25Hz. These were re-grouped per dynamic volume and fed into the MC-engine to calculate a dose delivered for each of the dynamics. Deformations derived from non-rigid registration of each dynamic against the first allowed dose accumulation on a common reference grid. Results: The DVH parameters on the PTV compared to the optimized plan showed little changes. Local deformations however resulted in local deviations, primarily around the air/rectum interface. This clearly indicates the potential of intra-fraction adaptations based on the accumulated dose. Application in each fraction helps to track the influence of plan adaptations to the eventual dose distribution. Calculation times were about twice the delivery time. Conclusion: The current Result paves the way to perform on-line treatment delivery QA on the MRI-linac in the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallone, B; Keyvanloo, A; Burke, B
Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth ofmore » 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less
Beam characterisation of the 1.5 T MRI-linac
NASA Astrophysics Data System (ADS)
Woodings, S. J.; Bluemink, J. J.; de Vries, J. H. W.; Niatsetski, Y.; van Veelen, B.; Schillings, J.; Kok, J. G. M.; Wolthaus, J. W. H.; Hackett, S. L.; van Asselen, B.; van Zijp, H. M.; Pencea, S.; Roberts, D. A.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-04-01
As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1 × 1 and 57 × 22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of +0.24 cm. For a 10 × 10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%–80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm) = 57%. The entrance surface dose is ∼36% of . Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017 (Raaymakers et al 2017 Phys. Med. Biol. 62 L41–50).
Electron irradiation response on Ge and Al-doped SiO 2 optical fibres
NASA Astrophysics Data System (ADS)
Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.
2011-05-01
This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.
Attosecond time-energy structure of X-ray free-electron laser pulses
NASA Astrophysics Data System (ADS)
Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.
2018-04-01
The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging.
Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit; Loh, N Duane
2016-08-01
Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map and then phase reconstructed. In this paper, the Dragonfly software package is described, based on a parallel implementation of the expand-maximize-compress reconstruction algorithm that is well suited for this task. Auxiliary modules to simulate SPI data streams are also included to assess the feasibility of proposed SPI experiments at the Linac Coherent Light Source, Stanford, California, USA.
NASA Astrophysics Data System (ADS)
Chen, Lingxia; O'Keeffe, Sinead; Woulfe, Peter; Lewis, Elfed
2017-04-01
Four sensors based on silica optical fibre and plastic optical fibre for clinical in-vivo dosimetry have been fabricated and tested on site at Galway Clinic. The initial comparison results have been attained for the four sensors when they have been irradiated with beam energies of 6 MV and 15 MV at different dose rates using a modern clinical linear accelerator (Linac) as the radiation source. According to the experimental test results, the sensors based on silica optical fibre exhibit greater sensitivity to the incident radiation beam than the sensors based on plastic optical fibre when they are exposed to identical irradiation conditions. The output intensity from the sensor based on silica fibre is 5 times higher than the sensor based on plastic optical fibre.
Design study of the CEPC booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chuang
2014-12-10
Design study of the CEPC booster is reported. The booster provides 120 GeV beams for the collider with topup injection frequency of 0.1 Hz. To save cost, energy of the linac injector for the booster is chosen as 6GeV, corresponding to the magnetic field of 30 Gs. In this paper, lattice of the booster is described; the low injection energy issues are studied; beam transfer from linac to booster and from booster to collider are discussed.
Low Level RF Control for the PIP-II Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.; Cullerton, E.
The PIP-II accelerator is a proposed upgrade to the Fermilab accelerator complex that will replace the existing, 400 MeV room temperature LINAC with an 800 MeV superconducting LINAC. Part of this upgrade includes a new injection scheme into the booster that levies tight requirements on the LLRF control system for the cavities. In this paper we discuss the challenges of the PIP-II accelerator and the present status of the LLRF system for this project.
BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ventturini, M.; Corlett, J.; Emma, P.
2012-05-18
We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.
Biomedical user facility at the 400-MeV Linac at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, W.T.
1993-12-01
In this paper, general requirements are discussed on a biomedical user facility at the Fermilab`s 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients.
NASA Astrophysics Data System (ADS)
Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho
2017-11-01
The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.
NASA Astrophysics Data System (ADS)
Ghasemi, F.; Abbasi Davani, F.
2015-06-01
Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.
Georgopoulos, Michael; Zehetmayer, Martin; Ruhswurm, Irene; Toma-Bstaendig, Sabine; Ségur-Eltz, Nikolaus; Sacu, Stefan; Menapace, Rupert
2003-01-01
This study assesses differences in relative tumour regression and internal acoustic reflectivity after 3 methods of radiotherapy for uveal melanoma: (1) brachytherapy with ruthenium-106 radioactive plaques (RU), (2) fractionated high-dose gamma knife stereotactic irradiation in 2-3 fractions (GK) or (3) fractionated linear-accelerator-based stereotactic teletherapy in 5 fractions (Linac). Ultrasound measurements of tumour thickness and internal reflectivity were performed with standardised A scan pre-operatively and 3, 6, 9, 12, 18, 24 and 36 months postoperatively. Of 211 patients included in the study, 111 had a complete 3-year follow-up (RU: 41, GK: 37, Linac: 33). Differences in tumour thickness and internal reflectivity were assessed with analysis of variance, and post hoc multiple comparisons were calculated with Tukey's honestly significant difference test. Local tumour control was excellent with all 3 methods (>93%). At 36 months, relative tumour height reduction was 69, 50 and 30% after RU, GK and Linac, respectively. In all 3 treatment groups, internal reflectivity increased from about 30% initially to 60-70% 3 years after treatment. Brachytherapy with ruthenium-106 plaques results in a faster tumour regression as compared to teletherapy with gamma knife or Linac. Internal reflectivity increases comparably in all 3 groups. Besides tumour growth arrest, increasing internal reflectivity is considered as an important factor indicating successful treatment. Copyright 2003 S. Karger AG, Basel
Speiser, M; Hager, F; Foster, R; Solberg, T
2012-06-01
To design and quantify the shielding efficacy of an inner Borated Polyethylene (BPE)wall for a 15 MV linac in a low energy vault. A Varian TrueBeam linac with a maximum photon energy of 15 MV was installed in asmaller, preexisting vault. This vault originally housed a low-energy machine and did not havesufficient maze length recommended for neutron attenuation. Effective dose rate calculationswere performed using the Modified Kersey's Method as detailed in NCRP Report No. 151 andfound to be unacceptably high. An initial survey following the machine installation confirmedthese calculations. Rather than restrict the linac beam energy to 10 MV, BPE was investigatedas a neutron moderating addition. An inner wall and door were planned and constructed using4'×8'×1″ thick 5% BPE sheets. The resulting door and wall had 2″ of BPE; conduits and ductwork were also redesigned and shielded. A survey was conducted following construction of thewall. The vault modification reduced the expected effective dose at the vault door from 36.23to 0.010 mSv/week. As specific guidelines for vault modification are lacking, this project quantitativelydemonstrates the potential use of BPE for vault modification. Such modifications may provide alow-cost shielding solution to allow for the use of high energy modes in smaller treatment vaults. © 2012 American Association of Physicists in Medicine.
Overview of High Power Vacuum Dry RF Load Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnykh, Anatoly
2015-08-27
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less
NASA Astrophysics Data System (ADS)
Lye, J. E.; Butler, D. J.; Oliver, C. P.; Alves, A.; Lehmann, J.; Gibbons, F. P.; Williams, I. M.
2016-07-01
Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.
Ultrafast absorption of intense x rays by nitrogen molecules
NASA Astrophysics Data System (ADS)
Buth, Christian; Liu, Ji-Cai; Chen, Mau Hsiung; Cryan, James P.; Fang, Li; Glownia, James M.; Hoener, Matthias; Coffee, Ryan N.; Berrah, Nora
2012-06-01
We devise a theoretical description for the response of nitrogen molecules (N2) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations (ΔSCF method). To describe the interaction with N2, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N2: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N_2^{2+}, and molecular fragmentation are explained.